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Passive acoustic density estimation has been gaining traction in recent years. Cue 1 

counting uses detected acoustic cues to estimate animal abundance. A cue rate, 2 

the number of acoustic cues produced per animal per unit time, is required to 3 

convert cue density into animal density. Cue rate information can be obtained 4 

from animal borne acoustic tags. For deep divers, like beaked whales, data have 5 

been analyzed considering deep dive cycles as a natural sampling unit, based on 6 

either weighted averages or generalized estimating equations. Using a sperm 7 

whale DTAG (sound-and-orientation recording tag) example we compare 8 

different approaches of estimating cue rate from acoustic tags, illustrating that 9 

both approaches used before, might introduce biases and suggest that the natural 10 

unit of analysis should be the whole duration of the tag itself. 11 
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1. INTRODUCTION 14 

Using the sounds produced by animals to estimate their abundance via 15 

passive acoustic monitoring (PAM) is becoming increasingly popular for species that 16 

are otherwise hard to detect visually. A prime example of such species are deep 17 

diving cetaceans which spend prolonged periods at depth, making them hard to 18 

survey visually. Therefore, it is not surprising that beaked whales Ziphiidae and 19 

sperm whales Physeter macrocephalus densities have been estimated using PAM 20 

methods (e.g. Barlow & Taylor, 2006, Lewis et al. 2007, Marques et al. 2009, Ward et 21 

al. 2012).  22 

Cue counting is an indirect PAM approach to estimate animal abundance, 23 

where instead of counting the animals themselves, we count cues produced by the 24 

animals. For PAM the cues are sounds of the species of interest, in the sperm whale 25 

case usually those will be regular echolocation clicks. Cue counting was originally 26 

developed in the 1980s within the realms of the IWC (International Whaling 27 

Commission) for estimating baleen whale abundance from whale blows (e.g. Hiby & 28 

Ward, 1996). If a cue is effectively instantaneous - as for whale blows, a short 29 

duration sound or the onset of a long sound - then the only required multiplier to 30 

convert an estimate of the density of cues into a density of animals is the cue 31 

production rate. We define the cue production rate, or cue rate for short, as the 32 

mean number of cues produced per animal per unit time. Naturally, one would like 33 

to obtain a cue rate that is valid for the time when and place where the main survey 34 

occurs (e.g. Marques et al. 2013). Otherwise, mismatches might potentially induce a 35 
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bias in cue rate, which will translate into a corresponding bias in the estimated animal 36 

density. 37 

Cue production rates reported in the literature for deep divers, namely 38 

beaked whales, have considered deep dive cycles (DDCs) as a natural unit for 39 

analysis. A DDC can be defined as the period corresponding from the time an 40 

animal starts the descent for a deep foraging dive until the time it does the same for 41 

the next DDC. DDCs are highlighted in an example sperm whale sound-and-42 

movement tag data from DTAG deployments (Johnson & Tyack, 2003) in Fig. 1. 43 

DDCs might be more or less clearly defined units depending on a given species’ 44 

behaviour. Marques et al. (2009), considering Blainville’s beaked whales (Mesoplodon 45 

densirostris), estimated the cue rate from a weighted average of the number of cues per 46 

unit time per DDC, where the weights were the durations of the DDCs. Warren et 47 

al. (2017), working with DTAG data from both Blainville’s beaked whales and 48 

Cuvier’s beaked whales (Ziphius cavirostris), considered a generalized estimation 49 

equation (GEE) approach, using as response variable the number of clicks per DDC, 50 

with DDC duration as an offset. Note this offset is equivalent to weighting by DDC 51 

duration. 52 
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 53 

Fig. 1. An example sperm whale depth profile with the corresponding 54 

echolocation clicks overlaid. The 10 full DDCs available from this tag are 55 

highlighted. The eighth deep dive cycle is longer than the others, with the whale 56 

taking its time at the surface before submerging into the nineth deep dive. 57 

We hypothesize that using the DDC as the unit for analysis when estimating 58 

cue rates might lead to biased inferences in the case where the DDC duration is 59 

correlated to the cue rate during a deep dive, which is likely the case by the very 60 

definition of a DDC. We compare different ways of calculating cue rates, and their 61 

associated precisions, from tag data, including averages and weighted averages, per 62 

DDC and per tag, and contrast these with regression modelling approaches to 63 

evaluate if previously used GEEs perform as expected. We illustrate the potential 64 

issues with a unique dataset of 104 sperm whale DTAGs and provide practical 65 

guidance for estimating acoustic cue rates from animal borne tags. 66 
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2. METHODS 67 

We first describe the DTAG dataset used, then the methods used to extract 68 

the individual echolocation regular foraging clicks, considered the acoustic cue of 69 

interest, and finally the different analysis options to estimate cue rates from the 70 

acoustic data. 71 

A. Data collection 72 

We consider a sample of 104 DTAGs deployed on sperm whales, at 8 73 

different sites and covering 13 different years. For additional details including counts 74 

of tags per year-site combination see the Supplementary Material. We focus on 75 

estimating a pooled cue rate for the species assuming the sample of tags would be 76 

representative for that purpose. We address potential issues in doing so in the 77 

discussion. 78 

The DDCs were defined as periods starting at the moment the whale 79 

submerges into a deep foraging dive all the way till the next time it submerges for the 80 

subsequent deep foraging dive. For simplicity we considered deep foraging dives to 81 

be dives deeper than 100 meters. We note explicitly that a deep dive foraging cycle 82 

might include portions of time where the whale is at the surface not engaged in any 83 

deep foraging behaviour, say while resting or socializing at the surface (cf. eighth 84 

DDC in Fig. 1). This will be one of the reasons for why care must be taken when 85 

using such DDCs as sampling units. 86 
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B. Data processing 87 

For each tag, the sound files were processed to extract the times of 88 

emission for each regular echolocation click emitted by the tagged whale. 89 

Depending on the tags, custom built MATLAB functions to do so included either 90 

findclicks or findallclicks and findmissedclicks functions. These tools have been 91 

developed by Mark Johnson (freely available at: https://soundtags.wp.st-92 

andrews.ac.uk/dtags/dtag-3/). For easier reference the functions are hosted also 93 

at https://github.com/TiagoAMarques/DeepDiverCueRates (folder: 94 

click_extraction_matlab). 95 

To identify the timing of regular clicks from the tagged whale in the on-animal 96 

DTAG sound recording, a semi-supervised click detector was used, as described in 97 

Johnson et al. (2006).. The sound files were processed sequentially in 15 second chunks 98 

through a supervised click detector to identify likely clicks from the tagged animal, 99 

using a 4-pole Butterworth band-pass filter (with cut-off frequencies at 3 and 20 kHz) 100 

and a level threshold based on the envelope of the click. An experienced analysist went 101 

through manual inspection of spectrograms (512 sample fast Fourier transform (FFT) 102 

with a Hamming window and 50% overlap) formed by 15s intervals of the sound 103 

recording (as described in Warren et al., 2017), accepting/rejecting the click 104 

identifications or, if needed, manually adding potential missed clicks. Clicks from the 105 

tagged animal were distinguished from those of other nearby whales in two ways 106 

(Johnson et al., 2006). Clicks from the tagged whale have both low-frequency energy 107 

that is absent in clicks recorded from non-tagged whales (Johnson et al., 2009) as well 108 

as a consistent angle of arrival on the tag, θ , computed from θ=sin-1(τc/d), where c 109 

https://soundtags.wp.st-andrews.ac.uk/dtags/dtag-3/
https://soundtags.wp.st-andrews.ac.uk/dtags/dtag-3/
https://github.com/TiagoAMarques/DeepDiverCueRates
https://github.com/TiagoAMarques/DeepDiverCueRates/tree/main/click_extraction_matlab
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is the speed of sound in seawater, d is the hydrophone separation (0.025m) and τ is 110 

the time delay between the two hydrophone signals, measured by cross-correlation. 111 

The arrival angle of clicks from the tagged whale, when corrected for the tag 112 

orientation on the whale, will be consistently close to zero, as the sound source from 113 

the tagged animal is directly in front of the tag, while those from other whales will vary 114 

widely as the focal and non-focal whales maneuver. The DTAG click extraction 115 

process, which is a semi-supervised click identification ensures that all clicks produced 116 

by the focal whale are identified.  117 

For further analysis of our sperm whale dataset, we consider two datasets 118 

derived from the above procedure: (1) The dataset with all the DDCs and (2) a 119 

dataset corresponding to removing DDCs lasting over one hour. As an example, in 120 

Figure1 this would correspond to exclude the 8th DDC. We refer to these as the 121 

complete and the reduced datasets, respectively. These allow us to illustrate different 122 

aspects of the analysis, as if these were two different datasets with slightly different 123 

characteristics, the latter representing species with deep dive behavior similar to a 124 

sperm whale, but without the long resting periods at the surface. 125 

C. Data analysis 126 

We focus on the estimation of a pooled (pooling across both years and 127 

locations) cue production rate r for sperm whales, defined as the number of cues 128 

produced per time unit, per animal: 129 

𝑟 =  
# 𝑠𝑜𝑢𝑛𝑑𝑠

𝑡𝑖𝑚𝑒 𝑎𝑛𝑖𝑚𝑎𝑙
.         (1) 132 

Note that in general we ignore, in wording and notation alike, the fact that this is a 130 

measure per animal. Here we consider sounds to be regular echolocation clicks and 131 
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the time unit seconds, for convenience, but the above expression could be used for 133 

any arbitrary time period, meaning in particular it could be calculated by DDC, by tag 134 

or by any arbitrary time period (e.g. per 5 minutes). Then one can use those sampling 135 

units to average across a sample to get a mean cue rate for the population of interest, 136 

accounting for possible non-independence, as required. The population average cue 137 

rate, using a standard mean based on DDCs, is then estimated by 138 

𝑟̂𝑑𝑠 =  
∑ 𝑟𝑗

𝑑n𝑑
j=1

𝑛𝑑
=

∑ ∑
𝑐𝑖𝑘

𝑡𝑖𝑘

𝑛𝑑𝑖
k=1

n
i=1

𝑛𝑑
 ,         (2) 139 

where the superscripts d are used for deep Dive and s for Standard mean, 𝑟𝑗
𝑑 140 

represents the cue rate for the jth dive cycle (j=1,2,...,nd), 𝑐𝑖𝑘  and 𝑡𝑖𝑘 represent 141 

respectively the number of clicks in, and the duration of, the kth DDC of the ith whale 142 

(k=1,2,...,ndi), and ndi is the number of deep dives recorded for whale i. On the other 143 

hand, one could Weight (note superscript w below) for the DDC duration, as was 144 

done in Marques et al. (2009), leading to 145 

𝑟̂𝑑𝑤 =
∑ ∑

𝑐𝑖𝑘

𝑡𝑖𝑘
𝑡𝑖𝑘

𝑛𝑑𝑖
k=1

n𝑑
i=1

∑ 𝑡𝑖𝑘
n𝑑

i=1

=
∑ 𝑐𝑖𝑘

n𝑑
i=1

∑ 𝑡𝑖𝑘
n𝑑

i=1

.                   (3) 146 

Note that this otherwise apparently more complex estimator (than the 147 

standard average, given the weights) actually reduces to a simpler expression, the 148 

total number of detected cues, across all tags, divided by the total recording time, 149 

again across all tags. Both of the above consider the DDCs as the sampling unit, as 150 

has been done before in the literature. We note that, strictly speaking, that is the 151 

definition of pseudoreplication (Hurlbert, 1984), where the independence came in as 152 

a stated assumption, for a proof of concept of PAM density estimation (DE) in 153 

Marques et al. (2009). On the other hand, if we consider the n tags as the sampling 154 
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units (i.e., the animals, superscript a), we have a standard average (superscript s) 155 

estimator as 156 

𝑟̂𝑎𝑠 =  
∑ 𝑟𝑖

𝑎n
i=1

𝑛
=

∑
𝑐𝑖

𝑡𝑖

n
i=1

𝑛
                    (4) 157 

where 𝑟𝑖
𝑎 represents the cue rate for the ith whale (i=1,2,...,n), 𝑐𝑖  and 𝑡𝑖 158 

represent respectively the number of clicks in, and the duration of, the ith tag. The 159 

corresponding weighted average (superscript w) version, now weighting by tag 160 

duration, is  161 

𝑟̂𝑎𝑤 =
∑

𝑐𝑖

𝑡𝑖
𝑡𝑖

n
i=1

∑ 𝑡𝑖
n
i=1

=
∑ 𝑐𝑖

n
i=1

∑ 𝑡𝑖
n
i=1

.                   (5) 162 

For each of the approaches we also estimate the corresponding precision and 163 

95% confidence intervals. The variance of a standard mean is straightforward and 164 

present in any introductory statistics book, and the variance for the weighted mean 165 

was calculated considering the methods proposed by Gatz & Smith (1995). 166 

For a direct comparison with the methods from Warren et al. (2017), we also 167 

estimate the cue rate based on regression models. For these, the unit of analysis 168 

considered was always the DDC. We consider the same GEE inspired approach: 169 

modelling the number of clicks per DDC, using the DDC duration as an offset, 170 

considering tag as the grouping variable (akin to a random effect), with a log link 171 

function, an “independence” correlation matrix and robust standard errors. The 172 

GEE treats the deep dives as the sampling unit but inflates standard errors on the 173 

estimated cue rate via the correlation structure induced by the grouping variable. 174 

Therefore, in terms of how the correlation structure is dealt with, it represents a half-175 

way house between treating deep dives or tags as the sampling unit, while 176 
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considering a regression model instead of an analytical formula for the average. The 177 

intercept of this model corresponds to an estimate of the cue rate. To obtain the 178 

standard error on the response scale we used a delta method approximation (Powell, 179 

2007). To obtain 95% confidence intervals we assumed normality on the link scale 180 

and back-transformed to the response scale. For comparison we also implement the 181 

same GEE analysis without the offset and without both offset and grouping variable, 182 

and use corresponding generalized linear mixed models (GLMM) with whale as a 183 

random effect, instead of the GEEs. When not considering the offset we modelled 184 

the rate directly and considered a Gamma distribution for the response. For 9 DDCs 185 

(corresponding to 2% of the DDCs) there were 0 clicks. To avoid issues with the 186 

Gamma not coping with the response variable being exactly zero we replaced these 187 

observations by 0.5 (or 1/20th of the observed minimum positive count of 10 clicks 188 

per DDC). The practical impact of this tweak is negligible, but fitting with the 189 

Gamma family becomes possible. Good reviews on GLMMs and GEEs in Ecology 190 

are Bolker et al. (2009) and Pekár & Brabec (2017), respectively. 191 

Analysis was implemented using R (R Core Team, 2022). The GEE model 192 

was implemented using the geeglm function in the geepack package (Højsgaard et al. 193 

2006) and the GLMM model via glmer in the R package lme4 (Bates et al. 2015). All 194 

of the code to reproduce the statistics and figures in the paper is provided as 195 

supplementary pdf file. This pdf is generated via an RMarkdown dynamic report. All 196 

the data and original .Rmd file that allows one to reproduce or update the analysis 197 

are shared as a github repository: 198 

https://github.com/TiagoAMarques/DeepDiverCueRates. 199 
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3. RESULTS 200 

We had 826 DDCs across a total of 104 tag deployments from sperm whales, 201 

with a median number of 7 DDC per tag, ranging from 1 to 31 DDC per tag. Tag 202 

durations ranged from 0.3 to 25.8 hours. The observed cue rates per tag varied 203 

between 0.13 and 1.61 clicks per second, with a median value of 0.86, while in the 204 

case of DDC these ranged between 0 and 1.93, with a median value of 0.93. (Figure 205 

2). In the case of our dataset, the cue rate per DDC tended to increase with DDC 206 

duration for the reduced dataset, but in the full dataset, the longer DDC presented 207 

long periods without vocalizations, and hence cue rates tended to decrease with 208 

DDC duration (Figure 3). 209 

 210 

Fig. 2. Violin plots of the observed cue rates per deep dive cycle (left) and 211 

per tag (right). The x-coordinate is a non-interpretable jitter for improved data 212 

visualization. There are 826 points in the left plot corresponding to the cue rates for 213 
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all the deep dive cycles available for the 104 tag deployments on whales in the right 214 

plot. 215 

 216 

 217 

Fig. 3. Observed cue rates as a function of duration, both for deep dive 218 

cycles (DDCs, left) and tags (right). The left bottom panel zooms in on DDCs 219 

shorter than 1 hour. On the right plot a regression line is represented, with the grey 220 

lines representing the corresponding 95% confidence interval on the regression line. 221 

 222 

The results obtained for each of the analytic estimators and the regression 223 

models are compared in Fig. 4. As expected, for any given method, the estimates 224 

based on the reduced dataset were always higher than those obtained for the 225 

complete dataset. This is a rather obvious consequence of the fact that, by 226 

construction, the longer DDCs tend to include periods when the animal spent 227 

considerable time at the surface, when they are mostly silent. The 8th DDC in Fig. 1 228 

is a good example. 229 
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The sperm whale cue rate, considering an unweighted average based on the 230 

full dataset at the tag level, was 0.947 clicks per second, with a 95% confidence 231 

interval (CI) of 0.892,1.003. The same tag-level analysis, but weighted by tag 232 

duration, estimated a lower cue rate: 0.911 clicks per second (95% CI 0.854, 0.968). 233 

Corresponding unweighted estimates at the DDC level were lower in the reduced 234 

dataset (the difference in green values from the 2nd analysis to the 3rd analysis in Fig. 235 

4), but higher for the complete dataset (the difference in blue values from the 2nd 236 

analysis to the 3rd analysis in Fig. 4). When weighed by DDC, the effect is opposite in 237 

the reduced and the complete datasets, with the cue rate increasing in the former, but 238 

decreasing in the latter. This is the same pattern observed when adding an offset to 239 

the GEE with whale as grouping variable.  240 

The analyses weighted by duration, either at the tag or DDC level, lead 241 

necessarily to the same cue rate point estimate, with a marked difference in precision, 242 

naturally higher for the DDC analysis.  243 

Similar estimates are obtained for the GEE and the corresponding GLMM 244 

counterparts. 245 

 246 
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247 

Fig. 4 Estimated cue rates, and corresponding 95% confidence intervals, considering 248 

the different approaches. Left to right, the first two analyses are at the tag level, the 249 

remaining ones at the deep dive cycle (DDC) level. For the regression analysis, offset 250 

means the duration of the DDC was included as an offset and “re” denotes if the 251 

model included whale as a grouping variable (GEE) or as a random effect (GLMM). 252 

The number shown for each approach corresponds to the bias in animal density that 253 

a biased cue rate would induce, assuming as the truth for cue rate the unweighted 254 

average at the tag level, unbiased by design. 255 

4. DISCUSSION 256 

We presented pooled cue rate estimates for sperm whales across all the tag 257 

recordings available to us, for the purpose of comparing several methods to estimate 258 

cue rates, including averages and weighted averages, and a variety of regression 259 

models. Variability over time and space means that such overall mean cue rates 260 

might not be representative of any one place at any one time, and therefore we 261 

recommend these values are not used to inform any sperm whale PAM density 262 
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estimation exercises. This is the topic of a separate research thread we are currently 263 

pursuing. 264 

To inform a PAM density survey, we are interested in estimating a cue rate 265 

for a population of whales. Therefore, the true variability that we are interested in is 266 

the variability across whales. For that reason alone, one should expect that 267 

approaches that consider the whale (i.e. tag record) as the sampling unit would be 268 

preferable. Perhaps surprisingly, that was not considered by earlier attempts (e.g. 269 

Marques et al. 2009, Warren et al. 2017). Here we consider the standard average at 270 

the tag level as a gold standard, since that should be unbiased by design.  271 

A. To weight or not to weight: that is (and might remain) the question 272 

The weighted average at the tag level was lower than the unweighted average, 273 

a reflection of the fact that longer tag records had slightly lower cue rates (cf. Fig. 3, 274 

right panel). There is considerable overlap in the 95% CI between the weighted and 275 

unweighted average at the tag level, and there is no obvious reason for why tags with 276 

longer duration (hence, everything else being the same, also on average with a larger 277 

number of DDCs) might have lower cue rates. We put forward a couple of possible 278 

explanations. The first is that deep diving itself could represent a behavior that 279 

promotes tag displacement and/or release. In such a case, animals spending longer 280 

times at the surface and hence for which the tag would be more likely to stay on 281 

longer would be oversampled, and hence the true cue rate would be biased low. 282 

However, this is unlikely, and in fact one might even argue the bias would be the 283 

other way around, with high pressure experienced by the tag during deep dives 284 

meaning the suction cups would be less prone to displace. The second is that animals 285 
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available for tagging might be preferentially in a vocal mode (say because they are 286 

found acoustically), and hence they might be, more often than not, engaged in 287 

behaviors that have higher cue rates than the average animal in the population. On 288 

the other hand, Warren et al. (2020) noted, using a subset of the tags used here, an 289 

opposite pattern: if anything a time decaying effect detectable up to the 5th deep dive 290 

with less buzz sounds (but no results are reported for echolocation clicks, the focus 291 

here). There is no strong reason to prefer one estimate over the other; weighted 292 

averages can have higher precision if the weights are sensible. But if they are not, 293 

bias could creep in. Unless there is an alternative explanation that would not induce 294 

bias for why longer tag deployments might have lower cue rates, we suggest that an 295 

unweighted average at the tag level might be preferred. The weighted by DDC 296 

approach might introduce bias, or in this case perhaps differences in the estimates 297 

which might be driven by randomness rather than signal. 298 

The weighted averages lead to identical point estimates, irrespective of 299 

whether we consider an analysis at the tag level or at the DDC level (cf. equations 3 300 

and 5), but the precision is higher at the DDC level. This will always be the case, the 301 

analysis at the DDC level is strictly pseudoreplication, but naturally only the analysis 302 

at the tag level is sensible. When Marques et al. (2009) estimated a cue rate to inform 303 

a passive acoustic density estimation exercise for the first time, only 5 tags were 304 

available, and hence considering the DDC as the independent sampling unit was an 305 

attractive choice. That choice, and implicit assumption about independence across 306 

DDCs, meant that instead of a 5-tag sample size, the authors considered a sample 307 

size of 21 DDCs. But as with most assumptions - there are no free lunches in 308 

statistics - that assumption comes at a cost. Here illustrated for the case of the sperm 309 
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whales, that cost is underestimating the true precision. In other words, we 310 

underestimate the variance of the cue rate estimate, and therefore we would 311 

underestimate the true variance on the corresponding estimated density. 312 

For our sperm whale example, considering the unweighted average at the 313 

DDC overestimates the cue rate. This is a consequence of most DDCs being below 314 

1 hour, and therefore, having higher cue rates than all the DDCs together. This is 315 

clearly evidenced when one looks at the contrast in behavior between the reduced 316 

and complete datasets at the DDC level. Cue rate increases in the complete dataset, 317 

but it decreases in the reduced dataset. When you compare just between DDC 318 

averages, naturally you obtain a higher value for the weighted average in the reduced 319 

dataset. Again, this happens because longer DDCs, with lower cue rates, were 320 

removed. On the other hand, you obtain a lower value for the DDC weighted 321 

average in the full dataset, since in that dataset there are a considerable large number 322 

of longer DDCs, typically with lower cue rates, being then given larger weights. 323 

There is a correlation between the cue rate by DDC and the DDC duration, with the 324 

largest DDCs being associated with the lowest cue rates. This happens because these 325 

correspond to DDCs where whales might spend a considerable amount of time at 326 

the surface. In fact, for these instances, the definition we considered for a DDC can 327 

be misleading: for long DDCs the whale might spend much more time doing 328 

something else, like resting or socializing, than actually performing the deep foraging 329 

dive than coins the DDC term used to define the period. Hence, when we weight by 330 

DDC duration, compared to an unweighted tag analysis, we underestimate the cue 331 

rate by about 100*(0.947-0.911)/ 0.947 =3.84%, which would correspond to, all else 332 

being equal, an upward bias in density of 100*(1/0.911-1/0.947)/(1/0.947)=3.99%. 333 
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While 4% might be a relatively small bias given the usual coefficient of variation of 334 

abundance/density estimates, any bias that can be removed necessarily leads to 335 

improved inferences. Additionally, this correlation between cue rate and the weights 336 

(DDC duration) means that properly calculating the variance of the corresponding 337 

weighted mean would require incorporating the covariance between the observations 338 

and the weights, which is far from straightforward.  339 

The decision of weighing or not by recording duration is unfortunately more 340 

nuanced than one might hope. One can easily construct a scenario where such 341 

weighting would be desirable. An example is when shorter duration tags do not 342 

provide a reliable cue rate for the tagged animal. On the other hand, when all tags are 343 

long enough to obtain a reliable individual cue rate per tag, weighting could induce 344 

bias towards some animals with unusually long records. The decision will depend on 345 

how variable animals are over time compared to the variability between animals. 346 

Weighting becomes more relevant as variability within animals increases and across 347 

animals decreases, but where to change from a standard average to a weighted 348 

average given said ratio of variabilities and average tag duration might be a hard 349 

question to answer. 350 

B. About regression models 351 

The analysis considering (1) the GEE regression model and (2) the weighted 352 

average, considering DDC as the sampling unit, estimate the same quantity, and 353 

hence we get the same point estimates for either dataset. We do note that the GEE 354 

confidence intervals are wider than those for the weighted mean, reflecting lower 355 
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precision in the estimated means. This is a more sensible precision, since tag 356 

deployments are the independent sampling units, not DDCs. 357 

The pattern found in Fig. 3 illustrates that, while required given the definition 358 

of what a cue rate is (cues per unit time), from a regression modelling perspective, 359 

DDC duration might not be a sensible offset, since the relationship between it and 360 

the cue rate is far from being proportional. In other words, an estimated coefficient 361 

for the offset included in the model as a variable would not be 1, which is strictly 362 

what an offset corresponds to. This is a reminder that use of offsets in regression 363 

corresponds to an implicit, often unstated, assumption. Since this is an assumption 364 

that is easy to test, by plotting the data as we did, we suggest in general should be 365 

tested when using an offset. 366 

GEEs and GLMMs model different conceptual quantities. GEEs are often 367 

referred to as marginal models, and provide population level averages, while 368 

GLMMs, also known as conditional models, will provide individual level averages 369 

(Fieberg et al. 2009). This is often ignored, especially if the interest of inferences is 370 

on how covariates influence a response. However, in the case of cue rates from tag 371 

data, the distinction might be crucial. We are actually interested on  the mean 372 

estimated by the GLMM, a mean across whales, not by that of the GEE as 373 

implemented, a mean across DDCs. At least for our example, differences in point 374 

estimates across the two approaches were minimal, with slightly higher variances 375 

estimated via the GLMM, but that might not be the case in general for other species 376 

that might have a different diving and sound production behaviour.  377 

One might wonder why bother with regression models if analytical 378 

expressions of averages provide such similar results for mean cue rates. The power 379 
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of regression approaches truly emerges when additional covariates that cue rates 380 

might depend on are available. That opens the door to model-based estimates of cue 381 

rate, that can be predicted for the actual survey conditions. As an hypothetical 382 

example, one could imagine cue rate being dependent on survey level covariates, like 383 

study area bottom depth, because animals spend less or more time silent travelling to 384 

the bottom to feed depending on bottom depth. Then a regression model allows one 385 

to estimate the cue rate for the depths at which the survey sensors were placed.  One 386 

might additionally be able to model cue rates as a function of animal level covariates 387 

(e.g. sex), or even covariates that change over time within animal (e.g. animal depth). 388 

While this might provide interesting biological information, for a PAM density 389 

estimate we will require an average cue rate, which will have to be averaged over the 390 

survey conditions. Hence, knowing that cue rate differs by sex or by the depth at 391 

which an animal is not enough and might be of little use in practice: To use that 392 

information we would need to know, for all the animals within the survey area, the 393 

sex of the animals or the depths at which they were diving, to average across those 394 

distributions to obtain the correct multiplier. A pragmatic approach in such cases, 395 

which comes at the cost of a strong untestable assumption, is to assume that the 396 

sample of animals we have tagged provides an unbiased sample over which, once 397 

averaged across, we can estimate the corresponding average cue rate. 398 

C. Cue rates to inform PAM surveys 399 

As a conclusion, we highlight what we knew from the start. We want a cue 400 

rate estimate to convert a cue density per time into an animal density. Therefore, we 401 

need the average cue rate that applies for the time and place the survey took place. 402 
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Fundamentally, the variability in this cue rate estimate that we are interested is that 403 

across animals, hopefully obtained from a random sample of animals. Therefore, an 404 

analysis that focuses on the DDCs, where the duration of the DDCs is correlated 405 

with the variable of interest, here cue rate, might be biased. We recommend that 406 

researchers calculating cue rates from similar tag data take due care to consider 407 

analysis that reflect the variability at the level of the individual whales. We encourage 408 

researchers to be careful when considering inferences where DDCs might be 409 

tempting to use as natural sampling units. 410 

Cue rates are a required multiplier for cue counting approaches to estimate 411 

animal density and abundance. Reliable methods to estimate the cue rate and its 412 

corresponding variability are needed. For the sake of this paper, with the objective of 413 

evaluating potential bias induced by the methods used, we pooled all the data and 414 

focused on a pooled cue rate across space and time, as if the samples were a suitable 415 

random sample for that purpose. Nonetheless, the sample was not balanced in either 416 

time or space, so it might be biased for any given time or place. Even for a given 417 

time and place we have tags for, one should consider carefully whether a sample of 418 

tagged animals is, in general, a representative sample of the animals available. With a 419 

small sample might be likely to get a few STRANGE animals (a la Webster and Rutz, 420 

2020) that could compromise inferences. As an example, if animals to be tagged are 421 

found acoustically, implying they would be in a “vocally active” mode, cue rates of 422 

these animals could be potentially higher than the cue rates of other animals, biasing 423 

cue rate up and correspondingly density estimates low. Obtaining a cue rate for a 424 

new location or time period should require a good understanding about a species’ 425 

cue production and implications of potential spatio-temporal differences in cue rates. 426 
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While we considered here a pooled mean across all tags, collected at different times 427 

and different places, we know ultimately a cue rate might be affected by a multitude 428 

of factors, be it season, region, demography, etc. That is the objective of current 429 

research and is unlikely to lead to an answer that fits all questions. 430 

We did not consider any additional covariates in the regression models. A 431 

model-based approach where cue rate can be predicted for the time and place one’s 432 

survey was conducted, conditional on observed covariates, might be desirable. For 433 

cues like echolocation clicks the cue rate variability and factors affecting it might be 434 

tamed, and a reasonable value obtained in such a way. At the other extreme, say for 435 

social sounds, said variability might preclude obtaining estimates with acceptable 436 

precision. In such cases, or when cue rate is density dependent, the only option to 437 

use a cue counting approach for density estimation might be to use a sample of 438 

tagged animals to estimate the cue rate for the place and time the survey took place. 439 

This remains a considerable drawback in estimating animal abundance from passive 440 

acoustic data via cue counting, and further work is required to understand drivers of 441 

cue rate variability and to identify for which species and cues these might be stable 442 

enough to lead to reliable estimates of abundance.  443 

 444 

SUPPLEMENTARY MATERIAL 445 

See supplementary material at [URL will be inserted by AIP] for a dynamic 446 

report that reproduces all the analysis and outputs statistics and figures on the paper 447 

via RMarkdown. The data and the dynamic report are hosted at a github repository:  448 
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https://github.com/TiagoAMarques/DeepDiverCueRates/. We also host there the 449 

custom-built MATLAB functions used to identify the clicks of the tagged whales. 450 
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