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Abstract

This thesis is focused on expanding the use of spatial modelling approaches for

applications in ecology. Spatial ecology is about understanding the processes that

give rise to spatial patterns in ecological data. In addition to developing a purely

scientific understanding, insights into these processes are essential for the effective

monitoring and conservation management of ecological systems.

However, for many ecological problems, the detectability of animals is imperfect,

requiring the use of complex observation models that can account for this. In this

thesis we focus on two such models: distance sampling and spatial capture-recapture

(SCR). For both these models we incorporate spatially structured random effects to

provide a non-parametric method for describing spatial variation in species’ abun-

dance, and to address the problem of spatial auto-correlation.

These complex models require the use of computationally efficient random effect

structures and inference methods. In particular, we use a sparse stochastic par-

tial differential equation (SPDE) approach as well as low rank penalised smoothing

splines. We also draw links between these two approaches in order to illuminate the

technically challenging results underpinning the SPDE approach. For inference in

distance sampling models, we use a novel approach to achieve a one-stage model

fit based on iterated model fitting using approximate Bayesian methods. For in-

ference in SCR models, we use Laplace approximate maximum likelihood methods.

We present models that have the necessary complexity to jointly model complex

ecological and observation processes, as well as providing efficient methods to fit the

models in practice. We conclude by discussing related avenues for future research

that are motivated by applied problems in the field of spatial ecology.
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Chapter 1

Introduction

This thesis is about understanding, developing and applying statistical methods to

answer questions in spatial ecology. Spatial ecology is about understanding the pro-

cesses that give rise to the spatio-temporal patterns that occur in ecological data.

By building statistical models that provide a possible explanation for these patterns,

inverse inference from observed data provides a means to generate knowledge about

these hidden processes. Spatial ecologists want to learn about these processes for

many reasons, from conservation management (Porfirio et al., 2014; Franklin, 2010b;

Corsi et al., 1999) to biodiversity discovery (Williams et al., 2009; Guisan et al.,

2006), predicting responses to climate change (Jarvie and Svenning, 2018; Iverson

et al., 2011; Van der Putten et al., 2010) and more. The challenge for statisticians is

to help ecologists make sense of these data with appropriate statistical models that

can capture potentially rich and complex ecological processes. However, methods

must also account for for non-trivial observation processes, requiring complex hier-

archical models and many modelling decisions that have to be made along the way.

This thesis presents contributions to each step of the applied statistician’s workflow

in addressing these challenges, from model conception and implementation through

to inference method and communication of results.

Ecological data are naturally structured through space and time, with observa-

1



tions made closer together more similar than those made further apart. We cannot

directly observe all of the animals all of the time, necessarily requiring sub-sampling

in space and time as well as methods to account for imperfect detectability. The

structure in the data we collect reflects the manner in which we made the obser-

vations as well as the ecological processes that are of scientific interest. Statistical

methods must account for both the observation process and the, often latent, eco-

logical processes that generate the observed data.

Within the field of spatial ecology there is a rich literature describing models

for spatio-temporal data, which typically consist of the location and time a species

was seen and other potentially relevant factors such as the local weather, climate

and environmental conditions. Approaches to model these data vary from explicit

mechanistic models (Bauer and Klaassen, 2013; Leroux et al., 2013; Rastetter et al.,

2003) to purely correlative approaches such as machine learning (Rammer and Seidl,

2019; Christin et al., 2019) and everything in between.

The methods we use to observe animals also vary enormously. We might under-

take a complete census of every tree species in a pre-defined plot, place a GPS device

on an animal, or walk a pre-defined route through a nature reserve and note down

everything we see, aware that we will probably miss a lot. We could leave motion-

detecting cameras across the landscape and investigate the photographs later or we

could ask people to download an application to their phone and note when they

see particular species as they go about their daily lives. Each of these methods

result in different data structures and therefore requires bespoke statistical models

that can account for this. In statistical ecology we have to put as much effort into

modelling the observation process as we do for modelling the ecological process we

are interested in. Models for the observation process are often as rich and complex

those for the ecological process. This thesis focuses on two observation models that

have become a staple of monitoring programmes around the world: distance sam-

pling (Buckland et al., 2015, 2004) and spatial capture-recapture (SCR) (Borchers

2



and Efford, 2008; Royle and Young, 2008).

Both these approaches were primarily developed with the aim of estimating the

abundance of wild populations of animals. At the heart of distance sampling is

the idea that animals further away from an observer are less likely to be detected.

By estimating the number of animals that remain undetected, this approach allows

us to estimate the total population size. SCR is based on a similar idea but also

leverages the data where individual animals are identifiable, such as a leopard by

the pattern of spots on its coat or by DNA analysis of hair or fecal samples.

In the years since their initial development, both distance sampling and SCR

have been extended in various ways to incorporate complex spatio-temporal models

for the distribution of animals across the landscape (Glennie et al., 2019; Yuan

et al., 2017; Buckland et al., 2016; Borchers et al., 2014; Miller et al., 2013; Hedley

and Buckland, 2004; Marques and Buckland, 2003). This thesis is another effort

in this tradition. The benefit of these developments is that they allow the use of

distance sampling and SCR data to generate spatially-explicit estimates of animal

density. This allows ecologists and conservationists to investigate the possible causes

of variation in density, such as responses to disturbance or conservation efforts, and

to detect whether the distribution is changing over time.

A key tool in spatio-temporal modelling is the use of spatially structured random

effects (see Section 1.1.2). These are flexible model components that can provide

a non-parametric description of spatial patterns in data. Including these effects in

models provides a way to address unexplained heterogeneity in the data that other

model components cannot explain. Spatially structured random effects therefore

act as insurance policy against unexplained spatial autocorrelation (Section 1.1.1)

which can lead to bias and over-confidence in the explanatory power of other model

components, such as the effects of spatial covariates. They also provide a means

of visualising patterns in the data which can, in turn, generate new ecological hy-

potheses and spur future model development. They are, therefore, a fundamental

3



tool in spatial statistics.

In this thesis, we, for the first time, incorporate spatially structured random

effects into an SCR model, allowing the use of flexible non-parametric models to

describe spatial variation in animal abundance. We also incorporate spatially struc-

tured random effects in distance sampling models and present a method for jointly

estimating the detectability and spatial distribution of animals from distance sam-

pling data, a modelling process that is often split into two separate models. Miller

et al. (2013) provides a summary of the two-stage approach, based on using Gen-

eralised Additive Models (GAMs) with an offset term to account for detectability

estimated in a separate model. Royle et al. (2004) introduced a one-stage maximum

likelihood approach based on discretising counts and distances into discrete classes

that allows a multinomial formulation of the likelihood.

However, our work takes a Bayesian perspective and builds directly on Yuan

et al. (2017), taking a point process view on distance sampling data, creating a

single model that does not require observations to be binned into discrete counts

or distance classes. We simplify the observation model used in Yuan et al. (2017),

allowing the use of standard parametric families of detection functions, as is common

in most distance sampling analyses, instead of the stochastic partial differential

equation approach taken there. This requires a novel approach to inference based

on a first-order Taylor expansion of the detection function and an iterated model

fitting procedure.

The first topic we present, however, is not directly devoted to flexible modelling

of distance sampling or SCR data, but rather how to understand one particular

type of spatially structured random effect that has become a popular choice in

spatial ecology. This effect is based on a stochastic partial differential equation

(SPDE) representation of a spatially correlated Gaussian random field (Lindgren

et al., 2011). While this approach has become popular, the literature on this is dense

and requires a deep mathematical understanding that many applied statisticians do

4



not have. However, for a model to be interpretable, a fundamental step of any

modelling process is for the practitioner to understand the model they would like to

fit. We attempt to simplify the broad and disparate technical literature required to

understand the SPDE approach and package it up in a way that applied statisticians

and quantitative ecologists can understand.

In Chapter 2, Understanding the stochastic partial differential equation approach

to smoothing, we draw links between Gaussian random fields specified via SPDEs

and optimal smoothing splines (Wood, 2017; Wahba, 1990). Smoothing splines have

been used in distance sampling models to describe spatial variation in species density

(Miller et al., 2013) and unpenalised spline effects with a fixed degree of freedom

have been implemented in SCR in the secr package (Efford, 2021). We show how to

implement and fit SPDE models using the widely used penalised smoothing spline

package mgcv (Wood, 2017), drawing links between two popular approaches to model

animal density in spatial ecology.

The main results of this chapter have been published in Miller et al. (2019), for

which I am joint first author. Chapter 2 is a longer-form version of this paper with

more details, some corrections and clarifications, and presents some new case studies.

The ideas presented here form the basis of the implementation of the random effects

models in the subsequent chapters.

In Chapter 3, One-stage point transect distance sampling using iterated integrated

nested Laplace approximations, we show how to fit a spatial SPDE model within the

context of the distance sampling observation process. We do this using a novel

approach to inference that is based on considering iterative model fits, taking a

Taylor approximation of non-linear model components. This approach allows us

to jointly estimate the spatial distribution and detectability of animals, a workflow

that is usually split into two separate models, and shares uncertainty between the

observation and spatial models. We also discuss the challenges in communicating

uncertainty in animal density maps based on posterior log-Gaussian random fields
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and suggest some new approaches to consider by presenting novel ways to summarise

posterior Monte Carlo samples of the random field. In particular, we introduce some

new metrics to measure information gain due to sampling effort and suggest the use

of excursion sets (Bolin and Lindgren, 2018, 2015) as an improvement over pointwise

summaries for each prediction location.

In Chapter 4, Flexible density models for spatial capture-recapture, we introduce

penalised spatially structured random effects for animal density within SCR for the

first time. We implement the SPDE approach to model animal density in SCR as well

as implementing other random effects such as thin plate regression splines (Wood,

2003) and effects that can account for non-Euclidean spatial geometry (Miller and

Wood, 2014). Here we use Laplace approximate maximum likelihood for inference,

using automatic differentiation and implemented in the R package Template Model

Builder (TMB) (Kristensen et al., 2016).

In a sense, this thesis represents many of the key steps in an applied statistician’s

workflow, which can be summarised in the following steps:

1) Understand your tools.

2) Pick appropriate tools to model the data you have.

3) Pick an appropriate inference method that is well-suited to the tools you

picked.

4) Fit some models.

5) Check the fitted models. Can steps 1-3 be improved?

6) Effectively communicate the results of the modelling.

In reality, we have to iterate this procedure many times and explore many dead

ends. The research presented in this thesis examined each of these aspects of the

workflow. Chapter 2 is about understanding the SPDE approach to smoothing;

Chapters 3 and 4 consider two popular approaches to working with wildlife survey
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data with imperfect detection, in both cases using novel approaches to inference

driven by the particular models we considered; and Chapter 3 has a particular focus

on communicating uncertainty in species distribution maps.

An alternative title for the thesis could perhaps have been Contributions to the

workflow of applied spatial ecology. The title we chose in the end is Expanding

the use of spatial models in statistical ecology. This ‘expanded use’ is intended to

describe both the novel application of spatial modelling methods to new areas of

spatial ecology, as well as our expanded understanding of how the models work and

how to communicate results based on these models.

The main benefit to understanding the SPDE approach was, for us, that this

allowed us to implement similar models ourselves, in software packages that we are

familiar with, and can flexibly apply in a wide variety of contexts. This understand-

ing allowed us to detach the SPDE approach from any single particular software

implementation, using both mgcv and TMB to fit SPDE models presented in this

thesis. We hope this helps other practitioners make use of this approach using

whichever software they are most familiar with.

The attractiveness of spatially structured random effects is that they provide a

flexible model that is able to capture correlations in data for which we have no good

covariate or mechanistic model to explain. In spatial ecology, there is nearly always

some structure in the data that we cannot explain without the use of some flexible

random effect. These methods act as an insurance policy against over-confidence in

other aspects of the model, such as the effects of covariates or mechanistic model

components. Spatially structured random effects are a fundamental part of the

spatial statistician’s toolkit and they should be available to use in the complex hier-

archical spatial models that ecologists tend to need. They will not always be needed

in every analysis, but when they are they should be straightforward to implement

with efficient methods for inference. This is the motivation for implementing these

methods for distance sampling and SCR.
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The remainder of this introduction introduces the key concepts and modelling

frameworks that are used throughout the rest of the thesis. Where necessary, these

ideas are expressed more precisely elsewhere in the thesis.

1.1 Spatial modelling

1.1.1 The challenge of spatial auto-correlation

In most spatial modelling applications, models tend to include a predictor compo-

nent, denoted here as η(s), that depends on a spatial location s, and usually has a

linear additive form such as

η(s) = β0 +
∑
k

βkzk(s),

with intercept parameter β0 and the effects of spatially indexed covariates zk(s) with

coefficients βk.

Given this predictor we consider a generic model of the form

y(s) ∼ π(y(s)|η(s)),

for data y(s) with likelihood π(y(s)|η(s)). Given a particular choice of likelihood, it

is in considering various models for η(s) that we attempt to understand how the data

y(s) arises. In a hierarchical model, η(s) itself may have a model π(η(s)), which

could be viewed as a prior in a Bayesian context, some form of regularization in a

penalised regression context, or some represent another data generating mechanisms.

The usual assumption for such a model is that observed data y1, . . . , yn are condi-

tionally independent given η1, . . . , ηn. The implicit justification for this assumption

is that η(s) is a good model, in that it has sufficient richness that it can explain

enough variation in the observed data that conditional independence is a reasonable
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assumption to make. Violating this assumption risks introducing bias and can lead

to artificially small uncertainty estimates. If the data y1, . . . , yn have some correla-

tion that η1, . . . , ηn cannot explain, then this has to be accounted for through some

other means or by changing the model for η(s). This is known as the problem of

spatial auto-correlation (Dormann et al., 2007; Cliff and Ord, 1970).

One key way to address this is by adding a flexible model component to η(s)

that can absorb this residual correlation. This flexible component should be spatially

correlated since its purpose is to address unexplained spatial correlation in the data.

Such a model component we call a spatially structured random effect.

1.1.2 Spatially structured random effects

We denote a generic spatially structured random effect by f(s). Since its purpose

is to model spatial structure in the data, this effect is indexed by s, representing a

location in space. When such a model component is included we have a predictor

of the form

η(s) = β0 +
∑
k

βkzk(s) + f(s).

Typically f(s) has a mean of zero and so E[η(s)] is just the model for the covariate

effects. The question then is what kind of functions f(s) should be allowed? It

should be something that is flexible (able to ‘bend’ to match the data) but not too

flexible (exactly fit everything by bending too much). In this thesis we consider

effects defined on a continuous spatial domain and, in this context, there are two

main approaches to specifying f(s): Gaussian random fields (GRFs) (Rasmussen

and Williams, 2005) and smoothing splines (Wood, 2017; Wahba, 1990). We will see

later that these approaches are not really distinct but rather are intimately linked

with each other.

The term ‘random effect’ comes with some baggage since it can mean many

different things. Here we just use it to mean this flexible model component f(s), that
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is spatially correlated but doesn’t have a fixed structure like a spatial covariate does.

Historically the term random effect has been used to describe model parameters that

themselves follow a probability distribution, such as i.i.d Gaussian variables, where

the probability distribution is used to represent some super-population from which

observations are drawn. More recently, the term has been applied in spatial statistics

to describe a model component that has a probability distribution that induces

spatial correlation. In this context there is no implied super-population for this

model. Here we used the term spatially structured random effect to describe both

GRFs and smoothing splines, although the terminology is probably more common

in GRF applications than smoothing splines. For a more detailed discussion of the

different interpretations of the term ‘random effects’, see Hodges (2019).

Gaussian random fields

One way to think about how to include a spatially structured random effect, f(s),

is to view this model component as a random function. We say f(s) is a member of

a space of functions and specify a probability distribution on this space to control

the ‘bendiness’ of f(s). Gaussian random fields (GRFs) (Rasmussen and Williams,

2005) are one way of doing this. A distribution on the function space is repre-

sented by specifying that the random function considered at any finite collection of

locations, [f(s1), . . . , f(sn)]ᵀ, has a multivariate Gaussian distribution. This distri-

bution depends on the covariance function for the GRF, that allows us to construct

the covariance matrix for any given [f(s1), . . . , f(sn)]ᵀ. The covariance function is,

therefore, central to the behaviour of f(s) as this what determines the correlations

between locations and thus, informally, the ‘bendiness’ of f(s).

Smoothing splines

A similar and related approach is to specify f(s) as a smoothing spline (Wood, 2017;

Wahba, 1990). Under this paradigm we also specify a family of allowable functions
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for f(s). We then penalise bendy functions to stop over-fitting. This is done by

specifying a smoothing penalty. One example of a way to measure bendiness is to

consider the second derivatives of f(s) and using a penalty of the form

λ

∫ (
∂f

∂s2
1

)2

+

(
∂f

∂s2
2

)2

ds,

where s = (s1, s2). The integral ‘adds up’ the bendiness of f(s), as measured by the

second-derivative with respect to each coordinate variable. The parameter λ > 0

represents its cost in terms of how it impacts on the likelihood π(η(s)). Similar to the

covariance function above, the choice of smoothing penalty is central as it determines

what counts as smoothness and thus what kinds of functions are preferred. A key

message of Chapter 2 is that the covariance of a random field and the smoothness

of a spline effect, as defined by the smoothing penalty, are intimately related.

Approximate smoothing methods

Both the above approaches depend on specifying a space of functions for f(s). How-

ever, many function spaces, such as spaces of differentiable or integrable functions,

are infinitely large and have an infinite number of basic ‘building blocks’. For ex-

ample, any real-valued integrable function can be represented by its Fourier series

f(x) =
∑∞

n=−∞ cne
2πinθ. Here the infinite set of functions {e2πinθ | n ∈ Z} are the

basic building blocks from which we can construct any integrable function by using

appropriate coefficients cn. However, for reasons of practical computation we have

to consider a finite set of building blocks for a function space, also called the basis of

the function space. The challenge is to do this in a way that still leaves a sufficiently

rich function space for a given application.

For both GRFs and smoothing splines we choose a finite basis for f(s) and

represent it as f(s) =
∑M

j=1 ξjφj(s). The functions φ1, . . . , φM are the basic building

blocks with which we represent any f(s) in the space of functions spanned by this
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basis by varying the coefficients ξ1, . . . , ξM . As we explain in Chapter 2, given a

choice of a basis for f(s), both the GRF and smoothing spline approach amount to

placing a multivariate Gaussian distribution on the coefficients ξ := [ξ1, . . . , ξM ]T .

Given this finite basis, various approaches have been developed for computation-

ally efficient methods to work with these effects since, if M is large, as can often

be required in spatial applications, then ξ can have a large and dense covariance

matrix Σ that can be computationally challenging to work with. This has led to

numerous efforts to approximate Σ by various methods. This thesis considers two

approaches: construct a sparse approximation to Σ (or equivalently its inverse, the

precision matrix), or, alternatively, create a low-rank approximation of Σ. The

SPDE approach (Lindgren et al., 2011) is an example of a way to induce sparsity.

The thin plate regression spline, a common choice and the default in mgcv (Wood,

2017), is an example of a low-rank approximation approach. We use both of these

methods in this thesis.

The SPDE effect

The SPDE approach is a method to approximate a mean zero GRF with a Matérn

covariance function. The Matérn covariance function defined on a two-dimensional

domain can be written as

C(s1, s2) =
21−ν

4πκ2τ 2Γ(ν)
(κ‖s1 − s2‖)νKν(κ‖s1 − s2‖), (1.1)

where ν, κ, τ are parameters and Kν is the modified Bessel function of the second

kind. The three parameters are not simultaneously identifiable (Zhang, 2004) and

it is conventional to assume a value for ν which specifies the mean-square differen-

tiability of the process. In this thesis we set ν = 1 in all applications which is a

common choice and is the default in R-INLA, the most popular implementation of

the SPDE effect.
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The Matérn covariance function is a popular choice in spatial statistics for many

reasons. Stein (2012) emphasises the additional flexibility of the differentiability

parameter ν that many other covariance functions do not have and Lindgren et al.

(2011) mention the importance of a spatial Markov property that allows for com-

putational methods that can leverage this. The Matérn covariance function decays

with increasing distance between locations s1 and s2 with a rate of decay that de-

pends on κ and τ . It is, therefore, a flexible model that is well-suited to modelling

spatial correlation that decays as distance between observations increases.

Lindgren et al. (2011) constructs an approximation to a GRF with Matérn co-

variance by representing the random field as the solutions to an SPDE. Given this

representation, numerical methods for solving SPDEs can be applied and doing this

in a particular way results in a sparse precision matrix for the coefficient vector ξ.

We cover this in detail in Chapter 2.

Thin plate splines

The thin plate spline penalty in two dimensions is

λ

∫ ∫ (
∂2f

∂s2
1

)2

+ 2

(
∂2f

∂s1∂s2

)2

+

(
∂2f

∂s2
1

)2

ds1ds2,

which is similar to the penalty example given above except for the additional cross-

derivatives term. The thin plate spline basis is dependent on data, with a radially

symmetric basis function defined on every unique data point. This means the model

can be over-parameterised. To fit a computationally efficient version of the thin plate

spline, Wood (2003) suggests taking a low rank approximation by considering the

eigen-decomposition of the precision matrix and truncating this by taking the eigen-

vectors with the largest eigenvalues. This is known as the thin plate regression spline

(TPRS). When the truncation is done appropriately, this results in a random effect

with fewer parameters to estimate, but f(s) is still flexible enough for practical
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purposes. This is the basis for the implementation of thin plate splines in the

smoothing spline R package mgcv (Wood, 2017) and, for our purposes, the low rank

approximation was useful in implementing spatially structured random effects for

SCR.

1.2 Point process models

Both the applications considered in this thesis, distance sampling and SCR, can be

viewed through the lens of point process models. A point pattern is a random set

of locations that typically represent an event or physical object. The location of

trees in a rainforest or the epicentres of earthquakes are examples of point patterns.

A point process model describes, probabilistically, the likelihood of a point pattern

under that model. In spatial ecology, often the points represent the locations of

animals when they are observed. There is a rich literature on applied point process

models across many fields, Baddeley et al. (2015) and Illian et al. (2008) provide an

overview.

All of the point process models considered in this thesis are based on the Pois-

son process. The homogeneous Poisson process is a model for complete spatial

randomness, where locations of points in the pattern are uniformly distributed in-

dependently of one another. The inhomogeneous Poisson process allows points to

be structured spatially but still conditionally independent, given a latent surface

that describes the density of points. This latent surface is known as the intensity

function.

A Cox process is similar to the inhomogeneous Poisson process, but the latent

surface is itself stochastic. In the case of a log-Gaussian Cox process, the log of the

intensity function is a GRF (Møller et al., 1998). It is this model, the log-Gaussian

Cox process, that we use within distance sampling and SCR by adding spatially

structured random effects, such as GRFs and smoothing splines, to the log intensity
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function.

A key property of the Poisson and Cox process is that these models handle the

imperfect detection of points in a natural way. If a Poisson process model (homoge-

neous or inhomogeneous) has intensity function λ(s) and points are detected with

probability p(s), independently of one another, then the pattern of detected points

is itself distributed according to a Poisson process model with intensity function

p(s)λ(s). The same holds if λ(s) is a random field. In other words, independent

imperfect detection of points does not require a fundamental reformulation of the

model. Instead, we just need to adjust the intensity function by considering p(s).

Sometimes this is referred to as independent thinning of the points and we use

the term thinning probability interchangeably with detection probability. It is this

feature of the Poisson point process and log-Gaussian Cox process that we use to

incorporate point process models into distance sampling and SCR and have made

them a popular tool in species distribution modelling.

In this thesis we use point processes to model data on animal locations. In this

context, the term animal density (the number of animals per unit area) is common

in the literature. For our purposes, this is the same as the intensity function of the

point process and we use both terms in the text. This is not to be confused with a

probability density function and should be clear from context.

1.3 Distance sampling

Distance sampling (Buckland et al., 2015, 2004) is a family of related methods for

estimating the abundance and spatial distribution of wild populations of animals.

Distance sampling is based on the idea that animals further away from observers are

harder to detect than animals that are nearer. This idea is implemented in the model

as a detection function that depends on distance. Species at greater distances are

harder to detect and the detection function therefore declines as distance increases.
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The shape of this function, the rate of decline, is estimated from observed data.

Distance sampling data has also been incorporated into spatial models (Hedley

and Buckland, 2004; Miller et al., 2013) to produce maps of spatially varying density

of animals. Usually this is done by using detectability point estimates to create an

offset vector to use within a generalised linear model (GLM) (McCullagh and Nelder,

2019) or generalised additive model (GAM) (Wood, 2017) with a count response

variable. This requires us to bin the data into counts based on some discretisation

of space.

In this thesis we take an alternative point process perspective, using the detection

function to define the probability of detecting points, p(s), and fitting point process

models to the data. We jointly estimate the probability of detection along with the

intensity λ(s), fitting a single model, and requiring no binning of the point data into

counts. This work builds on Yuan et al. (2017), who take a similar point process

perspective but formulate the detection function as a random effect using an SPDE.

Here, we instead use a parametric detection function as opposed to a random effect,

as is more common in distance sampling applications. Yuan et al. (2017) apply their

method to line transect distance sampling data of blue whales based on shipboard

surveys in the eastern Pacific. Here we formulate the model for point transect data,

applied to distance sampling data on an endangered tropical bird. This requires

adjusting for the increased area sampled as distance increases and handling cases

where the exact location of points is not known, but only the distance to a known

observer location is recorded.

1.4 Spatial Capture-Recapture

Spatial capture-recapture (Borchers and Efford, 2008; Royle and Young, 2008) is re-

lated to distance sampling and is applied in contexts where the identity of individuals

animals is knowable. When individually identifiable animals are seen multiple times
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(or ‘captured’ and ‘recaptured’) these data can be used to estimate abundance (Am-

strup et al., 2005). SCR is a method that leverages the spatial location of captures

and recaptures to learn about the spatial ecology of animal populations. This is

also based on a point process model, one that describes the distribution of activity

centres across a region. Animals move around these activity centres and may or may

not be detected by our survey efforts. In this setting, the further away an animal

moves from its activity centre, the less likely it is to be detected. In this case, the

model for p(s) is more complicated than for distance sampling, but its purpose in

the model amounts to the same thing: some animals remain undetected completely

and we would like to estimate how many there are using the data we did observe.

1.5 Inference for spatial models

This section discusses two approaches to inference for spatial models that we use in

this thesis. The distance sampling models are fitted using the approximate Bayesian

method of integrated nested Laplace approximations (INLA) (Rue et al., 2009) which

has become a popular choice in spatial statistics for its computational efficiency in

implementing sparse random effects (Bakka et al., 2018).

The SCR model cannot be implemented in INLA and hence, for inference in

this case, we use Laplace approximate maximum likelihood (LAML), marginalising

out the spatially structured random effect. To do this integration approximately we

use the Laplace approximation and automatic differentiation implemented in the R

package Template Model Builder (TMB) (Kristensen et al., 2016).

Both methods, INLA and LAML, rely on the Laplace approximation which is a

method for approximating the integral of a function by considering the second-order

Taylor expansion around the mode of integrand. This approximation can be fairly

accurate for uni-modal functions (Rue et al., 2009; Vonesh, 1996).
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1.5.1 Integrated nested Laplace approximations

Rue et al. (2009) introduced an approximate method to compute posterior quantities

of interest for latent Gaussian models (LGMs). A LGM is a model of the form

yi|ηi, θ ∼ π(yi|ηi, θ)

ηi = βTzi +
∑
r

fr(ui|ξ)

[β, ξ]T ∼ N(0,Σ|θ)

θ ∼ π(θ),

where E(yi|ηi, θ) = g(ηi) for some appropriate link function g(.). The predictor ηi

depends on some ‘fixed effect’ covariates zi with parameters β, which for simplicity

may also include an intercept term. In addition to these fixed effects, there are

random effects fr(ui) which have, collectively, a parameter vector ξ. The main

parameters of interest, β and ξ, are latent and have an Gaussian prior, hence the

term latent Gaussian model. This prior may depend on parameters θ, which are

sometimes referred to as hyper priors, and have prior distribution π(θ). In the types

of models we consider in this thesis, the hyper parameters for the random effects

are the smoothing parameter (in a spline regression context) or the parameters of a

covariance function (in a GRF context).

INLA is a method for approximating marginal posterior distributions of interest

for models that can be written as a LGM. These are typically π(βi|y) and π(θi|y).

This is achieved by marginalising and using approximate methods to evaluate these

integrals. The posterior for the hyper parameters is estimated as

π̃(θ|y) ∝ π(β̂, y, θ)

πG(β̂|y, θ)
,

where β̂ is the mode of π(β, y, θ) and πG(β|y, θ) is the Gaussian approximation of

π(β|y, θ) centred at β̂. Then the posterior of any specific hyper parameter can be
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approximated by π(θi|y) =
∫
π̃(θ|y)dθ−i. The posterior for the parameters of the

predictor η, for now using β to represent all coefficients, including those for the

random effects, can be approximated by

π̃(βi|θ, y) ∝ π(β̃, y, θ)

πG(β̃−i|βi, y, θ)
,

where β̃ is the mode of π(β, y, θ) where β̃i = βi, and πG(β−i|βi, y, θ) is the Gaussian

approximation for β−i|βi, y, θ here (i.e. for the joint posterior distribution of all

other parameters in η except βi). This is the Laplace approximation of π(βi|θ, y).

This description of INLA borrows heavily from Wood (2020) which introduces

a variation on INLA but has a very clear and accessible description of the method.

INLA is implemented in the R package R-INLA (Rue et al., 2009) which has im-

plemented a suite of likelihood functions for π(yi|ηi, θ), as well as many different

random effect models and hyper parameter priors. We mainly make use of the

Poisson likelihood which we can use to approximate the log-Gaussian Cox process

likelihood (see Chapter 3, Section 3.2).

R-INLA remains the most popular implementation of the SPDE approach given

its ability to utilise sparsity when evaluating Gaussian densities that depend on a

sparse precision matrix. It does this by using computationally efficient algorithms

for working with the precision matrix that can leverage sparsity (Rue and Held,

2005). Using spatially-structured random effects can be computationally expensive,

often resulting in dense prior precision matrices which typically have O(n3) cost to

factorise for an effect with n parameters. A key development in this area is the use of

sparse Gaussian Markov random field (GMRF) representations of Gaussian random

fields (GRFs) and R-INLA uses sparse matrix methods to factorise the precision

matrix at a cost of O(n3/2).
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1.5.2 Laplace approximate maximum likelihood

In a maximum likelihood setting, we can formulate the problem of inference with

latent random effects in a similar way to the approximate Bayesian approach of

INLA. In this perspective, we want to know the likelihood of β while treating the

random effect parameters ξ as ‘nuisance parameters’ and integrating them out. We

can write this as

L(β|y) =

∫
π(β|ξ, y)π(ξ|y)dξ. (1.2)

When ξ is a GRF or smoothing spline effect, π(ξ|y) is a Gaussian density (see

Chapter 2). We can approximate this integral using the Laplace approximation,

which requires the mode of π(β|ξ, y)π(ξ|y). Note that this approach does not require

the model to be a LGM as was necessary for INLA. We use this method for the SCR

likelihood and implement it in TMB, using automatic differentiation (Kristensen et al.,

2016) to calculate the gradients required for finding the mode with respect to ξ

and also to maximise the Laplace approximate marginal likelihood and generate

uncertainty estimates using the Hessian of the approximate marginal likelihood.

1.6 A note on notation

We use π to denote a generic probability distribution whose properties are implied

by its arguments. For example, π(X) is the probability distribution for X, π(X|Y )

is the conditional probability distribution for X given Y , π(X, Y ) is the joint prob-

ability distribution for X and Y , and so on. We also sometimes make use of the

squared bracket notation where [X] is the probability distribution function for X,

[X|Y ] is the conditional probability distribution for X given Y , and so on. We use

the term distribution here but in the text this notation could refer to a probability

mass function or a probability density function and it should be clear from context

what is intended.
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1.7 Summary

To summarise, this thesis is about understanding and implementing spatially struc-

tured random effects within two common modelling frameworks in spatial ecology:

distance sampling and spatial capture recapture. We present the SPDE approach in

a comprehensive way that is understandable to applied statisticians without a strong

background in the theory of SPDEs and Gaussian random fields. We then use this

approach in a distance sampling application to jointly estimate the distribution and

detectability of animals, using a novel approach to inference and introduce some

new approaches for communicating uncertainty. Finally, for the first time, we use

spatially structured random effects within SCR and present the various modelling

decisions that need to be taken in order to do this, ending with a discussion on future

research directions. This work represents contributions to each step of the applied

statistics workflow, understanding the methods available to us, building appropriate

models for a given application, choosing efficient and accurate means of inference,

and effective communication of the modelling results.
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Chapter 2

Understanding the stochastic

partial differential equation

approach to smoothing

2.1 Introduction

This chapter is concerned with developing an understanding of the relationship be-

tween two popular methods for modelling spatial and temporal structure in data: pe-

nalised smoothing splines (Wood, 2017) and stochastic partial differential equations

(Oksendal, 2013) (SPDEs). The motivation is to better understand the approach

introduced in Lindgren et al. (2011), who present a Gaussian Markov random field

(Rue and Held, 2005) approximation for a Gaussian random field (GRF) defined by

an SPDE. This has become known as the ‘SPDE approach’ in the literature and

has been implemented in the R-INLA software package (Rue et al., 2009) and, more

recently, in Template Model Builder (TMB) (Kristensen et al., 2016). Both these

libraries offer a wide range of tools for flexible hierarchical modelling. However, a

wider adoption of the SPDE approach in the applied spatial statistics literature has

been hindered for two primary reasons. First, the mathematical concepts involved in
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presenting the SPDE approach are advanced and more usually seen in the physical

sciences and applied mathematics literature. These concepts and associated terms,

and their relationships to other methods, are not necessarily well-known in the ap-

plied spatial statistics community. Second, the available software implementations,

R-INLA and TMB, while flexible, are difficult to customise further, requiring a deep

technical knowledge of the specific software packages, which could deter practitioners

from adopting the SPDE approach.

The aim of this chapter is to address both these issues by drawing links between

the SPDE approach and penalised smoothing splines Wood (2017). By doing this we

hope that statisticians who are already familiar with smoothing splines, a common

approach in applied spatial statistics, will be able to better understand the SPDE

approach and implement it in software packages they are already familiar with.

As an example of this we show how to implement the SPDE approach in the R

package mgcv (Wood, 2017), which is commonly used to fit models with penalised

regression splines, has a large base of users and is readily extended and customised

for application.

As was mentioned in the introduction, much of this work is published in Miller

et al. (2019), for which I am joint first author along with David Miller and Richard

Glennie. This work grew out of a reading group I set up in order to better understand

the SPDE approach, a method I intended to use throughout my PhD research. In

doing this we realised that, by drawing links with methods we already had some

familiarity with (smoothing splines), this understanding would be useful to others

who are interested in implementing SPDE models.

The additional information in this chapter, over and above what is in Miller

et al. (2019), can be summarised as follows: It contains more detailed and accessible

introductions to smoothing splines, Gaussian random fields, SPDEs and finite ele-

ment methods, and a detailed derivation of the finite element precision matrix for

the SPDE effect which is essentially a more comprehensive version of the proof in
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Appendix D.3.1 in Lindgren et al. (2011). We also include an additional discussion

on the similarities and differences between smoothing penalties and SPDEs, and

new examples of fitting the model using mgcv to real datasets that include using

the Tweedie distribution which is currently not available in R-INLA 1 (Rue et al.,

2009), the R package with the most commonly-used implementation of the SPDE

approach.

2.2 Basics of spline regression

This section introduces smoothing splines and their key aspects that we later use

to draw links with the SPDE approach. Spline regression is based on the idea that

observations depend, in some way, on a latent function f̃(s). We use s to indicate

a location in space, that we assume is in some bounded domain S, f̃(s) to denote

the ‘true’ function that gave rise to the observed data, f̂(s) to denote some point

estimate of f̃(s) and f(s) to denote a general element of some space of functions F .

The simplest case is where the data are an exact observation of f̃ at a finite

number of locations. Then the data consist of yi = f̃(si) for i = 1, . . . n. Ideally

we want an estimate f̂(s) to be as simple as possible, fitting the data but without

unnecessary flexibility. In order to do this we need some measure of flexibility that

we can incorporate so that the model has some way to measure, and thus constrain,

the flexibility of f(s).

Definition (smoothing penalty). Given a function f(s) defined on a bounded do-

main S, a smoothing penalty of f(s) is an integral of the form

∫
S

[Df(s)]2 ds,

for some choice of differential operator D.

1The Tweedie distribution was added to the testing version of R-INLA in early 2021. However,
it has not yet been fully tested and remains in development.
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The choice of D can be thought of as the definition of smoothness for a given

application. Depending on the choice of D, different features of the function are

considered as the measure of ‘smoothness’. Derivatives describe rates of change

of f(s) and so by squaring these we get a non-negative measure of how much the

function is changing at each location s, which we consider over the whole domain

(integrating the squared derivatives). A popular choice for D in one dimension

is to use the second derivative which, for a function f(t), uses D = d2

dt2
. In two

dimensions, we could use the sum of the second-derivatives. For a function f(s)

this uses D = ∂2

∂s21
+ ∂2

∂s22
. The choice of D is context specific and, in many situations,

there is not a clear and obvious choice that is superior to others. The smoothing

penalty is the integral of this chosen measure of smoothness over the domain of the

function.

Definition (interpolating spline). Given exact (no error) observations, yi = f̃(si)

for i = 1, . . . , n, the interpolating spline is the unique function f̂ that minimises the

smoothing penalty
∫
S [Df(s)]2 ds subject to the constraint that f̂(si) = f̃(si) for

i = 1, . . . , n.

The interpolating spline is the smoothest function that passes through the observed

data points, where the meaning of ‘smoothest’ is determined by the choice ofD. Here

we take as given that f̂ exists and is unique although this depends on some mild

assumptions about f̃ and the number of observations n, which must be sufficiently

large, where ‘sufficient’ depends on the order of D. Kimeldorf and Wahba (1970b)

cover the mathematical details.

Smoothing splines are similar to interpolating splines but consider the case where

instead of exact observations of f̃(s), we make observations with error, or perhaps

never even observe it at all in cases where the smooth function is a latent model

component. The aim here is to estimate a function f̂(s), or perhaps compute a

posterior distribution on a space of functions F given the data, that is flexible

enough to fit the data well, but not so flexible that it overfits and generalises poorly.
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To introduce smoothing splines we consider the simplest case where we observe f̃

with i.i.d Gaussian error. We have data of the form

yi = f̃(si) + εi for i = 1, . . . n,

where each εi ∼ N (0, σ2). We replace the exact conditions required by the interpo-

lating spline (that f̂(si) = f̃(si)) with some goodness-of-fit measure for an estimate

f̂ . Often the natural choice here is to use the likelihood of the data given f̂ but in

this simple case we can take the expected sum of squares 1
n

∑n
i=1

[
yi − f̂(si)

]2

as

the measure of fit. Then we can define the smoothing spline as follows:

Definition (smoothing spline). For a given choice of smoothing penalty
∫

[Df(s)]2 ds

and smoothing parameter value λ > 0, the smoothing spline is the function f̂ that

minimises

1

n

n∑
i=1

[yi − f(si)]
2 + λ

∫
[Df(s)]2 ds.

Enforcing λ > 0 ensures the smoothing penalty is always costly in this minimi-

sation problem. The ultimate ‘cost’ of the smoothing penalty is controlled by the

smoothing parameter λ. Larger values of λ penalise more heavily than smaller val-

ues. For this simple Gaussian error model this expression is equivalent to a penalised

log-likelihood. For a more general model, such as a exponential family generalised

linear model (GLM) or some other hierarchical model, we can replace the sum of

squares as the measure of fit with the log-likelihood for the data given the smooth

function f . In the linear model with Gaussian error example above, the error vari-

ance σ2 is absorbed by the smoothing parameter λ since the Gaussian likelihood

for y is multiplied by the exponential of the smoothing penalty and so these two

parameters are confounded. This makes sense because as unstructured noise in the

data increases the smooth function needs less flexibility. Note that, for now, we are

treating the smoothing parameter λ as fixed and known; we discuss approaches for

the estimation of λ later.
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A smoothing spline f̂ must achieve the best fit it can to the data (minimising

the expected sum of squares), under the constraint that more wiggly functions will

make the smoothing penalty larger. Thus the smoothing spline is a trade off between

fit and smoothness. For larger values of λ, the penalty is more severe, and the

smoothing spline will be more smooth. For λ = 0, the function f is free to interpolate

the observed data without any concern for smoothness. Again we take it as given

that such a function exists Kimeldorf and Wahba (1970b). In practice, we do not

know λ and therefore would like to estimate it.

Definition (penalised regression spline). For a given choice of smoothing penalty∫
[Df(s)]2 ds, the optimal smoothing spline is the function f̂ and smoothing pa-

rameter value λ̂ that together minimise

1

n

n∑
i=1

[yi − f(si)]
2 + λ

∫
[Df(s)]2 ds

i.e., the penalised regression spline is a smoothing spline for which the optimal

smoothing parameter λ̂ is also estimated. Inference for the smoothing parameter λ

can be achieved by using REstricted maximum likelihood methods (REML) (Wood,

2011), generalized cross validation (GCV) (Wahba, 1990) or within a Bayesian

framework (Lang and Brezger, 2004; Speckman and Sun, 2003). The method we

use in this chapter is REML as implemented in mgcv using the Laplace approx-

imation (Wood, 2017, 2011). The way the SPDE approach is implemented in a

Bayesian context (e.g. in R-INLA) is essentially by defining a prior for f(s) along

with priors for associated smoothing parameters. We explore below the connection

between smoothing penalties and priors that is the basis for drawing links between

the SPDE approach and smoothing splines.

The above framework can be extended to more complicated, possibly hierar-

chical, models by using the log-likelihood to represent the goodness of fit to ob-

served data. This leads to a general approach for including penalised regression
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splines within a model. We denote the log-likelihood for f as l(y|f) and the

smoothing penalty term as JD(f |λ) := −λ
∫

[Df(s)]2ds. The joint log-likelihood

is l(y|f, λ) = l(y|f) + JD(f |λ). The REML approach for dealing with this joint

likelihood is to integrate out f using the Laplace approximation and estimate λ

using the marginal likelihood l(y|λ) (Wood, 2011).

A Bayesian framing of the problem is often introduced by considering the like-

lihood L(y|f, λ) = L(y|f) exp [JD(f |λ)] which is just taking the exponential of the

joint log-likelihood given above (Wood, 2017). In this view the smoothing penalty

is equivalent to a prior on f , i.e. there is a (potentially improper) density π(f |λ)

where

π(f |λ) ∝ exp

(
−λ
∫

[Df(s)]2 ds

)
. (2.1)

If a prior is also placed on λ then inference for f and λ can proceed by Bayes’

theorem. However, there are some issues with this interpretation of penalised log-

likelihoods. One is that not all penalties lead to a proper density as they imply

covariance structures that are not full rank (Chapter 4 has a detailed discussion

this). We clarify this point below in the context of having chosen a finite dimensional

basis to represent f(s). In general, if there are any basis functions that always have

zero penalty (for example, a linear function in the basis for f(s) would have zero

second derivative) then the covariance matrix for the basis function coefficients will

not be full rank. Therefore, the interpretation as a prior depends on the choice of

basis and some choices result in an improper density.

Up to this point we have not been explicit about the space of functions F and so it

is not immediately clear how to define a probability distribution over this space. The

interpretation as a penalty or a prior depends primarily on the approach to inference,

but not the model structure itself. Given a particular choice of smoothing penalty,

this model component should not be described as a prior if inference is, for example,

conducted by REML, as is the case in mgcv (Wood, 2011). In this framework, we

do not estimate a posterior, just a point estimate based on maximising a marginal

28



likelihood and uncertainty around this point estimate. However, the shorthand

understanding that penalties and priors are essentially playing the same role is a

useful one to keep in mind.

In order to make sense of the penalty we need to say a bit more about the

space of functions F from which we wish to obtain a point estimate for the optimal

smoothing spline or, in the Bayesian case, a posterior distribution over F . Func-

tion spaces can often contain an infinite number of basis elements (for example,

the space of polynomials with real coefficients which has the infinitely large basis

{1, x, x2, x3, . . .}) but for computational reasons in applied statistics settings, the

function space is usually more restricted and has a finite set of pre-specified basis

functions. The span of this finite set of basis functions is then taken to be F .

Definition (basis representation). A space of functions F has a finite basis if there

exists a finite set of functions b1, . . . , bK ⊂ F such that any function f ∈ F can be

written as

f(s) = β1b1(s) + . . .+ βKbK(s)

for some unique set of coefficients β1, . . . , βK . We call this the basis representation

of f .

Restricting ourselves to spaces of functions with a finite basis allows us to write

down the density on F that is implied by the penalty. Since the basis functions are

fixed (non-stochastic), this amounts to specifying a distribution for β = [β1, . . . , βk]
T

In practice the choice of basis should be sufficiently rich to address the particular

application. If the latent function we are trying to estimate has a lot of flexibility

then the basis needs to have enough functions to be able to capture this. For

example, if a cubic polynomial shape is required, a basis consisting of a quadratic

polynomial and a straight line will not be sufficient.

Given a basis representation, it is possible to write the integral in the penalty

JD(f |λ) as a matrix-vector product for cases where D is a linear differential oper-
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ator. If this is the case then Df(s) =
∑

k βkDbk(s). In other words, the space of

derivatives of functions in F also has a basis that can be constructed by applying D

to each basis element of F . In practical terms, since the basis is fixed, this means we

only need to compute derivatives Db1, . . . ,DbK once and can use these to compute

the penalty.

Definition (penalty matrix). Given a choice of basis {b1, . . . , bK} with coordinate

vector {β1, . . . , βK}, and a choice of linear differential operator D, the penalty matrix

S is the K ×K matrix with entries Sij =
∫
Dbi(s)Dbj(s)ds.

This implies that ∫
S

[Df(s)]2 ds = βTSβ. (2.2)

Therefore, given a basis representation for f , and a linear differential operator, the

penalty can be expressed as a matrix-vector product. For any fixed choice of basis

and differential operator, the matrix S only needs to be computed once and then the

above matrix-vector formula can be used to compute the penalty for any vector of

coefficients β. In a sense, the matrix S contains all of what we mean by ‘smoothness’,

expressed in terms of the building blocks of the function space. For this reason the

penalty matrix is also sometimes referred to as the smoothing matrix. For example,

consider the basis {1, t, t2, t3} defined on the interval [0, 1] along with the second

derivative penalty with differential operator D = d2

dt2
. This basis spans the set of

polynomials of degree ≤ 3. Then the smoothing matrix is a 4 × 4 matrix that has

the form 

0 0 0 0

0 0 0 0

0 0 S33 S34

0 0 S43 S44


.

The zeroes in this matrix follow from the fact that the second-derivative of 1 and t

is zero. The other entries have the form S33 =
∫ 1

0
2 · 2dt, S34 =

∫ 1

0
2 · 6tdt and so on.
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In addition to this efficient computation of the penalty, we can now be more

explicit by what we mean by a density on the space of functions F since this amounts

to defining distributions on the coordinate vector space RK . The penalised likelihood

can be now written as l(y|f) + λβTSβ. This means we can replace the expression

for the prior density π(f |λ) with

π(β|λ) = exp(−λβTSβ)

∝ N (0,Σ) (2.3)

where Σ = (2λS)−1. This makes it clear that the penalty implies a Gaussian prior

density on RK with a covariance matrix that is directly related to the smoothing

penalty matrix. This is the first instance in this chapter where we make an explicit

connection between the terms ‘covariance’ and ‘smoothness’. For Gaussian random

fields it is common to present random effects by directly referencing the covariance

structure, usually by stating the covariance function. For smoothing splines the

emphasis tends to be on stating the chosen smoothing penalty. This connection

between covariance and smoothness is a theme that we return to later.

The above assumes that the penalty matrix S is invertible and leads to a positive

semi-definite covariance matrix. If the penalty matrix is not invertible then Σ can

be replaced with a pseudo-inverse and this results in an improper density. Some

common choices of basis functions and smoothing penalties can lead to penalty

matrices that are not full rank, as shown in the examples below and as was given

in the example above with the polynomial basis. Note that the choice of basis as

well as the choice of D both influence the structure of the resulting penalty matrix.

For this reason, we sometimes use the term basis-penalty smoothers to emphasise

the importance of both the basis and the penalty for the ultimate structure of the

model. The penalty matrix S contains the information required to compute the

smoothness of any given function represented as a choice of basis coefficients β. If
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inference is by Bayesian methods then this penalty can be interpreted as a (possibly

improper) Gaussian prior, and the penalty matrix interpreted as precision matrix.

2.2.1 Examples of basis-penalty smoothers

This section introduces some commonly used basis-penalty smoothers. The aim is

to give some examples in order to ground the above theory in some explicit models.

All the examples in this section can be found in Chapter 4 of Wood (2017), which

includes much more information than is presented here.

In one dimension the cubic spline basis is defined using a pre-specified set of

locations t1, . . . , tK , known as knots. The basis consists of a set of cubic polynomials

defined on each interval [ti, tj] and set to zero outside of this interval. In a cubic

regression spline context, the coefficients of the basis functions are estimated with

additional constraints that the spline function has continuous second derivatives at

the knots (so the basis functions are joined together in a ‘smooth’ way) and boundary

conditions f ′′(t1) = f ′′(tn) = 0. The second-derivative penalty in one dimension is

the most common choice of penalty to use with a cubic spline basis. This leads

to perhaps the most succinct statement of a penalised smoothing spline regression

problem. Given data y = [y1, . . . , yn]T observed with Gaussian error and a cubic

spline basis for the spline function f , the regression problem is to minimise

n∑
i=1

[yi − f(ti)]
2 + λ

∫
f ′′(t)2dt. (2.4)

In this case we have smoothing penalty JD(f |λ) = −λ
∫
f ′′(t)2dt and D = d2/dt2.

Other formulations of cubic splines use basis functions that are defined over the

whole observable interval. These basis functions are defined in more complicated

way and so we omit them here for brevity. Cubic splines can also be defined to be

cyclic so f(t1) = f(tK). See Wood (2017) p149-152 for details.

Another popular choice of basis is the B-spline basis, where, similar to the cubic
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spline basis, each basis function is non-zero over a finite subset of the domain. Below

we will see an example of a B-spline basis of order one, which we call piece-wise

linear, that is used in approximating solutions to SPDEs. Higher-order B-splines are

more commonly used in the basis-penalty smoother paradigm. The use of B-spline

bases led to the development of what Wood (2017) call P-splines, which stands for

penalised B-splines. This approach uses a simple definition for the penalty matrix,

known in this context as a difference matrix, and is an example of a penalty that

is not derived from a differential operator. This smoothing penalty penalises the

squared difference between the B-spline coefficients, which are usually placed at

equal intervals. In this case the smoothing penalty is not derived from a differential

equation and is

βT



1 −1 0 . .

−1 2 −1 . .

0 −1 2 . .

. . . . .

. . . . .


β,

which is very straightforward to implement. P-splines have that disadvantage that

if knots are not evenly spaced the penalty can be hard to interpret.

The final example we mention here is the thin plate regression spline. This is

somewhat different in nature to the example above in that it is not necessary to

choose a set of knot locations and the thin plate spline generalises to domains with

more than one dimension. The thin plate basis places radially symmetric basis func-

tion on each unique combination of predictor variables. In the applications in this

thesis this generally amounts to a basis function centred on each of the discretisa-

tion locations in a spatial domain. In addition to these radially symmetric basis

functions there is also a set of null-space basis functions which are not penalised.

These are functions for which the penalty always evaluates to zero. If the penalty

involves second derivatives then a polynomial of degree one or zero would be in the
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null-space. In two dimensions the thin plate smoothing penalty is

J(f |λ) = −λ
∫ ∫ (

∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dxdy

Since the basis has more basis functions than observations the computational cost

can be high. This basis arises as an ‘optimal’ basis to use for spline interpolation

problems in the space of twice-differentiable functions (see Wahba (1990)) and so is

of a slightly different nature to other spline bases, which are typically chosen to be

a sufficiently flexible approximation for a given application.

In order to turn this rich but unwieldy basis into something more useable, Wood

(2003) introduced thin plate regression splines (TPRS) that use a truncated eigen-

decomposition to approximate the full thin plate basis. This leads to substantial

improvements in computational efficiency. This approach is presented in more detail

and used the SCR context in Chapter 4.

2.3 Basics of Gaussian random fields

This section introduces the mathematical concepts and properties of Gaussian ran-

dom fields (GRFs) that are relevant to applied spatial modelling. Rasmussen and

Williams (2005) provide a good overview of the mathematical details of Gaussian

random fields and Banerjee et al. (2014) cover important aspects in the applied

spatial statistics setting. The presentation here takes inspiration from both.

Definition. (random field) A random field is a collection of random variables

{ξ(s); s ∈ S} with index set S.

This is a generalisation of a stochastic process, where the index set is usually the

real line or the integers. For a random field, there are typically fewer restrictions on

the index set. In spatial statistics the index set is usually a two-dimensional space

of coordinates, such as longitude and latitude, for example.
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Definition. (Gaussian random field) A random field {ξ(s); s ∈ S} is a Gaussian

random field if, for any finite set {s1, . . . , sn} ⊂ S, the random vector [ξ(s1), . . . , ξ(sn)]T

has a multivariate Gaussian probability distribution.

This definition of a random field is simple to state and an extension of the fact

that a distribution on a finite dimensional space is completely described by the

joint distribution function. Defining a random field in this way, for every possible

finite collection of random variables, extends that notion to the case of an infinite

collection of random variables. We use vector notation ξ = [ξ(s1), . . . , ξ(sn)]T ,

usually suppressing the coordinates with the understanding it is a random vector

defined at some finite set of locations. So E [ξ] has i-th element E[ξ(si)] for example.

The covariance matrix for these multivariate Gaussian densities is determined by the

covariance function of the Gaussian random field.

Definition. (covariance function) The covariance function of a Gaussian random

field is the function

C(si, sj) = Cov [ξ(si), ξ(sj)]

for any pair of indices si, sj

It follows from this definition that, for a GRF with covariance function C(.), the

random vector ξ has a multivariate Gaussian density and covariance matrix Σ with

entries (Σ)ij = C(si, sj). The covariance function is the rule by which covariance

matrices can be constructed for the GRF at any finite set of locations.

In spatial statistics there is a focus on GRFs with particular properties for both

the covariance function and the expected values of the Gaussian random field. We

briefly cover these properties below.

Definition. (stationarity) A Gaussian random field is stationary (or strongly sta-

tionary) if its finite dimensional multivariate Gaussian distributions are invariant to
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translation. i.e. the random vectors

[ξ(s1), . . . , ξ(sn)]T and [ξ(s1 + h), . . . , ξ(sn + h)]T

have the same joint distribution for any choice of vector h ∈ S.

For a Gaussian random field with constant mean, the stationarity property implies

that the covariance function depends only on the relative positions of the locations.

That is to say, for any two locations si and sj, and vector h = si − sj, then the

covariance function can be written as a function of h, so that C(si, sj) = C(h).

This property is known as weak stationarity or second-order stationarity. All of

the Gaussian random fields considered in this thesis are both strongly and weakly

stationary. Another related property is isotropy which is invariance with respect to

rotation.

Definition. (isotropy) A Gaussian random field is isotropic if its finite dimensional

multivariate Gaussian distributions are invariant to rotation. i.e. the random vectors

[ξ(s1), . . . , ξ(sn)]T and [ξ(Rs1), . . . , ξ(Rsn)]T

have the same joint distribution for any matrix R that defines a rotation.

The covariance function of a GRF that is both stationary and isotropic can be

parameterised in terms of the distance between locations. In this case we can write

C(si, sj) = C(‖si−sj‖) where ‖.‖ denotes the Euclidean distance in S. This reflects

the fact that if the multivariate Gaussian densities are invariant to translation and

rotation, then the only remaining information that could be relevant is the distance

between locations.

Stationary and isotropic random fields with a Matérn covariance are of par-

ticular interest in spatial statistics. See Stein (2012) for a detailed investigation

of this covariance function. Here we restrict ourselves to stating the function and
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highlighting some properties.

Definition. (Matérn covariance) The Matérn covariance function for a two-dimensional

domain is

C(si, sj) =
21−ν

4πκ2τ 2Γ(ν)
(κ‖si − sj‖)νKν(κ‖si − sj‖) (2.5)

where ν, κ, τ are parameters and Kν is the modified Bessel function of the second

kind.

Since this covariance function depends only on the distance between locations, the

Matérn covariance function implies that the GRF is stationary and isotropic (so

long as the mean is constant). The parameter κ is an inverse range parameter,

smaller values of κ give longer correlation range. The precision parameter τ and κ

together determine the marginal variance of the random field which is (4κ2τ 2)−1 for

two-dimensional domains. In 2-dimensional cases, a common reparameterisation is

to replace κ with a range parameter ρ =
√

8/κ. For more on the Matérn covariance

parameters and the relationships between them see Chapter 6 in Blangiardo and

Cameletti (2015). The parameter ν controls the mean-square differentiability of the

process. Larger values of ν mean realisations of the process have more derivatives

and so are ‘smoother’ in the differentiable sense (note this is not the typical use of the

word smooth in this thesis). The three parameters, κ, τ and ν are not simultaneously

identifiable (Zhang, 2004) and it is conventional to assume a value for ν and to infer

the remaining parameters from data. This convention makes sense in most practical

settings. It is hard to imagine a dataset at a high enough resolution for which we

wish to infer the differentiability of the process, which is defined on infinitesimal

neighbourhoods. We call a Gaussian random field with Matérn covariance function

a Matérn random field.

Of particular interest to us in this chapter is a class of Gaussian random fields

known as Gaussian Markov random fields (GMRFs). Our description of GMRFs

is an extremely succinct summary of the detailed treatment given in Rue and Held
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(2005). Given an undirected graph G = (V,E), with verties V and edges E, a

random field indexed by V is said to be a Markov random field with respect to G if

any two finite subsets of variables are conditionally independent given a separating

subset. i.e. a collection of random variables βA = {β(s)|s ∈ A ⊂ V } is conditionally

independent from βB = {β(s)|s ∈ B ⊂ V } given βS = {β(s)|s ∈ S ⊂ V }, where

every path from nodes in A to nodes in B passes through S. This is a generalisation

of the Markov property for stochastic processes to higher-dimensional cases. We will

see below, in the section describing the SPDE approach to modelling the Matérn

field, examples where the graph G (also called a mesh) is constructed using Delauney

triangulation and the Markov property is equivalent to the entries of the precision

matrix being non-zero only for nodes that are connected by an edge. In other words,

for a GMRF with precision matrix Q, (Q)ij = 0 if and only if nodes si and sj are

not connected by an edge.

2.4 Basics of stochastic partial differential equa-

tions

This section introduces some basic definitions and properties of SPDEs. The focus

is on a non-rigorous description that introduces key concepts only so far as they are

needed to understand the subsequent sections of this chapter. For a more mathemat-

ically rigorous introduction to the theory of stochastic partial differential equations

see, for example, Oksendal (2013).

First we consider a non-stochastic partial differential equation that takes the

form Df(s) = g(s). The differential operator D is applied to an unknown, but

deterministic, function f which results in a known function g. This is a standard

form of problem that is seen in many areas of mathematics and science where the

problem is to solve the differential equation to find f , given that we know g and

some boundary conditions. A canonical example of this kind of application is that
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the position and velocity of an object at time t can be obtained as a solution to some

differential equations that describe the movement dynamics, given some information

about the location and dynamics at time t = 0.

One way to add stochasticity to this type of problem is to replace the known

function g(.) with a stochastic process. In this chapter we consider stochastic partial

differential equations of the form

Df(s) = ε(s) (2.6)

where ε(s) is a Gaussian white noise process.

Definition. (Gaussian white noise)

A stochastic process ε(s) defined on S is a standard Gaussian white noise process

if ε(s) satisfies ∫
S
φ(s)ε(s)ds ∼ N (0, ‖φ‖), (2.7)

where ‖φ‖ =
∫
φ(s)2ds and φ is any deterministic function defined on S for which

the integral is well-defined.

This is an example of a generalised random field. This terminology is analogous

to generalised functions (also known as distributions, in the non-statistical sense),

whereby a generalised function is defined in terms of its relationship to other, more

standard, functions. In this case, white noise only makes sense as a particular type

of integration with respect to a deterministic function φ.

In practice, the white noise process is usually implemented considering a finite

collection of functions, φ1, . . . , φm, which are sometimes known as test functions.

Here we assume that the space of functions for φ is a suitable space for which the

above integrals are well-defined. We also use the inner product notation 〈f, g〉 =∫
f(s)g(s)ds below for brevity. Given this definition of a Gaussian white noise

process, the right-hand side of the SPDE is only meaningful when integrated with

respect to some function φ. This means the SPDE itself is only meaningful when
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both sides are integrated. This integrated form of the SPDE is known as the weak

formulation. The weak solution is a random field f that satisfies

〈Df, φ〉 d
= 〈ε, φ〉 (2.8)

for any choice of function φ and where
d
= means equal in distribution. For a fixed

and known φ the right hand side of (2.8) has a known distribution that follows

directly from the definition of the white noise process. We assume that ε has unit

variance. The variance of the stochastic process ε can be changed by multiplying by

a constant but here we assume that this is incorporated as part of the differential

operator D. In Section 2.5 we include a precision parameter τ on the right hand

side of the SPDE which is readily accounted for in the numerical methods used to

solve the SPDE (Section 2.9). The function φ is known as a test function. From

the definition of white noise we know these integrals are normally distributed with

mean zero and variance ‖φ‖. Instead of a deterministic solution for f , replacing the

right hand side with Gaussian white noise has the effect that the solution is now a

Gaussian random field.

Given this SPDE representation of a Gaussian random field f , it is natural to ask

what is the connection between the SPDE and the properties of the random field.

It follows directly from the choice of the white noise process that f has mean zero

everywhere. The connection between the SPDE and the covariance function is more

complicated. We cover this informally with a brief outline that uses convolutions,

Green’s functions and Fourier theory.

One way to represent a solution to a SPDE of the form in equation (2.6) is by

writing f as a convolution: f(s) =
∫
G(s − u)ε(u)du. If G satisfies DG(s − u) =

δ(s−u), where differentiation is with respect to s and δ is the Dirac delta function,

then it is known as a Green’s function. The Dirac delta function is a generalised

function which has the property that taking the convolution with the delta function
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amounts to evaluating the function at a single location. Formally, this can be written

as
∫
g(u)δ(s−u)du = g(s) for any function g. This is the key property that means

f will solve the SPDE. To see this note that

ε(s) =

∫
δ(s− u)ε(u)du

=

∫
DG(s− u)ε(u)du

= D
(∫

G(s− u)ε(u)du

)
= Df(s)

Line three follows from Leibniz’s rule for integrals since we assume D is linear

and differentiation is with respect to s and not the variable of integration u. The

question now is how to find a G that satisfies this property. One way to do this is by

using Fourier transform methods. This is a useful approach because differentiation

and convolution have a simple representations in the frequency domain. Loosely

speaking, differentiation corresponds to multiplication by a constant in the frequency

domain and the convolution of two functions corresponds to the multiplication of

their Fourier transforms. This means that the application of a linear differential

operator to a function f can be represented as the Fourier transform of f multiplied

by a constant (strictly speaking a polynomial of the frequency variable, the order

and form of which depends on D). Similarly, the convolution of two functions is the

inverse transform of the product of their individual Fourier transforms.

These properties of the Fourier transform can be used to derive the covariance

function that is implied by D. First note that the Green’s function can be derived

by taking the Fourier transform of both sides of DG(s−u) = δ(s−u). The Fourier

transform of the Dirac delta function is one everywhere and the Fourier transform

of DG is the Fourier transform of G multiplied by some known polynomial. Then

by rearranging the equation and taking the inverse Fourier transform we can derive
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an expression for G. It also turns out that the covariance function can be written

in terms of G.

Cov[f(si), f(sj)] = E[f(si)f(sj)]

= E
[∫

G(si − u)ε(u)du

∫
G(sj − u)ε(u)du

]
= E

[∫
G(si − u)G(sj − u)du

]
=

∫
G(si − u)G(sj − u)du

where the third line follows due to Ito’s isometry (Oksendal, 2013). This derivation

means the covariance function C(si, sj) can be derived directly from the SPDE by

taking the convolution of the Green’s function with itself. This makes explicit the

link between the covariance function of the random field and the differential operator

D. A Gaussian random field may be specified using either a covariance function or

via an SPDE. They are equivalent ways to specify the same mathematical structure.

Whittle (1954) applied the approach sketched above to a specific SPDE to show

that its stationary solutions have Matérn covariance. This representation of the

Matérn field is the basis for later work by Lindgren et al. (2011) who use this SPDE

representation to derive a computationally efficient Gaussian Markov random field

approximation to the Matérn field. We return to this specific example in section

2.5. First, we cover the numerical approaches that are used to solve SPDEs.

2.4.1 Solving the SPDE using finite element methods

In order to solve the SPDE we return to the weak solution 〈Df, φ〉 d
= 〈ε, φ〉 given

in (2.8). A solution to the SPDE is a Gaussian random field that satisfies the

weak solution for any choice of test function φ. In practice, we choose a finite

set of test functions {φ1, . . . , φm} and arrive at an approximate solution. The test

functions we consider here are based on finite element methods. These are a family
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of related numerical algorithms for solving (S)PDEs. Chen (2005) gives a wide

overview of these methods and Brenner and Scott (2008) provides a mathematical

treatment including convergence and error rates. For the 2-dimensional examples in

this chapter, we consider finite elements that are piece-wise linear functions defined

with respect to a triangulation of the spatial domain. This triangulation defines

a graph which is the basis for the GMRF approximation (recall from above that

the definition of a Markov random field is always with respect to some graph). In

keeping with the literature we refer to this graph as a mesh.

The test functions we consider here are piecewise linear functions defined with

respect to this mesh. Each node of the mesh is associated with a basis function which

takes the value 1 at the node and decreases linearly to zero at the neighbouring

edges. Figure 2.1 shows an example mesh and two of these basis functions. Since

these basis functions are zero everywhere except in the direct neighbourhood of the

node, we have that 〈φi, φj〉 = 0 if nodes i and j are not connected by an edge. We

will see later that this has implications for the precision matrix for β. Note that

Figure 2.1: An example of a mesh and two of the associated piecewise linear basis
functions. These basis functions take a value 1 at the central node, decrease linearly
to zero at the neighbouring edges, and are zero everywhere else.
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for any location that is not at a node, there are at least two basis functions that

are non-zero at that location. This approach to choosing test functions is a way

to ‘cover’ the entire spatial domain in such a way that these piece-wise linear basis

functions can be used to approximate non-linear functions, as shown in figure 2.2.

The mesh should be chosen at a sufficiently high resolution for the given application.

Figure 2.2: Left: A smooth function sin(x) − (y/π)3 Right: The piecewise linear
approximation of sin(x)− (y/π)3 using the mesh-basis shown in figure 2.1.

If a rough approximation is all that is required then a coarse mesh, with relatively

few nodes, will be sufficient. A higher resolution mesh can be used for applications

where a closer approximation to the smooth function is required.

Given a choice of mesh and associated basis functions, the weak solution for the

SPDE is

〈Df, φj〉 = 〈ε, φj〉 for j = 1, . . . ,m

Up to this point we have been vague about what it means to apply a differential op-

erator to a random field i.e. what exactly is meant by Df . This becomes clear when
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we define a finite-dimensional space of functions for f . Here we choose the basis for

f to be the same as the set of test functions {φ1, . . . , φm}. This is referred to as the

Galerkin solution by Lindgren et al. (2011). Choosing this finite-dimensional basis

representation allows us to define the derivative of the random field using standard

calculus. Let f(s) =
∑m

i=1 βiφi(s), where each φi(.) is a fixed, non-random function,

and each βi is a random coefficient. Then the derivative is Df(s) =
∑m

i=1 βiDφi(s).

In other words, the space of derivatives of f has the basis {Dφ1, . . . ,Dφm}. This

means that we can represent Df by computing the derivatives of each of the fixed

basis functions and, given a particular choice of mesh, these only need be computed

once.

The weak formulation of the SPDE can be represented, given our choice of mesh,

test functions, and basis functions for f , as the matrix-vector equation

Dβ = e (2.9)

where D is an m × m symmetric matrix with entries Dij = 〈Dφi, φj〉, β =

[β1, . . . , βm]T and ei = 〈ε, φi〉. One can think of this matrix-vector equation as a

finite dimensional discretisation the SPDE. By the properties of the Gaussian white

noise process and the fact that 〈φi, φj〉 = 0 for i 6= j it follows that e ∼ N (0,Qe)

where Qe is diagonal with entries (Qe)ii = ‖φi‖. Since D is non-random this also

implies that β has multivariate Gaussian density with mean zero and precision ma-

trix Qβ = DTQeD. Therefore, given a choice of differential operator, the SPDE

essentially amounts to placing a multivariate Gaussian prior on the coordinate vec-

tor β. Encoded in the precision matrix Qβ is the covariance structure implied by

D.

Recall that we arrived at a similar matrix-vector expression for the basis-penalty

smoothers. Given a chosen basis and smoothing penalty, this results in a penalty

matrix that encodes what we mean by smoothness. Similarly, given a choice of
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SPDE and mesh, this results in a precision matrix that describes the covariance

structure implied by the SPDE. At the heart of both approaches is the choice of

a differential operator D. For smoothing splines, the choice of D can be thought

of as the ‘definition of smoothness’. For Gaussian random fields, the choice of D

determines the covariance function.

However, this analogy omits some important details. There is not always a

covariance function that is associated with a particular basis-penalty choice for ex-

ample. Some common choices of basis-penalty smoother, when formulated as an

SPDE, would result in non-stationary random fields without succinct covariance

functions. The thin-plate regression spline as implemented in mgcv is an example

of this. However, for our purposes here, the relationship between the penalty ma-

trix (for basis-penalty smoothers) and the precision matrix (for GMRFs) is a useful

perspective from which to understand the SPDE method and how to implement it

in GAM software such as mgcv.

2.5 The SPDE approach for the Matérn field

In this section we introduce the SPDE that defines the Matérn field and summarise

the results in Lindgren et al. (2011) , using the perspective and notation introduced

above. Whittle (1954) showed that the stationary solutions to the SPDE

(κ2 −∇2)α/2f(s) =
ε(s)

τ
(2.10)

have Matérn covariance (2.5) where α = ν+d/2 and d is the dimension of the domain.

The operator ∇2 is the Laplace operator which is defined, in two dimensions, as

∇2 = ∂2

∂s21
+ ∂2

∂s22
. We refer to this SPDE as the Matérn SPDE. For most choices of

α, the operator D = (κ2−∇)α/2f(s) is called a fractional differential operator since

the exponent is a fraction. Here we investigate the special case where α = 2 and

so D is a linear differential operator. The finite element solutions for cases with
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a fractional differential operator can be defined using recursive equations based on

the finite element solutions for α = 1 and α = 2 (see equation 10 in Lindgren et al.

(2011)).

The weak solution for the Matérn SPDE with α = 2 is 〈κ2f, φ〉 − 〈∇2f, φ〉 =

〈ε/τ, φ〉. This equation can be simplified by an application of Green’s first identity

and Neumann boundary conditions. The Neumann boundary conditions state that

the first derivative at the boundary, in the direction orthogonal to the boundary, is

zero. In this case, by Green’s first identity we have −〈∇2f, φ〉 = 〈∇f,∇φ〉 and we

can write the weak solution as 〈κ2f, φi〉 + 〈∇f,∇φi〉 = 〈ε/τ, φi〉 for test functions

φ1, . . . , φm. For f =
∑

j βjφj, this can be written as a matrix-vector equation of the

form

κ2Cβ +Gβ = e/τ,

where Cij = 〈φi, φj〉, Gij = 〈∇φi,∇φj〉 and ei = 〈φi, ε〉. We can write this as

Kβ = e/τ where K = κ2C+G. The precision matrix Qβ can be derived from this

equation, which we show below. We present a more detailed version of the proof

in appendix D.3.1 in Lindgren et al. (2011), with the addition of the τ parameter

which is omitted there and some additional explanation. We consider two functions

which we represent using the finite element basis as g =
∑

i giφi and h =
∑

i hiφi.

The derivation for Qβ rests on deriving Cov [〈g,Df〉, 〈h,Df〉] in two different ways.

Firstly, since Df = ε/τ we have

Cov [〈g,Df〉, 〈h,Df〉] = τ−2 Cov [〈g, ε〉, 〈h, ε〉]

= τ−2 E [〈g, ε〉〈h, ε〉)]

= τ−2 〈g, h〉

= τ−2 gTCh,

where the third line follows by an application of Ito’s isometry. Secondly, note that

〈g,Df〉 = gTKβ and 〈h,Df〉 = hTKβ. This follows directly from the same argu-
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ment as above, applying Green’s first identity and Neumann boundary conditions.

Therefore,

Cov [〈g,Df〉, 〈h,Df〉] = Cov
[
gTKβ,hTKβ

]
= gTKCov [β,β]KTh.

Combining these two expressions, the g and h cancel to give Cov [β,β] =

(1/τ 2)K−1CK−T and so Qβ = τ 2KTC−1K. Plugging in K = κ2C + G and

rearranging we have

Qβ = τ 2
(
κ4C + 2κ2G+GTC−1G

)
. (2.11)

The matrices C and G are sparse but C−1 is not. Lindgren et al. (2011) show that

C can be replaced with a diagonal matrix whose diagonal entries are the row sums

of C and that this replacement does not affect the rate of convergence of the finite

element method to the true solution as the number of mesh nodes tends to infinity.

Therefore, it is possible to construct a sparse approximation of the precision matrix.

2.5.1 The connection with the smoothing penalty

We have now introduced two approaches to flexible modelling, the basis-penalty

smoothing approach and the Gaussian random field SPDE approach. Given an

SPDE with linear differential operator Df = ε, we can apply the above finite element

method approach to end up with an expression for Qβ = DTQeD where Dij =

〈Dφi, φj〉, and derived explicitly for the Matérn SPDE above. Similarly, from the

optimal smoothing spline perspective, we can choose a penalty JcD(f |λ), choose a

basis for f and derive the penalty term as a matrix-vector product λβTSβ which

we can interpret as being equivalent to placing a (possibly improper) multivariate

Gaussian prior on β. In this sense the matrix S is also a precision matrix for β.
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Therefore it seems natural to say that the precision matrix derived from the SPDE

could also be derived from an appropriate smoothing penalty.

However, the connection between an SPDE formulation and the basis-penalty

smoother is more complicated. The correspondence depends on the details of both

the finite-dimensional approximation methods and the inference approach, frequen-

tist or Bayesian. Taking the ‘penalty-as-a-prior’ viewpoint, we want to view Qβ

as a smoothing matrix and use this to define a smoothing penalty that we could

have derived from
∫

(Df)2. But this is a simplification. To see the issues here we

have to be explicit about the full space of functions, our approach to choosing a

finite-dimensional approximation of this space, the meaning of the SPDE, and the

connection between SPDEs and maximisers of penalised likelihoods. We illustrate

these points using the approximate precision matrix derived above for the Matérn

SPDE.

The correspondence between stochastic processes and smoothing splines was first

identified by Kimeldorf and Wahba (1970a). However, this correspondence is ex-

pressed in a full, infinite dimensional, space of functions (specifically the space of

functions with continuous derivatives Ck where k depends on the order of the differ-

ential operator) and does not depend on any decision to restrict the space of functions

to a finite-dimensional sub-space. For simplicity consider the one-dimensional case

where we have yi = f(ti) for i = 1, . . . , n. In this case Kimeldorf and Wahba show

that the function

f̂ = arg min
f
{
∑
i

[yi − f(ti)]
2 + JD(f)}

is equivalent to E [f(t)|y1, . . . , yn] where now, in a slight abuse of notation, f(t)

is a Gaussian random field with mean zero and covariance function K, which we

could choose to specify using an SPDE. Note that this correspondence is between

the maximiser of a penalised likelihood and the posterior expectation of a Gaussian

random field.

The key to understanding the difference in these two perspectives is to be clear
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about what function space we are using in each. The space of functions with con-

tinuous derivatives used in the optimal smoothing spline approach is not the same

as the space of functions defined by the Gaussian random field. The properties of

the GRF realisations are determined by the covariance function, which may or may

not allow for continuously differentiable realisations. It is therefore not always easy

to state a straightforward correspondence between smoothing penalties and GRF

priors once specific choices for the finite-dimensional basis are made.

Defining f via the SPDE τ(κ2−∆)f = ε, the key aspect of this equation to note

is that that ∆f is not square integrable since Gaussian white noise is not square

integrable. That is to say, no realisation of the process can be the optimal smoothing

spline, since the penalty is not defined for these realisations. To see this, note that

JD(f |κ, τ) = 〈τ(κ2 −∆)f, τ(κ2 −∆)f〉

= τ 2
[
κ4〈f, f〉 − 2κ2〈f,∆f〉+ 〈∆f,∆f〉

]
,

which involves the term 〈∆f,∆f〉 that is undefined if f is a solution the SPDE (recall

that Gaussian white noise is a generalised random field that is only defined when

integrating against a deterministic function, therefore squared white noise is not

integrable). This penalty only has a meaning when considering f as a member of an

appropriate function space. In this case, the finite element approximation has led to

a GMRF whose realisations do not have a meaningful smoothing penalty. Kimeldorf

and Wahba (1970a) show that if one only considers the posterior expectation f̂ =

E [f(t)|y1, . . . , yn], then this is the optimal smoothing spline. But the expectation

of the process is not a solution to the SPDE. This means that when we justify our

finite-dimensional approximation by considering the weak solution to an SPDE via

the finite element method, we end up with a precision matrix that we could not

derive from the smoothing penalty perspective.

The piece-wise linear basis functions themselves do not satisfy the SPDE either.
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Choosing deterministic linear functions means ∆φi = 0 for all i and so the smoothing

penalty would reduce to τ 2κ4‖φi‖ for each basis function, thus capturing none of the

behaviour of the derivatives. There is a large literature on understanding exactly how

this approximation can still be useful even though the basis functions do not satisfy

the SPDE themselves. Brenner and Scott (2008) cover the mathematical details of

finite element methods in depth, and a large portion of the original Lindgren et al.

(2011) paper is concerned with showing convergence rates for these methods applied

to the Matérn SPDE.

Ultimately, there is a fundamental difference between considering the whole dis-

tribution of solutions to the SPDE or instead considering only the posterior expec-

tation or optimal smoothing spline. This is because there is a difference between an

appropriate choice of basis for approximating solutions to the SPDE and an appro-

priate choice of basis for representing Ck in the optimal smoothing spline framework.

These are not always interchangeable; a good choice in one setting does not always

translate to a sensible choice in the other. If we are interested only in the posterior

expectation, then we can state the correspondence and say that there is a specific

penalty which corresponds to the SPDE. These are subtle but important differences.

A full Bayesian analysis using the SPDE formulation should, in principle, be

able to generate realisations from the posterior process f |y, whereas the penalised

likelihood approach can only generate a point estimate for E [f |y], and uncertainty

in this point estimate. The finite element basis works well enough in the context of

a weak solution to the SPDE but is not meaningful in the context of evaluating a

smoothing penalty into a smoothing matrix given some choice of basis.

A natural question to ask is whether, given these differences, is it valid to in-

terpret the finite element precision Qβ as a smoothing matrix? For the SPDE we

have derived the approximation in such a way that we cannot arrive at the same

place by writing the smoothing penalty form first and then derive the an approx-

imate smoothing matrix. This is because the approximation was constructed for

51



the purpose of solving the weak SPDE, not just finding the posterior mode in a

smoothing spline optimisation problem. We are co-opting this approximation and

the dependence structure it implies and assuming it is a good choice within the

penalised likelihood framework. This seems to work well enough in practice (see the

examples in Section 2.6). But we have no mathematical analysis to justify this in

the sense that we cannot start with a smoothing penalty, choose a basis and arrive

at the same precision matrix as was derived in Section 2.5. However, it is also worth

noting that we have no mathematical analysis that justifies the use of the SPDE

or Matérn field in the first place since usually it is included as a non-mechanistic

means to model spatial auto-correlation. Understanding these differences is impor-

tant when it comes to understanding the approximation methods used to implement

GRFs and smoothing splines. However, in practice, at least for the examples we

have considered so far, we find that using SPDE precision matrix as though it were

a penalty matrix leads to no practical differences in model estimation.

2.5.2 Implementation in mgcv

The mgcv R package is commonly used software for fitting models that involve basis-

penalty smoothers using restricted maximum likelihood. New types of basis-penalty

smoothers can be specified by writing functions that build the appropriate smooth-

ing matrix, design matrix and other optional components. We can call functions

used for the implementation of the SPDE approach in R-INLA within these func-

tions to construct the appropriate matrices. Below is a sketch of the approach for

implementing the Matérn SPDE in mgcv. Note that for the fully sparse finite element

precision matrix, we use the notation C0 for the diagonal matrix which replaces the

matrix C in equation (2.11), G1 = G (as above) and G2 = GTC−1
0 G.

1. Mesh construction: Create a finite element mesh using

INLA::inla.mesh.1d or INLA::inla.mesh.2d.
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2. Finite element matrices: Construct the three matrices, C0, G1 and G2

using INLA::inla.mesh.fem (denoted c0, g1 and g2 respectively in the object

returned by this function)

3. Projection matrix: If required, construct the matrix A to map the basis

functions to a set of locations (typically either observation locations or predic-

tion locations), using INLA::inla.spde.make.A.

4. Design matrix: The design matrix is a combination of the design matrix for

any fixed effects and the projection matrix A.

5. Inference: Use REML to find the optimal κ, τ and β.

Note that here we have two smoothing parameters τ and κ. To estimate them both

simultaneously we can make use of the paraPen option in mgcv which accepts a

matrix defining a linear reparameterisation of the log smoothing parameters. Letting

λ1 = τ 2κ4, λ2 = τ 2κ2 and λ3 = τ 2 we have

log λ1 = 2 log τ + 4 log κ

log λ2 = 2 log τ + 2 log κ

log λ3 = 2 log τ

and so, if θ = [log τ, log κ]T , we can represent this reparameterisation as

logλ = Lθ where L =


2 4

2 2

2 0

 .

In this case, the smoothing parameters returned by mgcv are τ and κ but the repa-

rameterisation is used internally. Note that mgcv will throw an error if there are

more mesh nodes than observations. To get around this it is possible to construct
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dummy observations to increase the size of the dataset passed to gam() and include a

weight vector that gives weight 1 to real observations and 0 to dummy observations.

This parameterisation allows us to implement the SPDE effect directly in mgcv

and is used in the subsequent examples.

2.6 Examples

This section contains three examples of fitting spatial models with the SPDE ap-

proach in mgcv. mgcv can fit penalised regression models using restricted maximum

likelihood (Wood, 2017). This is contrast to the more commonly-used implemen-

tation of the SPDE approach in R-INLA which implements approximate Bayesian

inference. The first example models chlorophyll data in the Aral sea and compares

the predictions of the mgcv model with the same model fitted in R-INLA. The purpose

of this is to show that the model fit is very similar with the two implementations; any

small differences are likely due to differences in computational methods and choice

of prior distributions for the smoothing parameters which R-INLA requires but mgcv

does not allow. The second example fits a model to one year of the British Trust of

Ornithology Garden Bird Feeding survey data. These data consist of a continuous

positive response with zeroes and so are modelled using the Tweedie distribution,

which is available in mgcv but not currently available in R-INLA. This demonstrates

the advantage of being able to adapt the SPDE method to other software implemen-

tations. The third example is a fit to trawl data collected in the Bering sea by the

National Oceanic and Atmospheric Administration (NOAA) of the United States

which also uses the Tweedie distribution.

The purpose of these examples is not to present a full analysis of the data but

rather to demonstrate the feasibility of fitting models with the SPDE approach

using general purpose GAM fitting software. We do this to emphasise the validity

of the perspective presented above, that linked SPDEs and smoothing splines, and
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to provide an example implementing the SPDE approach in a new software and

inference framework.

2.6.1 Chlorophyll A in the Aral Sea

This example fits a simple model with a Gaussian response to data on Chlorophyll

measurements collected by the The National Aeronautics and Space Administra-

tion’s SeaWifs satellite, averaged over the years 1998-2002. The dataset is available

via the R package gamair which contains the datasets used in Wood (2017). The

data consists of 485 measurements at unique locations in the Aral sea and three NA

observations. The response variable is continuous and observation range from ap-

proximately 1.9 to 19.2. Plotting the data (Figure 2.3) reveals clear spatial structure

which we model using the SPDE approach. The model was fitted using both mgcv

Figure 2.3: Observed chlorophyll measurements in the Aral sea, averaged over 1998-
2002

and R-INLA to compare the two implementations as a sense check that the mgcv

implementation is working. The INLA model was fitted using penalised complex-

ity priors on the range and variance parameters of the SPDE (Fuglstad et al., 2019;
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Simpson et al., 2017). The prior for the range was set to P(SPDE range < 0.1) = 0.1

and the prior for the variance was set to P(SPDE variance < 4) = 0.1. To ensure

as fair a comparison as possible, the ‘int.strategy = ‘eb’’ setting was used in

INLA. This setting uses the posterior mode of the SPDE parameters when approxi-

mating the subsequent Laplace approximations. We view this as roughly analogous

to using only point estimates for the smoothing parameters in mgcv. The predicted

mean response is shown in Figure 2.4. This shows the predicted mean response is

very similar for both models, as we expected since they are approximately fitting

the same model (except for priors).

Figure 2.4: Predicted mean chlorophyll for both models. A: mgcv and B: R-INLA

To compare the uncertainty estimation between mgcv and INLA we used the

‘Bayesian posterior covariance matrix’ as returned by the mgcv function vcov.gam().

This uses the approach given in Wood (2006), which takes a Bayesian perspective on

the smoothing penalty in order to derive a covariance matrix around the maximum

likelihood estimate for the spline coefficients. For a Gaussian model the approach

is exact in that the function returns the exact posterior covariance matrix that

follows from Bayes’ theorem (so long as one is willing to accept a possibly improper
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prior). For the more general case of a non-Gaussian response, where the response

distribution is in the exponential family, the large sample limit is considered which

results in an approximate posterior covariance matrix that has a similar construction

to the Gaussian case. There are clearly similarities with the approach taken in

INLA, which uses repeated Laplace approximations to approximate the posterior,

in comparison to the Gaussian large sample approximation used in mgcv. Here

we restrict ourselves to a comparison of uncertainty only for this example rather

than give a detailed mathematical comparison, which could be the focus of future

research.

Figure 2.5: Posterior standard deviation in chlorophyll for the A: mgcv model, B:
R-INLA model, C: the difference between the mgcv and INLA models.

Figure 2.5 plots the posterior standard deviation for the mgcv fit alongside the

model fitted using INLA. Note, however, that INLA is fully Bayesian and so includes

a prior distribution on the smoothing parameters. Therefore the models are not

exactly equivalent. We can see some differences in the estimated standard deviation

(Figure 2.5C) which may be due to this difference or the differences in the approxi-

mate inference mentioned above. The standard deviation maps appear qualitatively

similar but the differences can be significant in some pixels. If the standard deviation

is of particular interest in an analysis then the differences in model structure (priors
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on smoothing parameters or not) and inference method (Laplace approximations

or Gaussian large sample approximation) should be investigated to check whether

these choices affect the conclusions of the analysis.

2.6.2 Coal Tit data in England and Wales

This example fits data derived from the British Trust for Ornithology’s Garden Bird

Feeding Survey which started in the winter of 1970/71 and runs to the present day.

We use a cleaned subset of the data that was analysed in a joint-species modelling

context in Swallow et al. (2016) and the data are available for download (Swallow

et al., 2020). For our purposes, we selected data from a single year and a single

species - the Coal Tit in 2004/05. The response is the mean weekly maximum

bird count for each site in the survey. This data example was chosen because it

has evidence of some spatial structure but also includes a substantial number of

zeroes. Since the aim here is to demonstrate a smoothing application, the relatively

sparse number of sites in Scotland and Northern Island were left out to avoid over-

extrapolation in those regions, leaving only the records in England and Wales, where

the coverage is more substantial (Figure 2.6A). This subset of the data consists of 220

observations of which 22 were zeroes and a maximum observed value of 5.2. Since the

response is a non-negative continuous variable we choose the Tweedie distribution,

which can allow for a point mass probability at zero as well as a continuous density

for positive values. This is a response distribution that is available in mgcv but not

in R-INLA.

The predicted mean weekly maximum bird count is shown in Figure 2.6B. There

is some evidence that the model is failing to capture the largest observed values,

perhaps undersmoothing and fitting to the bulk of the observations. The finite

element mesh used to construct the Markov approximation is shown in Figure 2.7.

In contrast to the chlorophyll A example, here the spline is used to describe a

continuous latent surface that does not physically exist. Instead the spline is used to
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Figure 2.6: A: Coal Tit mean maximum weekly count for each site in the Garden
Bird Feeding survey in England and Wales in 2004/05. The blue-yellow colour scale
ranges from 0 to 2 and was chosen to convey the spatial structure in the majority
of the observations. There were 14 observations greater than 2 which are marked
in red. B: The mean predicted mean maximum weekly count on a prediction grid
that covers England and Wales.

Figure 2.7: The finite element mesh used to construct the Markov approximation
to the SPDE for the Coal Tit data analysis
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model correlation between measurements made at discrete units (people’s gardens).

This example shows we can use the SPDE approach in mgcv to use response

distributions (in this case the Tweedie distribution) that are not available in R-INLA.

2.6.3 Bering Sea trawl data

NOAA’s Alaska Fisheries Science Center regularly conducts bottom trawl surveys to

assess the condition of groundfish and shellfish stocks in Alaskan waters to inform the

management of these fisheries. The data are freely available to download from the

NOAA website. We choose a subset of the data collected in the Bering sea. Similar

to the above example, for ease of exposition we considered a single species in a single

year - the Northern Rock Sole in 2016. Again this example was chosen as the data

showed clear evidence of spatial structure suitable for smoothing. There are 309

observations in total, shown in Figure 2.8A. The response variable is NUMCPUE,

the catch number per area the net swept (count per hectare). This is again a

non-negative positive response variable so we modelled the data with the Tweedie

distribution. The predicted response is shown in Figure 2.8B. The mesh used to

construct the Markov approximation is shown in Figure 2.9.

Again this shows that our understanding of the SPDE approach has allowed us

to fit models to real ecological data that we could not previously have fitted. We did

this by using our understanding to implement the SPDE approach as a basis-penalty

smoother in mgcv which allowed us to use the Tweedie distribution, a popular choice

in spatial ecology due its ability to model continuous data with zeroes, as can often

occur in ecological data.
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Figure 2.8: A: The observed number of northern rock sole caught per unit area
swept by the net. B: The expected number of fish caught per unit area predicted
by the model

Figure 2.9: The finite element mesh used to construct the Markov approximation
to the SPDE for the trawl data analysis
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2.7 Discussion

These three examples have shown that it is possible to specify the SPDE model

within mgcv and obtain results that are broadly speaking sensible. This opens up

the possibility of combining the SPDE with the wide range of GAM modelling

techniques available in mgcv.

This chapter has drawn links between two popular approaches for accounting

for structure in data. The aim is to provide applied statisticians with an acces-

sible understanding of what is equivalent between the two approaches and what

is fundamentally different. This was done from the perspective of translating the

SPDE literature into the language of basis-penalty smoothers. The reverse approach

was taken in Yue et al. (2014) who show how adaptive smoothing splines can be

implemented as SPDEs.

There exist other smoothing techniques with which comparisons can also be

drawn. Smoothing splines, kriging, Gaussian random fields (specified more tradi-

tionally through covariance functions) and SPDEs have all been applied in spatial

statistics contexts to achieve similar aims. The wide and varied histories of these

approaches and the terminology used in the literature to describe them can lead to

difficulties for practitioners when deciding which method is suitable for a given ap-

plication. Taking an approximate precision matrix as the common currency between

all these approaches is one way to view their commonalities and their differences.

This can be summarised in the following workflow:

1. Choose a covariance model: either directly by choosing a covariance func-

tion or implicitly by a smoothing penalty or SPDE.

2. Approximate the precision matrix: for example by dimension reduction

techniques (fixed rank kriging, thin plate splines) or induce sparsity (SPDE

approach, B-splines).

3. Conduct inference using a specific choice of software: for example
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with mgcv or R-INLA as considered in this article, or other software such as

TMB (Kristensen et al., 2016), Stan (Carpenter et al., 2017) or JAGS (Plummer,

2017).

This conceptual separation of the modelling choices allows users to compare methods

by identifying genuine differences in the covariance model, approximation technique

and inference procedure. This may go some way to allow users to pick the tools best

suited to them, given their existing expertise and familiarity with the methods and

software packages.

The reason R-INLA and TMB are the go-to choices for fitting the SPDE approach

is that these software packages make use of libraries that can take advantage of the

sparsity in the precision matrix. This leads to efficient computation and the ability

to fit models that other packages such as mgcv, JAGS and Stan, which do not utilise

the sparsity, would struggle to fit with the same computing resources. Should these

packages extend functionality to take advantage of sparse precision matrices, we

would expect an increase in the number of models that use sparse approximation

techniques, such as the SPDE approach, to follow. For large numbers of observations

(though not necessarily large numbers of mesh nodes) there is the bam() function

in mgcv which was developed to allow the use of datasets which contain upwards of

tens of thousands of observations. An example of fitting the SPDE using bam() to

high resolution land surface temperature data is given in Miller et al. (2019).
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Chapter 3

One-stage point transect distance

sampling using iterated integrated

nested Laplace approximations

3.1 Introduction

This chapter demonstrates an application of the SPDE approach applied to the

problem of estimating spatial variation in animal abundance. In particular, we use

the SPDE effect to model the intensity of a point process that represents the loca-

tions of animal sightings. Often such sightings are made by observers who cannot

detect all the animals perfectly and so, in order to estimate abundance, we require

an estimate of the number of animals that remained undetected. Distance sam-

pling (Buckland et al., 2015) is a popular approach to estimating the detectability

of animals and is the focus of this chapter. We present a one-stage distance sam-

pling model, simultaneously estimating the detectability and spatial distribution of

animals. The spatial distribution of animals is modelled as a point process with

an SPDE effect to describe spatial variation in animal density. The discussion and

implementation of these methods is built around a case study analysing distance
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sampling data collected for an endangered tropical bird species. This case study

provides a useful context for the statistical methods discussed in this chapter and

demonstrates their utility in applied spatial statistics.

The estimation of the size and spatial distribution of wild populations of an-

imals is a critical objective within ecology and conservation (Schwarz and Seber,

1999). Estimates of these quantities are a critical step in generating evidence that

contributes to answering questions in ecological science and conservation manage-

ment. We present an analysis of wildlife survey data collected on a critically endan-

gered Hawai'ian forest bird: the Hawai'i 'ākepa (hereafter 'ākepa; Loxops coccineus ;

nomenclature according to U.S. Fish and Wildlife Service, 1970), an endemic species

whose population declined dramatically during the 20th century (U.S. Fish and

Wildlife Service, 2006; Judge et al., 2018). The remaining population is the focus of

sustained conservation efforts and monitoring is required to inform decision-makers

about changes in the overall abundance and spatial distribution.

However, estimating the size and spatial distribution of animal populations

presents many statistical challenges. Firstly, as in many ecological surveys, it is

impossible to undertake a full census (i.e. the complete enumeration of all indi-

viduals within a defined study region). The existing population numbers in the

thousands and lives in dense tropical forest that makes a census infeasible. For this

reason, a monitoring survey must sub-sample appropriately in space and time. For

the 'ākepa this takes the form of the Hawai'iForest Bird Survey (HFBS) (Scott et al.,

1986), which is a large-scale, quantitative survey of Hawai'ian forest birds that, in

the region with the largest 'ākepa population, consists of point transects located

along randomly placed line transects.

Secondly, even at sampled locations, the detectability of animals is unknown.

The 'ākepa survey estimates detectability using a point transect distance sampling

protocol (Buckland et al., 2015) where, for each observation, the distance to a sta-

tionary observer is recorded. The approach assumes a parametric form of detection
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function that decays with increasing distance. The detection function parameters are

estimated from the observed distances, assuming the true density is uniform. This

combination of spatio-temporal sub-sampling and unknown detectability means sta-

tistical methods used to analyse such data must model a complex observation process

alongside the spatio-temporal distribution of animals.

Thirdly, a key aim of the analysis is to predict animal density at un-sampled

locations. If density is modelled using spatial covariates the usual approach is to

assume the relationship between animal density and spatial covariates is the same

in the un-sampled locations as it is in the sampled locations. Predictions can then

be based on estimating this relationship using the observed data and extrapolating

to un-sampled regions. However, we usually have reason to believe there are drivers

of the spatial distribution for which we have no explanatory covariates available or

for which, in principle, no covariate could be constructed (e.g. the ’sociality’ of the

species or other behavioural characteristics). For the 'ākepa data, one example of

an unexplained driver of the spatial distribution is a north-south gradient in density

that has been investigated but for which no straightforward explanatory cause has

been found (Camp et al., 2020). From a statistical perspective, this suggests the

inclusion of a spatially-structured random effect in the model, which necessitates

the use of appropriate statistical software capable of fitting such models.

Lastly, the above challenges mean the resulting statistical model is necessarily

complex and it is therefore challenging to communicate results of the analysis. The

data has been collected with the clear objective of monitoring the population and

informing conservation management decisions. These decisions will be taken by

stakeholders with a variety of statistical expertise who should have a good under-

standing of the full range of possible inferences implied by the model, even if they do

not understand all the statistical technicalities involved. This final step of commu-

nicating results is therefore key and should be considered with as much care as the

rest of the analysis. This requires the input of statisticians to ensure uncertainty is
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appropriately incorporated into the key outputs of the analysis upon which decisions

will be based.

In particular, we note that communicating uncertainty in maps of predicted

animal density is challenging. Here we take a Bayesian approach to model estimation

and, in this context, current approaches to visualise uncertainty in the posterior

random field that describes animal density can be hard to interpret or mask certain

properties that could be relevant. For example, maps of the posterior mean will

always be smoother than realisations of the posterior intensity field itself; maps

of the posterior coefficient of variation (CV) are hard to interpret when there is

spatial variation in density and survey effort; and mapped posterior quantiles at

each prediction location are tempting to interpret jointly when they should be viewed

independently. These challenges mean careful consideration must be given to the

communication of uncertainty in maps of animal density otherwise the risk is that

key model outputs will be difficult, if not impossible, for even statistically adept

audiences to interpret.

Here we provide an analysis of wildlife survey data that seeks to address all of

these statistical challenges by presenting

(i) A model-based spatial point process perspective on point transect distance

sampling, representing distance sampling as a thinning of a point processes.

(ii) A one-stage approximate Bayesian approach to inference to simultaneously

estimate the observation model and spatial distribution by iterated model fits

using integrated nested Laplace approximations (INLA) (Rue et al., 2009).

(iii) A computationally efficient Gaussian Markov random field (GMRF) spatially

structured random effect specified using the SPDE approach (Lindgren et al.,

2011) to account for unobserved drivers of the spatial distribution.

(iv) Examples of model evaluation and communication of results that take advan-

tage of the one-stage approach by sampling from the joint posterior of all
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model parameters. In particular, we consider various ways to work with sam-

ples of the posterior intensity field such as using excursions methods (Bolin

and Lindgren, 2015) and some novel summary metrics to measure information

gained by survey effort.

We demonstrate several novel contributions to the problem of species distribu-

tion modelling under unknown detectability. These include: a point process per-

spective that accounts for incomplete location information; a one-stage approximate

Bayesian inference strategy; the use of excursion sets and functions to communicate

uncertainty in predictive maps of animal density; and estimating the information

gained by survey effort that is implied by the covariance of the posterior intensity

field. We note that the challenges we have addressed are generic to many types of

wildlife survey data, not only the 'ākepa survey, and can be tackled using a range of

possible statistical approaches. Our analysis here is one possible choice of approach

that we hope it is generalisable to other contexts.

The rest of the chapter proceeds as follows: (i) we describe the 'ākepa study-

region and survey design; (ii) we present the perspective of distance sampling as

a thinned point process; (iii) we describe the GMRF random effect and iterated

INLA fitting procedure; (iv) we present the results of the analysis and discuss model

evaluation and communication.

The data and code used to fit the model and produce the figures in this

chapter is freely available to download at https://github.com/ASeatonSpatial/

ptds-public.

3.2 Study design

The Hawai'i 'ākepa is an internationally and federally endangered Hawaiian hon-

eycreeper (U.S. Fish and Wildlife Service, 1970; IUCN, 2016) that is endemic to

Hawai'i Island, USA. Large-scale, quantitative surveys of Hawaiian forest birds and
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their habitat commenced in the mid-1970s through the HFBS (Scott et al., 1986).

Information from the HFBS is used to update the listing and delisting of endangered

species, and establish preserves that coincided with native bird hotspots, including

Hakalau Forest National Wildlife Refuge on Hawai'i Island (hereafter Hakalau).

Hakalau is the first wildlife refuge established in Hawai'i with the primary purpose

to protect, conserve and manage native forests for threatened and endangered bird

and plant species. Due to its broad-scale coverage and robust design, the HFBS

has become an invaluable resource used to determine changes in species’ spatial

distributions and population sizes over time.

During the 20th century 'ākepa declined dramatically due to habitat modification

(Scott et al., 1986; Pratt, 1994), mosquito-transmitted avian diseases (Pratt, 1994;

Atkinson et al., 1995), introduced predators (Lepson and Freed, 1997), and food

resources competitors (Lepson and Freed, 1997). 'Ākepa has a global abundance

of approximately 16,200 (95%CI 10,000–25,200) in five spatially distinct popula-

tions (Judge et al., 2018). Hakalau supports the largest 'ākepa population that, in

2012, was estimated at more than 11,000 birds (Camp et al., 2016). Maintaining

and expanding the 'ākepa population at Hakalau is a critical conservation objective.

Therefore, unbiased and precise abundance estimates are required by land and re-

source managers in order to evaluate past management actions and plan for future

efforts.

3.2.1 Study area and survey design

Hakalau was established in 1985 to conserve 15,390 ha of montane forest habitat for

native forest birds and rainforest plants. Annual forest bird surveys were initiated in

1987 to determine population status and track trends in abundance. Survey points

were established along 14 line transects following a systematic, random design with

point transects approximately 150 m apart on line transects located either 500 or

1,000 m apart. We limit our study area to the open-forest and closed-forest strata

69



of Hakalau (Figure 3.1), an extension of the area considered in Camp et al. (2010,

2016), who omitted the closed-forest stratum because it was not sampled in the

early years of the 'ākepa surveys. For our analysis, we use data from a later year

in which the closed-forest stratum was sampled and so we are able to include it in

our analysis. The open-forest stratum was previously heavily grazed, and, since the

removal of cattle in 1988, regeneration has proceeded naturally (Maxfield, 1998).

The closed-forest stratum was historically least modified by grazing and is relatively

intact forest habitat. To the north, the study area follows the refuge boundary while

to the east it is bounded by a fence line (Fig. 3.1). The southern boundary is the

same as that in Camp et al. (2010), chosen to exclude un-sample regions to the south

of Hakalau but does not represent a physical boundary. To the west of the study

area is pasture that is dominated by grass and is unsuitable habitat for 'ākepa.

Figure 3.1: Study area showing the 2002 survey points (black dots) in Hakalau Forest
National Wildlife Refuge, Hawai'i Island. Eastings and Northings are in kilometres.

The survey uses point-transect methods, recording the horizontal distances from

observers to detected birds. Surveys commenced at dawn and continued until 11:00

or halted when weather conditions exceeded prescribed conditions that hindered

detecting birds (light rain, and wind and gust strength >Baufort scale 3). During 8-

minute counts, trained observers recorded the species, distance to the nearest metre
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and detection type for each bird detected, along with the sampling conditions cloud

cover, rain, wind strength, gust strength, and time of day each point was surveyed.

Camp et al. (2010, 2016) provide a detailed description of Hakalau, the study area

and the bird surveys.

The survey data is available in the open forest stratum is available for download

(Camp, 2020) and the full time series data was analysed in a spatio-temporal context

in (Camp et al., 2020). For the purposes of our analysis we select a single survey year

from the 'ākepa time series (2002) that contains a broad sampling of the study area

with sufficient numbers of detections to estimate detectability. In 2002, 289 points

were sampled using point-transect distance sampling methods within the 4,603 ha

study area of Hakalau (Fig. 3.1) during which 276 'ākepa were detected on 121

point transects. The number of detections within each point transect ranged from

zero to six. We select data from a single year to demonstrate our approach in a

simplified setting that does not require a temporal model component. However, our

approach is readily extendible to a multi-year analysis which we discuss in more

detail in Section 3.9.

3.3 Distance sampling as a thinned point process

3.3.1 Overview of distance sampling methods

Distance sampling methods aim to estimate abundance by using a spatially explicit

sampling design and an assumed detection model to estimate the detectability of

animals as a function of distance from transect (Buckland et al., 2004, 2015). Clas-

sic distance sampling approaches use a hybrid of design- and model-based inference

to estimate population size. The probability of detection is modelled using a para-

metric equation and, given estimates of detectability, a randomized sampling design

allows for the construction of Horvitz-Thompson-like estimators of animal density

(Buckland et al., 2004; Horvitz and Thompson, 1952).
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More recently, interest has focused on fully model-based approaches that include

a spatially explicit model for animal density and allow for the use of non-random

survey designs. These methods allow animal density to be associated with spatially-

indexed covariates. Therefore, animal density can, in principle, be estimated or

predicted for any subregion within the study area (Johnson et al., 2010; Miller

et al., 2013; Buckland et al., 2016). This additional flexibility to make predictions

for smaller, user-specified geographic units, and extrapolate relationships to un-

surveyed regions has made model-based distance sampling a common approach in the

literature (Garćıa-Barón et al., 2019; Herr et al., 2019; Breen et al., 2017; Williams

et al., 2011; Stokes et al., 2010; Williams et al., 2006).

Model-based distance sampling has been implemented in a two-stage modelling

framework. The dsm package (Miller et al., 2013), for example, provides tools to

do this. In the first stage, detectability is estimated. In the second stage, de-

tectability estimates from the first stage are used as an offset in a generalized ad-

ditive model framework. Detections within sampling units are binned into counts

and an appropriate response distribution is chosen to model these counts. Due

to the often sparse nature of wildlife survey data, this may require consideration of

over- or under-dispersion and zero-inflated distributions. The negative-binomial and

Tweedie distributions are common choices here. This two-stage approach has come

under the name density surface models and Miller et al. (2013) provide a review.

A key concern with the two-stage approach is the propagation of uncertainty

from the detection model to the second-stage spatial model. Early attempts to

address this focused on bootstrapping (Lahiri, 2003; Hedley and Buckland, 2004)

but more recent work has pointed to potential difficulties with the bootstrapping

approach, noting the difficulty of choosing the resampling units when combining

spatially structured random effects and spatial bootstraps (Bravington et al., 2021;

Williams et al., 2011). Instead, Bravington et al. (2021) propose avoiding boot-

strapping by propagating error based on a second-order Taylor approximation of
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detectability around the first-stage maximum-likelihood estimate.

Concerns about uncertainty propagation can be avoided by using one-stage mod-

elling approaches. A popular one-stage maximum-likelihood method was introduced

by Royle et al. (2004) and is implemented in the R package unmarked (Fiske and

Chandler, 2011). This approach depends choosing discrete distance classes and bin-

ning the data into counts for discrete spatial units. This allows the likelihood to

be written in a multinomial form and, by marginalising out site specific abundance,

results in a Poisson likelihood that can be optimised to achieve one-stage inference.

This approach rests heavily on the discretisation of both the distance data and the

spatial location data. Below we present a point process perspective that does not

require this discretisation step in either the distance or spatial location data.

Bayesian one-stage approaches have tended to use Markov chain Monte Carlo

(MCMC) methods for inference along with data augmentation to model unobserved

individuals or groups (Schmidt et al., 2012). Oedekoven et al. (2014) present a

one-stage model that avoids data augmentation by specifying a combined likelihood

of the detection and spatially-explicit count models and incorporated model uncer-

tainty using reversible jump MCMC.

The only Bayesian one-stage analysis that does not use MCMC is, to the best of

our knowledge, Yuan et al. (2017), who use INLA (Rue et al., 2009) and present an

application to line transect distance sampling data. Yuan et al. (2017) also take a

point process perspective and formulate the detection model as a thinning of a point

pattern. Key to their approach is formulating the detection model as the solution to

an SPDE. Choosing a B-spline basis and applying finite element methods results in

a sparse prior precision matrix for the detection model coefficients which can then

be incorporated into INLA using the same machinery as already exists for working

with sparse precision matrices.

A major downside to this approach is that the solutions to the detection model

SPDE are not necessarily monotonically decreasing, usually a key feature of detec-
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tion functions. The authors’ suggestion to reject any non-monotonically decreasing

functions when sampling from the posterior is potentially computationally wasteful.

Representing the observation model as an SPDE also differs from other distance

sampling models that use a parametric model for the detection function. Such para-

metric models are readily extendible by including covariates and random effects to

explain variation in detectability, something that does not seem straightforward to

do using the SPDE formulation. These differences with traditional distance sampling

methods have perhaps lead to low uptake amongst practitioners of this approach,

despite the computational advantages of INLA and the benefits of a one-stage mod-

elling process.

We present a related approach to the one presented in Yuan et al. (2017). We

fit the model using INLA, realising the benefits of the one-stage fit and the com-

putational efficiency over MCMC. However, we avoid the issues with the SPDE

detection model, instead allowing the user to specify a parametric family of detec-

tion functions, such as the half-normal detection function. This approach of choosing

a parametric family of detection functions will be more familiar to users of classical

distance sampling methods than the SPDE specification. However, this parametric

form results in components of the additive predictor that are non-linear in their pa-

rameters, making model fitting infeasible in the R-INLA (Rue et al., 2009) package

implementation of INLA. We address this by using a method of iterated model fits

based on a Taylor expansion of the non-linear model components and implemented

in the inlabru package (Bachl et al., 2019).

We also apply these methods to point transect 'ākepa data, which differ from

line transect methods as models need to account for the fact that the area surveyed

increases with increasing distance from the transect. Our analysis is, to the best of

our knowledge, the first analysis of point transect distance sampling data formulated

as a thinned point process. However, the point process viewpoint is not new and has

been taken numerous times in analyses of line transect data (Buckland et al., 2016;
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Niemi and Fernández, 2010; Johnson et al., 2010; Waagepetersen and Schweder,

2006; Hedley and Buckland, 2004; Högmander, 1991; Stoyan, 1982).

3.3.2 Model specification

In this section we introduce the statistical model for the spatial pattern of animal

locations and the observation process, including a detailed description of how this

model can be written as a modified Poisson likelihood. We use this formulation to fit

the model using the software package inlabru (Bachl et al., 2019), an extension to

the R-INLA implementation of INLA, which implements the iterated INLA approach

and is available through the Comprehensive R Archive Network (R Core Team,

2017).

We assume the locations of animals form a point pattern that follows a log-

Gaussian Cox process with intensity process λ(.), i.e. the intensity at location s is

a random variable λ(s). The log-Gaussian Cox process is a flexible approach that

can include spatial covariates to model the mean intensity and a mean-zero spatially

structured random effect to account for unexplained heterogeneity not captured by

the covariates (Møller et al., 1998).

To account for the imperfect detection of points we specify a thinning probability

function g(s) = P(a point at s is detected | a point is at s). A key property of the

log-Gaussian Cox process is that a realisation of a point process with intensity

process λ(s) that is thinned by thinning probability function g(s) also follows a

log-Gaussian Cox process with intensity given by λ̃(s) = λ(s)g(s).

Standard distance sampling approaches specify g(s) as a function that declines

with increasing distance. The type of distance measured depends on the type of

survey. For line transects, the perpendicular distance to the transect line is used,

and, for point transects, the relevant distance is the horizontal distance to the ob-

server. For the remainder of the chapter we assume a point transect survey design

and hence distance refers to the horizontal distance to the observer located at the
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centre of the point transect.

The thinning probability function is specified as a parametric family of func-

tions. For example, if r(s) denotes the distance of a point at s from the observer,

the half-normal thinning probability function is g(s|σ) = exp(−r(s)2/2σ2), where

σ2 > 0 is a scale parameter to be estimated using observed distances. There are

other parametric families of detection function, such as the hazard-rate and neg-

ative exponential functions, and some additional flexibility can be added to these

models by including trigonometric series expansions (Buckland et al., 2015). In this

analysis we assume a half-normal detection function with no covariates on detection

parameters. However, covariates can, in principle, be included in a straightforward

way.

The detection function parameters can only be estimated if an assumption is

made about the intensity of the animal locations since, without such an assumption,

detectability and intensity are confounded. The standard assumption in distance

sampling is that the intensity is constant with respect to distances r(s). Thus any

observed deviations from uniformity can be attributed to detectability and not to

variation in the intensity. This implies we need some way to formulate this standard

distance sampling assumption within the context of the point process perspective.

The simplest way to achieve a uniform distribution with respect to r(s) is to

specify that the intensity itself is uniform with respect to s within each transect.

However, it is possible to relax this slightly by allowing the intensity to be a linear

function of s within each transect (see Section 3.3.3). Informally, if we imagine the

observer looking in a particular direction with increasing intensity, this increase is

directly offset by an equal decrease looking in the opposite direction, thus cancelling

each other out and resulting in a uniform distribution for distances, irrespective of

direction. We use this linear assumption for the intensity which works well with the

piece-wise linear basis functions used for the SPDE effect and the small size of the

point transects relative to the total study region.
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A point transect distance sampling survey consists of a set of K point transects.

We denote the k-th subset of space covered by the k-th point transect as Ωk ⊂ R2

and the total surveyed region is Ω = ∪Kk=1Ωk. For simplicity, we assume that all

point transects are non-overlapping discs with equal radius W , as is the case in

the HFBS survey. The probability of observing a point at location s ∈ Ωk given

it is at s ∈ Ωk we denote gk(s). The probability of observing a point outside the

surveyed region is zero. Since the point transects are non-overlapping, each location

s ∈ Ω is unambigiously associated with a single thinning probability function gk. For

example, for an observer at location sk ∈ Ωk, the centre of the disc, the thinning

function is gk(s) = exp(−rk(s)2/2σ2) where rk(s) = ‖s − sk‖. In practice the

observer is always located at the centre of the point transect. The assumption of

non-overlapping survey regions could be relaxed by including extra information such

as the time of each observation such that each observation is unambiguously linked

with a specific thinning probability function. The thinning probability function for

any location s ∈ Ω is then given by g(s) := gk(s)(s) where k(s) is an indexing

function such that k(s) = k for s ∈ Ωk.

The thinned log-Gaussian Cox process likelihood with observed points at loca-

tions Y = (s1, . . . , sn)ᵀ is then

π(Y ) = exp

|Ω| − ∫
s∈Ω

λ(s)g(s)ds

 n∏
i=1

λ(si)g(si), (3.1)

where the intensity λ(.) and thinning probability g(.) both depend on parameters,

omitted for readability, and |Ω| is the area of the total surveyed region.

3.3.3 Writing the model as a modified Poisson likelihood

Here we show how to approximate the thinned log Gaussian Cox process likelihood

with a modified Poisson likelihood. The integral component,
∫
s∈Ω

λ(s)g(s)ds , of the

likelihood (3.1) does not have analytical solutions. However, replacing the integral

77



with a weighted sum approximation allows the log-likelihood to be approximated as

a weighted Poisson log-likelihood. We adapt the approach in Simpson et al. (2016)

for a fully observed point pattern to the point transect distance sampling context

required here.

To evaluate the integral we use polar coordinates notation sk(r, θ) = sk +

r [cos θ, sin θ]T to represent locations in each sampling unit Ωk using distance r from

sk and angle θ. In distance sampling applications the thinning function depends only

on r and not on θ so we adopt the shorthand gk(r) = g(sk(r, θ)). The integral in (3.1)

can be simplified using the assumption that λ(s) is linear within each sampling unit.

This assumption implies that, for any angle θ, λ(sk(r, θ))+λ(sk(r, θ+π)) = 2λ(sk).

Therefore,

∫ 2π

0

λ(sk(r, θ))gk(r)dθ =

∫ π

0

[λ(sk(r, θ)) + λ(sk(r, θ + π))] gk(r)dθ

= 2πλ(sk)gk(r).

We note that this is a relaxation of the traditional assumption in distance sampling

spatial models that the intensity is constant within each sampling unit, or at least

approximated as constant when points are binned into discrete counts for count-type

GLM approaches. A similar relaxation is also possible in the case of line transects,

see (Yuan et al., 2017). This assumption of linear intensity within the transect

complements the use of the piece-wise linear basis functions for the SPDE effect

(see Section 3.5).

Integrating with respect to r and accounting for the change of variables gives∫
λ(s)g(s)ds =

∑K
k=1 2πλ(sk)

∫W
0
rgk(r)dr. For each sampling unit we approximate

the one-dimensional integral
∫W

0
rgk(r)dr using a midpoint integration method with

M integration locations rk1, . . . , rkM and associated weights αk1, . . . , αkM . This gives

78



an approximation to the integral as

∫
s∈Ω

λ(s)g(s)ds ≈
K∑
k=1

M∑
j=1

α̃kjλ̃(skj),

where α̃kj = 2παkjrkj and λ̃(skj) = λ(sk)gk(rkj).

To simplify notation, we let α̃k = (αk1, . . . , αkM)ᵀ, α̃ = (α̃ᵀ
1, . . . , α̃

ᵀ
K)ᵀ, and, sim-

ilarly, let λ̃k = (λ̃(sk1), . . . , λ̃(skM))ᵀ, and λ̃int = (λ̃ᵀ1, . . . , λ̃
ᵀ
K)ᵀ, the vector of the

intensity field evaluated at the integration locations. We also denote the inten-

sity evaluated at the observation locations as λ̃obs = (λ̃(s1), . . . , λ̃(sn))ᵀ. Then the

approximate log-likelihood is

log π(Y ) ≈ −α̃ᵀλ̃int + 1ᵀ log λ̃obs. (3.2)

This approximation can be expressed as a modified Poisson likelihood. To see this

let η = (λ̃ᵀint, λ̃
ᵀ
obs)

ᵀ, α = (α̃ᵀ, 0ᵀ
n×1)ᵀ and construct a vector of pseudo-observations

z = (0ᵀ
KM×1, 1

ᵀ
n×1)ᵀ. Then the approximate likelihood can be written as

π(Y ) ≈ C
KM+n∏
i=1

ηzii exp(−αiηi), (3.3)

where C is a constant. This approximate likelihood is implemented in inlabru as

a "cp" likelihood. This approximation is similar to what is often referred to as the

‘Berman-Turner device’ that is used to approximate a wide variety of point process

likelihoods and pseudo-likelihoods (Berman and Turner, 1992; Baddeley and Turner,

2000), although here we do not use their assumption that the locations of observed

points form a part of the quadrature scheme for the integration.
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3.3.4 Intensities for incomplete data

In the above, we assume the data are complete records of animal locations. However,

in many distance sampling surveys only the location of the observer and the distance

to the observer are recorded. Data of this type can be analysed within a point process

framework by deriving the appropriate intensity function for the incomplete data as

we outline below.

Using the polar notation given above, for a detected point at location sk(r, θ) ∈

Ωk, we consider the case where we observe r but not θ. It follows that the intensity

for points at a distance r observed within sampling unit Ωk is

λ̃k(r) :=

∮
ck(r)

λ(s)gk(r)ds

= 2πrλ(sk)gk(r), (3.4)

where ck(r) is a circle of radius r centred at sk and the second line follows from

changing to polar coordinates and the assumption of linear intensity within Ωk.

This intensity differs from the full data case through the 2π term, which accounts

for the fact that we do not observe θ and the additional r term, which accounts

for the increasing area surveyed at larger distances. The log-intensity for observed

points is thus log λ̃(s) = log 2πr+log λ(s)+log g(s) and so can be implemented using

log 2πr as an offset term. As we noted above, the half-normal detection function

g(s) is non-linear in its parameters and this component of the additive predictor

requires a novel approach to parameter estimation.

3.4 Iterated INLA

The half-normal detection function depends on the strictly positive parameter σ2.

We choose a log link and consider g(s|φ), where log σ2 = φ and φ can take any

real value, postive or negative. However, this model cannot be directly fitted using
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INLA since log g(s|φ) is not linear in φ. To address this we use an approximate

method based on a first-order Taylor approximation of the non-linear predictor. Let

η(u) = log λ̃(u) where u is the parameter vector of the predictor, which includes φ

as well as any parameters for fixed and random effects. Let η̄u0 denote the first-order

Taylor approximation of η(u) at the point u0. That is

η̄u0(u) = η(u0) +Bu0(u− u0),

where Bu0 is the derivative matrix of η(u) evaluated at u0. Since η̄u0 is linear in

u it is possible to fit an approximate model in INLA by replacing the non-linear η

with the linear Taylor approximation η̄u0 .

The question then is how to choose the linearisation point u0. The approach

taken here is via a fixed point iteration scheme. There are many possible choices

here and we use the approach in the current implementation of inlabru 1 (Bachl

et al., 2019). However, alternative approaches are likely to be added to inlabru in

the future. We denote by p̄v the posterior distribution of the model parameters given

the linearised model configuration at linearisation point v and define the functional

f(p̄v) =

{
arg max

ui

p̄v(ui|Y ), i = 1, . . . , nu

}
, (3.5)

where nu is the length of u. Note that each p̄v(ui|Y ) is approximated and the

mode estimated during the model fitting using INLA, so these terms require no

additional computation beyond fitting the model. We then seek a fixed point of this

functional so that u0 = f(p̄u0), i.e. we find a linearisation location such that the

mode of each (approximate) marginal posterior distribution directly coincides with

this location. This fixed point is identified via an iterative scheme: given a current

choice of linearisation point v, estimate p̄v and set u∗ := f(p̄v) to use as the new

1Since inlabru version 2.2.3 the option of using the joint ‘empirical Bayes conditional mode’
has been added. However, this analysis was completed before this option was available.
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linearisation point. Iterate this procedure until a fixed point is identified within a

chosen tolerance.

In practice the point u∗ may be problematic and result in a linearised model

configuration that is challenging to fit. Instead, this point is considered only as

an initial candidate point. The next linearisation point is chosen by setting uα =

(1 − α)v + αu∗ and finding the value of α that minimises ‖η(uα) − η̄v‖. This

means that the new linearisation point remains close to a feasible region for fitting,

assuming the current point v is reasonable. We estimate α using an approximate

line search method that avoids many potentially expensive evaluations of the non-

linear predictor. This iterative method is implemented in the R package inlabru

(Bachl et al., 2019).

3.5 Spatially Structured Random Effect

We use the computationally efficient SPDE effect (Lindgren et al., 2011) to describe

spatial variation in 'ākepa density. The log-intensity for the point pattern of all

animal locations (both detected and undetected) is given by

log λ(s) = β0 + ξ(s),

where β0 is an intercept parameter and ξ(s) is a zero-mean GRF with Matérn

covariance. We use the GMRF approximation of ξ(s) with piece-wise linear basis

functions φ1, . . . , φL defined on a finite element mesh with L nodes. Then ξ(s) =∑
l ξlφl(s) and the parameters ξ1, . . . , ξL form a GMRF with sparse prior precision

matrixQξ = 1
τ2

(κ4C + 2κ2G1 +G2) where C, G1, G2 are all L×L sparse matrices

(see Chapter 2, Section 2.5).

The parameters τ and κ control the shape and rate of decay of the Matérn

covariance function. In order to specify priors on the Matérn covariance, we use a

reparameterisation to range and marginal variance parameters. When ν = 1 and
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the domain is two-dimensional, the reparameterisation is ρ =
√

8/κ, for the range

parameter, and σ2 = 1/(4πκ2τ 2), for the marginal variance parameter (Blangiardo

and Cameletti, 2015).

This parameterisation is useful for setting penalised complexity priors (Simpson

et al., 2017), an approach to prior specification that allows flexible model components

to shrink towards a simple base model. For the Matérn field, the base model is the

limiting case with σ2 = 0 and ρ =∞, since this would result in a random field that is

almost surely zero everywhere, effectively removing the random field from the model.

The purpose of penalised complexity priors is to place sufficient prior probability on

a simple model to allow the random effect to remain essentially unused unless the

observed data suggests it is required.

To specify the penalised complexity priors on the SPDE effect we set P(σ >

2) = 0.01 and P(ρ < 130) = 0.01. The value of 130 for the range parameter was

selected based on the minimum distance between sampling locations. Since only the

distance to the observer was recorded, and not the exact location of 'ākepa, we used

the adjusted intensity given in equation (3.4).

3.6 Results

The predicted mean of the posterior intensity field is shown in Figure 3.2A along

with a map of the coefficient of variation (CV) (Figure 3.2B) and standard deviation

of the posterior intensity field (Figure 3.2C) on a regular prediction grid with each

prediction cell area approximately 1.7 hectares. This shows a region of high intensity

in the south and much lower intensity in the north, agreeing with a standard two-

stage analysis of the same data (Camp et al., 2020). The CV plot shows that the

CV in the posterior intensity field is lower in areas with greater sampling effort.

There is a clear indication of preferential sampling with more survey effort in the

south, where densities are higher, compared to the north. In the north, estimated
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Figure 3.2: The A) mean, B) CV and C) standard deviation of the posterior intensity
field. Units for the intensity field are per hectare.

intensities are lower, which also contributes to larger CV values and makes the CV

map hard to interpret.

The standard deviation map shows stronger overall posterior variability in the

south where intensity is larger. This is likely due to the assumed log-Gaussian

relationship. This is due to the log-Gaussian relationship between the random effect

and the density. If X is normally distributed with mean µ and variance σ2 then

Z = exp(X) is log-Gaussian with a mean-variance relationship given by Var(Z) =

exp(σ2 − 1)E(Z)2. This implies that the variance will generally be higher when the

expected density is higher and maps of the standard deviation will tent to have a

similar pattern to the mean intensity.

We also map the lower and upper quantiles corresponding to a 95% credible

interval for each prediction location (Figure 3.3). As we discuss below, these quan-

tiles are independent summaries of the posterior intensity field at each prediction

location. The chance of a realisation of the posterior field simultaneously taking the

0.095 quantile at each prediction location is vanishingly small, which makes these

maps that show thousands of such quantiles side by side in a single image liable to

be misinterpreted. We discuss this in more detail below.
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Figure 3.3: The predicted posterior intensity quantiles: A) 0.025 quantile B) 0.975
quantile. Both plots plots use the same colour scale. Units for the intensity field are
per hectare.

The posterior detection function (Figure 3.4) shows that detectability drops to

just under 0.25 at the maximum observable distance of 58 metres and also broadly

agrees with a two-stage analysis. The posterior Matérn correlation function is shown

Figure 3.4: A) Posterior half-normal detection function. B) Posterior Matérn corre-
lation function. The black line is the mean posterior estimate and the grey shaded
area is 95% credible interval in both plots

in Figure 3.4; the grey regions show the 95% credible interval. Note that this

correlation function shows positive correlation even at distances of 10,000 metres,
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wider than the full length of the study region (approximately 8,000 metres). This is

the correlation range on the log-intensity scale. On the intensity scale the empirical

range of correlation is shorter than this.

To further evaluate the ability of the SPDE effect to capture the spatial hetero-

geneity in the observed data we generated 100 point patterns using the posterior

intensity field and thinned them with the posterior detection function to create 1,000

simulated datasets to compare with the observed data. We calculated the pairwise

distances between all observations for each of these datasets and compared the fre-

quency of pairwise distances with those in the observed data (Figure 3.5). The plot

Figure 3.5: Boxplots of frequency of pairwise distances (tick mark values for end
of each bin) based on 100 point patterns sampled from the posterior. Red circles:
observed frequency of pairwise distances between observations

shows that the SPDE effect broadly captures the spatial clustering in the observed

data although there is some evidence of under-predicting the strength of the clus-

tering at distances between 1,000 and 2,500 m, with some evidence of negative bias

here. This could perhaps be due to large areas of the study region having low den-

sity, which has a larger correlation range than higher density areas. Since the SPDE

effect has only one range parameter it may struggle to predict in areas with shorter

range correlations than the average correlation range across the whole region.

We note that Figure 3.5 is similar in spirit to Ripley’s K-function (Ripley, 1976)
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that is a common approach to investigating spatial structure in point patterns. Here

we compare pairwise distances for simulated datasets with those in the observed

data as a method to evaluate the model. Other methods of comparison could also

be considered such as the average difference between predicted and observed counts

at each point transect, for example. Working with posterior predictive datasets

is a flexible approach to model evaluation that allows for innovative methods of

comparison with observed data that can focus on particular features of the model.

We plot the posterior abundance estimate for the 'ākepa in Hakalau reserve using

a Monte Carlo method that is based on sampling realisations of the posterior inten-

sity field. Let n denote the abundance of the population within the region of interest

Figure 3.6: Posterior abundance. Grey area marks two Monte-carlo standard errors
above and below the mean

and N =
∫
λ(s)ds its corresponding random variable within our Bayesian frame-

work. Integrating the mean of the posterior intensity field provides a point estimate

for the abundance, i.e. the expected abundance. To generate a full posterior estimate

for abundance we approximate the posterior π(N |Y ) by a Monte Carlo method.

Taking m Monte Carlo samples of the posterior intensity field, λ(1), . . . , λ(m), we

estimate the posterior for the abundance as π(N |Y ) ≈ 1/m
∑m

i=1 π(N |λ = λ(i)).

Each π(N |λ = λ(i)) is a Poisson probability mass function with rate parameter
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∫
Ω
λ(i)(s)ds.

Figure 3.6 shows the approximate posterior for N with m = 20, 000 with the grey

shaded region the Monte Carlo error of the estimated posterior. This allows us to

estimate the probability for any specific value of realised abundance n by estimated

π(N = n|λ). This approach can also be used to generate credible intervals and other

posterior summaries of interest.

The abundance estimates cannot be directly compared to the results in Camp

et al. (2020) since their two-stage model also includes a temporal correlation and

we include an area of Hakalau that they had to exclude. Converting the above

abundance estimates to density per hectare for the whole study region allows for

some comparison with Figure 2 in Camp et al. (2020) which suggests that 'ākepa

density was roughly between 0.5 and 1.5 birds per hectare in 2002 (considering both

the design-based estimate and the spatio-temporal GAM estimate). In our analysis

we find a credible region of roughly 0.9 to 1.7 birds per hectare, which is slightly

different but overlaps significantly with the results in Camp et al. (2020).

The attractive feature of our Bayesian one-stage model is that, by using poste-

rior Monte Carlo sampling, model summaries that are not based on sampling the

detection model are just samples from the marginal posterior distribution that in-

tegrates over the detection function parameters. This means that all the outputs

presented in the above, the summaries of the random field as well as the posterior

abundance, include the uncertainty in the detection model in a natural way. There

is no additional step required to incorporate detection function uncertainty beyond

working with samples from the joint posterior.
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3.7 An alternative approach to predicting abun-

dance

In the above, the posterior for abundance is estimated by taking posterior reali-

sations of the intensity at every prediction location within the study area. This

predicts the intensity for prediction locations within point transects in the same

manner as for those outside. However, we could use the fact that we have actually

observed counts within point transects and so do not need to predict this. This

section investigates this alternative approach for predicting overall abundance using

the fitted 'ākepa model.

Let A denote the entire study region and the random variable of number of

points within a bounded subset B ⊂ A as N(B). We have N(B) ∼ Poisson(Λ(B)),

where Λ(B) :=
∫
s∈B λ(s)ds, and we are interested in approximating the posterior

π(N(A)|Y ). Recall also that the entire surveyed region is denoted Ω, the union of

all point transects.

The approach we take is also based on working with samples from the posterior

intensity field. Given sampled intensities λ(1), . . . , λ(M), defined over the entire study

region A, where each λ(m) is sampled from the posterior distribution of λ|Y , we

then approximate the posterior abundance via a Monte Carlo method similar to

the above that used π(N(A)|Y ) ≈ 1/M
∑M

m=1 N(A|λ = λ(m),Y ). However, an

alternative approach is to apply the above method to only the non-surveyed region

A \Ω and to predict only the undetected counts within Ω, the region covered by the

point transects.

The distribution of the number of undetected birds across all transects is Poisson

distributed with rate parameter Λ̃(Ω) :=
∫
s∈Ω

(1 − g(s))λ(s)ds. Therefore, the

distribution of the number of all undetected birds in the study region, whether

through not being in a surveyed area (and so, in principle, undetectable) or within

a point transect (in principle detectable but remaining undetected), is Poisson with
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rate parameter Λ(A \Ω) + Λ̃(Ω). Then the distribution of the total abundance can

be obtained by adding the observed abundance to this probability distribution.

In theory, since this now uses the observed counts instead of predicting them, this

should have lower variance compared to the ‘predict everywhere’ approach. However,

the point transects cover only 6.6% of the total study area, so the difference between

the two approaches may be small.

To investigate whether this alternative approach makes a substantial difference

to the results, we compared the approximate posteriors using both methods, defined

using as much as possible the same numerical integration scheme to ensure that any

differences were not due to different schemes. Recall each point transect is denoted

Ωk with centroid sk and associated detection function gk(s). We can approximate,

Λ̃(Ω), the rate parameter for birds undetected within the surveyed region Ω, as

Λ̃(Ω) =

∫
s∈Ω

(1− g(s))λ(s)ds

=
∑
k

∫
s∈Ωk

(1− gk(s))λ(s)ds

≈
∑
k

2πλ(sk)

∫ W

0

r(1− g(r))dr

≈
∑
k

∑
j

2πrkjαkjλ(sk)(1− g(rkj)) (3.6)

where locations rkj and weights αkj are constructed following the mid-point integra-

tion scheme described in Section 3.3.3.

The integration scheme for Λ(A \ Ω), the rate parameter for the abundance of

birds in the unsurveyed region, is defined via a projection of integration locations

to mesh nodes, taking into account the fact that some mesh nodes may be within

or near to point transects and so should have a lower weight than in comparison to

the full mesh integration scheme. Figure 3.7A shows the raw integration locations

and associated weights for the integration scheme for a subset of the full study area

A, alongside the integration locations for A \ Ω (Figure 3.7B).
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These raw weights are then projected to mesh nodes using barycentric coor-

dinates and the fact that the intensity is linear in each triangle of the mesh (see

Bakka (2019) for a nice explanation of how this works). These projected integration

weights are shown in Figure 3.7. Comparing the integration weights for the entire

Figure 3.7: Integration locations and associated weights for integration over the
whole study region (A) and for the whole study region minus the point transects
(B). The black circles are point transects.

region versus the scheme with point transects removed, we can see lower weights at

mesh nodes within or near point transects for this second integration scheme (Figure

3.8). This accounts for the fact that the intensity is not being integrated within the

transects.

We use this scheme to approximate the integral of each sampled intensity over

A \Ω and combine it with the estimated rate parameters Λ̃(Ω) generated using the

mid-point integration presented above. The posteriors estimated by this approach is

shown in Figure 3.9 alongside the posterior using the ‘predict everywhere’ approach.

This shows there is not a great deal of difference between the two approaches and the

additional complication of using the observed counts may not be worth the trouble.

The small differences may be because the observed counts are so low compared to

predicted overall abundance (153 observed birds compared to a credible range of
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Figure 3.8: Integration weights projected to mesh nodes for integration over the
whole study region (A) and integration over the whole study region minus the
transects (B). The black circles are point transects. Note that the weights in B
are smaller for mesh nodes within or near the point transects when compared to A,
reflecting the fact that the intensity is not being integrated within transects in B.

4,000-8,000 or so for the total population in the study region) and that detectability

was fairly high within point transects, with most birds detected. Coupled with the

fact that the sampled region is only 6.6% of the total study region, it is perhaps not

surprising that the resulting posterior estimates are almost identical.

In this specific application, we conclude that there is no much benefit to go

through with the extra complication of using the observed counts over predict-

ing everywhere. However, for other populations this difference may well be large

enough to be worth accounting for, especially if a larger proportion of the region

has been surveyed or observed abundance accounts for a larger proportion of the

total population than was the case here. inlabru provides useful tools for this type

of high-resolution quadrature scheme that was necessary here since transects were

small compared to the resolution of the mesh and the size of the study area as a

whole.
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Figure 3.9: Comparing approximate posteriors for abundance using the two different
approaches. Shaded regions are 2 Monte Carlo standard errors above and below the
mean

3.8 Communication of Results

Our presentation of the results is broadly consistent with approaches taken in the

species distribution modelling literature, although maps of predictive uncertainty

(Figure 3.2 and Figure 3.3) are not always provided and it is common to see maps

of point estimates without any accompanying communication of uncertainty. It

is also common to report a point estimate of the expected abundance along with

uncertainty in this point estimate. However, uncertainty in a point estimate will

93



tend to have lower variance than the variance of the random variable of interest.

For this reason we chose to show the full abundance posterior in Figure 3.6.

Our intention in this section is to highlight limitations with mapped summaries

of model predictions, including those presented in Section 3.6, and suggest ways to

address these limitations. We note that all model outputs are based on sampling

from the joint posterior of all model parameters and therefore naturally average

over the uncertainty in the observation process, a key advantage of the one-stage

approach.

3.8.1 Limitations of mapped summaries

The most common method to communicate uncertainty in a maps of animal density

is to produce maps of some measure of predictive uncertainty, such as the standard

deviation or CV (Fuller et al., 2018; Vallejo et al., 2017; Bradbury et al., 2014) that

can be derived from the posterior predictive distribution for the model or bootstrap-

ping in a maximum likelihood context. Another approach is to map quantiles or

the probability of exceeding certain thresholds for each prediction location (Russell

et al., 2016; Wilson et al., 2010). In Section 3.6, we present maps of the CV, standard

deviation, and the 0.025 and 0.975 quantiles of the posterior intensity field that are

all intended to communicate uncertainty in the spatial distribution of 'ākepa (Fig-

ures 3.2B, 3.2C, 3.3A, and 3.3B, respectively). Whilst maps that summarise spatial

predictions are useful, they all mask certain properties that may be important when

communicating the results of the analysis.

A map showing the posterior predicted mean across the study region (Figure

3.2A) is often the key output of a species distribution model. However, even this

relatively innocuous summary statistic can mask important features of the random

field since the posterior mean will always be smoother than actual realisations. Fig-

ure 3.10 shows three such realisations from the posterior intensity field. Note that

each realisation has a finer-grained spatial structure than is shown in the posterior
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Figure 3.10: Three realizations of the posterior intensity field

mean (Figure 3.2A). Hence, considering this finer-grained structure, our interpreta-

tion is that the clustering of animals is stronger than might be expected if we only

looked at the map of the posterior mean. This is one example of how a summary

statistic can mask important features of the posterior random field.

For model evaluation we recommend plotting multiple realisations of the poste-

rior field as these will more closely resemble the spatial structure of the observed

data and thus what we might encounter in the field. The mean is only a summary

of the posterior intensity field and can give a misleading sense of homogeneity, par-

ticularly in the high density area in the south, when compared to realisations of the

mean. Presenting multiple realisations, perhaps as an animation, is also an effective

way to communicate uncertainty. Bowman (2019) provide an interpolation method

that preserves the mean and covariance structure of realisations that smoothly in-

terpolates between realisations. This avoids abrupt changes that can occur when

animating the raw realisations.

The CV map (Figure 3.2B) is also intended to communicate uncertainty. How-

ever, CV values will be higher in regions of low predicted intensity, particularly if

the posterior standard deviation is relatively consistent across the study region or

positively correlated with the intensity. The observed higher CV areas in such maps
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will highlight regions of relatively lower intensity but not necessarily higher overall

uncertainty. This is clearly the case in Figure 3.2B. However, there is also variable

sampling effort within the study region and it is not clear what impact this has on

the CV map. This means that the resulting map is hard to interpret.

The standard deviation (SD) map (Figure 3.2C) shows spatially varying SD val-

ues. However, care should be taken as to what the mapped values imply in the

context of a given analysis. A default colour scale will nearly always show some

spatial variation in uncertainty, with some regions of relatively high and low uncer-

tainty. What such a map does not show is whether these differences actually matter

in the context of the analysis. For example, it could be the case that the stan-

dard deviation values are so large as to make the predictions have an unacceptably

high uncertainty everywhere. Or, on the other hand, perhaps differences between

high and low uncertainty regions (where ‘high’ and ‘low’ are defined by the default

colour scale for the map) are small enough to be negligible when it comes to making

conclusions or decisions, in which case such a spatially varying map may not be a

useful output to communicate to decision makers. These are two extreme examples.

However, even in less extreme situations, the actual practical relevance of the SD

values should be considered in order to be able to interpret the map.

The SD map suffers from another weakness which is that the SD values are

linked to the predicted mean since the model assumes a log-Gaussian relationship.

This means that the SD map usually looks similar to the mean intensity map. This

relationship is the result of a modelling assumption and not necessarily reflective of

the detectability of animals or survey effort. One might expect uncertainty to be

lower in areas with greater survey effort, however for the 'ākepa data the opposite

is the case. This is another limitation of the SD map.

The quantile maps (Figure 3.3) are also potentially difficult to interpret. The

temptation is to perceive the maps as showing possible intensity surfaces that could

have produced the observed data with one possible intensity surface (0.025 quantile
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map) that signifies lower abundance and another surface (0.975 quantile map) that

signifies higher abundance. However, presenting these quantiles together in a single

map obscures the fact that it is vanishingly unlikely for all prediction locations to

simultaneously achieve their 0.025 or 0.975 quantiles. A similar problem will occur

for maps of the marginal probability of exceeding a threshold at each prediction

location.

Presenting independent quantiles jointly in a single image is risky. We believe

these caveats make the map difficult to use for most non-statistically trained audi-

ences and even trained statisticians may misinterpret these quantile maps if they

are not careful. To demonstrate the possible consequences of this we (incorrectly)

treat the lower and upper quantile plots as though they are intensity functions and

integrate them to obtain an expected abundance estimate of approximately 2,800

for the 0.025 quantile map and 10,200 for the 0.975 quantile map. A naive (and

tempting) interpretation of these numbers is as lower and upper limits of the 95%

credible interval for abundance. However, these abundance estimates are outside

the support of the posterior for abundance (see Figure 3.6). This demonstrates that

the tendency to interpret these maps as showing possible intensity surfaces that are

consistent with the observed data can lead to interpretations that are inconsistent

with the very model that generated the maps.

We conclude that, although all useful in their own way, each of the mapped sum-

maries of th posterior intensity field suffer from some weaknesses, whether through

masking certain properties of the random field or through being difficult to interpret.

We next present some alternatives that avoid some, but not all, of these problems.

3.8.2 Excursion sets and excursion functions

One alternative to the quantile and standard deviation maps is to suggest that

consideration should be given, a priori, to relevant values of animal density and

acceptable levels of uncertainty given the context and aims of the analysis, and that
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the predicted values of the posterior intensity field should be considered jointly,

to avoid the problem of presenting independent quantiles side by side. Given pre-

specified values of interest for the intensity, and an acceptable uncertainty level, these

can then be used to construct summary maps that consider the joint probability of

events across all prediction locations.

We demonstrate this perspective using excursions sets and excursion functions

(Bolin and Lindgren, 2015), since excursions methods are a natural choice for Gaus-

sian random fields. Excursion sets and excursion functions are based on the joint

probability of events across a set of locations. For this reason they avoid the inter-

pretability issues of the quantile or exceedance threshold maps. These methods also

require the user to specify thresholds of interest for the random field and acceptable

levels of uncertainty. They therefore also avoid the issue of a default colour scale

potentially affecting the interpretation of results.

We give the technical definition of excursion sets and functions below. We use

the same notation as Bolin and Lindgren (2015), which, for readers unfamiliar with

these methods, can take some getting used to. However, the precise mathematical

definitions are very useful when it comes to interpreting these methods in the context

of generating maps that incorporate uncertainty in species distributions. We try

to, as much as possible, give an informal explanation alongside the mathematical

description.

The positive excursion set with level u for a function f(s) with domain Ω is

A+
u (f) = {s ∈ Ω; f(s) > u}, i.e. the set of all locations in Ω where f exceeds a

threshold value u. For a random field, λ(s), the positive excursion set with level u

and probability 1− α is

E+
u,α(λ) = arg max

D
{|D| : P

[
D ⊂ A+

u (λ)
]
≥ 1− α}.

Note that A+
u (f) specifies a set of locations for which a function f(s) exceeds a
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threshold value u for every location in the set. Therefore, the positive excursion set

E+
u,α(λ) is the largest such set of locations for which realisations of λ(s) exceed the

threshold u, simultaneously for all locations in the set, with a chosen probability

level 1− α that is set by the user. Negative excursion sets are similarly defined by

considering the probability of being below a threshold value.

Excursion sets can be estimated by considering candidate sets for D of increasing

size and a sequential integration scheme to estimate the required probabilities. A full

description of the method can be found in Bolin and Lindgren (2015) and a software

implementation is available in the excursions package (Bolin and Lindgren, 2018).

Figure 3.11A shows the positive excursion set with a level corresponding to 1 bird

per hectare with probability 0.95 (hence α = 0.05). This figure can be interpreted

in a natural way as the largest region for which the intensity is greater than 1 bird

per hectare for every location within the region, with probability 0.95.

This map could be used to define, for example, a ‘core region’ for the 'ākepa

population, with particular conservation importance. Crucially, this depends on a

clear mathematical description of what a ‘core region’ actually means in a statistical

sense. Of course, any particular definition would be up for debate. Here we just

intend to present an example of how a clear definition could potentially be used to

produce a map that incorporates relevant definitions and uncertainties, and can be

interpreted clearly.

To visualise how such maps change with different levels of uncertainty we can

use the excursion function F+
u (s) = sup{1 − α; s ∈ E+

u,α}, which defines, for each

location, the largest possible probability 1− α for which that location would be in

the excursion set defined using probability 1−α. i.e. if we allow greater uncertainty,

this function shows which locations would be included in the excursion set.

The excursion function with a level corresponding to 1 bird per hectare is shown

in Figure 3.11B. This figure can also be interpreted naturally. It shows the largest

possible probability for each location to be a member of a set in which the intensity
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Figure 3.11: Left: The positive excursion set with a level corresponding to 1 bird
per hectare and probability 0.95. Right: The positive excursion function with a
level corresponding to 1 bird per hectare

exceeds a threshold simultaneously across all locations in the set. It is clear from

the figure that regions on the edge of the excursion set would be included if the α

value were allowed to increase slightly. There is a region to the north of the main

population that would be included in the excursion set for 1 bird per hectare if the

probability was allowed to be lower, around 0.5. However, for regions in the north

there is essentially no probability level for which those locations would be included

in A+
u (λ). This could be used to identify, for example, areas of potential importance

that could be investigated further.

We chose the threshold of 1 bird per hectare and an error probability of 0.05

to demonstrate the approach. However, multiple values for each of these can be

considered as a simple extension of this approach and we imagine that, in most con-

texts, there would be value in considering many different thresholds and uncertainty

levels.

3.8.3 Estimating the information gained by sampling

Given we have a posterior random field describing the density of birds, it is natural

to ask questions along the lines of “in which areas of the study region have we
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learned more/less about the distribution of birds?”. Given that there is a correlation

between observations that decays with distance, we clearly learn more than just the

density within each point transect. This correlation is what we use to extrapolate

to un-sampled regions.

In this section, we consider an approach to answering these types of questions by

defining various metrics that seek to quantify this idea that there is spatial variation

in information gained due to spatial variation in sampling effort as well as the spatial

correlation of the random field. However, we will see that the resulting metrics are

largely driven by the log-Gaussian assumption of the model and, although inspired

by similar approaches in the geostatistical literature, they do not easily carry over

into the Poisson process setting.

The basic intuition is to compare the posterior random field informed by the data

λ|Y , θ and the random field conditioned only on the posterior covariance structure

λ|θ, where θ denotes the hyper-parameters of the SPDE as well as the intercept

variable. The intercept should be included since the GRF and the intercept are not

independent. We consider two quantities:

V0(s) = Eθ|Y [Var(λ(s)|θ)] + Varθ|Y [E(λ(s)|θ)] (3.7)

VY (s) = Eθ|Y [Var(λ(s)|θ,Y )] + Varθ|Y [E(λ(s)|θ,Y )] . (3.8)

Note that by the law of total variance VY (s) is just Var(λ(s)|Y ), the usual posterior

variance given observed data Y . In contrast, V0(s) is an adjusted version of this

where the random field is considered only conditional on θ|Y but not on the data

directly. This is a form of null model describing a random field with the same

posterior covariance structure but no observations directly informing λ. Note that

V0(s) ≥ VY (s) and so by constructing metrics of the form

IVar(s) = 1− VY (s)

V0(s)
,

101



this gives a metric between 0 and 1 that describes how much the observations Y

have informed the posterior random field at location s. The subscript here indicates

this metric is using the variance measure of uncertainty. We also consider two

alternatives:

Isd(s) = 1−
√
VY (s)√
V0(s)

Icv(s) = 1−
√
VY (s)/µY (s)√
V0(s)/µ0

,

where µY is the mean of λ(s)|Y , θ and µ0 is the mean of λ|θ. These are the standard

deviation and the coefficient of variation versions of the metric given above based on

the variance. The idea behind considering all three is that the variance and standard

deviation have a strong relationship with the mean due to the Poisson assumption.

The posterior variance, standard deviation and coefficient of variation are all

estimable by posterior sampling in inlabru and so are straightforward to calculate.

To estimate V0(s) we use a Monte Carlo sampling scheme based on the moments of

the log-Gaussian distribution. This variance estimate can then be transformed as

required for the Isd and Icv metrics. Let log λ|θ ∼ N(m,σ2) where m and σ2 are

derivable from θ. Therefore, using the moments of the log-Gaussian distribution,

we have

V0(s) = Eθ|Y [Var(λ(s)|θ)] + Varθ|Y [E(λ(s)|θ)]

= Eθ|Y
[
exp(2m+ σ2)(exp(σ2)− 1)

]
+ Varθ|Y

[
exp(m+ σ2/2)

]
.
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Given Monte-carlo samples θ(k) ∼ θ|Y for k = 1, . . . , K this can be estimated as

V0(s) ≈ 1

K

∑
k

exp(2mk + σ2
k)(exp(σ2

k)− 1) +

1

K

∑
k

exp(2mk + σ2
k)−

1

K2

[∑
k

exp(mk + σ2
k/2)

]2

=
1

K

∑
k

exp(2mk + 2σ2
k)−

1

K2

[∑
k

exp(mk + σ2
k/2)

]2

.

We use this approach to calculate the required quantities to compute the three

metrics, IVar(s), Isd(s), and ICV(s), for each prediction location. Results are shown

in Figure 3.12. The variance and standard deviation maps reveal similar patterns

Figure 3.12: Comparing different information metrics. From left to right: IVar, Isd

and Icv.
.

to the standard map SD map (Figure 3.2B) that is heavily influence by the log-

Gaussian assumption. The standard deviation metric looks more natural, in this

example V0 proved to be quite large (on order of 600,000) and so the metric is

extremely close to 1 almost everywhere. Taking the square root of this (about 775)

provided a number more comparable with the scale of the variation in the posterior

intensity. Perhaps the most useful plot is Icv. This shows that in the north, where
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sampling effort is lower, we have less information than in the south, where sampling

effort is higher.

One thing to note is that the posterior range of the random field is large relative

to the size of the study region. For random fields where this range of correlation is

lower, one might expect to see “bumps” of higher information around each sampled

location. In this example, the large range of correlation may mask such a pattern.

It would be interesting to apply these metrics in other settings to see whether this is

the case. The exact scale of each metric is hard to interpret, for now only attempt to

interpret these spatial differences in information gain in a relative sense (i.e. “more”

or “less” information compared to other regions).

3.9 Discussion

This chapter presents a new approach to analysing point transect distance sampling

data that incorporates several innovations in model specification, inference proce-

dure, model evaluation and communication of results. These were applied to the

particular problem of estimating the size and spatial distribution of populations

of wild animals, but the approaches taken here will be useful to researchers who

face similar questions and data structures in other application areas. In particular,

we present a one-stage modelling approach to analyse imperfectly observed point

transect data that incorporated a non-trivial spatio-temporal sub-sampling design,

observation model, and spatially structured random effect. However, across applied

spatial statistics there are many areas where similar ideas apply.

Our approach used the computationally efficient SPDE effect in combination

with INLA to fit a one-stage Bayesian model in a fraction of the time it would take

MCMC methods to fit the same model. The SPDE provided a fast and flexible

method to estimate the spatial distribution of 'ākepa and, as we have seen, this ran-

dom field component can lead to many different methods for investigating the fitted
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model and communicating the results. We believe this could be a promising future

direction for analysis of ecological datasets with non-trivial observation processes.

There are several natural extensions to the model and perhaps the most obvious

is to include multiple years of survey data as was analysed in Camp et al. (2020).

For this analysis, we only considered a single survey year as a simplified example of

fitting distance sampling models using iterated INLA. Spatio-temporal extensions

to this are possible, for example by considering space-time interaction models for

the intensity function. R-INLA has the ability to fit space-time effects that can be

represented as a Kronecker product of the relevant precision matrices (Blangiardo

and Cameletti, 2015; Yuan et al., 2017), such as an interaction between a spatial

SPDE effect and an auto-regressive temporal process. Blangiardo and Cameletti

(2015) show how this can be done with numerous examples.

Another natural extension is to add complexity to the detection function. There

is the potential to include explanatory covariates on detection function parameters.

This is a common step in most distance sampling analyses. For example, we did

not make use of the detection type (audio or visual) in our analysis, although this

was recorded and detectability may vary depending on whether a bird is seen or

heard. Other factors could also be considered, such as weather conditions, observer

expertise, animal behaviour and morphological traits. Any additional parameters

to the non-linear model components will need to be estimated using the linearised

model form required by iterated INLA. It remains to be seen how complex the non-

linear model component can become before this approach runs into problems. With

additional complexity there is an increased risk of multi-modality and identifiability

issues that may make the Laplace approximation inappropriate and could also lead

to convergence issues for the iterated fitting procedure. We discuss this further in

Chapter 5, Section 5.2.4.

In our analysis, we only briefly touch upon the problem of communicating uncer-

tainty in maps and highlight the excursions methods as a new and positive addition
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to this area. In our example, the threshold was chosen to illustrate the method

but we believe that, for many analyses, discussions with relevant stakeholders could

lead to agreement on a set of thresholds that are relevant given the aims and con-

text of the analysis. This requires the input of both the relevant domain experts

and statisticians so stakeholders understand the consequences of the thresholds and

uncertainty levels they wish to consider.

The information gain metrics considered in Section 3.8.3 were largely unsatisfac-

tory in the end, presenting not much more than a simple linear transformation of

the original uncertainty maps (Figure 3.2). However, we believe the motivation for

investigating these maps to be an important one. Presenting CV maps and SD maps

without an additional understanding of how they are driven by model assumptions

and not necessarily survey effort seems unsatisfying. Intuitively, it makes sense that

areas with higher sampling effort should have lower uncertainty. However the op-

posite is the case in this analysis due to the preferential sampling of high density

regions and the assumed log-Gaussian relationship. It remains an open question

whether there is some measure of uncertainty that is purely a measure of sampling

effort and spatial correlation but not an assumed distributional assumption for the

random field. This would be a useful output for field ecologists to understand the

implications of particular survey designs.

We end with a note comparing the analysis presented here and the more tra-

ditional two-stage approach. The one-stage thinned point process perspective can

seem fundamentally different to a two-stage GAM fitted to count data. It can be

tempting to think that, because the point process model does not require points to

be binned into counts, this avoids some loss of information. However, when only

distances to the observer are recorded this information loss is likely to minimal.

This is because, for a single transect considered in isolation from others, there is no

information in the data to inform within transect variation in intensity. Thus the

key benefit to this approach is not necessarily the point process perspective, but
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more the one-stage model and efficient inference method and the subsequent ease of

working with posterior samples that average over observation process uncertainty.

However, for datasets where the exact location of animals is recorded it could be

that there is more advantage to the point process formulation since these data could

be used to inform within transect variability and there would be a greater loss of

data by binning into counts.

In summary, we have presented a novel framework for analysing point transect

distance sampling data that introduces new approaches to model specification, infer-

ence procedure and communication of results. These developments will be of interest

to those with similar data structures in spatial ecology as well as researchers in other

areas who face related statistical challenges. In Chapter 5, we discuss some more

avenues for future research inspired by some of the ideas presented here.
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Chapter 4

Flexible density models for spatial

capture-recapture

The aim of this chapter is to incorporate spatially structured random effects on

animal density within spatial capture-recapture models. Spatial capture-recapture

(SCR) (Borchers and Efford, 2008; Royle and Young, 2008) is a commonly used

modelling framework to estimate the abundance and spatial distribution of animals

using capture data on individually identifiable animals.

Although in the previous two chapters there has been a focus on using the SPDE

effect, we will see in this chapter that this presents particular challenges for the SCR

likelihood and inference procedure we use. Instead, we find there are some benefits

to considering low-rank penalised regression splines on density instead of the sparse

SPDE effect. Recall that, as discussed in Chapter 2, regression splines are closely

linked to GRF effects and these modelling approaches play a near identical role in

the model in the sense that we rarely have an a priori preference to a particular co-

variance structure or basis-penalty formulation in the context of species distribution

modelling. These model components are included simply as a spatially correlated

effect that addresses the problem of spatial autocorrelation. In this chapter, for

reasons purely of computational efficiency, we prefer a low rank penalised regression
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spline approach over a sparse GMRF.

Penalised regression splines are a go-to approach in spatial statistics to model

non-linear heterogeneity in data (Cressie and Wikle, 2015; Wikle, 2015; Gelfand

et al., 2010). Spline models have been implemented in SCR with a fixed degree of

freedom with no smoothing parameter estimation in the package secr (Efford, 2021),

a popular SCR software package. However, this involves choosing a small number

of knots and does not estimate the smoothing parameters. Penalised smoothing

splines have never been implemented within an SCR setting.

This chapter addresses this gap, implementing penalised smoothing splines with

smoothing penalty estimation for SCR models and provides an overview of what to

consider when fitting these models. We describe the contexts in which penalised

splines on animal density should be considered, possible choices of penalised splines

and their associated approximation methods, an approach to inference via Laplace

approximate maximum likelihood, simulation studies and case studies fitting models

to real data. The chapter ends with a reflection on the modelling choices available,

situating the decisions taken in this chapter in a wider context, and suggestions for

future research.

The chapter proceeds as follows: Section 4.1 introduces the key concepts of SCR

and highlights the need to consider more flexible models of animal density within

an SCR context; Section 4.2 reviews applications of SCR that aimed to investi-

gate spatial variation in abundance and its possible causes; Section 4.3 provides a

full statistical description of the SCR model; Section 4.4 describes the maximum

likelihood inference method; Section 4.5 describes a variety of possible choices for

the penalised regression spline; Section 4.6 presents a simulation study comparing

two approaches, a sparse approximation and a low-rank one. We conclude that for

the SCR likelihood, low-rank methods have some advantages; Section 4.7 applies a

thin plate regression spline (TPRS) model to black bear hair snare data collected in

Louisiana; Section 4.8 introduces a method for smoothing in regions with complex

109



spatial geometry; Section 4.9 ends the chapter by reflecting on the simulation studies

and case studies, providing an overview of important things to consider when fitting

penalised splines on density in SCR models.

4.1 Introduction

Spatial capture-recapture (SCR) methods were developed principally with the aim

of estimating the density of wild animal populations. Similar to distance sampling,

this approach estimates the detectability of animals as a key step in estimating

the true density of all animals, detected or not. This section introduces the key

concepts in SCR and the model components that have subsequently been developed

to allow SCR models to answer a wider variety of ecological questions over and

above estimating abundance. This section introduces the key concepts informally.

A formal statistical description of the models is given in Section 4.3.

In an SCR context, the detectability of animals depends on distance via a detec-

tion function, just like in distance sampling. In distance sampling it is the distance

to the observed animal that is assumed to affect detectability. In spatial capture-

recapture models it is the distance to an activity centre. This activity centre can

be thought of as a centre of gravity around which an animal moves and encounters

detectors. There are thus two key components to the SCR model: first, the model

that describes how many activity centres there are and how they are distributed

across space; second, the model for the probability of detection as animals move

around their activity centres. Both SCR and distance sampling methods idealise

the behaviour of animals to a point location in two dimensional space. In distance

sampling this point just represents the location of the animal when we saw it and

this is fixed and does not change through time. In contrast, in an SCR model this

point represents an average location of an individual over time, who we may have

seen more than once on our detectors, which is the capture-recapture element to the
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model. Note that, unlike distance sampling, this requires us to be able to identify

individuals.

A common choice to model the detectability of animals as distance from the

activity centre increases is the the half-normal function. This model, making the

usual assumption of conditional independence between detections, given the activity

centre location, says that an animal is most likely to be detected directly on top

of the activity centre. Furthermore, detectability is radially symmetric around this,

with no dependence through time. Being detected south of the activity centre has

no implication for the next time step where the same animal can just as easily be

detected to the north, for example. Naturally this simplified model of detectability

has led to efforts to add more ecological realism to this model. Glennie et al. (2019)

and Royle et al. (2016) allow activity centres to move over time and formulate this

as a hidden Markov model. For this chapter we assume that activity centres are

fixed for the duration of the survey.

SCR analyses in discrete time split the data up into a set of discrete survey

occasions during which detections are summarised in some way. For example, for

camera trap data this could be a count variable indicating the number of times an

individual was detected on a specific detector during that occasion. Or for hair

snare data it would be a binary variable, 1 if detected and 0 if not. The total

survey window is known as a session during which the population is assumed to

be closed and activity centres fixed (in conventional SCR analyses). Multi-session

SCR models can be used to model multiple years worth of SCR data, where each

year is a session assumed independent from the others. Sometimes the multi-session

approach is used for spatially distinct regions that were surveyed in the same (or

possibly different years). These models have a likelihood for each session with some

parameters possibly shared across sessions.

The SCR model probabilistically describes two key processes: where are activity

centres likely to be found (the point process model) and, given this, the consequences
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for detectability at our detector locations (the detection function). This chapter is

focused on the distribution of the activity centres themselves. Early spatial capture-

recapture models used a homogeneous Poisson process to model the distribution of

activity centres (Borchers and Efford, 2008; Royle and Young, 2008). Borchers and

Efford (2008) also derived the likelihood for the inhomogeneous Poisson process.

The homogeneous Poisson process assumes the locations of animal activity cen-

tres are independent and randomly distributed across space. If the main aim is to

estimate the total abundance within a region, SCR models can be fairly robust to

violations of this homogeneity assumption (Efford and Fewster, 2013). Assuming

a suitable survey design and avoiding over-extrapolation, these models tend to do

well in estimating the total number of animals, even when assuming they have no

spatial structure. Another way of putting it is the SCR model allows us to estimate

the average density across a region, even if the true density is spatially varying.

However, often a survey is undertaken with broader aims than just estimating

abundance. In these contexts the homogeneous assumption may no longer be suffi-

cient. To give some examples, ecologists would like to be able to use SCR data to

estimate species habitat associations, responses to disturbance, the effectiveness of

management efforts, and identify hotspots of density that could be of key conser-

vation concern. In these contexts, the model for the distribution of activity centres

plays a key role and the homogeneity assumption may need to be relaxed. To ad-

dress these research questions both the point process model and the detection model

may need to be altered. If, for example, there is interest in whether a disturbance is

causing individuals to ranger further afield, then clearly the movement model would

be key to addressing this. On the other hand, if there is interest in how the spatial

distribution and abundance of the population as a whole is potentially changing in

response to a disturbance, i.e. changes in the distribution of activity centres, then

the point process model may need to be adapted.

The most straightforward and natural extension of the homogeneous Poisson pro-
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cess is to consider an inhomogeneous Poisson process by allowing the log-intensity

to depend linearly on some spatially-referenced covariates. This model was also in-

troduced in Borchers and Efford (2008) along with the homogeneous model. Section

4.2 reviews the SCR literature to investigate how spatially varying density has been

addressed in published studies. Often this involves the inhomogeneous Poisson pro-

cess but in a surprisingly large number of studies alternative models and methods

were used.

One key assumption of the inhomogeneous Poisson process is that the locations

of animals are assumed to be conditionally independent given the intensity. This

assumption rests heavily on the idea that the available covariates, when added as in-

dependent linear fixed effects, provides a sufficiently flexible model to explain spatial

heterogeneity. When this is not the case, and available covariates fail to sufficiently

capture the spatial structure in animal locations, this assumption is perilous and it

can lead to overconfidence in fixed effects estimates. In many contexts, the advice

to avoid this problem is to include a spatially structured random effect that is flex-

ible enough to account for any heterogeneity not accounted for by the fixed effects

(Cressie and Wikle, 2015; Wikle, 2015; Gelfand et al., 2010). However, to date this

approach has not been implemented in a spatial capture-recapture setting. This

idea is the main focus of this chapter. Before introducing these methods we first

summarise the SCR literature that focuses on applications where spatial variation

in animal density is a key objective of the analysis.

4.2 Literature review

The purpose of this review is to highlight the types of questions ecologists and

conservationists would like to be able to answer using SCR data and the current

statistical approaches they take to answer them. This review is intended to situate

the methods developed in this chapter within a broader set of aims and statistical
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approaches. The focus is on any papers that wanted to, formally or informally,

investigate spatial variation in animal density. The term animal density is vague

in the context of SCR since it could refer to density of activity centres as well as

the density of space-use around activity centres. For this reason we summarise the

literature on both of these aspects of the SCR model. This distinction we return

to in the discussion (Section 4.9) when considering whether a flexible density model

for activity centres (the focus of this chapter) should be considered.

To find relevant papers in the literature we searched the Web of Science core

collection database. The search criteria was for any papers under the topic “spatial

capture recapture” OR “spatial capture-recapture” OR “spatially explicit capture-

recapture” OR “spatially explicit capture recapture”. The title of each paper was

used to signify whether, explicitly or implicitly, the paper had any interested in

spatially varying abundance. If there was any chance the paper may be relevant for

this review then the abstract was read in full to decide whether the paper should be

included in the review. Search terms such as “inhomogeneous density” and related

phrases seemed to be unreliable for identifying these papers since many studies use

different terminology and sometimes do not explicitly mention spatial variation in

abundance other than implicitly through the stated aims of the study. This approach

to reading the titles of all spatial capture-recapture papers seemed a better method

although it did return a large number of search results.

If the abstract confirmed there was interest in spatially varying abundance (even

if not stated explicitly) then I read the methods and results section of the paper

and sometimes the rest of the paper if more context was necessary. I did this

procedure for all search results from 1st January 2018 to present day (April 2020)

which resulted in reading 58 papers in total. This cut-off date was arbitrary but

seemed sufficient to gain an overview of the broad trends in the literature. There is,

of course, the possibility I missed some important and interesting papers published

before 2018.
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The aims and objectives of the SCR studies that were included in this literature

review can be grouped into a few broad categories:

1. To learn about the spatial ecology of the species, in the broadest sense of the

term. Examples are understanding movement and activity patterns, species

habitat associations, and inter-species dependencies.

2. To learn about the population ecology of the species, in the broadest sense

of the term. Examples are estimating population growth rates, survival and

recruitment rates, and spatial variation in these parameters.

3. To learn about changes in spatial distribution and population growth and

possible causes of any change. Examples are estimating effects of management

efforts, responses to possible disturbance, and responses to changes in climate

or land-use patterns.

4. To identify areas of conservation importance. Examples are identifying popu-

lation hotspots and areas where populations are declining.

These categories are not mutually exclusive; there is no clear dividing line between

spatial and population ecology for example. But they serve to highlight the broad

range of questions that SCR methods have been used to address.

Perhaps the most straightforward application of SCR to learn about the spatial

ecology of a species is to fit an SCR model with an inhomogeneous Poisson pro-

cess, using ecologically relevant spatial covariates as explanatory variables. Gaukler

et al. (2020) investigate the effects of soil chemical properties on the density of small

mammals, directly interpreting the fixed effect coefficients as indicating evidence

for a causal relationship. This is a common approach: fit a model with possibly

relevant fixed effects and interpret the estimated coefficient as directly relevant to

an ecological hypothesis. Rather et al. (2021) do something similar but their hy-

potheses were more broad, seeking to identifying relevant spatial covariates from a
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set of possible candidate covariates. They compared models using AIC and found

that models that had similar support in terms of AIC were capable of predicting

quite different levels of abundance. These differences were likely caused by using

fixed effect estimates to predict density in areas that were not sampled or perhaps

sampled with less effort. The ability to extrapolate to unsurveyed regions is one

of the key motivations for learning about species-habitat relationships in a statis-

tical framework. Mann et al. (2020) explore the habitat preference of Leopards by

fitting an inhomogeneous Poisson process model with a ‘habitat suitability’ index

as a covariate. This suitability index was also estimated from the same SCR data

by fitting a MaxEnt model (Phillips et al., 2006) to detections at traps, ignoring

the individual identities, and using the predicted surface as the covariate in the

SCR analysis. Using multiple modelling frameworks, in this case SCR as well as

MaxEnt, is a common approach that is discussed more below. In this case it seems

questionable since it confounds the movement model and the distribution of activity

centres. It also uses the data twice and so it seems unlikely their derived covariate

would not be informative. Sutherland et al. (2018) fit an inhomogeneous model to

estimate the effects of a pollutant on Mink density in two independent river systems.

They also incorporate a non-Euclidean distance model to account for the geometry

of the river systems. This is another example of directly interpreting a fixed effect

estimate (pollution level) to address a specific hypotheses. These are just a few ex-

amples to illustrate the kind of papers that the inhomogeneous Poisson process has

been used in. There are many more examples (McDonald et al., 2020; Furnas et al.,

2020; Bajaru and Manakadan, 2020; Barrueto et al., 2020; Horn et al., 2020; Nelson

et al., 2019; Welfelt et al., 2019; Havmøller et al., 2019; Loosen et al., 2019; Lamb

et al., 2018; Berl et al., 2018). Examples of covariates considered in the above are

habitat type, indices of abundance of other species (e.g. prey availability, predation

pressure), distance to resources, and topographical and environmental conditions.

One of the key features of the inhomogeneous Poisson process is that the model
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can be used to predict density in sub-regions of the total study area. This feature

of the model seemed to only rarely be a motivation for using the inhomogeneous

Poisson process, with only a few papers predicting density within sub-regions. Lamb

et al. (2018) aim to estimate the effects of a habitat quality index on density and

also predict density within distinct protected areas. They also produce a map of

predicted density that appears to have sharp discontinuities, likely caused by dis-

continuities in explanatory covariates. A discontinuity may be ecologically realistic

in some contexts but, if this is not the case, the model could perhaps benefit from

some smoothing effect.

Many of these papers include figures that plot the predicted effect of a covariate

on species density. Since the covariates are entering the model as linear fixed effects

these effect curves appear as exponential curves on the density scale (assuming a log

link). Often this is ecologically unrealistic, predicting exponentially greater or fewer

numbers of animals as the values of the spatial covariate change, in the limit predict-

ing zero or infinite density of animals with no optimal finite value for the covariate.

This points towards the need to be able to consider more ecologically realistic rela-

tionships between density and spatial predictors. Incorporating penalised regression

splines are one approach to doing this. One simple extension to linear fixed effects

is to consider quadratic effects. Clare et al. (2019) used quadratic fixed effects to

investigate forest disturbance on the distribution and abundance of American pine

marten.

All of the above papers that fit an inhomogeneous Poisson process model used

maximum likelihood methods. It seems that maximum likelihood is more commonly

used than MCMC approaches, at least in the period considered here from 2018 to

present, and there may perhaps be computational challenges involved in implement-

ing inhomogeneous density models with current MCMC methods. Indeed one paper

even used both MCMC and maximum likelihood methods to investigate spatial vari-

ation in different components of the SCR model (Barrueto et al., 2020). MCMC was
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used to investigate the effects of spatial covariates on the encounter rate and, in the

same paper, maximum likelihood was used to investigate spatially varying density.

Another approach to dealing with spatially varying intensity is to consider sites

as statistically independent within a multi-session SCR model. The density in each

session is assumed to be homogeneous and independent of the density in other

sessions. This is also a common approach to investigate temporal trends if there

is interest in population growth rates. Whether comparing estimates at different

sites or through time, a key output of the modelling tends to be to plot the density

estimates for each session. These plots are then interpreted in the context of the

aims of the study. Note that for temporal trends this is in stark contrast to other

approaches in population ecology which specifically model temporal dependence

in abundance (e.g. Ricker growth, logistic growth) whereas the multi-session SCR

approach treats sessions as conditionally independent given some shared parameters.

Broekhuis et al. (2021) investigate how densities fluctuate through time by fitting

homogeneous multi-session models. To also investigate changes in spatial distribu-

tion they counted the number of predicted activity centre locations in two distinct

regions and plotted these counts over time. This seems to be an ad hoc approach

that, worringly, is based on interpreting hetetrogeneity in predictions from a model

that assumed homogeneity.

Harihar et al. (2020) fit multi-session SCR to estimate density in three distinct

regions that had different characteristics. The differences in density are then com-

mented on as evidence for the effects of these different characteristics. In this paper

there was specific interest in the effects of pastoral communities. They conclude that

one site has low density due to a lack of functional connectivity with other sites and

faces possible local extinction. This is a common approach in the literature. The

characteristics of the sites are not included formally within the modelling frame-

work as covariates. Instead the estimates from the model are interpreted within a

wider context. The downside to doing this is the key inference of the paper is not
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considered within a formal statistical framework. Some more papers that take this

approach: Khanal et al. (2020) fit multi-session SCR models to investigate the influ-

ence of wild prey and livestock abundance on density; Kumar et al. (2019) compare

temporal trends in two different protected areas that have received different levels

of conservation efforts; Hearn et al. (2019) investigate anthropogenic disturbance at

six sites but fitted models to each site separately and left one site out due to having

a small sample size; Nelson et al. (2019) use multi-session SCR with an inhomoge-

neous model to investigate if relationships with covariates are different between sites;

Espinosa et al. (2018) fit independent models to multiple sites with varying levels

of accessibility to hunters; Tobler et al. (2018) fit independent models at two sites

with different access to loggers. All of these studies had interest in spatially varying

density but none of them formally included this in their model. For cases where

sites are truly independent (e.g. in different countries in Tobler et al. (2018)) this

multi-session approach seems reasonable. For other cases, where sites are nearby or

even contiguous with one another (e.g. Kumar et al. (2019)), it may be problematic

depending on whether the assumed independence of certain parameters is reason-

able. A multi-session SCR model with homogeneous density assumed independent

between sites and all other parameters shared across sessions is very close to a single

session analysis with site as a factor covariate in an inhomogeneous model.

This final study mentioned above also includes an occupancy model fitted to the

camera trapping data to investigate how the probability of detection varies with

respect to distance to roads. This another theme common in the literature: to use

SCR to estimate density and then some other modelling framework to investigate

spatial patterns in the SCR data. Invariably this involves throwing away the infor-

mation that identifies individuals and instead modelling detection rates (e.g. in a

linear model) or presence/absence of the species during each occasion (e.g. in an

occupancy model) or modelling total number of detections across all occasions (e.g.

count variable in a binomial GLM). These other approaches, with the exception of
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occupancy models, do not tend to model detectability. Sometimes the second model

is informed by data collected in addition to capture history data. An example of

this is using Resource selection functions (RSFs) (Johnson et al., 2006) informed

by GPS telemetry data, which can form a complementary part of the analysis, in

addition to the SCR model.

Kittle et al. (2021) aim to estimate space use within a protected area and inves-

tigate potential edge effects on the space use of individuals. They use homogeneous

SCR for density estimation and then use encounter rate per day as a response vari-

able in a linear model. They compare different linear models with covariates relating

prey availability, distance to edge and habitat features. Models are compared by

AIC and they use model averaging to synthesise estimates across models. The sam-

pling scheme does not appear to be designed for the purpose of the study, there are

very few detectors near the edge of the protected area and only one small segment

of the boundary is surveyed. The linear model unnecessarily ignores the capture-

recapture information when this could be incorporated directly into the encounter

rate parameter in the SCR model. A smoothing spline on density could reveal edge

effects by predicting lower density near the boundary and also reveal areas of greater

uncertainty due to low sampling effort.

Yang et al. (2021) use SCR for abundance and then use an occupancy model to

investigate spatial variation in the probability of detection. The authors note the

problem of spatial auto-correlation in the occupancy analysis and use a restricted

spatial regression model (Hughes and Haran, 2013) to address this. The problem

of spatial autocorrelation is not mentioned in the SCR analysis. This suggests that

while ecologists know spatial autocorrelation should be considered in spatial models,

they lack the ability to do this with SCR models. If practitioners view SCR solely

as a means to estimate abundance then it is likely they don’t consider using spatial

effects within SCR since the model is fairly robust at estimating overall abundance.

Wang et al. (2018) also do occupancy modelling with spatial smoothing and fit
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multi-session SCR models to investigate differences between two sites defined as in-

side or outside a ‘core area’. This appears to be a clear violation of the independence

assumption of multi-session SCR since in this paper the core area is entirely con-

tiguous with and surrounded by the other area that is assumed independent. This

is a clear limitation of the multi-session approach and an inhomogeneous Poisson

process with a ‘core area’ factor variable would have been a better choice. Penjor

et al. (2018) also use an occupancy approach that considers spatial autocorrelation

and a homogeneous SCR model purely to estimate density. The aim of the oc-

cupancy model is specifically to identify areas of conservation priority. However,

since it is based purely on presence/absence it does not make use of the valuable

capture-recapture data to identify spatial variation in abundance.

Lavery et al. (2020) use SCR to estimate abundance and also regress the total

count of cat detections (ignoring recaptures) against spatial covariates within a

binomial GLM. Rahman et al. (2018) fit a homogeneous model using MCMC and

also do a MaxEnt analysis, viewing detections at traps as presences and adding

pseudo-absences elsewhere. This seems questionable since the presences are the

result of the sampling design as well as the space-use of the animals. It seems

highly likely that any additional traps placed nearby traps that detected animals

would also have been likely to detect animals which seems like a challenge for using

pseudo-absences.

Allen et al. (2020) use a zero-inflated Poisson model on the number of detections

at each trap. They also fit a homogeneous SCR model using MCMC and then use

the posterior modes of each activity centre location to investigate spatial variation in

density. This seems a contradictory approach that assumes a homogeneous density

and then investigates predictions based on this assumption for signs of inhomogene-

ity. Lamichhane et al. (2019) do something similar by fitting a homogeneous density

model using MCMC and then combining the posterior density of each detected ac-

tivity centre location in some way to create a map of spatially varying density. This
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approach seems akin to fitting a linear model and then interpreting a violation of the

homoscedasticity assumption in the residuals as a key finding of the paper. There

also may be some confusion about the difference between the posterior density for

observed activity centre locations and the posterior for the intensity of the point

process. Boulanger et al. (2018) do something similar but then do a second-stage

analysis, modelling the predicted activity centre locations in a presence vs pseudo-

absence model (which they call a RSF model) that did not account for uncertainty

in the activity centre locations.

Another trend in the literature is the complementary use of telemetry data.

Tirelli et al. (2019) use SCR data to estimate abundance and telemetry data to

inform a RSF model. The two models are fitted separately and the SCR data is

not used to infer any species-habitat relationships; Welfelt et al. (2019) jointly fit

SCR with an inhomogeneous density and a RSF model to incorporate telemetry

data. This study jointly modelled the data within a single statistical framework

in which the SCR data was also used to model species-habitat associations. The

specific relationship between the two models depends on what process the telemetry

data is used to inform. Johnson (1980) defines a hierarchy of ‘selection’ processes

that is still influential today. Selection (or preference) is defined as the difference

between usage and overall availability, and one selection process is a lower-order

than another if the latter is conditional on the former. Johnson (1980) suggest the

following hierarchy:

1. First-order selection: the limits of the entire range of the population.

2. Second-order selection: the choice of home ranges of each individual in the

population.

3. Third-order selection: the choice of resources to use within the home range

of each individual.

The choices an individual makes within its home range (third-order) is conditional
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on the location of the entire home range itself (second-order), because this defines

what resources are available. Similarly, the choice of home range itself is conditional

on the entire availability of feasible habitat that is accessible by the population. A

typical RSF model is aimed at investigating third-order selection 1

This hierarchy can also be mapped on to the different elements of an SCR model.

For a constant density model, first-order selection is decided by assumption when

specifying the spatial domain for the analysis. For a spatially-varying density model,

first-order selection could be a blend of assumed and estimable model components

since these models also have the flexibility to predict effectively zero density within

the assumed spatial domain. In this case, the point process model accounts for

both first- and second-order selection. The distribution of activity centre locations

(home range centres) can reveal both the total extent of habitable regions as well

as preference within those habitable regions. Third-order selection is the movement

model around the activity centres, usually the conditionally independent ‘teleport-

ing’ model implied by the detection function in most SCR analyses.

Within an SCR model, the covariates considered within the RSF model tend to

be used to model the intercept parameter of the detection function. If a detector is

placed in a preferable habitat within a home range then the individual is more likely

to be detected there. This is the same order of selection (third-order) that RSF

models informed by telemetry data seek to capture. This equivalence is the basis

for incorporating telemetry data into SCR models. Linden et al. (2018) explicitly

state that including telemetry data within an SCR analysis should be used to model

third-order selection. Royle et al. (2018) also highlight the potential for SCR to unify

datasets and concepts in movement, spatial and population ecology, one aspect of

which is incorporating RSF models.

1The implied ordering of this hierarchy is open to debate. It seems reasonable to say that first-
and second-order selection could emerge from third-order selection. An animal could make only
local selection decisions and, from these movements, preference at larger scales is revealed. In this
case one could say the order of conditioning should be reversed, first-order selection is conditional
on second-order selection and second-order conditional on third-order. However, this framing is
common in the literature and we think it can be useful to think of the SCR model in these terms.
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Given this framing of selection, we can see that often the other modelling ap-

proahces included in these SCR papers are aimed at estimating third-order selection

while accepting a homogeneity assumption on the second-order process. This may

well be suitable in some cases. However, if there is more interest in larger-scale

second-order selection, a flexible point process model may be preferable. This is the

focus of this chapter.

One exception to assuming homogeneity with an RSF model is Loosen et al.

(2019) who fit both inhomogeneous SCR and a RSF model based on SCR-derived

data for presences and assumed pseudo-absences. They did model selection on the

SCR density model but not the RSF model. Both modelling approaches agreed

that land tenure was important but disagreed on the importance of the normalized

difference vegetation index (NDVI). Given the framing given above we could say that

this difference is potentially down to different covariates being relevant at different

orders of selection. Laufenberg et al. (2018) use GPS and DNA-based SCR data in

a two stage analysis. Firstly, the GPS data was used to identify relevant covariates

in an RSF analysis. The second stage jointly used the GPS and SCR data in a

combined model where the encounter rates and GPS data were modelled using the

covariates identified in the first stage.

To end the review we discuss a paper published before January 1st 2018 but

which deserves special mention as the only SCR paper of which we are aware that

uses something other than an inhomogeneous or homogeneous Poisson process for

the distribution of activity centres. Reich and Gardner (2014) define an SCR model

for territorial species using a Strauss process. This allows for “repulsion” between

points so, for example in the case of territorial species, activity centres are not

likely to be found close to each other. The Strauss model presents computational

challenges due to a high-dimensional integral with no closed form and inference in

the paper is achieved using an approximation to the likelihood which allows for

posterior sampling. The paper shows in a simulation study that accounting for this
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can improve abundance estimates.

To summarise, there are many different motivations for considering variability

in the space use of animals within SCR datasets. Many papers view SCR as be-

ing for abundance estimation only and use another modelling approach to consider

the effects of spatial covariates. These other approaches seem to usually focus on

third-order selection (space-use around activity centres) and not the distribution of

activity centres themselves. For cases where second-order selection is specifically be-

ing considered, the inhomogeneous process is often used, typically with linear fixed

effects and occasionally with quadratic effects, whose coefficients are interpreted

through the lens of specific hypotheses. In some cases this can lead to unrealistic

predictions of exponential relationships between covariates and density, and pro-

duce potentially unrealistic discontinuities in predicted density if factor covariates

are used. In other cases, multi-session SCR was used, often in clear violation of

the independence assumption. Some papers used methods to account for spatial

auto-correlation in another model (e.g. GLM or occupancy) but did not in the

SCR analysis. It is clear from this review that methods to account for spatial auto-

correlation can play a key role in helping to make robust inferences from SCR data.

4.3 The spatial capture-recapture model

This section formally introduces the spatial capture-recapture model in discrete

time. We assume we have K detectors at fixed locations x1, . . . ,xK , with T discrete

survey occasions and n individuals detected. Each individual i has an activity centre

at location si. The connection between an activity centre at si and the probabil-

ity of being detected on a trap at xk on occasion t is via the detection function

ptk(s) = P(an individual at s is detected on trap k during occasion t). Usually this

is a radially symmetric, continuous and monotonically decreasing function that de-

pends on the Euclidean distance between si and xk. The rate of decrease is estimated
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from the recapture data as well as the intercept which models the probability of de-

tection for a trap placed directly on top of an activity centre. One example of a

detection function, that we use for the remainder of the chapter, is the half-normal

detection function

ptk(s|p0, σ) = p0 exp

(
−dk(s)2

2σ2

)
, (4.1)

where p0 ∈ [0, 1] and σ2 > 0. The intercept parameter p0 is the probability of de-

tecting an individual if the detector is placed at the same location as the activity

centre. The scale parameter σ controls how quickly this probability decays as dis-

tance from the detector increases. Both p0 and σ can be modelled with covariates

and appropriate link functions to incorporate information that may affect the detec-

tion probability (e.g., sex, age, weather conditions, detector type). The probability

of detecting an individual with an activity centre at s at least once during the survey

is

p(s) = 1−
∏
t

∏
k

(1− ptk(s)), (4.2)

suppressing parameter notation for for clarity. The probability of remaining unde-

tected is
∏

t

∏
k(1 − ptk(s)). This probability is used in the likelihood to condition

on the fact that we observe each individual at least once (we never observe the in-

dividuals we never detect) and also as a thinning probability to model the intensity

of activity centres of detected individuals. This distribution of activity centres is

modelled using a point process model. The most common choices are the homoge-

neous Poisson process with intensity λ and the inhomogeneous Poisson process with

intensity function λ(s). The point pattern of activity centres for detected individu-

als is a Poisson process with intensity λ̃(s) = p(s)λ(s) which implies the number of

detected individuals within the study region A is Poisson with rate Λ̃ :=
∫
A
λ̃(s)ds.

Each detected individual has capture history Ωi that consists of the data recorded

about individual i on each trap and occasion. For a binary detector this capture

history consists of binary variables ωitk, indicating whether individual i was captured
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on trap k on occasion t or not. For count detectors, such as camera traps, ωitk records

the number of times individual i was seen on trap k during occasion t. The set of

all capture histories for detected individuals is Ω.

Let n denote the number of detected individuals. The SCR full likelihood (as-

suming, for the moment, that activity centres are observable) is the joint probability

of observing n individuals with activity centres S = (s1, . . . , sn)ᵀ and capture histo-

ries Ω, given these individuals were detected at least once. Let δi = 1 if individual

i was detected at least once and δi = 0 if not. Then for an observed dataset there

are n detected individuals with δi = 1 for all i since we do not observe individuals

that are never detected.

Let ∆n = (δ1, . . . , δn)ᵀ, then the full data likelihood is

[S,Ω,∆n] = [∆n][S|∆n][Ω|S,∆n]

= [∆n]
n∏
i=1

[si|δi][Ωi|si, δi],

assuming independence between capture histories. We have [∆n] = Poisson(Λ̃) since

this represents the model for the number of detected individuals. We also have

[Ωi|si, δi] =
[Ω, δi|si]

[δi]

=
[Ωi|si]

[δi]
,

since observing Ωi implies δi = 1. Let gitk(s) denote the likelihood of observing

ωitk given individual i has activity centre s. Note that gitk(s) is not conditioned

on detection. Then assuming conditional independence between capture events we

have [Ωi|si]/[δi] =
∏

t

∏
k gitk(si)/p(si). The probability density of si given the fact

that the individual was detected is p(si)λ(si)/Λ̃. Finally, since S is not observed,
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we marginalise the likelihood which results in

[Ω,∆n] =
Λ̃n exp(−Λ̃)

n!

n∏
i=1

∫ ∏
t

∏
k gitk(si)

p(si)

p(si)λ(si)

Λ̃
dsi

∝ exp(−Λ̃)
n∏
i=1

∫ ∏
t

∏
k

gitk(si)λ(si)dsi. (4.3)

As mentioned above, the exact form of gitk depends on the type of data collected.

Detectors can fall under three categories:

• Single-catch: these traps, such as a cage trap, have a maximum capacity of

one and do not release any individual caught by the trap until the end of a

sampling occasion.

• Multi-catch: these traps, such as mist nets, retain individuals until the end

of a sampling occasion but do not have a maximum capacity (or at least, not

one likely to be reached during a sampling occasion).

• Proximity: these traps, such as camera traps, do not retain individuals and

do not have a maximum capacity.

These types of detector can generate a variety of response variables:

• binary variables record if an individual was detected or not.

• count variables record the number of times an individual was detected.

• time variables record the times of detection of each individual.

In this chapter we consider only discrete time SCR models and so describe the

likelihoods for the binary and count variables. For proximity detectors, which gen-

erate binary response variables, each ωitk is modelled as a conditionally independent

Bernoulli random variable, given the activity centre, with probability of detection

ptk(s). Then, in this case, the probability of observing capture history Ωi, given the
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activity centre is at s, is

gitk(s) = ω
ptk(s)
itk (1− ωitk)(1−ptk(s)). (4.4)

For count variables, each ωitk is modelled as an independent Poisson random

variable. The parameter of this Poisson distribution depends on ptk and is most

commonly represented in terms of the encounter rate. Because detections can hap-

pen multiple times within a single occasion, it is natural to consider the rate at

which detections occur over time. The total number of detections in an occasion is

then modelled as a Poisson random variable with a rate that is the integral of the

encounter rate. Let hitk denote the encounter rate of individual i on trap k during

occasion t. This could potentially vary over time but here we assume it is constant

within each survey occasion. Then the expected number of detections within occa-

sion t on trap k, denoted Hitk, is just the product of duration of the occasion and

hitk. So for a count type detector we have

gitk(s) =
Hωitk
itk exp(−Hitk)

ωitk!
. (4.5)

The connection with the detection function is given by pitk = 1− exp(−Hitk). It is

therefore possible to parameterise the model in terms of hitk or pitk. Datasets that

include the exact time of detection can be analysed in a continuous time context by

using this hazard formulation of the SCR model Borchers et al. (2014).

In this chapter we allow the intensity of activity centres to depend on spatially

structured random effects. For the homogeneous Poisson process the intensity is a

constant. Assuming a log link, it has the form log λ(s) = β0. For an inhomogeneous

Poisson process the intensity function can vary according to linear fixed effects of

spatially indexed covariates z1, . . . zV . In this case, log λ(s) = β0 +
∑

v βvzv(s). This

allows the density of points to vary spatially. If we also wished to add a random

effect f(s), to account for spatial autocorrelation not explained by the fixed effects,
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then the intensity function is

log λ(s) = β0 +
∑
v

βvzv(s) + f(s). (4.6)

Given a basis {b1(s), . . . , bR(s)} for f(s) with associated coefficients ξ = (ξ1 . . . ξR)ᵀ,

the intensity depends on parameters β and ξ. The parameters ξ have an associ-

ated penalty which can be written as (proportional to) a multivariate Gaussian

distribution. This defines a log-Gaussian Cox process (Møller et al., 1998) for the

activity centre distribution, which generalises the inhomogeneous Poisson processes

by allowing the intensity to be distributed as a Gaussian random field. We discuss

various choices for the random effect f(s) below in Section 4.5.

The likelihood (4.3) involves integrals that cannot be solved analytically and so

are approximated using numerical integration. The integration scheme depends on a

discretisation of space which is known in the SCR literature as a mesh or mask. Here

we assume there are J discretisation locations, s1, . . . , sJ , with associated integration

weights α1, . . . , αJ . Each integral in the likelihood uses the same integration scheme

although this is not strictly necessary. The approximate likelihood is then

[Ω, n,∆] ≈ exp

(
−
∑
j

αjp(sj)λ(sj)

)
n∏
i=1

(∑
j

αj
∏
t

∏
k

gitk(sj)λ(sj)

)
. (4.7)

Usually the mesh is a regular grid and the integration weights are all the same value

(the area of each grid cell). When implementing the SPDE effect below we also use

the Delauney triangulation with associated weights as presented for the log-Gaussian

Cox process likelihood in Simpson et al. (2016).

4.4 Inference using the Laplace approximation

We use the Laplace approximation method to approximate the integral of the likeli-

hood (4.3) over ξ. To give this in a general form we consider the case with multiple
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random effects each given a basis representation and with associated parameters and

penalties. We denote by ξ(j) the parameters associated with the j-th random effect,

gathered in a single parameter vector ξ = (ξ(1), . . . , ξ(J)), and denote by θ(−ξ) all pa-

rameters that are not in the random effect parameter vector ξ. Note that θ(−ξ) also

includes the smoothing penalty parameters associated with the random effects, but

not the basis coefficients themselves. Each random effect has density π(ξ(j)|θ(j)),

where θ(j) denotes the smoothing parameters for ξ(j). Then, suppressing the ∆

notation for simplicity, the penalised likelihood is

[Ω, n|θ(−ξ)] =

∫
[Ω, n|θ, ξ]

∏
j

π(ξ(j)|θ(j))dξ, (4.8)

The Laplace approximation of (4.8) is

L̃(Ω, n|θ(−ξ), ξ̂) = (2π)p/2|Hθ|−1/2[Ω, n|θ(−ξ), ξ̂]
∏
j

π(ξ̂
(j)
|θ(j)), (4.9)

where p is the length of ξ, Hθ is the Hessian of − log
(

[Ω, n|θ(−ξ), ξ̂]
∏

j π(ξ(j)|θ(j))
)

with respect to ξ, evaluated at ξ̂, the mode of [Ω, n|θ(−ξ), ξ̂]
∏

j π(ξ(j)|θ(j)).

To compute the Laplace approximation we need the derivative of

[Ω, n|θ(−ξ), ξ̂]
∏

j π(ξ(j)|θ) with respect to ξ in order to find the mode ξ̂ via nu-

merical optimisation. Second derivatives are also required to calculate the required

Hessian matrix Hθ. Finally, the derivative with respect to θ(−ξ) of the Laplace ap-

proximation L̃(Ω;θ(−ξ), ξ̂) is also required in order to perform maximum likelihood

estimation on the non-random effect parameters. Although it is possible to write

down the gradient for the inner optimisation and Hessian matrix (see Appendix A),

the gradient of the Laplace approximate likelihood (4.9) with respect to θ(−ξ) is in-

tractable. To compute these derivatives we use automatic differentiation using the R

package TMB (Kristensen et al., 2016) which implements the Laplace approximation

given a C++ template of the log-likelihood.
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4.4.1 A brief introduction to automatic differentiation

The basic insight of automatic differentiation is to view a (potentially complicated)

mathematical function as a series of simple operations. For example the function

f(x) = 1/ sin(2x4) can be written as

1. x 7→ x4

2. x4 7→ 2x4

3. 2x4 7→ sin(2x4)

4. sin(2x4) 7→ 1/ sin(2x4) .

Each step is itself a function and for all these elementary operations the derivative is

known. The derivative of f can then be computed using these elementary derivatives

by applying the chain rule. A list like the above is referred to as the graph (or tree)

of the function since, for more complicated functions, it may have a branching

structure. Higher order derivatives can be constructed by similar means. A key

point is that, for a programming language like C++, all the elementary operations

are known and have known derivatives.

When the function is a (log-)likelihood function we can use automatic differen-

tiation to compute its derivatives, which are useful for optimisation algorithms and

calculating variance estimates. Margossian (2019) review the application of auto-

matic differentiation methods in statistics, with a particular focus on its importance

for implementing Hamiltonian Monte Carlo. The R package TMB (Kristensen et al.,

2016) implements automatic differentiation to compute the Laplace approximation

given a C++ template of the log-likelihood. A key feature of TMB is the optimisation

routines it employs to speed up computation time. It does this mainly by allowing

parallel computations and optimising the graph of the function by removing parts

of the graph that are irrelevant to computing the required derivative. Note that

for our approximate log-likelihood (the log of (4.7)) there are many operations in
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the function. Each individual detected has an associated integral to evaluate which

depends on a potentially high-resolution discretisation of space. We will see below

that this complexity in the likelihood has consequences for using automatic differ-

entiation with the SCR likelihood, with some models considered proving too large

to hold in feasible memory limits during the optimisation step.

4.5 Basis-penalty random effects

This section describes some possible options for choice of smoothing spline. One

of the main challenges in using basis-penalty random effects in complex hierarchi-

cal models is the computational burden of working with possibly large and dense

multivariate Gaussian precision matrices. Evaluating the density of the random

effect involves constructing the relevant precision matrix and then computing the

determinant or log-determinant. If the random effect is parameterised using the

covariance matrix then evaluating the density also involves computing its inverse, a

potentially costly operation. Chapter 2 discusses in detail the SPDE approach to

dealing with this computational challenge by constructing a sparse approximation

to the dense precision matrix and using computational methods that can leverage

this sparsity. However, we will see below that high-dimensional sparse precision

matrices may not yield many computational gains in the context of using automatic

differentiation with the SCR likelihood. One alternative to sparsity is to use a low-

rank approximation. This has the advantage of requiring a relatively small number

of random effects parameters which leads to precision matrices that are dense but

low-dimensional.

4.5.1 Low rank smoothers

This section describes some options for low rank smoothers that are implemented

in mgcv and can be easily constructed for use within TMB. It also discusses various
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options for working with the null space basis associated with these effects.

Thin plate regression splines

A popular low rank smoother in spatial statistics is the thin plate regression spline

(TPRS). The TPRS a is low rank approximation of thin plate splines (Duchon,

1977) and this approach has been implemented in the R package mgcv (Wood,

2003, 2017), a commonly-used package for fitting generalised additive models with

penalised smoothing splines. This section briefly describes the TPRS and the low

rank approximation method.

The thin plate spline penalty for a function f(s) with s = (s1, s2) in a two-

dimensional domain is

∫ ∫ (
∂2f

∂s2
1

)2

+

(
∂2f

∂s1s2

)2

+

(
∂2f

∂s2
2

)2

ds1ds2. (4.10)

The thin plate spline penalty can be used for smoothing over domains of arbitrary

dimension but the notation required to write down the general penalty is more

cumbersome (Wood (2017), Section 5.5, has the details).

For thin plate splines the basis functions come in two varieties: basis functions

that span the null space of the penalty (the penalty applied to these basis functions

evaluates to zero) and a set of basis functions that have positive penalty. We call

these the null space basis and the penalised basis, respectively. In two dimensions the

null space basis for the thin plate penalty is b1(s) = 1, b2(s) = s1, and b3(s) = s2.

Note that for identifiability reasons the constant basis function is usually removed

in models that have an intercept parameter. This basis spans the set of polynomials

of degree less than two. Such polynomials have second derivatives that are zero

everywhere. Each of these functions (or any linear combination of them) have zero

penalty and so the coefficients associated with these functions are not penalised

during model fitting.
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The penalised basis functions have a complicated form that we do not explicitly

state here (see Wood (2017), Section 5.5). There are as many of these basis functions

as there are unique combinations of covariate values in the data. In our context here,

this is the number of mesh nodes since this represents the number of locations in the

discretisation of space. The penalised basis amounts to placing a radially symmetric

basis function centred on top of each mesh node. This can result in a large number

of parameters if we want to use a high resolution discretisation of the domain. A

solution to this is suggested by noting that the effective degrees of freedom of a fitted

smoothing spline is usually much lower than the number of unique combinations of

predictor variables (Wood, 2003, 2017). Therefore, it is possible that a low rank

approximation may perform just as well, provided it is of sufficiently high rank to

capture the required effective degrees of freedom.

Wood (2003) proposes taking an eigendecomposition of the penalty matrix and

truncating the number of eigenvectors by selecting those with the largest eigenvalues.

The motivation for doing this is that the largest eigenvalues are most relevant in

computing the penalty. In mgcv, the default in two dimensions is to choose the

first 30 vectors although this can be changed by the user. In two dimensions, this

results in a low rank approximation that has 32 parameters in total (30 from the

truncated basis and 2 from the null space) as opposed to the potentially thousands

of parameters that would be required without taking a low rank approximation.

Duchon splines

Thin plate splines are a special case of a family of isotropic splines known as Duchon

splines (Duchon, 1977). The generalisation of the penalty is constructed by express-

ing the penalty integral in the Fourier domain. The Duchon penalty can be derived

by expressing the thin plate penalty using the Fourier transform and then augment-

ing the resulting integrand by multiplying with ‖u‖2t, where u is the frequency

variable and t is a user-selected parameter. The parameter t must be an integer
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divided by two so that 2t is itself an integer value. If t is set to 0 then this recovers

the usual thin plate penalty. The parameter t can be used to construct penalties

with lower order derivatives but with optimal smoothing splines that are still con-

tinuous. If m is the order of the derivatives used and d the dimension of the domain

then setting t > d/2 − m ensures this continuity (Duchon, 1977). In Section 4.8

we consider the use of the Duchon splines to fit a smoothing spline in a higher

dimensional Euclidean space that approximates the non-Euclidean geometry of a

two-dimensional study region.

Low rank Matérn field

Kammann and Wand (2003) give an implementation of the Matérn random field in

which the range parameter is not estimated but instead fixed to a pre-specified value.

The authors recommend this to be the maximum displacement between any two

locations in the domain although this is arbitrary and the suitability of this choice

is context specific. This reduces the penalty to one that involves a single smoothing

parameter. The truncated eigenvalue approximation approach used for the TPRS

and Duchon splines can be applied to this special case and this is implemented in

mgcv and accessed by using the bs = ‘gp’ argument.

Note that, in contrast to the SPDE approach, this implementation depends on

choosing a fixed value for the range parameter, the basis functions do not have

compact support, the smoothing penalty matrix is dense, and the effect includes a

null-space basis similar to that for the TPRS and Duchon splines. This is, therefore,

a very different approach to approximating the Matérn random field than the SPDE

method.

Working with the null space

Using the standard TPRS results in a penalty matrix that is not full rank since

some of the basis functions are not penalised. This effectively places an improper
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prior on the random effect parameters. However, this presents a problem for the

Laplace approximation. For an improper multivariate normal density π(ξ) with

precision matrix Q, the Hessian of log π(ξ) is proportional to the rank deficient Q

and so its determinant is zero. This means the normalising constant in the Laplace

approximation does not properly account for the random effect. The GMRFLib (Rue

and Follestad, 2003) software called by TMB to evaluate this multivariate normal

density also uses the Cholesky factorisation which can only be applied to full-rank

positive definite matrices and so attempting to use a singular precision matrix results

in an error.

If the null space has dimension m then the precision matrix Q has m columns

that are zero. There are two main ways to penalise the null-space and alter the

precision matrix to make it full rank. Shrinkage smoothers, as described in Section

4.1.6 of Wood (2017), add a small value to the diagonal of Q for the columns that

correspond to the null space. This value is chosen to be a fixed fraction of the

smallest eigenvalue of the full-rank sub-matrix for the penalised basis. The result

of this is that as the smoothing parameter tends to infinity the spline tends to zero

everywhere, hence the term shrinkage smoother. This approach is implemented in

mgcv using the bs = ‘ts’ basis and results in a full rank precision matrix that is

appropriate to use with the Laplace approximation and GMRFLib. One disadvantage

to this approach is that the scaling factor used to add a penalty to the diagonal

is somewhat arbitrary and it can sometimes be challenging to find a value that

penalises the null-space ‘enough but not too much’.

The other approach to penalising the null space basis is to construct an additional

penalty matrix and add this to the penalty. This comes at the cost of introducing

a new smoothing parameter. This idea was explored in Marra and Wood (2012)

and summarised in Wood (2017). Consider the eigen-decomposition of the precision

matrix Q = UΛU ᵀ and denote by Ũ the columns of U that correspond to the zero

eigenvalues on the diagonal of Λ. Then create a new penalty matrix Q̃ = ŨŨ
ᵀ

with
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associated smoothing parameter τ̃ . Setting the log penalty to the random effect to

be τξᵀQξ + τ̃ξᵀQ̃ξ results in a full rank penalty, with the second quadratic form

specifically penalising functions that are not penalised by the first. Both these ap-

proaches to penalising the null space are considered below. The standard shrinkage

smoother approach could lead to convergence issues during model fitting and this

additional penalty matrix approach seemed to solve these problems.

4.6 Low rank vs sparse effects simulation study

The above section introduces several low rank smoothing approaches. However,

the initial simulation studies we tried in this area were primarily focused on imple-

menting the SPDE approach. This was for two reasons: first, it has already been

implemented in TMB, which calls the same sparse matrix algebra library that R-INLA

uses to make use of the sparsity in the precision matrix; second, the key message of

Chapter 2 was that we can take the SPDE approach, commonly used in R-INLA, and

use it elsewhere. Unfortunately the results of doing this were mixed, with models

taking a long time to fit even with a coarse finite element mesh or not fitting at all

and running into computational issues. In an attempt to alleviate these problems

we turned to low rank smoothers. This section discusses two simulation studies to

compare the low rank TPRS and the Lindgren et al. (2011) sparse implementation

of the Matérn random field. In both simulation studies the intensity surface is simu-

lated from the same model that is being used to fit to the data, so the Matérn effect

is fitted to data that used a realisation of a Matérn field to simulate the data and

similar for the TPRS. This was to provide a fair comparison of the performance of

each approach under its own assumptions.

The purpose of these two simulation studies is not to present a direct comparison

between the SPDE and the TPRS. Initial research in this area focused only on the

SPDE effect but the computational challenges we encountered when doing this led
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us to try an alternative approach, the low rank TRPS. The SPDE results presented

here seemed to depend on particular parameter values and the intensity surface

chosen to simulate data from. Other choices lead to models that we were unable to

fit, usually due to memory errors that we could not resolve. Therefore, we present

two simulation studies side by side as a proof of concept for each method but not

as a direct comparison. The first simulation study shows that it is indeed feasible

to fit the TPRS on density within SCR. The second simulation study shows that

it is also possible to fit an SPDE effect if the mesh is of sufficiently low resolution,

although in this case over 10% of simulations still failed.

4.6.1 Thin-plate regression splines simulation

The simulation study used a single fixed intensity surface created by sampling from

the multivariate Gaussian density implied by the TPRS penalty. For each simula-

tion, the spatial capture-recapture data was created by generating a point pattern

of activity centre locations using this fixed intensity surface. Capture histories were

then generated from these points with a fixed detection model. Proximity (binary)

detectors and the half-normal detection function with no covariates were used. The

intensity model was an intercept parameter plus the shrinkage TPRS effect which

penalises the null space of the TPRS by adding a small value to the diagonal of

the precision matrix. Starting values for the random effect parameters were chosen

to help reduce computation time. The starting values were chosen by a pragmatic

approach of fitting a Poisson count model with a shrinkage TPRS on space to counts

derived from a constructed point pattern. This point pattern had the same num-

ber of points as given by an expected abundance estimate from a homogeneous

model fit and the points were jittered around detectors in proportion to the num-

ber of individuals detected at each detector and using the estimated half-normal

scale parameter. These points were then binned into counts and the starting values

estimated by fitting a Poisson GAM with the shrinkage TPRS in mgcv. This is a
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pragmatic way to get starting values by fitting to a point pattern that has roughly

the correct number of points in roughly the right places. This could be improved in

future by extracting the estimated activity centre locations from a homogeneous fit

and using this with a point pattern model or also binned into counts. The binning

into counts was necessary since mgcv does not implement a Poisson point process

likelihood by default.

The true intensity and detector locations are shown in Figure 4.1. The intensity

Figure 4.1: The true intensity surface and detector locations (red crosses) used in
the simulation study.

function has most of the density to the north of the trapping array just by chance.

We will see below that this has big implications for the abundance estimates. A

total of 100 simulated datasets were generated from this intensity surface.

Figure 4.2 shows a summary of the simulation results for the detection model

parameters and the expected abundance estimates. Estimation of detection function

parameters appears relatively unbiased in these results. However, expected abun-

dance estimates have positive bias for both the homogeneous and TRPS cases. The

homogeneous estimates can be biased if the average density within the detectable

region is different than outside. Looking at the true intensity in Figure 4.1, it seems
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Figure 4.2: Summary of results of 100 simulations of the TRPS model compared to
homogeneous density model. A) bias in expected abundance estimate (dashed line
at zero) B) p0 estimates (dashed line at the true value) C) σ2 estimates (dashed line
at the true value) D) smoothed histogram of abundance point estimates across the
simulations.

that the density is, on average, higher within the detector array than outside. This

results in overestimating abundance and highlights the importance of designing a

representative sampling scheme. In the above simulation the trapping grid was fixed

to be in the centre of the spatial domain. The intensity surface was chosen by sim-

ulating surfaces until there was likely to be ‘a clear spatial pattern to fit to’ in the

generated SCR data. In other words, this surface was chosen specifically because
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there was varying density within the detector array. This was inadvertently a case of

preferential sampling (Diggle et al., 2010), although in this case the detector place-

ment was fixed and the intensity surface was being preferentially sampled, whereas

usually we would think about preferential placement of detectors.

The TPRS model is also positively biased and to a greater extent than the

homogeneous model. This is for the same reason as the homogeneous model as

well as the additional complication of the null space basis. It seems likely that the

null space basis, which amounts to fitting a linear plane, would capture the north-

south gradient. Then any predictions to the north in undetectable regions would be

positively biased if the true intensity declines once beyond the range of detectability

from the trapping grid. We investigate whether restricting the study region to

smaller regions, closer to the detector array, influences this bias. To compare the

estimated density with the true intensity used to simulate the data we use the

integrated squared error (ISE), ISE(λ̂) =
∫

(λ̂(s) − λ(s))2ds, for each intensity

estimate λ̂. Given the larger bias in expected abundance estimates for the TPRS

model compared to the homogeneous model, we expect there should be, on average,

a larger ISE for the TPRS model.

To investigate the effect of the null space functions on this error we also computed

the ISE for two smaller regions that should be more constrained by observed data.

To allow a direct comparison we divided the ISE for each region by the area of the

region (since integrating over a larger area will necessarily generate a larger ISE),

which we call average integrated squared error (AISE). One region was defined by

buffering a short distance around the detector array (which in Figure 4.3 is labelled

as the mid-region) and another smaller region defined by the extent of the detector

array (which in Figure 4.3 is labelled as the small region). The null space basis

functions are most constrained in the small region since here detectability is the

highest. Figure 4.3 shows the AISE for the mean intensity prediction in each of

these regions and compares this to the AISE for the homogeneous model. Figure
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4.3A compares the AISE for the homogeneous model and TRPS prediction for the

full-study region and confirms that the TRPS performs worse than the homogeneous

model on average when considering the full study region, as we expected given the

bias in the abundance estimates. However, Figure 4.3B shows that the TPRS model

outperforms the homogeneous model when restricting our interest to regions more

constrained by the observed data. The TRPS is better at estimating the density

when considering only regions close to and within the detector array.

Figure 4.3: A) Average integrated squared error comparing the homogeneous model
and the TRPS model over the full study region B) Average integrated squared error
compared between the homogeneous model and the TRPS model over a mid-region
defined by buffering the detector array and a small-region defined as the extent of
the detector array
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To more systematically investigate the effect of the null space and the relation-

ship with sampling effort we also investigated the relationship between ISE and the

probability of detection p(s). The true detection function parameters used in the

simulation gave p(s) values that range between 0 and 0.72 over the whole study

region. We considered regions defined by placing an exceedance threshold on p(s).

We considered thresholds of 0.01, 0.1, 0.25 and 0.5. As the threshold increases, these

define smaller geographic regions that are more concentrated around the detector

array. In each of these regions we consider the bias in abundance. The results are

shown in Figure 4.4. This plot shows that even a very small threshold (p(s) > 0.01)

Figure 4.4: A) Bias in expected abundance estimate for different study regions
defined using thresholds for overall probability of detection B) The regions corre-
sponding to the probability of detection thresholds. As the threshold increases, the
region shrinks towards the detector array
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substantially reduces the bias in estimating abundance. Increasing the threshold

reduces this bias further.

This points to a trade-off between bias in expected abundance and the area over

which we want to predict the intensity. In order to minimise bias one may have to

pay some price in reducing the area considered. This suggests a two stage modelling

procedure. In the first stage, define a mesh over the largest plausible area and

estimate the probability of detection. Then use these estimates to define a smaller

region over which it is comparatively safer to estimate abundance when using the

TPRS. Note that this simulation study is a clear case of a north-south gradient but

in other datasets this may be less pronounced and so this prediction issue may be

less severe. A pragmatic approach would be to plot just the null space basis function

for any fitted spline to see the effect it would have on predictions. This relationship

between the gradient of the linear plane and bias in intensity estimates means it is

hard to give a threshold of detection that would work in all scenarios. A threshold

of 0.01 seemed to do quite well in this simulation but this does not generalise to

other contexts. It is also possible that alternative metrics, such as uncertainty in

the density estimates, could be used to specify a threshold.

4.6.2 Matérn field simulation

The simulation study used a single fixed intensity surface, created by simulating

from a Matérn field. For each simulation the data was created by generating a point

pattern of activity centres from this fixed intensity surface. Capture histories were

then generated from these activity centres using a fixed detection model. Proximity

(binary) detectors and the half-normal detection function with no covariates were

used. Starting values for the random effect parameters were chosen by fitting a

log-Gaussian Cox process model to a constructed point pattern with the number

of points chosen based on the expected abundance estimate from a homogeneous

model fit. The points were jittered around detectors with the number of points at
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each detector distributed in proportion to the number of individual detected at each

detector. This is similar to the approach for TRPS but since the log-Gaussian Cox

process with SPDE effect is already implemented in inlabru it was not necessary to

bin the points into counts. The SPDE mesh, true intensity, and detector locations

are shown in Figure 4.5.

Figure 4.5: A) The SPDE mesh. The blue polygon marks the ”study region” over
which abundance is estimated. B) The true intensity function used. Red crosses
mark detector locations in both

Figure 4.6 shows a summary of the simulation results for the estimation of abun-

dance and the detection model parameters. This shows a general agreement between

the Matérn model and homogeneous model when it comes to estimating detection

function parameters p0 and σ2. There appears to be a slight positive bias in esti-

mating σ2 for the homogeneous model. However, there is a notable difference in

abundance estimation. Both methods have bias (Figure 4.6A); the Matérn field has

negative bias and the homogeneous model has positive bias. Figure 4.6D shows a

smoothed histogram of the point estimates of expected abundance for both models.

This is clearly multimodal although there is substantial overlap in the distributions.

To compare the estimated intensities with the true intensity we use the mean

integrated squared error (ISE), calculated for both the Matérn field and the homo-
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Figure 4.6: Summary of results of 100 simulations of the Matérn field density model
compared to homogeneous density model. A) bias in expected abundance estimate
(dashed line at zero) B) p0 estimates (dashed line at the true value) C) σ2 estimates
(dashed line at the true value) D) smoothed histogram of abundance point estimates
across the simulations.

geneous model. The results are in Figure 4.7. This shows there is much larger

variation in the error for the Matérn field compared to the homogeneous model. On

average the Matérn field has a lower mean integrated squared error. However, the

large variance implies that it was not always superior to the homogeneous model.

Inspecting a randomly sampled set of predicted mean intensity surfaces (Figure 4.8)

reveals it is possible for the SPDE effect to be essentially zero (top right prediction).
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Figure 4.7: Integrated squared error for the Matérn field and homogeneous models.

There is some negative bias in abundance (Figure 4.6 A). There also seems to be

some negative bias in the detection parameter p0 (Figure 4.6B).

A cause for concern in generalising the results of this simulation study to real

applications is the coarseness of the mesh. This mesh is much more coarse than

would tend to be used in most applications of the SPDE effect. Problems with this

may not appear in this simulation study since this coarse mesh was also used to

generate the data but, in general, a higher resolution mesh gives a better GMRF

approximation to the GRF. Here we were limited by computational issues if we

used more than a few hundred mesh nodes. This is most likely caused by the

automatic differentiation algorithm struggling to store the graphical representation

of the likelihood function in memory. This is discussed more in Section 4.9. This

problem occurred on a linux server with more than 80 gigabytes of RAM when

attempting to use meshes with more than 300 or so mesh nodes.

Even with this simple mesh, 11 out of 100 simulations the model failed to fit.

The consequence of this coarse mesh is that the true intensity (simulated from the

same mesh as was used in fitting) looks strange and the effects of the triangulation

are clear in model predictions (Figure 4.8), which are ecologically unrealistic and
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Figure 4.8: A) The true intensity surface used in the simulation study B,C,D) Three
estimated intensity surfaces

purely an artefact of the mesh resolution. There also seems to be higher variance in

the ISE for the SPDE effect than the homogeneous. This could be because a more

flexible model can lead to less bias but more variance. For some simulated datasets,

the homogeneous model did better than the SPDE effect in terms of ISE.

Figure 4.6C also indicates the model failed to estimate the scale parameter σ

on three occasions. This suggests that using the SPDE is challenging within the

SCR framework, at least as currently implemented using automatic differentiation
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in TMB. A key conclusion based on the above two simulation studies is that low rank

random effects may be computationally more feasible to use in the context of SCR

models.

4.6.3 A note on integration schemes with the linear B-spline

basis

Our early work on implementing the SPDE effect on density in SCR used a different

integration scheme to the one used here. In the above simulation, the SPDE mesh

nodes defined the quadrature points with weights calculated using the area of the

hexagonal polygons in the dual mesh. This is the scheme suggested by Simpson et al.

(2016) for the log-Gaussian Cox process likelihood. However, an alternative scheme

we tried was to use a regular grid, as is common in SCR models, and to evaluate the

intensity at these locations instead. We found this could lead to unstable estimates

with some models predicting all the mass of the intensity function at just one or two

mesh nodes. This can happen because of the interplay between the piece-wise linear

basis functions and the integration scheme. The location of the mesh nodes and

the location of quadrature points must be considered together. An inappropriate

scheme can leave some flexibility for the likelihood to be maximised by increasing

some basis coefficients to infinity without affecting the integral component of the

likelihood that models the total number of points.

To see a toy example of an integration scheme issue, consider a one dimensional

log-Gaussian Cox process on the interval [0, 1]. Then the one dimensional finite

element basis function on this segment is log λ(s) = η(s) = ξ0(1− s) + ξ1s. This is

linear with η(0) = ξ0, η(1) = ξ1, and is the one-dimensional analogue of the pyramid

shaped basis functions used in the 2D SPDE effect. The log-likelihood for a single

observation at y ∈ [0, 1] is

L = −
∫

exp(η(s))ds+ η(y)
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Consider two integration schemes to approximate this integral. Scheme A is endpoint

integration and Scheme B is midpoint integration. For scheme A we have integration

locations at 0 and 1 with weight 1/2 at each. This gives approximate likelihood for

a point at y = 0.8, for example, as

LA = −1

2
[exp(ξ0) + exp(ξ1)] +

1

5
(ξ0 + 4ξ1).

For Scheme B we have one integration location at 0.5 with weight 1. This gives

approximate likelihood

LB = − exp

(
ξ0 + ξ1

2

)
+

1

5
(ξ0 + 4ξ1)

= − exp(ξ0/2) exp(ξ1/2) +
1

5
(ξ0 + 4ξ1)

Since the observed point is at y = 0.8 we expect ξ1 to be greater than ξ0. For

scheme A, as either ξ0 or ξ1 tends to infinity, the likelihood eventually decreases

as a result of the approximate integral. This is not the case for scheme B. In this

approximate likelihood ξ1 can tend to infinity so long as ξ0 compensates for this

be tending towards minus infinity. This means the likelihood can be maximised by

putting infinite weight at 1 (which is closer to 0.8) and letting x0 tend to negative

infinity which gives intensity 0 at location 0.

These issues with scheme A were encountered in the context of line transect

distance sampling (where integration is along paths taken by observers) implemented

for the log-Gaussian Cox process likelihood in inlabru and described in Yuan et al.

(2017). Putting integration points within triangles (at a greater resolution than the

mesh) gave the model this inappropriate flexibility. This is analogous to using a

fine resolution regular grid (the standard in SCR analyses) together with the SPDE

effect defined on the a more coarse triangulated mesh.

The integration scheme used in the simulation study is the same as that used

151



described in Simpson et al. (2016), using the mesh nodes as integration locations,

and so avoids the problem with scheme B above. If we want to use a random effect

with a B-spline basis within a SCR model then care should be taken to choose an

integration scheme that is suitable. It is not clear to what extent these kinds of

problems would carry over to a low rank smoothing spline. The problem seems to

depend on the piecewise linear basis used for the SPDE effect which have compact

support. In contrast, the low rank basis functions do not have compact support and

may not run into this issue.

4.6.4 A note on prediction with Matérn field vs TPRS

This section discusses the difference in prediction behaviour between the low rank

TPRS and the SPDE effect. The Matérn random field is stationary and isotropic

which has implications for how predictions from this model behave when imple-

mented with a B-spline basis. Note that with the Matérn simulation we did not

have to restrict the predictions using p(s) thresholds or some other method as we

had to do for the TPRS simulation. This section discusses why this is the case.

Under a stationary and isotropic model, locations far enough away from the ob-

servations (such that the covariance between them is almost zero) will have predicted

mean zero, i.e. observations have no effect on the expected value of the predictions

far enough away from where the observations took place. In these region, the pre-

dicted mean is zero and, due to the stationarity, the covariance of the predictions will

be the same as that which was estimated from the observed data. In other words,

the smoothness in unobserved areas is assumed to be the same as the smoothness

estimated within the observed region, but if we did not measure anything there then

the random effect has a mean of zero. Note that this property of the GRF does not

save us from having to design a sensible and representative sampling scheme. If the

density in the observed region is higher than elsewhere then the intercept will lead

to predictions that are biased higher, regardless of the fact that the random effect
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has mean zero.

This is in contrast to the behaviour of predictions for the TPRS. The null space

contains linear basis functions which, as prediction locations move further away from

the observed region, will eventually dominate the predictions. In other words, all

predictions on the log intensity scale will tend to plus or minus infinity, depending on

the direction, as the distance increases away from the observed locations. This choice

of basis means that the low rank implementation of the TPRS is non-stationary and

non-isotropic. For this reason we need to take extra care when predicting density

with these types of null-space basis functions.

4.7 Case study: Louisiana black bear data

This section presents a case study fitting a smoothing spline on density to SCR

data collected on black bears in Louisiana. Given the computational challenges of

using the SPDE approach, we decided to use the TPRS. In total 39 individuals were

detected over 8 survey occasions. There were a total of 115 detectors. These were

hair snares and so are a binary proximity detector type. Figure 4.9A shows the

detector locations and the number of individuals detected on each trap and Figure

4.9B shows the total number of detections (including recaptures) on each trap. This

data shows clear spatial structure, with a higher number of individuals detected and

total number of detections in the north as compared to the south and west.

We fit a density model with an intercept parameter and TRPS effect. No co-

variates were used to model detection parameters. Figure 4.10 shows the estimated

detection probability and estimated mean density, together with the standard devi-

ation and coefficient of variation of the estimated mean density. Figure 4.10A shows

that the smoothing spline has captured some of the spatial structure we expected

from the summary data in Figure 4.9, with a higher density in the north as com-

pared to elsewhere in the study region. The standard deviation (Figure 4.10B) is
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Figure 4.9: A) Detector locations and the number of unique individuals detected at
each detector. Greyed area is the mesh used in all analyses. B) Detector locations
and the total number of detections (including recaptures) at each detector.

also higher in this region as compared to elsewhere. This is due to the log-normal

relationship between the random effect and the density. If X is normally distributed

with mean µ and variance σ2 then Z = exp(X) is log-normal with a mean-variance

relationship given by Var(Z) = exp(σ2 − 1)[E(Z)]2. This implies that the variance

will generally be higher when the expected density is higher. For this reason we also

plot the coefficient of variation in Figure 4.10D.

Figure 4.10B shows the probability of detection with high levels of detectability

in most locations in the mesh. This indicates that the null-space basis is not likely

to be having an unwanted effect on predictions by extrapolating into regions not

constrained by observed data. The overall abundance estimates from this model are

comparable to a homogeneous model estimate, as are the estimates of the detection

parameters.

We also compared this model with unpenalised TPRS fitted using secr (Efford,

2021). We fitted models with a pre-specified number of knots ranging from 9 to

28 and compared models using AIC and AICc. The results are shown in Figure

4.11. These figures show that there seems to be no additional benefit to model fit
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Figure 4.10: Summary of the predictions from the TMB model. A) Expected density
B) Expected probability of detection C) Standard deviation of density prediction D)
Coefficient of variation of density prediction. Green crosses are detector locations
in all plots.

by increasing the number of knots with 9 knots being the lowest for both AIC and

AICc. This is also preferred to a homogeneous model fit although for AICc the

difference is quite small. The effective degrees of freedom of the random effect with

design matrix X and precision matrix Qτ is tr
[
X(XTX +Qτ )X

T
]
, where τ is the

smoothing parameter. The effective degrees of freedom for the TPRS in the TMB

is approximately 24.8 of a possible maximum of 32 (30 truncated basis vectors and

155



Figure 4.11: AIC of secr model fits with unpenalised TPRS effect and varying
number of knots A) AIC B) AICc. Horizontal dashed line shows the AIC (or AICc)
of the homogeneous density model

two null space functions). This is substantially larger than the degrees of freedom in

the unpenalised spline selected by AIC which has 9 knots and two null-space bases

and so has 11 degrees of freedom.

It is not clear why the effective degrees of freedom is higher in the penalised model

fit. It seems that the penalty implied by AIC is stronger relative to a penalised re-

gression spline with smoothing parameter estimation. We would not necessarily

expect these to agree. However, the predicted density in the TMB model (Figure

4.10A) does not seem to have any notable increased flexibility over the unpenalised

prediction with 9 knots (Figure 4.12A). This is a surprising result since AIC and

AICc saw no additional benefit to increasing the degrees of freedom of the smooth

and it does not appear as though the penalised fit gives qualitatively different esti-

mates. However, it is possible that the first nine truncated eigenbasis vectors have

sufficient flexibility to produce qualitatively similar fits to the 24.8 effective degrees

of freedom of the penalised fit.

Another explanation is that the point estimate for the smoothing parameter

might not be representative of the variability in the likelihood of this parameter.
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If lower values of τ are also quite likely, this could reduce the effective degrees of

freedom. A summary of the unpenalised model fit with 9 knots using secr is shown

in figure 4.12. This shows broadly similar trends in the predicted density surface

although the high density region is less radially symmetric as highlighted in figure

4.12D which compares the unpenalised and penalised models.

Figure 4.12: Summary of the predictions from the secr model A) Expected density
B) Standard error of expected density C) Standard error divided by expected density
D) TMB expected density minus secr expected density

This case study has shown that it is possible to use penalised TPRS to estimate

a density surface from real world SCR data. This density surface appears to be
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consistent with the spatial structure in the data measured at detector locations. It

also produces comparable abundance estimates and detection parameter estimates

to models that assume a homogeneous density. However, when compared to an

unpenalised fit we notice some differences. The best model selected by AIC seems

to have a more variable density surface but has fewer degrees of freedom. It is not

clear from this case study that by allowing a penalised spline we have achieved a

significantly different estimate from the unpenalised spline.

4.8 Effects that account for complex spatial ge-

ometry

Within spatial ecology there has been substantial interest in developing spatial ran-

dom effects that can account for the geometry of the spatial region (Bakka et al.,

2019; Scott-Hayward et al., 2014; Miller and Wood, 2014; Wood et al., 2008). This

section investigates using such random effects within an SCR model.

There are three approaches that have been widely used within spatial ecology

contexts, though never within SCR. The soap film smoother (Wood et al., 2008) uses

a smoothing penalty that is responsive to the shape of the boundary of the spatial

domain and boundary conditions which can be assumed fixed or estimated. This is

implemented in mgcv with a B-spline basis. The complex region spatial smoother

(CReSS) (Scott-Hayward et al., 2014) also uses a radially symmetric B-spline basis.

This approach uses model averaging to vary the number of knots and the scale of the

basis functions. Bakka et al. (2019) adapted the SPDE approach for the Matérn field

(Lindgren et al., 2011) to account for barriers that effectively stop any correlation

across them. This also uses a linear B-spline basis implemented using finite element

methods.

Given that these approaches all rely on a B-spline basis which may prove dif-

ficult to implement in SCR using automatic differentiation, for similar reasons to

158



the computational issues encountered with the SPDE above, we considered a less

well-known approach that is based on low rank Duchon splines. Miller and Wood

(2014) call this approach generalised distance splines (GDS). The approach is based

on using a higher-dimensional Euclidean space that approximates a lower dimen-

sional non-Euclidean geometry. The idea is that in this higher dimension space

the Euclidean distance between points matches the non-Euclidean distance in the

lower dimensional domain. Then one can use a smoother in this Euclidean space to

smooth between locations. The way this higher dimensional space is constructed is

by applying classical multidimensional scaling (Gower, 1966; Mardia, 1978) to the

matrix D, where Dij is the non-Euclidean distance between discretisation locations

i and j.

One can think of the matrix D as containing a discrete representation of the

non-Euclidean geometry of the spatial domain. Classical multidimensional scaling

is an approach that seeks to approximate this geometry. It does this by representing

a set of M distances with locations in an M − 1 dimensional Euclidean space. This

space is then approximated using a truncated Eigen decomposition, keeping the first

p principal components. Miller and Wood (2014) suggest Duchon splines (Duchon,

1977) are a natural smoother to consider in higher dimensions and use the low rank

implementation in mgcv. Initial exploratory models tried to implement this using

the ‘shrinkage smoother’ approach but found that the likelihood was unstable and

often led to errors in the optimiser. The arbitrary scaling factor in the shrinkage

smoother approach could lead to precision matrices that were numerically singular.

Our extra penalty approach avoided this problem. Below we present a simulation

study on a horseshoe shaped domain and a case study on leopard data that was the

motivation for developing this approach.
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4.8.1 Horseshoe simulation

We tested the generalised distance spline (GDS) using the horseshoe domain that

is common to demonstrate non-Euclidean smoothing methods (Wood et al., 2008;

Scott-Hayward et al., 2014; Miller and Wood, 2014) and is often referred to as Ram-

say’s horseshoe after it was introduced by Ramsay (2002). The function defined on

the horseshoe in those papers was assumed to be a Gaussian response and could

take negative values. To turn this function into a valid intensity surface we added a

positive intercept term and adjusted the gradient of the slope to ensure the function

was positive everywhere. Detectors were placed in the domain using a stratified

random sampling domain and then fixed for all simulations. Detection parameters

were also set to fixed values for all simulations and chosen to give good probabil-

ity of detection across the domain. Figure 4.13 shows the true intensity, detector

placement and probability of detection used in all simulations.

Figure 4.13: A) Detector locations and the true intensity surface B) The true prob-
ability of detection in the domain

The non-Euclidean distance was taken to be the shortest path distance as cal-

culated using the R package gdistance (van Etten, 2017). Following the results

of the simulation study in Miller and Wood (2014) we set p = 3, using a three di-
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mensional Euclidean space to approximate the two dimensional horseshoe domain,

which was the dimension selected by lowest AIC in their papers. The mesh used

had approximately 3000 discretisation locations defined on a regular grid.

A total of 50 simulations were run. For each simulation a point pattern of activity

centres was sampled using the true intensity. Capture histories were then generated

based on this point pattern using a fixed detection model for all simulations. For

each set of capture histories two models were fitted: the GDS and the TPRS on x

and y that ignores non-Euclidean distances. This led to a total of 100 models being

fitted to 50 datasets which took approximately 2.5 days to run on a linux server.

The expected number of individuals detected for each simulation is approximately

30. For each simulation the true abundance was recorded and compared against the

point estimate. In all models the detection function used the shortest path distance.

The detectors were defined to be count type. For this reason the detection function

was chosen to be the hazard half-normal as this is a natural way to model count

responses in SCR models (see Section 4.3). This has two parameters to estimate:

λ0 a positive encounter rate parameter, and σ, a positive scale parameter. Both

parameters were modelled using a log link.

The performance of the two types of smoothers is summarised in Figure 4.14.

The GDS smoother outperforms the TPRS according to integrated squared error

of the point estimate of intensity (Figure 4.14A), although both methods seem to

have outliers with substantially higher integrated squared error. Both models show

a slight negative bias in estimating abundance although it is small as a percentage of

the total population size. The GDS smoother sometimes had some larger negative

bias in abundance estimates (Figure 4.14B). The reason for the negative bias is

not certain, although it is likely related to the slight positive bias in estimating the

encounter rate λ0 (Figure 4.14C). Both the GDS and TPRS model perform similarly

here with one notable outlier for both.

The two models also show similar performance in estimating σ (Figure 4.14D).
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Figure 4.14: A) Comparison of integrated squared error B) Bias in abundance esti-
mate C) Bias in log λ0 D) Bias in log σ

All in all the results show that the model does fairly well at estimating abundance

and detection parameters but that there can be some simulated data sets for which

the model does poorly when compared to the average across all simulations. The

GDS does a better job than the TPRS in estimating the true intensity surface as

measured by integrated squared error (Figure 4.14A). This is confirmed in Fig-

ure 4.15 which compares the average prediction across all simulations for the two

smoothing methods. The GDS smoother clearly does a better job on average of
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estimating the intensity although, as indicated in the other plots, for some datasets

both methods can do a poor job. It is not clear the reason for this but, in part, it

may be due to poor identifiability of the smoothing parameters.

Figure 4.15: A) True intensity surface B) GDS average predicted intensity across
all simulations C) TPRS average predicted intensity across all simulations

Figure 4.16 shows scatter plots of the estimated values of the smoothing param-
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eters. The smoothing parameters are τ1, associated with the Duchon penalty and

τ2, the additional smoothing parameter to penalise the null space of the Duchon

penalty. Plots are shown on the log scale. The plot for τ1 shows that the maximum

likelihood estimate was drawn to two very different regions of the parameter space,

one centred around zero and another around fifteen. Note that fifteen on the log

scale implies that the shrinkage was very strong on the spline coefficients, shrinking

them essentially to zero. For the GDS this is consistent with the fact that the true

function is a linear gradient that increases “along the horseshoe” and so in the higher

dimensional Euclidean space the linear basis function is able to fit well to this when

projected back to 2 dimensions. However, for the TPRS it does not have the extra

Figure 4.16: A) estimates for smoothing parameter log τ1 B) estimates for null-space
smoothing parameter log τ2.

flexibility which is perhaps the reason for the incorrect north-south gradient in the

average prediction in Figure 4.15C.

One possible reason that in some simulations the optimiser explored a different

region of parameter space for τ1 is that zero was chosen as the starting value for

this parameter and the model was stuck in a local minimum. A possible approach

to avoid this would be to fit the same smooth model to data collected at detectors
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(such as the encounter rate) to achieve an approximate estimate of smoothness and

to fix this value in the full SCR model. This may be insufficient however since data

collected at detectors is the combination of two processes, the point process and the

detection process, and so may not provide a suitable guideline for smoothness in the

point process intensity.

In summary, it is possible to fit smoothing splines within SCR models that re-

spect the non-Euclidean distances between mesh node locations. In this simple

domain the model performed better than a naive alternative in the TPRS spline.

There are indications in the poorer quality estimates that the likelihood is sensitive

to specific qualities of the datasets generated or that the inference method can strug-

gle to fully explore the parameter space. However, on average, across all simulated

datasets, the GDS model performed better.

4.8.2 Case study: Boland leopard data

We fit the GDS model to data on leopards collected in the Boland area in the

Western Cape province of South Africa. In this region there is a complex mix of

available habitat and protected areas. For the purposes of this analysis we ignore

the available covariate information other than the shape of the protected area. GPS

tagging data indicates that individuals rarely leave this boundary (Figure 4.18).

The complex shape of the protected area and in particular an area of unsuitable

habitat in the in the southern region suggests that standard Euclidean distance may

be inappropriate. We refer to this region as the ‘hole’ in the domain, see Figure

4.18. We used the shortest path distance as defined on a raster discretisation of the

study region. This was used both in setting up the penalty matrix for the GDS and

within the detection function.

The trapping array consisted of 92 camera traps deployed for 260 occasions. A

total of 43 individuals were detected during the course of the survey. Figure 4.17

shows a summary of the capture histories. Figure 4.17A shows that there is some

165



spatial structure in the number of individuals detected and that the camera trap in

the far north detected the most individuals. Figure 4.17B shows the total number of

detections at each detector and shows a slightly different spatial pattern with more

detections in the region north of the hole. The model was fitted with p = 5, using

a 5 dimensional Euclidean space to approximate the non-Euclidean distances in the

2 dimensional domain and an extra penalty was used to penalise the null space.

Figure 4.17: A) Detector locations and the number of unique individuals detected at
each detector. B) Detector locations and the total number of detections (including
recaptures) at each detector.

Figure 4.19 summarises the results of the model predictions. We can see that

the null space functions seem to influence the mean prediction (Figure 4.19A) again,

with the model predicting the highest density in the far north and lowest in the far

south. Comparing this to the number of individuals detected on each trap it looks

like this might be influenced by the detector in the north that detected the most

individuals. The middle region just north of the hole also shows some of the spatial

structure we might expect.

Figure 4.19B shows that detectability was estimated to be quite high in all

regions of the domain. Figure 4.19C shows the median prediction based on 500

Monte Carlo samples using the Hessian matrix at the maximum likelihood estimate

166



Figure 4.18: A) GPS tag locations of 9 individuals in the study region in 2012-14.

that is also returned by TMB. This seems very similar to the mean prediction in

Figure 4.19A. Figure 4.19D plots the interquantile range which is defined to be

the difference between the 0.975 and 0.025 quantiles, estimated using the same

Monte Carlo samples as used to calculate the median. This shows there is greatest

uncertainty in the regions that have the lowest probability of detection and also

high uncertainty in the north where small changes in the gradient of the linear basis

function can lead to large differences in the value the basis function takes.

To compare with a non-Euclidean smoother we also fitted a TPRS on density.
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Figure 4.19: Summary of the GDS model predictions A) Expected density point
estimate B) Probability of detection C) Median density based on 500 Monte Carlo
samples D) Interquantile range (difference between 0.975-th and 0.025-th quantiles)

All other components of the model remained the same, including the non-Euclidean

distances in the detection model. The mean prediction is shown in Figure 4.20A.

Similar to the GDS, the null space basis is playing a predominant role in the pre-

dictions, fitting a clear north-south linear gradient to the data. However, it is less

well able to capture the higher density to the north of the hole and there is evi-

dence that the model has inappropriately smoothed across a gap in the study region

domain. Figure 4.20B shows the difference between the TPRS prediction and the
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Figure 4.20: A) Mean prediction for TPRS model B) Difference between TPRS
mean and GDS mean predictions

GDS prediction. This highlights that area to the north of the hole as an area where

the predictions differ. There is also disagreement in the far north. The GDS seems

to more closely match expectations from plotting the capture history data but both

approaches still have problematic behaviour with the linear null space basis function,

fitting to a north-south gradient that seems questionable given the summaries of the

data (Figure 4.17). Figure 4.21 shows a boxplot of the 500 Monte Carlo samples

of the two smoothing parameters. This plot shows that the maximum likelihood

estimate for the null space parameter is quite large and is essentially not penalising

the null space at all. The variability in this parameter is also very large. Although

the variance on the log scale is comparable to the other smoothing parameter after

taking the exponential this leads to much greater variance due to the difference in

scale. This suggests the likelihood is not particularly informative for identifying the

null space smoothing parameter.
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Figure 4.21: A) Smoothing parameter Monte Carlo samples on the log scale B)
Smoothing parameter Monte Carlo samples on the smoothing parameter scale

4.9 Discussion

In this discussion we survey the process of fitting smoothing splines on density in

SCR taken in this chapter. The aim is to situate the particular modelling decisions

taken here amongst other possible options and provide pointers to important things

to consider. We break this down into sections whether or not to use random effects

on density, the types of random effects that could be used and their prediction be-

haviour in extrapolating to unobserved regions, and possible alternative approaches

to inference.

We have, for the first time, demonstrated the feasibility of using penalised re-

gression splines on density in SCR models but perhaps the main research value in

doing this is to highlight the decisions that need to be taken and challenges that

need to be addressed. The results from the case studies and simulation studies in

this chapter are mixed. There seems to be some potential for this approach but

there are many possible choices to make and many accompanying potential pitfalls.

There is no guarantee that the predictions from such models will be robust or eco-

logically sensible. The purpose of this discussion is to provide a kind of roadmap,
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highlighting the path taken here and possible alternative routes to take. There are

many possibilities for future research that we also summarise here.

Is it worth the trouble to fit a spline on density?

An important question to ask is whether it is worth the additional complexity in

model structure and inference procedure, and the associated computational costs,

of considering a spatially structured random effect on density within an SCR model.

We suggested in the introduction to this chapter that these types of model compo-

nents are a standard part of the spatial statistician’s toolkit and should therefore be

available to use within SCR. There are, however, some particular features of SCR

datasets that mean it may be of limited use in specific contexts. The first issue to

consider is sample size. Since SCR is a popular method to survey hard-to-detect

species the sample sizes are often much lower than in other point process applica-

tions in ecology. We tried adding TPRS effects on density to datasets with as low

as 14 individuals and found no evidence that the smooth effect was preferred over

a homogeneous model. Unless the clustering is strong and activity centre locations

identified to a high degree of accuracy, then it is unlikely there will be much infor-

mation in the dataset to inform a smoothing spline on density. There is also likely

to be limited ability to identify anything other than very strong fixed effects.

Another issue with SCR data relates to sampling design. There is more likely

to be spatial structure in the dataset if survey effort is placed in areas of relatively

low density as well as high density. Unfortunately this is not what many SCR

surveys seek to do. Given the costs involved of purchasing, maintaining, deploying

and recovering detectors it can seem, naturally, undesirable to place detectors where

the ecologists believe no or very few detections will be made. The result of this is

that density can be very similar in the surveyed region if the sampling only took

place in a relatively homogeneous environment. Therefore one should consider both

the sample size and the sampling design to get a feel for whether there is likely to
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be spatial structure in the dataset. Of course plotting summaries of the capture

histories as we did for the two case studies above will also give a good indication of

this. A low sample size, with fewer than 20 detected individuals, say, would typically

be viewed as insufficient to fit anything but relatively simple point process models.

Add to that the additional uncertainty of the SCR observation process and it is clear

that in many contexts there will not be enough information in the data to identify

anything more complicated than a homogeneous Poisson process. Preferentially

sampling high density will also mute any heterogenous signal in the data and may

have worrying implications for extrapolation to unobserved regions since the model

has no way to learn what conditions are associated with lower densities.

A third thing one should consider is which spatial process in the SCR model

should be smoothed. A key feature of SCR models is that they combine two spatial

processes which occur at different scales: the point process model (second-order

selection in the parlance of Johnson (1980)) for the location of activity centres and

the movement model around these (third-order selection). Care should be taken

to think carefully about which process is most relevant to the questions at hand.

It may be one or the other or both. It is not hard to imagine scenarios in which

other parameters in the model may benefit from being spatially correlated. If, for

example, the scale of movement parameter σ is modelled with a smoothing spline

in space then this would imply that animals near each other have similar movement

patterns. This seems ecologically reasonable since these movement patterns are at

least partially the result of local conditions (which are spatially correlated).

A spline on this process could also model potentially complicated processes such

as interactions with other individuals (e.g. density dependent movement). A pop-

ulation that is tightly packed in one region may have different movement patterns

to another region where individuals have more room to roam freely. The same ar-

gument could apply to adding a smoothing spline to the encounter rate parameter.

Stevenson et al. (2021) propose using Gaussian random fields on the detection model
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and point out that spatial-correlation in detections is almost inevitable due to the

movement patterns of individuals as they encounter detectors. An individual does

not really have the ability to teleport around its activity centre.

One should therefore consider carefully which ecological process is the primary

target of inference. If the main process of interest is the intensity process then

considering a smoothing spline seems a prudent step to avoid problems of spurious

significance when interpreting fixed effects and smoothing over discontinuities in

predictor variables (if appropriate). There may be identifiability issues in fitting

random effects on the encounter rate, movement scale and the intensity at the same

time and future research could investigate this.

Which type of spline to use?

After deciding whether or not to use a smoothing spline at all, the next question is

which type of smoothing spline to use? There is somewhat of a gap in the spatial

ecology literature with regards to this question. The general approach seems to be to

use something that one is familiar with in a software package that one already knows

how to use. Since the model component is not intended as a mechanistic description

of the ecological processes, the differences between smoothing splines may have

minimal consequences in terms of the role the effect plays in the model. However,

as we have seen here, it can have big consequences for whether inference is feasible

or not, due to the differences in approximation methods. In this chapter one key

aspect was to choose a low dimension option. This was because the likelihood could

prove too complex for automatic differentiation, at least as currently implemented

in TMB, and resulted in memory problems during function optimisation. The reason

for this is that an SCR likelihood involves an integral for every detected individual.

If this is approximated by a sum of a large number of integration locations, each of

which involves a potentially large number of spline basis coefficients, the graph of

the function can become too large to store in memory.
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When implementing the SPDE simulation study it was not possible to use a

mesh with more than a few hundred nodes without hitting a memory error. The

triangulation used was much more coarse than in many applications that use the

SPDE. A key result in Lindgren et al. (2011) is that the Gaussian Markov random

field approximation converges (in probability) to the Gaussian random field defined

by the SPDE as the resolution of the mesh increases. In other words, the more mesh

nodes, the better the approximation. That being said, the practical consequences of

the mesh are not with respect to the accurate approximation of a Matérn field but

whether the chosen GMRF can provide a good fit to the data.

Using such a coarse mesh resulted in predictions where the triangular basis func-

tions were clearly visible, a clear downside to communication of results since these

triangles appear only as a modelling artefact. So care should be taken to consider

whether the number of parameters is feasible to fit with TMB and if the number

of mesh nodes is too great then perhaps a low dimension option would be better.

This was the reason low-dimension approaches were taken in the case studies and

the non-Euclidean smoothing application. It may be the case that a B-spline basis

with a number of knots in the low hundreds is sufficient for the application at hand

but this should be checked. Even if it is possible to fit using TMB the actual fitting

time may be much longer than a low dimensional alternative that gives qualitatively

similar results. Sparse smoothers are another approach to gaining computational

efficiency, one example of which the SPDE approach. However there may be only

modest benefits to using sparse effects within SCR since the likelihood involves inte-

grating over the location of each point and the model has a non-sparse dependence

between the likelihoods for each individual’s capture history. We discuss this more

below when considering alternatives to automatic differentiation for inference.

Another aspect to consider is the geometry of the area the animals can use. One

should consider whether non-Euclidean distances are most appropriate and choose

a smoothing method that is appropriate to this. In this chapter we considered a low
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rank option for doing this but there may be others. The more commonly used soap

film smoother (Wood et al., 2008) and barrier model (Bakka et al., 2019) both use

B-splines and were not used here for the same reason the SPDE was not used -—

there were too many parameters for TMB to handle.

Prediction behaviour

The simulation study for the TPRS (Section 4.6) revealed some important aspects

of SCR survey design and smoothing spline prediction behaviour. The main cause

of bias in the abundance estimates when extrapolating into unobserved regions of

space was the linear null space basis function. This means that the model will predict

exponentially increasing (assuming a log link) density in one particular direction and

any extrapolation in that direction is likely to give biased intensity and abundance

estimates. Uncertainty will also be greater in this direction since small changes in the

gradient of the linear function will result in large changes in density. Correspondingly

there will be ever decreasing uncertainty extrapolating in the opposite direction.

This behaviour was the reason for considering the two options for adding a

penalty to the null space although the results of doing this were mixed. In the Boland

leopards example one can clearly see a strong effect of the linear basis function that

does not seem appropriate (Figure 4.17A). A nice advantage of using a mean zero

GRF effect is that predictions have mean zero in un-sampled regions (using the term

sample vaguely here to also include ‘effectively sampled’ implied by the smoothness

of the latent process of interest). When using a low rank spline with global null space

basis functions this is not the case. A prudent approach suggested by Figure 4.3 is

to restrict predictions to areas above some threshold for probability of detection. In

this case the likelihood of the observed data should, in theory at least, do something

to constrain the global basis functions.

A related issue is the problem of ensuring an appropriate sampling design for

extrapolating into unobserved regions. The problem of preferential sampling was
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mentioned above in the context of dampening any spatial structure in the observed

data but it is perhaps much more of a concern when it comes to extrapolation to

unobserved regions. Intuitively, if you want to understand what leads to low density

then you need to sample in low density regions. When choosing the true intensity

surface in both simulations, random fields were sampled until there was substantial

spatial variation that one could detect with the detector array, to give the random

effects something to fit to. Thus this was doing preferential sampling in an indirect

way, keeping the detector array fixed while simulating possible intensity functions.

The result of this was positive bias in estimating abundance in both the TPRS and

the SPDE methods since density was higher, on average, within the surveyed region

as compared to the outside. When using random effects on density this should

be considered carefully. Model based inference does not save us from important

considerations of preferential and representative sampling.

Inference method

In this chapter, we chose to incorporate penalised random effects using a Laplace

approximate maximum likelihood approach implemented using TMB with automatic

differentiation to compute the required derivatives. This led us to the previously

mentioned memory problems when considering random effects with more than a

few hundred parameters. This presents a challenge for using high-resolution in-

tegration schemes with highly flexible random effects. In the models considered in

this chapter, spatially structured random effects with a few hundred parameters and

30-60 individuals seemed to be about the limit, given available, reasonably capable,

computing resources. This led to the use of low dimensional smoothers and the

subsequent challenges involving penalising the null space and prediction behaviour.

One clear alternative would be to attempt to fit these models using MCMC.

However, there was a startling lack of examples in the literature of even the relatively

simple inhomogeneous Poisson process being fitted using MCMC methods. This is
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a gap in the literature. It may be that current MCMC samplers used to fit SCR

model perform poorly with estimating spatial structure in the point process. If the

MCMC schemes struggle with fixed effects on density then they are likely to also

struggle with random effects. The SCR literature seems to have a clear dividing

line: if inhomogeneous density is called for then maximum likelihood seems to be

the only option at the moment. Future research should seek to address this gap

for MCMC methods. There could be benefits to exploring flexible density models

using MCMC methods since these approaches often provide summaries of the model

posterior that reveal important features of the likelihood such as identifiability issues

and multi-modality that may be missed when applying maximum likelihood (and

Laplace approximation) methods.

It could also be possible to develop a bespoke piece of software to implement

the Laplace approximation for SCR models and avoid the memory problems en-

countered using automatic differentiation with TMB. It is possible to derive the first-

and second-derivatives of the approximate likelihood (4.7) with respect to the spline

basis parameters in order to implement the Laplace approximation directly without

using automatic differentiation (see Appendix A). However, the derivatives of the

Laplace approximation of the marginal likelihood seems mathematically intractable.

It could, however, be possible to use gradient-free optimisation methods to maximise

the Laplace approximate marginal likelihood. A pilot study using the Nelder-Mead

method implemented in the R function optim did not converge but there are many

alternatives. Details of the gradients used and the way this was implemented can

be found in Appendix A.

One recent development is a new method for inference for extended latent Gaus-

sian models, where more complicated dependence structures are allowed in the data

likelihood component of the model (Stringer et al., 2021). This builds on the ap-

proach taken in INLA and extends the class of models that can be fitted. We

mentioned above the problem of maintaining sparsity between model parameters in
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the SCR likelihood given the shared parameters between each individual’s capture

history likelihood. This more complicated structure destroys the sparsity and also

means the SCR likelihood is not possible to implement in R-INLA as it currently

stands. Approximate methods for extended latent Gaussian models, as introduced

in Stringer et al. (2021), may be a promising alternative to MCMC for Bayesian

inference with SCR. The SCR likelihood appears to be within the class of extended

latent Gaussian models and this could be a possible avenue of future research.

Conclusion

In summary, this chapter has, for the first time, introduced penalised random effects

on the density of animals within an SCR model. This represents an extension to

the types of point process models that can be considered within SCR and brings a

valuable and commonly used tool in spatial statistics to this class of models. Using

automatic differentiation for inference was a pragmatic choice that had the benefits

of avoiding the need to derive mathematically challenging derivatives. However, this

led to some computational challenges for random effects with many parameters as

was the case with the SPDE approach and B-splines effects on space in general. To

address this we made extensive use of low rank approximations for the thin plate

spline and Duchon splines.

In order to use the Laplace approximation it was necessary to find ways to

penalise the null space to create a full rank precision matrix. We covered two

methods, the ‘add a number to the diagonal’ and the ‘add an extra penalty’ method

and found the extra penalty to be more numerically stable in simulations. This was

particularly the case for the GDS which allows for smoothing effects that respect

complex spatial geometry. We ended with a survey of all the decisions taken in

this chapter and possible alternatives. There remain many outstanding research

questions in this area on topics from model choice, sample size, preferential sampling,

choice of random effect, approximation method and how to achieve inference.
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Chapter 5

Discussion

To conclude the thesis we summarise the key results of each chapter in turn and

reflect on how this research could be taken forward. The overarching aim of develop-

ing methods in spatial ecology is to allow ecologists to address key questions in their

field and this is reflected in the discussion here which is, in large part, motivated by

applied problems. Each chapter has, in its own way, natural next steps to consider

for future work, driven by the applied work of spatial ecologists as well as the purely

statistical challenges involved.

A key theme of the thesis is the incorporation of spatially structured random

effects into ecological models with complex observation processes. We hope this

thesis has contributed to making spatially structured random effects a key part of

a spatial ecologist’s toolkit by expanding our understanding of how these methods

work, presenting computationally efficient approaches for achieving inference within

the context of complex observation processes, highlighting issues around communi-

cating results from such models, and, in this discussion, presenting various avenues

for future research.
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5.1 Chapter 2: Understanding the stochastic par-

tial differential equation approach to smooth-

ing

This chapter presented an application of finite element methods to an SPDE whose

stationary solutions have Matérn covariance. The key message of the chapter is that

the SPDE, after choosing a basis representation, can be reformulated as a multi-

variate Gaussian prior model with a precision matrix that encodes the correlation

structure implied by the SPDE. It is natural to then ask, could finite element meth-

ods also be applied to other SPDEs in statistical ecology? If so, it is possible that

the computational efficiency that has made INLA so popular in applications of spa-

tial statistics could be extended to a wider class of models. Below we describe a

few promising areas where this approach could be beneficial and help to address a

broad range of ecological questions.

5.1.1 Building mechanism into species distribution models

Species distribution models (SDMs) (Franklin, 2010a) seek to explain the spatio-

temporal patterns of space use by species, populations and individuals. Distance

sampling and SCR can be viewed as observation models that, at their heart, con-

tain SDMs. One limitation of correlative species distribution models (SDMs) is

that they only model correlations between predictors and the expected value of a

response variable, but do not provide a scientifically plausible mechanistic model of

the ecological processes which generated the observed data. Most SDMs are formu-

lated as a GLM-type model, with a response variable that is assumed conditionally

independent given a predictor. This predictor usually consists of an additive linear

combination of model components, such as an intercept parameter, and fixed and

random effects. No ecologist believes that this additive linear predictor is a math-
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ematical description of an actual ecological process that occurs in nature. Rather,

it is a convenient method to explore relationships between covariates and response

variables. This may or may not allow for an interpretation that contributes to our

understanding of ecological theory. Such an interpretation depends on many factors

other than the model structure itself, such as survey or experimental design and

specific contextual knowledge of the problem.

On the other hand, mechanistic models do not adopt a predictor expression as

a convenient statistical framework to represent processes in spatial ecology, but in-

stead attempt to use a direct mathematical description of the ecological processes

of interest. Efforts in this area have tended to be agent-based models (Wilensky

and Rand, 2015; McLane et al., 2011; Janssen and Ostrom, 2006) or based on differ-

ential equations (Busenberg, 2012; Holmes et al., 1994) and often achieving inverse

inference from observed data can be challenging for such models.

There is, however, an exciting middle ground between these two approaches

of correlative and mechanistic SDMs. Louvrier et al. (2020) combine the two ap-

proaches and incorporate a diffusion process, expressed as a differential equation,

into a GLM-based framework to model the recolonisation process of wolves in eastern

France. The model is based on a PDE that describes the inflow of new individu-

als to the region and the outflow (diffusion) to neighbouring regions in space. The

parameters of the model have a clear interpretation: the rate at which new indi-

viduals arrive and the rate at which the population spreads across the landscape.

This spatial process is also coupled with a logistic growth temporal process. This,

similarly, is based on a differential equation model whose parameters have a clear

interpretation. Louvrier et al. (2020) use the method of lines (Schiesser, 2012) to ap-

proximate the diffusion PDE and logistic growth ODE and arrive at a matrix-vector

equation to approximate to the differential equations. Inference was by MCMC with

the Gibbs algorithm using the JAGS package (Plummer, 2017).

Louvrier et al. (2020) provides a clear inspiration for similar work that could
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be undertaken using finite element methods and potentially fitted with INLA or

some other statistical software such as TMB. Instead of using the methods of lines

to approximate the differential equations, one could apply finite element methods

and derive the associated precision matrix for these mechanistic models. This pre-

cision matrix could incorporated into R-INLA, for example, by using the rgeneric

framework that allows users to define custom model components (Chapter 11 of

Gomez-Rubio (2020) provides an example of this for an intrinsic conditional au-

toregressive effect). This would allow access to many of the other useful features

of R-INLA such as the ability to create more complex random effects by combining

model components. For example, the parameters of the diffusion model for the re-

colonisation process of wolves in Louvrier et al. (2020) could also be modelled as a

random effect, perhaps due to sex or season.

Contrast the above example of spatial diffusion and temporal logistic growth

with, for example, a spatio-temporal random field with a separable space-time co-

variance function. One example would be a Matérn random field in space with

an auto-regressive model through time. This is also a potential candidate model

that could be suitable to investigate changes in the spatial distribution of wolves

recolonising France, as was the aim of Louvrier et al. (2020). This model may be

able to fit the data well (or it may not), but in either case it would not have the

clear interpretability of the mechanistic model. The auto-regressive parameter tells

us something about correlation through time but is not a direct replacement for a

population growth model founded on ecological theory. Similarly, a spatio-temporal

random field may capture something about the spatial diffusion of wolves across

France, but any estimates of spatial rates of spread across the landscape would

have to be derived post-hoc from posterior samples of the random field, and not

included explicitly in the model. This is not necessarily a bad approach but the

clear interpretation of a mechanistic model is appealing.

One criticism of mechanistic models in ecology is that the clear interpretation
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can come at the cost of requiring a relatively simplistic model. Michelot et al.

(2021) attempt to address criticism this by modelling the parameters of stochastic

differential equations themselves using random effects such as smoothing splines.

This seems to be a kind of middle ground between interpretability and flexibility.

Michelot et al. (2021) use the Euler-Maruyama discretisation of a diffusion process

and formulate the likelihood in such a way to make use of the Markov property of

the diffusion process. They implement their approach in TMB. It is possible that

finite element methods would also be useful here and the Markov property of the

diffusion process is also a property of the Matérn SPDE that Lindgren et al. (2011)

so successfully applied these methods to.

It seems that there may be a useful role that finite element methods can play

to incorporate mechanism into SDMs. The perspective taken in this chapter, that

SPDEs can be reduced to a prior (perhaps sparse) precision matrix, which can

be used in many different software packages, could be useful for further research on

statistical inference for flexible mechanistic models in spatial ecology. The advantage

of building mechanism into GLM-type models is that the inference methods for

GLMs are well established and there are many software packages and approaches

that could be used to do this.

5.2 Chapter 3: point transect distance sampling

using iterated integrated nested Laplace ap-

proximations

This chapter showed how to fit a one-stage distance sampling model in the R package

inlabru, which makes use of a novel approach to inference using iterated integrated

nested Laplace approximations. This extends the class of latent Gaussian models

that can be fitted using INLA to a class of conditional latent Gaussian models, where
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the model is an LGM conditional on particular values of some parameters. In the

distance sampling case, the model could be fitted using standard INLA conditional

on the parameters of the detection function.

This means, therefore, that inlabru can be used to fit models that standard

INLA cannot. The class of conditional LGMs is not as rich as the models that

could be specified in a full Bayesian probabilistic programming language such as

Rstan (Stan Development Team, 2020) or JAGS (Plummer, 2017), but this additional

flexibility does bring some new opportunities to fit complex models with non-linear

parametric effects in spatial ecology. The benefits of doing this in inlabru is that

these more complex models can now take advantage of the greater computational

efficiency of INLA over MCMC. This section discusses some possibilities for using

the iterated INLA method of inference in statistical ecology applications.

5.2.1 Functional responses

In the distance sampling application we used a parametric form of detection function

to model an observation process. Similar parametric forms can also be used to model

complex covariate effects, known as functional responses. A functional response

captures the idea that the overall abundance of a resource or risk will affect animals’

responses to it (Holling, 1959). For example, there may be diminishing returns to the

value of a resource and so this could be modelled using a parametric equation that

has an asymptote. Chapter 2 of Matthiopoulos et al. (2020) describes an example

of a ‘saturating response’ with the effect of a covariate z modelled as

f(z) = α(1− exp(−γzc)) , (5.1)

with parameters α, γ, c > 0. This equation asymptotes at the value of α and the

shape of the function is controlled by parameters γ and c. In a very simple simula-

tion example, inlabru managed to recover this function from simulated count data
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generated using (5.1) (see Appendix B).

There is a rich literature on functional responses with many possible effects de-

signed to model a wide variety of response behaviour (Rosenbaum and Rall, 2018;

Englund et al., 2011; Real, 1979; Oaten and Murdoch, 1975). There is considerable

potential to use software like inlabru to develop a suite of more ecologically realistic

model components to use within SDM models. This allows the predictor expression

we use in these regression type models to capture more ecological realism. Impor-

tantly, fitting these models using the iterated INLA approach allows us to retain

much of the computational efficiency that has made INLA so popular whilst also

allowing more realistic and interpretable models.

Another example of a functional response is a multi-variable response that con-

siders trade-offs between resources. For example, perhaps an animal prefers resource

A over resource B, but if resource A is not available it will still use resource B. There

is the potential to model this kind of interaction effect within a conditional LGM

estimated using inlabru. This type of interaction between covariates has been

addressed in the prey-choice literature (Smout et al., 2010) but we are not aware

of its use in species distribution modelling in general. A similar idea is tackled

in Matthiopoulos et al. (2011) where they formulate a varying coefficients model

that uses the average conditions of all covariates to model the coefficients of each

covariate individually.

5.2.2 Other detection models

This section considers observation processes other than distance sampling that could

be implemented within inlabru.

The inhomogeneous Poisson process has become a key method for species dis-

tribution modelling using presence only data. Peel et al. (2019) and Fithian et al.

(2015) both take this perspective and highlight that the key property of the Poisson

process is that thinning the points means that presence only data can be viewed as a
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realisation of an inhomogeneous Poisson process with intensity λ(s)p(s). However,

they do not model p(s) as a probability which takes values between zero and one.

Instead they use a log link, adding ‘detectability covariates’ to the linear predictor

for log λ(s), and fitting the models using standard GLM software. However, this is

means that the effect of the detectability covariates is not bounded between zero

and one.

Using the iterated INLA approach implemented in inlabru, it is possible to add

a non-linear model component, such as the logit of a linear combination of detectabil-

ity covariates, within this predictor. This would bound the effect of the detectability

covariates between zero and one. It is not clear the consequences of inappropriately

assuming a log link for p(s). In Peel et al. (2019) and Fithian et al. (2015) they sim-

ulate from the model that uses a log link so it is hard to say from these papers what

the possible consequences are if the true data generating process actually modelled

p(s) as a probability. Future work could address this by simulating data using an

appropriate thinning probability model and fitting both the log link and logit link

models using inlabru. It seems likely that overall abundance estimates would be

affected by incorrectly using a log link, although relative abundance estimates may

be more robust.

Another common detection process in statistical ecology is selectivity analysis,

which is used to model the probability that a fishing trawler net will capture a fish,

dependent on the size of the fish. The larger fish are more likely to be trapped and

the smaller fish more likely to escape through holes in the net.

Various parametric equations have been proposed to describe this type of rela-

tionship (Galbraith et al., 1994; Millar and Fryer, 1999), including a logistic linear

model. Often the selectivity of specific types of gear is modelled separately and

then these estimates are used to adjust field survey data. inlabru allows the user

to define random effects on non-linear model components, for example using a ran-

dom intercept term for each survey vessel and trawling gear type. There is also
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support for implementing multiple likelihoods to allow the selectivity and spatial

distribution of fish stocks to be estimated jointly.

These are just two examples of detection models that ecologists use on a regular

basis and could be implemented in inlabru and there are likely to be many more.

5.2.3 Parametric spatio-temporal dependencies

One of the most popular features of INLA is the ability to fit spatio-temporally vary-

ing random fields with a wide variety of covariance structures. Whilst these model

components are highly flexible and can model a number of ecological processes, they

do not have a clear interpretation in terms of how they can contribute to ecological

theory. There is the potential to explore defining model components with parametric

forms of dependence that, conditionally, form a LGM. For example, logistic growth

through time could be coupled with a spatial model. This could potentially lead

to insights into ecological parameters of interest such as spatial variability in carry-

ing capacity. A model like this could, in principle, be fitted using JAGS or RStan,

but the appeal of inlabru is that we can make use of the speed of R-INLA whilst

also extending the class of models we can consider. It may also be possible to use

parametric spatial dependencies, such as those often used in compartmental models

(Brauer, 2008), and specify these as conditional LGMs.

5.2.4 A word of warning

Whilst the ability of iterated INLA to allow the fitting of more complex models

seems promising, future research is needed to understand how well this approximate

inference procedure does in practice. The approximation error for LGMs fitted using

INLA is minimal (Rue et al., 2009) but this has not been investigated for this wider

class of conditional LGMs. More complex models will, in general, have a greater

tendency to run into issues of identifiability and multi-modality in the posteriors

which could make the Laplace approximation unsuitable. It is also possible that
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iterated INLA could fail silently.

Therefore, caution is needed when developing new applications with the iterated

INLA approach. A pragmatic strategy would be to investigate the behaviour of mod-

els using MCMC methods that allow a full exploration of the posterior distribution,

which would reveal issues such as multi-modality that could cause problems for the

Laplace approximation. Comparisons could then be made with the approximate

posteriors generated by iterated INLA to judge whether the more computational

efficient approximate approach is justifiable within the given context.

In summary, the iterated INLA approach has considerable potential to be used

in a wide variety of models that are of interest to spatial ecologists. It provides an

half-way house between the speed of INLA and the full flexibility of probabilistic

programming languages like JAGS and RStan. Work in this are should be cautious

and informed by simulation studies since the accuracy and appropriateness of using

iterated INLA has not been fully investigated on the class of conditional LGMs.

Challenges such as multi-modal posteriors could go undetected and as models be-

come more complex this becomes more likely.

5.3 Chapter 4: Flexible density models for spatial

capture-recapture

5.3.1 One dimensional splines

In keeping with the theme of this thesis, this chapter primarily investigated the

use of random effects to model spatial autocorrelation. However, there are other

components of the SCR model that could benefit from penalised random effects

models.

A one-dimensional spline effect on a covariate to explain density would allow

ecologists to consider more complicated functional responses to environmental con-
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ditions within an SCR model. This offers greater flexibility than the usual log-linear

fixed effect. These one-dimensional splines typically require fewer knots than the

two-dimensional spatial effects and so may avoid some of the computational chal-

lenges encountered for random effects on density. Future work could investigate this

through simulations and applied case studies, providing examples can be found of

real applications where a non-linear effect of a covariate is justified.

5.3.2 Alternative point process models

There are, however, some limitations as to how far we can go with random effects on

the intensity of a log-Gaussian Cox process that we used to model the distribution of

activity centres. The log-Gaussian Cox process is a flexible model that can capture

unexplained clustering in animal locations but it cannot, however, model repulsion

between points. One alternative was addressed by Reich and Gardner (2014) who

modelled repulsion between points for a territorial species using a Strauss process.

There is a rich literature on point process models beyond the Poisson process and

its variants (Baddeley et al., 2015; Illian et al., 2008) and the full breadth of these

possibilities have not been considered within SCR. Some types of dependence be-

tween points are hard to incorporate into a log-Gaussian Cox process model, such as

repulsion between points or self-exciting processes. For some SCR applications there

may be some benefit to implementing other types of point processes that better fit

the ecology. Often point processes that incorporate more complicated dependencies

between points are fitted using pseudo-likelihood approaches (Baddeley and Turner,

2000). Future work could investigate whether TMB could be applied to these cases

which could also open the door to combining these models with the random effects

structures presented here.

In addition to new point process models there is also scope to consider point

processes defined networks. For example, Sutherland et al. (2018) applied SCR

methods to data collected on a river network. There is a growing literature on point
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processes defined on networks which we briefly describe. Defining random effects

for the intensity on a network requires consideration of how correlations propagate

through a branching structure (Baddeley et al., 2017) and there are a variety of

methods to handle this (Rakshit et al., 2019, 2017; McSwiggan et al., 2017). For a

river network there is also a natural direction to correlation due to the flow of the

river which needs to be accounted for (Santos-Fernandez et al., 2021; Rasmussen and

Christensen, 2021). There are many potential options for implementing a random

effect for an intensity function defined on a network. For those effects that result in

constructing a precision (or smoothing) matrix, the approach taken in this chapter

could be fruitful.

5.3.3 Random effects on other components in the SCR

model

Of course, the SCR model is more than just the intensity function for the distribution

of activity centres. Other components of the model could also benefit from flexible

random effects models. Stevenson et al. (2021) point out that capture-recapture data

will almost always have some un-modelled heterogeneity in detections because the

assumption of conditional independence between detections is likely to be violated

due the way in which animals move and encounter detectors. Stevenson et al. (2021)

address this using a latent random field approach similar to that taken in this thesis.

The success of using random fields to model varying detection as well as density

suggests that a general software package that allows the use of penalised random

effects on all major parameters in the SCR model, the encounter rate, scale pa-

rameter and density surface, would be a powerful toolkit for practitioners to build

rich and complex models for SCR data. In doing so they will be able to account

for the complex spatio-temporal dependencies in the data by using computationally

efficient and flexible random effects. This would represent a significant development

in SCR applications, bringing valuable tools from the spatial statistics literature
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into the SCR setting.

However, this additional complexity may come at a cost. When considering

spatially structured random effects on all major parameters of the SCR model, the

issue of identifiability has to be considered. The use of non-parametric effects to

describe both the detectability of individuals and their spatial distribution seems

likely to lead to confounding unless some simplifying assumptions could be made.

There may be some model structures and, in a Bayesian setting, prior formulations,

that avoid this problem. This should be an avenue of future research.

5.3.4 Alternative low rank methods

To conclude, we also highlight that there are many approaches to implementing

spatially structured random effects other than those we considered here, which were

essentially the low-rank random effects implemented in mgcv. This was a practical

choice given our familiarity with the software and meant we were able to use mgcv

to generate the required smoothing matrices and then use these within TMB. There

are, however, other low-rank random effects that could be considered. One recent

contribution is a low rank GRF approach based on a truncation of the spectral

representation of the covariance function (Riutort-Mayol et al., 2020).

5.4 Conclusions

As the above discussion shows, there are many possible future avenues for research

on the topics presented in this thesis. Statistical ecology requires advanced statistical

methods to account for complex spatio-temporal dependencies in ecological processes

and observation methods. This thesis has focused on implementing computationally

efficient spatially structured random effects in distance sampling and SCR, providing

valuable flexible modelling approaches that can model complex spatial dependencies

in ecological data. In doing this, we also presented a novel perspective on the SPDE
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approach, a technically challenging model, that we hope helps lead to a better

understanding of this approach amongst applied quantitative ecologists. We also

focused on the issue of communicating uncertainty in models that use such effects.

This remains a rich area of research, with many open questions and opportunities

for applied statisticians to have an impact of the field of spatial ecology.

We hope this thesis is an example of how to usefully contribute to statistical

methods for spatial ecology through developing a better understanding of the meth-

ods we use, constructing appropriately complex models that can handle the unique

challenges of observational ecological datasets, using computationally efficient infer-

ence methods that allow these models to be estimable in practice, and considering

how to communicate the outputs from these models. It has been an honour to work

on all of these aspects of applied statistical ecology and an experience from which I

learned so many helpful things. I hope, if you’ve somehow made it this far to read

through to the end of this thesis, that it was helpful to you too.
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Appendix A

Derivatives of the approximate

SCR log likelihood

A.1 First- and second-order derivatives

Choose M integration locations s = (s1, . . . , sM)ᵀ with weight αj at location sj.

The approximate log-likelihood is

log {π(Ω|λ)} = −Λ̃ +
n∑
i=1

log

[
M∑
j=1

αj exp

{∑
t

∑
k

log[gitk(sj)] + log λj

}]
, (A.1)

where

Λ̃ =
M∑
j=1

αjλjp··(sj) =
M∑
j=1

αjp··(sj)e
log λj ,

and λj = λ(sj). Writing Λ̃ like this is useful for differentiating with respect to log λj

below. The log-intensity is

log λ(sj) = β +
R∑
r=1

ξrΨr(sj)
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where β is an intercept parameter and there are R basis functions ψ1, . . . , ψR for the

random effect and ξ = (ξ1, . . . , ξR)ᵀ have precision matrix Q. Let matrix A have

(j, r)-th entry Ajr = Ψr(sj) then the intensity evaluated at each integration location

is logλ = β +Aξ.

For simplicity I suppress all other parameter notation other than ξ in the likeli-

hoods. The marginal likelihood, integrating out ξ, is

π(Ω) =

∫
· · ·
∫
π(Ω|ξ)fξ(ξ) ∂ξ1 · · · ∂ξR

=

∫
· · ·
∫

exp {log [π(Ω|ξ)] + log fξ(ξ)} ∂ξ1 · · · ∂ξR.

Let g(ξ) = log [π(Ω|ξ)]+log fξ(ξ). Then the Laplace approximation of the marginal

likelihood is

π̃(Ω) = sup
ξ
{exp[g(ξ)]} (2π)

R
2

|H| 12
, (A.2)

where H is the matrix of second derivatives of −g(ξ) with respect to ξ evaluated

at the mode of g(ξ).

Derivatives of g(ξ)

Let h(ξ) = log [π(Ω|ξ)] and so g(ξ) = h(ξ) + log fξ(ξ). The derivatives of log fξ(ξ)

are straighforward since fξ is the pdf of a GMRF. The pdf of a GMRF with zero

mean and precision matrix Q is proportional to exp(−1
2
ξᵀQξ). Therefore we have

∂ log fξ(ξ)

∂ξ
= −Qξ (A.3)

∂2 log fξ(ξ)

∂ξ2 = −Q. (A.4)

Computing derivatives of h(ξ) requires repeated applications of the chain rule.
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Since h(ξ) is a function of log λj for j = 1, ...,M . Then by the chain rule:

∂h(ξ)

∂ξr
=

∑
j

∂h(ξ)

∂ log λj

∂ log λj
∂ξr

=
∑
j

∂h(ξ)

∂ log λj
Ψr(sj). (A.5)

The derivatives of h(ξ) with respect to log λj are

∂h(ξ)

∂ log λj
= −αjλjp··(sj) +

n∑
i=1

αj exp {
∑

t

∑
k log[gitk(sj)] + log [λ(sj)]}∑M

j∗=1 αj∗ exp {
∑

t

∑
k log[gitk(sj∗)] + log [λ(sj∗)]}

= −αjλjp··(sj) +
n∑
i=1

αj exp {
∑

t

∑
k log[gitk(sj)] + log λj}∑M

j∗=1 αj∗ exp {
∑

t

∑
k log[gitk(sj∗)] + log[λj∗ ]}

= −αjλjp··(sj) +
n∑
i=1

αjλj
∏

t

∏
k gitk(sj)∑M

j∗=1 αj∗λj∗
∏

t

∏
k gitk(sj∗)

= −αjλjp··(sj) + αjλj

{
n∑
i=1

∏
t

∏
k gitk(sj)∑M

j∗=1 αj∗λj∗
∏

t

∏
k gitk(sj∗)

}
. (A.6)

To obtain the second derivatives apply the chain rule again

∂2h(ξ)

∂ξrξv
=

∑
j2

∂2h(ξ)

∂ log λj2∂ξr
Ψv(sj2)

=
∑
j2

∑
j1

∂2h(ξ)

∂ log λj2∂ log λj1
Ψr(sj1)Ψv(sj2), (A.7)

where j2 is the index associated with applying the chain rule to obtain the second

derivatives and j1 similarly is associated with computing the first derivatives of h.

Therefore we need to compute ∂2h(ξ)/∂ log λj2∂ log λj1 for all combinations of j1

and j2. For the diagonal elements of the Hessian, when j2 = j1, we have

∂2h(ξ)

∂ log λ2
j

= −αjλjp··(sj) + αjλj

{
n∑
i=1

∏
t

∏
k gitk(sj)∑M

j∗=1 αj∗λj∗
∏

t

∏
k gitk(sj∗)

}

+ α2
jλj

n∑
i=1

[
∏

t

∏
k gitk(sj)]

2[∑M
j∗=1 αj∗λj∗

∏
t

∏
k gitk(sj∗)

]2 . (A.8)
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For the off-diagonal elements, when j2 6= j1, we have

∂2h(ξ)

∂ log λj2∂ log λj1
= αj1αj2λj1λj2

n∑
i=1

{
∏

t

∏
k gitk(sj1)} {

∏
t

∏
k gitk(sj2)}[∑M

j∗=1 αj∗λj∗
∏

t

∏
k gitk(sj∗)

]2 (A.9).

The above expressions can be simplified using matrix notation. Let Ar =

[Ψr(s1) . . .Ψr(sM)]ᵀ and let H log λ be the matrix whose (j, k)-th element is

∂2h(ξ)/∂ log[λj]∂ log[λk]. Then

∂2h(ξ)

∂ξrξv
=

∑
j2

∑
j1

∂2h(ξ)

∂ log[λj2 ]∂ log[λj1 ]
Ψr(sj1)Ψv(sj2)

= Aᵀ
rH log λAv.

Then we can write the Hessian of h(ξ), denoted Hh, as

Hh = AᵀH log λA. (A.10)

Then the Hessian of g(ξ) is H = Hh−Q. Note that when the integration locations

are the same as the knot locations for the random effect (as was used in the SPDE

implementation) then A is the identity matrix.

A.2 A bespoke Laplace approximation implemen-

tation

This section provides one possible way to implement the above derivatives in com-

puter code by seeking to re-write the equations given above in a more concise way.
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Constructing H log λ

Seeking to simplify equations (A.8) and (A.9), which define the elements of H log λ,

let G be the matrix with

Gij = αjλj
∏
t

∏
k

gitk(sj).

The row sums of G give the denominator indexed by j∗ in (A.8) and (A.9).

Denote the vector G∗ = G1M . Then the i-th element of G∗ is G∗i =∑M
j∗=1 αj∗λj∗

∏
t

∏
k gitk(sj∗). Then (A.9) becomes (letting j1 = j, j2 = k)

∂2h(ξ)

∂ log[λj]∂ log[λk]
= αjαkλjλk

n∑
i=1

{
∏

t

∏
k gitk(sj)} {

∏
t

∏
k gitk(sk)}[∑M

j∗=1 αj∗λj∗
∏

t

∏
k gitk(sj∗)

]2

=
n∑
i=1

GijGik

(G∗i )
2
, (A.11)

and (A.8) can be written as:

∂2h(ξ)

∂ log λ2
j

= −αjλjp··(sj) +
n∑
i=1

Gij

G∗i
+

n∑
i=1

αj(Gij)
2

(G∗i )
2
. (A.12)

So given vectors α, λ, p.., G
∗, and the matrix G (all of which are relatively

straightforward to construct) then we can use equations (A.11) and (A.12) to create

H log λ (Note: In R I did this using loops as I couldn’t see any other way but in a

compiled language this wouldn’t matter). To create G, first create B with (i, j)-th

element given by

bij =
∏
t

∏
k

gitk(sj)

= exp

[∑
t

∑
k

log gitk(sj)

]
,

and, letting D = diag(α � λ), where � denotes the element-wise product, then
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G = BD. The entries of B have to be calculated to evaluate the likelihood anyway

to this comes at minimal extra cost.

The gradient of h(ξ) with respect to logλ, given for a single location sj in

equation (A.6), is then

∂h(ξ)

∂ logλ
= α� λ�

(
−p.. +

n∑
i=1

Bi

G∗i

)
, (A.13)

where Bi is the i-th row of the matrix B and G∗i is the i-th element of vector G∗.

The derivative of h(ξ) with respect to ξ is then

∂h(ξ)

∂ξ
= Aᵀ ∂h(ξ)

∂ logλ
. (A.14)

Therefore the gradient of g(ξ) with respect to ξ is

∂g(ξ)

∂ξ
= Aᵀ ∂h(ξ)

∂ logλ
−Qξ. (A.15)

This then provides all the building blocks necessary to estimate the mode of g(ξ)

and construct its Hessian in order to compute the Laplace approximate marginal

likelihood (A.2).
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Appendix B

Saturating functional responses

using inlabru

This appendix presents a proof of concept for the use of non-linear parametric effects

in species distribution models fitted using inlabru.

For the purposes of demonstrating the idea, we choose one specific effect, known

as a saturating response. This is an effect that has diminishing returns as the

covariate value increases. It could, for example, represent a food source that once

available in sufficient quantities, provides no additional benefit to a species. We

consider an effect of the form

f(z) = α(1− exp(−γzc)), (B.1)

for covariate z with parameters α, γ, c > 0. This equation asymptotes at the value

of α and the shape of the function is controlled by parameters γ and c. This is

clearly non-linear in the parameters α, γ and c. For simplicity we assume c is a

fixed constant.

We generated a covariate effect (Figure B.1A) and then calculated the saturating

effect of this covariate (Figure B.1B) with α = 5 and γ = 0.6 and c assumed fixed

at c = 1. We used a log link and added an intercept parameter to generate Poisson
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rate parameters (Figure B.1C) from which we generated an observed set of counts

(Figure B.1D). The model was estimated using bru(..., family = "Poisson")

and the fitting completed in seconds.

Figure B.1: A: A simulated covariate; B: The saturating effect of the simulated
covariate; C: The Poisson rates that depend on this saturating effect (using a log
link); D: Simulated counts.

Figure B.2 summarises the posterior effect of z estimated by the model and

shows good agreement with the true effect used to simulate the data (blue line).

This shows that non-linear functional responses are, in principle, estimable using

the iterated INLA approach implemented in inlabru.
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Figure B.2: Black line: Mean posterior effect of z; Grey shaded area: 0.025 and
0.975 pointwise credible intervals for the posterior effect of z; Blue line: The true
effect of z used to simulate the data
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Breen, P., A. Cañadas, O. Ó. Cadhla, M. Mackey, M. Scheidat, S. C. V. Geelhoed,

E. Rogan, and M. Jessopp (2017, May). New insights into ocean sunfish ( Mola

mola ) abundance and seasonal distribution in the northeast Atlantic. Scientific

Reports 7 (1), 1–9.

Brenner, S. and R. Scott (2008). The Mathematical Theory of Finite Element Meth-

ods (Third ed.). Texts in Applied Mathematics. New York: Springer-Verlag.

Broekhuis, F., N. B. Elliot, K. Keiwua, K. Koinet, D. W. Macdonald, N. Mogensen,

D. Thuo, and A. M. Gopalaswamy (2021). Resource pulses influence the spatio-

temporal dynamics of a large carnivore population. Ecography 44 (3), 358–369.

Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and

L. Thomas (2004, February). Advanced Distance Sampling: Estimating Abun-

dance of Biological Populations. Oxford University Press.

Buckland, S. T., C. S. Oedekoven, and D. L. Borchers (2016, March). Model-

Based Distance Sampling. Journal of Agricultural, Biological, and Environmental

Statistics 21 (1), 58–75.

206



Buckland, S. T., E. A. Rexstad, T. A. Marques, and C. S. Oedekoven (2015).

Distance Sampling: Methods and Applications. Methods in Statistical Ecology.

Springer International Publishing.

Busenberg, S. (2012). Differential Equations and Applications in Ecology, Epi-

demics, and Population Problems. Elsevier.

Camp, R. J. (2020). Hakalau Forest National Wildlife Refuge, Hawaii

Akepa point-transect survey, 2002: U.S. Geological Survey data release.

https://doi.org/10.5066/P9Q9UXMZ.

Camp, R. J., K. W. Brinck, P. M. Gorresen, and E. H. Paxton (2016). Evaluating

abundance and trends in a hawaiian avian community using state-space analysis.

Bird Conservation International 26 (2).

Camp, R. J., D. L. Miller, L. Thomas, S. T. Buckland, and S. J. Kendall (2020).

Using density surface models to estimate spatio-temporal changes in population

densities and trend. Ecography 43 (7), 1079–1089.

Camp, R. J., T. K. Pratt, P. M. Gorresen, J. J. Jeffrey, and B. L. Woodworth

(2010). Population Trends of Forest Birds at Hakalau Forest National Wildlife

Refuge, Hawai’i. The Condor 112 (2), 196–212.

Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. Brubaker, J. Guo, P. Li, and A. Riddell (2017). Stan: A probabilistic pro-

gramming language. Journal of Statistical Software 76 (1), 1–32.

Chen, Z. (2005). Finite Element Methods and Their Applications. Springer Science

& Business Media.
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Englund, G., G. Öhlund, C. L. Hein, and S. Diehl (2011). Temperature dependence

of the functional response. Ecology Letters 14 (9), 914–921.

Espinosa, S., G. Celis, and L. C. Branch (2018). When roads appear jaguars decline:

Increased access to an Amazonian wilderness area reduces potential for jaguar

conservation. Plos One 13 (1), e0189740.

Fiske, I. and R. Chandler (2011). Unmarked: An R package for fitting hierarchical

models of wildlife occurrence and abundance. Journal of Statistical Software 43,

1–23.

Fithian, W., J. Elith, T. Hastie, and D. A. Keith (2015). Bias correction in species

distribution models: Pooling survey and collection data for multiple species. Meth-

ods in Ecology and Evolution 6 (4), 424–438.

Franklin, J. (2010a). Mapping Species Distributions: Spatial Inference and Predic-

tion. Cambridge University Press.

Franklin, J. (2010b). Moving beyond static species distribution models in support

of conservation biogeography. Diversity and Distributions 16 (3), 321–330.

Fuglstad, G.-A., D. Simpson, F. Lindgren, and H. Rue (2019). Constructing priors

that penalize the complexity of gaussian random fields. Journal of the American

Statistical Association 114 (525), 445–452.

Fuller, L., M. Shewring, and F. M. Caryl (2018, May). A novel method for target-

ing survey effort to identify new bat roosts using habitat suitability modelling.

European Journal of Wildlife Research 64 (3).

Furnas, B. J., R. H. Landers, R. G. Paiste, and B. N. Sacks (2020). Overabundance

209



of Black-Tailed Deer in Urbanized Coastal California. The Journal of Wildlife

Management 84 (5), 979–988.

Galbraith, R. D., R. J. Fryer, and K. M. S. Maitland (1994, June). Demersal pair

trawl cod-end selectivity models. Fisheries Research 20 (1), 13–27.
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