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Abstract: The interplay of electronic and structural degrees of freedom in solids is a topic of 
intense research.  Experience and intuition suggest that structural changes drive conduction 
electron behavior, because the large number of valence electrons dominate the structural 
properties.  As part of a seminal paper written over sixty years ago, Lifshitz discussed an alternative 
possibility: lattice softening driven by conduction electrons at topological Fermi surface 
transitions. The effect he predicted, however, was small, and has not been convincingly observed.  
Using measurements of the stress-strain relationship in the ultra-clean metal Sr2RuO4, we reveal a 
huge softening of the Young’s modulus at a Lifshitz transition of a two-dimensional Fermi surface, 
and show that it is indeed entirely driven by the conduction electrons of the relevant energy band. 
One-Sentence Summary: Conduction electrons drive a nonlinear elastic response in the ultra-
clean, two-dimensional metal Sr2RuO4. 
  



 

2 
 

Main Text: The coupling between elastic and electronic degrees of freedom is crucial to 
determining the phase diagrams of correlated electron systems, for example those displaying 
electronic nematicity, in which conduction electrons develop anisotropies (1).  However, there is 
always a ‘chicken and egg’ question – does the lattice drive, or respond to, the conduction electron 
physics (2, 3)? Here, we approach the entanglement of electronic and structural degrees of freedom 
using a different method to those most commonly employed.   We study the stress-strain 
relationship of the quasi-two-dimensional correlated metal Sr2RuO4 as it is tuned through a saddle 
point Lifshitz transition (4–6) in which the Fermi surface topology changes and the Fermi level 
crosses a Van Hove singularity (VHS) (7).  By combining direct stress-strain measurements with 
experimentally-determined entropy data across the same transition, we demonstrate the existence 
of an unexpectedly large softening of the lattice, driven entirely by conduction electrons.  The 
possibility of such effects was discussed theoretically by Lifshitz himself over sixty years ago, but 
imagined to be extremely small (4).  Here it is large and, in principle, singular, i.e. capable of 
introducing a lattice instability in the  limit if not cut off by a phase transition to some other 
form of order.   We discuss our results in the framework of quantum critical elasticity, and show 
that superconductivity is a natural way of cutting off quantum critical lattice softening. 

The material platform for our experiments, Sr2RuO4, has attracted considerable attention both as 
an unconventional superconductor (8–12) and a benchmark two-dimensional Fermi liquid (13, 14). 
It is one of the cleanest correlated electron materials known. The best single crystals have residual 
resistivities of ≈ 50 nΩ-cm, corresponding to electron mean free paths of 2 µm or more (15). Its 
Fermi surface consists of three cylinders, commonly referred to as α, β and γ (14).  Electronic 
correlations lead to a substantial mass renormalization over the values predicted in independent-
electron band structure calculations, meaning that under ambient conditions the Fermi energy EF 
of the γ band sits only 14 meV below a saddle point Van Hove singularity at the M point of the 
tetragonal Brillouin zone (16).  It is possible to tune this Van Hove singularity through EF by 
applying 0.7 ± 0.1 GPa along the [100] crystalline direction (17, 18), profoundly affecting the 
electronic properties.  For example, the superconducting transition temperature is enhanced by a 
factor of 2.4 from its ambient-pressure value to 3.5 K (19), and the temperature dependence of the 
resistivity undergoes a large change from the conventional Fermi liquid T2 dependence seen at 
higher and lower stress (5).   

To probe the consequences of this Lifshitz transition on the lattice stiffness, we used bespoke 
apparatus in which both uniaxial stress σ and strain ε can be monitored simultaneously (20), 
allowing measurement of the Young’s modulus (Fig. S1).  To maximize the quantitative accuracy 
of the data, samples are milled into a necked shape, as shown in the inset of Fig. 1A, using a Xe 
plasma source focused ion beam. The end tabs are then embedded in epoxy, which acts as a 
conformal layer through which large forces can be transmitted to the brittle samples.  The necking 
creates a rapid crossover between low- and high-stress regions of the sample, which is important 
for resolving fine features in the stress-strain relationship (21).  Full details on how we extract the 
Young’s modulus and strain of the sample, including an examination of possible systematic errors 
that could affect the analysis, can be found in the Supplementary Materials (22) and Figs. S2-S5.   

Our core result is shown in Fig. 1A: the differential Young’s modulus  as a function 
of strain at 4 K.  To demonstrate repeatability, data from three samples are shown. Samples 2 and 
3 had a higher aspect ratio (see Supplementary Information), and are therefore expected to yield 
more accurate data.  Each sample was in a different stress cell.  The force calibrations of the cells 
were refined using the known Lifshitz stress of -0.7 GPa (18), where negative values denote 
compression.  At the Lifshitz transition strain of , Ex is seen to drop to 
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around 146 GPa, and then beyond the transition to increase to around 200 GPa.  In other words, 
contrary to our naïve expectation, the dip in Ex is not a small effect; the softening of the lattice at 
the Lifshitz transition is between 10% and 15% depending on the definition used for the 
background value.  Under tensile strain, Ex again decreases quite rapidly. There is expected to be 
a Lifshitz transition under tensile strain equivalent to that under compressive strain, and this 
decrease in Ex is most likely due to approach to that transition.   A second striking aspect of the 
lattice softening at the Lifshitz strain is its strong temperature dependence, shown in Fig. 1B. At 
40 K the dip is barely resolved. As the temperature is lowered, it sharpens and deepens, with 
substantial change observable even between 5 K and 4 K. 

Elastic constants are second derivatives of the free energy: . , where U is the 

internal energy and S the entropy. The intuitive expectation might be that the valence band 
contributions to U completely dominate F, and so also the elastic moduli.  However, the generally 

valid expression for the free energy , where E0 is the ground 

state energy, reveals nicely that any temperature dependence of elastic constants derives from 
changes in the entropy, even if may dominate the elastic moduli.  Our Young’s modulus 
data have a strong temperature dependence (Fig. 1B), so a link between the Young’s modulus and 
a strain-dependent entropy is expected. In Fig. 1C we compare the entropy obtained from a recent 
study of the elastocaloric effect on Sr2RuO4 (23) at 4 K with the Young’s modulus data at the same 
temperature.  The strong correlation between the two leads to the conclusion that, remarkably, the 
key physics we are observing is driven by a conduction band.  At this low temperature, the phonon 
contribution to the entropy in Sr2RuO4 is negligible (24), and the valence band contribution even 
more so.  All that will be observed is conduction band entropy, due to the density of states at the 
Fermi level.  A quantitative analysis comparing the entropy and Young’s modulus data can be 
found in the Supplementary Materials. 
In order to understand the observed behavior quantitatively, we make use of a two-dimensional 
model for the Landau quasiparticles of the γ band (23) whose parameters are all constrained by 
other observations on Sr2RuO4 (25). This model, which is summarized in the Supplementary 
Materials, yields a contribution to the electronic free energy as function of 
temperature and the three uniaxial strain values. The crucial ingredient of the theory is a symmetry 
adapted deformation potential  with tight-binding hopping parameters t. (Notice that, 
while we mostly refer to the uniaxial strain along the x-axis as ε, we briefly write out the axis labels 
explicitly to account for the correct Poisson effects that enter any measurement of the Young’s 
modulus.)  The total free energy is then given as  where we determine F0 such that our 
model reproduces the correct elastic constants for the unstrained samples at the reference 
temperature of T = 4 K. We include the applied uniaxial stress via , which yields the 
equation of state . In linear elasticity, strain orthogonal to the applied stress is 
accounted for by Poisson ratios, such as with κ = y, z. For the rather large stress values 
applied here and given the subtle behavior near the Lifshitz transition, we must, however, allow 
for non-linear relations . Those follow from . This finally yields 
the differential Young’s modulus  

  (1),  
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with the usual definition of the elastic tensor.  The elastic constants 
 consist of a background contribution C0,ij and the part 

due to the γ-band with strain-dependent Ek and Fermi function fk.  Within linear elasticity, the 
derivatives are the strain-independent Poisson ratios and 1/Ex is the 11 element of the inverse 
elastic tensor. We show in the Supplementary Materials that near the Lifshitz point  and 
the differential Poisson ratio  differ and have a pronounced strain dependence (Fig. 
S6).  Once these non-linear Poisson’s ratios are included, our model makes the predictions shown 
in Figs. 2A and B.  The agreement with the experimental data shown in Fig. 1 is very good (see 
also Fig. S7).  The temperature dependence of the dip in the Young’s modulus and the relationship 
between the Young’s modulus and entropy at 4 K are reproduced so well that they provide 
powerful evidence that the model correctly captures the key physics of the observations. 
Qualitatively, the softening at the Van Hove point is a consequence of the fact that Young’s 
modulus is the sum of a presumed weakly temperature- and strain-dependent background 
contribution, Ex(0), and a singular conduction electron contribution from the γ band:  

   (2),  

where A is a positive constant and T0 a constant of order the bandwidth.  The logarithmic 𝑇-and 
strain dependence is due to the fact that the electronic contribution to the elastic constants is 
proportional to the density of states [see the fk(1-fk) term in the γ -band contribution to Cij], which 
diverges logarithmically at a Van Hove singularity in two dimensions. All electronic contributions 
to the 𝐶ij and the differential Poisson’s ratios also show this singular, logarithmic dependence. The 
sign of the coefficient 𝐴 > 0 reflects that the 𝛾-band will always cause a softening of the important 
diagonal elements 𝐶ii of the elastic tensor. The magnitude of 𝐴 is determined by a combination of 
band renormalization factors and the deformation potential: . 

A further prediction of the model is that the temperature dependence of the Young’s modulus at 
the Lifshitz pressure has negative curvature.  As seen in Fig. 2C, this is also observed.  This 
negative curvature, plus the strong link between elastic and electronic degrees of freedom that our 
data have established, imply that the Young’s modulus is related to an electronic susceptibility.  
The logarithmic softening cannot continue down to the lowest temperatures.  This might be a first-
order structural transition – initially proposed by Lifshitz – or the formation of some electronic 
order that prevents a mechanical instability.  One way in which the logarithm will be cut off in a 
quasi-two-dimensional material is by coherent three-dimensional effects due to interlayer hopping.  
However, in the highly two-dimensional γ band of Sr2RuO4, the scale for such processes is < 3 K 
(8).  Whether the onset of superconductivity at Tc = 3.5 K is related to the mechanical stability of 
Sr2RuO4 is therefore an exciting open question. 
In this context it was interesting to extend our Young’s modulus measurements to its 
superconducting state, in which a small gap is opened at the Fermi energy.  As shown in Fig. 3A 
and B, the strong normal-state softening of the lattice is indeed cut off by the onset of the 
superconductivity, with the lattice hardening again slightly below the superconducting Tc, an effect 
that is most pronounced at the Van Hove strain.   

A final aspect of our measurements is shown in Fig. 3C, in which we present Ex data over a wider 
range of temperatures, at zero strain, an intermediate strain, and the Van Hove strain.  At zero 
strain, there is a broad minimum in the Young’s modulus at T ~ 40 K, reflecting the fact that, 
unusually, Sr2RuO4 softens along the [100] crystalline direction as the temperature is decreased 
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from room temperature (26).  We show in Fig. S8 that this feature is reproduced in our model, 
demonstrating that it, too, is a consequence of the conduction electrons in the γ sheet. 

Although the model we have used to analyze our Sr2RuO4 data is specific to the Lifshitz transition 
in two dimensions, it can be viewed from a more general perspective that highlights the 
significance of low-temperature entanglement between electronic and elastic degrees of freedom 
and emphasizes the close connection between elastic response and entropy.  Consider a quantum 
critical point (QCP) that can be crossed by varying some combination of elements of the strain 
tensor. Under the assumption that hyperscaling holds near any such a strain-tuned QCP, for the 
singular contribution to the entropy,  

  (3),  

where z and ν are the dynamical and correlation length exponents, respectively, d is the dimension 
of space, ϕ is a universal scaling function, and εc is the critical strain. The most dramatic 
consequence of Eq. 3 follows as one integrates the entropy with respect to temperature to obtain 
the free energy and then determines the elastic constant. Right at the QCP, where , it 
follows that  

  (4),  

with  the second derivative of ϕ. Here, C0 is a temperature-independent background contribution 
to the elastic constant that enters as an integration constant for the free energy. Since the entropy 
is maximal at the QCP, . If  the universal temperature correction is small and 
positive and the system is mechanically stable. On the other hand, the system must undergo an 
instability, defined by a vanishing elastic constant at a nonzero temperature, if the quantum Harris 
criterion 		(27, 28) is fulfilled.  Then, the above scaling theory of a ‘naked’ QCP ceases 
to be valid; the system either crosses over to a new critical regime where strain becomes a genuine 
dynamical quantum critical mode or undergoes a phase transition to a new state of matter.  As 
discussed in the Supplementary Materials and Figs. S9-S10, the Lifshitz point of this paper 
corresponds to , placing us at the boundary of the quantum Harris criterion, 
resulting in a logarithmic temperature dependence, also leading to a mechanical instability.  If one 
takes the limit , appropriate for the two-dimensional Lifshitz transition, the exponent 
in the temperature-dependent term in Eq. (4) does not simply vanish, as the prefactor   

diverges at the same time.  Instead, one recovers the logarithmic behavior of the Lifshitz transition. 
Returning to the discussion of the experimental findings, the results presented in this paper 
constitute conclusive observation of a lattice softening driven by conduction electrons, the 
possibility of which was foreseen by Lifshitz over sixty years ago (4).   However, he considered 
hydrostatic pressure and transitions in materials with three-dimensional electronic structure, in 
which case the relative change in bulk modulus would be ~10-4, three orders of magnitude smaller 
than what we observe (See Supplementary Materials and Figs. S11-S12).  Partly for this reason, 
previous searches using hydrostatic pressure were unable to unambiguously resolve the predicted 
effect (29–33).  Why, then, does it give such a prominent experimental signature in Sr2RuO4?  
Firstly, we have worked with uniaxial rather than hydrostatic pressure. Also, Sr2RuO4 is an 
extremely clean material for which the relevant band is strongly two-dimensional, preventing the 
logarithmic term in Eq. 2 from being washed out by three dimensional effects or disorder 
broadening.  It is tempting on first inspection to assume that this logarithm makes the dominant 
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contribution to the size of our signal, but for measurements performed at a few K, the size of the 
prefactor A actually plays the crucial role.  It is hugely enhanced over Lifshitz’s original 
expectation for three reasons: the correlation-induced γ band renormalization, the non-linear 
Poisson’s ratio effect contributing to Young’s modulus and the value of α in the deformation 
potential.  In our model, the experimentally observed Van Hove strain yields α = 7.6, and it enters 
A as α2.  To investigate further, we performed first-principles calculations.  These emphasize that 
the γ band of Sr2RuO4 is based on Ru-O-Ru processes involving two d-p orbital hops, yielding α 
= 8 (see Supplementary Materials and Fig. S13).  

Our findings also give new perspectives on the nature and consequences of the entanglement 
between elastic and electronic degrees of freedom in metallic solids.  To what extent might they 
be a driver for superconductivity as a route to avoid divergent lattice softening?  Does physics 
directly following from conduction electron density of states play a bigger than previously 
appreciated role in effects in heavy fermion physics such as the Kondo volume collapse (34) and 
lattice softening associated with magnetism (35) and metamagnetism (36)?  While these remain 
open questions, our observations provide strong and concrete evidence of relevance to the ‘chicken 
and egg’ problem discussed in the introduction: conduction band physics can drive surprisingly 
large structural effects, and conduction electrons are not always slaves to the lattice.  
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Figures and Legends 

 
Fig. 1. The Young’s modulus Ex of Sr2RuO4 measured across a stress-tuned Lifshitz 
transition. (A) Ex as a function of strain εxx measured at 4 K on three samples. (Inset) Scanning 
electron micrograph of Sample 2. (B) Ex vs. εxx at a series of temperatures, measured on Sample 
2. (C) Ex at 4 K taken from the temperature series in (B) (black) together with the entropy S/T 
extracted from elastocaloric data from a separate sample at 4 K (orange), plotted as a function of 
εxx. 
 

 
Fig. 2. A simple model quantitatively reproduces key experimental features. (A) Ex vs. εxx at 
selected temperatures. (B) Ex and Sγ/T vs. εxx at 4 K, where Sγ is the calculated contribution to the 
entropy of the γ band. (C) Ex vs. temperature calculated at the Van Hove strain (solid line) and 
corresponding experimental data (filled circles) extracted from the temperature series shown in 
Fig. 1B.  The averaging window for the data is a strain range of 3×10-4. 
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Fig. 3. Tracking Ex at key strains to lower and higher temperatures. (A) Ex at εVHS continues 
to soften with decreasing temperature so long as superconductivity is suppressed with a 2 T 
magnetic field (pink diamonds); in the presence of superconductivity, Ex hardens instead (0 T, red 
diamonds). The averaging window is a stress range of 0.05 GPa. (B) Ex vs. εxx at selected 
temperatures with and without an applied magnetic field (red, 0 T; pink, 2 T).  The hardening is 
visible in the data at 1.9 K.   The curves at 3 K and 10 K have been offset by 10 GPa and 20 GPa 
for clarity. Data in panels A and B are from Sample 3. (C) Ex vs. temperature at εVHS (red), 0.4εVHS 
(dark blue), and zero strain (light blue) over a wide range of temperatures. Open circles, Sample 
1; filled circles, Sample 2. Data at εVHS for Sample 2 are replotted from Fig. 2C.  The averaging 
window is a strain range of 4.05×10-4 for Sample 1 and 3×10-4 for Sample 2. 
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Materials and Methods 
 
Sample preparation 
 

Single-crystal Sr2RuO4 was grown by the optical floating zone method (37), cut into 
oriented slices using a wiresaw, and cleaved on (001) planes. The resulting bars were thinned to 
their final thickness, listed in Table S1, using aluminum oxide lapping film. The elastocaloric 
sample was carefully polished to reduce inhomogeneity and mounted directly into a strain cell 
without using a platform (23). Stress-strain samples were milled into a necked shape using a Xe 
plasma focused ion beam (FEI Helios G4), Figs.1A & S1A, B. We mounted the necked samples 
on titanium carriers using Stycast 2850/Catalyst 23LV and titanium foils to encapsulate and anchor 
the ends of the sample to the carrier, Fig.S1C. The carriers incorporate flexures that allow motion 
in the desired direction and attenuate inadvertent transverse and twisting forces, Fig. S1D. The 
three stress-strain samples presented in this work were taken from the same parent crystal but 
differed in their final dimensions, most notably in the ratio between the neck and anchoring tab 
widths. We summarize key dimensions in Table S1. 

 
Extracting response of sample 
 

We describe now how stress-strain relationships are extracted from the directly measured 
quantities, applied force and displacement. The complete system – sample, carrier, and cell – is 
approximated as a set of discrete springs joined by rigid linkages, as illustrated in Fig. S2A. The 
mounted sample is represented as two springs in series, one for the neck, and one for the anchoring 
regions, meaning the tabs of the sample itself and the epoxy and titanium foils that encapsulate the 
tabs. The anchors are taken to have a linear, temperature-independent force-displacement 
relationship defined by the spring constant kanchor, while the neck is taken to have a general stress-
strain relationship σ = σxx(εxx). We term this the “two-spring approximation,” and its essence is to 
neglect regions of intermediate strain at the roots of the neck. In parallel with the sample and 
anchors is another spring, with spring constant kflex, that represents the flexures of the carrier. We 
measure kflex of the empty carrier in-situ at the end of an experiment after intentionally fracturing 
the sample. For Samples 1 and 2, kflex ≈ 0.02 N/μm; for Sample 3, ≈ 0.05 N/μm. The force sensor 
comprises a capacitive displacement sensor in parallel with a spring of spring constant kforce, which, 
as described in a later section, we determine separately. 

In the two-spring approximation, Ex is given by  

  (Eq. S1). 

F is the measured force minus the force that goes into the flexures of the sample carrier, and D is 
the measured displacement. The longitudinal strain in the sample neck, εxx, is given by  

  (Eq. S2), 

where Lneck and Aneck are the length and cross-sectional area of the neck. Aneck is easily measured. 
The choice of Lneck is ambiguous, because there are fillets at the roots of the neck (Fig. S2B). 
(These fillets are necessary to limit stress concentration.) We find through simulation, discussed 
below, that the choice of Lneck that yields the most accurate reconstruction of the intrinsic stress-
strain relationship is the length of the straight portion of the neck, that is, excluding the fillets.   
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Once Lneck is specified, we can use dF/dD measured at zero force and prior knowledge of 
the Young’s modulus Ex at zero stress, 160 GPa, measured with resonant ultrasound spectroscopy 
(18), to obtain kanchor: , where . As 
force is increased, the Hooke’s-law spring constant is then used to subtract off the portion of the 
applied displacement that goes into the tabs and epoxy, allowing accurate determination of the 
stress-strain relationship of the neck portion. In other words, our technique allows measurement 
of changes in the Young’s modulus of the sample as stress is applied, starting from a fixed point 
at zero stress that is measured by other means.  
 We keep Lneck and Aneck constant throughout our analysis, without correction for the actual 
strain in the sample. These corrections would be A(εxx) = Aneck(1-νxyεxx)(1-νxzεxx) and L(εxx) = 
Lneck(1+ εxx). When these corrections are included, we find that at 4 K and εxx = εVHS, where we 
expect nonlinearities in νxy and νxz to be the most severe, the correction to Ex is less than 1%. 
 Applying the two-spring analysis to Sample 1, we find kanchor = 2.7 N/μm with kneck = 
(Aneck/Lneck)Ex(σ = 0) = 2.8 N/μm at 4 K. For Sample 2, we find kanchor = 2.1 N/μm with kneck = 2.0 
N/μm. In both cases, the anchors have a comparable stiffness to the sample neck, confirming that 
their deformation under applied force cannot be neglected. 
 Sample 3 broke during initial cooling. Data could still be collected by pushing the two parts 
of the sample together, but we could not obtain reliable measures of dF/dD|F=0 because they came 
together somewhat gradually. Therefore, for Sample 3 we obtained kanchor by setting Ex at the 
Lifshitz minimum to Ex(εVHS) obtained from Sample 2. This procedure yielded kanchor = 2.5 N/μm 
at 4 K, similar to kanchor for Samples 1 and 2.  
 To find a good criterion for Lneck, and to test the accuracy of the two-spring model, we 
generated simulated data through finite element analysis in COMSOL and applied our two-spring 
analysis to the result. Fig. S2B shows the shape of the simulated sample. Force is applied and 
displacement measured over the curved end faces. For the simulations, we specified a strain-
dependent Young’s modulus Einput(ε) with a sharp dip at ε = -0.005, similar to that seen in Sr2RuO4, 
which we plot as the black “input curve” in Fig. S2C, D. In Fig. S2C, Einput(ε) then rises to 200 
GPa with further compression, while in Fig. S2D, Einput(ε) recovers only to its zero-stress value of 
160 GPa. For simplicity, the test material is taken to be isotropic with a Poisson’s ratio of 0.3.  

The best match of the reconstruction to the input Young’s modulus in the vicinity of the 
dip is obtained with Lneck set to the length of the straight portion of the neck, i.e. excluding the 
fillets. We use this definition of Lneck in our data analysis. Under further compression, the 
reconstructed Ex in Fig. S2C exceeds Einput(ε) by several percent. This overshoot does not appear 
in Fig. S2D.  The overshoot in Fig. S2C is an artefact of holding kanchor constant at its zero-stress 
value: as the sample is compressed, a steadily greater portion of the anchoring tabs is compressed 
enough for its Young’s modulus to climb to 200 GPa. In effect, the anchoring tabs stiffen, but 
because kanchor is held constant in the two-spring approximation, this stiffening appears instead as 
an overshoot in the reconstructed E.  

The increase in E seen in our experimental data beyond the Lifshitz transition is much 
larger than this overshoot from the two-spring analysis, which shows that it is a real effect. A more 
sophisticated analysis could in principle yield a better reconstruction of E(σ) but would require 
more input parameters. 
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Checking assumptions about anchors 
 

Our assumption that kanchor is independent of temperature is not obviously reasonable, 
because the anchors contain epoxy and the elastic moduli of organic compounds can have strong 
temperature dependence. However, the Young’s modulus of the epoxy Stycast 1266 has been 
found to have weak temperature dependence below 77 K (38), and our measured  
(Main Text Fig. 3C, open pale blue circles) has a temperature dependence that is not plausibly 
explainable as an artefact of temperature dependence of the elastic properties of the epoxy. In 
particular, has a minimum at around 40 K, then increases as the temperature is raised 
further. If that increase were an artefact of the epoxy, it would indicate that the epoxy stiffens with 
increasing temperature, which is not expected. 

We checked for signs of non-elastic deformation by comparing datasets collected under 
increasing compression (Fig. S3, grey circles) and decreasing compression (Fig. S3, black circles). 
In a 4 K dataset covering the largest range of compressions explored in the measurement, we find 
that the two directions do not lie on top of each other for 	, corresponding to 
GPa. Earlier work (20) found that the low-temperature elastic limit of Sr2RuO4 is above 2 GPa. 
We therefore believe that this high-stress hysteresis is not related to non-elastic deformation of the 
sample. Indeed, subsequent sweeps to lower maximum stresses did not exhibit the high-stress 
offset seen in the large-range, 4 K sweep, even at higher temperatures (for example, Fig. S3, 30 K 
data). We therefore conclude that the hysteresis seen at strong compression is a consequence of 
non-elastic deformation of the Stycast epoxy used to anchor the sample into the stress-strain cell.  
For consistency, we only present data collected under conditions of decreasing compression in the 
Main Text. 
 
Converting capacitances to force and displacement 
 
 We convert the capacitances that we measure in the stress-strain rig to forces or 
displacements using the parallel-plate capacitor formula. The force on the sample is given by  

  (Eq. S3), 

and the total displacement is given by  

  (Eq. S4). 

CF and CD are the force and displacement capacitances that we record during a measurement. CF,0 
and CD,0 are zero-force and zero-displacement reference values that we obtain in-situ. CF,offset and 
CD,offset come from the wiring and capacitor construction within the rig and are obtained from 
room-temperature characterizations performed separately. Previous work on a similar device (20) 
found CF,offset and CD,offset to be essentially independent of temperature. The parameters αF and αD 
are obtained from room-temperature calibrations. Conceptually, αD = ε0AC,D, where AC,D is the 
displacement capacitor area, and αF = ε0AC,Fkforce, where AC,F is the force capacitor area and kforce 
is the spring constant of the force sensor (see Fig. S2A). 
 We obtain the zero-force capacitance CF,0(D) by measuring CF vs. CD of the empty carrier 
after thoroughly fracturing the sample at the end of an experiment. It has a dependence on D due 
to the flexures in the sample carrier, which continue to transmit some force to the force sensor. We 
fit CF,0(D) using a second-order polynomial and use this for the subtraction. For 10 K and above, 
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we measure and subtract CF,0(D) at each temperature; for all temperatures below 10 K, we use the 
4 K value. This subtraction removes the force in the flexures from the measured force. To 
determine the zero-displacement capacitance, CD,0, we take the value of CD for which 

with the sample intact. We use CD,0 obtained from a 4 K measurement for 
all temperatures.  

For Sample 3, which broke during initial cooling, we took CD,0 to be the value that aligns 
the minimum in Ex vs. strain to that of the other two samples. We determined CD,0 for Sample 3 
while using Van Hove-adjusted force calibrations for all datasets (see discussion below.)  

We obtain the offset capacitances CD,offset, CF,offset and parallel-plate parameters αD, αF from 
room-temperature characterizations. For the displacement capacitor, we use an interferometer to 
independently measure the displacement of the moving block (Fig. S1D) as we apply voltage to 
the piezos and monitor the displacement capacitance CD. We extract CD,offset and αD by fitting the 
characterization data to  

  (Eq. S5), 

where d is the displacement measured with the interferometer and d0 is an offset, allowed to be 
free in the fit. For the force sensor, we take  

  (Eq. S6), 

where f is the applied force and f0 is an offset, allowed to be free in the fit. We obtain force sensor 
calibration data at room temperature by hanging calibrated weights from the stress cells. 

We note that Sample 3 was measured in a commercially available cell (Razorbill UC200), 
and so we used the calibration parameters supplied with the cell. 
 We tested two different methods for obtaining the force-sensor calibration for low 
temperatures. In the first method, we fit the calibration data using Eq. S6 to obtain f0 and αF, then 
multiply αF by 1.1 as an estimate for the increase in the elastic moduli of titanium at low 
temperature (20).   

In the second, we take the fitted value of f0 but then ignore the fitted value of αF and instead 
take the value of αF that sets the Lifshitz stress to be -0.7 GPa. The reason to do this is that we 
expect the Lifshitz stress to be the same for each sample, and by imposing this constraint the shape 
of the minima in the Young’s moduli can be compared. We summarize the calibration parameters 
that we used to analyze our data in Table S2. 

The Young’s modulus calculated with both methods of calibration is shown in Fig. S4. 
With the independent calibrations (Fig.S4, A and B), the Lifshitz stress is found to be -0.6 GPa in 
Sample 1 and -0.8 GPa in Sample 2. This variation gives a sense of the current level of uncertainty 
in measurement of the Lifshitz stress. 

 
More details on data processing and extracting Ex at a particular strain 
 

In our experiment, we collect force and displacement capacitance data with a high point 
density at fixed temperature. We calculate force F and displacement D from the raw data using 
Eq. S3 and S4. An example of F vs. D is shown in Fig. S5A. Before calculating dF/dD for obtaining 
Ex (Eq. S1), we reduce the noise on our data through an averaging procedure: we divide the data 
into bins of fixed number of points and then average within each bin, Fig. S5B. For Samples 1 and 
2, we averaged every 200 points; for Sample 3, which had a lower point density in the raw data, 
every 12. (Note that this is not a running average; it is essentially a down-sampling.) We then 
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calculate dF/dD, Ex and εxx at each temperature from the binned-and-averaged F and D values. 
The points in all of the Ex vs. εxx curves (Figs.1A-C, 3B, S3, S4, S7) were calculated in this way.  

To obtain Ex at a fixed value of strain as a function of temperature (Figs. 2C, 3A, 3C), we 
start from the Ex vs. εxx data calculated as described above. We then average Ex at a given 
temperature within a small window centered on a target strain or stress.  Aside from averaging 
within the fixed window, no other smoothing or interpolation is applied. In Fig. S5C-E, we overlay 
the averaging windows on examples of the Ex vs. εxx data that we used to obtain the Ex vs. T of 
Figs. 2C, 3A, 3C. 

For the data from Samples 1 and 2 (Figs. 2C, 3C), we defined the averaging windows in terms 
of strain, using ε ± 2.025e-4 for Sample 1 and ε ± 1.5e-4 for Sample 2, where ε = 0, 0.4 εVHS, or 
εVHS. For the data from Sample 3 (Fig. 3A), we defined the averaging window in terms of stress, 
using σVHS ± 0.025 GPa.  

The points for Sample 1 shown in Fig. 3C came from a temperature series of which the curve 
in Fig. 1A was a part; the points for Sample 2 in Figs. 2C and 3C were obtained from the 
temperature series shown in Fig. 1B; and the points for Sample 3 in Fig. 3A came from the 
temperature series that is partially shown in Fig. 3B. 
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Supplementary Text 
 
Further theory details 
 
Tight-binding model 
 

To develop a quantitative understanding of the measured elastic properties of Sr2RuO4, we 
use a model for the γ band that was recently employed to describe the strain and temperature 
dependence of the elastocaloric effect in Sr2RuO4 (23). Using the ARPES data of Ref. (25), we 
model the tight-binding dispersion as  

   (Eq. S7). 
At zero strain, ax = ay = a0, tx = ty = t0, and t’ = t’0, with parameters t0 = 0.119 eV, t’0/t0 = 0.392, 
and μ/t0 = 1.48. The values for t0 and the chemical potential μ are directly taken from Ref. (25), 
while the value for the next-nearest neighbor hopping was obtained by fitting the dispersion near 
the Y-point of the unstrained system and is only very slightly smaller than what is given in Ref. 
(25). Under strain, ax = a0(1 + εxx) and ay = a0(1 + εyy) describe the strain dependence of the lattice 
constants. For the strain dependence of the hopping elements, we use the following description 
(39):  

  (Eq. S8a), 

  (Eq. S8b), 

  (Eq. S8c). 

We chose α = α’ = 7.604, which moves the Van Hove singularity at to the Fermi 

energy for εVHS = 0.44% (value from (18)). These values for α and α’ yield a strain dependence of 
E(kVHS), the band energy at the point in k space where the Lifshitz transition occurs, that is in good 
agreement with the first-principles calculations of Ref. (18). From Ref. (40) follows β = 0.385 and 
β’ = 1.155. 

It now follows that the free-energy density of the problem is  
  (Eq. S9), 

where the first term is the contribution due to the electronic states in the γ band, while 
are the three uniaxial strain values and  

  (Eq. S10) 

is the section of the elastic constant tensor relevant for our analysis, i.e. without shear strain. 
includes the response due to the lattice, the core electrons, and the α and β sheets of the Fermi 
surface, i.e. of all degrees of freedom not included in the γ band. We assume that depends only 
weakly on strain and temperature and simply ignore those dependencies.  is 
the internal stress field that compensates the electron pressure and ensure that the crystal is in 
equilibrium at zero external stress. 
 It then follows for the elastic constant:  
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  (Eq. S11), 

with the Fermi function fk. The above expression is based on the fact that for our model. 

Notice that the correction due to the γ band is negative and will always soften the elastic modulus. 
 The elastic tensor of Sr2RuO4 at zero strain was determined in Ref. (41) (see also 
Supplementary Material of Ref. (23)). We determine the C0,ij such that agrees 
with the measured elastic constants of Refs. (23). This yields  

  (Eq. S12), 

where all values are given in GPa. Notice that still has the symmetry of the tetragonal state at 
zero stress. Stress-induced orthorhombic effects with and are, in our model, 
only due to the γ band. 
 Finally, since we know that the stable crystal at zero external stress has no strain in 
equilibrium, we determine the internal stresses as  

  (Eq. S13), 

where the dispersion in fk0 is taken at zero strain. 
 
Non-linear elasticity 
 
 Very generally, we expect to be in the non-linear regime at large external stresses. 
Moreover, if there is a qualitative change in behavior as a function of stress, such as when crossing 
a Van Hove singularity, non-linear effects become important. In the following section we show 
how to account for non-linear elasticity in the calculation of Ex and demonstrate the impact of 
these effects in Sr2RuO4. 
 We start by considering the free energy as a function of strain, , where 

. As before we only consider uniaxial strain εxx, εyy, and εzz and ignore shear strain. 

Without external stress the equilibrium state corresponds to . We include stress via  
  (Eq. S14), 

where . In other words, as in the experiment, there is no stress applied along the y 
or z directions. 
 Let us now consider a system where the function is not necessarily harmonic. In the 
actual calculation we will of course use the free energy of Eq. S9. If we start from  

  (Eq. S15), 
the equations of state follow from minimization with respect to the three strain values:  

  (Eq. S16a), 

  (Eq. S16b), 
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0Ĉ

0,11 0,22C C¹ 0,13 0,23C C¹

( )
3

3
0

0, 2
2

ii

Ed k
ii f ep

s ¶
¶= ò k

k

( )ˆ ˆF e

( )ˆ , ,xx yy zze e e e=

ˆ 0e =
ˆˆTF G F s e® = -

( )ˆ ,0,0xxs s=

( )ˆF e

( ), ,xx yy zz xx xxG F e e e s e= -

( ), ,xx yy zz
xx

xx

F e e e
s

e

¶
=

¶

( ), ,
0xx yy zz

yy

F e e e
e

¶
=



 

22 
 

  (Eq. S16c). 

We can now solve the last two non-linear equations and determine εyy and εzz as a function of εxx:  
  (Eq. S17a), 
  (Eq. S17b), 

where νxy(εxx) and νxz(εxx) are Poisson ratios. In linear elasticity, the Poisson ratios do not depend 
on strain; once the free energy has anharmonicities – that is, in the non-linear regime – the Poisson 
ratios may depend on strain. 
 Inserting εyy(εxx) and εzz(εxx) into the equations of state, Eq. S16, it follows that  

  (Eq. S18). 

This yields for the Young’s modulus  

  (Eq. S19). 

Identifying the elastic constants as and the differential Poisson ratios as 
and , we re-write the Young’s modulus as  

  (Eq. S20). 
Within our model of Sr2RuO4, non-linear effects are most important at low temperatures, near the 
Van Hove point. In Fig. S6A, B we compare the strain dependence of the differential Poisson ratio 
νxy(d) to its standard counterpart. At high temperatures, T = 40 K (Fig. S6B), only small deviations 
between νxy and νxy(d) occur, and only when the strain becomes large. In contrast, at low 
temperatures, T = 4 K (Fig. S6A), νxy(d) is strongly enhanced at the Van Hove point. As shown in 
Fig. S6C, D, νxz(d) and νxz display similar trends to those of νxy(d) and νxy, except with the opposite 
sign – where xy increases, xz decreases, and vice versa. The importance of using differential 
Poisson ratios in obtaining Ex is illustrated in Fig. S6E, F. At low temperatures, T = 4 K (Fig. S6E), 
replacing νxy(d) and νxz(d) with νxy and νxz reduces the dip in Ex(εxx) at the Van Hove point by more 
than a factor of two. 
 The central result of our calculations is shown in Fig. S7, where we plot Ex calculated as a 
function of compressive and tensile strain at 4 K together with experimental data from Sample 2 
obtained at the same temperature. In Fig. S8, we plot our calculated Ex as a function of temperature 
at three strains, in analogy to the experimental data plotted in Fig. 3C of the Main Text. 
 
Scaling theory and quantum Harris criterion 
 

 In this section we perform an analysis of the elastic constant near a strain-tuned quantum 
critical point with hyperscaling. We will see that under certain circumstances, when a so-called 
quantum Harris criterion is fulfilled, a mechanical catastrophe takes place that renders the critical 
point unstable (27, 28, 42). As will be discussed in the next section, the behavior near a two-
dimensional Lifshitz point is the marginal analogue to this mechanical instability.  

The starting point of our analysis is the scaling expression for the entropy  

  (Eq. S21), 
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also given in Eq. 3 of the Main Text. ν is the correlation length exponent, z is the dynamic scaling 
exponent, and d is the number of dimensions. The scaling function is finite at vanishing argument. 
In addition, we use that the entropy is maximal at the QCP, i.e. that , with the second 
derivative of . 
 We integrate between some reference temperature T0 and the 
actual temperature and obtain  

  (Eq. S22). 

This leads to the elastic constant at the quantum critical point  

  (Eq. S23). 

To proceed we need to distinguish systems where the combination is positive or 
negative. 
 If , the integral is infrared convergent. We can choose T0 = 0 and it follows  

  (Eq. S24). 

Here, C0 is the ground-state contribution to the elastic constant. Since , a universal 

positive temperature correction occurs at the QCP which vanishes as . The elastic constant 
softens as one decreases the temperature, but the system remains mechanically stable. 
 The situation changes qualitatively when the quantum Harris criterion is 
fulfilled. Now, the integral is divergent for . This alone demonstrates that the above scaling 
form for the entropy cannot be correct down to lowest temperatures. The system either crosses 
over to a new critical regime where strain becomes a genuine dynamical quantum-critical mode or 
undergoes a finite-temperature phase transition to a new state of matter. It is however possible to 
use , where TF plays the role of the largest energy scale where the scaling theory applies. 
Integration then yields the same result as Eq. S24; however, it now holds that the temperature 
independent constant is  

  (Eq. S25). 

We still expect that as the entropy should still be maximal at ε = εc. For the 
temperature correction in Eq. S24 is negative and divergent. Hence, the elastic constant vanishes 
at a finite temperature, signaling the expected mechanical instability. No strain-tuned quantum 
critical point is possible when the quantum Harris criterion is fulfilled; a mechanical 
catastrophe becomes inevitable. The softening of the Young’s modulus in our system is the 
marginal precursor of this behavior. 
 
Scaling for marginal case 
 

The Lifshitz point of Sr2RuO4 is part of a more general class of systems where the quantum 
Harris criterion (27, 28, 42),  

  (Eq. S26), 
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plays a crucial role in affecting quantum criticality. Another example is of one-dimensional spin 
chains, , at their field-induced quantum critical point (42). For 1d Ising criticality , 
the criterion is only marginally satisfied, , but an elastic coupling can still lead to a 
non-trivial renormalization group flow, see for example Ref. (43). However, for the isotropic 
Heisenberg chain at its field-induced quantum critical point, with and , the criterion of 
Eq. S26 is fulfilled and an instability due to an elastic coupling is expected. 

The behavior near the Van Hove point in Sr2RuO4 is governed by a logarithmic density of 
states, at least in the regime where interlayer coupling effects can be ignored. It leads to a 
logarithmic T-dependence of the heat capacity coefficient for . Such 
behavior occurs in a much more general context and is one of the key aspects of the marginal 
Fermi liquid (44). In this section we discuss the rather generic behavior as it occurs at any quantum-
critical point that displays the above logarithmic temperature dependence, regardless of its 
microscopic origin. It is the marginal case where Eq. S26 is fulfilled with an equal sign. 

We consider an electronic system with a Sommerfeld coefficient that diverges logarithmically 
near an electronic instability and start our analysis from the entropy:  

  (Eq. S27), 

where γ0 is a strain- and temperature-independent prefactor, TF an upper cutoff in units of 
temperature, and  a tuning parameter that vanishes at a critical strain value εc. In 
Fig. S9 we show entropy as a function of ε for different T (Fig. S9A) and as a function of 
temperature for different  (Fig. S9B). 
 By integrating the entropy over T we can, alternatively, obtain the free energy  

  (Eq. S28), 

where E0(ε) is some temperature-independent background contribution due to degrees of freedom 
that are not responsible for the singular entropy of Eq. S27, such as core electrons. Performing the 
integral and taking the second derivative with respect to ε yields the full elastic constant  

  (Eq. S29) 

where is the corresponding background contribution to the elastic 
constant at temperature T0. For the integral is infrared divergent at the critical point 
. This demonstrates a mechanical instability of any strain-tuned marginal critical point. Hence, the 
logarithmic behavior of the entropy of Eq. S27 behaves similarly to systems with , 
yet with a logarithmic correction to the ground state elastic constant. 
 To obtain an impression of the finite-T behavior that follows from Eq. S27 we use 
, which yields for not too low temperatures a behavior in qualitative agreement with what follows 
from our microscopic model of the γ band. In Fig. S10 we show the behavior of the elastic constant 
normalized by its background value  as a function of strain for different temperatures 

(Fig. S10A) and as a function of T for different strains (Fig. S10B). We use , , 
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shift of the elastic constant.  The appropriate combination of elastic constants leads to the Young’s 
modulus Ex and the conceptually equivalent Eq. 2 of the Main Text. 
 
Lattice softening at the Lifshitz transition in three-dimensional materials 
 

The softening at a Lifshitz transition in a three-dimensional metal is estimated. We assume 
a tight-binding dispersion with hopping parameter t of a simple cubic lattice with lattice constant 
a,  

  (Eq. S30). 
The density of states is given by  

  (Eq. S31). 

The free energy density at constant chemical potential μ and at finite temperature is given by  
  

   (Eq. S32), 

where Φ is a dimensionless scaling function that depends on the chemical potential μ, the 
temperature T with the Boltzmann constant kB, and the hopping amplitude t. We assume that the 
hopping depends linearly on strain , where the dimensionless parameter α 
quantifies the strain dependence.  

In order to estimate the softening of the elastic constant at the Lifshitz transition, we first 
focus on the limit of zero temperature, T = 0. The contribution of the tight-binding electrons to the 
elastic constant at constant chemical potential then reads  

  (Eq. S33). 

The relative correction to the elastic constant due to the conduction electrons can then be put into 
the form  

  (Eq. S34). 

The dimensionless function is shown in Fig. S11A. It is negative, amounting 
to a softening of the crystal lattice. There are two Lifshitz transitions at  where the tight-
binding band is either at the edge of getting completely empty or filled. Two saddle-point Lifshitz 
transitions, which are of interest to us, are located at . Here, the cusp induces a drop of the 
dimensionless function on the order of 0.04. In order to estimate the relative change  close to a 
three-dimensional saddle-point Lifshitz transition we take t ~ 0.2 eV, a ~ 4 Å, C ~ 200 GPa and α 
~ 1 to obtain ~ 0.0025. Taking into account the variation of the dimensionless function Ψ(x) 

we obtain the estimate  cited in the Main Text. For a strain dependence with α ~ 10 the 

estimate is instead on the percent level, . This analysis was performed at constant 
chemical potential. The analysis of this single-site tight-binding band at constant density even 
yields , implying that our estimate serves as an upper bound.  
 
In Fig. S12 we also show the resulting entropy per unit cell and the change in the elastic constant. 
Notice, compared to a background constant of 200 GPa these changes are indeed of the mentioned 
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order of magnitude. The relative change in the entropy are larger than the changes in the elastic 
constants. However, analysing the derivative in the entropy we find that  does indeed equal 

 as it has to.       
 
In Fig. S11B we show, for comparison, the corresponding scaling function for a two-
dimensional problem. Since the effect of the chemical potential-tuned transition vanishes in d = 2  
if the density of states is particle hole symmetric, we allow for a small next nearest neighbor 
hopping, see Eq. S7. We see that the anomaly in  is significantly larger and of the order of 
0.4, yielding  for a deformation potential parameter α = 1. For α = 10 we do find 

. This reveals that the observed large softening is the consequence of two effects: i) the 
two-dimensionality with its logarithmic density of states, which yields an enhancement of factor 
10 compared to d = 3 and ii) the large deformation potential of α 8 which yields, with 
, a factor of order 102t, regardless of dimension. As discussed, this value for the deformation 
potential is what one expects for overlapping 4d and 2p orbitals, while α = 1 for s-orbitals. 
 
Density Functional Theory (DFT) results 
 
Calculation details 
 

Electronic structure calculations were performed employing the projector-augmented-wave 
method implemented in the Vienna ab initio simulation package (VASP), where we have used the 
generalized gradient approximation (GGA) by Perdew-Burke-Ernzerhof functional (45-47). An 
energy cut-off of 600 eV is used for the plane-wave expansion with 40 × 40 × 20 Monkhorst-Pack 
k-mesh sampling. To obtain the series of the strained structures, we fixed the a lattice parameter 
and fully optimized all the other lattice parameters and internal degrees of freedom. Due to the 
innate over-binding tendency of the GGA functional, the critical stress of the Lifshitz transition is 
overestimated: our calculations report σ = 1.8 GPa (a of 3.828 Å). Despite the differences, 
however, as we have shown in our previous report (48), the evolution of the electronic structure 
and magnetic properties is well-captured before and beyond the Lifshitz transition.  

 
Stress 
 

A softening of Young’s modulus is readily visible in the DFT calculations. In Fig. S13, we 
plot Ex as a function of strain, calculated from the finite difference ratio Ex = Δσ/Δε, where Δ 
denotes the difference between the calculated stress value at a given lattice parameter a, and the 
value at the calculated unstrained lattice parameter a0. Note that there is an uncertainty in 
implementing this protocol: if instead of the calculated a0 we would have taken the experimental 
one, the observed softening would deviate by a few tenths of a percent. Note also that this protocol 
is different from the procedure used for the experimental data, in which the derivative of F with 
respect to D is taken as a point-by-point gradient.  

As the strain is applied, there is an expected increase of the Young’s modulus starting from 
the unstrained case. One can see a dip (softening) around the Lifshitz transition. The calculated 
softening is about twice as small as the experimental one. Given the subtlety of the calculated 
property and the general inaccuracy of the GGA-DFT, this is an acceptable error. Also, due to 
GGA over-binding, the calculated critical strain is, as discussed, 1.3%, compared to the 
experimental value of 0.4%. One can translate this into a smaller softening. A final word of caution 
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is that, while spin-orbit coupling and correlations beyond DFT are not included in the current 
calculation, they only represent small corrections to the DFT total energy. However, they do 
generate a shift of the position of the Van Hove singularity with respect to the Fermi energy (18). 
Still, it is important to note that our parameter-free DFT calculations qualitatively and even semi-
quantitatively describe the observed modulus softening. 
 
Connection with the model calculations 
 

Force theorem. Self-consistent energies calculated in DFT include, besides the one-
electron energy, E1 (that is, the sum of energies of all occupied electron states), contributions from 
the Hartree energy, electron-ion interaction, and the DFT exchange-correlation energies. Why than 
can we successfully simulate these energy differences in our model that only includes E1? The 
answer comes from the so-called Andersen’s force theorem (49), which states that if a self-
consistent DFT charge density is perturbed by a weak external potential, the difference between 
the two self-consistent total energies is equal, to the second order in perturbation, to the difference 
of the one-electron energies, calculated with the same non-self-consistent density, but explicitly 
applying the perturbed external potential. In other words,  

  (Eq. S35). 
The right-hand side of Eq. S35 is exactly what we do in our analytical model. 
 Canonical scaling. Finally, using the same force theorem, we can estimate the dependence 
of our key parameter, the hopping amplitude, which determines the scale of the DFT band energies, 
on strain, i.e., on the bond length. Indeed, it was shown by Andersen and collaborators (50) that in 
the KKR methods and its derivatives (LMTO, ASW), the overlap integrals between the atomic 
orbitals with the angular momentum l and l’ scales as 1/rl+l’+1, where r is the bond length. Given 
that the d-d hopping in the compound is indirect, via oxygen p orbitals, and integrating out the 
latter (which is, of course, an approximation), we obtain with charge-transfer energy 

Δ. Since  and , we obtain , such that for the effective d-d hopping. 

Hence, the coefficient  , very near the value of the low-energy model of 
the γ band that yields the correct value for the strain value of the Lifshitz transition. This result 
demonstrates that the sensitivity of the electronic structure in transition-metal oxides to strain is 
significantly larger than that of bands dominated by s-orbitals, for which . Since the 
corrections to the elastic constants go as α2, this difference makes an important contribution to the 
magnitude of the softening in Sr2RuO4.  
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Fig. S1. 

 
 

Preparing and mounting samples for stress-strain measurements in a piezo-driven cell. (A, 
B) Additional FIB-sculpted samples. A: Sample 1; B, Sample 3. (C) Optical image of Sample 2 
mounted in epoxy and titanium foils on a titanium carrier. (D) Schematic of the piezo-driven stress-
strain cell with the sample carrier and sample. The yellow outline in D indicates the approximate 
location of the area that is framed in yellow in C. 
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Fig. S2. 

 
 

Modeling the sample-carrier-cell system in order to reconstruct the Young’s modulus and 
strain of the sample neck from the measured total force and displacement. (A) Discretized 
model of the stress-strain cell and the sample. (B) Drawing of the model sample used in finite-
element simulations. (C, D) Illustration of artefacts introduced by the two-spring analysis. The 
black lines are the input Young’s moduli for finite-element analysis of the sample deformation, 
and the red lines are the Young’s moduli reconstructed from the sample deformation using the 
two-spring analysis. 
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Fig. S3. 

 
 

Checking for signs of non-elastic deformation at high compression. Grey points, increasing 
compression; black points, decreasing compression. Data shown here are from Sample 2. The 4 
K, decreasing-compression data are also plotted in Fig. 1A of the Main Text, and the 30 K, 
decreasing compression data in Fig. 1B. 
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Fig. S4. 

 
 

Examining the effects of a leading source of systematic uncertainty, the force sensor 
calibration constant αF. 4 K datasets of Fig.1A analyzed using independently-fitted values of αF 
(A, B) and using values of αF that set the Lifshitz stress to -0.7 GPa (C, D). Data are plotted against 
stress in panels A and C, and against strain in panels B and D. 
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Fig. S5. 

 
Obtaining Ex as a function of temperature at selected strains. Force and displacement data, 
calculated from measured capacitances, (A) before and (B) after binning and averaging. The force-
displacement data shown here are the 4 K data from Sample 2 that underly the plot in Fig. 1B. 
After calculating Ex and εxx from force and displacement, we extract Ex at a particular strain (or 
stress) by taking the average of Ex in a small window. Averaging windows overlaid on data from 
the Main Text for (C) Sample 1 (from Fig. 1A), (D) Sample 2 (Fig. 1B), and (E) Sample 3 (Fig. 
3B, here plotted as a function of σxx rather than εxx). 
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Fig. S6. 

 
 

Importance of non-linear effects at low temperatures and high strains. (A-D) Standard (dotted 
lines) and differential (solid lines) Poisson ratios as a function of strain calculated within our model 
at 4 K (A, C), and at 40 K (B, D). (A, B) xy Poisson ratio; (C, D) xz Poisson ratio. (E, F) Young’s 
modulus as a function of strain calculated without using differential Poisson ratios (dotted lines) 
and including them (solid lines) at 4 K (E) and at 40 K (F). At low temperatures, calculating Ex 
without differential Poisson ratios underestimates the depth of the VHS minimum by over a factor 
of two (E). 
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Fig. S7. 

 
 

The measured and calculated Young’s modulus Ex of Sr2RuO4 as a function of strain εxx. 
While the experimental data (grey points) stop at moderate tension because the sample broke, they 
follow the theory curve (black line) which crosses the tensile Lifshitz transition at . 
Data from Sample 2 are reproduced from Fig. 1A of the Main Text. Theory data at negative strains 
are also plotted in Figs. 2A, B of the Main Text.  
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Fig. S8. 

 
 

Ex calculated as a function of temperature at three key strains. The strains chosen here are the 
same as those of the experimental data plotted in Fig. 3C of the Main Text. Red, εVHS; dark blue, 
0.4εVHS; light blue, zero strain.  
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Fig. S9. 

 
 
Strain and temperature dependence of the entropy in an electronic system where the 
Sommerfeld coefficient diverges logarithmically at T*(ε) = A(ε – εc) = 0. (A) The entropy S 
divided by temperature T has a maximum at T*(ε) = 0, and (B) diverges with decreasing 
temperature at T*(ε) = 0. 
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Fig. S10. 

 
 

Behavior of the elastic constant Cel, normalized by its background value Cel(0)(TF), as a 
function of strain and temperature. (A) Cel/Cel(0) vs. T*(ε) has a minimum at the critical strain 
T*(ε) = 0 and the magnitude of the softening increases with decreasing temperature. (B) 
Cel/Cel(0)(TF) vs. T/TF shows a strong temperature dependence at T*(ε) = 0; away from the critical 
strain, Cel/Cel(0)(TF) depends only very weakly on temperature.  
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Fig. S11. 

 
 
Dimensionless function Ψ(x) characterizing the contribution of conduction electrons to the 
elastic constant,  (A) for a three-dimensional system, d = 3, and (B) for a two-dimensional system, 
d = 2, with finite values of next-to-nearest neighbor hopping amplitude t’/t = 0.3 (red) and 0.4 
(blue). 
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Fig. S12. 

 
Entropy density and elastic constant as a function of strain for a Lifshitz transition in a three-
dimensional metal at various temperatures. (A) Entropy density s/T in units of kB/a3 divided by 
dimensionless temperature kBT/t0 as a function of 𝛼𝜖, i.e., strain, multiplied by the coefficient 𝛼 
for temperatures kBT/t0 = 0.004 (blue), 0.01 (green), and 0.02 (orange), and a chemical potential 
𝜇 = −2𝑡!. At lowest temperatures, s/T is proportional to the density of states that exhibits a typical 
√𝜀-cusp at the Van Hove singularity in three spatial dimensions. This cusp singularity is washed 
out at finite temperatures. (B) Correction to the elastic constant 𝛿𝐶 in units of 𝑡!𝛼" 𝑎#⁄  as a 
function of 𝛼𝜖 for temperatures kBT/t0 = 0.004 (blue), 0.01 (green), and 0.02 (orange), and a 
chemical potential 𝜇 = −2𝑡!. At lowest temperatures, 𝛿𝐶 resembles the density of states whose 
cusp-singularity is washed out at finite T. 
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Fig. S13. 

 
 

Young’s modulus of Sr2RuO4 along the x-axis, Ex, as a function of the normalized a lattice 
parameter, from DFT.  a0 corresponds to the lattice parameter 3.880 Å and the Lifshitz stress 
point is at a = 3.828 Å. One can clearly observe the softening of the stress start to show starting 
from the Lifshitz transition point. The dashed line is a fit through all points except those near the 
Lifshitz point. 
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Table S1. 
Sample Lneck (μm) Thickness (μm) Neck width (μm) Anchor tab width (μm) 
1 742 103.6 123 376 
2 748 101.8 93 801 
3 822 74 107 1178 

 
Key dimensions of the stress-strain samples. Lengths and widths were measured in images 
taken with a scanning electron microscope (SEM). The neck width is the average of top and 
bottom surfaces, measured in the central region of the neck. The thickness was measured either 
with an optical profiler (Samples 1 & 2) or in SEM images.  
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Table S2. 
Sample Rig Displacement sensor 

calibration 
Force sensor calibration 

αD (F m) CD,offset (F) αF (F N) CF,offset (F) 
1 Home-built #1 3.99e-17 6.23e-14 4.47e-10 6.08e-14 
2 Home-built #2 4.28e-17 6.39e-14 2.87e-10 4.02e-13 
3 UC200 4.46e-17 6.05e-14 3.83e-10 9.89e-14 

 
Calibration parameters for the capacitive displacement and force sensors in the stress-
strain rigs used in this work. The values for αF given here have been scaled to bring the Van 
Hove stress to -0.7 GPa. 

 


