
Construction and comparison of semi-Latin rectangles

Nseobong Peter Uto

A thesis submitted for the degree of PhD
at the

University of St Andrews

2021

Full metadata for this thesis is available in
 St Andrews Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Identifier to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/10023-29182

This item is protected by original copyright

https://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/10023-29182

Acknowledgements

I am grateful to God Almighty for preserving me, particularly during the current Covid-

19 pandemic, and keeping me continuously healthy and active in research throughout my

study period.

I owe a debt of inestimable gratitude to my principal supervisor, Prof. Rosemary A.

Bailey, for her supervisory and supportive roles. Her suggestions have always been superb.

Moreover, I have been greatly inspired by her academic life and her supervision style

challenged me to creative thinking. To my secondary supervisor, Dr Sophie Huczynska,

I say, many thanks for always being available for me, particularly, whenever Prof Bailey

was away for a couple of weeks.

I appreciate the active role played by the director of postgraduate studies, Prof James

Mitchell, particularly during the difficult period. This has left a lasting impression in my

mind. I must not fail to commend Profs Len Thomas and David Borchers of CREEM for

their humaneness and encouragement.

Many thanks to Rev. Fr. Michael Galbraith of St James’ Catholic Parish for his show

of love and encouragement.

I appreciate the supportive attitude of my friends, colleagues and staff of the School of

Mathematics and Statistics, particularly those in the general/administrative office, both

in the Mathematical Institute and at CREEM. They have been wonderful people who have

helped to make my stay in St Andrews rewarding, productive and enjoyable.

Special tribute to my family for their show of love, support and understanding despite

all the inconveniences.

Finally, I wish to thank TetFund for financial support.

iv

Abstract

This work is concerned with semi-Latin rectangles (SLRs). These designs are row-column

designs with nice combinatorial properties; and were introduced in Bailey and Monod

(2001). They generalize the Latin squares (LSs) and semi-Latin squares (SLSs) and are

useful for many experimental situations in diverse sectors, ranging from agriculture to the

industry. We classify these designs as balanced semi-Latin rectangles (BSLRs) and non-

balanced semi-Latin rectangles (NBSLRs) and develop some constructions, via algorithms,

for good SLRs, that is, SLRs with good statistical properties for each classification using

some combinatorial approaches. BSLRs do not always exist, but when they exist, they

are optimal among other SLRs in their class over a range of criteria. When a BSLR does

not exist, good designs can be sought among RGSLRs, particularly for large number of

blocks, if they exist. Hence for the NBSLRs we concentrate on regular-graph semi-Latin

rectangles (RGSLRs). For each classification, constructions are given for designs with

block size two and for those with block size larger than two; and for block size two, we

consider situations when the number of treatments is odd and also when it is even. The

construction involving RGSLRs with block size two having an odd number of treatments

is generalized to accommodate more columns and a table showing starters in some cyclic

groups of small odd orders, 5 to 15 is given to facilitate the construction. Some direct

constructions, for different situations, have been developed for RGSLRs whose number

of treatments is even and whose block size is two less the number of treatments. These

are backed up with some examples, which when compared with designs of the same size

obtained via complementation, they are found to be identical under one of the methods

but isomorphic under the other method. Finally, for each of BSLRs and RGSLRs, we have

given a table containing sets of parameters, which can combine to give a design alongside

their construction and also where the design (or its construction, as the case may be) can

be found in the thesis.

v

Contents

1 Introduction 1

1.1 Introductory remarks . 1

1.2 Method of randomization of SLRs . 3

1.3 BSLRs and RGSLRs . 3

1.4 Good designs for experiments . 5

1.5 Organization of the chapters . 6

2 Historical Background 7

2.1 Introduction . 7

2.2 Definitions and Notations . 7

2.3 Preliminaries . 12

2.4 Relationship with Latin squares and semi-Latin squares 14

2.5 The Quotient block design of a semi-Latin rectangle and some related matrices 15

2.6 Design Efficiency . 17

2.7 Design optimality . 21

2.7.1 A-optimality criterion . 22

2.7.2 D-optimality criterion . 23

2.7.3 E-optimality criterion . 24

2.7.4 (M,S)-optimality criterion . 24

2.8 Related work and direction of research . 26

3 Balanced Semi-Latin Rectangles with Block Size Two 27

3.1 Introduction . 27

3.2 Structure and associated properties of the design 27

3.3 Concepts used in the Construction of the designs 28

3.4 Basic construction when v is odd . 28

3.4.1 An algorithmic procedure for constructing the design using distances 29

3.5 Basic construction when v is even . 34

3.5.1 An algorithmic procedure for constructing the design using parallel

classes . 35

3.6 Some derivable designs from the basic constructions 38

vi

3.6.1 Designs with h = v(v − 1)/2 rows and p = v (or v/2) columns 40

3.6.2 Designs of the classes (mv×nv)/2 and (av/2×bv/2)/2, where mn =

δ and ab = v − 1 . 45

3.6.3 Designs of inflated sizes . 51

4 Balanced Semi-Latin Rectangles with Larger Block Sizes 67

4.1 Introduction . 67

4.2 Construction Approaches . 67

4.3 Constructions based on distances . 68

4.3.1 Construction for designs of the class (v×δv)/3,where δ = (v−1)/2 >

1 and v is odd . 70

4.3.2 Designs of the class (δv × v)/3 . 72

4.3.3 More designs . 73

4.4 Constructions based on difference sets/difference families 75

4.4.1 Preliminaries . 75

4.4.2 Construction Procedure . 76

4.4.3 Construction for designs of the class (v × βv)/k 76

4.4.4 Designs of the class (βv × v)/k . 78

4.4.5 More designs from the constructions 79

4.5 Constructions based on complete sets of mutually orthogonal Latin squares

(MOLSs) . 80

4.5.1 Preliminaries . 80

4.5.2 Construction procedure . 81

4.5.3 Construction for designs of the class (g × g(g + 1))/g 82

4.5.4 Construction for designs of the class (g(g + 1)× g)/g 85

4.5.5 Construction for designs of the class (ge× gs)/g, where es = g + 1 . 86

4.6 Constructions based on Complementation 87

4.6.1 Preliminaries . 87

4.6.2 Construction by block (cell) complementation 87

4.6.3 Construction by column complementation 93

4.6.4 Construction by row complementation 96

4.7 Constructions for designs of larger sizes . 97

4.7.1 Construction procedure . 98

4.7.2 Designs of the classes (2h× p)/k and (h× 2p)/k 99

4.7.3 Designs with h = p . 101

4.8 Obtaining a lot more designs from the constructions 104

5 Non-balanced Semi-Latin Rectangles with Block Size Two 106

5.1 Introduction . 106

5.2 Construction when v is even . 107

5.3 Construction for designs of the class (m×m(2m+ 1))/2, where v = 2m . . 110

vii

5.3.1 Construction procedure . 110

5.4 Construction for designs of the class (m× 3m)/2, where v = 2m 113

5.4.1 Construction via starter . 114

5.4.2 Algorithmic procedure for constructing the design via starter 114

5.4.3 Some Important Notes . 119

5.4.4 An alternative construction for (m × 3m)/2 RGSLRs for v = 2m

treatments . 122

5.4.5 An algorithmic procedure for the alternative construction 122

5.5 Construction for designs of the class (m× 4m)/2, where v = 2m 124

5.5.1 An algorithmic procedure for the construction via starter 125

5.5.2 An algorithmic procedure for the construction via BTD 126

5.5.3 Basis for imposing the restriction that P1∪P2 should give the edges

of a polygon on 2m vertices . 126

5.6 Construction for designs of the class (m× 6m)/2, where v = 2m 132

5.6.1 An algorithmic procedure for constructing the designs via starter . . 133

5.6.2 An algorithmic procedure for the construction via BTD 133

5.7 Construction when v is odd . 137

5.7.1 Construction for (m×m)/2 RGSLRs 137

5.7.2 Some preliminaries . 138

5.7.3 Construction procedure . 140

5.7.4 An algorithmic procedure for the construction 141

5.7.5 Generalization of the construction for (m × ηm)/2 RGSLRs when

v = m is odd . 144

5.7.6 An algorithmic procedure for the generalized construction 145

5.8 Another approach to obtaining the general construction via undirected terrace148

5.8.1 Undirected terrace and associated starter sets 148

5.8.2 Procedure . 149

5.8.3 An algorithmic procedure for the Generalized construction via undi-

rected terrace . 150

5.8.4 Realizing a BSLR from the construction 151

5.9 More RGSLRs of large sizes . 154

6 Non-balanced Semi-Latin Rectangles with Larger Block Sizes 156

6.1 Introduction . 156

6.2 Construction of a (5× 5)/3 RGSLR for v = 5 treatments 156

6.2.1 Procedure for the construction . 157

6.3 Construction of a (3× 6)/4 RGSLR where v = 6 158

6.3.1 Procedure for the construction . 159

6.4 Construction of a (4× 8)/6 RGSLR, where v = 8 160

6.4.1 Procedure for the construction . 161

viii

6.5 Construction of (m × 2m)/k RGSLRs, where k = 2(m − 1), m > 2 and

v = 2m . 162

6.5.1 Construction via BTDs . 163

6.5.2 Construction via starter . 165

6.5.3 Procedure for the construction . 165

6.5.4 Construction of RGSLRs via complementation 166

6.6 RGSLRs of larger sizes . 169

7 Conclusion 171

7.1 Introduction . 171

7.2 Balanced semi-Latin rectangles . 171

7.3 Non-balanced semi-Latin rectangles . 173

7.4 Some important general remarks concerning the designs 175

7.5 Suggestions for further work . 175

ix

Chapter 1

Introduction

1.1 Introductory remarks

A semi-Latin rectangle (SLR) consists of v symbols (treatments) in h rows and p columns

with k treatments in each row-column intersection (block) and each treatment appears a

definite number of times, nr, say, in each row and also a definite number of times, nc, say,

in each column, where v, h, p, k, nr and nc are positive integers: see Bailey and Monod

(2001) and Uto and Bailey (2020). In particular, h, p, k > 1, v|kh and v|kp. We note

that at least one of nr and nc need not be unity; and h and p can have the same value

or otherwise, though in Bailey and Monod (2001), where these designs were introduced,

application was made to plant disease experiments which involve h < p, where h denotes

the number of leaf-heights considered in the experiment and p, the number of plants.

Moreover, nc = nr if and only if h = p; nr > nc, if and only if p > h and nc > nr, if and

only if h > p: see Uto and Bailey (2020). We represent the structure by (h× p)/k, which

is read as h-by-p-by-k. If the rows and columns of a SLR are ignored, then the resulting

block design is its quotient block design (QBD). We restrict the QBD to being binary,

that is, each treatment appearing at most once in each block.

Semi-Latin rectangles (SLRs) thus constitute a class of row-column designs and they

possess some nice combinatorial properties, which include, amongst others, orthogonal-

ity of its treatments with respect to the row and column strata and also nr– and nc–

resolvability of the design: see Bailey and Monod (2001) and Uto and Bailey (2020).

Row-column designs are known to be useful designs for performing experiments in sit-

uations where there are two nuisance factors whose levels constitute the rows and columns,

respectively, of the design, thereby controlling heterogeneity in the experimental units in

two directions by reducing variability in experimental error. Thus the blocking in a row-

column design is in two directions: see, for example, Williams and John (1996), Choi and

Gupta (2008), Datta et al. (2017) and Godolphin (2019b).

Row-column designs such as the Latin square (LS) and semi-Latin square (SLS) which

have been greatly studied in the literature could be derived from a SLR; they are special

1

cases of the SLR and should not be confused with it. That is, the SLR generalizes both

the LS and SLS: see Uto and Bailey (2020). In particular, if h = p and v = kh, then

nc = nr = 1 and the resulting design is essentially a SLS. Moreover, if h = p and

v = h, then if we allow k = 1, it implies that nc = nr = 1 and the design reduces

to a LS. It follows that a SLS is a one-step generalization of the LS. Concerning Latin

squares (LSs), see, for example, Bose and Nair (1941) and Ai et al. (2013); and for semi-

Latin squares (SLSs), see Preece and Freeman (1983), Bailey (1988, 1992), Bedford and

Whitaker (2001) and Soicher (2013). By superimposing two LSs of the same order, if each

ordered pair of sybols (treatments) appears exactly once, then the two LSs are said to be

orthogonal. In particular, a set of more than two LSs are said to be mutually orthogonal,

called mutually orthogonal Latin squares (MOLSs), if every pair of LSs in the set are

orthogonal. Furthermore, a set of MOLSs is said to be complete if its cardinality is 1 less

the order of each LS in the set. MOLSs are useful in the construction of other designs such

as affine-resolvable designs: see, for example, John and Williams (1995, Chapters 1 & 4),

as well as Raghavarao and Padgett (2005, Chapters 4 & 9).

Moreover, by superimposing a set of MOLSs, where the treatment sets of the various

LSs are pairwise disjoint, the resulting SLS is known as a Trojan square by Darby and

Gilbert (1958). See also Edmondson (1998) for some discussion on this. A Trojan square,

when it exists, is optimal among all SLSs and incomplete block designs of the size of its

QBD over a range of criteria which include the A-, D- and E-criteria: see Cheng and

Bailey (1991).

In practice, for certain experimental situations where the number of treatments avail-

able is a divisor of the number of plots available under each level of the row and column

factors, the row (or column) factor may have more levels than the column (or row) factor,

that is, the values of h and p may be different. However, in certain other situations, the

values of h and p may be the same but the number of treatments available for the experi-

ment is probably less than the number of plots available under each level of the row factor,

hence, of column factor as well such that each treatment would need to appear more than

once in each row and in each column. Hence in situations like these, a LS or SLS can not

fit in and the SLR becomes a useful design.

Apart from the aforementioned application of SLRs involving plant disease experi-

ments, they can also be used for conducting several other experiments, amongst which

are food sensory experiments, consumer testing experiments and in similar experiments

where a SLS can be used as reported in Bailey (1992): see Bailey and Monod (2001) and

Uto and Bailey (2020).

There can be different kinds (or classes) of SLRs depending on the composition of their

QBDs. For purposes of this work, we classify them into two main classes, viz, balanced

semi-Latin rectangles (BSLRs) and non-balanced (or unbalanced) semi-Latin rectangles

(NBSLRs).

We have named SLRs whose QBDs are balanced incomplete-block designs (BIBDs)

2

as BSLRs otherwise we call them NBSLRs. see Uto and Bailey (2020) for discussions on

BSLRs. BIBDs are binary incomplete-block designs that are proper and equireplicate and

whose treatments concur the same number of times, for all pairs. Such designs do not

always exist, but when they exist they are optimal over all incomplete-block designs of its

size. Moreover, the estimation of elementary contrasts for treatment effects is done with

the same variance: see Kiefer (1975). It follows that when a BSLR exists, it is optimal

over its class: see Uto and Bailey (2020).

Moreover, for the NBSLRs, our focus is on those whose QBDs are regular-graph de-

signs (RGDs) which are named RGSLRs in Bailey and Monod (2001). RGDs are binary

incomplete-block designs that are close to balanced in the sense that the difference in the

treatment concurrence counts between any two pairs of distinct treatments is at most unity.

They give good designs for experiments, particularly, for large number of blocks, if they

exist. In particular, when they exist, a D–optimal (or A–optimal or E–optimal) design for

sufficiently large number of blocks is among them: see Cheng (1992), which confirms the

earlier conjecture by John and Mitchell (1977). BIBDs are considered as a special case of

RGDs: see Kreher et al. (1996). Within the class of RGDs, the BIBD-extended designs,

called BIBD-extended RGDs, where each comprises a RGD part and a BIBD part, as

extension have been found to produce highly A– and D–efficient designs among RGDs, if

sufficiently large number of copies of a BIBD are added to a RGD: see Cakiroglu (2018).

We call RGSLRs whose QBDs are BIBD-extended, BIBD-extended RGSLRs and in the

particular case that a BSLR is adjoined to a RGSLR to give the extension, we call it a

BSLR-extended RGSLR.

We give constructions for SLRs which have good statistical properties, that is, their

QBDs are BIBDs, which implies BSLRs, when they exist. However, when a BSLR does

not exist, we go for RGSLRs (if they exist), which are ‘close’ in some sense to BIBDs, in

particular, we go for those ones whose QBDs are BIBD-extended; or in situations that we

can obtain a BSLR that conforms in size to RGSLR and on the same treatment set, we

simply extend the RGSLR by the BSLR to obtain a BSLR-extended RGSLR, since these

give designs with good statistical properties.

1.2 Method of randomization of SLRs

The randomization procedure for a SLR is as follows: randomize all rows, randomize all

columns independently of the rows, and then within each cell, independently randomize

the order of the treatments.

1.3 BSLRs and RGSLRs

A BSLR is a SLR whose QBD is a BIBD, that is, its QBD is a binary, equireplicate and

proper incomplete-block design which has a constant concurrence counts, λ (λ being a

3

positive integer), between every pair of distinct treatments, that is, every pair of distinct

treatments appears the same number of times in a block. A block design is incomplete if

each block does not contain all the treatments, that is, the size of each block is less than the

number of treatments in the design. As mentioned earlier, it is binary if every treatment

appears at most once in each block. Moreover, a design is said to be equireplicate if each

treatment appears the same number of times in the design, and in particular, for binary

designs, equireplication implies each treatment appears in the same number of blocks. A

design being proper means that its blocks are equal in size, that is, each block contains

the same number of treatments. For a BIBD, since it is binary, equireplicate and proper,

then each treatment appearing the same number of times implies that it appears in the

same number of blocks.

Similarly, a RGSLR is a NBSLR whose QBD is a RGD, which is ‘close’ in some sense

to being balanced as no two treatment concurrence counts differ by more than unity.

A BSLR does not always exist, just like a BIBD. For a fixed set of parameters

v, h, p, nr, nc, k, λ, it exists only if the conditions in (1.1) and (1.2) are satisfied: see Uto

and Bailey (2020). That is, the necessary conditions for the existence of a BSLR are as

given in (1.1) and (1.2).

vhnr = vpnc = khp (1.1)

λ(v − 1) = hnr(k − 1) = pnc(k − 1) (1.2)

We note that RGSLRs also need to satisfy the condition in (1.1). Clearly, what distin-

guishes a BSLR from a RGSLR is the balance property expressed in (1.2). Moreover, for

certain sets of parameters a BSLR fails to exist, a RGSLR may exist.

Let V = {1, . . . , v} denote the treatment set of a RGSLR. For all τ ∈ V , let τ appear

with x treatments in λ∗ blocks of its QBD. Similarly, let τ appear with y treatments in λ′

blocks. Then a set of parameters which satisfy (1.3) and (1.4) (making a sensible choice

of x and y such that λ∗ = λ′± 1) can give the set of parameters that can make a RGSLR.

However, in Table 7.2, we have assumed λ∗ to be greater than λ′.

x+ y = v − 1 (1.3)

λ∗x+ λ′y = hnr(k − 1) = pnc(k − 1) (1.4)

We note that adjoining multiple copies of a BSLR gives another BSLR: see Theorem

4.7.1. However, this does not hold for a RGSLR (except with some suitable permutations

applied to the treatments in each copy of the ‘parent’ design made) as the resulting design

without some suitable permutation of the treatments of the ‘parent’ design will violate

the treatment concurrence counts requirements; but if a BSLR is adjoined to a RGSLR, it

gives another RGSLR: see Theorem 5.1.1. We call the resulting design a BSLR-extended

4

RGSLR since it is directly extended by a BSLR. Moreover, block (cell) complementation

of a BSLR (or RGSLR) gives another BSLR (or RGSLR): see Theorems 4.6.1 and 6.5.1

for the case of BSLR and RGSLR, respectively.

Similarly, if the ‘parent’ and complementary designs, for the case involving a BSLR are

adjoined, then the resulting design is also a BSLR: see Theorem 4.7.2. However, for this

to work, both the ‘parent’ design and the complementary design need to have same block

size, that is, k = v/2 such that k + k′ = v, k′ being the block size of the complementary

design.

Moreover, given an (h×p)/k BSLR (or RGSLR), a transposition of it gives a (p×h)/k

BSLR (or RGSLR).

1.4 Good designs for experiments

Good designs for experiments are usually sought among connected designs. In a connected

design, all elementary contrasts of treatment effects are estimable: see, for example, Rao

(1958) and Godolphin (2019a). If these contrasts can be estimated with the same variance,

then the design is said to be balanced. In particular, such design is said to be variance

balanced. The notion of connectedness of a design can also be viewed as having a chain

of treatments in which every pair of adjacent treatments in the chain concurs in at least

one block of the design: see, for example, Tianyao and Yu (2010). For a design with v

treatments, this is akin to having a v–gon (a polygon with v vertices), where the vertices

correspond to the treatments and each pair of adjacent vertices which forms an edge on

the v–gon appears as a block in the design. Hence, from each vertex of the v–gon, every

other vertex can be reached via an edge or a sequence of edges. Typical of a connected

design is the balanced incomplete-block design (BIBD), which when it exists, is known to

be optimal over a range of criteria among all incomplete block designs of its size. The

canonical efficiency factors of a BIBD are all equal: see, for example John and Williams

(1982). This equality of all its canonical efficiency factors implies it is efficiency balanced.

Hence a BIBD is both variance balance and efficiency balanced. Moreover, an efficiency

balanced design that is equireplicate (having equal replication of its treatments) is variance

balanced: see Tianyao and Yu (2010).

Apart from connectedness, some other nice properties of a design include, amongst

others, binarity, equireplication (mentioned above) and equal-sized blocks. A BIBD pos-

sesses all these properties. Designs which possess the property of binarity are called binary

designs. Moreover, designs with equal-sized blocks are also known as proper designs.

For some parameter sets that a BIBD does not exist, search is usually made among

regular-graph designs (RGDs) which are close to balanced designs in the sense that no

two pairs of distinct treatments differ in their concurrence counts by more than unity. It

has been conjectured in John and Mitchell (1977) that a D–optimal (or A– optimal or

E–optimal) incomplete-block design is among RGDs, provided a RGD exists. However,

5

Jones and Eccleston (1980) found some counterexamples regarding A-optimality; and

Constantine (1986) refuted it with respect to the E-optimality. In the light of these,

Cheng (1992) confirms the conjecture for sufficiently large number of blocks

Moreover, by the conjecture in John and Mitchell (1977), conjecture 2 of John and

Williams (1982) implies that, if a RGD exists, then an A–optimal RGD is also D-optimal

and vice versa. However, Cakiroglu (2018) gives a counterexample to this (though under

a given situation), where the A-best RGD is found to be different from the D-best design

for the case where the RGD is not extended by adding copies of a BIBD to it; but when

the RGD is extended with sufficient copies of a BIBD, the D-best RGD is found to remain

D-best BIBD-extended RGD and also becomes the A-best BIBD-extended RGD, hence

no counterexample for the case where the RGD is BIBD-extended.

Concerning designs that are obtained via complementation; it is conjectured that an

A–optimal (or D–optimal) design has as its complement an A–optimal (or D–optimal)

design over an appropriate class of complementary designs. However, the conjecture holds

if the ‘parent’ design is a BIBD: see John and Williams (1982).

Thus, by the discussions above, when a BSLR exists, it is optimal over all SLRs of

its size: see Uto and Bailey (2020), and its complementary SLR, which is also a BSLR is

optimal over an appropriate class of SLRs. Moreover, when a BSLR does not exist, good

SLRs can be found among BIBD-extended RGSLRs and their complements also produce

good SLRs.

1.5 Organization of the chapters

This thesis consists of seven chapters; each chapter contains an introduction. Chapter 2

gives a background of the work containing some definitions and discussions of some basic

concepts and also some related works on the class of designs considered in this thesis are

brought to view together with some information on how we approached the work.

The main work that has been done can be divided into two major parts, viz, BSLRs

and NBSLRs, where we consider RGSLRs. These two parts are captured in four chapters,

viz, chapters 3, 4, 5 and 6. Chapters 3 and 4 which constitute one part of the work are

dedicated to BSLRs. In particular, Chapter 3 concerns BSLRs with k = 2 and the relevant

algorithms are given for each case regarding the nature of the value of v, that is, when v

is even and when it is odd. Designs with k > 2 are discussed in Chapter 4.

Moreover, the second part of the work spans Chapters 5 and 6 where NBSLRs with

k = 2 are considered in Chapter 5 while Chapter 6 concerns NBSLRs with k > 2 . The

relevant algorithms are also given.

The last chapter, gives a summary of the main results and some general comments

with some conclusions and suggestions for further work. Moreover, separate tables of

parameters that can give designs that are BSLRs and RGSLRs are also presented.

6

Chapter 2

Historical Background

2.1 Introduction

In this chapter, we give a historical background of this work. Some terms and concepts

associated with the work are discussed. A description of the design under investigation, the

semi-Latin rectangle alongside some of its applications in the design of various experiments

ranging from Agriculture to the industry are given. Again, we show how the semi-Latin

rectangle is related to some other designs–the Latin squares and semi-Latin squares, which

could be derived from it; and also discuss some concepts related to the efficiency and

optimality of designs. Finally, a related work by Bailey and Monod (2001) which stands

out as the pioneer work on semi-Latin rectangles is quoted, and also a recent work by

Uto and Bailey (2020) which introduces balanced semi-Latin rectangles is also quoted,

alongside our direction of research.

2.2 Definitions and Notations

Definition 2.2.1. Let Ω denote the set of plots of an experiment, and V the set of

associated treatments. Denote by |Ω|, the number of plots and |V| = v, the number of

treatments. Again, let τ denote a function such that

τ : Ω→ V

∀ ω ∈ Ω, there exists t ∈ V such that τ(ω) = t. Then τ is said to be a design.

We note that treatment t is allocated to plot ω, or equivalently, plot ω receives treat-

ment t. Thus, a design, indeed, specifies the allocation of treatments to plots in an

experiment.

Definition 2.2.2. Let V denote the treatment set of a design, d with cardinality, |V| = v.

Suppose the v treatments are allocated to the plots, arranged in b blocks, each being of

size kj , j = 1, 2, ..., b; and each treatment is replicated ri times, i = 1, 2, ..., v. Then d is

said to be a block design.

7

Remark. In particular, d is said to be a complete block design if kj = v ∀j, and all the

treatments appear in each block. But if kj < v, then it is described as an incomplete block

design.

Definition 2.2.3. Let d be a block design. Denote by nij , the number of times that the

ith treatment appears in the jth block, or equivalently, the number of plots in block j

that receive the ith treatment. Then d is called a binary design if nij = 0 or 1.

We note that, if d is binary, its incidence matrix, N = (nij) has all its entries as 0s and

1s: see, for example, John and Williams (1995, chapter 1). Furthermore, binary designs

have maximal trace of their information matrix, hence an (M,S)-optimal design can be

found among them. The (i, j)th element, i 6= j of the concurrence matrix of such class

of designs gives the number of blocks in which the ith treatment concurs with the jth

treatment: see, for example, John and Williams (1982).

Definition 2.2.4. Let d denote a block design with b blocks, and kj , j = 1, 2, ..., b the

number of plots in the jth block, called the size of the jth block. Suppose kj = k ∀j.
Then d is said to be a proper block design with block size k.

Definition 2.2.5. Given a design, d with treatment set V. Denote the cardinality of V,

|V| = v. Let ri, i = 1, 2, ..., v denote the number of times the ith treatment appears in the

design, called the number of replications (or the replication number) of the ith treatment.

Suppose ri = r ∀i. Then d is called an equireplicate design with replication number r.

Definition 2.2.6. A binary, proper and equireplicate design d(v, k, λ) is said to be a

balanced incomplete block design (BIBD) if every pair of treatments appear together

(or concur) in a constant number, λ of blocks. The design (or combinatorial) parame-

ters v, k, λ denote the respective number of treatments, block size and between-treatment

concurrences, called the concurrence number: see, for example, Caliński and Kageyama

(2003, Chapter 6), Morgan (2007), Raghavarao and Padgett (2005, Chapter 4), Stinson

(2004, Chapter 1), Hedayat et al. (1995), Abel (1994), Hanani (1961), and Bose (1939) for

various descriptions/discussions of this design. Its parameters satisfy the combinatorial

properties:

vr = bk (2.1)

λ(v − 1) = r(k − 1) (2.2)

where v ≤ b.

The parameters b and r denote the numbers of blocks and replications of each treatment

(or the replication number of each treatment) in the design, respectively; and could be

obtained from (2.1) and (2.2), simultaneously with known values of v, k and λ. The

restriction, v ≤ b is called Fisher’s inequality.

Definition 2.2.7. Given a BIBD, d with parameters v, b, r, k, λ. Suppose v = b , and

consequently r = k, such that λ(v − 1) = k(k − 1). Then d is said to be a symmetric

BIBD.

8

Remark. If d is a symmetric (v, b, r, k, λ)-BIBD, then any pair of blocks in d contain λ

number of treatments in common; which is a useful result for constructing new BIBDs

from old ones: see, for example, Stinson (2004, chapter 2).

Definition 2.2.8. Let d(v, b, r, k, λ) denote a balanced incomplete block design (BIBD).

Then d is said to be α-resolvable if its b blocks can be subdivided into s groups called

superblocks (or α-resolution sets), each containing b∗ blocks such that in each superblock

(or α-resolution set) every treatment is replicated exactly α (≥ 1) times. This leads to

the following restrictions on the parameters, viz : b = sb∗, r = sα, vα = kb∗, bα = rb∗.

In particular, d is affine α-resolvable if, in addition to being α-resolvable, it satisfies fur-

ther condition that every pair of distinct blocks from the same superblock (or α-resolution

set) contain the same number, say, ws, of treatments in common, and every pair of blocks

from distinct superblocks contain the same number, say, bs, of treatments in common,

where ws = k(α− 1)/(b∗ − 1) = k − r + λ, and bs = kα/b∗ = k2/v.

We note that if α = 1, d reduces to a 1-resolvable and affine 1-resolvable design,

respectively, which for simplicity are called resolvable and affine resolvable designs: see,

for example, Caliński and Kageyama (2003, chapter 9), Kadowaki and Kageyama (2009),

and Raghavarao and Padgett (2005, chapter 4) for discucussions on the general case of

the concept of α (≥ 1)-resolvability, as well as that of affine α-resolvability; and Bailey

et al. (1995), Bose (1942) for the particular case of these concepts, when α = 1.

Definition 2.2.9. A binary, equireplicate block design is said to be a regular graph

design (RGD) if no two pairs of distinct treatments differ in their concurrences by more

than unity, in absolute terms. Moreover, there exists two distinct treatment concurrences,

λ and λ + 1 in the design: see, for example, Cakiroglu (2018), Cheng (1978), John and

Mitchell (1977).

Let treatments i and i′, i 6= i′ concur in λii′ blocks. Denote λii′ by λ. Suppose (l, l′) is

another distinct pair of treatments with concurrences λll′ . Then λll′ needs to be either λ

or λ+ 1, assuming λii′ ≤ λll′ such that |λii′ − λll′ | = 0 or 1.

Remark. On the contrary, suppose λii′ ≥ λll′ , then λll′ would be either λ or λ−1, and the

absolute difference in the treatment-concurrences between distinct pairs of treatments is

invariant.

However, we observe that, John and Mitchell (1977) and John and Williams (1982)

consider a BIBD to belong to the class of RGDs

Definition 2.2.10. Let V denote the set of treatments associated with a design, d. Denote

by |V| = v, the number of treatments in d. Suppose p, q ∈ Z (p, q > 1) denote the respective

numbers of rows and columns of a p-by-q array. Let the v treatments be allocated to plots,

grouped in two directions, viz, the rows and columns, denoting two blocking factors such

that they form this array. Then d is said to be a row-column design with p rows, q columns

and pq row-column intersections called cells/ blocks if k (≥ 1) treatments corresponding

to the plots are embedded in each row-column intersection.

9

Definition 2.2.11. An n × n Latin square is an arrangement of v = n treatments in n

rows and n columns, thereby forming an n-by-n array with n2 cells, such that each cell

contains k = 1 plot, accommodating one treatment, and each treatment appears exactly

once in each row and exactly once in each column.

Remark. A Latin square is said to be in standard form if its first row and column contain

treatments that appear in a natural order. Each cell of a Latin square denotes a row-

column intersection. Again, an n × n Latin square is also called a Latin square of order

n.

Definition 2.2.12. Let Ω denote a set of plots, with cardinality, |Ω| = kn2, and V the set

of treatments with cardinality, |V| = kn. Suppose the kn treatments are arranged in an

n-by-n array consisting of the kn2 plots displayed in n rows and n columns such that each

row-column intersection (block) contains k(> 1) plots, hence k distinct treatments. Then

this arrangement constitutes an (n × n)/k semi-Latin square if each treatment appears

exactly once in each row, and exactly once in each column.

Definition 2.2.13. Let h, p, k, nr and nc ∈ Z. Suppose k ≥ 1; h, p > 1; and v|kh, kp.
Then, we define an (h× p)/k semi-Latin rectangle to be a row-column design in which v

treatments are arranged into h rows and p columns, where each row-column intersection

(block) contains k treatments, and each treatment appears the same number, nr of times

in each row, and also the same number, nc of times in each column.

We note that nc ≤ nr ⇐⇒ h ≤ p. Similarly, nc > nr ⇐⇒ h > p

Remark. The definition of semi-Latin rectangle given in Bailey and Monod (2001) does

not accommodate h = p, as h < p is assumed; and by virtue of this, nr > nc.

In a semi-Latin rectangle, each row-column intersection constitutes a block. By ig-

noring the rows and columns classification, its quotient block design results. Semi-Latin

rectangles exhibit the property of orthogonality with respect to the row and column strata:

see Bailey and Monod (2001). Its treatments are orthogonal to the row strata, in the sense

that each treatment appears the same number, nr of times in each row. Similarly, the

treatments are also orthogonal to the column strata since each treatment occurs the same

number, nc of times in each column. This design is also, in general, nr- and nc-resolvable

with regards to the rows and columns, respectively.

Within the sphere of semi-Latin rectangles, there exist some designs whose quotient

block design gives a balanced incomplete block design (BIBD), which we shall designate

balanced semi-Latin rectangle (BSLR). Again, a pair of semi-Latin rectangles could possess

the property of isomorphism; such semi-Latin rectangles are known as isomorphic semi-

Latin rectangles.

Definition 2.2.14. A balanced semi-Latin rectangle (BSLR) is a semi-Latin rectangle

with the property that its quotient block design forms a balanced incomplete-block design

(BIBD). It is, indeed, a semi-Latin rectangle with an additional property of balance.

10

Definition 2.2.15. Suppose Γ1 and Γ2 denote two semi-Latin rectangles. Then Γ1 and

Γ2 are isomorphic if there exists a sequence of permutations involving the rows, columns

and treatments such that when these are applied to one of them it leads to the other.

Definition 2.2.16. Let (G,+) denote a finite Abelian group of order v with 0 as the

identity element. Suppose G = (Zv,+), where Zv, is the set of integers, reduced mod v.

Suppose further that k and λ satisfy 2 ≤ k < v, λ > 0. Let S = {a1, a2, ..., ak} ⊆ Zv,
with cardinality, |S| = k. If the multiset {(ai − ai′) mod v : ai, ai′ ∈ S, i 6= i′}, the set of

the differences between all possible pairs of elements of S contains each non-zero element

of Zv exactly λ times, then S is said to be a difference set (or a perfect difference set)

of cardinality k and index λ, or simply, a (v, k, λ)-difference set for Zv. In particular,

λ(v−1) = k(k−1) if the (v, k, λ)-difference set, S exists.: see, for example, Stinson (2004,

chapter 3).

We note that if S is a (v, k, λ)-difference set for Zv, it generates a (v, k, λ)-symmetric

BIBD by a cyclic development of it, via successive addition of each element of Zv to the

elements of S, reduced mod v. Again, the set, S forms the initial block of the BIBD.

Remark. A generalization of the concept of difference set gives the difference family.

Suppose Zv is as defined before, and 0, v, k, λ satisfy the conditions in definition 2.2.16.

Let [S1, S2, ..., Sl] be such that Si ⊆ Zv, for i = 1, 2, ..., l and |Si| = k, ∀i ∈ {1, 2, ..., l},
and the multiset union,

⋃l
i=1{(au − au′) mod v : au, au′ ∈ Si, u 6= u′} contains each non-

zero element of Zv exactly λ times. Then, the sets S1, S2, ..., Sl together constitute a

(v, k, λ)-difference family for Zv. In particular, l = λ(v−1)
k(k−1) ∈ Z, or equivalently, λ(v− 1) ≡

0(mod k(k − 1)) if the (v, k, λ)-difference family, [S1, S2, ..., Sl] exists.

Definition 2.2.17. Let c denote a non-zero n-component vector of coefficients; and τ ,

an n-component vector of parameters. Suppose n ≥ 2. Define c′ = (c1, c2, ..., cn), and

τ = (τ1, τ2, ...τn)′ . Again, let

c′τ =
n∑
i=1

ciτi (2.3)

denote a linear combination in τ , where τi is the effect of treatment i. Then c′τ is a

contrast if

c′1 =
n∑
i=1

ci = 0

where 1 is an n-component vector of 1s.

Remark. c′τ is said to be a simple (or elementary) contrast if there are only two non-zero

entries, 1 and −1 in the coefficient vector, c′. Again, c′τ is said to be normalized if

c′c =

n∑
i=1

c2i = 1

.

11

Given c′τ as defined in (2.3). Suppose l′τ is another contrast in τ , where l′ =

(l1, l2, ..., ln), such that l′τ =
∑n

i=1 liτi, and l′1 =
∑n

i=1 li = 0. If c′l = 0, or equiva-

lently, in scalar notation
∑n

i=1 cili = 0, then c′τ and l′τ are said to be orthogonal.

Definition 2.2.18. Let d be a (v, b, r, k)-design. Then d is said to be connected if all the

elementary contrasts of its treatment parameters are estimable.

Remark. A design that is not connected is said to be disconnected.

2.3 Preliminaries

Semi-Latin rectangles (SLRs) form an important class of row-column designs with in-

teresting/attractive combinatorial properties. From the general perspective, row-column

designs admit two systems of blocks: the rows and columns, hence control heterogeneity

in the experimental units which could have some effect on the response, in two directions,

as well, corresponding to the rows and columns.

Most of the classical row-column designs, which include, amongst others, the Latin

squares, Youden Squares, and generalized Youden designs have only one plot in each row-

column intersection (cell), hence just one treatment can be applied to each cell, which

could lead to the experimenter spending more resources–materials, time and cost in per-

forming his experiment using such designs, which would involve more replications of each

treatment, compared to when he uses a similar design with more plots in each row-column

intersection (though this may involve fewer number of replications of each treatment): see,

for example, Datta et al. (2017), Datta et al. (2014, 2015, 2016), Dash et al. (2014), Donev

(1998), Shah and Sinha (1996), John and Williams (1995, Chapter 5), Shah and Sinha

(1989, Chapter 4), Agrawal (1966), for a general description of row-column designs; Keed-

well and Dénes (2015), Ai et al. (2013), Raghavarao and Padgett (2005, Chapters 4 &

9), Raghavarao (1971, Chapter 1), Bose et al. (1960), Bose and Nair (1941), Bose (1938),

for several discussions on Latin squares; Preece (1996), John and Williams (1995, Chapter

5), Shrikhande (1951), Raghavarao (1971, Chapter 6) for discussions on Youden squares;

and Colbourn (1996), Ash (1981), Kiefer (1975), Ruiz and Seiden (1974) for generalized

Youden designs.

The semi-Latin rectangle is one of such designs with multiple, in general, k(> 1)

plots in each row-column intersection, called a block, thereby allowing for more treatment

allocation to each block in the design, and subsequently saving materials, time and cost,

geared towards enhancing efficient use of resources in a comparative experiment. For

instance, an experimenter may wish to compare eight treatments. To do this, he will need

a total of sixty-four plots, if he uses a Latin square, each treatment being replicated eight

times. But he could do the same experiment with just thirty-two plots using a semi-Latin

rectangle that has fewer number of replications, four, say, for each treatment: see Figure

2.3, which offers a 50% reduction in the experimental material requirement.

12

Semi-Latin rectangles have been found useful in agricultural experiments, such as plant

disease experiments; food sensory experiments; as well as consumer testing experiments.

For instance, a (4 × 8)/2 semi-Latin rectangle involving eight plants and pairs of half-

leaves at four heights has been used for experiment on tobacco plants at Rothamsted

Experimental Station to check whether a mechanism to inhibit tobacco mosaic virus had

been transferred to following generations given that it was present in certain transgenic

plants. Eight treatments were used, where each was a solution made from an extract of one

of the offspring plants. In particular, experiments on plant diseases often use half-leaves

as experimental units, and the numbers of leaf-heights (h), and plants (p) used, in general,

correspond to the numbers of rows and columns of the design, respectively (h < p): see

Bailey and Monod (2001).

In food sensory experiments, there are p panellists, and h food-tasting sessions, where

the treatments are the various food items available for tasting. Each panellist is made

to taste k items of food in each of h sessions, where h� p, and k = 2 or 3. For the

consumer testing experiments, p consumers are available for the experiment, which is to

be performed in h weeks. Various brands of a given consumer good to be tested constitute

the treatments. Each consumer tests k brands of the product each week: see Bailey and

Monod (2001). Moreover, Bailey (1992) describes some experimental situations where a

semi-Latin square can be used. In similar experimental situations where the number of

rows is not identical to the number of columns, a semi-Latin rectangle becomes a useful

design.

We give a few illustrative examples of semi-Latin rectangles in Figures 2.1, 2.2 and

2.3. Figures 2.1 and 2.2 can be found in Bailey and Monod (2001). In Figure 2.1, there

are four treatments arranged in eight blocks of two plots, each which are embedded in a

2-by-4 array. This design, has, indeed, a simple orthogonal block structure, viz (2× 4)→
2: see Nelder (1965), but we shall denote this by (2 × 4)/2 in conformity with modern

literature. That is, there are two rows and four columns, with two plots in each row-

column intersection of the design. Each treatment appears twice in each row, and exactly

once in each column. The design in Figure 2.2 is a (4 × 8)/2 semi-Latin rectangle. It

has four rows, eight columns and two plots in each block. There are eight treatments;

each appears twice per row and once per column, just like the design in Figure 2.1. The

randomized form of the design in Figure 2.2 was used for the experiment on tobacco plants

mosaic virus at the Rothamsted Experimental Station: see Bailey and Monod (2001). The

design in Figure 2.3 is a (2 × 4)/4 semi-Latin rectangle. It has eight treatments just like

the one in Figure 2.2, but there are two rows, four columns, and four plots in each block.

Each treatment makes an appearance two times in each row, and once in each column,

just like the designs in Figures 2.1 and 2.2.

13

1 2 2 3 3 4 4 1

3 4 4 1 1 2 2 3

Figure 2.1: Semi-Latin rectangle for four treatments in blocks of size two

4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4

1 7 2 0 3 1 4 2 5 3 6 4 7 5 0 6

0 3 1 4 2 5 3 6 4 7 5 0 6 1 7 2

2 6 3 7 4 0 5 1 6 2 7 3 0 4 1 5

Figure 2.2: Semi-Latin rectangle for eight treatments in blocks of size two

2.4 Relationship with Latin squares and semi-Latin squares

An immediate generalization of the Latin square is the semi-Latin square, which is further

generalized by the semi-Latin rectangle.

The Latin square has the same number of rows as columns, and each treatment appears

equally often (just once) in each row, and also once in each column. Again, it has only

one experimental unit (plot) in each row-column intersection (cell), hence only one treat-

ment can be applied there; while the semi-Latin square, like the semi-Latin rectangle has

multiple, in general, k (> 1) units in each row-column intersection (block), though with

the restriction/limitation of equal number of rows as columns, as well as the appearance

of each treatment, exactly once in each row and also in each column: see, for example,

Soicher (2013), Parsad (2006), Bedford and Whitaker (2001), Bailey and Royle (1997),

Bailey and Chigbu (1997), Bailey (1992, 1988), Preece and Freeman (1983), as well as

Rojas and White (1957) for several discussions on semi-Latin squares.

Let Γ denote an (h × p)/k semi-Latin rectangle. Suppose h = p = n, say, and nr =

nc = 1; where nr and nc denote the respective number of times each treatment appears

in each row and column of the semi-Latin rectangle. Then Γ reduces to an (n × n)/k

semi-Latin square. Denote this design ∆. Furthermore, if k, the number of plots in each

row-column intersection of ∆ is equal to 1, then it reduces to an n× n Latin square.

Hence, the semi-Latin rectangle is a generalization of the Latin square/semi-Latin

square, or equivalently, the Latin squares/semi-Latin squares are special cases of the semi-

Latin rectangle.

1 2 3 4 5 6 7 8 1 2 5 6 3 4 7 8

5 6 7 8 1 2 3 4 3 4 7 8 1 2 5 6

Figure 2.3: Semi-Latin rectangle for eight treatments in blocks of size four

14

2.5 The Quotient block design of a semi-Latin rectangle and

some related matrices

Definition 2.5.1. Given an (h× p)/k semi-Latin rectangle, Γ. Denote by Γ∗, the incom-

plete block design obtained by ignoring the rows and columns of Γ. Then Γ∗ is said to be

the quotient block design (QBD) of Γ.

We note that Γ∗ is indeed a (v, b, r, k)-design, where v = kh/nc = kp/nr, b = hp,

r = hnr = pnc, and k < v.

Definition 2.5.2. Let d denote a (v, b, r, k) design. Suppose N = (nij) is a matrix, where

i = 1, 2, ..., v; j = 1, 2, ..., b. If nij is the number of times that the ith treatment appears in

the jth block, such that nij ∈ Z, nij ≥ 0 ∀ i, j, then N = (nij) is said to be the incidence

matrix of Γ∗.

Remark. The incidence matrix, N of d is a v-by-b treatments-by-blocks matrix with non-

negative entries. The structure of d is completely determined by its incidence matrix, N :

see, for example, Jacroux (1980). In particular, if d is binary, nij = 0 or 1.

In general, the sum of the entries on each row of N gives the number of replications of

the treatment corresponding to that row. Again, if this sum is a constant for all the rows,

it follows that d is an equireplicate block design.

Similarly, the sum of the entries on each column of N gives the size of the block

corresponding to that column. Also, if this sum gives a constant value for all the columns,

then d is a proper block design.

Definition 2.5.3. Given a v-by-b incidence matrix, N of a (v, b, r, k) design, d. Let NN ′

denote a matrix of the product of N and N ′, where N ′ is the transposed matrix of N .

Then NN ′ is said to be the concurrence matrix of d.

Remark. The concurrence matrix, NN ′ of d is a square matrix of order v. If d is binary,

then the ith leading diagonal entry of NN ′ is, simply, the number of times that the ith

treatment appears in the design, called the number of replications, ri of the ith treat-

ment, i = 1, 2, ..., v; while each off-leading diagonal entry, (i, i′) , i 6= i′ corresponds to the

number of blocks that treatments i and i′ appear together, called the number of concur-

rences between treatments i and i′, and denoted λii′ . Furthermore, if d is, in addition,

equireplicate, each leading diagonal entry has the same value, r, say.

Again, if each leading diagonal entry has a constant value, r, and in addition each pair

of its off-leading diagonal entries differ by not more than 1, in absolute terms, then d is,

thus, a regular graph design (RGD). Suppose d is an RGD and each off-leading diagonal

entry is equal to the other, then it is a balanced block design (BBD): see, for example,

Jacroux (1980).

Definition 2.5.4. Let d be a binary, proper and equireplicate (v, b, r, k)-design. Suppose

L is the symmetric, non-negative definite, and zero-row-sums as well as zero-column-sums

15

matrix of order v defined by

L = rI − k−1NN ′ (2.4)

where I is an identity matrix of order v. Then L is said to be the information matrix of d.

The scaled version of the information matrix given in (2.4) is thus

L∗ = r−1L = I − (rk)−1NN ′ (2.5)

which is called the scaled information matrix: see, for example, Soicher (2013).

Remark. The information matrix of a design is not of full rank. It has rank of at most

v− 1, that is rank(L) = rank(L∗) ≤ v− 1. In particular, the equality holds if the design is

connected, such that the upper bound of its rank is attained. Hence rank(L) = rank(L∗) =

v − 1, if d is connected.

Conversely, the strict inequality holds if d is disconnected; such that rank(L) =

rank(L∗) < v − 1.

Definition 2.5.5. Let A denote an m × n matrix; and A− a matrix of order n × m

satisfying

AA−A = A (2.6)

Then, A− is said to be a generalized inverse of A: see, for example, John and Williams

(1995, Appendix A) and Searle (1982, chapter 8).

Remark. A− is also known as g-inverse, pseudo inverse, or conditional inverse: see, for

example, John and Williams (1995, Appendix A).

For a given A, there could be many generalized inverses, A− since there exist many A−

that could satisfy (2.6): see, for example, Searle (1982, chapter 8). Hence, a generalized

inverse of a singular matrix is not, generally, a unique matrix.

However, there exists a unique version of the generalized inverse, A+ of A, called the

Moore-Penrose generalized inverse.

Definition 2.5.6. Let A be an arbitrary m×n real matrix. Suupose there exists a unique

n×m real matrix, A+ satisfying the following conditions:

AA+A = A (2.7)

A+AA+ = A+ (2.8)

(AA+)′ = AA+ (2.9)

(A+A)′ = A+A (2.10)

Then A+ is said to be the Moore-Penrose generalized inverse of A: see, for exam-

ple, Courrieu (2005), John and Williams (1995, Appendix A), Searle (1982, chapter 8),

Plemmons and Cline (1972), as well as Penrose (1955).

16

Remark. The four conditions given in (2.7), (2.8), (2.9), and (2.10) are usually called the

Penrose conditions: see, for example, Searle (1982, chapter 8). For a given matrix, A+

to be called the Moore-Penrose generalized inverse of another, A, it must satisfy the four

Penrose conditions; and it is unique for a given A. Since (2.7) is identical to (2.6) if the

different notations, A+ and A− for the generalized inverses are ignored, it follows that A+

is a generalized inverse which satisfies three extra conditions, viz, (2.8), (2.9), and (2.10).

If a given generalized inverse satisfies (2.8), in addition, then it is called a reflexive

generalized inverse: see, for example, Searle (1982, chapter 8).

Suppose A is non-singular, then its inverse is unique, and this is identical to the regular

inverse. Thus, A− = A−1 = A+, where A−1 is the regular inverse: see, for example, Searle

(1982, chapter 8).

Again, suppose B denote an information matrix of order v for a (v, b, r, k)-design.

Provided d is connected, then (B + aJ) is non-singular, where a 6= 0 is any real scalar,

and J , a matrix of 1s, also of the same order as B. Consequently, (B + aJ)−1 is another

version of generalized inverse of B: see, for example, John (1980, chapter 2) and Shah

(1959).

Definition 2.5.7. Let X ∈ Rn be a random vector. Suppose F = (fij), i, j = 1, 2, ..., n is

a positive semi-definite matrix such that

fij =

Cov(Xi, Xj), i 6= j

Var(Xi), i = j

where Cov(Xi, Xj) is the covariance between Xi and Xj , i 6= j; and Var(Xi) is the

variance of Xi. Then F = (fij) is said to be the variance-covariance matrix, or simply,

the covariance matrix of X.

Remark. Suppose d is a (v, b, r, k)-design. Suppose further that B denote the information

matrix of d. Let E denote any generalized inverse of B. Then E is a variance-covariance

matrix for estimating the variance of treatment contrasts a′τ in d, where Var(â′τ) =

σ2a′Ea: see Morgan (2007).

2.6 Design Efficiency

The efficiency of a design of a given size is concerned with the measure of the gain (or

loss) resulting from the use of the design. Blocking, which reduces the error variance; as

well as small block sizes often lead to a gain in efficiency compared to when large block

sizes are used: see, for example, John and Williams (1995, chapter 2). A design in which

the gain is high (or the loss is low) is, thus, an efficient design; and this is achievable by

binary designs.

Equivalently, design efficiency could be viewed as the performance ability (or inability)

of a design in estimating elementary contrasts of its treatment parameters with minimal

variances, which leads to a high (or low) precision in the estimation.

17

Definition 2.6.1. Given a (v, b, r, k)-design, d. Let τi be a parameter denoting the effect

of the ith treatment, i = 1, 2, ..., v. Again, let τi′ , i 6= i′ denote the effect of another

treatment, i′. Then, the difference, τi − τi′ , between the effects of treatments i and i′,

i 6= i′ is an elementary contrast.

Let τ̂i − τi′ denote the estimator of this contrast. Denote τ̂i − τi′ by τ̂i − τ̂i′ , and its

variance by Var(τ̂i − τ̂i′). If L∗− is a generalized inverse of the scaled information matrix,

L∗ = I − (rk)−1NN ′ of d, then

Var(τ̂i − τ̂i′) = (L∗−ii + L∗−i′i′ − 2L∗−ii′)σ
2/r (2.11)

where L∗−uu , u = i, i′ is the uth leading diagonal entry of L∗−, L∗−ii′ is the (i, i′)th entry of

the same matrix, L∗− and σ2 is the error variance: see, for example, Bailey (2009), Bailey

(2004, chapter 4), as well as John and Williams (1995, chapter 2).

Remark. In general, given a (v, b, r, k)-design, d with the scaled information matrix, L∗,

let c′τ =
∑v

i=1 ciτi be a contrast in τ , and c′τ̂ =
∑v

i=1 ciτ̂i, its estimator. Then

Var(c′τ̂) = Var(

v∑
i=1

ciτ̂i) = σ2
∑v

i=1 c
2
i

r

c′L∗−c∑v
i=1 c

2
i

= (c′L∗−c)
σ2

r
(2.12)

where

∑v
i=1 c

2
i

r
is a scale factor, and c′L∗−c∑v

i=1 c
2
i

a scalar which depends on the coefficient

vector c′ = (c1, c2, ..., cv) and the design, d but not on the experimental material: see, for

example, Bailey and Royle (1997). It is obvious from (2.12) that Var(c′τ̂) is a product of

these two quantities and the error variance, σ2.

In particular, if the vector c (or c′) has only two non-zero entries, 1 and −1, then

c′τ =
∑v

i=1 ciτi reduces to τi − τi′ , i 6= i′ which is an elementary contrast. Consequently,

Var(c′τ) = Var(τ̂i− τ̂i′) = (L∗−ii +L∗−i′i′−2L∗−ii′)σ
2/r, obtained by using (2.12), which result

is identical to (2.11).

Again, if d is connected, all the elementary contrasts of its treatment parameters are

estimable. Hence there are
(
v
2

)
= v(v−1)

2 estimable distinct elementary contrasts.

Definition 2.6.2. Suppose d is a connected (v, b, r, k)-design. Let L∗−ii + L∗−i′i′ − 2L∗−ii′ in

(2.11) be denoted vii′ , i 6= i′ such that (2.11) becomes

Var(τ̂i − τ̂i′) = vii′σ
2/r

Let

Var(τ̂i − τ̂i′) = (σ2/r)v̄g = (σ2/r)(2
∑
i

∑
i′>i

vii′)/v(v − 1)

where v̄g is the average over the values of vii′ for all distinct pairs, i and i′ of treatments.

Denote Var(τ̂i − τ̂i′) by v̄. Then

v̄ = (σ2/r)(2
∑
i

∑
i′>i

vii′)/v(v − 1) (2.13)

18

is the average variance of all the
(
v
2

)
estimated elementary contrasts (or pairwise compar-

isons) of the treatment parameters in d.

Remark. v̄ provides a good measure of the efficiency of d. To enhance the efficiency of d,

the value of v̄ needs to be small.

Definition 2.6.3. Suppose d is a connected (v, b, r, k)-design with the associated scaled

information matrix, L∗ = I − (rk)−1NN ′. Denote by e1, e2, ..., ev−1, the non-zero eigen-

values of L∗. Then e1, e2, ..., ev−1 are called the canonical efficiency factors (c.e.f.s) of

d.

Remark. Since L∗ is not of full rank, there exists at least one zero eigenvalue. Again,

because d is connected, rank(L∗) = v− 1: see the remark in definition 2.5.4. Hence, there

are v − 1 non-zero eigenvalues, with only one of it being zero.

Let |Ω| = vr = bk denote the number of experimental units in d. Then |Ω| ≥ v+ b− 1:

see, for example, Jacroux (1978). Consequently, v(r−1) ≥ b−1, or equivalently, b(k−1) ≥
v − 1.

Suppose d is disconnected, then L∗ would have fewer number of eigenvalues that are

non-zeros, with more than one being zero, since in that case, rank(L∗) < v − 1.

The canonical efficiency factors are often utilized through some function of it to mea-

sure the efficiency of a design. This needs to be large enough to enhance a design efficiency.

Definition 2.6.4. Let d be a (v, b, r, k)-design. Suppose each elementary contrast, τi−τi′ ,
where i 6= i′ is estimable in d. We remind that Var(τ̂i − τ̂i′) = vii′σ

2/r, where vii′ =

L∗−ii + L∗−i′i′ − 2L∗−ii′ , i 6= i′: see definition 2.6.2. Define eii′ by

eii′ =
2σ2/r

vii′σ2/r
=

2

vii′
(2.14)

where 2σ2/r is the variance associated with the estimator of the elementary contrast (or

pairwise comparison), τi− τi′ , i 6= i′ for a complete block design with the same parameters

as d; which is believed to have the minimum value for this variance: see, for example,

John and Mitchell (1977). Then eii′ is the efficiency factor for the elementary contrast (or

pairwise comparison), τi − τi′ , which compares treatment i with treatment i′, i 6= i′; and

has values between 0 and 1: see, for example, Bailey and Royle (1997). It is also called

the pairwise efficiency factor.

Remark. The pairwise efficiency factor, eii′ ∀ pair (i, i′) of treatments, i 6= i′ is not less

than the minimum of the canonical efficiency factors: see, for example, John and Williams

(1982).

By virtue of (2.14), (2.11) is identical to

Var(τ̂i − τ̂i′) =
2σ2

r

1

eii′
(2.15)

19

Hence, from (2.15), it is obvious that the variance, Var(τ̂i − τ̂i′) of the estimated

elementary contrast, τ̂i − τ̂i′ of the treatment parameters τi and τi′ , i 6= i′ is proportional

to the reciprocal of the efficiency factor for the contrast τi − τi′ , for a fixed r.

Again, the harmonic mean (HM) of the efficiency factor, eii′ for all pairwise compar-

isons τi − τi′ , i 6= i′ is proportional to the reciprocal of the average variance, v̄ of all the

estimated elementary contrasts; and this is seen as follows:

Since each contrast is estimable in d, thus making d connected, there exists
(
v
2

)
= v(v−1)

2

estimable distinct pairwise contrasts, which correspond to the number of values of eii′

obtainable. Thus

Harmonic mean of eii′ =
1

2
∑

i

∑
i′>i(1/eii′)

v(v−1)

=
v(v − 1)

2
∑

i

∑
i′>i(1/eii′)

(2.16)

=
v(v − 1)∑
i

∑
i′>i vii′

obtained by using (2.14) in (2.16)

=
1

(2σ2/r)
∑

i

∑
i′>i vii′

v(v−1)

(2σ2/r)

=
1

v̄
(2σ2/r)

∝ 1

v̄

Hence, the desired result.

There is a quantity which measures the average variance, v̄ over all estimated elemen-

tary contrasts of treatment parameters in a given design relative to the average of the

same variance for a complete block design with the same parameters. This is the overall

average efficiency factor of the design.

Definition 2.6.5. Let d be a (v, b, r, k)-design. Suppose d is connected. Let a quantity,

Eo be defined by

Eo =
2σ2/r

v̄
=

v(v − 1)∑
i

∑
i′>i vii′

(2.17)

Then Eo is the overall average efficiency factor of d.

Remark. The quantity, Eo associated with d gives a measure of how good d is relative to a

complete block design of the same size/parameters. A design with a high efficiency factor

would tend to have low variances of within-block estimators (contrasts): see, for example,

Bailey and Royle (1997).

Bailey and Royle (1997) give four measures of the efficiency of a design, viz, the

harmonic mean, A; the geometric mean, D; and the minimum, E of the canonical efficiency

factors; as well as the minimum, E′ of the efficiency factors, eii′ for elementary contrasts.

20

2.7 Design optimality

Designs within a given class are usually compared to determine the one(s) that outperform

(perform best) and could, as such, be preferred over the other design(s) in that class, for

purposes of experimentation.

Design optimality is, thus, concerned with finding (or choosing) the best possible re-

alizable design(s) from amongst a given class of designs. This usually involves imposing

certain well- and predefined conditions (or criteria), called optimality criteria, which fol-

lows somewhat from their corresponding efficiency measure. The design(s) which is/are

found to be the best under the imposed criterion(a) is/are said to be the optimal design(s)

in that class with respect to that criterion(a).

Optimality criteria are said to be functionals of the information matrix of the design:

see, for example, Das (2002), and Cheng (1978).

Definition 2.7.1. Let D(v, b, r, k) denote a class of designs with the same values of the

parameters v, b, r, k. Denote by ψ, an optimality criterion. Let d be any design in D. Then

d+ ∈ D is said to be optimal in D with respect to ψ, or simply, ψ-optimal, if it satisfies

the condition in ψ over other competing designs in D.

We note that, this condition, usually involves an optimization (maximization or mini-

mization) of some function of the canonical efficiency factors of a design. Thus, canonical

efficiency factors play a vital role in determining optimal designs.

Some of the commonly used optimality criteria include the A-, D-, and E-criteria.

Under these three criteria, a balanced incomplete block design (BIBD), when it exists, is

known to be optimal; and when a BIBD does not exist, it is conjectured that the A-, D-,

and E-optimal designs are to be found among regular-graph designs (RGDs), if such exist:

see, for example, John and Mitchell (1977).

Remark. If more than one design in D satisfies the condition in ψ, then each of those

designs satisfying this condition is said to be ψ-optimal in D.

Again, suppose ψ and φ are two distinct optimality criteria. If d∗ is ψ-optimal amongst

all the competing designs in D, it may not necessarily be φ-optimal in the same class: see,

for example, John and Williams (1995, chapter 2).

Definition 2.7.2. Let d be a (v, b, r, k)-design with the treatments and blocks sets V
and B, respectively, where the cardinalities of V and B, denoted |V| and |B| are, v and b,

respectively. Suppose d∗ is a (v∗, b∗, r∗, k∗)-design obtained from d by interchanging the

roles of V and B such that the block labels for those blocks in which the ith treatment in d∗

appears, i ∈ {1, 2, ..., v∗} correspond to the treatment labels of those treatments in the jth

block of d, i = j ∈ {1, 2, ..., b}; or equivalently, the treatment labels for those treatments

contained in the jth block of d∗, j ∈ {1, 2, ..., b∗} correspond to the block labels of those

blocks that contain the ith treatment in d, j = i ∈ {1, 2, ..., v}. Then d∗ is said to be the

dual design of d, and vice versa.

21

As an illustration, suppose d is a (4, 6, 3, 2)-design. Denote by bi, i = 1, 2, ..., 6 its

blocks formed by the elements in the braces.

Suppose d: b1 = {τ1, τ2}, b2 = {τ1, τ3}, b3 = {τ1, τ4}, b4 = {τ2, τ3}, b5 = {τ2, τ4}, and b6 =

{τ3, τ4}. Let b∗i , i = 1, 2, ..., 4 denote the blocks of its dual design, d∗. Then d∗ is the design:

b∗1 = {τ1, τ2, τ3}, b∗2 = {τ1, τ4, τ5}, b∗3 = {τ2, τ4, τ6}, and b∗4 = {τ3, τ5, τ6}.
Notice that d∗ is a (6, 4, 2, 3)-design. Again, d is a BIBD with λ = 1, whereas d∗ is

not.

We note that v∗ = b, b∗ = v, r∗ = k, and k∗ = r. Again, If N is the incidence matrix

of d, then N ′ is the incidence matrix of d∗, and vice versa. Their information matrices

are of order v and b, respectively. Suppose d is connected, and consequently, d∗ is also

connected. Then, their canonical efficiency factors (c.e.f.s), including multiplicities are

identical apart from the excess |b− v|, each with value equal to 1. In particular, if b ≥ v,

then d∗ has at least the same number of c.e.f.s as d, and the excess b− v is attributed to

d∗. On the contrary, if b < v, then d∗ has fewer c.e.f.s than d such that each of the excess

v − b c.e.f.s is attributed to d: see, for example, Bailey (2004, chapter 4) and John and

Williams (1995, chapter 2).

Remark. The dual design becomes most useful if v is very large compared to b, as the

c.e.f.s can be easily obtained from its dual: see, for example, John and Williams (1995,

chapter 2).

If d is a BIBD, then d∗ is also a BIBD ⇐⇒ d is symmetric.

Again, d∗ is A-, D-, or E- optimal⇐⇒ d is A-, D-, or E- optimal, respectively: see, for

example, John and Mitchell (1977). These authors observe that this is true for situations

where d or d∗ is (or not) a regular graph design.

We now describe some basic optimality criteria:

2.7.1 A-optimality criterion

The A-optimality criterion is concerned with maximizing the harmonic mean, A, of the

canonical efficiency factors of a design. Equivalently, it minimizes the average variance of

the estimators of elementary treatment contrasts: see, for example, Soicher (2013), Bailey

and Cameron (2009), Morgan (2007), Bedford and Whitaker (2001), Bailey and Royle

(1997), John and Williams (1982), John (1981), as well as Cheng (1978).

Definition 2.7.3. Given a class, D(v, b, r, k) of designs for a given set (v, b, r, k) of param-

eters, where the parameters have their usual meaning. On the basis of canonical efficiency

factors, d+ ∈ D is said to be A-optimal in D if the harmonic mean of its canonical ef-

ficiency factors is at least as large as that of d′ ∈ D, ∀ d′ 6= d+, where d′ is any other

competing design in D. That is, the harmonic mean of the canonical efficiency factors of

d+ cannot be less than that of any other competing design in the same class with it.

22

In particular, for connected designs, the harmonic mean, A, of its canonical efficiency

factors is given by:

A =
v − 1∑v−1
i=1

1
ei

Remark. The harmonic mean, A of the canonical efficiency factors of a connected design

is identical to the overall average efficiency factor, Eo, based on pairwise treatment dif-

ferences, given in (2.17): see, for example, Bailey (2004, chapter 4), as well as John and

Williams (1995, chapter 2).

Definition 2.7.4. Given a (v, b, r, k) design, d, let d′ denote a (v, b, r′, k′) design obtained

from d whose blocks are formed by the complementary treatments in the corresponding

block of d, such that k′ = v − k, and r′ = b− r. Then, d′ is said to be the complementary

design of d.

Considering the (4, 6, 3, 2, 1)-BIBD, d given in section 2.7, let b′i, i = 1, 2, ..., 6 denote

the blocks of its complementary design, d′. Then d′ is the design with the following block

composition:

b′1 = {τ3, τ4}, b′2 = {τ2, τ4}, b′3 = {τ2, τ3}, b′4 = {τ1, τ4}, b′5 = {τ1, τ3}, and b′6 = {τ1, τ2};
which is also a BIBD. In particular, d′ is also, by coincidence, a (4, 6, 3, 2, 1)-BIBD.

Remark. Suppose dcb is a complete block design with the same number of treatments, v

and blocks, b just like d and d′. Hence v = kcb, and b = rcb, where kcb and rcb denote the

respective block size and replication number of each treatment in dcb. Then d′ = dcb \ d
such that the incidence matrix of d′ is J−N , where J is the incidence matrix of dcb, which

is a v × b matrix of 1s, and N the incidence matrix of d.

The complement of a BIBD is of necessity a BIBD. This property also hold for a RGD.

Also, It is conjectured that if a design is A-optimal, then its complementary design is also

A-optimal: see, for example, John and Williams (1982).

Again, suppose ei, i = 1, 2, ., ..., v − 1 are the canonical efficiency factors (c.e.f.s) of d.

Let e′i, i = 1, 2, ..., v − 1 denote the c.e.f.s of d′. Then,

e′i = 1− α(1− ei)

where α = rk/r′k′: see, for example, John and Williams (1982).

2.7.2 D-optimality criterion

The D-optimality criterion involves maximizing the geometric mean, D, of the canonical

efficiency factors of a design. Equivalently, it minimizes the volume of a confidence ellipsoid

containing the estimated treatment contrasts: see, for, example, Soicher (2013), Bailey and

Cameron (2009), Morgan (2007), Bedford and Whitaker (2001), Bailey and Royle (1997),

John and Williams (1982), and Cheng (1978).

23

Definition 2.7.5. Let D(v, b, r, k) denote a class of designs with the same values of

v, b, r, k. Based on canonical efficiency factors, a design, d+ within D is said to be D-

optimal in D if the geometric mean of its canonical efficiency factors is at least as large

as that of any other competing design within the same class. Hence d+ has a geometric

mean efficiency factor which is not less than that of any other competing design in D.

The geometric mean, D, of the canonical efficiency factors of a connected design is

given by:

D = (
v−1∏
i=1

ei)
1

v−1

Remark. Conjecture 3 of John and Williams (1982) implies that if d+ is a D-optimal

design, then its complementary design is also D-optimal.

2.7.3 E-optimality criterion

The E-optimality criterion seeks to maximize the minimum, E, of the canonical efficiency

factors of a design. Equivalently, it minimizes the maximum variance over all normalized

treatment contrasts: see, for example, Soicher (2013), Bailey and Cameron (2009), Morgan

(2007), Bedford and Whitaker (2001), Bailey and Royle (1997), Jacroux (1980), John and

Williams (1982), and Cheng (1978).

Definition 2.7.6. Let d+ denote a design within the class, D(v, b, r, k) of designs. Suppose

canonical efficiency factors is used as a basis for finding the optimal design in D. Then, d+

is considered E-optimal in D if its minimum canonical efficiency factor is at least as large

as that of any other competing design within this class. That is, the minimum canonical

efficiency factor of d+ cannot be less than that of any other competing design, d′ in D.

Remark. The E-criterion entails that, if d+ ∈ D is E-optimal over D, then

max
d′∈D

(min{e1, e2, ..., ev−1}) ≤ e,

where e is the smallest canonical efficiency factor of d+. Note that if the strict inequality

holds, then the E-optimal design in D, d+ is unique. However, if the equality holds, then

there are more than one design in D that are E-optimal.

There exists another useful criterion for assessing the optimality of a design(s) known

as the (M,S)-optimality criterion.

2.7.4 (M,S)-optimality criterion

The (M,S) optimality criterion involves a two-stage optimization procedure (maximization

at the first stage and minimization at the second stage). The first stage involves selecting

from a given class of designs those ones whose information matrices have maximal trace.

At the second stage, the particular design(s) from amongst those with maximal trace of

24

their information matrices whose squared information matrices have minimal trace is then

selected, which is/are the (M,S)-optimal design(s): see, for example, John and Williams

(1982), Jacroux (1978), as well as Eccleston and Hedayat (1974).

Definition 2.7.7. Let D(v, b, r, k) denote a class of designs with the same parameters

v, b, r, k. Let D∗ be the set of all d∗ in D whose information matrices have maximal trace.

Let d∗+ ∈ D∗ be such that its squared information matrix has minimal trace over D∗.
Then d∗+ is said to be (M,S)-optimal in D.

Remark. The first stage is the M -optimality, while the second is the S-optimality: see,

for example, John and Williams (1982), as well as Eccleston and Hedayat (1974). Thus

(M,S)-optimality combines both the M - and S-optimality components.

(M,S)-optimal designs are usually sought for among the class of binary designs, as

such designs maximize the trace of their information matrix. Also, an (M,S)-optimal

optimal design minimizes the sum of squares of all concurrences between pairs of distinct

treatments among the competing designs. Moreover, a BIBD (or RGD), when it exists,

is (M,S)-optimal; but when such designs do not exist, some of the concurrences between

pairs of distinct treatments will differ by 2, or even more: see, for example, John and

Williams (1982).

An (M,S)-optimal design is, usually, a connected design; though it may not always

be: see, for example, Jacroux (1978). Suppose an (M,S)-optimal design is connected, the

trace of its scaled information matrix is identical to the sum,
∑v−1

i=1 ei of its c.e.f.s.; while

the sum,
∑v−1

i=1 e
2
i gives the trace of its squared scaled information matrix.

The (M,S)-optimality, thus, involves selecting a subclass of designs which maximize∑v−1
i=1 ei amongst all the designs in its class, at the first stage, and then choosing from

the selected subclass that which minimize
∑v−1

i=1 e
2
i amongst all designs in the selected

subclass, at the second stage.

Given a class, D(v, b, k) of designs, the existence of an (M,S)-optimal design in D
which is connected ⇐⇒ b(k − 1) ≥ v − 1. Again, the connectedness of an (M,S)-optimal

design in D is guaranteed if (k − 1)(rmax + rmin) ≥ v − 1, where rmax and rmin are the

respective maximum and minimum number of replications of the treatments in the design:

see, for example, Jacroux (1978). In particular, if D comprises equireplicated designs, the

preceding condition reduces to 2r(k − 1) ≥ v − 1.

Furthermore, considering the class, D(v, b, k) of binary designs, let d+ ∈ D denote an

(M,S)-optimal design in D. Suppose D′(v, b, v − k) denote the class of complementary

designs that correspond to D. Let d+′ ∈ D′ denote the complementary design of d+.

Then, d+′ is (M,S)-optimal in D′. Similar property holds for the dual design of d+, if D
comprises proper equireplicated designs: see, for example, Jacroux (1978).

John and Williams (1982) conjecture that an (M,S)-optimal design which is A-optimal

is also D-optimal; and also that an (M,S)-optimal design that is D-optimal is A-optimal.

25

2.8 Related work and direction of research

There are many discussions on semi-Latin squares (SLSs) in the literature, leaving behind,

the generalized form of it, the semi-Latin rectangle. A pioneering work on semi-Latin

rectangles (SLRs) can be found in Bailey and Monod (2001).

These authors constructed efficient (h × p)/k semi-Latin rectangles for v = 2n treat-

ments, where h = n, p = 2n, k = 2 and 2 ≤ n ≤ 10, using combinatorics, via starters and

the cyclic method for constructing balanced tournament designs. Each treatment of their

designs appears once in each column and twice in each row. Their constructions, except

for the case n = 2 yielded designs whose QBDs are RGDs, which have been conjectured

to possess optimal properties over other designs in its class, when they exist: see, for

example, John and Williams (1982), as well as John and Mitchell (1977).

Uto and Bailey (2020) gives some properties and conditions necessary for a balanced

semi-Latin rectangle (BSLR) to exist, giving some algorithms for constructing such designs

when each row-column intersection (block) contains k = 2 treatments. The algorithms

generate designs of the class h = v, p = vδ, where δ = (v − 1)/2 for situations that v is

odd and h = v/2, p = v(v − 1)/2 for the case that v is even. They also suggest methods

of deriving some other classes of designs from the constructions.

In this work, we concentrate on BSLRs and RGSLRs, with a view to finding some suit-

able techniques to facilitate the construction of efficient SLRs of various classes and sizes,

giving generalizations in some cases using combinatorics via concepts like graph distance,

parallel classes, starters, balanced tournament designs (BTDs), difference sets/families, α-

resolvable BIBDs, group-divisible designs that are regular-graph designs, as well as undi-

rected terrace and the cyclic constructions. We also employ the concepts of permutation

and complementation. Moreover, in some cases, we develop constructions by extending

the work of Bailey and Monod (2001).

26

Chapter 3

Balanced Semi-Latin Rectangles

with Block Size Two

3.1 Introduction

We shall, in this chapter, consider semi-Latin rectangles whose quotient block desigsns

(QBDs) are balanced incomplete-block designs (BIBDs) and each row-column intersection

of the design contains exactly two treatments. We name such designs balanced semi-Latin

rectangles (BSLRs) with block size two and give constructions for this class of designs

using some combinatorial approaches. We dwell on two concepts, viz, distances (graph

distances)–the length of the shortest path between pairs of vertices of a regular n-gon (a

regular polygon with n vertices) and parallel classes for a set of v symbols (treatments)–

sets of blocks which partition the treatment set. Our constructions consider both odd and

even number of treatments; and for each case an algorithmic procedure for constructing

the design is given and backed up with some examples. New designs are obtained via

some modifications of the procedures and also by transpositions. Moreover, some designs

of larger sizes are also obtained. Some illustrative examples are also given for each case.

Part of the results obtained have been published: see Uto and Bailey (2020).

3.2 Structure and associated properties of the design

The design under discussion has v treatments arranged in an h×p array consisting of h rows

and p columns, where there are exactly two treatments in each row-column intersection.

Denoting the structure of the design by (h× p)/2; each treatment appears nc number

of times in each column, where nc = 2h/v. Similarly, each treatment appears nr number

of times per row, where nr = 2p/v. Hence, overall, the replication number per treatment

is 2hp/v. We note that nc and nr may (or may not) be distinct. Consequently, h and

p may (or may not) also be distinct. In particular, h is identical to p if and only if nc

is identical to nr. Furthermore, for this design, its quotient block design (QBD) which

27

contains hp blocks is an irreducible (or unreduced) BIBD, consisting of all the
(
v
2

)
distinct

2-treatment subsets of v, where each subset is of multiplicity λ, and these constitute the

cells entries (blocks) of the design.

3.3 Concepts used in the Construction of the designs

We concentrate on two concepts-distances and parallel classes by utilizing an n-gon, as

given in section 3.1.

Definition 3.3.1. Let Λ denote a regular n-gon. Denote by V = {1, 2, ..., n} its vertex

set. Suppose the vertices are labelled in a cyclic order, with an edge between vertices i

and i + 1 (reduced modulo n, if necessary). Let δ = bn/2c. For all i, i′ ∈ V ,i′ 6= i, we

define d(i, i′) ∈ [1, δ] to be

d(i, i′) =

{
n− |i′ − i| if |i′ − i| > δ,

|i′ − i| if |i′ − i| ≤ δ.

Then d(i, i′) is said to be the distance between the vertices, i and i′.

Remark. d(i, i′) is the length of the shortest path connecting the pair, i and i′ of vertices.

Definition 3.3.2. Let V denote the set of treatments of a (v, 2, λ)-BIBD, Γ, where 2

divides v. Denote by B = {Bj}bj=1, its set of blocks; and r = 2b/v. Let Al ⊂ B,

where Al = {Alm}
v/2
m=1, Alm being the mth block in Al, l = 1, 2, ..., r. Suppose for all

Alm, Alm′ ∈ Al, Alm ∩Alm′ = ∅, where m′ 6= m, so that

∣∣∣∣∣ v/2⋃m=1
Alm

∣∣∣∣∣ =
v/2∑
m=1
|Alm| = v. Then

Al, l = 1, 2, ..., r is said to be a parallel class (or resolution class) in Γ.

Al is a set of blocks in Γ which partition V.

Remarks. � Each treatment appears in exactly one block within each parallel class.

� Each parallel class contains v/2 blocks.

� The partition of B into parallel classes, A1,A2, ...,Ar gives a resolution. Hence, Γ

satisfying this property is said to be resolvable.

3.4 Basic construction when v is odd

When the set of treatments of the design to be constructed has cardinality equal to an odd

number, we approach the construction as follows: By putting n = v in Definition 3.3.1,

we have δ = (v − 1)/2. Furthermore, by identifying the treatments with the vertices of

a regular v-gon and combining the vertices into pairs that are at unique distances apart,

the entries of the cells in the first row of the design are obtained. For each pair, (i, i′) of

vertices, d(i, i′) ∈ [1, δ]; and for each unique distance, there are v distinct pairs of vertices

28

associated with it, which we generate using a cyclic approach given below. These are then

utilized in the construction.

Let the jth pair of vertices at a distance, u apart be denoted by Suj = {j, j + u},
where j = 1, 2, ..., v, and u = 1, 2, ..., δ; with a reduction (modulo v) for each component.

Furthermore, let the v distinct pairs of vertices for each u be denoted by Su = {Suj}vj=1.

From the foregoing, it is obvious that, Su1 = {1, 1 + u}, Su2 = {2, 2 + u},. . .,

Suv = {v, v+ u}. Similarly, S1j = {j, j + 1}, S2j = {j, j + 2}, . . ., Sδj = {j, j + δ}, where

there is a reduction (modulo v) for each component.

An algorithmic procedure for constructing the design is presented in section 3.4.1.

3.4.1 An algorithmic procedure for constructing the design using dis-

tances

1. Put Suj = {j, j+u}, where j = 1, 2, ..., v for each u = 1, 2, ..., δ, and with a reduction

(modulo v) for each component.

2. Make a Latin square, ∆u, of order v using the sets Su1, Su2, ..., Suv as symbols, where

u = 1, 2, ..., δ.

3. Juxtapose the Latin squares ∆1,∆2, ...,∆δ made in 2., one beside another.

Comments. (1) Using the algorithmic procedure in section 3.4.1, a (v × vδ)/2 balanced

semi-Latin rectangle is obtained. That is, the design has h = v rows and p = vδ

columns. The constructed design is of the form

∆1 ∆2 · · · ∆δ

The Latin square, ∆u, u = 1, 2, ..., δ can take the form

∆u =

Su1 Su2 · · · Suv

Suv Su1 · · · Su,v−1

...
...

. . .
...

Su2 Su3 · · · Su1

29

Note that, the order of juxtaposition of the Latin squares is immaterial, that is, it

need not necessarily follow a natural order. Hence, can take any order.

(2) Furthermore, this algorithm produces designs where each pair of treatments concur

once per row and λ = h times, overall. Moreover, each treatment appears v − 1

times per row and v(v− 1) times, overall. Thus, the QBD of the constructed design

is a (v, b, r, 2, v)-BIBD, where b = v2(v − 1)/2 = hp and r = v(v − 1) = 2p.

The construction is illustrated with the following examples

Example 3.4.1. Let v = 3. Then δ = 1, h = 3 and p = 3. The constructed design is

shown in Figure 3.1.

1 2 2 3 3 1

3 1 1 2 2 3

2 3 3 1 1 2

Figure 3.1: A (3× 3)/2 balanced semi-Latin rectangle for 3 treatments

Remarks. � Notice that the design in Figure 3.1 has the same number of rows and

columns, which is a special case of the semi-Latin rectangle.

� Each treatment appears twice per row and also twice per column, hence, 6 times

overall.

� Moreover, each pair of treatments concur 3 times in the design.

� The Quotient block design of this design is a (3, 9, 6, 2, 3)-BIBD.

Example 3.4.2. Let v = 5. Then δ = 2, h = 5 and p = 10. The constructed design is

presented in Figure 3.2.

Notice that this design takes the form

∆1 ∆2

where

30

1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2

5 1 1 2 2 3 3 4 4 5 5 2 1 3 2 4 3 5 4 1

4 5 5 1 1 2 2 3 3 4 4 1 5 2 1 3 2 4 3 5

3 4 4 5 5 1 1 2 2 3 3 5 4 1 5 2 1 3 2 4

2 3 3 4 4 5 5 1 1 2 2 4 3 5 4 1 5 2 1 3

Figure 3.2: A (5× 10)/2 balanced semi-Latin rectangle for 5 treatments

∆1 =

1 2 2 3 3 4 4 5 5 1

5 1 1 2 2 3 3 4 4 5

4 5 5 1 1 2 2 3 3 4

3 4 4 5 5 1 1 2 2 3

2 3 3 4 4 5 5 1 1 2

and

31

∆2 =

1 3 2 4 3 5 4 1 5 2

5 2 1 3 2 4 3 5 4 1

4 1 5 2 1 3 2 4 3 5

3 5 4 1 5 2 1 3 2 4

2 4 3 5 4 1 5 2 1 3

Remarks. � In this example, the number of columns in the design is double the number

of rows.

� Each treatment appears 4 times per row and 2 times per column, hence, 20 times

overall.

� Moreover, each pair of treatments concurs 5 times in the design.

� The Quotient block design of this design is a (5, 50, 20, 2, 5)-BIBD.

Example 3.4.3. Let v = 7. Then δ = 3, h = 7 and p = 21. We obtain the design in

Figure 3.3.

Remarks. � The number of columns in the constructed design is 3 times the number

of rows.

� Each treatment appears 6 times per row and 2 times per column, hence, 42 times

overall.

� Moreover, each pair of treatments concurs 7 times in the design.

� The Quotient block design of this design is a (7, 147, 42, 2, 7)-BIBD.

Example 3.4.4. If v = 9, then δ = 4, h = 9 and p = 36. We obtain the design in Figure

3.4

Remarks. � In Example 3.4.4, the number of columns in the design is 4 times the

number of rows.

� Each treatment appears 8 times per row and 2 times per column, hence, 72 times

overall.

32

1 2 2 3 3 4 4 5 5 6 6 7 7 1 1 3 2 4 3 5 4 6 5 7 6 1 7 2 1 4 2 5 3 6 4 7 5 1 6 2 7 3

7 1 1 2 2 3 3 4 4 5 5 6 6 7 7 2 1 3 2 4 3 5 4 6 5 7 6 1 7 3 1 4 2 5 3 6 4 7 5 1 6 2

6 7 7 1 1 2 2 3 3 4 4 5 5 6 6 1 7 2 1 3 2 4 3 5 4 6 5 7 6 2 7 3 1 4 2 5 3 6 4 7 5 1

5 6 6 7 7 1 1 2 2 3 3 4 4 5 5 7 6 1 7 2 1 3 2 4 3 5 4 6 5 1 6 2 7 3 1 4 2 5 3 6 4 7

4 5 5 6 6 7 7 1 1 2 2 3 3 4 4 6 5 7 6 1 7 2 1 3 2 4 3 5 4 7 5 1 6 2 7 3 1 4 2 5 3 6

3 4 4 5 5 6 6 7 7 1 1 2 2 3 3 5 4 6 5 7 6 1 7 2 1 3 2 4 3 6 4 7 5 1 6 2 7 3 1 4 2 5

2 3 3 4 4 5 5 6 6 7 7 1 1 2 2 4 3 5 4 6 5 7 6 1 7 2 1 3 2 5 3 6 4 7 5 1 6 2 7 3 1 4

Figure 3.3: A (7× 21)/2 balanced semi-Latin rectangle for 7 treatments

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 2 4 5 6 7 8 9 1 2 3 5 6 7 8 9 1 2 3 4

9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 2 4 5 6 7 8 9 1 2 3

8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7

9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 2

7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6

8 9 1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1

6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5

7 8 9 1 2 3 4 5 6 8 9 1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4

6 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 6 8 9 1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 8

4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3

5 6 7 8 9 1 2 3 4 6 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 6 8 9 1 2 3 4 5 6 7

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2

4 5 6 7 8 9 1 2 3 5 6 7 8 9 1 2 3 4 6 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1

3 4 5 6 7 8 9 1 2 4 5 6 7 8 9 1 2 3 5 6 7 8 9 1 2 3 4 6 7 8 9 1 2 3 4 5

Figure 3.4: A (9× 36)/2 balanced semi-Latin rectangle for 9 treatments

33

� Moreover, each pair of treatments concurs 9 times in the design.

� The Quotient block design of this design is a (9, 324, 72, 2, 9)-BIBD.

Comments. (1) The Latin squares, ∆u, u = 1, 2, ..., δ used in the construction are not

necessarily cyclic.

(2) For construction purposes, we introduced the double vertical lines. However, these

should be ignored in the course of randomization.

(3) The algorithmic procedure given in Section 3.4.1, when implemented, produces de-

signs with a unique property that each treatment appears k = 2 times in each

column: see the preceding examples. This has to be so since h = v.

3.5 Basic construction when v is even

For those experimental situations where the cardinality of the set of treatments of the

design under construction is an even number, we begin by making a resolvable design via

combining pairs of treatments (blocks) into parallel classes with the aid of a regular n-gon,

where n = v − 1. To achieve this, we proceed as follows: one treatment is designated a

special symbol, ∞, say, and the remaining v − 1 treatments are then identified with the

vertices of an n-gon (where n = v−1) which in union with the symbol,∞ are combined into

v/2 distinct pairs (blocks), which partition the set of treatments to form a parallel class;

and overall, there are r = v− 1 parallel classes: see, for example, Street and Street (1987,

Chapter 2) and Cameron (1994, Chapter 8). The treatment pairs in these parallel classes

form the entries of the cells (blocks) of the initial row of the design under construction

and are further utilized in the construction.

We denote by V = {1, 2, ..., n} ∪ {∞}, the treatment set of the design, and V− =

{1, 2, ..., n}, the set of vertices of a regular n-gon. Notice that V = V− ∪ {∞}.
As in definition 3.3.2, we designate Al, l = 1, 2, ..., v − 1 the lth parallel class, and

proceed to give an algebraic expression for generating the mth block in Al denoted Alm,

where m = 1, 2, ..., v/2.

For l = 1, 2, ..., v − 1, we obtain Alm to be

Alm =


{l,∞} if m = 1,

{l +m− 1, l −m+ 1} if m ∈ (1, v/2]

where each component is reduced modulo v−1. Notice that, A11 = {1,∞}, A21 = {2,∞},
..., Av−1,1 = {v − 1,∞}; and in general, for each l, Al1 = {l,∞}.

An algorithmic procedure for the construction of the design is presented in section

3.5.1.

34

3.5.1 An algorithmic procedure for constructing the design using par-

allel classes

1. Generate {Alm}
v/2
m=1, the v/2 blocks that make up Al, where l = 1, 2, ..., v − 1,

Alm =


{l,∞} if m = 1,

{l +m− 1, l −m+ 1} if m ∈ (1, v/2]

and each component is reduced modulo v − 1.

2. Make a Latin square, Ξl of order v/2 using the blocks Al1, Al2, . . ., Al,v/2, as

symbols, where l = 1, 2, ..., v − 1.

3. Juxtapose the Latin squares Ξ1,Ξ2, ...,Ξv−1 made in 2, one beside another.

Comments. (1) The design resulting from implementing the algorithm is an (h × p)/2
BSLR, where h = v/2, and p = v(v − 1)/2. It takes the form

Ξ1 Ξ2 · · · Ξv−1

(2) The Latin squares, Ξl, where l = 1, 2, ..., v − 1 can take the cyclic form; but this is

not a necessity. If it is cyclic, it can be of the form

Ξl =

Al1 Al2 · · · Alx

Alx Al1 · · · Al,x−1

...
...

. . .
...

Al2 Al3 · · · Al1

where x = v/2. Furthermore, as noted in section 3.4.1, the Latin squares can be

juxtaposed in any order, not necessarily in a natural sequence.

(3) Designs produced via the algorithm has λ = 1 per row and λ = h, overall. Each

treatment is replicated v − 1 times per row and v(v − 1)/2 times overall. Hence, its

QBD is a (v, b, r, 2, h)-BIBD, where b = (v/2)2(v − 1) = hp and r = v(v − 1)/2 = p.

35

We illustrate the construction with the following examples.

Example 3.5.1. Let v = 4. Then h = 2 and p = 6. The design takes the form

Ξ1 Ξ2 Ξ3

where

Ξ1 =

1 ∞ 2 3

2 3 1 ∞

Ξ2 =

2 ∞ 3 1

3 1 2 ∞

and

Ξ3 =

3 ∞ 1 2

1 2 3 ∞

Hence, the design is a (2× 6)/2 BSLR: see Figure 3.5.

1 ∞ 2 3 2 ∞ 3 1 3 ∞ 1 2

2 3 1 ∞ 3 1 2 ∞ 1 2 3 ∞

Figure 3.5: A (2× 6)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments

Remarks. � Notice that each treatment appears 3 times in each row and exactly once

in each column. Thus, it appears 6 times, overall.

36

� Each pair of treatments occurs exactly once per row and 2 times, overall, in the

design. Its QBD is a (4, 12, 6, 2, 2)-BIBD

Example 3.5.2. Let v = 6. Then h = 3 and p = 15. The design takes the form

Ξ1 Ξ2 Ξ3 Ξ4 Ξ5

where

Ξ1 =

1 ∞ 2 5 3 4

3 4 1 ∞ 2 5

2 5 3 4 1 ∞

Ξ2 =

2 ∞ 3 1 4 5

4 5 2 ∞ 3 1

3 1 4 5 2 ∞

Ξ3 =

3 ∞ 4 2 5 1

5 1 3 ∞ 4 2

4 2 5 1 3 ∞

Ξ4 =

4 ∞ 5 3 1 2

1 2 4 ∞ 5 3

5 3 1 2 4 ∞

37

Ξ5 =

5 ∞ 1 4 2 3

2 3 5 ∞ 1 4

1 4 2 3 5 ∞

Hence, we have, as the design, a (3× 15)/2 BSLR which is presented in Figure 3.6.

1 ∞ 2 5 3 4 2 ∞ 3 1 4 5 3 ∞ 4 2 5 1 4 ∞ 5 3 1 2 5 ∞ 1 4 2 3

3 4 1 ∞ 2 5 4 5 2 ∞ 3 1 5 1 3 ∞ 4 2 1 2 4 ∞ 5 3 2 3 5 ∞ 1 4

2 5 3 4 1 ∞ 3 1 4 5 2 ∞ 4 2 5 1 3 ∞ 5 3 1 2 4 ∞ 1 4 2 3 5 ∞

Figure 3.6: A (3× 15)/2 balanced semi-Latin rectangle for 6 treatments

Remarks. Notice that each column of the design contains each treatment exactly once,

while each row has each treatment appearing 5 times. Hence, overall, each treatment

appears 15 times. Furthermore, each pair of treatments concurs exactly once in each row

and 3 times, overall, in the design. The design has as its QBD, a (6, 45, 15, 2, 3)-BIBD.

Example 3.5.3. Let v = 8. Then h = 4 and p = 28. The design can be represented in

skeletal form as

Ξ1 Ξ2 Ξ3 Ξ4 Ξ5 Ξ6 Ξ7

We give the full design in Figure 3.7.

Remarks. The number of columns in the design is 7 times the number of rows. For each

row, each treatment makes an appearance 7 times; and for each column, it appears exactly

once. Hence, overall, each treatment is replicated 28 times. Moreover, the concurrence

number per row of the design is unity and is 4, overall. Hence, its QBD is a (8, 112, 28, 2, 4)-

BIBD.

3.6 Some derivable designs from the basic constructions

Definition 3.6.1. Let Γ1 and Γ2 denote two (h×p)/k SLRs for v treatments. We consider

Γ1 and Γ2 to be the same if their corresponding cell entries are the same, otherwise they

38

1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 1 6 7 1 2 7 1 2 3

∞ 7 6 5 ∞ 1 7 6 ∞ 2 1 7 ∞ 3 2 1 ∞ 4 3 2 ∞ 5 4 3 ∞ 6 5 4

4 1 2 3 5 2 3 4 6 3 4 5 7 4 5 6 1 5 6 7 2 6 7 1 3 7 1 2

5 ∞ 7 6 6 ∞ 1 7 7 ∞ 2 1 1 ∞ 3 2 2 ∞ 4 3 3 ∞ 5 4 4 ∞ 6 5

3 4 1 2 4 5 2 3 5 6 3 4 6 7 4 5 7 1 5 6 1 2 6 7 2 3 7 1

6 5 ∞ 7 7 6 ∞ 1 1 7 ∞ 2 2 1 ∞ 3 3 2 ∞ 4 4 3 ∞ 5 5 4 ∞ 6

2 3 4 1 3 4 5 2 4 5 6 3 5 6 7 4 6 7 1 5 7 1 2 6 1 2 3 7

7 6 5 ∞ 1 7 6 ∞ 2 1 7 ∞ 3 2 1 ∞ 4 3 2 ∞ 5 4 3 ∞ 6 5 4 ∞

Figure 3.7: A (4× 28)/2 balanced semi-Latin rectangle for 8 treatments

are different.

However, if their corresponding cell entries are not the same, it may be possible, in

some cases that, performing at least one of the following: a permutation of the rows, a

permutation of the columns, and a permutation of the treatments of Γ1 (or Γ2) leads to

Γ2 (or Γ1). In this situation, Γ1 and Γ2 are said to be isomorphic, otherwise they are

non-isomorphic. More formally, we consider Γ1 and Γ2 to be isomorphic if there is at

least one of a permutation of the rows, a permutation of the columns, and a permutation

of the treatments that takes either of the two designs to the other, otherwise they are

non-isomorphic designs. Note that if Γ1 is isomorphic to Γ2, then Γ2 is also isomorphic to

Γ1.

Given the construction procedures for an (h × p)/2 balanced semi-Latin rectangle

(BSLR) for v treatments in sections 3.4.1 and 3.5.1, we deduce from them new designs

having the same number of treatments by modifying step 3 of these procedures. One

of such modifications involves juxtaposing the Latin squares underneath instead of be-

side. This modification, for instance, produce designs isomorphic to those obtained by a

transposition of the designs obtained via the algorithm. We designate any design for a

given v obtained by a direct implementation of the algorithmic procedure the parent/basic

design and the design obtained by this modification of step 3 of the procedure with jux-

taposition(s) done underneath an alternative basic design. Moreover, a transposition of

the alternative basic design produces another design with the same number of rows and

columns as the basic design which is isomorphic to the basic design.

More designs can also be obtained via appropriate juxtapositions if the set of Latin

squares used in the construction has cardinality equal to a nonprime.

Moreover, some designs of larger sizes can also be deduced from the basic (or alter-

39

native basic) design by making multiple copies of it and subsequently, juxtaposing them

appropriately.

3.6.1 Designs with h = v(v − 1)/2 rows and p = v (or v/2) columns

From our previous constructions which produce basic designs for v treatments in h rows

and p columns, the modification described in section 3.6, which involves juxtaposing the

Latin squares, this time, one underneath another produces another balanced semi-Latin

rectangle for v treatments, which is the alternative basic design. The number of rows and

columns of the alternative basic design are in reversed order with that of the basic design.

Suppose v is odd, where the basic design has v treatments, h = v rows and p =

vδ = v(v − 1)/2 columns, a downward juxtaposition of the Latin squares ∆1,∆2, ...,∆δ

produces an alternative basic design with v treatments, where h = v(v − 1)/2 rows and

p = v columns. This design takes the form

∆1

∆2

...

∆δ

Similar results follow if v is even, where in this case, the basic design contains v

treatments in h = v/2 rows and p = v(v − 1)/2 columns. Hence, juxtaposing the Latin

squares, Ξ1,Ξ2, ...,Ξv−1 underneath, we obtain an alternative basic design which has v

treatments in v(v − 1)/2 rows and v/2 columns. The design takes the form

Ξ1

Ξ2

...

Ξv−1

40

Remark. As noted in sections 3.4.1 and 3.5.1, the juxtaposition of the Latin squares must

not follow a fixed order.

Notice that the number of rows of the alternative basic design is identical to the number

of columns of the basic design and vice versa.

A design of the same size as the one considered in this section can be obtained by

simply, transposing the basic design, that is, interchanging the roles of rows and columns

in the basic design. The design resulting from this transposition is isomorphic to the

alternative basic design. In particular, if each constituent Latin square is symmetric and

there is a definite (same) order of juxtaposition of the Latin squares in both the basic and

alternative basic designs, then the design obtained via transposition of the basic design is

the same as the alternative basic design, since in this case their corresponding blocks (cell

entries) are the same.

Similarly, transposing the alternative basic design produces a design which is also of

the same size as the basic design and isomorphic to it. These two designs are the same if

the aforementioned condition is satisfied.

We now give some examples.

Example 3.6.1. Let v = 5 and δ = 2 as in Example 3.4.2. Then we obtain a (10× 5)/2

BSLR by juxtaposing the Latin square ∆2 underneath ∆1. The resulting design is an

alternative basic design and is presented in Figure 3.8.

By simply transposing the (5 × 10)/2 BSLR of Figure 3.2, the basic design, another

version of a (10 × 5)/2 BSLR results which is isomorphic to the alternative basic design

in Figure 3.8 and is presented in Figure 3.9.

Remark. The isomorphism of the designs in Figures 3.8 and 3.9 can be seen by imposing

the permutation α, β and I on the columns, rows and treatments, respectively of either

design, where

α =

1 2 3 4 5

1 5 4 3 2



β =

1 2 3 4 5 6 7 8 9 10

1 5 4 3 2 6 10 9 8 7


and

I =

1 2 3 4 5

1 2 3 4 5

 ,

the identity permutation.

Now, by transposing the alternative basic design, we obtain another version of the

(5× 10)/2 BSLR: see Figure 3.10. Notice that the design in Figure 3.10 is isomorphic to

41

1 2 2 3 3 4 4 5 5 1

5 1 1 2 2 3 3 4 4 5

4 5 5 1 1 2 2 3 3 4

3 4 4 5 5 1 1 2 2 3

2 3 3 4 4 5 5 1 1 2

1 3 2 4 3 5 4 1 5 2

5 2 1 3 2 4 3 5 4 1

4 1 5 2 1 3 2 4 3 5

3 5 4 1 5 2 1 3 2 4

2 4 3 5 4 1 5 2 1 3

Figure 3.8: A (10 × 5)/2 balanced semi-Latin rectangle for 5 treatments obtained by

juxtaposition underneath

the basic design, and vice versa. An application of the permutation α, β and I to the

rows, columns and treatments, respectively of either of these designs reveals this.

Example 3.6.2. Let v = 7 and δ = 3 as in Example 3.4.3. We obtain a (21× 7)/2 BSLR

by juxtaposing the Latin squares ∆1, ∆2 and ∆3, one underneath another. The design

resulting from this juxtaposition is an alternative basic design and is presented in Figure

3.11.

By transposing the (7×21)/2 BSLR of Figure 3.3, the basic design, we obtain another

(21× 7)/2 BSLR, which is isomorphic to the alternative basic design in Figure 3.11). The

resulting design is presented in Figure 3.12.

Moreover, we transpose the alternative basic design to obtain another (7×21)/2 BSLR:

see Figure 3.13, which is isomorphic to the basic design.

Example 3.6.3. Let v = 9 and δ = 4 as in Example 3.4.4. Then we obtain a (36× 9)/2

BSLR by juxtaposing the Latin squares ∆1, ∆2, ∆3 and ∆4, one underneath another.

This design is an alternative basic design: see Figure 3.14.

42

1 2 5 1 4 5 3 4 2 3

2 3 1 2 5 1 4 5 3 4

3 4 2 3 1 2 5 1 4 5

4 5 3 4 2 3 1 2 5 1

5 1 4 5 3 4 2 3 1 2

1 3 5 2 4 1 3 5 2 4

2 4 1 3 5 2 4 1 3 5

3 5 2 4 1 3 5 2 4 1

4 1 3 5 2 4 1 3 5 2

5 2 4 1 3 5 2 4 1 3

Figure 3.9: A (10 × 5)/2 balanced semi-Latin rectangle for 5 treatments obtained by

transposition of the basic design in Figure 3.2

By transposing the (9× 36)/2 BSLR of Figure 3.4 which serves as the basic design, we

obtain another (36×9)/2 BSLR isomorphic to the alternative basic design: see Figure 3.15.

Furthermore, by transposing the alternative basic design, we obtain another (9 × 36)/2

BSLR: see Figure 3.16, which is isomorphic to the basic design in Figure 3.4.

Example 3.6.4. Let v = 4 as in Example 3.5.1. By juxtaposing Ξ1, Ξ2 and Ξ3 under-

neath, the resulting design is a (6× 2)/2 BSLR, which is shown in Figure 3.17 .

Notice that, in this example, transposing the basic design in Figure 3.5 leads to a

design which is identical to the alternative basic design given in Figure 3.17. Similarly,

transposing the alternative basic design results in the basic design. However, these are

mere coincidences, and do not happen in general.

We note, as given earlier in the remark in section 3.6.1 that, in particular, the afore-

mentioned property of these designs hold if the juxtaposed Latin squares that make the

designs are each symmetric and also the order of their juxtaposition(s) in both the basic

and alternative basic designs are the same. For instance, in this example, each of the Latin

squares Ξ1, Ξ2, and Ξ3 that make the basic and alternative basic designs is symmetric,

43

1 2 5 1 4 5 3 4 2 3 1 3 5 2 4 1 3 5 2 4

2 3 1 2 5 1 4 5 3 4 2 4 1 3 5 2 4 1 3 5

3 4 2 3 1 2 5 1 4 5 3 5 2 4 1 3 5 2 4 1

4 5 3 4 2 3 1 2 5 1 4 1 3 5 2 4 1 3 5 2

5 1 4 5 3 4 2 3 1 2 5 2 4 1 3 5 2 4 1 3

Figure 3.10: A (5 × 10)/2 balanced semi-Latin rectangle for 5 treatments obtained via

transposition of Figure 3.8

.

and also in both designs the order of juxtapositions follow the sequence Ξ1, Ξ2, Ξ3.

Example 3.6.5. Let v = 6 as in Example 3.5.2. Juxtaposing Ξ1, Ξ2, Ξ3, Ξ4 and Ξ5

underneath results in a (15× 3)/2 BSLR, which is the alternative basic design: see Figure

3.18.

Now, by transposing the basic design in Figure 3.6, we obtain another version of the

(15 × 3)/2 BSLR presented in Figure 3.19. Notice that, the designs in Figures 3.19 and

3.18 are isomorphic designs.

Moreover, by transposing the design in Figure 3.18, we obtain another (3×15)/2 BSLR

which is isomorphic to the basic design in Figure 3.6. This is shown in Figure 3.20.

Example 3.6.6. Let v = 8 as in Example 3.5.3. We juxtapose Ξ1, Ξ2, Ξ3, Ξ4, Ξ5, Ξ6,

and Ξ7 underneath to obtain a (28× 4)/2 BSLR, the alternative basic design, and this is

shown in Figure 3.21.

A transposition of the basic design in Figure 3.7 gives a design which is isomorphic

to the alternative basic design in Figure 3.21. The transposed design is shown in Figure

3.22.

Moreover, a transposition of the alternative basic design also gives another design

which is isomorphic to the basic design: see Figure 3.23

44

1 2 2 3 3 4 4 5 5 6 6 7 7 1

7 1 1 2 2 3 3 4 4 5 5 6 6 7

6 7 7 1 1 2 2 3 3 4 4 5 5 6

5 6 6 7 7 1 1 2 2 3 3 4 4 5

4 5 5 6 6 7 7 1 1 2 2 3 3 4

3 4 4 5 5 6 6 7 7 1 1 2 2 3

2 3 3 4 4 5 5 6 6 7 7 1 1 2

1 3 2 4 3 5 4 6 5 7 6 1 7 2

7 2 1 3 2 4 3 5 4 6 5 7 6 1

6 1 7 2 1 3 2 4 3 5 4 6 5 7

5 7 6 1 7 2 1 3 2 4 3 5 4 6

4 6 5 7 6 1 7 2 1 3 2 4 3 5

3 5 4 6 5 7 6 1 7 2 1 3 2 4

2 4 3 5 4 6 5 7 6 1 7 2 1 3

1 4 2 5 3 6 4 7 5 1 6 2 7 3

7 3 1 4 2 5 3 6 4 7 5 1 6 2

6 2 7 3 1 4 2 5 3 6 4 7 5 1

5 1 6 2 7 3 1 4 2 5 3 6 4 7

4 7 5 1 6 2 7 3 1 4 2 5 3 6

3 6 4 7 5 1 6 2 7 3 1 4 2 5

2 5 3 6 4 7 5 1 6 2 7 3 1 4

Figure 3.11: A (21 × 7)/2 balanced semi-Latin rectangle for 7 treatments obtained by

juxtaposition underneath

3.6.2 Designs of the classes (mv×nv)/2 and (av/2×bv/2)/2, where mn = δ

and ab = v − 1

Given our construction (or modified construction) which produces a BSLR for v treatments

that is a basic (or an alternative basic) design, we obtain more designs if either δ or v−1 is

a nonprime corresponding to the case where v is odd or even via some alternative form of

juxtapositions, which is bidirectional. This involves juxtaposing the Latin squares in both

directions (sideways and underneath) instead of exclusively to one direction as before.

Suppose v is odd. We remind that the basic design has the parameters: h = v rows and

p = vδ columns; while the alternative basic design has h = vδ rows and p = v columns. Let

δ be a nonprime. Furthermore, let m,n ∈ Z, where 1 < m,n < δ such that δ = mn. Then,

for any such m,n, we obtain an (h∗ × p∗)/2 BSLR for the same number of treatments as

the basic (or alternative basic) design by another modification of step 3 of the procedure

in section 3.4.1 via an appropriate juxtaposition of the Latin squares, ∆1,∆2, ...,∆δ some

45

1 2 7 1 6 7 5 6 4 5 3 4 2 3

2 3 1 2 7 1 6 7 5 6 4 5 3 4

3 4 2 3 1 2 7 1 6 7 5 6 4 5

4 5 3 4 2 3 1 2 7 1 6 7 5 6

5 6 4 5 3 4 2 3 1 2 7 1 6 7

6 7 5 6 4 5 3 4 2 3 1 2 7 1

7 1 6 7 5 6 4 5 3 4 2 3 1 2

1 3 7 2 6 1 5 7 4 6 3 5 2 4

2 4 1 3 7 2 6 1 5 7 4 6 3 5

3 5 2 4 1 3 7 2 6 1 5 7 4 6

4 6 3 5 2 4 1 3 7 2 6 1 5 7

5 7 4 6 3 5 2 4 1 3 7 2 6 1

6 1 5 7 4 6 3 5 2 4 1 3 7 2

7 2 6 1 5 7 4 6 3 5 2 4 1 3

1 4 7 3 6 2 5 1 4 7 3 6 2 5

2 5 1 4 7 3 6 2 5 1 4 7 3 6

3 6 2 5 1 4 7 3 6 2 5 1 4 7

4 7 3 6 2 5 1 4 7 3 6 2 5 1

5 1 4 7 3 6 2 5 1 4 7 3 6 2

6 2 5 1 4 7 3 6 2 5 1 4 7 3

7 3 6 2 5 1 4 7 3 6 2 5 1 4

Figure 3.12: A (21 × 7)/2 balanced semi-Latin rectangle for 7 treatments obtained by

transposition of Figure 3.3

.

of them beside and the rest underneath, where h∗ = mv and p∗ = nv.

Notice that, if m = n = q, say, then h∗ = p∗ = qv. Hence, the produced design has

identical number of rows as columns, which is a special case of the semi-Latin rectangle.

Clearly, m is identical to n if and only if δ is a perfect square. Hence, if δ is not a perfect

square, m and n are found to be distinct with at least 2 values for each.

Similarly, if v is even, where in this case, the parameters of the basic design are

h = v/2 rows and p = v(v − 1)/2 columns; and for the alternative basic design, these are

h = v(v − 1)/2 rows and p = v/2 columns. Let v − 1 be a nonprime. Furthermore, let

a, b ∈ Z, where 1 < a, b < v − 1 such that v − 1 = ab. Then, for any such a, b, we obtain

an (h+ × p+)/2 BSLR for the same number of treatments by also modifying step 3 of the

procedure in section 3.5.1 via juxtaposing the Latin squares, Ξ1,Ξ2, ...,Ξv−1 both beside

and underneath as in the case where v is odd. Note that h+ = av/2 and p+ = bv/2.

In particular, if a = b = c, say, then h+ = p+ = cv/2. In this circumstance, as before,

46

1 2 7 1 6 7 5 6 4 5 3 4 2 3 1 3 7 2 6 1 5 7 4 6 3 5 2 4 1 4 7 3 6 2 5 1 4 7 3 6 2 5

2 3 1 2 7 1 6 7 5 6 4 5 3 4 2 4 1 3 7 2 6 1 5 7 4 6 3 5 2 5 1 4 7 3 6 2 5 1 4 7 3 6

3 4 2 3 1 2 7 1 6 7 5 6 4 5 3 5 2 4 1 3 7 2 6 1 5 7 4 6 3 6 2 5 1 4 7 3 6 2 5 1 4 7

4 5 3 4 2 3 1 2 7 1 6 7 5 6 4 6 3 5 2 4 1 3 7 2 6 1 5 7 4 7 3 6 2 5 1 4 7 3 6 2 5 1

5 6 4 5 3 4 2 3 1 2 7 1 6 7 5 7 4 6 3 5 2 4 1 3 7 2 6 1 5 1 4 7 3 6 2 5 1 4 7 3 6 2

6 7 5 6 4 5 3 4 2 3 1 2 7 1 6 1 5 7 4 6 3 5 2 4 1 3 7 2 6 2 5 1 4 7 3 6 2 5 1 4 7 3

7 1 6 7 5 6 4 5 3 4 2 3 1 2 7 2 6 1 5 7 4 6 3 5 2 4 1 3 7 3 6 2 5 1 4 7 3 6 2 5 1 4

Figure 3.13: A (7 × 21)/2 balanced semi-Latin rectangle for 7 treatments obtained by

transposition of Figure 3.11

.

the produced design has identical number of rows as columns. It is obvious that a is

identical to b if and only if v− 1 is a perfect square. Thus, in situations where v− 1 is not

a perfect square, a and b are found to be distinct with at least 2 values for each

Example 3.6.7. We refer to Example 3.4.4, where v = 9 and δ = 4. In this example,

m = n = 2. Hence, q = 2 and h∗ = p∗ = 18. The resulting (18× 18)/2 BSLR is shown in

Figure 3.24.

Example 3.6.8. Let v − 1 = 9. Notice that, in this example, a = b = 3. Hence, c = 3.

Consequently, h+ = p+ = 15, and the resulting design is a (15× 15)/2 BSLR: see Figure

3.25.

Comments. (1) Notice that, in Example 3.6.7, with δ = 4 being the square of a prime,

there is only one admissible value for both m and n, which is 2. Notice also that, in

Example 3.6.8, 3 is the only admissible value for a and b since 9 is a perfect square

and being the square of 3.

(2) Now, suppose δ = 12, which happens if and only if v = 25, then there are distinct val-

ues for m and n. In particular, the admissible values are (m,n) = (2, 6), (6, 2), (3, 4)

and (4, 3). Hence, by an appropriate modification of step 3 of the algorithmic proce-

dure in section section 3.4.1, we obtain a (50×150)/2 BSLR and (75×100)/2 BSLR

for the pairs (m,n) = (2, 6) and (3, 4), respectively; and a (150 × 50)/2 BSLR and

(100× 75)/2 BSLR for the pairs in reversed order.

47

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1

9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9

8 9 9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

7 8 8 9 9 1 1 2 2 3 3 4 4 5 5 6 6 7

6 7 7 8 8 9 9 1 1 2 2 3 3 4 4 5 5 6

5 6 6 7 7 8 8 9 9 1 1 2 2 3 3 4 4 5

4 5 5 6 6 7 7 8 8 9 9 1 1 2 2 3 3 4

3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 2 2 3

2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 2

1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 1 9 2

9 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 1

8 1 9 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9

7 9 8 1 9 2 1 3 2 4 3 5 4 6 5 7 6 8

6 8 7 9 8 1 9 2 1 3 2 4 3 5 4 6 5 7

5 7 6 8 7 9 8 1 9 2 1 3 2 4 3 5 4 6

4 6 5 7 6 8 7 9 8 1 9 2 1 3 2 4 3 5

3 5 4 6 5 7 6 8 7 9 8 1 9 2 1 3 2 4

2 4 3 5 4 6 5 7 6 8 7 9 8 1 9 2 1 3

1 4 2 5 3 6 4 7 5 8 6 9 7 1 8 2 9 3

9 3 1 4 2 5 3 6 4 7 5 8 6 9 7 1 8 2

8 2 9 3 1 4 2 5 3 6 4 7 5 8 6 9 7 1

7 1 8 2 9 3 1 4 2 5 3 6 4 7 5 8 6 9

6 9 7 1 8 2 9 3 1 4 2 5 3 6 4 7 5 8

5 8 6 9 7 1 8 2 9 3 1 4 2 5 3 6 4 7

4 7 5 8 6 9 7 1 8 2 9 3 1 4 2 5 3 6

3 6 4 7 5 8 6 9 7 1 8 2 9 3 1 4 2 5

2 5 3 6 4 7 5 8 6 9 7 1 8 2 9 3 1 4

1 5 2 6 3 7 4 8 5 9 6 1 7 2 8 3 9 4

9 4 1 5 2 6 3 7 4 8 5 9 6 1 7 2 8 3

8 3 9 4 1 5 2 6 3 7 4 8 5 9 6 1 7 2

7 2 8 3 9 4 1 5 2 6 3 7 4 8 5 9 6 1

6 1 7 2 8 3 9 4 1 5 2 6 3 7 4 8 5 9

5 9 6 1 7 2 8 3 9 4 1 5 2 6 3 7 4 8

4 8 5 9 6 1 7 2 8 3 9 4 1 5 2 6 3 7

3 7 4 8 5 9 6 1 7 2 8 3 9 4 1 5 2 6

2 6 3 7 4 8 5 9 6 1 7 2 8 3 9 4 1 5

Figure 3.14: A (36 × 9)/2 balanced semi-Latin rectangle for 9 treatments obtained by

juxtaposition underneath

48

1 2 9 1 8 9 7 8 6 7 5 6 4 5 3 4 2 3

2 3 1 2 9 1 8 9 7 8 6 7 5 6 4 5 3 4

3 4 2 3 1 2 9 1 8 9 7 8 6 7 5 6 4 5

4 5 3 4 2 3 1 2 9 1 8 9 7 8 6 7 5 6

5 6 4 5 3 4 2 3 1 2 9 1 8 9 7 8 6 7

6 7 5 6 4 5 3 4 2 3 1 2 9 1 8 9 7 8

7 8 6 7 5 6 4 5 3 4 2 3 1 2 9 1 8 9

8 9 7 8 6 7 5 6 4 5 3 4 2 3 1 2 9 1

9 1 8 9 7 8 6 7 5 6 4 5 3 4 2 3 1 2

1 3 9 2 8 1 7 9 6 8 5 7 4 6 3 5 2 4

2 4 1 3 9 2 8 1 7 9 6 8 5 7 4 6 3 5

3 5 2 4 1 3 9 2 8 1 7 9 6 8 5 7 4 6

4 6 3 5 2 4 1 3 9 2 8 1 7 9 6 8 5 7

5 7 4 6 3 5 2 4 1 3 9 2 8 1 7 9 6 8

6 8 5 7 4 6 3 5 2 4 1 3 9 2 8 1 7 9

7 9 6 8 5 7 4 6 3 5 2 4 1 3 9 2 8 1

8 1 7 9 6 8 5 7 4 6 3 5 2 4 1 3 9 2

9 2 8 1 7 9 6 8 5 7 4 6 3 5 2 4 1 3

1 4 9 3 8 2 7 1 6 9 5 8 4 7 3 6 2 5

2 5 1 4 9 3 8 2 7 1 6 9 5 8 4 7 3 6

3 6 2 5 1 4 9 3 8 2 7 1 6 9 5 8 4 7

4 7 3 6 2 5 1 4 9 3 8 2 7 1 6 9 5 8

5 8 4 7 3 6 2 5 1 4 9 3 8 2 7 1 6 9

6 9 5 8 4 7 3 6 2 5 1 4 9 3 8 2 7 1

7 1 6 9 5 8 4 7 3 6 2 5 1 4 9 3 8 2

8 2 7 1 6 9 5 8 4 7 3 6 2 5 1 4 9 3

9 3 8 2 7 1 6 9 5 8 4 7 3 6 2 5 1 4

1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 6

2 6 1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 7

3 7 2 6 1 5 9 4 8 3 7 2 6 1 5 9 4 8

4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 5 9

5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 1

6 1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 2

7 2 6 1 5 9 4 8 3 7 2 6 1 5 9 4 8 3

8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 5 9 4

9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 5

Figure 3.15: A (36 × 9)/2 balanced semi-Latin rectangle for 9 treatments obtained by

transposition of Figure 3.4

49

1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2

2 1 9 8 7 6 5 4 3 3 2 1 9 8 7 6 5 4 4 3 2 1 9 8 7 6 5 5 4 3 2 1 9 8 7 6

2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3

3 2 1 9 8 7 6 5 4 4 3 2 1 9 8 7 6 5 5 4 3 2 1 9 8 7 6 6 5 4 3 2 1 9 8 7

3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4

4 3 2 1 9 8 7 6 5 5 4 3 2 1 9 8 7 6 6 5 4 3 2 1 9 8 7 7 6 5 4 3 2 1 9 8

4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5

5 4 3 2 1 9 8 7 6 6 5 4 3 2 1 9 8 7 7 6 5 4 3 2 1 9 8 8 7 6 5 4 3 2 1 9

5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6

6 5 4 3 2 1 9 8 7 7 6 5 4 3 2 1 9 8 8 7 6 5 4 3 2 1 9 9 8 7 6 5 4 3 2 1

6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7

7 6 5 4 3 2 1 9 8 8 7 6 5 4 3 2 1 9 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2

7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8

8 7 6 5 4 3 2 1 9 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 2 1 9 8 7 6 5 4 3

8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9

9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 2 1 9 8 7 6 5 4 3 3 2 1 9 8 7 6 5 4

9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1

1 9 8 7 6 5 4 3 2 2 1 9 8 7 6 5 4 3 3 2 1 9 8 7 6 5 4 4 3 2 1 9 8 7 6 5

Figure 3.16: A (9 × 36)/2 balanced semi-Latin rectangle for 9 treatments obtained by

transposition of Figure 3.14

.

Similarly, suppose v − 1 = 15, then there are distinct admissible values for a and

b which form the pairs, viz, (a, b) = (3, 5) and (5, 3). Hence, by an appropriate

modification of step 3 of the algorithmic procedure in section 3.5.1, a (24 × 40)/2

BSLR and (40× 24)/2 BSLR can be obtained.

(3) The aforementioned designs obtained for nonprime values of δ (or v − 1), where

1 < m,n < δ (or 1 < a, b < v−1) are some other possibilities of balanced semi-Latin

rectangles obtained by modifying step 3 of the procedure.

However, if we allow m = 1 and n = δ, for the designs in the first part of (2), we

have a (25× 300)/2 BSLR, which is precisely, a basic design. Similarly, if we allow

m = δ and n = 1, we have a (300× 25)/2 BSLR, the alternative basic design.

Furthermore, for the designs in the second part of (2), if we allow a = 1 and b = v−1,

we have an (8× 120)/2 BSLR, which is precisely, the basic design . Similarly, if we

allow a = v−1 and b = 1, we have a (120×8)/2 BSLR , the alternative basic design.

50

1 ∞ 2 3

2 3 1 ∞

2 ∞ 3 1

3 1 2 ∞

3 ∞ 1 2

1 2 3 ∞

Figure 3.17: A (6× 2)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments obtained

by juxtaposition underneath

(4) The double vertical and horizontal lines in the designs show the various points of

juxtaposition.

3.6.3 Designs of inflated sizes

Given an (h×p)/2 BSLR for v treatments from our basic (or modified basic) constructions,

which is the basic (or alternative basic) design. We obtain some designs of larger sizes

having the same number of treatments as the basic (or alternative basic) design by making

multiple copies of it, and subsequently, making appropriate juxtaposition(s).

Suppose v is odd. We remind that h = v and p = vδ. Let the derived design be

(h′× p′)/2, where h′ = ah and p′ = bp (a and b being positive integers and are not all 1s).

We make b copies of the basic design, juxtapose them beside, and subsequently, make a

copies of the resulting design and juxtapose them underneath. Alternatively, one can start

by making a copies of the basic design, juxtaposing them underneath, and subsequently,

making b copies of the resulting design and then juxtaposing them beside. In particular,

a = h′/h and b = p′/p.

Notice that, if a = b = 1, it reduces to the basic design. For the special case, where

either a = 1 and b > 1 or a > 1 and b = 1, the juxtaposition is one-sided. In particular,

if a = 1 and b > 1, then the construction simply involves making b copies of the basic

design and juxtaposing them beside. Conversely, for the situation where a > 1 and b = 1,

a copies of the basic design are made and the juxtaposition is underneath.

51

1 ∞ 2 5 3 4

3 4 1 ∞ 2 5

2 5 3 4 1 ∞

2 ∞ 3 1 4 5

4 5 2 ∞ 3 1

3 1 4 5 2 ∞

3 ∞ 4 2 5 1

5 1 3 ∞ 4 2

4 2 5 1 3 ∞

4 ∞ 5 3 1 2

1 2 4 ∞ 5 3

5 3 1 2 4 ∞

5 ∞ 1 4 2 3

2 3 5 ∞ 1 4

1 4 2 3 5 ∞

Figure 3.18: A (15 × 3)/2 balanced semi-Latin rectangle for 6 treatments obtained by

juxtaposition underneath

Now, suppose v is even. Let the derived design be (h† × p†)/2, where h† = yh and

p† = zp (y and z being positive integers and are not all 1s); and reminding that h = v/2,

p = v(v − 1)/2. In a similar manner like in the case where v is odd, we make z copies of

the basic design, juxtapose them beside, and subsequently, make y copies of the resulting

design and juxtapose them underneath. This can also be achieved by first making y copies

of the basic design, juxtaposing them underneath, and subsequently, making z copies of

the resulting design and then juxtaposing them beside. We note that, y = h†/h and

z = p†/p.

It is obvious that, if y = z = 1, we have the basic design. Furthermore, if either y = 1

and z > 1 or y > 1 and z = 1, the juxtaposition is one-sided. In particular, if y = 1

and z > 1, then the construction simply involves making z copies of the basic design and

juxtaposing them beside; and if y > 1 and z = 1, y copies of the basic design are made

and the juxtaposition is underneath.

Comment. For the case where v is odd, suppose p|h′ and h|p′. Let h′ = sp and p′ = th,

where s and t are positive integers not all 1s. Then, the alternative basic design can

be utilized, viz: make t copies of the alternative basic design, juxtapose them beside,

and subsequently, make s copies of the resulting design and juxtapose them underneath.

52

1 ∞ 3 4 2 5

2 5 1 ∞ 3 4

3 4 2 5 1 ∞

2 ∞ 4 5 3 1

3 1 2 ∞ 4 5

4 5 3 1 2 ∞

3 ∞ 5 1 4 2

4 2 3 ∞ 5 1

5 1 4 2 3 ∞

4 ∞ 1 2 5 3

5 3 4 ∞ 1 2

1 2 5 3 4 ∞

5 ∞ 2 3 1 4

1 4 5 ∞ 2 3

2 3 1 4 5 ∞

Figure 3.19: A (15 × 3)/2 balanced semi-Latin rectangle for 6 treatments obtained by

transposition of the basic design

However, if these 2 conditions and the preceding ones are met, the basic design as well as

the alternative basic design can be utilized for the construction of the derived design.

In a similar manner, for even v, suppose p|h† and h|p†. Let h† = fp and p† = gh,

where f and g are positive integers not all 1s. Then, the alternative basic design can also

be utilized by making g copies of the alternative basic design, juxtaposing them beside,

and subsequently, making f copies of the resulting design and juxtapose them underneath.

1 ∞ 3 4 2 5 2 ∞ 4 5 3 1 3 ∞ 5 1 4 2 4 ∞ 1 2 5 3 5 ∞ 2 3 1 4

2 5 1 ∞ 3 4 3 1 2 ∞ 4 5 4 2 3 ∞ 5 1 5 3 4 ∞ 1 2 1 4 5 ∞ 2 3

3 4 2 5 1 ∞ 4 5 3 1 2 ∞ 5 1 4 2 3 ∞ 1 2 5 3 4 ∞ 2 3 1 4 5 ∞

Figure 3.20: A (3 × 15)/2 balanced semi-Latin rectangle for 6 treatments obtained by

transposition of the alternative basic design

53

1 ∞ 2 7 3 6 4 5

4 5 1 ∞ 2 7 3 6

3 6 4 5 1 ∞ 2 7

2 7 3 6 4 5 1 ∞

2 ∞ 3 1 4 7 5 6

5 6 2 ∞ 3 1 4 7

4 7 5 6 2 ∞ 3 1

3 1 4 7 5 6 2 ∞

3 ∞ 4 2 5 1 6 7

6 7 3 ∞ 4 2 5 1

5 1 6 7 3 ∞ 4 2

4 2 5 1 6 7 3 ∞

4 ∞ 5 3 6 2 7 1

7 1 4 ∞ 5 3 6 2

6 2 7 1 4 ∞ 5 3

5 3 6 2 7 1 4 ∞

5 ∞ 6 4 7 3 1 2

1 2 5 ∞ 6 4 7 3

7 3 1 2 5 ∞ 6 4

6 4 7 3 1 2 5 ∞

6 ∞ 7 5 1 4 2 3

2 3 6 ∞ 7 5 1 4

1 4 2 3 6 ∞ 7 5

7 5 1 4 2 3 6 ∞

7 ∞ 1 6 2 5 3 4

3 4 7 ∞ 1 6 2 5

2 5 3 4 7 ∞ 1 6

1 6 2 5 3 4 7 ∞

Figure 3.21: A (28 × 4)/2 balanced semi-Latin rectangle for 8 treatments obtained by

juxtaposition underneath

54

1 ∞ 4 5 3 6 2 7

2 7 1 ∞ 4 5 3 6

3 6 2 7 1 ∞ 4 5

4 5 3 6 2 7 1 ∞

2 ∞ 5 6 4 7 3 1

3 1 2 ∞ 5 6 4 7

4 7 3 1 2 ∞ 5 6

5 6 4 7 3 1 2 ∞

3 ∞ 6 7 5 1 4 2

4 2 3 ∞ 6 7 5 1

5 1 4 2 3 ∞ 6 7

6 7 5 1 4 2 3 ∞

4 ∞ 7 1 6 2 5 3

5 3 4 ∞ 7 1 6 2

6 2 5 3 4 ∞ 7 1

7 1 6 2 5 3 4 ∞

5 ∞ 1 2 7 3 6 4

6 4 5 ∞ 1 2 7 3

7 3 6 4 5 ∞ 1 2

1 2 7 3 6 4 5 ∞

6 ∞ 2 3 1 4 7 5

7 5 6 ∞ 2 3 1 4

1 4 7 5 6 ∞ 2 3

2 3 1 4 7 5 6 ∞

7 ∞ 3 4 2 5 1 6

1 6 7 ∞ 3 4 2 5

2 5 1 6 7 ∞ 3 4

3 4 2 5 1 6 7 ∞

Figure 3.22: A (28 × 4)/2 balanced semi-Latin rectangle for 8 treatments obtained by

transposition of the basic design

55

1 4 3 2 2 5 4 3 3 6 5 4 4 7 6 5 5 1 7 6 6 2 1 7 7 3 2 1

∞ 5 6 7 ∞ 6 7 1 ∞ 7 1 2 ∞ 1 2 3 ∞ 2 3 4 ∞ 3 4 5 ∞ 4 5 6

2 1 4 3 3 2 5 4 4 3 6 5 5 4 7 6 6 5 1 7 7 6 2 1 1 7 3 2

7 ∞ 5 6 1 ∞ 6 7 2 ∞ 7 1 3 ∞ 1 2 4 ∞ 2 3 5 ∞ 3 4 6 ∞ 4 5

3 2 1 4 4 3 2 5 5 4 3 6 6 5 4 7 7 6 5 1 1 7 6 2 2 1 7 3

6 7 ∞ 5 7 1 ∞ 6 1 2 ∞ 7 2 3 ∞ 1 3 4 ∞ 2 4 5 ∞ 3 5 6 ∞ 4

4 3 2 1 5 4 3 2 6 5 4 3 7 6 5 4 1 7 6 5 2 1 7 6 3 2 1 7

5 6 7 ∞ 6 7 1 ∞ 7 1 2 ∞ 1 2 3 ∞ 2 3 4 ∞ 3 4 5 ∞ 4 5 6 ∞

Figure 3.23: A (4 × 28)/2 balanced semi-Latin rectangle for 8 treatments obtained by

transposition of the alternative basic design

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 1 9 2

9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 1

8 9 9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1 9 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9

7 8 8 9 9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 9 8 1 9 2 1 3 2 4 3 5 4 6 5 7 6 8

6 7 7 8 8 9 9 1 1 2 2 3 3 4 4 5 5 6 6 8 7 9 8 1 9 2 1 3 2 4 3 5 4 6 5 7

5 6 6 7 7 8 8 9 9 1 1 2 2 3 3 4 4 5 5 7 6 8 7 9 8 1 9 2 1 3 2 4 3 5 4 6

4 5 5 6 6 7 7 8 8 9 9 1 1 2 2 3 3 4 4 6 5 7 6 8 7 9 8 1 9 2 1 3 2 4 3 5

3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 2 2 3 3 5 4 6 5 7 6 8 7 9 8 1 9 2 1 3 2 4

2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 2 2 4 3 5 4 6 5 7 6 8 7 9 8 1 9 2 1 3

1 4 2 5 3 6 4 7 5 8 6 9 7 1 8 2 9 3 1 5 2 6 3 7 4 8 5 9 6 1 7 2 8 3 9 4

9 3 1 4 2 5 3 6 4 7 5 8 6 9 7 1 8 2 9 4 1 5 2 6 3 7 4 8 5 9 6 1 7 2 8 3

8 2 9 3 1 4 2 5 3 6 4 7 5 8 6 9 7 1 8 3 9 4 1 5 2 6 3 7 4 8 5 9 6 1 7 2

7 1 8 2 9 3 1 4 2 5 3 6 4 7 5 8 6 9 7 2 8 3 9 4 1 5 2 6 3 7 4 8 5 9 6 1

6 9 7 1 8 2 9 3 1 4 2 5 3 6 4 7 5 8 6 1 7 2 8 3 9 4 1 5 2 6 3 7 4 8 5 9

5 8 6 9 7 1 8 2 9 3 1 4 2 5 3 6 4 7 5 9 6 1 7 2 8 3 9 4 1 5 2 6 3 7 4 8

4 7 5 8 6 9 7 1 8 2 9 3 1 4 2 5 3 6 4 8 5 9 6 1 7 2 8 3 9 4 1 5 2 6 3 7

3 6 4 7 5 8 6 9 7 1 8 2 9 3 1 4 2 5 3 7 4 8 5 9 6 1 7 2 8 3 9 4 1 5 2 6

2 5 3 6 4 7 5 8 6 9 7 1 8 2 9 3 1 4 2 6 3 7 4 8 5 9 6 1 7 2 8 3 9 4 1 5

Figure 3.24: An (18 × 18)/2 balanced semi-Latin rectangle for 9 treatments obtained by

modifying step 3 of the algorithmic procedure

56

1 ∞ 2 9 3 8 4 7 5 6 2 ∞ 3 1 4 9 5 8 6 7 3 ∞ 4 2 5 1 6 9 7 8

5 6 1 ∞ 2 9 3 8 4 7 6 7 2 ∞ 3 1 4 9 5 8 7 8 3 ∞ 4 2 5 1 6 9

4 7 5 6 1 ∞ 2 9 3 8 5 8 6 7 2 ∞ 3 1 4 9 6 9 7 8 3 ∞ 4 2 5 1

3 8 4 7 5 6 1 ∞ 2 9 4 9 5 8 6 7 2 ∞ 3 1 5 1 6 9 7 8 3 ∞ 4 2

2 9 3 8 4 7 5 6 1 ∞ 3 1 4 9 5 8 6 7 2 ∞ 4 2 5 1 6 9 7 8 3 ∞

4 ∞ 5 3 6 2 7 1 8 9 5 ∞ 6 4 7 3 8 2 9 1 6 ∞ 7 5 8 4 9 3 1 2

8 9 4 ∞ 5 3 6 2 7 1 9 1 5 ∞ 6 4 7 3 8 2 1 2 6 ∞ 7 5 8 4 9 3

7 1 8 9 4 ∞ 5 3 6 2 8 2 9 1 5 ∞ 6 4 7 3 9 3 1 2 6 ∞ 7 5 8 4

6 2 7 1 8 9 4 ∞ 5 3 7 3 8 2 9 1 5 ∞ 6 4 8 4 9 3 1 2 6 ∞ 7 5

5 3 6 2 7 1 8 9 4 ∞ 6 4 7 3 8 2 9 1 5 ∞ 7 5 8 4 9 3 1 2 6 ∞

7 ∞ 8 6 9 5 1 4 2 3 8 ∞ 9 7 1 6 2 5 3 4 9 ∞ 1 8 2 7 3 6 4 5

2 3 7 ∞ 8 6 9 5 1 4 3 4 8 ∞ 9 7 1 6 2 5 4 5 9 ∞ 1 8 2 7 3 6

1 4 2 3 7 ∞ 8 6 9 5 2 5 3 4 8 ∞ 9 7 1 6 3 6 4 5 9 ∞ 1 8 2 7

9 5 1 4 2 3 7 ∞ 8 6 1 6 2 5 3 4 8 ∞ 9 7 2 7 3 6 4 5 9 ∞ 1 8

8 6 9 5 1 4 2 3 7 ∞ 9 7 1 6 2 5 3 4 8 ∞ 1 8 2 7 3 6 4 5 9 ∞

Figure 3.25: A (15 × 15)/2 balanced semi-Latin rectangle for 10 treatments obtained by

slightly modifying step 3 of the algorithmic procedure

Again, if these 2 conditions and the preceding ones are met, the basic design as well as

the alternative basic design can be used for the construction.

We give some examples.

Case 1: Some examples when v is odd

Example 3.6.9. To make, for instance, a (3× 6)/2 BSLR for 3 treatments; notice that,

the conditions for using the basic design and alternative basic design in the construction

are satisfied, where a = s = 1 and b = t = 2 such that h′ = h = p and p′ = 2p = 2h.

Notice also that, δ = 1, and we have a trivial case, where the alternative basic design is

identical to the basic design.

We make b = t = 2 copies of the (3×3)/2 BSLR in Figure 3.1 which serves as both the

basic and alternative basic design, and then juxtapose them beside. The resulting design

57

is shown in Figure 3.26, where the double vertical lines show the point of juxtaposition.

In a similar manner, to obtain a (6 × 3)/2 BSLR for the same number of treatments

as above; notice that a = s = 2 and b = t = 1 such that h′ = 2h = 2p and p′ = p = h.

Thus, we make a = s = 2 copies of the basic design/alternative basic design and juxtapose

underneath: see Figure 3.27.

1 2 2 3 3 1 1 2 2 3 3 1

3 1 1 2 2 3 3 1 1 2 2 3

2 3 3 1 1 2 2 3 3 1 1 2

Figure 3.26: A (3× 6)/2 balanced semi-Latin rectangle for 3 treatments

1 2 2 3 3 1

3 1 1 2 2 3

2 3 3 1 1 2

1 2 2 3 3 1

3 1 1 2 2 3

2 3 3 1 1 2

Figure 3.27: A (6× 3)/2 balanced semi-Latin rectangle for 3 treatments

Remark. Another (6 × 3)/2 BSLR for 3 treatments can be obtained by transposing the

(3 × 6)/2 BSLR with 3 treatments. Similarly, transposing the (6 × 3)/2 BSLR obtained

by juxtaposition underneath produces another (3× 6)/2 BSLR.

If interest is to make, say, a (3 × 12)/2 BSLR, this can be achieved by making either

4 copies of the basic design and juxtaposing them beside or by simply making 2 copies of

the (3× 6)/2 BSLR and also juxtaposing them beside.

58

Comment. The double vertical and horizontal lines are used for construction purposes and

show the points of juxtaposition.

Example 3.6.10. Suppose we wish to make a (6× 9)/2 BSLR for 3 treatments, we start

by making b = 3 copies of the basic design and juxtaposing them beside: this gives a

(3 × 9)/2 BSLR, which we then make a = 2 copies of it and juxtapose underneath to

obtain the required design. Alternatively, this construction can be approached by first

making a = 2 copies of the basic design and juxtaposing them underneath, which gives

rise to a (6× 3)/2 BSLR; and subsequently, b = 3 copies of the resulting (6× 3)/2 BSLR

are then made and juxtaposed beside to obtain the required design. The required (6×9)/2

BSLR is shown in Figure 3.28.

1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1

3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3

2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2

1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1

3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3

2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2

Figure 3.28: A (6× 9)/2 balanced semi-Latin rectangle for 3 treatments

Example 3.6.11. Suppose interest is to make a (5 × 30)/2 BSLR for 5 treatments, we

make 3 copies of the (5 × 10)/2 BSLR in Figure 3.2, which serves as the basic design in

this case and juxtapose them beside. Clearly, in this example, a = 1 and b = 3. However,

p - h′. Hence the alternative basic design cannot be used for the construction. The desired

design is presented in Figure 3.29.

Similarly, a (20× 10)/2 BSLR for 5 treatments can be made by first making 4 copies

of the parent design and subsequently, juxtaposing them underneath (since a = 4 and

b = 1): see Figure 3.30.

Remark. By making t = 2 copies of the alternative basic design, juxtaposing them be-

side, and subsequently, making s = 2 copies of the resulting design and juxtapose them

underneath gives another (20× 10)/2 BSLR for 5 treatments.

59

1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2 1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2 1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2

5 1 1 2 2 3 3 4 4 5 5 2 1 3 2 4 3 5 4 1 5 1 1 2 2 3 3 4 4 5 5 2 1 3 2 4 3 5 4 1 5 1 1 2 2 3 3 4 4 5 5 2 1 3 2 4 3 5 4 1

4 5 5 1 1 2 2 3 3 4 4 1 5 2 1 3 2 4 3 5 4 5 5 1 1 2 2 3 3 4 4 1 5 2 1 3 2 4 3 5 4 5 5 1 1 2 2 3 3 4 4 1 5 2 1 3 2 4 3 5

3 4 4 5 5 1 1 2 2 3 3 5 4 1 5 2 1 3 2 4 3 4 4 5 5 1 1 2 2 3 3 5 4 1 5 2 1 3 2 4 3 4 4 5 5 1 1 2 2 3 3 5 4 1 5 2 1 3 2 4

2 3 3 4 4 5 5 1 1 2 2 4 3 5 4 1 5 2 1 3 2 3 3 4 4 5 5 1 1 2 2 4 3 5 4 1 5 2 1 3 2 3 3 4 4 5 5 1 1 2 2 4 3 5 4 1 5 2 1 3

Figure 3.29: A (5× 30)/2 balanced semi-Latin rectangle for 5 treatments

Case 2: Some examples when v is even

Example 3.6.12. To make, for instance, a (2 × 12)/2 BSLR for 4 treatments, we make

z = 2 copies of the (2×6)/2 BSLR in Figure 3.5 which serves as the basic design and then

juxtapose them beside. The resulting design is shown in Figure 3.31, where the double

vertical lines show the point of juxtaposition.

In a similar manner, to obtain a (4 × 6)/2 BSLR for the same number of treatments

as above, we also make 2 copies of the basic design, but this time, we juxtapose them

underneath as shown in Figure 3.32

Notice that, in this example, h′ = h and p′ = 2p such that y = 1 and z = 2, for the

earlier design; while for the latter design, h′ = 2h and p′ = p such that y = 2 and z = 1.

Comments. (1) To make, for instance, a (6 × 4)/2 BSLR. Notice that h† = p, hence

f = 1. Similarly, p† = 2h such that g = 2. Hence, we simply make g = 2 copies

of the alternative basic design shown in Figure 3.17 and juxtapose them beside: see

Figure 3.33. Alternatively, the same design can be obtained by a transposition of

the (4× 6)/2 BSLR. It is obvious that p - p†, hence the basic design cannot be used

directly.

(2) The triple vertical lines in Figure 3.33 is for purposes of construction; it shows the

point of juxtaposition of the 2 copies of the alternative basic design.

(3) Suppose interest is to make, say, a (6× 6)/2 BSLR, this can be achieved by making

3 copies of the basic design and juxtaposing them underneath. Another version of

this design can be obtained by making 3 copies of the alternative basic design and

subsequently, juxtaposing them beside: see Figures 3.34 and 3.35, respectively.

Example 3.6.13. Suppose interest is to make a (15×15)/2 BSLR for 6 treatments. Notice

that y = 5, z = 1, f = 1 and g = 5. Hence, both the basic design and the alternative basic

design can be utilized just like in the construction of the (6× 6)/2 BSLR in the comments

section of Example 3.6.12.

60

1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2

5 1 1 2 2 3 3 4 4 5 5 2 1 3 2 4 3 5 4 1

4 5 5 1 1 2 2 3 3 4 4 1 5 2 1 3 2 4 3 5

3 4 4 5 5 1 1 2 2 3 3 5 4 1 5 2 1 3 2 4

2 3 3 4 4 5 5 1 1 2 2 4 3 5 4 1 5 2 1 3

1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2

5 1 1 2 2 3 3 4 4 5 5 2 1 3 2 4 3 5 4 1

4 5 5 1 1 2 2 3 3 4 4 1 5 2 1 3 2 4 3 5

3 4 4 5 5 1 1 2 2 3 3 5 4 1 5 2 1 3 2 4

2 3 3 4 4 5 5 1 1 2 2 4 3 5 4 1 5 2 1 3

1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2

5 1 1 2 2 3 3 4 4 5 5 2 1 3 2 4 3 5 4 1

4 5 5 1 1 2 2 3 3 4 4 1 5 2 1 3 2 4 3 5

3 4 4 5 5 1 1 2 2 3 3 5 4 1 5 2 1 3 2 4

2 3 3 4 4 5 5 1 1 2 2 4 3 5 4 1 5 2 1 3

1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2

5 1 1 2 2 3 3 4 4 5 5 2 1 3 2 4 3 5 4 1

4 5 5 1 1 2 2 3 3 4 4 1 5 2 1 3 2 4 3 5

3 4 4 5 5 1 1 2 2 3 3 5 4 1 5 2 1 3 2 4

2 3 3 4 4 5 5 1 1 2 2 4 3 5 4 1 5 2 1 3

Figure 3.30: A (20× 10)/2 balanced semi-Latin rectangle for 5 treatments

1 ∞ 2 3 2 ∞ 3 1 3 ∞ 1 2 1 ∞ 2 3 2 ∞ 3 1 3 ∞ 1 2

2 3 1 ∞ 3 1 2 ∞ 1 2 3 ∞ 2 3 1 ∞ 3 1 2 ∞ 1 2 3 ∞

Figure 3.31: A (2× 12)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments

61

1 ∞ 2 3 2 ∞ 3 1 3 ∞ 1 2

2 3 1 ∞ 3 1 2 ∞ 1 2 3 ∞

1 ∞ 2 3 2 ∞ 3 1 3 ∞ 1 2

2 3 1 ∞ 3 1 2 ∞ 1 2 3 ∞

Figure 3.32: A (4× 6)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments

1 ∞ 2 3 1 ∞ 2 3

2 3 1 ∞ 2 3 1 ∞

2 ∞ 3 1 2 ∞ 3 1

3 1 2 ∞ 3 1 2 ∞

3 ∞ 1 2 3 ∞ 1 2

1 2 3 ∞ 1 2 3 ∞

Figure 3.33: A (6× 4)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments obtained

by juxtaposition of 2 copies of the alternative basic design beside

We make y = 5 copies of the (3× 15)/2 BSLR in Figure 3.6, which serves as the basic

design in this case, and juxtapose them underneath: see Figure 3.36. Another version of

this design can be obtained by making g = 5 copies of the alternative basic design shown

in Figure 3.18 and juxtaposing them beside. The resulting design is presented in Figure

3.37.

Comment. The double horizontal and vertical lines in Figures 3.36 and 3.37 show the

respective point of juxtapositions of copies of the basic and alternative basic designs.

Example 3.6.14. To make a (9 × 30)/2 BSLR for 6 treatments via juxtaposition, we

62

1 ∞ 2 3 2 ∞ 3 1 3 ∞ 1 2

2 3 1 ∞ 3 1 2 ∞ 1 2 3 ∞

1 ∞ 2 3 2 ∞ 3 1 3 ∞ 1 2

2 3 1 ∞ 3 1 2 ∞ 1 2 3 ∞

1 ∞ 2 3 2 ∞ 3 1 3 ∞ 1 2

2 3 1 ∞ 3 1 2 ∞ 1 2 3 ∞

Figure 3.34: A (6× 6)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments obtained

by juxtaposition of 3 copies of the basic design underneath

1 ∞ 2 3 1 ∞ 2 3 1 ∞ 2 3

2 3 1 ∞ 2 3 1 ∞ 2 3 1 ∞

2 ∞ 3 1 2 ∞ 3 1 2 ∞ 3 1

3 1 2 ∞ 3 1 2 ∞ 3 1 2 ∞

3 ∞ 1 2 3 ∞ 1 2 3 ∞ 1 2

1 2 3 ∞ 1 2 3 ∞ 1 2 3 ∞

Figure 3.35: A (6× 6)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments obtained

by juxtaposition of 3 copies of the alternative basic design beside

observe that p = 15 and h† = 9, hence p - h† and we cannot use the alternative basic

design. However, h† = 3h and p† = 2p, giving y = 3 and z = 2. Thus, we utilize the

63

1 ∞ 2 5 3 4 2 ∞ 3 1 4 5 3 ∞ 4 2 5 1 4 ∞ 5 3 1 2 5 ∞ 1 4 2 3

3 4 1 ∞ 2 5 4 5 2 ∞ 3 1 5 1 3 ∞ 4 2 1 2 4 ∞ 5 3 2 3 5 ∞ 1 4

2 5 3 4 1 ∞ 3 1 4 5 2 ∞ 4 2 5 1 3 ∞ 5 3 1 2 4 ∞ 1 4 2 3 5 ∞

1 ∞ 2 5 3 4 2 ∞ 3 1 4 5 3 ∞ 4 2 5 1 4 ∞ 5 3 1 2 5 ∞ 1 4 2 3

3 4 1 ∞ 2 5 4 5 2 ∞ 3 1 5 1 3 ∞ 4 2 1 2 4 ∞ 5 3 2 3 5 ∞ 1 4

2 5 3 4 1 ∞ 3 1 4 5 2 ∞ 4 2 5 1 3 ∞ 5 3 1 2 4 ∞ 1 4 2 3 5 ∞

1 ∞ 2 5 3 4 2 ∞ 3 1 4 5 3 ∞ 4 2 5 1 4 ∞ 5 3 1 2 5 ∞ 1 4 2 3

3 4 1 ∞ 2 5 4 5 2 ∞ 3 1 5 1 3 ∞ 4 2 1 2 4 ∞ 5 3 2 3 5 ∞ 1 4

2 5 3 4 1 ∞ 3 1 4 5 2 ∞ 4 2 5 1 3 ∞ 5 3 1 2 4 ∞ 1 4 2 3 5 ∞

1 ∞ 2 5 3 4 2 ∞ 3 1 4 5 3 ∞ 4 2 5 1 4 ∞ 5 3 1 2 5 ∞ 1 4 2 3

3 4 1 ∞ 2 5 4 5 2 ∞ 3 1 5 1 3 ∞ 4 2 1 2 4 ∞ 5 3 2 3 5 ∞ 1 4

2 5 3 4 1 ∞ 3 1 4 5 2 ∞ 4 2 5 1 3 ∞ 5 3 1 2 4 ∞ 1 4 2 3 5 ∞

1 ∞ 2 5 3 4 2 ∞ 3 1 4 5 3 ∞ 4 2 5 1 4 ∞ 5 3 1 2 5 ∞ 1 4 2 3

3 4 1 ∞ 2 5 4 5 2 ∞ 3 1 5 1 3 ∞ 4 2 1 2 4 ∞ 5 3 2 3 5 ∞ 1 4

2 5 3 4 1 ∞ 3 1 4 5 2 ∞ 4 2 5 1 3 ∞ 5 3 1 2 4 ∞ 1 4 2 3 5 ∞

Figure 3.36: A (15 × 15)/2 balanced semi-Latin rectangle for 6 treatments obtained via

the basic design

64

1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4

3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5

2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞ 2 5 3 4 1 ∞

2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5

4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1

3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞ 3 1 4 5 2 ∞

3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1

5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2

4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞ 4 2 5 1 3 ∞

4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2

1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3

5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞ 5 3 1 2 4 ∞

5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3

2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4

1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞ 1 4 2 3 5 ∞

Figure 3.37: A (15 × 15)/2 balanced semi-Latin rectangle for 6 treatments obtained via

the alternative basic design

65

1∞2 53 42∞3 14 53∞4 25 14∞5 31 25∞1 42 31∞2 53 42∞3 14 53∞4 25 14∞5 31 25∞1 42 3

3 41∞2 54 52∞3 15 13∞4 21 24∞5 32 35∞1 43 41∞2 54 52∞3 15 13∞4 21 24∞5 32 35∞1 4

2 53 41∞3 14 52∞4 25 13∞5 31 24∞1 42 35∞2 53 41∞3 14 52∞4 25 13∞5 31 24∞1 42 35∞

1∞2 53 42∞3 14 53∞4 25 14∞5 31 25∞1 42 31∞2 53 42∞3 14 53∞4 25 14∞5 31 25∞1 42 3

3 41∞2 54 52∞3 15 13∞4 21 24∞5 32 35∞1 41∞2 53 42∞3 14 53∞4 25 14∞5 31 25∞1 42 3

2 53 41∞3 14 52∞4 25 13∞5 31 24∞1 42 35∞2 53 41∞3 14 52∞4 25 13∞5 31 24∞1 42 35∞

1∞2 53 42∞3 14 53∞4 25 14∞5 31 25∞1 42 31∞2 53 42∞3 14 53∞4 25 14∞5 31 25∞1 42 3

3 41∞2 54 52∞3 15 13∞4 21 24∞5 32 35∞1 43 41∞2 54 52∞3 15 13∞4 21 24∞5 32 35∞1 4

2 53 41∞3 14 52∞4 25 13∞5 31 24∞1 42 35∞2 53 41∞3 14 52∞4 25 13∞5 31 24∞1 42 35∞

Figure 3.38: A (9× 30)/2 balanced semi-Latin rectangle for 6 treatments

basic design by making 2 copies of it, juxtaposing them beside, and subsequently, making

3 copies of the resulting design and juxtaposing them underneath: see Figure 3.38

Remark. The juxtaposition is in two stages. The design resulting from the first stage of

juxtaposition is a (3 × 30)/2 BSLR. A juxtaposition of 3 copies of it gives the required

(9× 30)/2 BSLR.

In a similar way, the same design can be obtained by first making 3 copies of the basic

design, juxtaposing them underneath, and subsequently, making 2 copies of the resulting

design and then juxtaposing them beside. In this case, a (9 × 15)/2 BSLR is obtained

at the first stage of juxtaposition, whose 2 copies juxtaposed beside produces the desired

design.

66

Chapter 4

Balanced Semi-Latin Rectangles

with Larger Block Sizes

4.1 Introduction

This chapter focuses on balanced semi-Latin rectangles with block sizes greater than two,

that is, there are more than two treatments in each row-column intersection of the design.

Just like the designs discussed in Chapter 3, for these designs, their quotient block designs

are BIBDs. We denote the structure of this design for a given number, v, of treatments

by (h× p)/k, where k > 2. Each treatment appears khp/v times, overall, in the design. It

appears nr = kp/v times in each row and nc = kh/v times in each column. Furthermore,

as noted in section 3.2, the values of h and p are not necessarily distinct.

Some algorithmic procedures are given for constructing designs of different classes.

More designs are obtained via some modifications of the algorithms, by transpositions

and also by employing complementation of different kinds. Designs of larger sizes are also

obtained by making multiple copies of designs of smaller sizes and then putting them in

an array of appropriate size. In some cases, we also make use of Latin squares of different

compositions to make more designs of larger sizes that have identical number of rows

and columns if certain conditions are satisfied. We give, in addition, some examples to

illustrate the constructions.

4.2 Construction Approaches

We give some constructions for these designs using some procedures such as a modified

version of the distance approach we used in the preceding chapter. Some concepts such

as distance, difference sets/difference families, affine resolvability and complementation

are also utilized in the construction. For those classes of designs that we give a direct

construction for, having v treatments, h rows, p columns and block (cell) size k, we obtain

an equivalent design–having the same value of h, p, and v, though with block size, k′ via

67

block complementation, where k′ = v− k. This involves taking a BSLR for a given h, p, v

and k obtained by direct construction, and putting in each cell those treatments that are

missing from it. We adopt this approach, in particular, when k′ > k.

If k′ = k, then nc = 1 if and only if h = 2. In this case, we adopt another form of

complementation for the construction, we name it column complementation. This involves

filling the cells in row 1 of a 2×p array with appropriate entries (where the entries of these

cells form the p blocks of a BIBD) and then putting in the cell in row 2 of each column

those treatments that are missing from the cell directly above it.

We also employ another form of complementation that we name row complementation.

This would be used to obtain construction for designs with p = 2 and k′ = k, hence nr = 1.

We note that if k′ = k, then nr = 1 if and only if p = 2. The procedure is akin to the

construction by column complementation and involves filling each cell in column 2 of an

h× 2 array by the complement of the set of treatments of the cell in column 1 of the same

row, where the entries of the h cells in column 1 form the h blocks of a BIBD.

We note that, in general, if k′ = k, then nc = t if and only if h = 2t, where t = 1, 2,

Similarly, if k′ = k, then nr = u if and only if p = 2u, where u = 1, 2, ...

4.3 Constructions based on distances

Let V = {1, 2, ..., v} denote the set of treatments of the design under construction, where

v is odd. We obtain constructions for BSLRs with k = 3. We begin by identifying

the treatments with the vertices of a regular v-gon and then forming triples/blocks by

combining each vertex, i with adjacent vertices i′ and i′′, each being equidistant from i,

with distance, d(i, i′) = d(i, i′′) = 1, where i, i′, i′′ = 1, 2, ..., v, i 6= i′ 6= i′′. This is repeated

for all values of i with the nonadjacent vertices, i′ and i′′ for which d(i, i′) = d(i, i′′) =

2, 3, ..., δ, where δ = (v− 1)/2, since v is odd. Hence, overall, vδ triples are generated and

utilized in the construction.

Given a vertex i with 2 distinct vertices, i′ and i′′, each being equidistant from i and

which combine with i to form the triple, {i, i′, i′′}, where i, i′, i′′ = 1, 2, ..., v, i 6= i′ 6= i′′.

For each l ∈ {1, 2, ..., δ}, let Slw denote the wth triple formed such that d(i, i′) = d(i, i′′) =

l. Then Slw = {w,w + l, w − l}, where each component is reduced modulo v, for all

l = 1, 2, 3, ..., δ. and w = 1, 2, ..., v.

Notice that, Sl1 = {1, 1 + l, 1 − l}, Sl2 = {2, 2 + l, 2 − l}, . . ., Slv = {v, v + l, v − l}.
Similarly, S1w = {w,w+ 1, w− 1}, S2w = {w,w+ 2, w− 2}, . . ., Sδw = {w,w+ δ, w− δ}.

For each l = 1, 2, 3, ..., δ, a Latin square of order v is made using Sl1, Sl2,...,Slv as

symbols and these are then inserted into an array of appropriate size to obtain the required

design.

Theorem 4.3.1. The set, {Slw}vw=1, of all generated triples that facilitates the construc-

tion of the balanced semi-Latin rectangle, where l = 1, 2, ..., δ; δ = (v − 1)/2 and v is

68

odd forms a 3-resolvable (v, vδ, 3δ, 3, 3)-BIBD, where δ denote the number of 3-resolution

classes.

Proof. Let V = {1, 2, ..., v} denote the set of vertices of a v-gon which corresponds to the

set of treatments of a design. Relabel these vertices in a cyclic order as i, i+1, i+2, ..., i+

(δ − 1), i+ δ, i− δ, i− (δ − 1), ..., i− 2, i− 1, where i ∈ V , and the addition/subtraction is

performed modulo v. For each i ∈ V and i′ ∈ V \{i}, it follows that i′ = i± d(i, i′), where

d(i, i′) denote the distance between the vertices i and i′, defined by

d(i, i′) =


|i′ − i| if |i′ − i| ≤ δ,

v − |i′ − i| if |i′ − i| > δ.

(4.1)

In particular, for all i < i′,

i′ =


i+ d(i, i′) if |i′ − i| ≤ δ,

i− d(i, i′) if |i′ − i| > δ.

Similarly, if i > i′, the positive and negative signs are exchanged, that is,

i′ =


i− d(i, i′) if |i′ − i| ≤ δ,

i+ d(i, i′) if |i′ − i| > δ.

By the construction, for each l ∈ {1, 2, 3, ..., δ}, each vertex, i associates with the

pair (i − l, i + l), which are equidistant from it to form a triple/block, {i, i + l, i − l},
where i = 1, 2, ..., v (hence v triples are formed) such that d(i, i + l) = d(i, i − l) = l.

Clearly, each of the vertices i + l and i − l is distinct from i, since l 6= 0. Similarly,

d(i − l, i + l) = 2l or v − 2l, which are both nonzero, since 2l is even and v is odd, and

also l 6= 0. Obviously, both i− l and i+ l are also distinct from each other, for all i ∈ V ,

hence no two vertices within a set of triples are identical, which makes the design binary.

Now, since d(i, i + l) = d(i, i − l) = l, for all l, then it follows that, i and i + l associate

with i− l and i+ 2l. Similarly, i and i− l associate with i+ l and i− 2l. Notice that, in

these cases, d(i− l, i+ 2l) = d(i+ l, i− 2l), which by (4.1) has the value 3l if 3l ≤ δ, such

that l ≤ δ/3; or has the value v − 3l, if 3l > δ, such that l > δ/3. Suppose l = v/3. Then

l > δ/3, since v > δ such that d(i− l, i+ 2l) = d(i+ l, i− 2l) has the value v − 3l. Now,

if l = v/3, then v − 3l = 0. Conversely, if v − 3l = 0, then l = v/3. Hence v − 3l = 0 if

69

and only if l = v/3. Thus, the vertices, i− l and i+ 2l are identical if and only if l = v/3,

hence under this condition, each forms identical triple with the pair, (i, i+ l) of vertices.

Similarly, the vertices i + l and i − 2l are also identical if and only if l = v/3, and under

this condition, each forms identical triple with the pair, (i, i− l) of vertices.

Furthermore, since v is odd, then v−2 is also odd. Suppose i and i+ l are two vertices.

Then by the construction, there exists a vertex, i∗, say, such that d(i, i∗) = d(i + l, i∗),

that is, i and i+ l are equidistant from i∗.

Similarly, suppose i and i− l are two vertices. Then i∗ is such that d(i, i∗) = d(i− l, i∗).
From the foregoing discussion, it follows that the pair, (i, i + l) of vertices forms sets

of triples with i − l, i + 2l and i∗, viz, {i, i + l, i − l}, {i, i + l, i + 2l}, and {i, i + l, i∗}.
Similarly, the pair (i, i− l) forms the triples {i, i− l, i−2l}, {i, i− l, i+ l}, and {i, i− l, i∗}.
Thus every pair of vertices appear together in 3 triples (blocks), making λ = 3, where only

the pairs (i, i ± v/3), for any i ∈ V form identical sets of triples each time they appear

together.

Since, for each l ∈ {1, 2, 3, ..., δ}, there are v triples (blocks), then there are vδ blocks,

overall. Moreover, for each l ∈ {1, 2, 3, ..., δ}, each vertex (treatment), i ∈ V appears in

3 blocks, hence it appears in 3δ blocks, overall. There are 3 plots in each block, hence,

for each l, there are 3v plots, and overall, there are 3vδ plots. Moreover, each treatment

appears at most once in each block. Since each treatment appears in 3δ blocks/plots in

the design, then, overall, the v distinct treatments appear in 3δv plots, which is identical

to the total number of plots.

Hence the design has v vertices/treatments arranged in vδ incomplete blocks of size 3

which are divided into δ 3-resolution classes, where each l ∈ {1, 2, ..., δ} corresponds to a 3-

resolution class and contains v blocks, and each treatment appears in 3 blocks within each

3-resolution class, hence 3δ times, overall. Furthermore, overall, each pair of treatments

appears together in 3 blocks. It follows that the set of all vδ triples form a 3-resolvable

(v, vδ, 3δ, 3, 3)-BIBD; and by putting i = w, for all i ∈ V , the theorem follows.

�

Corollary 4.3.1. The BIBD has repeated blocks, each with multiplicity 3 if and only if

l = v/3. Consequently, the support size, the number of distinct blocks in the BIBD is

v(δ − 1) + v/3 = vδ − 2v/3, where δ = (v − 1)/2.

Corollary 4.3.2. If 3|v, then by Corollary 4.3.1, the number of distinct blocks in the

3-resolution class associated with l = v/3 is precisely v/3. It follows from Corollary 4.3.1

that the number of distinct blocks in the BIBD is 2v/3 less the total number of blocks.

4.3.1 Construction for designs of the class (v×δv)/3,where δ = (v−1)/2 >
1 and v is odd

An array of size v × δv is created whose columns are divided into δ equal subdivisions,

separated by double vertical lines and the Latin squares are then inserted, one to each

70

subdivision.

An algorithmic procedure for constructing the design

1. For each l = 1, 2, 3, ..., δ, make a Latin square of order v with {Slw}vw=1 as the symbol

set, where Slw = {w,w + l, w − l} and each component is reduced modulo v.

2. Create a v × δv array and divide its columns into δ equal subdivisions of v columns

each, separated by double vertical lines.

3. Insert the Latin squares made in step 1 into the array, one in each subdivision.

Remark. The insertion of the Latin squares into the array does not need to follow a

definite order, that is, any of the Latin squares can be inserted in any subdivision of

the array.

The constructed design has as its QBD a (v, v2δ, 3vδ, 3, 3v)-BIBD. Hence it is a

BSLR.

For row 1 of the design, Sl1 = {1, 1 + l, 1 − l} gives the entries of the cell (block)

in column 1 of the lth subdivision, where l = 1, 2, 3, ..., δ; and in general, for this

row, Slw = {w,w + l, w − l} gives the entries of the cell in column w of the lth

subdivision, where w = 1, 2, ..., v. Notice that Slw is identical to Sl1 + (w−1), where

w > 1, that is, for instance, Sl2 = Sl1 + 1, Sl3 = Sl1 + 2 = (Sl1 + 1) + 1 = Sl2 + 1,

Sl4 = Sl1+3 = (Sl1+2)+1 = Sl3+1, and so on. Hence the blocks in each subdivision

can be generated by a cyclic development of its initial block.

Example 4.3.1. Let v = 5, then δ = 2. Hence the design is of size (5× 10)/3: see Figure

4.1.

1 2 5 2 3 1 3 4 2 4 5 3 5 1 4 1 3 4 2 4 5 3 5 1 4 1 2 5 2 3

5 1 4 1 2 5 2 3 1 3 4 2 4 5 3 5 2 3 1 3 4 2 4 5 3 5 1 4 1 2

4 5 3 5 1 4 1 2 5 2 3 1 3 4 2 4 1 2 5 2 3 1 3 4 2 4 5 3 5 1

3 4 2 4 5 3 5 1 4 1 2 5 2 3 1 3 5 1 4 1 2 5 2 3 1 3 4 2 4 5

2 3 1 3 4 2 4 5 3 5 1 4 1 2 5 2 4 5 3 5 1 4 1 2 5 2 3 1 3 4

Figure 4.1: A (5× 10)/3 balanced semi-Latin rectangle for 5 treatments

Example 4.3.2. Let v = 7, then δ = 3. Hence the design is of size (7× 21)/3: see Figure

4.2.

Example 4.3.3. Let v = 9, then δ = 4. Hence the design is of size (9× 36)/3: see Figure

4.3.

71

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

2 3 4 5 6 7 1 3 4 5 6 7 1 2 4 5 6 7 1 2 3

7 1 2 3 4 5 6 6 7 1 2 3 4 5 5 6 7 1 2 3 4

7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6

1 2 3 4 5 6 7 2 3 4 5 6 7 1 3 4 5 6 7 1 2

6 7 1 2 3 4 5 5 6 7 1 2 3 4 4 5 6 7 1 2 3

6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5

7 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 1

5 6 7 1 2 3 4 4 5 6 7 1 2 3 3 4 5 6 7 1 2

5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4

6 7 1 2 3 4 5 7 1 2 3 4 5 6 1 2 3 4 5 6 7

4 5 6 7 1 2 3 3 4 5 6 7 1 2 2 3 4 5 6 7 1

4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3

5 6 7 1 2 3 4 6 7 1 2 3 4 5 7 1 2 3 4 5 6

3 4 5 6 7 1 2 2 3 4 5 6 7 1 1 2 3 4 5 6 7

3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2

4 5 6 7 1 2 3 5 6 7 1 2 3 4 6 7 1 2 3 4 5

2 3 4 5 6 7 1 1 2 3 4 5 6 7 7 1 2 3 4 5 6

2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1

3 4 5 6 7 1 2 4 5 6 7 1 2 3 5 6 7 1 2 3 4

1 2 3 4 5 6 7 7 1 2 3 4 5 6 6 7 1 2 3 4 5

Figure 4.2: A (7× 21)/3 balanced semi-Latin rectangle for 7 treatments

4.3.2 Designs of the class (δv × v)/3

Given the algorithmic procedure in section 4.3.1, where there are v treatments in v rows

and δv columns. Let the array size in step 2 be δv × v such that the rows are divided

into δ equal subdivisions of v rows each, separated by double horizontal lines. Then this

modification produces the desired design, which is a BSLR for v treatments in vδ rows

and v columns.

For instance, in Example 4.3.2, where v = 7, and δ = 3. Putting the Latin squares

(the order of doing this being immaterial) in a (21 × 7) array which is partitioned into

3 subdivisions with respect to the rows and separated by double horizontal lines, where

each subdivision has 7 rows produces a BSLR for 7 treatments in 21 rows and 7 columns:

see Figure 4.4.

Remark. Another design of the same size can be obtained by a transposition of the design

in Figure 4.2. The design in Figure 4.4 and that obtainable by transposing the design in

Figure 4.2 are isomorphic.

72

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 2 4 5 6 7 8 9 1 2 3 5 6 7 8 9 1 2 3 4
9 1 2 3 4 5 6 7 8 8 9 1 2 3 4 5 6 7 7 8 9 1 2 3 4 5 6 6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 2 4 5 6 7 8 9 1 2 3
8 9 1 2 3 4 5 6 7 7 8 9 1 2 3 4 5 6 6 7 8 9 1 2 3 4 5 5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 2
7 8 9 1 2 3 4 5 6 6 7 8 9 1 2 3 4 5 5 6 7 8 9 1 2 3 4 4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
8 9 1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1
6 7 8 9 1 2 3 4 5 5 6 7 8 9 1 2 3 4 4 5 6 7 8 9 1 2 3 3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5
7 8 9 1 2 3 4 5 6 8 9 1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9
5 6 7 8 9 1 2 3 4 4 5 6 7 8 9 1 2 3 3 4 5 6 7 8 9 1 2 2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4
6 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 6 8 9 1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 8
4 5 6 7 8 9 1 2 3 3 4 5 6 7 8 9 1 2 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3
5 6 7 8 9 1 2 3 4 6 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 6 8 9 1 2 3 4 5 6 7
3 4 5 6 7 8 9 1 2 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 9 1 2 3 4 5 6 7 8
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2
4 5 6 7 8 9 1 2 3 5 6 7 8 9 1 2 3 4 6 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 6
2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 9 1 2 3 4 5 6 7 8 8 9 1 2 3 4 5 6 7
2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 1 2 4 5 6 7 8 9 1 2 3 5 6 7 8 9 1 2 3 4 6 7 8 9 1 2 3 4 5
1 2 3 4 5 6 7 8 9 9 1 2 3 4 5 6 7 8 8 9 1 2 3 4 5 6 7 7 8 9 1 2 3 4 5 6

Figure 4.3: A (9× 36)/3 balanced semi-Latin rectangle for 9 treatments

4.3.3 More designs

If δ which specifies the number of Latin squares involved in the construction is a nonprime,

more possibilities can be obtained by adapting the procedure in section 4.3.1, via adjusting

the array size by taking into consideration each pair of factors (a pair of distinct factors

used differently when in reversed order) of the number of Latin squares, the order of each

Latin square and the total number of blocks in the QBD of the basic design, the design

obtained by implementing the procedure in section 4.3.1.

For instance, 4 Latin squares are involved in the construction of the (9× 36)/3 BSLR

in Figure 4.3. Since 4 is a product of 2 and 2, then the 4 Latin squares can be put in an

(18 × 18) array, thereby obtaining another possibility of a BSLR for 9 treatments whose

QBD has 324 blocks just like the basic design in Figure 4.3. The resulting (18 × 18)/3

BSLR is shown in Figure 4.5.

73

1 2 7 2 3 1 3 4 2 4 5 3 5 6 4 6 7 5 7 1 6
7 1 6 1 2 7 2 3 1 3 4 2 4 5 3 5 6 4 6 7 5
6 7 5 7 1 6 1 2 7 2 3 1 3 4 2 4 5 3 5 6 4
5 6 4 6 7 5 7 1 6 1 2 7 2 3 1 3 4 2 4 5 3
4 5 3 5 6 4 6 7 5 7 1 6 1 2 7 2 3 1 3 4 2
3 4 2 4 5 3 5 6 4 6 7 5 7 1 6 1 2 7 2 3 1
2 3 1 3 4 2 4 5 3 5 6 4 6 7 5 7 1 6 1 2 7

1 3 6 2 4 7 3 5 1 4 6 2 5 7 3 6 1 4 7 2 5
7 2 5 1 3 6 2 4 7 3 5 1 4 6 2 5 7 3 6 1 4
6 1 4 7 2 5 1 3 6 2 4 7 3 5 1 4 6 2 5 7 3
5 7 3 6 1 4 7 2 5 1 3 6 2 4 7 3 5 1 4 6 2
4 6 2 5 7 3 6 1 4 7 2 5 1 3 6 2 4 7 3 5 1
3 5 1 4 6 2 5 7 3 6 1 4 7 2 5 1 3 6 2 4 7
2 4 7 3 5 1 4 6 2 5 7 3 6 1 4 7 2 5 1 3 6

1 4 5 2 5 6 3 6 7 4 7 1 5 1 2 6 2 3 7 3 4
7 3 4 1 4 5 2 5 6 3 6 7 4 7 1 5 1 2 6 2 3
6 2 3 7 3 4 1 4 5 2 5 6 3 6 7 4 7 1 5 1 2
5 1 2 6 2 3 7 3 4 1 4 5 2 5 6 3 6 7 4 7 1
4 7 1 5 1 2 6 2 3 7 3 4 1 4 5 2 5 6 3 6 7
3 6 7 4 7 1 5 1 2 6 2 3 7 3 4 1 4 5 2 5 6
2 5 6 3 6 7 4 7 1 5 1 2 6 2 3 7 3 4 1 4 5

Figure 4.4: A (21× 7)/3 balanced semi-Latin rectangle for 7 treatments

1 2 9 2 3 1 3 4 2 4 5 3 5 6 4 6 7 5 7 8 6 8 9 7 9 1 8 1 3 8 2 4 9 3 5 1 4 6 2 5 7 3 6 8 4 7 9 5 8 1 6 9 2 7
9 1 8 1 2 9 2 3 1 3 4 2 4 5 3 5 6 4 6 7 5 7 8 6 8 9 7 9 2 7 1 3 8 2 4 9 3 5 1 4 6 2 5 7 3 6 8 4 7 9 5 8 1 6
8 9 7 9 1 8 1 2 9 2 3 1 3 4 2 4 5 3 5 6 4 6 7 5 7 8 6 8 1 6 9 2 7 1 3 8 2 4 9 3 5 1 4 6 2 5 7 3 6 8 4 7 9 5
7 8 6 8 9 7 9 1 8 1 2 9 2 3 1 3 4 2 4 5 3 5 6 4 6 7 5 7 9 5 8 1 6 9 2 7 1 3 8 2 4 9 3 5 1 4 6 2 5 7 3 6 8 4
6 7 5 7 8 6 8 9 7 9 1 8 1 2 9 2 3 1 3 4 2 4 5 3 5 6 4 6 8 4 7 9 5 8 1 6 9 2 7 1 3 8 2 4 9 3 5 1 4 6 2 5 7 3
5 6 4 6 7 5 7 8 6 8 9 7 9 1 8 1 2 9 2 3 1 3 4 2 4 5 3 5 7 3 6 8 4 7 9 5 8 1 6 9 2 7 1 3 8 2 4 9 3 5 1 4 6 2
4 5 3 5 6 4 6 7 5 7 8 6 8 9 7 9 1 8 1 2 9 2 3 1 3 4 2 4 6 2 5 7 3 6 8 4 7 9 5 8 1 6 9 2 7 1 3 8 2 4 9 3 5 1
3 4 2 4 5 3 5 6 4 6 7 5 7 8 6 8 9 7 9 1 8 1 2 9 2 3 1 3 5 1 4 6 2 5 7 3 6 8 4 7 9 5 8 1 6 9 2 7 1 3 8 2 4 9
2 3 1 3 4 2 4 5 3 5 6 4 6 7 5 7 8 6 8 9 7 9 1 8 1 2 9 2 4 9 3 5 1 4 6 2 5 7 3 6 8 4 7 9 5 8 1 6 9 2 7 1 3 8

1 4 7 2 5 8 3 6 9 4 7 1 5 8 2 6 9 3 7 1 4 8 2 5 9 3 6 1 5 6 2 6 7 3 7 8 4 8 9 5 9 1 6 1 2 7 2 3 8 3 4 9 4 5
9 3 6 1 4 7 2 5 8 3 6 9 4 7 1 5 8 2 6 9 3 7 1 4 8 2 5 9 4 5 1 5 6 2 6 7 3 7 8 4 8 9 5 9 1 6 1 2 7 2 3 8 3 4
8 2 5 9 3 6 1 4 7 2 5 8 3 6 9 4 7 1 5 8 2 6 9 3 7 1 4 8 3 4 9 4 5 1 5 6 2 6 7 3 7 8 4 8 9 5 9 1 6 1 2 7 2 3
7 1 4 8 2 5 9 3 6 1 4 7 2 5 8 3 6 9 4 7 1 5 8 2 6 9 3 7 2 3 8 3 4 9 4 5 1 5 6 2 6 7 3 7 8 4 8 9 5 9 1 6 1 2
6 9 3 7 1 4 8 2 5 9 3 6 1 4 7 2 5 8 3 6 9 4 7 1 5 8 2 6 1 2 7 2 3 8 3 4 9 4 5 1 5 6 2 6 7 3 7 8 4 8 9 5 9 1
5 8 2 6 9 3 7 1 4 8 2 5 9 3 6 1 4 7 2 5 8 3 6 9 4 7 1 5 9 1 6 1 2 7 2 3 8 3 4 9 4 5 1 5 6 2 6 7 3 7 8 4 8 9
4 7 1 5 8 2 6 9 3 7 1 4 8 2 5 9 3 6 1 4 7 2 5 8 3 6 9 4 8 9 5 9 1 6 1 2 7 2 3 8 3 4 9 4 5 1 5 6 2 6 7 3 7 8
3 6 9 4 7 1 5 8 2 6 9 3 7 1 4 8 2 5 9 3 6 1 4 7 2 5 8 3 7 8 4 8 9 5 9 1 6 1 2 7 2 3 8 3 4 9 4 5 1 5 6 2 6 7
2 5 8 3 6 9 4 7 1 5 8 2 6 9 3 7 1 4 8 2 5 9 3 6 1 4 7 2 6 7 3 7 8 4 8 9 5 9 1 6 1 2 7 2 3 8 3 4 9 4 5 1 5 6

Figure 4.5: A (18× 18)/3 balanced semi-Latin rectangle for 9 treatments

74

4.4 Constructions based on difference sets/difference fami-

lies

4.4.1 Preliminaries

Let G = (Zv,+) denote a group formed by Zv, the set of integers (mod v). We had

previously defined a (v, k, λ)-difference set for Zv to be a k–element subset of Zv for which

the differences between all possible pairs of its elements give all the non-zero elements of

Zv, each of them exactly λ times : see Definition 2.2.16, see also Stinson (2004, Chapter

3). We note that a (v, k, λ)-difference set for Zv does not always exist. If it exists, then
λ(v−1)
k(k−1) = 1, where k is the size of the difference set and satisfies 2 ≤ k < v, λ (> 0) is the

index. Hence, if a difference set exists, it generates a symmetric (v, k, λ)-BIBD, denoted

(v, k, λ)-SBIBD via a cyclic development of the difference set which involves successive

addition of an element of Zv.

Furthermore, a difference family (which has more than one set) generalizes the concept

of difference set. Let β = λ(v−1)
k(k−1) . If a (v, k, λ)-difference family for Zv exists, then β > 1,

where β ∈ Z specifies the number of sets in the family: see, for example, Stinson (2004,

Chapter 3), for discussions and examples of difference sets and difference families.

Notice that, for a difference set, β = 1.

Example 4.4.1. The set {1, 2, 4} is a (7, 3, 1)-difference set in (Z7,+), thus it generates

a (7, 3, 1)-SBIBD. Notice that β = 1 and the differences (modulo 7) between all possible

pairs of elements of the set yield ±1,±2 and ±3, that is, elements of the set {1, 2, 3, 4, 5, 6},
which is precisely the set Z7\{0}, where each element appears exactly once.

Similarly, {1, 2, 6, 12} is a (13,4,1)-difference set in (Z13,+), thus it generates a (13,

4, 1)-SBIBD. Some other examples include: {1, 2, 3}, which is a (4, 3, 2)-difference set in

(Z4,+); {1, 2, 7, 9, 19}, which is a (21, 5, 1)-difference set in (Z21,+); {1, 3, 4, 5, 9} which

is an (11, 5, 2)-difference set in (Z11,+); {1, 2, 3, 5, 6, 9, 11} which is a (15,7,3)-difference

set in (Z15,+); and {1, 7, 9, 10, 12, 16, 26, 33, 34}, a (37,9,2)-difference set in (Z37,+).

Furthermore, the sets {1, 2, 5} and {2, 4, 10} constitute a (13, 3, 1)-difference family

in (Z13,+), and this generates a (13, 3, 1)-BIBD. Notice that β = 2 and the differences

between all possible pairs of elements (modulo 13) with respect to the 1st set give: ±1,±3

and ±4, which is the set {1, 3, 4, 9, 10, 12}. For the 2nd set, the differences are ±2,±6

and ±8 which constitute the set {2, 5, 6, 7, 8, 11}. Let A = {1, 3, 4, 9, 10, 12} and B =

{2, 5, 6, 7, 8, 11}. Then, it is obvious that A ∪ B = Z13\{0}, each element of the set

appearing exactly once.

Also, {{1, 2, 4}, {3, 5, 6}} is a (7, 3, 2)-difference family in (Z7,+), and thus generates

a (7, 3, 2)-BIBD; {{1, 2, 4, 25}, {1, 11, 19, 31}, {1, 5, 27, 33}} is a (37, 4, 1)-difference family

in (Z37,+), and thus generates a (37,4, 1)-BIBD; and {{1, 3, 5}, {2, 6, 3}, {3, 2, 1}, {4, 2, 1}}
is a (7, 3, 4)-difference family in (Z7,+), hence generates a (7, 3, 4)-BIBD.

Definition 4.4.1. Let S denote a (v, k, λ)-difference set in (Zv,+). Then for all j ∈ Zv,

75

S + j = {i+ j : i ∈ S} is said to be a translate of S.

Remark. We regard the set of integers modulo v as {1, 2, , ..., v}. Notice that if j = v, then

S + j = S, which makes S a translate of itself. Furthermore, the set of all v translates of

S gives the block set of a symmetric (v, k, λ)-BIBD.

4.4.2 Construction Procedure

Given the treatment set, V = {1, 2, ..., v} of a design. Suppose a (v, k, λ)-difference set

(or difference family) exists in (Zv,+). Then we begin by utilizing the difference set (or

difference family) to obtain a (v, k, λ)-BIBD via successive addition of 1 to each element

of the set(s), reduced mod v, and subsequently, utilizing the blocks of the BIBD in our

construction of BSLR.

In general, the number of blocks generated for the BIBD is βv, where βv ≥ v. In

particular, with a difference set, v distinct blocks are generated. Similarly, if a difference

family exists, each set in the family generates v blocks, and overall, βv (> v) blocks are

generated.

Then, with the BIBD, some BSLRs of appropriate sizes can be constructed.

Let S denote a (v, k, λ)-difference set and Sj , its jth translate, where j = 1, 2, ..., v.

For all j ∈ {1, 2, ..., v}, define Sj = S+ (j− 1), where S+ (j− 1) = {m+ (j− 1) : m ∈ S}.
Notice that there are v translates of S, viz, S1,S2,...,Sv, where S1 = S, S2 = S+ 1,...,Sv =

S + (v − 1). Similarly, let Ay denote the yth member set of a (v, k, λ)-difference family,

where y = 1, 2, ..., β. Let Ayj denote the jth translate of Ay, where j = 1, 2, ..., v. For

all y ∈ {1, 2, ..., β} and j ∈ {1, 2, ..., v}, define Ayj = Ay + (j − 1), where Ay + (j − 1) =

{n + (j − 1) : n ∈ Ay}. Notice that, for all y, there are v translates of Ay, which are

Ay1, Ay2,..., Ayv, where Ay1 = Ay, Ay2 = Ay + 1,..., Ayv = Ay + (v − 1). In particular,

A11 = A1, A21 = A2,..., Aβ1 = Aβ.

In the case that a difference set exists, the v translates of S, that is, S1,S2,...,Sv are

then used as symbols to make a Latin square of order v. Similarly, if a difference family

exists, then for all y, Ay1, Ay2,..., Ayv are used as symbols to make a Latin square. These

Latin squares are then inserted into an array of appropriate size to obtain the desired

design.

4.4.3 Construction for designs of the class (v × βv)/k

A (v × βv)/k array is created and the columns are divided into β subdivisions, each

subdivision having v columns and separated by double vertical lines. Subsequently, each

Latin square is inserted into a subdivision to give the desired design.

An algorithmic procedure for the construction

1. Identify a (v, k, λ)-difference set (or difference family) in (Zv,+), if it exists

76

2. If a difference set exists, for all j ∈ {1, 2, ..., v}, put Sj = S+(j−1), where S+(j−1) =

{m + (j − 1) : m ∈ S}. But if a difference family exists, for all y ∈ {1, 2, ..., β} and

j ∈ {1, 2, ..., v}, put Ayj = Ay + (j− 1), where Ay + (j− 1) = {n+ (j− 1) : n ∈ Ay},
and β = λ(v−1)

k(k−1) .

3. In the case where a difference set exists, make a Latin square of order v using

S1,S2,...,Sv as symbols; and in the case where a difference family exists, for all

y ∈ {1, 2, ..., β}, make a Latin square of order v with Ay1, Ay2,..., Ayv as symbols.

4. Create a (v×βv) array and divide its columns into β equal subdivisions of v columns

each, separated by double vertical lines.

5. Insert the Latin squares made in step 3 into the array, one in each subdivision.

Remark. In general, β Latin squares are required for the construction. Just like in section

4.3.1, any of the Latin squares can be inserted in any subdivision of the array. Notice

that, if a difference set is used for the construction, then β = 1 such that βv = v. Hence,

the number of columns in the array of the design is identical to the number of rows, which

is clearly, a design with the same number of rows as columns.

Example 4.4.2. Let v = 7. For k = 3, we recognize that there exists a (7, 3, 1)-difference

set in (Z7,+), which is {1, 2, 4}: see Example 4.4.1. Notice that β = 1, hence βv = 7.

From this set of parameters, we obtain a (7 × 7)/3 BSLR for 7 treatments. A direct

implementation of the algorithmic procedure produces the desired design: see Figure 4.6.

1 2 4 2 3 5 3 4 6 4 5 7 5 6 1 6 7 2 7 1 3

7 1 3 1 2 4 2 3 5 3 4 6 4 5 7 5 6 1 6 7 2

6 7 2 7 1 3 1 2 4 2 3 5 3 4 6 4 5 7 5 6 1

5 6 1 6 7 2 7 1 3 1 2 4 2 3 5 3 4 6 4 5 7

4 5 7 5 6 1 6 7 2 7 1 3 1 2 4 2 3 5 3 4 6

3 4 6 4 5 7 5 6 1 6 7 2 7 1 3 1 2 4 2 3 5

2 3 5 3 4 6 4 5 7 5 6 1 6 7 2 7 1 3 1 2 4

Figure 4.6: A (7× 7)/3 balanced semi-Latin rectangle for 7 treatments

Example 4.4.3. Let v = 13. we utilize the set {1, 2, 6, 12}, which is a (13,4,1)-difference

set in (Z13,+), as given in Example 4.4.1. A direct implementation of the algorithm with

β = 1 leads to the design in Figure 4.7.

Note that, in the construction, we set a = 10, b = 11, c = 12 and d = 13, with a

reduction (modulo 13) in the addition.

77

1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b

d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a

c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9

b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8

a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7

9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6

8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5

7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4

6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3

5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1 4 5 9 2

4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d 3 4 8 1

3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c 2 3 7 d

2 3 7 d 3 4 8 1 4 5 9 2 5 6 a 3 6 7 b 4 7 8 c 5 8 9 d 6 9 a 1 7 a b 2 8 b c 3 9 c d 4 a d 1 5 b 1 2 6 c

Figure 4.7: A (13× 13)/4 balanced semi-Latin rectangle for 13 treatments

Example 4.4.4. Let v = 13. To obtain, for instance, a (13 × 26)/3 BSLR for 13 treat-

ments, we recognize that there exists a (13, 3, 1)-difference family in (Z13,+) (formed by

the sets {1, 2, 5} and {2, 4, 10}) as given in Example 4.4.1.

Notice that, β = 2, hence βv = 26 and 2 Latin squares are to be used in the construc-

tion. In constructing the design, we put the treatment labels a, b, c and d for 10, 11, 12

and 13, respectively, with a reduction (modulo 13) in the addition. By implementing the

algorithm, the desired design is obtained and presented in Figure 4.8.

Example 4.4.5. Let v = 7. To obtain, for instance, a (7 × 28)/3 BSLR for 7 treat-

ments, we utilize the (7, 3, 4)-difference family in (Z7,+) given in Example 4.4.1, where

the component sets are {1, 3, 5}, {2, 6, 3}, {3, 2, 1}, and {4, 2, 1}.

Notice that, in this example, β = 4, hence βv = 28 and 4 Latin squares are required

for the construction. The design produced via a direct implementation of the algorithm

is shown in Figure 4.9.

Remark. Any existing difference set or difference family can be used in a similar manner

to obtain the corresponding design.

4.4.4 Designs of the class (βv × v)/k

Given the algorithmic procedure in section 4.4.3, if step 4. is modified to read “create a

(βv×v)/k array and divide the rows into β subdivisions of equal size, separated by double

horizontal lines.”, this leads to another class of BSLRs with v treatments, having βv rows

and v columns.

78

125 236 347 458 569 67a 78b 89c 9ad ab1 bc2 cd3 d14 24a 35b 46c 57d 681 792 8a3 9b4 ac5 bd6 c17 d28 139

d14 125 236 347 458 569 67a 78b 89c 9ad ab1 bc2 cd3 139 24a 35b 46c 57d 681 792 8a3 9b4 ac5 bd6 c17 d28

cd3 d14 125 236 347 458 569 67a 78b 89c 9ad ab1 bc2 d28 139 24a 35b 46c 57d 681 792 8a3 9b4 ac5 bd6 c17

bc2 cd3 d14 125 236 347 458 569 67a 78b 89c 9ad ab1 c17 d28 139 24a 35b 46c 57d 681 792 8a3 9b4 ac5 bd6

ab1 bc2 cd3 d14 125 236 347 458 569 67a 78b 89c 9ad bd6 c17 d28 139 24a 35b 46c 57d 681 792 8a3 9b4 ac5

9ad ab1 bc2 cd3 d14 125 236 347 458 569 67a 78b 89c ac5 bd6 c17 d28 139 24a 35b 46c 57d 681 792 8a3 9b4

89c 9ad ab1 bc2 cd3 d14 125 236 347 458 569 67a 78b 9b4 ac5 bd6 c17 d28 139 24a 35b 46c 57d 681 792 8a3

78b 89c 9ad ab1 bc2 cd3 d14 125 236 347 458 569 67a 8a3 9b4 ac5 bd6 c17 d28 139 24a 35b 46c 57d 681 792

67a 78b 89c 9ad ab1 bc2 cd3 d14 125 236 347 458 569 792 8a3 9b4 ac5 bd6 c17 d28 139 24a 35b 46c 57d 681

569 67a 78b 89c 9ad ab1 bc2 cd3 d14 125 236 347 458 681 792 8a3 9b4 ac5 bd6 c17 d28 139 24a 35b 46c 57d

458 569 67a 78b 89c 9ad ab1 bc2 cd3 d14 125 236 347 57d 681 792 8a3 9b4 ac5 bd6 c17 d28 139 24a 35b 46c

347 458 569 67a 78b 89c 9ad ab1 bc2 cd3 d14 125 236 46c 57d 681 792 8a3 9b4 ac5 bd6 c17 d28 139 24a 35b

236 347 458 569 67a 78b 89c 9ad ab1 bc2 cd3 d14 125 35b 46c 57d 681 792 8a3 9b4 ac5 bd6 c17 d28 139 24a

Figure 4.8: A (13× 26)/3 balanced semi-Latin rectangle for 13 treatments

As an illustration, if a (26 × 13) array is created and the 2 Latin squares used in

constructing the design in Figure 4.8 are inserted, then the resulting design is a (26×13)/3

BSLR

Remark. Transposing a corresponding (v×βv)/k BSLR leads to a BSLR of the same size

as the one in this section.

4.4.5 More designs from the constructions

Suppose β, the number of Latin squares used in the preceding constructions is a nonprime.

Then, just like in section 4.3.3, the array size can be adjusted to obtain some more designs

of appropriate sizes, whose rows and columns are multiples of v.

For instance, in constructing the (7× 28)/3 balanced semi-Latin rectangle for 7 treat-

ments in Figure 4.9, 4 Latin squares (each of order 7) were used. Since 4 is a nonprime,

then the 4 Latin squares can be put in a (14× 14) array to obtain a (14× 14)/3 BSLR for

7 treatments.

Remark. The number of blocks in the QBD of the new design is invariant, that is, it has

precisely identical number of blocks as the basic design as well as the alternative basic

design.

79

1 2 3 4 5 6 7 2 3 4 5 6 7 1 3 4 5 6 7 1 2 4 5 6 7 1 2 3
3 4 5 6 7 1 2 6 7 1 2 3 4 5 2 3 4 5 6 7 1 2 3 4 5 6 7 1
5 6 7 1 2 3 4 3 4 5 6 7 1 2 1 2 3 4 5 6 7 1 2 3 4 5 6 7
7 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 1 3 4 5 6 7 1 2
2 3 4 5 6 7 1 5 6 7 1 2 3 4 1 2 3 4 5 6 7 1 2 3 4 5 6 7
4 5 6 7 1 2 3 2 3 4 5 6 7 1 7 1 2 3 4 5 6 7 1 2 3 4 5 6
6 7 1 2 3 4 5 7 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 1
1 2 3 4 5 6 7 4 5 6 7 1 2 3 7 1 2 3 4 5 6 7 1 2 3 4 5 6
3 4 5 6 7 1 2 1 2 3 4 5 6 7 6 7 1 2 3 4 5 6 7 1 2 3 4 5
5 6 7 1 2 3 4 6 7 1 2 3 4 5 7 1 2 3 4 5 6 1 2 3 4 5 6 7
7 1 2 3 4 5 6 3 4 5 6 7 1 2 6 7 1 2 3 4 5 6 7 1 2 3 4 5
2 3 4 5 6 7 1 7 1 2 3 4 5 6 5 6 7 1 2 3 4 5 6 7 1 2 3 4
4 5 6 7 1 2 3 5 6 7 1 2 3 4 6 7 1 2 3 4 5 7 1 2 3 4 5 6
6 7 1 2 3 4 5 2 3 4 5 6 7 1 5 6 7 1 2 3 4 5 6 7 1 2 3 4
1 2 3 4 5 6 7 6 7 1 2 3 4 5 4 5 6 7 1 2 3 4 5 6 7 1 2 3
3 4 5 6 7 1 2 4 5 6 7 1 2 3 5 6 7 1 2 3 4 6 7 1 2 3 4 5
5 6 7 1 2 3 4 1 2 3 4 5 6 7 4 5 6 7 1 2 3 4 5 6 7 1 2 3
7 1 2 3 4 5 6 5 6 7 1 2 3 4 3 4 5 6 7 1 2 3 4 5 6 7 1 2
2 3 4 5 6 7 1 3 4 5 6 7 1 2 4 5 6 7 1 2 3 5 6 7 1 2 3 4
4 5 6 7 1 2 3 7 1 2 3 4 5 6 3 4 5 6 7 1 2 3 4 5 6 7 1 2
6 7 1 2 3 4 5 4 5 6 7 1 2 3 2 3 4 5 6 7 1 2 3 4 5 6 7 1

Figure 4.9: A (7× 28)/3 balanced semi-Latin rectangle for 7 treatments

4.5 Constructions based on complete sets of mutually or-

thogonal Latin squares (MOLSs)

4.5.1 Preliminaries

Definition 4.5.1. Let Λ and ∆ denote two Latin squares of the same order, n, say. Then

Λ and ∆ are said to be mutually orthogonal if when Λ (or ∆) is superimposed on ∆ (or

Λ), the n2 cells of the resulting array consists entirely of every ordered pair of symbols of

Λ and ∆, each appearing in exactly one cell.

Definition 4.5.2. Let A = {Li}ti=1 denote a set of t Latin squares of the same finite

order, m, say. Then the Lis are said to constitute mutually orthogonal Latin squares if

for all u,w ∈ {1, 2, ..., t}, Lu and Lw are orthogonal, where u 6= w.

In particular, t ≤ m− 1. Furthermore, if m is a power of a prime, then there exists a

set of m− 1 mutually orthogonal Latin squares.

Remark. A is said to be a complete set of mutually orthogonal Latin squares if t = m− 1.

A complete set of MOLSs can be used in conjunction with a square array containing

treatment symbols to obtain an affine resolvable BIBD, and this design is also called

balanced square lattice design: see, for example, John and Williams (1995, Chapters

1 & 4), as well as Raghavarao and Padgett (2005, Chapters 4 & 9). See also Street and

80

Street (1987, Chapter 8) for discussion on affine resolvability of a BIBD. Its definition is

also contained in definition 2.2.8 in Chapter 2 of this work. This is then utilized in our

construction of BSLRs.

Besides having each treatment appearing in exactly one block of each superblock (repli-

cate or resolution class) of a BIBD, hence no two blocks containing any treatment in com-

mon which is basic to all resolvable designs, affine resolvable designs possess an additional

property that any two blocks from distinct resolution classes contain an equal number, bs

of treatments in common. This is consistent with our notation in definition 2.2.8. Given

an affine resolvable (v, k, λ)-BIBD with b∗ blocks in each resolution class, then bs = k/b∗,

where b∗ = v/k. Consequently, bs reduces to k2/v: see, for example, Street and Street

(1987, Chapter 8) and Raghavarao and Padgett (2005, Chapter 4).

4.5.2 Construction procedure

Let V = {1, 2, ..., v} denote a set of treatments, where v = g2, g = px, p being a prime,

and x ∈ Z, x ≥ 1.

The g2 treatments are arranged in a g × g array as given in Figure 4.10

1 2 · · · g

g + 1 g + 2 · · · 2g

2g + 1 2g + 2 · · · 3g

3g + 1 3g + 2 · · · 4g

...
... · · ·

...

(g − 2)g + 1 (g − 2)g + 2 · · · g(g − 1)

(g − 1)g + 1 (g − 1)g + 2 · · · g2

Figure 4.10: An arrangement of the g2 treatments in a (g × g) array

A complete set, g − 1 MOLSs, each of order g is then used in conjunction with the g2

treatments in the array to obtain a (g2, g(g+1), g+1, g, 1)-BIBD which is affine resolvable

via grouping those treatments that appear together in each row, and also those in each

column of the array to form two resolution classes. The remaining g−1 classes are obtained

by using each of the g − 1 orthogonal Latin squares-grouping those treatments which are

in correspondence with each symbol of the Latin square with respect to position. Notice

that the BIBD has g + 1 resolution classes, where each class has g blocks, each being of

size g.

81

Now, for all i ∈ {1, 2, ..., g+ 1}, let Bij denote the jth block in the ith resolution class

of the BIBD, where j = 1, 2, ..., g. Then for each i, make a Latin square of order g using

Bi1, Bi2, . . .,Big as symbols; and subsequently, insert the Latin squares into an array of

appropriate size to obtain the desired design.

4.5.3 Construction for designs of the class (g × g(g + 1))/g

We create a g × g(g + 1) array and divide its columns into g + 1 subdivisions, each

subdivision having g columns and separated by double vertical lines. The Latin squares

are then inserted into the various subdivision-one Latin square in each subdivision to give

the design.

An algorithmic procedure for the construction

1. For all i ∈ {1, 2, ..., g + 1}, obtain Bij as described previously, where j = 1, 2, ..., g.

2. For each i, make a Latin square, Li of order g using Bi1, Bi2, . . .,Big as symbols

3. Create a g × g(g + 1) array and divide its columns into g + 1 subdivisions of equal

sizes, separated by double vertical lines.

4. Insert the Latin squares made in 2. into the array, one in each subdivision.

Remark. Just like in the previous constructions, the insertion of the Latin squares into

the array does not need to follow a definite order-any of the Latin squares can be inserted

in any subdivision of the array.

Example 4.5.1. Let v = 9 such that g = 3. Then an implementation of the algorithmic

procedure produces a (3× 12)/3 BSLR.

The 3× 3 array containing the treatments is obtained to be

1 2 3

4 5 6

7 8 9

Let Λ1 and Λ2 constitute a complete set of orthogonal Latin squares of order 3 with the

symbol set {A,B,C}, where

Λ1 =

A B C

C A B

B C A

82

and

Λ2 =

A B C

B C A

C A B

We obtain, for instance, B11 = {1, 2, 3}, B12 = {4, 5, 6}, B13 = {7, 8, 9}; B21 = {1, 4, 7},
B22 = {2, 5, 8}, B23 = {3, 6, 9}; B31 = {1, 5, 9}, B32 = {2, 6, 7}, B33 = {3, 4, 8}; and

B41 = {1, 6, 8}, B42 = {2, 4, 9}, B43 = {3, 5, 7}, for the 1st, 2nd, 3rd, and 4th resolution

classes, respectively.

Suppose we put the Latin squares L1, L2, L3 and L4 obtained from these in the array

in a natural order, then we obtain the design shown in Figure 4.11.

1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7

7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8 3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9

4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7 2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8

Figure 4.11: A (3× 12)/3 balanced semi-Latin rectangle for 9 treatments

Example 4.5.2. Suppose v = 16. Then g = 4; and from the construction, a (4 × 20)/4

BSLR is obtained.

Notice that, for this example, the treatment array is thus

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Let ∆1, ∆2, and ∆3 form a complete set of MOLSs of order 4 with the symbol set

{A,B,C,D}, where

83

∆1 =

A B C D

B A D C

C D A B

D C B A

∆2 =

A B C D

C D A B

D C B A

B A D C

and

∆3 =

A B C D

D C B A

B A D C

C D A B

The Bijs are, for instance, B11 = {1, 2, 3, 4}, B12 = {5, 6, 7, 8}, B13 = {9, 10, 11, 12},
B14 = {13, 14, 15, 16}; B21 = {1, 5, 9, 13}, B22 = {2, 6, 10, 14}, B23 = {3, 7, 11, 15},
B24 = {4, 8, 12, 16}; B31 = {1, 6, 11, 16}, B32 = {2, 5, 12, 15}, B33 = {3, 8, 9, 14}, B34 =

{4, 7, 10, 13}; B41 = {1, 7, 12, 14}, B42 = {2, 8, 11, 13}, B43 = {3, 5, 10, 16}, B44 = {4, 6, 9, 15};
and B51 = {1, 8, 10, 15}, B52 = {2, 7, 9, 16}, B53 = {3, 6, 12, 13}, B54 = {4, 5, 11, 14}, for

the 1st, 2nd, . . ., 5th resolution classes, respectively.

If we put the Latin squares L1, L2, L3, L4 and L5 obtained from these in the array in

a natural order, we obtain the design in Figure 4.12.

Suppose the Latin squares are inserted in a different order, say, L3, L1, L2, L5, L4,

then this produces the design in Figure 4.13.

84

1 5 9 13 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2 6 10 14 5 6 7 8 6 5 8 7 7 8 5 6 8 7 6 5
3 7 11 15 9 10 11 12 11 12 9 10 12 11 10 9 10 9 12 11
4 8 12 16 13 14 15 16 16 15 14 13 14 13 16 15 15 16 13 14
13 1 5 9 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
14 2 6 10 8 5 6 7 7 6 5 8 6 7 8 5 5 8 7 6
15 3 7 11 12 9 10 11 10 11 12 9 9 12 11 10 11 10 9 12
16 4 8 12 16 13 14 15 13 16 15 14 15 14 13 16 14 15 16 13
9 13 1 5 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
10 14 2 6 7 8 5 6 8 7 6 5 5 6 7 8 6 5 8 7
11 15 3 7 11 12 9 10 9 10 11 12 10 9 12 11 12 11 10 9
12 16 4 8 15 16 13 14 14 13 16 15 16 15 14 13 13 14 15 16
5 9 13 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
6 10 14 2 6 7 8 5 5 8 7 6 8 5 6 7 7 6 5 8
7 11 15 3 10 11 12 9 12 9 10 11 11 10 9 12 9 12 11 10
8 12 16 4 14 15 16 13 15 14 13 16 13 16 15 14 16 13 14 15

Figure 4.12: A (4×20)/4 balanced semi-Latin rectangle for 16 treatments with constituent

Latin squares arranged in a natural order

1 2 3 4 1 5 9 13 1 2 3 4 1 2 3 4 1 2 3 4
6 5 8 7 2 6 10 14 5 6 7 8 8 7 6 5 7 8 5 6
11 12 9 10 3 7 11 15 9 10 11 12 10 9 12 11 12 11 10 9
16 15 14 13 4 8 12 16 13 14 15 16 15 16 13 14 14 13 16 15
4 1 2 3 13 1 5 9 4 1 2 3 4 1 2 3 4 1 2 3
7 6 5 8 14 2 6 10 8 5 6 7 5 8 7 6 6 7 8 5
10 11 12 9 15 3 7 11 12 9 10 11 11 10 9 12 9 12 11 10
13 16 15 14 16 4 8 12 16 13 14 15 14 15 16 13 15 14 13 16
3 4 1 2 9 13 1 5 3 4 1 2 3 4 1 2 3 4 1 2
8 7 6 5 10 14 2 6 7 8 5 6 6 5 8 7 5 6 7 8
9 10 11 12 11 15 3 7 11 12 9 10 12 11 10 9 10 9 12 11
14 13 16 15 12 16 4 8 15 16 13 14 13 14 15 16 16 15 14 13
2 3 4 1 5 9 13 1 2 3 4 1 2 3 4 1 2 3 4 1
5 8 7 6 6 10 14 2 6 7 8 5 8 5 6 7 7 6 5 8
12 9 10 11 7 11 15 3 10 11 12 9 9 12 11 10 11 10 9 12
15 14 13 16 8 12 16 4 14 15 16 13 16 13 14 15 13 16 15 14

Figure 4.13: A (4×20)/4 balanced semi-Latin rectangle for 16 treatments with a different

arrangement of the constituent Latin squares

4.5.4 Construction for designs of the class (g(g + 1)× g)/g

We adapt the construction given in section 4.5.3, but this time, the created array that

accommodates the constituent Latin squares is of size g(g + 1) × g, and the rows of this

array are divided into g + 1 equal subdivisions of g rows each which are separated by

double horizontal lines. Each constituent Latin square is then inserted into a subdivision

85

1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9

7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8

4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7

1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7

3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9

2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8

Figure 4.14: A (6× 6)/3 balanced semi-Latin rectangle for 9 treatments

of the array (the order being immaterial) to obtain the design.

We note that a design of the same size can be obtained via transposition of a corre-

sponding (g × g(g + 1))/g BSLR.

4.5.5 Construction for designs of the class (ge× gs)/g, where es = g + 1

Given the construction in section 4.5.3. Suppose g + 1, the number of constituent Latin

squares is a nonprime. By putting es = g + 1, where e, s ∈ Z and 1 < e, s < g + 1;

modifying step 3 by creating an array of size (ge× gs) and dividing its rows and columns

into e and s subdivisions of equal sizes, respectively, we obtain a design of corresponding

size, for all e, s.

Remark. This construction provides some designs other than the (g × ges)/g that would

be obtained by directly implementing the algorithmic procedure if g + 1 = es. However,

their quotient block design is the same for a design of a given size.

Furthermore, there can be as many designs depending on the number of possible values

of the pair (e, s). In particular, if g + 1 is a perfect square, then e can be identical to s.

Hence, in the construction, there is a possibility of having a design with identical number

of rows as columns.

Example 4.5.3. For instance, notice that, in example 4.5.1, g + 1 = 4, hence there are 4

constituent Latin squares, Λ1, Λ2, Λ3 and Λ4, that make the design. Thus e = s = 2 and

we obtain a (6× 6)/3 BSLR as a possibility: see Figure 4.14

Notice that the design in Figure 4.14 takes the form

Λ1 Λ2

Λ3 Λ4

However, Λi, i = 1, 2, 3, 4 can appear in any subdivision of the (6 × 6) array, leading

to various non-isomorphic designs.

As another illustration, suppose v = 25 such that g = 5. Then g + 1 = 6, and

(e, s) = (2, 3), (3, 2). Hence, a (10×15)/5 BSLR and a (15×10)/5 BSLR can be obtained.

86

Note that a direct implementation of the algorithmic procedure in section 4.5.3 would

produce a (5× 30)/5 BSLR instead.

Similarly, if g + 1 = 16, then the possibilities are BSLRs of the sizes (60 × 60)/15,

(30 × 120)/15, and (120 × 30)/15. Again, a direct implementation of the procedure in

section 4.5.3 would produce a (15× 240)/15 BSLR.

4.6 Constructions based on Complementation

4.6.1 Preliminaries

Complementation is a useful concept for obtaining another BIBD from an existing one,

as the complement of a BIBD is another BIBD with the same numbers of treatments and

blocks, though other parameters may be different. Suppose there exists a BIBD with the

parameters (v, b, r, k, λ), then its complementary design, which is the design obtained by

replacing the treatments of each block by those treatments that are missing from it is a

BIBD with the parameters (v, b, r′, k′, λ′), where r′ = b−r, k′ = v−k, and λ′ = b−2r+λ:

see for example, Raghavarao and Padgett (2005, Chapter 4) and Street and Street (1987,

Chapter 2).

We designate each construction for an (h× p)/k BSLR for v treatments we have given

so far, both in the current chapter and the preceding chapter a direct construction. Notice

that k′ = k, if and only, if v = 2k such that k = v/2. Similarly, k′ > k, if and only, if

v > 2k such that k < v/2; and k′ < k, if and only, if v < 2k such that k > v/2. We

adopt three approaches to complementation, viz, block (cell) complementation, column

complementation, and row complementation. In cell complementation, the complemen-

tation is done with respect to each cell, while column and row complementations involve

complementation with respect to each column and each row, respectively.

Furthermore, using cell complementation, we concentrate on obtaining BSLRs with

k′ ≥ k, or equivalently, v ≥ 2k such that, k ≤ v/2, for convenience, since it may be easier

to obtain a direct construction for BSLRs with small values of k. However, we employ

column and row complementations to obtain designs with two rows and two columns,

respectively in situations where v = 2k such that k = v/2, which is identical to k′,

provided there exists a BIBD with p blocks to facilitate column complementation, and

similarly, there need to exist a BIBD with h blocks to facilitate row complementation.

4.6.2 Construction by block (cell) complementation

For a given v and k, given any direct construction for an (h × p)/k BSLR, we obtain

construction for an (h × p)/k′ BSLR for the same number of treatments via block com-

plementation, where k′ = v − k.

Theorem 4.6.1. Let Γ denote an (h×p)/k balanced semi-Latin rectangle for v treatments

whose QBD is a (v, hp, hnr = pnc, k, λ)-BIBD, where nc = kh/v, nr = kp/v and λ =

87

hnr(k−1)/v−1. Suppose Γ′ is a design obtained from Γ by replacing the treatments in each

cell of Γ with those treatments that are missing from that cell, called the complementary

treatments with respect to that cell. Then Γ′ is an (h× p)/k′ BSLR for the same number

of treatments whose QBD is a (v, hp, h(p−nr) = p(h−nc), k′, λ′)-BIBD, where k′ = v−k
and λ′ = hp− λ− 2(hnr − λ).

Proof. Let V = {1, 2, ..., v} denote the set of treatments in Γ. Furthermore, let Sij and S′ij
denote the set of treatments in the (i, j)th cell of Γ and Γ′, respectively, where i = 1, 2, ..., h

and j = 1, 2, ..., p. Then for each i ∈ {1, 2, ..., h} and j ∈ {1, 2, ..., p}, S′ij = V \Sij . Notice

that |Sij | = k, for all i and j, where k < v, since Sijs are incomplete blocks. Hence

Sij ⊂ V , S′ij ⊂ V and S′ij 6= ∅. It follows that k′ = |S′ij | = v − k, where k′ < v.

Let α ∈ V . Then α appears nr times, that is, in nr cells per row and in nc cells per

column in Γ. Let n′r and n′c denote the respective number of cells in each row and column

of Γ′ that α appears. Then n′r = p− nr and n′c = h− nc. By Corollary 4.6.2, n′r > 0 and

n′c > 0. Then it follows that Γ′ is an (h× p)/v − k SLR.

We now investigate whether the QBD of Γ′ is balanced. Let B = {Bj}hpj=1 denote the

set of blocks in the QBD of Γ such that |B| = hp and |Bj | = k for all j = 1, 2, ..., hp.

Let A = {Bj : α ∈ Bj}. Then |A| = hnr = pnc; A
′ = {Bj : α /∈ Bj} = B\A; and

|A′| = hp − hnr = h(p − nr). Also, |A′| = hp − pnc = p(h − nc). Hence |A′| is a positive

integer by Corollary 4.6.2.

Now, let β ∈ V , where β 6= α; and let C = {Bj : (α, β) ∈ Bj}. Then |C| = λ;

C ′ = {Bj : (α, β) /∈ Bj} = B\C; and |C ′| = hp − λ. Furthermore, by letting E = {Bj :

α ∈ Bj , β /∈ Bj} = A\C, then |E| = hnr − λ, which is identical to pnc − λ.

Let H = {Bj : β ∈ Bj}. Then |H| = hnr = pnc = |A|. Let L = {Bj : β ∈ Bj , α /∈
Bj} = H\C. Then |L| = hnr − λ, which is identical to pnc − λ.

Notice that, for α and β to appear together in the same block of the QBD of Γ′,

then there must be a corresponding block in the QBD of Γ that contains neither of them.

Suppose Z denotes a collection of all such blocks in Γ. Then Z = {Bj : α /∈ Bj , β /∈ Bj} =

B\E ∪ L ∪ C = C ′\E ∪ L. Notice that E ∩ L = ∅. Hence |Z| = |C ′| − (|E| + |L|) =

(hp − λ) − 2(hnr − λ). We note that |Z| is the number of blocks in the QBD of Γ that

neither α nor β makes an appearance, that is, those blocks where α is missing and β is

also missing.

Now, let W denote a collection of all corresponding blocks in Γ′ formed from each

member block of Z. Then W = {V \Bj : α /∈ Bj , β /∈ Bj} and |W | is precisely the number

of blocks in the QBD of Γ′ that contain both α and β. Since |W | = |Z|, it follows that

λ′ = hp− λ− 2(hnr − λ).

Hence the QBD of Γ′ is balanced, being a (v, hp, hn′r = pn′c, k
′, λ′)-BIBD, where n′r =

p − nr, n′c = h − nc, k′ = v − k and λ′ = hp − λ − 2(hnr − λ); making Γ′ an (h × p)/k′

BSLR.

�

88

Comment. The proof of Theorem 4.6.1 can be approached more easily by simply showing

that Γ′ is an (h× p)/k′ SLR for v treatments, where k′ = v− k and then recognizing that

its QBD is a BIBD, since the complement of a BIBD is another BIBD as Γ′ is a design

complementary to Γ.

Note that, since the cells in Γ constitute incomplete blocks, then the set of treatments

in each cell of Γ is a proper subset of its entire set of treatments and is non-empty, where

each cell contains the same number of treatments, since Γ is a SLR. Similarly, the set of

treatments in each cell of Γ′ is also a proper subset of the set of treatments in Γ and is

also non-empty. Moreover, all the treatments in Γ′ are also the entire treatments in Γ and

each cell of Γ′ contains the same number of treatments..

Now, since each cell of Γ′ contains the same number of treatments, then to show that

Γ′ is a SLR, it is sufficient to show that there are positive integers, n′r and n′c such that

each treatment appears n′r times per row and n′c times per column, where n′r = p−nr and

n′c = h− nc (where nr and nc denote the respective number of times that each treatment

appears per row and per column in Γ). Notice that, by Corollary 4.6.2, each of n′r and n′c
is a positive integer

Finally, since the QBD of Γ′ is a BIBD, then Γ′ is an (h×p)/k′ BSLR for v treatments.

Corollary 4.6.1. hp− λ− 2(hnr − λ) = hp− 2hnr + λ and is identical to h(p− nr)(v −
k − 1)/(v − 1)

Corollary 4.6.2. nr < p and nc < h since k < v, as the blocks are incomplete.

Corollary 4.6.3. By Corollaries 4.6.1 and 4.6.2, λ′ ≥ 0. λ′ = 0 if and only if k = v− 1.

For values of k ≤ v − 2, λ′ > 0

Remark. By Corollary 4.6.3, if k = v − 1, then k′ = 1. It follows that each cell of Γ′ has

exactly 1 treatment with no pair, making λ′ = 0 and if h = p, Γ′ is trivially, a Latin square

of order p, which is a trivial case of the SLR.

Corollary 4.6.4. If p > 2nr (or h > 2nc) and k < v/2, then λ′ > λ.

Proof. Given λ = hnr(k − 1)/v − 1 and λ′ = h(p − nr)(v − k − 1)/v − 1. Then λ′ > λ if

and only if h(p− nr)(v − k − 1) > hnr(k − 1). Notice that, if p− nr > nr and v − k > k,

then λ′ > λ. The last two statements are equivalent to p > 2nr and v > 2k, respectively;

and the last expression is equivalent to k < v/2. Hence the result follows. Furthermore,

since hnr = pnc, by putting nr = pnc/h, then p > 2nr becomes h > 2nc. �

Remark. Similarly, if p < 2nr (or h < 2nc) and k > v/2, then λ′ < λ; and if p = 2nr (or

h = 2nc) and k = v/2, then λ′ = λ.

Moreover, since n′r = p − nr and n′c = h − nc, then the following statements are

equivalent: p > 2nr and n′r > nr (h > 2nc and n′c > nc); p < 2nr and n′r < nr) (h < 2nc

and n′c < nc); and p = 2nr and n′r = nr (h = 2nc and n′c = nc).

89

Corollary 4.6.5. hnr ≤ (λ+ hp)/2.

Proof. From the combinatorial properties of BSLRs, λ < hnr < hp. Notice that hp− λ =

2(hnr − λ) if and only if hnr = (λ + hp)/2, which is the average of λ and hp. Similarly,

hp− λ > 2(hnr − λ) if and only if hnr < (λ+ hp)/2; and hp− λ < 2(hnr − λ) if and only

if hnr > (λ+ hp)/2.

From Theorem 4.6.1, if hp − λ = 2(hnr − λ), then λ′ = 0. Similarly, if hp − λ >

2(hnr − λ), then λ′ > 0; and if hp− λ < 2(hnr − λ), then λ′ < 0.

Since by Corollary 4.6.3, λ′ ≥ 0, then hp − λ ≥ 2(hnr − λ). It follows that hnr ≤
(λ+ hp)/2.

�

Remark. (λ + hp)/2 ∈ Z if and only if 2 divides (λ + hp), that is, where both λ and hp

are either even or odd; or λ = 0 and hp is even.

Notice that Corollary 4.6.5 is also evident by imposing the nonnegativity condition of

λ′, where λ′ is as given in Theorem 4.6.1.

Corollary 4.6.6. k′ = v − 1, if and only, if k = 1 and consequently, λ = 0. Then

λ′ = hp − 2hnr, and provided, k′ > 1, or equivalently, v > 2, then λ′ > 0 such that

p > 2nr. Similarly, since hnr = pnc, then it also follows that h > 2nc.

Corollary 4.6.7. Let k′ = k, where k > 1. Then v−k = k such that v = 2k, where v > 2,

or equivalently, k = v/2. Hence λ > 0, λ′ > 0, where λ′ = (hp − hnr)λ/hnr = λn′r/nr.

Similarly, λ′ = λn′c/nc.

Corollary 4.6.8. Corollary 4.6.7 stipulates that if the conditions given there are satisfied,

then both λ and λ′ are strictly positive; and provided n′r > nr (or equivalently, n′c > nc),

then λ′ > λ. Similarly, if n′r < nr (or equivalently, n′c < nc), then λ′ < λ ; and if n′r = nr

(or equivalently, n′c = nc), then λ′ = λ.

Remark. Since n′r = p − nr and n′c = h − nc, then Corollary 4.6.8 is equivalent to saying

that if those conditions are satisfied; if p > 2nr (or h > 2nc), then λ′ > λ. Similarly, if

p < 2nr (or h < 2nc), then λ′ < λ; and if p = 2nr (or h = 2nc), then λ′ = λ.

Corollary 4.6.9. By Theorem 4.6.1 and Corollary 4.6.6 , an (h× p)/v− 1 BSLR, where

h = p can be obtained via cell complementation of a Latin square of order p.

Construction procedure

Suppose Γ exists and whose direct construction is given. Let V = {1, 2, ..., v} denote

the treatment set of Γ; and let Sij denote the set of treatments in the (i, j)th cell of Γ,

where i = 1, 2, ..., h and j = 1, 2, ..., p. For each (i, j)th cell in Γ, by replacing Sij with

S′ij = V \Sij , where S′ij is the set of treatments complementary to Sij , that is, the set of

treatments that are missing from Sij , we obtain an (h × p)/k′ BSLR, where k′ = v − k,

and our interest is on k′ ≥ k.

90

Remark. The BSLR obtained by cell complementation will hereinafter be called a com-

plementary BSLR.

An Algorithm for the construction

1. Obtain a direct construction for an (h× p)/k BSLR for v treatments.

2. Create an h× p array.

3. For i = 1, 2, ..., h and j = 1, 2, ..., p, put in the (i, j)th cell of the array, the set,

S′ij = V \Sij of treatments, where Sij is the set of treatments in the corresponding

cell of the design in step 1.

Remark. An implementation of this algorithm produces a complementary BSLR for v

treatments that is of size (h× p)/k′, where k′ = v − k.

An (h×p)/v−1 BSLR for which h = p that is a complementary design can be obtained

by implementing the algorithm with the design in step 1 being a p× p Latin square.

Example 4.6.1. We obtain, by block complementation, a (7×7)/4 BSLR for 7 treatments

shown in Figure 4.15 using the (7× 7)/3 BSLR for 7 treatments given in Figure 4.6 as the

parent design.

3 5 6 7 1 4 6 7 1 2 5 7 1 2 3 6 2 3 4 7 1 3 4 5 2 4 5 6

2 4 5 6 3 5 6 7 1 4 6 7 1 2 5 7 1 2 3 6 2 3 4 7 1 3 4 5

1 3 4 5 2 4 5 6 3 5 6 7 1 4 6 7 1 2 5 7 1 2 3 6 2 3 4 7

2 3 4 7 1 3 4 5 2 4 5 6 3 5 6 7 1 4 6 7 1 2 5 7 1 2 3 6

1 2 3 6 2 3 4 7 1 3 4 5 2 4 5 6 3 5 6 7 1 4 6 7 1 2 5 7

1 2 5 7 1 2 3 6 2 3 4 7 1 3 4 5 2 4 5 6 3 5 6 7 1 4 6 7

1 4 6 7 1 2 5 7 1 2 3 6 2 3 4 7 1 3 4 5 2 4 5 6 3 5 6 7

Figure 4.15: A (7× 7)/4 complementary BSLR for 7 treatments

Notice that the parent design has nc = nr = 3 and λ = 7. It follows that its QBD is

a (7, 49, 21, 3, 7)-BIBD. The complementary design has the parameters n′c = n′r = 4 and

λ′ = 14. Hence its QBD is a (7, 49, 28, 4, 14)-BIBD, which conforms to Theorem 4.6.1 and

the Corollaries.

Notice that, for instance, p > 2nr, h > 2nc, and k < v/2. Hence λ′ > λ: see Corollary

4.6.4.

91

Example 4.6.2. From the (3 × 15)/2 BSLR for 6 treatments shown in Figure 3.6, in

Chapter 3, we obtain a corresponding complementary design which is a (3× 15)/4 BSLR

shown in Figure 4.16.

2 3 1 3 1 2 1 3 2 4 1 2 1 2 1 3 2 3 1 2 1 2 3 4 1 2 2 3 1 4

4 5 4 ∞ 5 ∞ 4 5 5 ∞ 3 ∞ 4 5 5 ∞ 4 ∞ 3 5 4 ∞ 5 ∞ 3 4 5 ∞ 5 ∞
1 2 2 3 1 3 1 2 1 3 2 4 2 3 1 2 1 3 3 4 1 2 1 2 1 4 1 2 2 3

5 ∞ 4 5 4 ∞ 3 ∞ 4 5 5 ∞ 4 ∞ 4 5 5 ∞ 5 ∞ 3 5 4 ∞ 5 ∞ 3 4 5 ∞
1 3 1 2 2 3 2 4 1 2 1 3 1 3 2 3 1 2 1 2 3 4 1 2 2 3 1 4 1 2

4 ∞ 5 ∞ 4 5 5 ∞ 3 ∞ 4 5 5 ∞ 4 ∞ 4 5 4 ∞ 5 ∞ 3 5 5 ∞ 5 ∞ 3 4

Figure 4.16: A (3× 15)/4 complementary BSLR for 6 treatments

Remark. The treatment set for either design is V = {1, 2, ...,∞}, where ∞ is a special

treatment symbol that was used in the construction of the parent design, that is, the

(3× 15)/2 BSLR for 6 treatments.

We remind that in the parent design, nc = 1 , nr = 5, and λ = 3 , hence its QBD

being a (6, 45, 15, 2, 3)-BIBD: see the remarks section in Example 3.5.2. Notice that, for

the complementary design, n′c = 2, n′r = 10 and λ′ = 18, with a (6, 45, 30, 4, 18)-BIBD as

its QBD, which is consistent with the results of Theorem 4.6.1 and the Corollaries.

Example 4.6.3. By our earlier remark, a (4×4)/3 BSLR for 4 treatments can be obtained

via block complementation by using a Latin square of order 4 as a parent design.

Let the parent design be the Latin square in Figure 4.17. Then we obtain the comple-

mentary design shown in Figure 4.18.

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Figure 4.17: A 4× 4 Latin square used to obtain a (4× 4)/3 BSLR via block complemen-

tation

Notice that, in the Latin square, nr = nc = 1 and its QBD is trivially a (4, 16, 4, 1, 0)-

BIBD; while for the complementary design, the parameters n′r = n′c = 3 and its QBD is a

(4, 16, 12, 3, 8)-BIBD. These results conform to the Corollaries.

92

2 3 4 1 3 4 1 2 4 1 2 3

1 3 4 2 3 4 1 2 3 1 2 4

1 2 4 1 2 3 2 3 4 1 3 4

1 2 3 1 2 4 1 3 4 2 3 4

Figure 4.18: A (4× 4)/3 complementary BSLR for 4 treatments

4.6.3 Construction by column complementation

We consider construction for BSLRs for v = 2k treatments in two rows and p columns,

which are precisely BSLRs of the class (2 × p)/k, where k = v/2. Notice that, for such

designs, each treatment would need to appear exactly once in each column, that is, nc = 1.

Similarly, for each row, each treatment needs to appear p/2 times, making nr = p/2. These

follow from k = v/2, h = 2, and p. Furthermore, the construction works if and only if

there exists a BIBD for v = 2k treatments in p blocks of size k = v/2, since it follows that

there also exists a BIBD in 2p blocks for the same values of v and k.

Construction procedure

Suppose there exists a BIBD for v treatments in p blocks of size v/2. The p blocks of the

BIBD are inserted into the first row of a (2×p) array, thereby forming row 1 of the design.

Then the treatments/entries for each cell in row 2 of the design are generated via column

complementation, viz obtaining the complement of those treatments of the corresponding

cell in row 1, which are precisely, the treatments that are missing from the cell directly

above it.

Let V = {1, 2, ..., v} denote the set of treatments of the BIBD which corresponds to

the set of treatments for the BSLR under construction. Let i and j denote the respective

row and column labels for the array, where i = 1, 2 and j = 1, 2, ..., p. Furthermore, let

Aij denote the set of treatments in the (i, j)th cell. Then for all j, put A1j = Bj , where

Bj is the jth block of the BIBD. Put A2j = V \Bj .

An Algorithm for the construction

1. Obtain a BIBD for v treatments in p blocks of size k = v/2, if one exists.

93

2. Create a 2 × p array and insert the p blocks from the BIBD obtained in step 1 to

form row 1 of the design by putting A1j = Bj , for all j = 1, 2, ..., p where A1j is the

set of treatments in the jth cell of row 1, and Bj is the jth block of the BIBD.

3. For all j = 1, 2, ..., p, put A2j = V \Bj , where V is the set of treatments, and A2j is

the set of treatments in the jth cell of row 2, that is, cell (2, j).

Comments. Another BSLR of the same size and isomorphic to that obtained via the

algorithm can be obtained by cell complementation of the constructed design. This is

equivalent to swapping the cells in each column.

Each row of the design is a BIBD. The construction involves adding a complementary

BIBD to an existing/parent BIBD, which results in another BIBD. Hence the QBD of

the constructed design is a BIBD comprising 2 BIBDs each of which contains v = 2k

treatments in p incomplete blocks of size k = k′ = v/2, each treatment being replicated

nr = n′r = p/2 times and concurrences λ1 = λ′1 = p(k−1)/2(2k−1). Overall, there are 2p

blocks, and each pair of treatments concur in λ = p(k − 1)/2k − 1 blocks. We note that,

λ1 = λ′1, since nr = n′r: see Corollary 4.6.7. Notice that λ1 = λ/2.

Example 4.6.4. We observe, from our foregoing discussion that, if p = 10, for instance,

then the treatment concurrences, λ in the SLR under construction is given by λ = 10(k−
1)/(2k − 1), which is identical to (k − 1)/(k/5− 1/10). Notice that λ = 5− 5/(2k − 1) ∈
Z+ ∪ {0} if and only if 2k − 1 = 1, 5 such that k = 1, 3. In particular, if k = 1, then

λ = 0, the trivial case; and if k = 3, then λ = 4. Furthermore, v = 2k = 6, nc = 1,

and nr = 5. Hence there exists a (2× 10)/3 BSLR for v = 6 treatments whose QBD is a

(6, 20, 10, 3, 4)-BIBD. It follows that there exists a (6, 10, 5, 3, 2)-BIBD which can serve as

a parent BIBD (a BIBD whose blocks are to form row 1 of the BSLR under construction

and whose complement forms row 2) for the construction, since λ1 = λ/2 = 2 is an integer.

We first give a construction for a parent BIBD.

Construction of a parent BIBD

Notice that the parent BIBD contains 6 treatments in 10 blocks of size 3 where each

treatment is replicated 5 times and each pair of treatments concur 2 times. We approach

it from a combinatorial perspective. Let the treatment set be V = {1, 2, 3, 4, 5,∞}. By

identifying treatments 1 to 5 with the vertices of a 5-gon and the treatment with label ∞
kept outside the polygon, associate each pair of vertices at distance 1 with the symbol ∞,

forming a triple/block each time. This generates the first 5 blocks, viz, B1 = {1, 2,∞},
B2 = {2, 3,∞}, B3 = {3, 4,∞}, B4 = {4, 5,∞}, B5 = {5, 1,∞}. The remaining 5 blocks

are generated by associating the same pairs of vertices at distance 1, this time with the

unique vertex that is equidistant from each vertex in each 2-subset of vertices at distance

1. This gives B6 = {1, 2, 4}, B7 = {2, 3, 5}, B8 = {3, 4, 1}, B9 = {4, 5, 2}, B10 = {5, 1, 3}.
Notice that each unique vertex is at distance (v − 2)/2 from each member vertex of the

94

2-subsets. We now obtain, as follows, an expression for easily generating the 10 blocks of

the BIBD

Let the treatments that make the vertices of the 5-gon be numbered in a cyclic order,

viz, i, i+1, i+2, i−2, i−1, where i ∈ V \{∞}, reducing each component modulo 5. Notice

that, for each i ∈ V \{∞}, the pairs ii, i ± 1 are each at distance 1, and by denoting the

unique vertex equidistant from both i and i + 1 by τii+1, then τii+1 = i + 1 + (v − 2)/2

or i − (v − 2)/2, which simplifies to (2i + v)/2 or (2i − v + 2)/2, respectively with a

reduction modulo 5 for each component. Similarly, if the pair (i, i − 1) of vertices is

considered, then the unique vertex, τii−1 that is equidistant from each of these vertices is

τii−1 = (2i+ v − 2)/2 or (2i− v)/2, where each component is also reduced modulo 5.

Let Bj denote the jth block of the BIBD, for all j = 1, 2, ..., 10. Define

Bj =

{j, j + 1,∞} , if j = 1, 2, ..., 5

{j, j + 1, τjj+1 , if j = 6, 7, ..., 10
(4.2)

where each component is reduced modulo 5, and τjji+1 = (2j + v)/2 or (2j − v + 2)/2,

reducing each component modulo 5, as well. Notice from (4.2) that, B1 = {1, 2,∞}, B2 =

{2, 3,∞}, B3 = {3, 4,∞}, B4 = {4, 5,∞}, B5 = {5, 1,∞}, B6 = {1, 2, 4}, B7 = {2, 3, 5},
B8 = {3, 4, 1}, B9 = {4, 5, 2} and B10 = {5, 1, 3}, as before.

Remark. Notice that, with an initial block, B∗1 ∈ {B1, B2, ..., B5}, the other 4 blocks can

be generated by a cyclic development of B∗1 . Hence, B∗j = B∗1 + (j − 1), for j = 2, 3, 4, 5,

which is equivalent to B∗j = B∗j−1 + 1, for j = 2, 3, 4, 5, with reduction modulo 5. Note

that Bu + δ = {x+ δ : x ∈ Bu}, and ∞+ θ =∞.

Notice that, B∗4 , for instance, where B∗4 ∈ {B1, B2, ..., B5} is obtained to be B∗4 = B∗1 +

3. Suppose B∗1 = B1 = {1, 2,∞}. Then B∗4 = {4, 5,∞}, which is the block B4 obtained

before. Furthermore, using the equivalent expression, suppose B∗3 = B3 = {3, 4,∞}. Then

B∗4 = B∗3 + 1, which also results in B∗4 = {4, 5,∞}, as before.

Similarly, by developing an initial block, B+
6 ∈ {B6, B7, ..., B10}, the remaining blocks

can also be generated. Thus, the blocks can be generated, viz, B+
j = B+

6 + (j − 1), for

j = 7, 8, 9, 10, which is equivalent to B+
j = B+

j−1 +1. For instance, B+
8 = B+

6 +2. Suppose

B+
6 = B6 = {1, 2, 4}. Then B+

8 = {3, 4, 1} = B8. Moreover, if the equivalent expression is

used, then B+
8 = B+

7 + 1. Suppose B+
7 = B7 = {2, 3, 5}. Then B+

8 = {3, 4, 1}, as before.

We note that B∗1 can be any set in {B1, B2, ..., B5}. Similarly, B+
6 can also be any set

in {B6, B7, ..., B10}, not necessarily B1 and B6, respectively.

We now proceed to construct the (2× 10)/3 BSLR for 6 treatments by implementing

the algorithm: see Figure 4.19.

Notice from the design in Figure 4.19 that, for cell (i, j), where i = 1, 2 and j =

2, ..., 5, 7, ..., 10,

95

1 2 ∞ 2 3 ∞ 3 4 ∞ 4 5 ∞ 5 1 ∞ 1 2 4 2 3 5 3 4 1 4 5 2 5 1 3

3 5 4 4 1 5 5 2 1 1 3 2 2 4 3 3 5 ∞ 4 1 ∞ 5 2 ∞ 1 3 ∞ 2 4 ∞

Figure 4.19: A (2× 10)/3 BSLR for 6 treatments obtained by column complementation

Aij =

Ai1 + (j − 1) , if j = 2, ..., 5

Ai6 + (j − 1) , if j = 7, ..., 10

where each component is reduced modulo 5. This shows that, given, for instance, the

entries in each cell of column 1, the entries of the cells in columns 2 to 5 can be generated by

a cyclic development of the cell in column 1 of the corresponding row via successive addition

of 1 (reduced modulo 5). For instance, A14 = A11+3, noting that Aij+γ = {y+γ : y ∈ Aij
and ∞+ η =∞. Similarly, A25 = A21 + 4.

Similarly, given the entries in each cell of column 6, the entries of the cells in columns 7

to 10 can be generated by a cyclic development of the cell in column 6 of the corresponding

row via successive addition of 1 (reduced modulo 5). For instance, A17 = A16 + 1; and

similarly, A28 = A26 + 2.

Notice also that cell complementation of the design in Figure 4.19 produces the design

in Figure 4.20, which is of the same size and can also be obtained by swapping the cells

in each column of the original design.

3 5 4 4 1 5 5 2 1 1 3 2 2 4 3 3 5 ∞ 4 1 ∞ 5 2 ∞ 1 3 ∞ 2 4 ∞

1 2 ∞ 2 3 ∞ 3 4 ∞ 4 5 ∞ 5 1 ∞ 1 2 4 2 3 5 3 4 1 4 5 2 5 1 3

Figure 4.20: A (2× 10)/3 BSLR for 6 treatments obtained by cell complementation of the

design in Figure 4.19

4.6.4 Construction by row complementation

In a similar manner to obtaining designs with two rows, where we filled the first row of

the design with the blocks of a BIBD, and then generated the entries of each cell in the

second row by taking the complement of the entries in corresponding cell in the first row.

We modify, slightly, this procedure to obtain designs for two columns by filling the ffirst

column of an h× 2 array with the h blocks of a BIBD; and then generating the entries of

each cell in the second column by obtaining the complement of corresponding cell in the

first column.

96

Given V = {1, 2, ..., v}, the set of treatments of the BIBD and the BSLR under con-

struction. Let Rij denote the set of treatments in the (i, j)th cell of the h×2 array, where

i = 1, 2, ..., h and j = 1, 2. Then for all i, put Ri1 = Bi, where Bi is the ith block of the

BIBD used for the construction. Put Ri2 = V \Bi.

An Algorithm for the construction

1. Obtain a BIBD for v treatments in h blocks of size k = v/2, if one exists.

2. Create an h× 2 array and insert the h blocks from the BIBD obtained in step 1 to

form column 1 of the design by putting Ri1 = Bi, for all i = 1, 2, ..., h where Ri1 is

the set of treatments in the ith cell of column 1, and Bi is the ith block of the BIBD.

3. For all i = 1, 2, ..., h, put Ri2 = V \Bi, where V is the set of treatments, and Ri2 is

the set of treatments in the ith cell of column 2, that is, cell (i, 2).

This procedure produces an (h× 2)/k BSLR for v treatments, where k = v/2.

Comments. Another (h×2)/k BSLR, where k = v/2 can be obtained via cell complemen-

tation of the constructed design, and this is equivalent to swapping the cells in each row.

The resulting design is isomorphic to that obtained via the algorithm.

The construction works if and only if there exists a BIBD for v = 2k treatments in h

blocks of size k = v/2, since there will also exist a BIBD in 2h blocks for same v and k.

This design is analogous to the design with two rows in the preceding section. For

instance, each column of the design in this section is a BIBD, just like each row in the

previous design. In particular, the same BIBD used in the construction of the (2 × p)/k
BSLR in the preceding section can also be used for this construction, if it is required that

h = p.

4.7 Constructions for designs of larger sizes

BSLRs of larger sizes can be obtained from another BSLR of smaller size, both having

same number of treatments by making copies of the smaller design and then putting them

in an array of appropriate size. The design obtained has identical block size, as the original

design of smaller size but there are usually, more rows and/or columns, making it larger,

except in the trivial case that involves only one copy of the ’smaller design ’.

Theorem 4.7.1. Let ∆1 denote an (h × p)/k BSLR for v treatments. Suppose ∆2 is a

design obtained from ∆1 by making copies of ∆1 and putting them in an h† × p† array,

where h|h† and p|p†. Then ∆2 is an (h† × p†)/k BSLR.

Proof. Let αβ copies of ∆1 be made and put in an array which has been partitioned into

α sub-rows and β sub-columns such that there are h rows in each sub-row and p columns

in each sub-column. Since h|h† and p|p†, then it follows that h† = αh and p† = βp.

97

Clearly, the array is of size (αh× βp). Hence ∆2 is of size (αh× βp)/k, since ∆1 contains

k treatments in each row-column intersection.

Let nr and nc denote the respective number of times each treatment appears per row

and per column in ∆1. Similarly, let n†r and n†c denote corresponding parameters in ∆2.

Suppose ∆2 is a SLR. Then there exists n†r ∈ Z+ and n†c ∈ Z+. Notice that n†r = βnr and

n†c = αnc, both positive integers, making ∆2. a SLR.

Furthermore, since ∆1 is a BSLR, then its QBD is a BIBD, which contains hp blocks.

The QBD of ∆2 contains αβhp blocks (which is a multiple of the number of blocks in ∆1)

and these are the hp blocks in ∆1 each with multiplicity αβ. It follows that ∆2 is a BSLR.

�

Corollary 4.7.1. If β = 1, then ∆1 and ∆2 have the same number of columns and ∆2 is

an (αh× p)/k BSLR. Similarly, if α = 1, then ∆1 and ∆2 have the same number of rows

and ∆2 is an (h× βp)/k BSLR. Furthermore, if α = β = 1, then ∆2 is trivially ∆1.

Corollary 4.7.2. Let p ≥ h. If β > α, then ∆2 contains more columns than rows.

However, if p > h and β < α, then ∆2 may (or may not) have more columns than rows.

In particular, ∆2 would have more columns that rows if the difference βp − αh > 0 but

fewer columns than rows if βp − αh < 0. Similarly, if h ≥ p and α > β, then there are

more rows than columns in ∆2. But if h > p and α < β, then ∆2 may (or may not)

have more rows than columns. In this case, ∆2 would have more rows than columns if

αh− βp > 0 but would have fewer rows than columns if αh− βp < 0. Moreover, if β > 1,

then ∆2 contains more columns than ∆1; and similarly, if α > 1, then ∆2 contains more

rows than ∆1. Hence, if at least one of α and β is greater than 1, then ∆2 is larger in

size than ∆1.

Corollary 4.7.3. Since the QBD of ∆1 is a (v, hp, hnr = pnc, k, λ)-BIBD, then the QBD

of ∆2 is a (v, h†p†, h†n†r = p†n†c, k, λ†)-BIBD, where h† = αh, p† = βp, h†n†r = αβhnr,

which is identical to αβpnc; and λ† = αβλ.

Corollary 4.7.4. By the last expression in Corollary 4.7.3, ∆1 and ∆2 have identical

concurrences if and only if the construction of ∆2 involves only one copy of ∆1, that is,

the trivial case of ∆2.

Corollary 4.7.5. α = n†c/nc and is identical to h†/h. Similarly, β = n†r/nr, which is

identical to p†/p.

Corollary 4.7.6. By Corollary 4.7.5, α = 1 if and only if h† = h. Similarly, β = 1 if

and only if p† = p.

4.7.1 Construction procedure

Given an (h × p)/k BSLR for v treatments, we name it an initial design and then make

copies of this initial design; create an array of size corresponding to the size of the design

whose construction is sought; and subsequently, insert these copies into the array.

98

Example 4.7.1. Suppose a (4 × 10)/3 BSLR for 6 treatments is of interest. Then the

(2× 10)/3 BSLR in Figure 4.19 can serve as the initial design. Hence, by making 2 copies

of the basic design, and subsequently putting them in a (4 × 10) array, we obtain the

design of Figure 4.21.

1 2 ∞ 2 3 ∞ 3 4 ∞ 4 5 ∞ 5 1 ∞ 1 2 4 2 3 5 3 4 1 4 5 2 5 1 3

3 5 4 4 1 5 5 2 1 1 3 2 2 4 3 3 5 ∞ 4 1 ∞ 5 2 ∞ 1 3 ∞ 2 4 ∞

1 2 ∞ 2 3 ∞ 3 4 ∞ 4 5 ∞ 5 1 ∞ 1 2 4 2 3 5 3 4 1 4 5 2 5 1 3

3 5 4 4 1 5 5 2 1 1 3 2 2 4 3 3 5 ∞ 4 1 ∞ 5 2 ∞ 1 3 ∞ 2 4 ∞

Figure 4.21: A (4 × 10)/3 BSLR for 6 treatments obtained by inserting 2 copies of an

initial design

Comments. Notice in Example 4.7.1 that, by Theorem 4.7.1 and Corollary 4.7.5, α = 2

and β = 1, hence α > β. The construction produces a design with fewer rows than

columns: see Corollary 4.7.2. Note that h < p and αh < βp.

Furthermore, the QBD of the design produced is a (v, αβhp, αβhnr = αβpnc, k, αβλ)-

BIBD: see Corollary 4.7.3 and Theorem 4.7.1. where v = 6, h = 2, p = 10, nr = 5 nc = 1,

k = 3 and λ = 4. Hence the QBD of the design in Figure 4.21 is a (6, 40, 20, 3, 8)-BIBD.

4.7.2 Designs of the classes (2h× p)/k and (h× 2p)/k

Given an initial design, an (h× p)/k BSLR for v treatments. Then by the method given

in section 4.7.1, a corresponding (2h × p)/k (or (h × 2p)/k) BSLR can be obtained by

making 2 copies of the initial design and then inserting them into the 2h× p (or h× 2p)

array.

However, we note that, if k = v/2, then a design of the same size can also be obtained

by putting the (h× p)/k BSLR for v treatments with its complementary design, which is

also an (h × p)/k BSLR for v treatments in an array of corresponding size. The designs

obtained using the two methods are isomorphic.

Theorem 4.7.2. Let Λ1 denote an (h × p)/k BSLR for v treatments, where k = v/2.

Let Λ2 denote its complementary design, the design obtained from Λ1 by replacing the

treatments in each cell of Λ1 with the treatments missing from that cell. Then the design

resulting from putting Λ1 and Λ2 in an array of appropriate size is a BSLR for the same

number of treatments.

Proof. Let V = {1, 2, ..., v} denote the set of treatments in each of Λ1 and Λ2. Let τ ∈ V .

For all τ ∈ V , let nr and nc denote the number of times τ appears in each row and each

99

column, respectively, of Λ1. Since Λ2 is complementary to Λ1, then its treatment set is

identical to that of Λ1 and it also has the same number of rows and columns, hence same

number of blocks as Λ1. Moreover, since k = v/2, then each cell of Λ2 contains k′ = v/2

treatments, since k′ = v − k. Hence, each cell in the overall design also contains v/2

treatments Let n′r and n′c denote the respective number of times that τ appears in each

row and each column of Λ2. Then by Theorem 4.6.1, n′r = p− nr and n′c = h− nc, which

are all positive integers.

Since there are 2 BSLRs to be used in the construction, supposing the array is of size

2h×p and also supposing Λ2 is placed underneath Λ1 in the array, then we obtain another

design that has 2h rows and p columns. Denote this design by Γ12, and let n+r and n+c
denote the number of times that τ appears in each row and each column, respectively

of Γ12. Suppose Γ12 is a SLR. Then n+r and n+c must be positive integers. Notice that

n+r = nr, where nr ∈ Z+ and n+c = nc + n′c whose value is h ∈ Z+. Hence Γ12 is a SLR.

Furthermore, by Theorem 4.6.1, Λ2 is a BSLR. Notice that the QBD of Γ12 comprises

the blocks of two BIBDs, hence it is also a BIBD. Thus Γ12 is a BSLR.

Now, supposing Λ1 is placed underneath Λ2 in the array, then another design, Γ21, say,

is obtained. Notice that the QBDs of Γ12 and Γ21 are identical, hence they have same

parameters. For instance, in Γ21, τ appears n′c+nc times in each column, and in each row

it appears n′r times, both positive integers. Hence, Γ21 is also a BSLR.

Moreover, suppose Λ2 is places beside Λ1 in the array. Let the new design be denoted

Γ∗12. Let n∗r and n∗c denote the number of times τ appears per row and column, respectively.

Then n∗r = nr + n′r and n∗c = nc, which are both positive integers, making Γ∗12 a SLR.

Notice that Γ∗12 also contain identical blocks as Γ12 and Γ21, hence same QBD and is thus

a BSLR. Suppose Λ1 is placed beside Λ2 in the array. Then this produces another design,

Γ∗21, say, which has identical QBD as Γ∗12, where τ appears n′r + nr times in each row and

n′c in each column. Hence Γ∗21 is also a BSLR.

Since each of the four possible designs is a BSLR, then the result of the theorem

follows. �

Corollary 4.7.7. The QBD of each resulting BSLR, Γ12, Γ21, Γ∗12 and Γ∗21 is a (v, 2hp, 2hnr =

2pnc = hp, v/2, 2λ)-BIBD. The number of replications of each treatment in each of these

designs is identical to the number of blocks in Λ1 or Λ2.

Corollary 4.7.8. This construction works only if both Λ1 and Λ2 have identical block

size, k = v/2, since k and k′ can only be equal if v = 2k such that k = v/2 and k′ = v/2,

where k′ = v − k.

Corollary 4.7.9. The order in which Λ1 and Λ2 are inserted into the array is immaterial.

Example 4.7.2. Let Λ1 denote the (2 × 10)/3 BSLR for 6 treatments in Figure 4.19;

and let Λ2 denote its complementary design in Figure 4.20. Then, we obtain a (4× 10)/3

BSLR for 6 treatments by putting Λ1 and Λ2 in a 4 × 10 array. Supposing we insert Λ2

100

underneath Λ1, then the design presented in Figure 4.22 is obtained, which is another

design of the same size as the design in Figure 4.21 and is also isomorphic to it.

1 2 ∞ 2 3 ∞ 3 4 ∞ 4 5 ∞ 5 1 ∞ 1 2 4 2 3 5 3 4 1 4 5 2 5 1 3

3 5 4 4 1 5 5 2 1 1 3 2 2 4 3 3 5 ∞ 4 1 ∞ 5 2 ∞ 1 3 ∞ 2 4 ∞

3 5 4 4 1 5 5 2 1 1 3 2 2 4 3 3 5 ∞ 4 1 ∞ 5 2 ∞ 1 3 ∞ 2 4 ∞

1 2 ∞ 2 3 ∞ 3 4 ∞ 4 5 ∞ 5 1 ∞ 1 2 4 2 3 5 3 4 1 4 5 2 5 1 3

Figure 4.22: A (4× 10)/3 BSLR for 6 treatments obtained by inserting a complementary

design underneath an initial design

Comments. If Λ1 is inserted underneath Λ2 in the array, another design of the same size

is also obtained, which is isomorphic to each of the other two designs. A (2× 20)/3 BSLR

can be obtained by putting either of Λ1 and Λ2 beside the other in a 2×20 array. Similarly,

swapping the order of inserting them into the array produces another design of the same

size as the former, the two being isomorphic.

We note that another (4 × 10)/3 BSLR for the same number of treatments can also

be obtained by inserting 2 copies of Λ2, the complementary design to Λ1. The resulting

design is isomorphic to each of the other three designs of its size.

By Corollary 4.7.7, the QBD of this design is a (6, 40, 20, 3, 8)-BIBD, which is identical

to the QBD of the design in Figure 4.21.

4.7.3 Designs with h = p

In our previous constructions of BSLRs for those experimental situations where h < p or

h > p, in most cases, we juxtaposed certain Latin squares to obtain a basic (initial) design

from where a design of larger size was obtained by making copies of the initial design and

then juxtaposing them appropriately.

However, in certain experimental situations, interest may be on designs which have

identical number of rows and columns, that is, h = p. In this circumstance, the basic design

(or some other initial design) may be utilized in various ways to obtain constructions for

designs of such class if it satisfies certain conditions, as discussed below. In particular, we

give three approaches to achieving this. One of the procedures involves making copies of

an initial design that satisfy the given condition and then juxtaposing them appropriately;

while the other two procedures involve making a single Latin square whose symbols take

different forms, for different procedures.

101

Suppose the initial design is an (h × p)/k BSLR for v treatments, where h < p. If h

divides p, then making p/h copies of the initial design and inserting them in a p× p array,

one underneath another produces a (p× p)/k BSLR. Similarly, if the initial design is such

that h > p, then, provided p divides h, by making h/p copies of the initial design and then

inserting them into an h× h array, one beside another produces an (h× h)/k BSLR.

Furthermore, suppose there exists a BIBD for v treatments in p blocks of size k. Then

a (p× p)/k BSLR can also be obtained by making a p× p Latin square whose symbol set

is constituted by the labels of the p blocks of the BIBD. Similarly, if there exists a BIBD

for v treatments in h blocks of size k, then an (h×h)/k BSLR can be obtained by making

a Latin square of order h with symbols, the labels of the h blocks of the BIBD.

Moreover, suppose h < p. If the initial design consists of θ sub-Latin squares, Λi,

where i = 1, 2, ..., θ, and θ = p/h, the ith Latin square being of order p/θ = h with its

symbol set comprising the labels of those blocks in row 1, say, of the ith subdivision of

the columns of the initial BSLR. Then a (p× p)/k BSLR can also be obtained by making

another Latin square, Γ, say, of order θ, whose symbols are Λi, where i = 1, 2, ..., θ.

Similarly, if p < h, let the initial design consist of η sub-Latin squares, Υu, where

u = 1, 2, ..., η, and η = h/p, the uth Latin square being of order h/η = p with its symbol

set comprising the p labels of those blocks in column 1, say, of the uth subdivision of the

rows of the initial BSLR. Then an (h×h)/k BSLR can also be obtained by making another

Latin square, Ξ, say, of order η, whose symbols are the labels of Υu, where u = 1, 2, ..., η.

Example 4.7.3. Suppose we wish to make a (12× 12)/3 BSLR for 9 treatments. We can

make use of the (3× 12)/3 BSLR in Figure 4.11: see example 4.5.1.

Notice that the initial design consists of θ = 4 sub-Latin squares, Λi, where i = 1, 2, 3, 4

and h = 3. Each Latin square is of order h = 3. The symbols of Λ1, for instance, are A11,

A12 and A13.

Notice also that the design in Figure 4.11 takes the form

Λ1 Λ2 Λ3 Λ4

where

Λ1 =

A11 A12 A13

A13 A11 A12

A12 A13 A11

with A11, A12, and A13 being the sets {1, 2, 3}, {4, 5, 6}, and {7, 8, 9}, respectively;

102

Λ2 =

A21 A22 A23

A23 A21 A22

A22 A23 A21

where A21, A22, and A23 are the sets {1, 4, 7}, {2, 5, 8}, and {3, 6, 9}, respectively;

Λ3 =

A31 A32 A33

A33 A31 A32

A32 A33 A31

with A31, A32, and A33 being the sets {1, 5, 9}, {2, 6, 7}, and {3, 4, 8}, respectively; and

Λ4 =

A41 A42 A43

A43 A41 A42

A42 A43 A41

where A41, A42, and A43 are the sets {1, 6, 8}, {2, 4, 9}, and {3, 5, 7}, respectively.

By making a Latin square of order θ = 4 using Λ1, Λ2, Λ3, and Λ4 as symbols, we

obtain the design shown in Figure 4.23.

Notice that the resulting design shown in Figure 4.23 takes the form

Λ1 Λ2 Λ3 Λ4

Λ4 Λ1 Λ2 Λ3

Λ3 Λ4 Λ1 Λ2

Λ2 Λ3 Λ4 Λ1

We note that each row of the (3 × 12)/3 BSLR is a BIBD for 9 treatments in 12 blocks

of size 3. Another (12× 12)/3 BSLR for 9 treatments can be obtained by making a Latin

square of order 12 whose symbols are the block labels, A11, A12, . . ., A43, of the BIBD.

The design produced through this procedure is shown in Figure 4.24

Moreover, by making 4 copies of the (3× 12)/3 BSLR and putting them in a 12× 12

array, we obtain the design shown in Figure 4.25

103

1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7

7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8 3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9

4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7 2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8

1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8

3 5 7 1 6 8 2 4 9 7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8 3 4 8 1 5 9 2 6 7

2 4 9 3 5 7 1 6 8 4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7 2 6 7 3 4 8 1 5 9

1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9

3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9 7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8

2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8 4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7

1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9

3 6 9 1 4 7 2 5 8 3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9 7 8 9 1 2 3 4 5 6

2 5 8 3 6 9 1 4 7 2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8 4 5 6 7 8 9 1 2 3

Figure 4.23: A (12 × 12)/3 BSLR for 9 treatments obtained by making a Latin square

with symbols another Latin square

1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7

3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9

2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8

1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8

3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7

2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9

1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9

3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7 2 5 8

2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9 1 4 7

1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6 7 8 9

7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3 4 5 6

4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7 1 2 3

Figure 4.24: A (12 × 12)/3 BSLR for 9 treatments obtained by making a Latin square

with symbols the blocks of a BIBD

4.8 Obtaining a lot more designs from the constructions

We observe that, in general, for those basic designs which involve arrangements of two

or more Latin squares, a large number of designs other than the ones already discussed
104

1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7

7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8 3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9

4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7 2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8

1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7

7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8 3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9

4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7 2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8

1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7

7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8 3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9

4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7 2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8

1 2 3 4 5 6 7 8 9 1 4 7 2 5 8 3 6 9 1 5 9 2 6 7 3 4 8 1 6 8 2 4 9 3 5 7

7 8 9 1 2 3 4 5 6 3 6 9 1 4 7 2 5 8 3 4 8 1 5 9 2 6 7 3 5 7 1 6 8 2 4 9

4 5 6 7 8 9 1 2 3 2 5 8 3 6 9 1 4 7 2 6 7 3 4 8 1 5 9 2 4 9 3 5 7 1 6 8

Figure 4.25: A (12 × 12)/3 BSLR for 9 treatments obtained by making 4 copies of a

(3× 12)/3 BSLR for 9 treatments

can be obtained. This involves permuting the rows and columns of each Latin square. A

permutation of the rows of each Latin square leads to non-isomorphic designs, since each

row of the Latin square is only a part of the entire row. However, permuting the columns

of each Latin square leads to isomorphic designs, since each column of the Latin square is

also a column in the design.

Moreover, for any basic design whose construction involves arrangement of two or more

Latin squares, a random ordering of the Latin squares within its array leads to designs

that are isomorphic.

105

Chapter 5

Non-balanced Semi-Latin

Rectangles with Block Size Two

5.1 Introduction

This chapter is concerned with semi-Latin rectangles whose quotient block designs (QBDs)

are basically not BIBDs and whose row-column intersections, each contains exactly 2

treatments. We give constructions for semi-Latin rectangles (SLRs) of this class whose

QBDs are regular-graph designs (RGDs). We consider SLRs of this kind for those sizes

that a balanced semi-Latin rectangle (BSLR) fails to exist (if they exist). This is so,

since RGDs are, particularly, for large number of blocks, known to contain a design with

optimality properties regarding the commonly used criteria, the A-, D- and E-criteria (if

any exist). SLRs whose QBDs are RGDs are known as regular-graph semi-Latin rectangles

(RGSLRs): see Bailey and Monod (2001). Different RGSLRs may have different values of

any given optimality criterion. Following John and Mitchell (1977), we are assuming that

the optimal designs would be found in the RGDs.

RGDs are close to balanced, in the sense that treatment concurrences differ by at most

1 in absolute terms. However, they are not the same as nearly balanced designs, which

were defined by Cheng and Wu (1981). We note that nearly balanced designs are not

equireplicate and so cannot occur as a QBD of a SLR. We consider, in particular, SLRs

whose QBDs are BIBD-extended RGDs which would give designs with good statistical

properties: see Cakiroglu (2018) for discussions on BIBD-extended RGDs. We consider

cases where the number of treatments, v is even and also when it is odd. When v is even,

we extend the constructions given in Bailey and Monod (2001) to obtain larger designs.

When v is odd, we give construction for a basic design which is then extended to obtain

constructions for larger designs.

Theorem 5.1.1. Let ∆i, where i = 1, 2 denote 2 semi-Latin rectangles with the treatment

set V = {1, 2, ..., v}. Suppose ∆1 is an (h× p)/k RGSLR and ∆2 is an (h× p′)/k BSLR.

Then the design obtained by putting ∆1 and ∆2, side by side, in an h × p′′ array is an

106

(h× p′′)/k RGSLR for v treatments, where p′′ = p+ p′.

Proof. Let Ξ denote the resulting design on putting ∆1 and ∆2 in the array; and let nc

and nr denote the number of times each treatment appears in each column and each row of

Ξ. Since ∆i, where i = 1, 2 are semi-Latin rectangles, then for all ∆i, there exist n
(i)
c and

n
(i)
r both positive integers such that each α ∈ V appears n

(i)
c and n

(i)
r times, per column

and row, respectively, in ∆i.

Notice that since the array contains h rows and p′′ columns, where p′′ = p + p′, then

p′ = p′′ − p. Furthermore, since ∆1 and ∆2 are put side by side in the array, it follows

that each column in ∆1 is a column in Ξ, and each column in ∆2 is also a column in Ξ.

Hence, the combination of columns in ∆1 and ∆2 make Ξ. Notice also that for all i = 1, 2,

n
(i)
c = kh/v, which is a positive integer since v|kh, as ∆1 and ∆2 are SLRs and this is

identical to nc. Hence nc is a positive integer. Similarly, each row in Ξ is a combination

of corresponding rows in ∆1 and ∆2, and the combination of all corresponding rows in ∆1

and ∆2 make Ξ. Hence, nr = n
(1)
r + n

(2)
r , which is a sum of two positive integers, hence a

positive integer. Thus Ξ is a SLR.

Now, since ∆1 is a RGSLR, then there are 2 distinct treatment concurrence counts.

Let λ1 and λ2 denote these concurrence numbers, then |λ2 − λ1| = 1. Furthermore, since

∆2 is a BSLR, denote by λ, the unique treatment concurrence number. For all α, β ∈ V ,

α and β appear together in either λ1 or λ2 blocks in ∆1 and in λ blocks in ∆2. Since the

QBD of Ξ comprises the set of blocks from both ∆1 and ∆2, then α and β concur in either

λ1 + λ or λ2 + λ blocks in Ξ.

Let λ†1 = λ1 + λ and λ†2 = λ2 + λ. Notice that |λ†2 − λ
†
1| = |λ2 − λ1| = 1. Since each

of ∆1 and ∆2 has the same set of treatments, V , where |V | = v, it follows that Ξ is an

(h× p′′)/k RGSLR for v treatments, where p′′ = p+ p′. �

Comment. Each column of ∆i, for all i = 1, 2 constitute a column in Ξ. Furthermore,

each row in Ξ is a combination of corresponding rows from ∆1 and ∆2.

5.2 Construction when v is even

Definition 5.2.1. Let Si ⊂ Z2m, where i = 1, . . . ,m and |Si| = 2, for all i. We regard Z2m

to be the set {1, . . . , 2m}. Let {Si}mi=1 constitute a partition of Z2m. Define Si = {xi, yi},
where xi and yi are such that

±(yi − xi) =


±i if i < m,

m twice if i = m.

Then {Si}mi=1 is called a starter for the cyclic group formed by Z2m under addition in

Bailey and Monod (2001).

107

1 6 4 5 5 1 4 6 2 3

2 5 2 6 3 6 5 3 1 4

3 4 3 1 4 2 1 2 5 6

Figure 5.1: A BTD(6)

Notice that −i = 2m − i such that −m = m. Hence
m⋃
i=1
{±(yi − xi)} contain m twice

(which come from Sm) and every other element of Z2m\{2m} exactly once (where each

comes from a unique Si, for i < m).

As an illustration, let m = 4. Then the sets {6, 7}, {1, 3}, {2, 5} and {4, 8} consti-

tute a starter in Z8. Notice that the differences between the elements of these sets are

±1,±2,±3 and 4(twice), respectively, where 4 = −4 in Z8.

Definition 5.2.2. Let V = {1, . . . , 2m} denote a set of teams available for a league

tournament which is to consist of 2m− 1 rounds, where each round is to be played on m

grounds. Let the league schedule form an m× (2m− 1) array whose cells are constituted

by the
(
2m
2

)
= m(2m−1) distinct pairs of teams from V such that each pair of teams plays

once, overall and each team plays once in each round and at most twice on each ground.

Then the league schedule is said to constitute a balanced tournament design (BTD) for

the 2m teams, denoted BTD(2m): see Anderson (1997, Chapter 10).

We give an example of a balanced tournament design for 6 teams (BTD(6)): see Figure

5.1. Notice that there are 5 rounds (where each round corresponds to a column) and 3

grounds (where each ground corresponds to a row), that is, m = 3.

Definition 5.2.3. Let Ω = {Λi}m−1i=1 denote a complete set of m− 1 mutually orthogonal

Latin squares (MOLSs) of order m, where m is a prime or prime power. For all i =

1, 2, ...,m − 1, let Si denote the set of symbols in Λi, where Si ∩ Si′ = ∅, for all i 6= i′.

Let Γ = {Λ(1), Λ(2), . . ., Λ(k)} be a subset of Ω, where the cardinality of Γ, |Γ| = k and

k ∈ {2, 3, ...,m − 1}. If Λ(1), Λ(2), . . ., Λ(k) are superimposed and the superimposition

is regarded as having v = mk symbols (treatments), rather than k treatment factors with

m levels each, then the resulting design is said to be an (m×m)/k Trojan square.

We give an example of a (4×4)/2 Trojan square in Figure 5.2. Notice that the symbol

sets, S1 and S2 of the two superimposed orthogonal Latin squares that make the Trojan

square are S1 = {1, 3, 5, 7} and S2 = {2, 4, 6, 8}, which are disjoint.

Definition 5.2.4. Let X be a non-empty set, and f a function such that f : X →

108

1 2 3 4 5 6 7 8

3 6 1 8 7 2 5 4

5 8 7 6 1 4 3 2

7 4 5 2 3 8 1 6

Figure 5.2: A (4× 4)/2 Trojan square

X. Suppose f is a bijection, that is, one-to-one and also onto, then f is said to be a

permutation of X.

Remark. In general, suppose X and Y are 2 non-empty sets, and g a function such that

g : X → Y . Then g is said to be one-to-one if for all x1, x2 ∈ X, g(x1) = g(x2) means

that x1 = x2. Similarly, g is said to be onto if for all y ∈ Y , there exists x ∈ X such that

g(x) = y.

Bailey and Monod (2001) give constructions for RGSLRs of the size h = n, p = 2n

and k = 2 for v = 2n, where 2 ≤ n ≤ 10, which is clearly, an (n × 2n)/2 RGSLR for

2n treatments. These authors employ two methods in their construction, viz, the use

of starter and also balanced tournament design for 2n teams (BTD(2n)), obtained via

exchange of a pair of rows in some columns of a cyclic tournament schedule for 2n teams

(a balanced resolvable incomplete-block design for 2n treatments and block size 2) and

then adding an extra column to the BTD(2n), where the entries in each cell of the added

column correspond to the pair of treatments (teams) required to make each treatment

appear twice in the corresponding row. They show that a starter exists for the group Z2n

if and only if n ≡ 0 (or 1) mod 4. They also show that if a SLR can be derived from a

cyclic tournament schedule via exchange of a pair of rows in some columns, then n 6≡ 2

mod 3. Furthermore, they give that their constructions work for all values of n 6≡ 2 (or 11)

mod 12.

Our construction extends theirs, for some values of h = m (where m is identical to n

in the construction given by Bailey and Monod (2001) indicating the number of rows) to

give constructions for RGSLRs with v = 2m treatments and k = 2 treatments per block

where the number of columns is p = 2m+m(2m− 1) = m(2m+ 1) via putting a RGSLR

(consisting of 2m treatments in m rows and 2m columns) obtained via the construction by

Bailey and Monod (2001) and a BSLR (consisting of m rows and m(2m−1) columns) in an

m×m(2m+ 1) array, when both designs exist. We also obtain constructions for RGSLRs

with h = m rows and p = 2m+mθ = m(θ + 2) columns, where θ = 1, 2, 4. In particular,

109

if θ = 1, we put a RGSLR for 2m treatments (having m rows and 2m columns) and a

Trojan square with 2m treatments in an m× 3m array. The Trojan square is obtained by

superimposing 2 orthogonal Latin squares of order m, where one consists of odd number

symbols and the other consists of even number symbols, when the construction involves

the use of starter; but the symbol set of the 2 orthogonal Latin squares that make the

Trojan is adjusted when we use an alternative construction that involves a BTD(2m).

Similarly, if θ = 2, we put an (m×2m)/2 RGSLR for 2m treatments and another RGSLR

of the same size and same set of treatments (obtained by a permutation of the treatments

within each cell of the parent RGSLR) in an m × 4m array. Furthermore, if θ = 4, we

make 2 new RGSLRs, each consisting of the same set of treatments and also being of

the same size as the parent RGSLR by applying a different permutation each time to the

treatments within each cell of the parent RGSLR and then putting the parent RGSLR

with the 2 new RGSLRs in an m× 6m array.

Moreover, more designs are derived from the basic constructions by creating an array

of appropriate size and then rearranging the component designs within the array.

We note that the constructions given by Bailey and Monod (2001) produce designs

whose QBDs consist of an RGD with an extension, which is a BIBD; and whose treatment

concurrence counts are 1 and 2. Hence, the QBD of their designs are BIBD-extended

RGDs. It follows that each construction presented here also produce designs whose QBDs

are BIBD-extended.

5.3 Construction for designs of the class (m×m(2m+ 1))/2,

where v = 2m

We extend the construction of (m × 2m)/2 RGSLR for 2m treatments given in Bailey

and Monod (2001) by putting the RGSLR and a BSLR on the same set of treatments

(obtained via the method of Chapter 3) in an m ×m(2m + 1) array, when both designs

exist. We note that m in this construction is identical to n in the construction given in

Bailey and Monod (2001).

5.3.1 Construction procedure

1. Obtain an (m× 2m)/2 RGSLR for v = 2m treatments.

2. Obtain an (m×m(2m− 1))/2 BSLR on the same set of 2m treatments.

3. Create an m×m(2m+ 1) array and put the BSLR and the RGSLR.

Remark. The order which the constituent designs in steps 1 and 2 are put in the array

is immaterial; it can be in any order. A different arrangement of these designs within

an array of the same size as in step 3 produces another RGSLR of the same size as the

former. The construction produces an (m×m(2m+1))/2 BSLR-extended RGSLR for 2m

110

2 5 2 6 3 6 5 3 1 4 4 1

1 6 4 5 5 1 4 6 2 3 3 2

3 4 3 1 4 2 1 2 5 6 5 6

Figure 5.3: ∆1: A (3× 6)/2 RGSLR for 6 treatments

treatments as a basic design; that is, the resulting design has a RGSLR part and a BSLR

part as its extension such that its QBD is a BIBD-extended RGD with the treatment

concurrence counts being λ+1 and λ+2, where λ is the constant concurrence counts from

the BSLR.

If the array in step 3 is transposed, then we obtain another class of designs which are

(m(2m+ 1)×m)/2 BSLR-extended RGSLRs on the same set of 2m treatments.

A larger BSLR-extended RGSLR of size (m×m(2+ l(2m−1)))/2 (where l > 1) which

contains m(1 − 2m + l(2m − 1)) or equivalently, m(l − 1)(2m − 1) more columns than

the basic design can be obtained from the basic design by making (l − 1) extra copies

of the BSLR obtained in step 2 and then putting these extra copies of the BSLR with

the basic design in an m ×m(2 + l(2m − 1)) array. The resulting design has treatment

concurrence counts being 1 + lλ or 2 + lλ. Moreover, by also changing the array size to

m(2 + l(2m− 1))×m, the resulting designs are of the class (m(2 + l(2m− 1))×m)/2.

Example 5.3.1. Let v = 6. Then we can obtain a (3× 21)/2 BSLR-extended RGSLR by

putting a (3× 6)/2 RGSLR and a (3× 15)/2 BSLR in a 3× 21 array.

Notice that m = 3. Hence l needs to be 1 to achieve the required number of columns,

21, which is identical to m(2 + l(2m− 1)).

Let ∆1 and ∆2 denote the (3 × 6)/2 RGSLR and (3 × 15)/2 BSLR, respectively. We

adapt ∆1 from Bailey and Monod (2001) and ∆2 from Chapter 3 of this thesis. We obtain

∆1 and ∆2 to be as shown in Figures 5.3 and 5.4, respectively. If Ξ1 denote the BSLR-

extended RGSLR obtained by putting ∆1 and ∆2 in a 3× 21 array, then we obtain Ξ1 to

be the design in Figure 5.5.

Remark. Notice that the treatment concurrence counts in the design, Ξ1 shown in Figure

5.5 are 4 and 5, which are the sum of concurrence counts from ∆1 and ∆2. In particular,

the treatment concurrence counts in ∆2 is 3.

Suppose a (3 × 51)/2 BSLR-extended RGSLR for the same number of treatments, 6

is required, then this can be obtained by making 2 extra copies of ∆2 and putting them

with Ξ1 in a 3× 51 array. This is so, since l = 3 as m(2 + l(2m− 1)) = 51. Moreover, the

resulting design has treatment concurrence counts to be 10 and 11.

111

1 6 2 5 3 4 2 6 3 1 4 5 3 6 4 2 5 1 4 6 5 3 1 2 5 6 1 4 2 3

3 4 1 6 2 5 4 5 2 6 3 1 5 1 3 6 4 2 1 2 4 6 5 3 2 3 5 6 1 4

2 5 3 4 1 6 3 1 4 5 2 6 4 2 5 1 3 6 5 3 1 2 4 6 1 4 2 3 5 6

Figure 5.4: ∆2: A (3× 15)/2 BSLR for 6 treatments

2 5 2 6 3 6 5 3 1 4 4 1 1 6 2 5 3 4 2 6 3 1 4 5 3 6 4 2 5 1 4 6 5 3 1 2 5 6 1 4 2 3

1 6 4 5 5 1 4 6 2 3 3 2 3 4 1 6 2 5 4 5 2 6 3 1 5 1 3 6 4 2 1 2 4 6 5 3 2 3 5 6 1 4

3 4 3 1 4 2 1 2 5 6 5 6 2 5 3 4 1 6 3 1 4 5 2 6 4 2 5 1 3 6 5 3 1 2 4 6 1 4 2 3 5 6

Figure 5.5: Ξ1: A (3× 21)/2 BSLR-extended RGSLR for 6 treatments

Example 5.3.2. Let v = 8. Then we obtain a (4 × 36)/2 BSLR-extended RGSLR by

putting a (4× 8)/2 RGSLR and a (4× 28)/2 BSLR in an array of size 4× 36.

Notice in this example that m = 4 and l = 1. Let Λ1 and Λ2 denote the (4 × 8)/2

RGSLR and (4×28)/2 BSLR. Denote by Ξ2 the (4×36)/2 BSLR-extended RGSLR under

construction. Then we obtain Λ1, Λ2 and Ξ2 to be the designs shown in Figures 5.6, 5.7

and 5.8, respectively.

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1

4 6 5 7 6 8 7 1 8 2 1 3 2 4 3 5

5 8 6 1 7 2 8 3 1 4 2 5 3 6 4 7

3 7 4 8 5 1 6 2 7 3 8 4 1 5 2 6

Figure 5.6: Λ1: A (4× 8)/2 RGSLR for 8 treatments

112

1 8 2 7 3 6 4 5 2 8 3 1 4 7 5 6 3 8 4 2 5 1 6 7 4 8 5 3 6 2 7 1 5 8 6 4 7 3 1 2 6 8 7 5 1 4 2 3 7 8 1 6 2 5 3 4

4 5 1 8 2 7 3 6 5 6 2 8 3 1 4 7 6 7 3 8 4 2 5 1 7 1 4 8 5 3 6 2 1 2 5 8 6 4 7 3 2 3 6 8 7 5 1 4 3 4 7 8 1 6 2 5

3 6 4 5 1 8 2 7 4 7 5 6 2 8 3 1 5 1 6 7 3 8 4 2 6 2 7 1 4 8 5 3 7 3 1 2 5 8 6 4 1 4 2 3 6 8 7 5 2 5 3 4 7 8 1 6

2 7 3 6 4 5 1 8 3 1 4 7 5 6 2 8 4 2 5 1 6 7 3 8 5 3 6 2 7 1 4 8 6 4 7 3 1 2 5 8 7 5 1 4 2 3 6 8 1 6 2 5 3 4 7 8

Figure 5.7: Λ2: A (4× 28)/2 BSLR for 8 treatments

1 2 3 4 5 6 7 8 1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 1 6 7 1 2 7 1 2 3

2 3 4 5 6 7 8 1 8 7 6 5 8 1 7 6 8 2 1 7 8 3 2 1 8 4 3 2 8 5 4 3 8 6 5 4

4 5 6 7 8 1 2 3 4 1 2 3 5 2 3 4 6 3 4 5 7 4 5 6 1 5 6 7 2 6 7 1 3 7 1 2

6 7 8 1 2 3 4 5 5 8 7 6 6 8 1 7 7 8 2 1 1 8 3 2 2 8 4 3 3 8 5 4 4 8 6 5

5 6 7 8 1 2 3 4 3 4 1 2 4 5 2 3 5 6 3 4 6 7 4 5 7 1 5 6 1 2 6 7 2 3 7 1

8 1 2 3 4 5 6 7 6 5 8 7 7 6 8 1 1 7 8 2 2 1 8 3 3 2 8 4 4 3 8 5 5 4 8 6

3 4 5 6 7 8 1 2 2 3 4 1 3 4 5 2 4 5 6 3 5 6 7 4 6 7 1 5 7 1 2 6 1 2 3 7

7 8 1 2 3 4 5 6 7 6 5 8 1 7 6 8 2 1 7 8 3 2 1 8 4 3 2 8 5 4 3 8 6 5 4 8

Figure 5.8: Ξ2: A (4× 36)/2 BSLR-extended RGSLR for 8 treatments

Remark. Notice that the treatment concurrence counts in Ξ2 are 5 and 6.

5.4 Construction for designs of the class (m× 3m)/2, where

v = 2m

The designs considered in this section are a special case of RGSLRs of the class (m×m(θ+

2))/2, where v = 2m and θ = 1. Our construction for this class of designs involves putting

an (m× 2m)/2 RGSLR for 2m treatments and an (m×m)/2 Trojan square (obtained by

superimposing 2 orthogonal Latin squares of order m) in an m× 3m array.

We utilize the constructions in Bailey and Monod (2001) that use starter (and BTD(2n)

in the alternative) in conjunction with a Trojan square. Hence there need to exist a starter

in Z2m and there also need to exist at least a pair of MOLSs of order m, which guarantees

the existence of a Trojan square. Furthermore, for the alternative construction, apart

from a Trojan square existing, the condition for deriving a SLR from a cyclic tournament

schedule via exchange of a pair of blocks in some columns must be satisfied: see Bailey and

113

Monod (2001). For the method involving starter, the symbol set of one of the 2 orthogonal

Latin squares that constitute the Trojan square comprises odd number symbols while the

symbols of the other Latin square are precisely, even number symbols; but the symbol sets

for the 2 Latin squares are modified to suit the construction when we use the alternative

approach. We note that for every finite order, m, where m 6= 2 or 6, there exists a Latin

square with at least one orthogonal mate: see Bose et al. (1960).

5.4.1 Construction via starter

A starter exists for the group Z2m if and only if m ≡ 0 (or 1) mod 4: see Bailey and

Monod (2001).

Suppose a starter exists in Z2m. Suppose further that there exists at least a pair of

MOLSs of order m. The construction involves obtaining the m starter sets and putting

the entries of these sets in the m cells in the initial column of an m × 3m array (one set

to a cell) thereby forming the initial blocks for the m rows, which are then developed,

cyclically, via successive addition of 1 modulo 2m to the entries in the cells to generate the

first 2m columns. The remaining m columns are obtained by adjoining a Trojan square

obtained by superimposing two MOLSs whose symbol sets are constituted by the odd

number treatments and even number treatments, respectively.

We proceed to give an algorithmic procedure for constructing the design.

5.4.2 Algorithmic procedure for constructing the design via starter

1. Label the treatments 1, 2, ..., 2m.

2. Partition the treatment set into m pairs, that is, m 2-subsets, viz {x1, y1}, {x2, y2},
. . ., {xm, ym} such that the differences (reduced modulo 2m) between these pairs

of treatments are ±1, ±2, . . ., ±m, respectively, thereby forming a starter in the

cyclic group Z2m.

3. Create an m × 3m array and label its rows i = 1, 2, ...,m and its columns j =

1, 2, ..., 2m, 2m+ 1, ..., 3m.

4. For all i = 1, 2, ...,m, insert in the cell in position (i, 1) of the array (that is, the cell

in row i and column 1), the 2-subset, {xi, yi} obtained in step 2.

5. For all i = 1, 2, ...,m, develop the block in position (i, 1), which contains {xi, yi},
cyclically, via successive addition of 1 (mod 2m), thereby generating the block in

position (i, j), for all j = 2, 3, ..., 2m.

6. Make a Trojan square via superimposition of two orthogonal Latin squares of order

m, where in one of the Latin squares the symbols are the odd number treatments,

while the symbols of the other Latin square are the even number treatments.

114

7. Insert the Trojan square obtained in 6. to fill columns 2m + 1 to 3m of the array

created in 3.

Remark. The pairs of treatments in the m 2-subsets that constitute the starter, where

the differences between the treatments in these sets reduced modulo 2m are ±1, ±2, . .

., ±m, satisfy the property that any pair with the differences ±δ, where δ ∈ {1, 2, ...,m}
correspond to a pair of vertices of a regular 2m-gon which are at distance δ, when the set

of treatments are identified with the vertices of the 2m-gon.

If the array size in step 3 is modified to be 3m×m and the roles of rows and columns

are exchanged such that the Trojan square now appears between rows 2m + 1 and 3m.

Then the resulting design is a (3m×m)/2 RGSLR.

Furthermore, if the Trojan square is inserted first into the array before the other

component design in either of the situations described above, it produces another design

of the same size as the former. For each situation, the design obtained by swapping the

order of the two constituent designs is isomorphic to the original design.

The construction described above will always produce an (m× 3m)/2 RGSLR for 2m

treatments if a starter exists and there are at least 2 MOLSs, each being of order m,

provided m is an even number.

Theorem 5.4.1. Let Γ denote an (m × 2m)/2 RGSLR for 2m treatments obtained via

a starter for Z2m by a cyclic development of the blocks in the initial column containing

the m 2-subsets of the starter. Let ∆ be an (m×m)/2 Trojan square on the same set of

treatments as Γ, where one of the constituent Latin squares of ∆ consists of odd number

symbols and the other Latin square consists of even number symbols. If Γ and ∆ are put

in an m×3m array, then the resulting design is an (m×3m)/2 RGSLR for 2m treatments,

if and only if m is even.

Proof. Let V = {1, 2, ...,m− 1,m,m+ 1, ..., 2m− 1, 2m} denote the symbol set of Γ and

∆.

Since ∆ is a SLS, then each treatment appears exactly once in each row and in each

column. Similarly, in each column of Γ, each treatment appears once but appears twice

in each row. Now, each row of the design resulting from putting Γ and ∆ in the m× 3m

array is constituted by the cells from corresponding rows of Γ and ∆, hence each treatment

appears in each row of the resulting design 3 times (a positive integer number of times)

which is the sum of the number of times it appears in each row of Γ and ∆ combined.

Moreover, the columns in the overall design is constituted by the overall columns in both

Γ and ∆; each column in Γ is a column in the overall design, and each column in ∆ is also

a column in the overall design. Since each treatment appears the same number of times

(exactly once) in each column of Γ and ∆, then it also appears exactly once (a positive

integer number of times) in each column of the overall design. Hence each treatment

appears a constant number of times in each row and similarly, a constant number of times

in each column, which makes the resulting design a SLR.

115

Let L1 and L2 denote the two orthogonal Latin squares, each of order m that make

∆ with respective symbol sets V1 and V2. Partition V into V1 and V2 such that |V1| =

|V2| = m. Suppose V1 = {1, 3, ..., 2m − 1}, the set of odd number symbols, such that

V2 = {2, 4, ..., 2m}, the set of even number symbols. Since the L1 and L2 are orthogonal

and V1 and V2 are disjoint, then ∆ consists of the m2 distinct pairs of symbols from V1

and V2, each appearing exactly once.

Notice that the m2 pairs of symbols in ∆ are the result of the cross product of the

sets, V1 and V2. Denote this cross product by V1 × V2. For all (i, i′) ∈ V1 × V2, let d(i, i′)

denote the distance between i and i′, where

d(i, i′) =


|i′ − i| if |i′ − i| ≤ m,

2m− |i′ − i| if |i′ − i| > m.

Let D = {d(i, i′)} denote the set of distances between each pair, (i, i′) of symbols. Then

D = {1, 3, ..., dmax}, which consists of only the odd number symbols, since each pair of

symbols in ∆ involves an odd and even number symbols. Furthermore, dmax = m−1, if m

is even. Notice that if m is even, then m−1 is odd such that for all i ∈ V1, i±m−1 ∈ V2,
hence the pair (i, i′) = (i, i±m−1) constitutes a cell in ∆. Similarly, if V1 is the set of even

number symbols and V2 consists of odd number symbols, then for all i ∈ V1, i±m−1 ∈ V2,
hence the pair (i, i′) = (i, i ±m − 1) also constitutes a cell in ∆. Moreover, let |D| = ω.

Then ω = m/2

Since the number of cells/pairs of symbols in ∆ is m2; if m is even, then ω | m2 such

that ∆ consists of m2/ω = 2m pairs of distinct symbols for each unique distance, d∗ ∈ D.

To show that this is true, we proceed as follows:

For all d∗ ∈ D, there exists i ∈ V1 and i ± d∗ ∈ V2 such that the pairs (i, i ± d∗) =

(i, i + d∗), (i, i − d∗) in ∆ constitute treatment symbols that are at a distance, d∗, where

the addition and subtraction are performed modulo 2m. Notice that what distinguishes

the two pairs are their second entries, (i+ d∗) and (i− d∗).
Since m being even implies dmax = m− 1, then ∃ d∗ = m− 1 ∈ D such that for each i

the second entries are i+m−1 and i−m+1, which are distinct since −1 = 2m−1 6= 1, as

m 6= 1. Hence, there are two distinct pairs for each i, and thus 2m distinct pairs overall,

for all the i’s. Similarly, if d∗ = m − 1 − s,where s = 2, 4, ...,m − 2, then for each i, the

second entries become i + m − 1 − s and i − m + 1 + s, which are also distinct, since

−1 − s = 2m − (1 + s) 6= 1 + s. Thus, there are also two distinct pairs for each i and

consequently, 2m distinct pairs, overall for all i’s.

Hence, if m is even, then each distance, d∗ ∈ D has the same number of pairs, 2m

of treatment symbols associated with it. The overall design, in this case, has no pair in

the part constituted by ∆ for which d∗ = m, but there are m such distinct pairs in row

m, say, in the part constituted by Γ, where each pair concurs twice there. This is so

since one of the started 2-subsets used to generate Γ contains a pair of treatments whose

116

differences (modulo 2m) is m twice while the treatment pairs that make the remaining

m − 1 2-subsets are such that their differences are ±u, for all u = 1, 2, ...,m − 1. Hence,

the sum of concurrences for each pair at distance m in the overall design is 2. Similarly,

for all d∗ = y ∈ D, where y ≤ m − 1, each pair concurs once in the part constituted by

∆, and also once in row y, say, in the part constituted by Γ, where y = 1, 3, ...,m − 1,

making the sum of concurrences for each pair of symbols at an odd distance (≤ m − 1)

in the design to be 2, also. However, each pair for which the distance is an even number,

w, say, where w is less than m does not concur at all in the part constituted by ∆, but

concurs only once in row w, say, in the part constituted by Γ, where w = 2, 4, ...,m − 2,

hence overall, concurs once. Thus, the number of concurrences for any pair of treatment

symbols in the overall design is either 1 or 2, making it a RGSLR.

�

Comment. If m is odd, the construction would not give a RGSLR, which is seen as follows:

In this case, dmax = m. Notice that if m is odd, then for all i ∈ V1, i ±m ∈ V2, for

situations whether V1 consists of odd number symbols (which implies V2 comprises even

number symbols) or V1 comprises even number symbols (which implies V2 comprises odd

number symbols). Hence the pair (i, i′) = (i, i ± m) constitutes a cell in ∆. By letting

|D| = η. Then η = (m+ 1)/2. We note that (m+1)
2 = (m−1)

2 + 1.

Bearing in mind that there are m2 cells/pairs of symbols in ∆; if m is odd, then η - m2

and there are 2m pairs of symbols for each d∗ < dmax, and m pairs for d∗ = dmax. This

can be seen as follows:

For all d∗ ∈ D, there exists i ∈ V1 and i ± d∗ ∈ V2 such that the pairs (i, i ± d∗) =

(i, i + d∗), (i, i − d∗) in ∆ are treatment symbols that are at a distance, d∗, where the

addition and subtraction are performed modulo 2m. As before, what distinguishes the

two pairs are their second entries, (i+ d∗) and (i− d∗).
If m is odd and consequently, dmax = m, then ∃ d∗ = m ∈ D such that for each i the

second entries are thus i + m and i −m, which are identical, since m = −m (mod 2m).

Now, suppose d∗ = m − l,where l = 2, 4, ...,m − 1. Then for each i, the second entries

become i+m− l and i−m+ l, which are distinct, since −l = 2m− l 6= l, for all l. Hence,

in ∆; for odd m, ∃ d∗ = m ∈ D, with only one pair for each i ∈ V1 (since its second entries

in V2 are the same), and consequently, m pairs overall, for all the i’s. Similarly, for each

d∗ < m, there are two distinct pairs for each i (since it has distinct second entries), and

overall, 2m pairs for all the i’s.

Hence, from the foregoing discussions, it is clear that, if m is odd, then there are m

distinct pairs of treatment symbols for which d∗ = m (where there is only one pair for each

i) in the part of the overall design constituted by ∆; and each of these pairs also concurs

twice in row m, say, in the part constituted by Γ, which makes the sum of concurrences for

each pair of symbols in the overall design with this property to be 3, while it is 2 for every

other pair with d∗ ∈ D\{m}, and 1 for those pairs with d∗
′ 6∈ D, which are those with

117

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1 1 2 3 4 5 6 7 8

5 7 6 8 7 1 8 2 1 3 2 4 3 5 4 6 3 6 1 8 7 2 5 4

3 6 4 7 5 8 6 1 7 2 8 3 1 4 2 5 5 8 7 6 1 4 3 2

4 8 5 1 6 2 7 3 8 4 1 5 2 6 3 7 7 4 5 2 3 8 1 6

Figure 5.9: A (4× 12)/2 RGSLR for 8 treatments

even distances, x, which appear only in row x, say, in the part of the design constituted

by Γ, where x = 2, 4, ...,m − 1. This means that, in this circumstance, there are three

distinct concurrences, 1, 2 and 3 in the overall design. Thus, the design obtained via the

above procedure will not be a RGSLR.

Corollary 5.4.1. The (m × 3m)/2 RGSLR for 2m treatments resulting from the con-

struction is such that m ≡ 0 mod 4.

Remark. The 3m2 blocks in the design consists of m(m + 1) blocks from an RGD and

m(2m − 1) blocks from a BIBD. Hence its QBD is a BIBD-extended RGD. Notice that

2m−1 > m+1 for all m > 2. Hence the BIBD part contributes more blocks to the design

than the RGD.

Example 5.4.1. Let v = 8. Then m = 4. We obtain a (4×12)/2 RGSLR for 8 treatments

whose QBD is BIBD-extended as shown in Figure 5.9.

Notice from Figure 5.9 that the set of treatments, V = {1, 2, ..., 8}. Notice also that

the following 2-subsets of V form a starter in Z8: {1, 2}, {5, 7}, {3, 6} and {4, 8}, where

the differences between the pairs in each set are ±1, ±2, ±3 and 4, respectively. We note

that 4 = −4 in Z8.

Comments. By virtue of the construction, the design could be subdivided into two sec-

tions, viz, a rectangle and square, as demarcated by the double vertical lines, where the

rectangular section is a (4 × 8)/2 RGSLR for 8 treatments and the square section is a

(4 × 4)/2 Trojan square obtained by superimposing a Latin square whose treatment set

is V1 = {1, 3, 5, 7}, the set of odd number treatments on another Latin square which

is orthogonal to it and whose treatment set is V2 = {2, 4, 6, 8}, the set of even number

treatments.

The rectangle contains pairs of treatments at all the distances, d = 1, 2, 3, and 4; and

those pairs at an equal distance appear in a single row. For instance, pairs at distance d,

appear in row d. For all d < 4, each pair concurs once; and for d = 4, it concurs twice.

118

Furthermore, the square contains those pairs of treatments at odd distances, d = 1

and 3, only (where each of these pairs appears exactly once); thus, no block contains

treatments for even d. As a consequence, the treatment concurrences are 0 and 1 (which

is true for any Trojan square), with 0 corresponding to the concurrence counts for pairs of

treatments at even distances (the missing pairs), and 1, otherwise. Two rows (rows 1 and

4 in this case), each contains entirely pairs of treatments for a unique d, that is d = 1 and

3 for all pairs in rows 1 and 4, respectively; but for he remaining two rows, that is, the 2

middle rows–rows 2 and 3 each contains pairs for each odd value of d, the same number

of times, 2.

Hence, overall, in the design, every pair of treatments either concurs once or twice.

Those that concur once are those for which d is an even number less than 4, that is, where

d = 2; while those pairs for which d = 4 or an odd number concur twice.

The design has its QBD consisting of 48 blocks, which comprises an RGD and a BIBD.

The RGD component consists of 20 blocks (4 distinct blocks in the last row of the rectangle

and the 16 blocks from the Trojan square) while the BIBD component consists of 28 blocks

(all the remaining blocks in the rectangle).Thus the design is a RGSLR whose QBD is a

BIBD-extended RGD with treatment concurrence counts being 1 and 2.

5.4.3 Some Important Notes

If m is odd, then the number of pairs of symbols for each d∗ < dmax = m is 2m =
(m2−m)

(m+1)/2−1 = m(m−1)
(m−1)/2 . Furthermore, |V1 × V2| = m2 = 1(m) + 2m(m − 1)/2 gives the

total number of cells/pairs of symbols in ∆. This is true since m ∈ D, and there are m

pairs for which d∗ = m given by (i, i ±m), ∀i ∈ V1 and i ±m ∈ V2, where (i, i ±m) is

simply, the unique pair (i, i+m) or (i, i−m), since (i, i+m) = (i, i−m) in Z2m. Notice

that i ± m ∈ V2, which comprises even number symbols if V1 consists of odd number

symbols (since odd± odd = even). Similarly, if V1 consists of even number symbols, then

i±m ∈ V2, which consists of odd number symbols (since even± odd = odd). But for even

m, d∗ ∈ D is less than m, for each pair, with dmax = m− 1 (since in this case, supposing

there exists d∗ = m, then for all i ∈ V1, i + m 6∈ V2, whether V1 consists of odd or even

number symbols, as odd ± even = odd (or even ± even = even), which is a contradiction

in the sense that each pair consists of elements from the same set, V1. So we cannot have

a pair at distance m in the Trojan square.

Furthermore, if m is odd, every partition of V into V1 and V2 of sizes m will always

lead to the constructed design containing at least one pair with concurrence 3. To show

this, we proceed as follows:

Let no(Vl) and ne(Vl) denote the respective number of odd and even number symbols

in Vl, where l = 1, 2 for any partition of V into V1 and V2, with |V1|=|V2|= m, and no(Vl),

119

ne(Vl) ∈ [0,m], ∀ l = 1, 2 such that

2∑
l=1

no(Vl) =

2∑
l=1

ne(Vl) = m.

Similarly, no(Vt) + ne(Vt) = |Vt| = m, no(Vl) = ne(Vl′), and

ne(Vl) = no(Vl′) (5.1)

where l, l′ ∈ {1, 2}, l 6= l′ and t = l, l′.

Notice that, if m is odd, every partition of V into V1 and V2 leads to no(V1) 6= ne(V1).

Similarly, no(V2) 6= ne(V2). Consequently, by (5.1), no(V1) 6= no(V2).

Theorem 5.4.2. Let V = {1, 2, ..., 2m} be partitioned into V1 and V2 of the same size, m.

Let ∆+ denote a Trojan square of side m obtained by superimposing a Latin square, L1

on its orthogonal mate L2, and whose symbol sets correspond to V1 and V2, respectively.

Furthermore, let D+ = {d(i, i′) : i ∈ V1, i′ ∈ V2}, where d(i, i′) is the distance between the

vertices corresponding to the treatment symbols i and i′ in V . If m is odd, then for any such

partition, the number of pairs of treatment symbols in ∆+ for which d(i, i′) = m is n∗ =

m−2b, where b = |H|, H = {p±m : p ∈ V1, p±m ∈ V1, where p is odd and p±m is even}.

Proof. Note that m is odd. Let A = {x : x ∈ V1, x is odd}, B = {y : y ∈ V2, y is even},
C = {x + m : x ∈ A}, A′ = {z : z ∈ V1, z is even}, and B′ = {u : u ∈ V2, u is odd}.
Partition C into D and D′, where D = {x + m : x ∈ A, x + m ∈ B} , and D′ =

{x + m : x ∈ A, x + m ∈ A′}. Furthermore, let E = {z + m : z ∈ A′}. In a similar

manner, partition E into F and F ′, where F = {z + m : z ∈ A′, z + m ∈ B′}, and

F ′ = {z +m : z ∈ A′, z +m ∈ A}.
Hence, |A| = no(V1) = q, say, and |B| = ne(V2) = q, where q ∈ [0,m]. Notice that A′

is identical to V1\A so that |A′| = ne(V1) = m − |A| = m − q. Similarly, B′ is identical

to V2\B so that |B′| = no(V2) = m − |B| = m − q. Since D+ concerns those pairs of

symbols that make the cells in ∆+, then for all x ∈ A and y ∈ B, there is a cell in

∆+ containing the pair, (x, y) such that d(x, y) = d+ ∈ D+, where d(x, y) is odd, and

y = x±d+. Also, for all z ∈ A′ and u ∈ B′, there is a cell in ∆+ containing the pair, (z, u)

such that d(z, u) ∈ D+, where d(z, u) is odd, and u = z ± d+. Thus, the (x, y) and (z, u)

pairs in ∆+ have the property that d(x, y), d(z, u) is odd. Since m is odd, then d+ = m is

associated with those (x, y) and/or (z, u) pairs in ∆+ for which y = x+m = x−m, and

u = z +m = z −m, thus making y and u unique pairs for x and z, respectively.

We note that, in general, q ∈ [0,m]. Let |D| = a and |D′| = b, where a ∈ [0, q],

b ∈ [0, s] and s = min{q,m− q}. Notice that, a+ b = |C| = |A| = q.

Let |F | = c and |F ′| = d, where c ∈ [0,m−q], and d ∈ [0, t], where t = min{m−q, q} =

min{q,m − q} = s. Notice that each of F ′ and D′ involves a correspondence between

elements of the same pair of sets, A and A′, hence d = b.

120

Now, c + d = |E| = |A′| = m − q. Notice that, if m − q = 0, then c = d = 0.

Similarly, if m − q = m, then c = m and d = 0. For the case that q ∈ (0,m), if c = 0,

then d (= m − q) 6= 0 (since m − q ∈ (0,m), otherwise a contradiction) and vice versa.

Moreover, if d = q, then c (= m− 2q) 6= 0, since m is odd.

Hence, overall, with A as the originating set, there are a corresponding treatment

symbols from B (which are precisely, the elements of D) and the remaining q − a = b of

them from A′ (which are precisely, the elements of D′), thus only the a symbols form pairs

at distance m with the elements of A in ∆+. Similarly, overall, with A′ as the originating

set, there are c corresponding symbols from B′ (which are precisely, the elements of F)

and the remaining m− q− c = d of them from A (which are precisely, the elements of F ′),

hence only the c symbols form pairs at distance m with the elements of A′ in ∆+. Thus,

for odd m, and q ∈ [0,m], n∗ = a+ c.

Since q = a+ b, and m− q = c+ d, then q + (m− q) = (a+ b) + (c+ d) = m. Thus,

a+ c = m− (b+ d). Recall that b = d. Consequently a+ c = m− 2b . Hence n∗ = m− 2b.

�

Corollary 5.4.2. n∗ ∈ [1,m], and its value is always odd.

Proof. Since m is odd, and 2b is always even, then n∗ = m− 2b 6= 0, and is odd.

We remind that b ∈ [0, s], where s = min{q,m − q}. The maximum value of n∗ is

attained if and only if 2b attains its minimum value, that is, if b attains its minimum

value. Thus n∗ is maximum if and only if b = 0. Hence the upper bound for n∗ = m.

Furthermore, since n∗ is non-negative, and also, as given in the introductory part of

this proof non-zero, for odd m. Then, n∗ is strictly positive (that is n∗ > 0) for odd m.

Consequently, the lower bound for n∗ is 1, since n∗ ∈ Z.

Hence, since for odd m the upper bound for n∗ = m, and its lower bound 1, then

n∗ ∈ [1,m], and its value is always odd.

�

Corollary 5.4.3. If m is even, then n∗ = m − (b† + d†), where b† = |S|, S = {g ±m :

g ∈ V1, g ±m ∈ V1, where both g and g ±m are odd}; and d† = |T |, T = {j ±m : j ∈
V1, j ±m ∈ V1, where both j and j ±m are even}.

In this case n∗ ∈ [0,m], and it has an even value if it is non-zero.

In conclusion, since by Corollary 5.4.2, if m is odd, n∗ is at least 1. Then, ∆+ contains

n∗ pairs of symbols (which is at least one and at most m) for which d(i, i′) = m, where each

of these pairs already concurs twice in row m, say, in the part of the design constituted by

Γ, thus making the sum of concurrences for each of the n∗ pairs to be 3. Hence, it follows

that every partition of V into V1 and V2 of sizes m will always lead to the constructed

design containing at least one pair with concurrence 3.

121

5.4.4 An alternative construction for (m × 3m)/2 RGSLRs for v = 2m

treatments

If m is even, an alternative construction for an (m × 2m)/2 RGSLR for 2m treatments

which involves the use of a balanced tournament design (BTD(2m)) via exchange of a

pair of blocks in some columns: see Bailey and Monod (2001) can also be utilized in

combination with a Trojan square to obtain an (m× 3m)/2 RGSLR for 2m treatments in

a manner similar to the previous method that involves the use of starter. But this time,

the set of symbols V1 and V2 of the 2 Latin squares that make the Trojan square are such

that each of them consists of those entries in m/2 cells (combined) that appear in either

of the last two columns of the (m× 2m)/2 RGSLR.

The aforementioned construction for the (m × 2m)/2 RGSLR is based on the cyclic

group Z2m−1. Moreover, if a SLR can be derived from a cyclic tournament schedule via

exchange of a pair of blocks in some columns, then m 6≡ 2 (mod3): see Bailey and Monod

(2001).

Put u = 2m − 1 and regard Zu, the set of integers modulo u as {1, . . . , u}. Denote

the treatment set by V = {1, . . . , u} ∪ {∞}. Create an array of size m× 3m and label its

rows i = 1, . . . ,m − 1,∞ and the columns j = 1, . . . , u,∞, u + 2, . . . , 3m. Let Sij denote

the set of entries in the cell in position (i, j).

We give an algorithmic procedure for constructing the design below

5.4.5 An algorithmic procedure for the alternative construction

1. Create an m × 3m array and label its rows i = 1, . . . ,m − 1,∞ and the columns

j = 1, . . . , u,∞, u+ 2, . . . , 3m, where u = 2m− 1..

2. For i = 1, . . . ,m−1 and j = 1, . . . , u, put Sij = {j+ i, j− i}; and put S∞j = {j,∞}.

3. For j = 1, . . . , u−1 and i = i∗ ∈ {2j,−2j}∩{1, . . . ,m−1}, exchange Si∗j with S∞j ,

where i∗ is the unique entry in the intersection region of the sets.

4. For i = 1, . . . ,m− 1, put Si∞ = {3i/2,−3i/2}; and put S∞∞ = {u,∞}.

5. Make a Trojan square by superimposing 2 Latin squares, each being of order m

(from a set of MOLSs) and whose symbol sets, V1 and V2, respectively, are the

overall entries in any m/2 cells (chosen such that V1 and V2 are disjoint) in column

j+, where j+ = u or ∞.

6. Put the Trojan square obtained in step 5 into the remaining section of the array,

spanning columns u+ 2 to 3m.

Remark. The overall design comprises both an (m × 2m)/2 RGSLR and an (m ×m)/2

Trojan square, hence can be subdivided into a rectangle and square, where the rectangle

corresponds to the (m× 2m)/2 RGSLR and the square corresponds to the Trojan square.

122

The (m × 2m)/2 RGSLR is formed by the cells in columns 1 to ∞, where the column

label ∞ is equivalent to u+ 1, but the symbol ∞ is used for purposes of the construction.

Similarly, the cells in columns u+ 2 to 3m constitute the Trojan square.

Each pair of treatments that appear as a block in the rectangular section concurs

exactly once there except the pairs in columns u and∞ where each of them concurs twice

in the rectangle (in these 2 columns, precisely). The pattern of forming V1 and V2 ensures

that the entries in any cell in either of columns u and ∞, which constitute the pairs that

concur higher in the rectangle do not appear as a block in the Trojan-the square section,

since the cells in the Trojan square are constituted by pairs of symbols from the cross

product between V1 and V2. Hence no pair in columns u and ∞ appears as a block in the

square section. Moreover, each pair in the square section also appears exactly once in the

rectangle, but there are some pairs in the rectangle which are missing from the square.

Notice that, in the overall design, the rectangular section constitutes 2m2 blocks while

the square section constitutes m2 blocks. Furthermore, apart from the 2m blocks in

columns u and ∞, there are 2m(m − 1) other blocks in the rectangle. Notice also that

2m(m − 1) > m2 for all m > 2, since 2(m − 1) −m > 0 for all m > 2. Notice also that

2m(m− 1)−m2 = m(m− 2). Hence there are m(m− 2) pairs of treatments that appear

as a block in the rectangle and not in the square, hence they are precisely the pairs with

concurrences 0 in the Trojan and 1 in the overall design. Notice also that there is a total of

m+m2 = m(m+ 1) pairs with concurrences 2 in the overall design, where m of them are

the distinct pairs in columns u and u+1 while m2 of them are from the square. Moreover,

m(m− 2) < m(m+ 1) if m > 0 and that m(m− 2) = 0 if m = 2 but has a value that is a

positive integer for all m > 2. Hence when a Trojan square exists, the overall design has

m(m − 2) (fewer) treatment pairs with concurrences 1 and m(m + 1) (more) pairs with

concurrences 2.

Thus, in summary, the treatment concurrences are 2 for each pair in columns u and

∞. Similarly, the concurrences are 2 for those pairs in the rectangle that also appear in

the square; but it is 1 for those pairs in the rectangle that are missing from the square.

Hence the treatment concurrences in the overall design are 1 and 2, hence the construction

produces a RGSLR.

The QBD of the constructed design is a BIBD-extended RGD comprising an RGD

part formed by the m(m+ 1) blocks in columns ∞ to 3m and a BIBD part formed by the

m(2m− 1) blocks in columns 1 to u, as the extension. Hence there are more blocks in the

BIBD component than the RGD since m(2m− 1) > m(m+ 1) for all m > 2.

Example 5.4.2. Let v = 8. Then the corresponding (4 × 12)/2 RGSLR whose QBD

is BIBD-extended obtained via the algorithmic procedure in section 5.4.5 is as shown in

Figure 5.10.

By replacing the treatment symbol ∞ by 8, the design in Figure 5.10 transforms to

the design shown in Figure 5.11.

123

2 7 3 1 3 ∞ 4 ∞ 6 4 7 5 1 6 5 2 1 3 2 4 5 7 6 ∞

1 ∞ 4 7 5 1 6 2 7 3 6 ∞ 2 5 3 4 2 7 1 ∞ 6 3 5 4

4 5 2 ∞ 6 7 7 1 5 ∞ 2 3 3 4 1 6 5 ∞ 6 7 1 4 2 3

3 6 5 6 4 2 5 3 1 2 1 4 7 ∞ 7 ∞ 6 4 5 3 2 ∞ 1 7

Figure 5.10: An alternative (4× 12)/2 RGSLR for 8 treatments

2 7 3 1 3 8 4 8 6 4 7 5 1 6 5 2 1 3 2 4 5 7 6 8

1 8 4 7 5 1 6 2 7 3 6 8 2 5 3 4 2 7 1 8 6 3 5 4

4 5 2 8 6 7 7 1 5 8 2 3 3 4 1 6 5 8 6 7 1 4 2 3

3 6 5 6 4 2 5 3 1 2 1 4 7 8 7 8 6 4 5 3 2 8 1 7

Figure 5.11: An alternative (4×12)/2 RGSLR for 8 treatments with the treatment symbol

∞ replaced by 8

Comment. Notice that the designs shown in Figures 5.9 and 5.11 are non-isomorphic,

that is, neither of them can be obtained from the other by a permutation of its rows, a

permutation of its columns, a permutation of its treatments or a combination of more

than one of these. The symbol sets of the 2 Latin squares that make the Trojan square

component in Figure 5.10 are V1 = {1, 2, 5, 6} and V2 = {3, 4, 7,∞} obtained by pooling the

treatments from 2 distinct cells in either column 7 or column∞. Note that treatments from

any other different pairs of cells can be combined to give V1 and V2, provided V1 ∩V2 = ∅.

5.5 Construction for designs of the class (m× 4m)/2, where

v = 2m

We give construction for (m× 4m)/2 RGSLRs for 2m treatments which is another special

case of (m×m(θ+ 2))/2 RGSLRs with 2m treatments, where θ = 2. The construction is

equivalent to putting two (m × 2m)/2 RGSLRs for 2m treatments in an m × 4m array,

124

where the distinct treatment concurrence counts, λ1 and λ2 for both constituent SLRs are

such that λ1, λ2 ∈ {λ, λ+ 1}, for λ = 1 but in one of the SLRs, those treatment pairs with

a higher treatment concurrence counts, λ + 1 in the other SLR has a lower concurrence

count, λ in it whilst some treatment pairs which concur a fewer number of times, λ in the

other now concur a higher number of times, λ+ 1 in it. We obtain a parent (m× 2m)/2

RGSLR via starter or BTD if the condition for using each approach is satisfied: see Bailey

and Monod (2001), and then obtain the other from the parent design .

Let Λ1 and Λ2 denote the two constituent RGSLRs that make the design, where Λ1

is the parent design. If Λ1 is obtained via starter, then Λ2 is obtained by first identifying

a set of m blocks in row m of Λ1 containing distinct pairs of treatments (where the

differences modulo 2m between these pairs of treatments in each of the blocks is m) which

are precisely, those pairs of treatments that concur a higher number of times, 2 in Λ1 and

also form a parallel class. Denote this parallel class P1. Similarly, if Λ1 is obtained via

BTD, then P1 is constituted by the pairs of symbols in the m cells in either of columns u

and ∞, which are the pairs that concur higher (also twice) in this case, where u = 2m− 1

and ∞ is used for purposes of construction to label column u+ 1. Another parallel class,

P2, say, is obtained from P1 by applying a permutation, α, say, that relabels the treatments

in each set of P1 such that P2 contains no set in common with P1. Λ2 is then obtained

by applying α to relabel the treatments within each block of Λ1, thereby generating the

corresponding block in Λ2. If Λ1 and Λ2 are put (in any order) in an m × 4m array, the

resulting design is an (m× 4m)/2 RGSLR for 2m treatments.

We give algorithmic procedures for construction based on the 2 methods in sections

5.5.1 and 5.5.2, respectively.

5.5.1 An algorithmic procedure for the construction via starter

1. Label the treatments 1, 2, ..., 2m.

2. Partition the treatment set into m pairs, that is, m 2-subsets, viz {x1, y1}, {x2, y2},
. . ., {xm, ym} such that the differences (reduced modulo 2m) between these pairs

of treatments are ±1, ±2, . . ., ±m, respectively, thereby forming a starter in the

cyclic group Z2m.

3. Create an m × 4m array and label its rows i = 1, 2, ...,m and its columns j =

1, 2, ..., 2m, 2m+ 1, ..., 4m.

4. For all i = 1, 2, ...,m, insert in the cell in position (i, 1) of the array (that is, the cell

in row i and column 1) the 2-subset, {xi, yi} obtained in 2.

5. For all i = 1, 2, ...,m, develop the block in position (i, 1) , which contains {xi, yi},
cyclically, via successive addition of 1 (mod 2m), thereby generating the block in

position (i, j), for all j = 2, 3, ..., 2m.

125

6. Denote by P1, the parallel class formed by m blocks containing distinct pairs of

treatments in row m (between columns 1 and 2m of the array) where the treatments

in each of these blocks concur twice in this row, that is, each block in row m between

columns 1 and 2m has multiplicity 2; then, find a permutation, α that relabels the

treatments in each set in P1 to obtain another parallel class, P2, where P2 contains

no pair in common with P1 and P1 ∪ P2 gives the edges of a connected design, that

is, a single polygon on 2m vertices.

7. Apply α to every treatment in the first design Λ1, which occupies columns 1 to 2m

of the array to obtain Λ2 occupying columns 2m+ 1 to 4m.

5.5.2 An algorithmic procedure for the construction via BTD

1. Label the treatments 1, . . . , u,∞, where u = 2m− 1.

2. Create an m × 4m array and label its rows i = 1, . . . ,m − 1,∞ and the columns

j = 1, . . . , u,∞, u+ 2, . . . , 4m.

3. For i = 1, . . . ,m−1 and j = 1, . . . , u, put Sij = {j+ i, j− i}; and put S∞j = {j,∞}.

4. For j = 1, . . . , u−1 and i = i∗ ∈ {2j,−2j}∩{1, . . . ,m−1}, exchange Si∗j with S∞j ,

where i∗ is the unique entry in the intersection region of the sets.

5. For i = 1, . . . ,m− 1, put Si∞ = {3i/2,−3i/2}; and put S∞∞ = {u,∞}.

6. Denote by P1, the parallel class formed by the m blocks in either of columns u and∞
where the treatments in each of these blocks concur once in each of these columns,

that is, each block in either column u or column∞ has multiplicity 2 (while the other

treatments in the rest of the blocks concur only once); then, find a permutation, γ,

say, that relabels the treatments in each set in P1 to obtain another parallel class,

P2, where P2 contains no pair in common with P1 and P1 ∪ P2 gives the edges of a

connected design, that is, a single polygon on 2m vertices.

7. Apply γ to every treatment in the first design Λ1, which occupies columns 1 to ∞
of the array to obtain Λ2 occupying columns u+ 2 to 4m.

5.5.3 Basis for imposing the restriction that P1∪P2 should give the edges

of a polygon on 2m vertices

If we have 6 treatments and 6 edges, one possibility is a hexagon, another possibility is

2 triangles. If we have 6 blocks of size 2, the hexagon is best because the other one is

not connected. If we consider a BIBD-extended design, suppose we have all pairs from

6 treatments in that BIBD. Then for our BIBD-extended design, having a BIBD and

adding an optimal design to it should be better than adding a non-optimal design. A

good strategy is that what is added should be good in the smallest case.

126

For instance, consider the two designs for 6 treatments in 6 blocks of size 2–the hexagon

and the 2 triangles. For the design that constitutes the hexagon, its scaled information

matrix has the eigenvalues 0.0000, 0.2500 (2), 0.7500 (2) and 1.0000, where the values

in the brackets are the corresponding multiplicities; giving the c.e.f.s of the design to be

0.2500 (2), 0.7500 (2) and 1.0000 such that the A-, D- and E-efficiency measures are

0.4286, 0.5119 and 0.2500, respectively. Similarly, for the design with the 2 triangles,

the eigevnalues of its scaled information matrix are 0.0000 (2) and 0.7500 (4) with the

corresponding multiplicities in brackets, hence the c.e.f.s are 0.0000, 0.7500 (4) and the

A-, D- and E-efficiency measures are all zero, showing that the design with the hexagon is

better than the one with 2 triangles with respect to the A-, D- and E-optimality criteria.

Now, consider the BIBD-extended designs consisting of all the
(
6
2

)
= 15 blocks from

the BIBD and the 6 blocks from each of the hexagon and the 2 triangles added to it. The

scaled information matrix of the BIBD-extended design has eigenvalues 0.0000, 0.5000 (2),

0.6429 (2) and 0.7143, which gives the c.e.f.s as 0.5000 (2), 0.6429 (2) and 0.7143, for the

case that the hexagon is added to the BIBD. Hence the A-, D- and E-efficiency measures

are 0.5875, 0.5938 and 0.5000, respectively. Similarly, for the BIBD-extended design where

the 2 triangles are added to the BIBD, its scaled information matrix has the eigenvalues

0.0000, 0.4286 and 0.6429 (4), giving the c.e.f.s to be 0.4286 and 0.6429 (4), and the A-,

D- and E-efficiency measures to be 0.5845, 0.5928 and 0.4286, respectively.

Hence, the BIBD-extended design is better on all the 3 optimality criteria (A-, D- and

E-) when the hexagon is added to the BIBD than when the 2 triangles are added.

Comments. Let the constructed design be Γ. Then, by the algorithm, Γ takes the form

Γ = Λ1 Λ2

Another design of the same size can be obtained by swapping the order of inserting Λ1

and Λ2 in the array, where the design resulting from the swapping is isomorphic to the

original design, Γ.

Furthermore, if the array size is adjusted to 4m×m, and the roles of rows and columns

are exchanged, then the resulting design is a (4m×m)/2 RGSLR.

Again, by adjusting the size of the array to 2m× 2m, and then putting Λ1 and Λ2, we

obtain another design, Γ∗, say, which is a (2m× 2m)/2 RGSLR, and can take the form

Γ∗ =
Λ1

Λ2

if Λ1 is inserted in the array to cover rows 1 to m and then Λ2 which covers rows m + 1

to 2m. However, if Λ1 and Λ2 are put in reversed order in the array, it produces another

design of the same size, the two designs being isomorphic.

127

5 6 6 7 7 8 8 9 9 10 10 1 1 2 2 3 3 4 4 5 6 1 1 3 3 7 7 8 8 9 9 10 10 2 2 4 4 5 5 6

1 9 2 10 3 1 4 2 5 3 6 4 7 5 8 6 9 7 10 8 10 8 2 9 4 10 5 2 6 4 1 5 3 6 7 1 8 3 9 7

3 10 4 1 5 2 6 3 7 4 8 5 9 6 10 7 1 8 2 9 4 9 5 10 6 2 1 4 3 5 7 6 8 1 9 3 10 7 2 8

4 8 5 9 6 10 7 1 8 2 9 3 10 4 1 5 2 6 3 7 5 7 6 8 1 9 3 10 7 2 8 4 9 5 10 6 2 1 4 3

2 7 3 8 4 9 5 10 6 1 7 2 8 3 9 4 10 5 1 6 2 3 4 7 5 8 6 9 1 10 3 2 7 4 8 5 9 6 10 1

Figure 5.12: Γ: A (5× 20)/2 RGSLR for 10 treatments

The quotient block design (QBD) of Λg, where g = 1, 2 is a BIBD-extended RGD.

It comprises an RGD with m blocks (whose blocks are Pg), and a BIBD which has b =

m(2m − 1) blocks (having index, λ = 1), as extension. Hence, the overall design, Γ or

Γ∗ has its QBD comprising an RGD with 2m blocks (whose blocks are P1 ∪ P2) whose

treatment concurrence counts are 0 and 1, and a BIBD with b = 2m(2m − 1), λ = 2, as

extension. In particular, for Λg, g = 1, 2, the treatment concurrences are 2 for each pair

in Pg and 1, otherwise. Since Pg ∩ Pg′ = ∅, then each pair in Pg, g = 1, 2 appears exactly

once in Λg′ , g 6= g′. Hence, in Γ or Γ∗, the treatment concurrences are 3 for each pair in

P1 ∪ P2, and 2, otherwise. Thus, Γ or Γ∗ is a RGSLR whose QBD is a BIBD-extended

RGD.

Moreover, since the constructed design is a RGSLR whose QBD is a BIBD-extended

RGD, then by virtue of the BIBD component, it is a connected design.

We illustrate the construction with the following examples

Example 5.5.1. Let v = 10. Then m = 5. The sets {5, 6}, {1, 9}, {3, 10}, {4, 8} and

{2, 7}, for instance, form a starter in Z10, and we obtain a (5× 20)/2 RGSLR, Γ as shown

in Figure 5.12 using the algorithmic procedure given in section 5.5.1.

Notice that Λ1 and Λ2 are the designs shown in Figures 5.13 and 5.14, respectively,

where P1 = {{2, 7}, {3, 8}, {4, 9}, {5, 10}, {6, 1}}. Similarly, P2 = {{2, 3}, {4, 7}, {5, 8},
{6, 9}, {1, 10}}.

We note that P2 was obtained by imposing a permutation, α on the treatments in each

set of P1, where

α =

 1 2 3 4 5 6 7 8 9 10

10 2 4 5 6 1 3 7 8 9


Notice that P2 contains no pair in common with P1, that is P1 ∩ P2 = ∅. Also P1 ∪ P2

form the edges of a 10-gon (or decagon). The QBD of Λ1 comprises P1, which is an RGD

with 5 blocks and a BIBD with b = 45, λ = 1, as extension.

Similarly, the QBD of Λ2 comprises P2, which is also an RGD with 5 blocks, as before

and a BIBD (with the same value of b and λ as Λ1), as extension.

128

5 6 6 7 7 8 8 9 9 10 10 1 1 2 2 3 3 4 4 5

1 9 2 10 3 1 4 2 5 3 6 4 7 5 8 6 9 7 10 8

3 10 4 1 5 2 6 3 7 4 8 5 9 6 10 7 1 8 2 9

4 8 5 9 6 10 7 1 8 2 9 3 10 4 1 5 2 6 3 7

2 7 3 8 4 9 5 10 6 1 7 2 8 3 9 4 10 5 1 6

Figure 5.13: Λ1: A (5× 10)/2 RGSLR for 10 treatments obtained via starter

6 1 1 3 3 7 7 8 8 9 9 10 10 2 2 4 4 5 5 6

10 8 2 9 4 10 5 2 6 4 1 5 3 6 7 1 8 3 9 7

4 9 5 10 6 2 1 4 3 5 7 6 8 1 9 3 10 7 2 8

5 7 6 8 1 9 3 10 7 2 8 4 9 5 10 6 2 1 4 3

2 3 4 7 5 8 6 9 1 10 3 2 7 4 8 5 9 6 10 1

Figure 5.14: Λ2: A (5× 10)/2 RGSLR for 10 treatments obtained from Λ1 via the permu-

tation, α

The design, Γ, shown in Figure 5.12 is a RGSLR whose QBD is a BIBD-extended

RGD, comprising an RGD with 10 blocks, whose blocks are P1 ∪ P2 and a BIBD with

b = 90, λ = 2, as extension. The blocks of the RGD form the edges of a 10-gon (or

decagon). The design is connected since it contains a BIBD.

Example 5.5.2. Let v = 18. Then m = 9, and the sets {16, 17}, {3, 5}, {10, 13}, {4, 8},
{2, 15}, {6, 12}, {7, 14}, {1, 11} and {9, 18}, for instance, form a starter in Z18, and we

obtain a (9× 36)/2 RGSLR for 18 treatments as shown in Figure 5.15 via the algorithmic

procedure in section 5.5.1, where Λ1 and Λ2 are the designs shown in Figures 5.16 and

5.17, respectively.

Notice that P1 = {{9, 18}, {10, 1}, {11, 2}, {12, 3}, {13, 4}, {14, 5}, {15, 6}, {16, 7},
{17, 8}}. Similarly, P2 = {{9, 10}, {11, 18}, {12, 1}, {13, 2}, {14, 3}, {15, 4}, {16, 5},
{17, 6}, {8, 7}}. P2 was obtained by imposing a permutation β on the treatments in each

set of P1, where

β =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

18 1 2 3 4 5 6 7 9 11 12 13 14 15 16 17 8 10


Notice also that, P2 contains no pair in common with P1, and P1 ∪ P2 form the edges

of an 18-gon (or octadecagon). The QBD of Λ1 comprises P1, which is an RGD with 9

129

161718 1 2 3 4 5 6 7 8 9 101112131415 17 8 1018 1 2 3 4 5 6 7 9 111213141516

1718 1 2 3 4 5 6 7 8 9 10111213141516 8 1018 1 2 3 4 5 6 7 9 11121314151617

3 4 5 6 7 8 9 101112131415161718 1 2 2 3 4 5 6 7 9 11121314151617 8 1018 1

5 6 7 8 9 101112131415161718 1 2 3 4 4 5 6 7 9 11121314151617 8 1018 1 2 3

101112131415161718 1 2 3 4 5 6 7 8 9 11121314151617 8 1018 1 2 3 4 5 6 7 9

131415161718 1 2 3 4 5 6 7 8 9 101112 14151617 8 1018 1 2 3 4 5 6 7 9 111213

4 5 6 7 8 9 101112131415161718 1 2 3 3 4 5 6 7 9 11121314151617 8 1018 1 2

8 9 101112131415161718 1 2 3 4 5 6 7 7 9 11121314151617 8 1018 1 2 3 4 5 6

2 3 4 5 6 7 8 9 101112131415161718 1 1 2 3 4 5 6 7 9 11121314151617 8 1018

15161718 1 2 3 4 5 6 7 8 9 1011121314 1617 8 1018 1 2 3 4 5 6 7 9 1112131415

6 7 8 9 101112131415161718 1 2 3 4 5 5 6 7 9 11121314151617 8 1018 1 2 3 4

12131415161718 1 2 3 4 5 6 7 8 9 1011 1314151617 8 1018 1 2 3 4 5 6 7 9 1112

7 8 9 101112131415161718 1 2 3 4 5 6 6 7 9 11121314151617 8 1018 1 2 3 4 5

1415161718 1 2 3 4 5 6 7 8 9 10111213 151617 8 1018 1 2 3 4 5 6 7 9 11121314

1 2 3 4 5 6 7 8 9 101112131415161718 18 1 2 3 4 5 6 7 9 11121314151617 8 10

1112131415161718 1 2 3 4 5 6 7 8 9 10 121314151617 8 1018 1 2 3 4 5 6 7 9 11

9 101112131415161718 1 2 3 4 5 6 7 8 9 11121314151617 8 1018 1 2 3 4 5 6 7

18 1 2 3 4 5 6 7 8 9 1011121314151617 1018 1 2 3 4 5 6 7 9 11121314151617 8

Figure 5.15: Γ: A (9× 36)/2 RGSLR for 18 treatments

1617171818 11 22 33 44 55 66 77 88 99 10101111121213131414151516

3 54 65 76 87 98 109 11101211131214131514161517161817 118 21 32 4

10131114121513161417151816 117 218 31 42 53 64 75 86 97 108 119 12

4 85 96 107 118 129 131014111512161317141815 116 217 318 41 52 63 7

2 153 164 175 186 17 28 39 410 511 612 713 814 915101611171218131 14

6 127 138 149 1510161117121813 114 215 316 417 518 61 72 83 94 105 11

7 148 159 161017111812 113 214 315 416 517 618 71 82 93 104 115 126 13

1 112 123 134 145 156 167 178 189 110 211 312 413 514 615 716 817 91810

9 1810 111 212 313 414 515 616 717 818 91 102 113 124 135 146 157 168 17

Figure 5.16: Λ1: A (9× 18)/2 RGSLR for 18 treatments obtained via starter

130

17 88 10101818 11 22 33 44 55 66 77 99 11111212131314141515161617

2 43 54 65 76 97 119 121113121413151416151716 817108 1810 118 21 3

111412151316141715 8161017188 110 218 31 42 53 64 75 96 117 129 13

3 74 95 116 127 139 1411151216131714 81510161817 18 210 318 41 52 6

1 162 173 84 105 186 17 29 311 412 513 614 715 9161117128 1310141815

5 136 147 159 16111712 81310141815 116 217 38 410 518 61 72 93 114 12

6 157 169 1711 81210131814 115 216 317 48 510 618 71 92 113 124 135 14

18121 132 143 154 165 176 87 109 1811 112 213 314 415 516 617 78 91011

9 10111812 113 214 315 416 517 68 710 918111 122 133 144 155 166 177 8

Figure 5.17: Λ2: A (9 × 18)/2 RGSLR for 18 treatments obtained from Λ1 by imposing

the permutation, β

2 5 2 ∞ 3 ∞ 5 3 1 4 4 1 5 ∞ 5 3 1 3 ∞ 1 4 2 2 4

1 ∞ 4 5 5 1 4 ∞ 2 3 3 2 4 3 2 ∞ ∞ 4 2 3 5 1 1 5

3 4 3 1 4 2 1 2 5 ∞ 5 ∞ 1 2 1 4 2 5 4 5 ∞ 3 ∞ 3

Figure 5.18: A (3× 12)/2 RGSLR for 6 treatments

blocks, and a BIBD with b = 153, λ = 1, as extension.

Similarly, the QBD of Λ2 comprises P2, which is also an RGD with 9 blocks, like P1,

and a BIBD (with the same value of b and λ as in Λ1), which is the extension.

The design, Γ, shown in figure 5.15 is a RGSLR with QBD a BIBD-extended RGD,

comprising an RGD with 18 blocks, whose blocks are P1 ∪ P2 and a BIBD with b =

306, λ = 2, as extension, where the blocks of the RGD form the edges of an18-gon (or

octadecagon). It is a connected design by virtue of the BIBD component,

Example 5.5.3. Let v = 6. Then m = 3. We obtain a (3 × 12)/2 RGSLR shown in

Figure 5.18 via the procedure in section 5.5.2.

Notice from Figure 5.18 that P1 = {{1, 4}, {2, 3}, {5,∞}}, and P2 = {{4, 2}, {5, 1}, {∞, 3}}.

131

Furthermore, the permutation

γ =

1 2 3 4 5 ∞

4 5 1 2 ∞ 3


was imposed on every treatment in P1 to obtain P2 and also on every treatment in Λ1 to

obtain Λ2.

5.6 Construction for designs of the class (m× 6m)/2, where

v = 2m

An (m × 6m)/2 RGSLR for 2m treatments is another special case of (m ×m(θ + 2))/2

RGSLRs for 2m treatments, where θ = 4. The construction given here extends the

construction for (m×4m)/2 RGSLRs given in section 5.5.1. In this case, the design under

construction requires an extra 2m columns more than an (m × 4m)/2 SLR (but on the

same set of treatments with cardinality 2m), and similarly, 4m columns more than an

(m× 2m)/2 SLR.

We start by obtaining a parent (m × 2m)/2 RGSLR for 2m treatments, where this

parent design occupies columns 1 to 2m of an m×6m array. We modify the two procedures

in Section 5.5, viz, two permutations are sought. A parallel class is identified in row m

(or either of columns u and ∞, where u = 2m − 1) of the parent design, as described in

section 5.5 depending on the method used. One of the permutations is first applied to the

treatments within each set in the parallel class to obtain another parallel class. The other

permutation is then imposed, also on the treatments within each set in the same parallel

class from the parent design to obtain a third parallel class.

Let α1 and α2 denote the permutations; and let P1, P2 and P3 denote the three parallel

classes, respectively. Suppose α1 is applied to P1. Then α1 relabels the treatments within

each cell in the parent design to obtain treatments to be contained in a corresponding

cell between columns 2m + 1 and 4m of an m × 6m array. Similarly, α2 permutes the

treatments within each cell in the parent design to generate entries for a corresponding

cell between columns 4m+ 1 and 6m of the same array.

The choices of α1 and α2 are such that, P1, P2 and P3 are pairwise disjoint, that is,

Pt and Pt′ contain no pair of treatment symbols in common, for all t, t′ = 1, 2, 3, where

t 6= t′; and the ‘union’ of each pair of these parallel classes gives the edges of a connected

design, that is, a single polygon on 2m vertices. Moreover, we choose P3 such that each

pair of symbols in it are equidistant from each other on the 2m-gon formed by P1 ∪ P2,

where the distance between the symbols of each pair on the 2m-gon is maximal, m, giving

the diameter of the 2m-gon.

132

5.6.1 An algorithmic procedure for constructing the designs via starter

1. Label the treatments 1, 2, ..., 2m.

2. Partition the treatment set into m pairs, that is, m 2-subsets, viz {x1, y1}, {x2, y2},
. . ., {xm, ym} such that the differences (reduced modulo 2m) between these pairs

of treatments are ±1, ±2, . . ., ±m, respectively, thereby forming a starter in the

cyclic group Z2m.

3. Create an m × 6m array and label its rows i = 1, 2, ...,m and its columns j =

1, 2, ..., 6m.

4. For all i = 1, 2, ...,m, insert in the cell in position (i, 1) of the array (that is, the cell

in row i and column 1) the 2-subset, {xi, yi} obtained in step 2.

5. For all i = 1, 2, ...,m, develop the block in position (i, 1) , which contains {xi, yi},
cyclically, via successive addition of 1 (mod 2m), thereby generating the block in

position (i, j), for all j = 2, 3, ..., 2m.

6. Denote by P1, the parallel class formed by m distinct pairs of treatment symbols in

row m between columns 1 and 2m of the array, where each pair concurs twice in this

row; and find a permutation, α1, say, of the treatments that relabels the treatments

in each pair in P1 to obtain another parallel class, P2, where P2 contains no pair in

common with P1. Find another permutation, α2 of the treatments and impose it

on P1 to relabel the treatments within its pairs, thereby obtaining another parallel

class, P3, where P3 contains no pair in common with P1 ∪ P2; and for all t 6= t′,

where t = 1, 2, 3. Pt ∪ Pt′ gives the edges of a connected design-a single polygon on

2m vertices.

7. Apply α1 to every treatment in the first design Υ1, which occupies columns 1 to 2m

of the array to obtain Υ2 in columns 2m + 1 to 4m . Similarly, apply α2 to Υ1 to

obtain Υ3 to fill columns 4m+ 1 to 6m.

5.6.2 An algorithmic procedure for the construction via BTD

1. Label the treatments 1, . . . , u,∞, where u = 2m− 1.

2. Create an m × 6m array and label its rows i = 1, . . . ,m − 1,∞ and the columns

j = 1, . . . , u,∞, u+ 2, . . . , 4m, ..., 6m.

3. For i = 1, . . . ,m−1 and j = 1, . . . , u, put Sij = {j+ i, j− i}; and put S∞j = {j,∞}.

4. For j = 1, . . . , u−1 and i = i∗ ∈ {2j,−2j}∩{1, . . . ,m−1}, exchange Si∗j with S∞j ,

where i∗ is the unique entry in the intersection region of the sets.

5. For i = 1, . . . ,m− 1, put Si∞ = {3i/2,−3i/2}; and put S∞∞ = {u,∞}.

133

6. Denote by P1, the parallel class formed by the m blocks in either of columns u and∞
where the treatments in each of these blocks concur once in each of these columns ,

that is, each block in either column u or column∞ has multiplicity 2 (while the other

treatments in the rest of the blocks concur only once); then, find a permutation, γ1,

say, that relabels the treatments in each set in P1 to obtain another parallel class,

P2, where P2 contains no pair in common with P1. Find another permutation, γ2

and apply it to each treatment in P1 to obtain another parallel class P3, where P3

contains no pair in common with P1 ∪ P2; and for all w = 1, 2, 3, where w 6= w′,

Pw ∪ Pw′ gives the edges of a connected design–a single polygon on 2m vertices.

7. Apply γ1 to every treatment in the first design Υ1, which occupies columns 1 to ∞
of the array to obtain Υ2 occupying columns u+ 2 to 4m. Similarly, apply γ2 to Υ1

to obtain Υ3 to fill columns 4m+ 1 to 6m.

Comments. Let Ω denote the constructed design. Then, by the algorithm, Ω takes the

form

Ω = Υ1 Υ2 Υ3

where Υl, l = 1, 2, 3 can appear in any order in the array. Thus another design of the same

size can be obtained by interchanging the positions where Υl, l = 1, 2, 3 appears in an

array of the same size. This means that, in addition to Ω, there are np−1 other designs of

the same size that can be obtained by randomly ordering the constituent designs within

the array, where np =3 P3 = 3!. Each resulting design is isomorphic to Ω.

Furthermore, if the array size is adjusted to 6m×m, and the roles of rows and columns

in the entire array are exchanged, then the resulting design is a (6m×m)/2 RGSLR. Other

designs of the same size can be obtained if the positions of the Υis are interchanged within

an array of the same size.

Again, by adjusting the size of the array to 3m × 2m, and then putting Υ1, Υ2 and

Υ3, we obtain another design, Ω∗, say, which is a (3m×2m)/2 RGSLR for 2m treatments,

and takes the form

Ω∗ =

Υ1

Υ2

Υ3

if they are put in the array in a natural order such that Υ1 appears between rows 1 and

m, Υ2 appears between rows m+ 1 and 2m and then Υ3 appears between rows 2m+ 1 to

134

3m. Any change in ordering within an array of the same size produces another design of

the same size which is isomorphic to Ω∗.

Moreover, if the array size is adjusted to 2m× 3m, and the roles of rows and columns

are exchanged within Υl, for all l = 1, 2, 3, then the resulting design is a (2m × 3m)/2

RGSLR. Also different orderings/arrangements within arrays of the same size produce

designs of the same size that are isomorphic.

The QBD of Υl, l = 1, 2, 3 is a BIBD-extended RGD. It comprises an RGD with

m blocks (whose blocks are Pl), and a BIBD which has b = m(2m − 1) blocks (having

index, λ = 1), as extension. Hence, the overall design (whether Ω, Ω∗, or any of the

other possibilities) has its QBD comprising an RGD with 3m blocks (whose blocks are

P1 ∪ P2 ∪ P3) which has concurrence counts 0 and 1, and a BIBD with b = 3m(2m− 1),

λ = 3, as extension. Thus, the overall design is a RGSLR whose QBD is a BIBD-extended

RGD whose treatment concurrence counts are 3 and 4.

In particular, for Υl, where l = 1, 2, 3, the treatment concurrence counts are 2 for each

pair in Pl and 1, otherwise. Since for all l 6= l′, Pl ∩Pl′ = ∅ (the Pls are pairwise disjoint),

then each pair in Pl, where l= 1, 2, 3 appears exactly once in Υl′ for all l 6= l′. Hence in

Ω, Ω∗, or any of the other possibilities, the treatment concurrence counts are 4 for each

pair in P1 ∪ P2 ∪ P3, and 3, otherwise. That is, if λuu′ denote the treatment concurrence

counts between the pair (u, u′) in the overall design, then

λuu′ =


4, if (u, u′) ∈

3⋃
l=1

Pl,

3, otherwise.

Moreover, by virtue of the BIBD component, it is a connected design.

We illustrate the construction with the following example

Example 5.6.1. Let v = 10. Then m = 5 and the sets {5, 6}, {1, 9}, {3, 10}, {4, 8} and

{2, 7}, as was given in example 5.5.1, form a starter in Z10. By the procedure in section

5.6.1, we obtain Ω, a (5×30)/2 RGSLR for 10 treatments whose QBD is a BIBD-extended

RGD: see Figure 5.19.

Notice that P1 = {{2, 7}, {3, 8}, {4, 9}, {5, 10}, {6, 1}}. Similarly, P2 = {{2, 3}, {4, 7},
{5, 8}, {6, 9}, {1, 10}} and P3 = {{2, 1}, {7, 10}, {4, 5}, {9, 8}, {6, 3}}.

P2 and P3 can be obtained from P1 by imposing the permutations, α1 and α2, respec-

tively, on every treatment in P1, where

α1 =

 1 2 3 4 5 6 7 8 9 10

10 2 4 5 6 1 3 7 8 9



135

5 6 7 8 9 10 1 2 3 4 6 1 3 7 8 9 10 2 4 5 9 6 1 10 5 8 3 2 7 4

6 7 8 9 10 1 2 3 4 5 1 3 7 8 9 10 2 4 5 6 6 1 10 5 8 3 2 7 4 9

1 2 3 4 5 6 7 8 9 10 10 2 4 5 6 1 3 7 8 9 3 2 7 4 9 6 1 10 5 8

9 10 1 2 3 4 5 6 7 8 8 9 10 2 4 5 6 1 3 7 5 8 3 2 7 4 9 6 1 10

3 4 5 6 7 8 9 10 1 2 4 5 6 1 3 7 8 9 10 2 7 4 9 6 1 10 5 8 3 2

10 1 2 3 4 5 6 7 8 9 9 10 2 4 5 6 1 3 7 8 8 3 2 7 4 9 6 1 10 5

4 5 6 7 8 9 10 1 2 3 5 6 1 3 7 8 9 10 2 4 4 9 6 1 10 5 8 3 2 7

8 9 10 1 2 3 4 5 6 7 7 8 9 10 2 4 5 6 1 3 10 5 8 3 2 7 4 9 6 1

2 3 4 5 6 7 8 9 10 1 2 4 5 6 1 3 7 8 9 10 2 7 4 9 6 1 10 5 8 3

7 8 9 10 1 2 3 4 5 6 3 7 8 9 10 2 4 5 6 1 1 10 5 8 3 2 7 4 9 6

Figure 5.19: Ω: A (5× 30)/2 RGSLR for 10 treatments

and

α2 =

1 2 3 4 5 6 7 8 9 10

3 2 7 4 9 6 1 10 5 8


Notice that ∀ l 6= l′, Pl∪Pl′ form the edges of a 2m-gon. Notice also that (P1∪P2)∩P3 =

(P1 ∩ P3) ∪ (P2 ∩ P3) = ∅. Hence P1 ∩ P3 = P2 ∩ P3 = ∅ and P1 ∩ P2 ∩ P3 = ∅. Thus,

P1 ∩ P2 = P1 ∩ P3 = P2 ∩ P3 = ∅, that is, P1, P2 and P3 are pairwise disjoint since Pl 6= ∅
for any l = 1, 2, 3. Moreover, P1∪P2, P1∪P3, and P2∪P3, each form the edges of a 10-gon

Notice also that, each constituent design, Υ1, Υ2 and Υ3 in Figure 5.19, comprises an

RGD, Pl, which has 5 blocks (whose treatment concurrences are 0 and 1) and a BIBD

with 45 blocks (whose treatment concurrences are 1), which is the extension.

The constructed design, Ω, is thus, a RGSLR whose QBD is BIBD-extended, compris-

ing an RGD with 15 blocks, whose blocks are P1 ∪ P2 ∪ P3 (having concurrences 0 and

1) and a BIBD with 135 blocks, λ = 3, as extension. Overall, in the design, each pair

of treatments in P1 ∪ P2 ∪ P3 concurs 4 times, while each of those pairs that are not in

P1 ∪ P2 ∪ P3 concurs 3 times.

Notice that Ω extends the (5 × 20)/2 RGSLR for 10 treatments (Γ) shown in Figure

5.12 by adding an extra 10 columns to it.

Example 5.6.2. Let v = 6. Then m = 3. An implementation of the algorithm in section

5.6.2 produces the (3× 18)/2 RGSLR shown in Figure 5.20.

Notice from Figure 5.20 that P1 = {{1, 4}, {2, 3}, {5,∞}, P2 = {{4, 2}, {5, 1}, {∞, 3}}
and P3 = {{1, 3}, {2, 5}, {4,∞}}. Furthermore, the permutation γ1, where

γ1 =

1 2 3 4 5 ∞

4 5 1 2 ∞ 3


136

2 5 2 ∞ 3 ∞ 5 3 1 4 4 1 5 ∞ 5 3 1 3 ∞ 1 4 2 2 4 2 4 2 ∞ 5 ∞ 4 5 1 3 3 1

1 ∞ 4 5 5 1 4 ∞ 2 3 3 2 4 3 2 ∞ ∞ 4 2 3 5 1 1 5 1 ∞ 3 4 4 1 3 ∞ 2 5 5 2

3 4 3 1 4 2 1 2 5 ∞ 5 ∞ 1 2 1 4 2 5 4 5 ∞ 3 ∞ 3 5 3 5 1 3 2 1 2 4 ∞ 4 ∞

Figure 5.20: A (3× 18)/2 RGSLR for 6 treatments

imposed on every treatment in P1 gives P2. Similarly, P3 can be obtained by applying the

permutation γ2 to every treatment in P1, where

γ2 =

1 2 3 4 5 ∞

1 2 5 3 4 ∞


5.7 Construction when v is odd

We give constructions for (m × ηm)/2 RGSLRs where the number of treatments, v = m

is odd. As in the previous constructions, we consider designs whose QBDs are BIBD-

extended. We give constructions for designs with η = 1, 2, . . . , t, where t ≤ δ, δ =

(m− 1)/2. In particular, if m is an odd prime, then t = δ. But if m is not an odd prime,

then t < δ. When η = 1, we obtain the parent/basic design, which is then utilized to

give constructions for larger designs with higher values of η. We also give, in addition, a

general construction for these. Moreover, if η = δ, the construction gives a BSLR.

In the designs under construction, each treatment appears nr = 2η times in each row

and nc = 2 times in each column, hence overall, appears 2ηm times. Moreover, for any

treatment of the design, the sum of concurrences with other treatments is 2ηm.

Furthermore, in a similar manner to when v was even, we obtain RGSLRs whose QBDs

are also BIBD-extended by adding a BSLR to a RGSLR, where both contain the same

treatments and are conformable with respect to size.

5.7.1 Construction for (m×m)/2 RGSLRs

The designs considered in this section are a special case of the (m×ηm)/2 RGSLRs given

in the preceding section where η = 1. They are the basic design from which the larger

designs can be obtained. It follows from the discussion in the preceding section that each

treatment of these designs appears 2 times in each row and in each column, hence appears

2m times in the design. Similarly, for each treatment, the sum of concurrences with the

other treatments is 2m, which is identical to its replication number but doubles the number

of treatments.

137

5.7.2 Some preliminaries

Let the treatment set be denoted V = {1, . . . ,m}. The m treatments can be put in m

sets of size 2 such that each treatment appears in 2 sets and each time with a different

treatment, that is, it appears 2 times overall and the multiplicity of each set is 1, hence no

repeats of the sets. To find an appropriate allocation (pattern) of concurrences for each

treatment, α ∈ V with its pair within its set and also with distinct pairs from other sets

(where any pair from another set when paired with α is not a pair contained in any of the

sets) such that these concurrences sum to 2m, we proceed as follows. Firstly, we find the

number of distinct pairs that α requires from external sets, that is, other sets excluding

the set where it is contained.

Denote the member sets for the m sets by Ai, where i = 1, . . . ,m. Since Ai, for

all i contains distinct treatments and each treatment appears 2 times among the sets

with no repeats of Ai, then for α, β ∈ Ai, there exist Ai′ and Ai′′ , where i 6= i′ 6= i′′

such that α ∈ Ai′ and β ∈ Ai′′ . It follows that Ai ∩ Ai′ = {α}, Ai ∩ Ai′′ = {β} and

Ai ∩ (Ai′ ∪Ai′′) = (Ai ∩Ai′) ∪ (Ai ∩Ai′′) = Ai.

For a fixed α, between Ai′ and Ai′′ , α has exactly 1 distinct pair such that it does

not form a set which is already among the Ais; this pair is from Ai′′ and is precisely the

element in the singleton Ai′′\{β}. Denote this treatment by ε.

Now, by excluding Ai, Ai′ and Ai′′ , there are m − 3 sets left which contain, overall,

2(m − 3) treatments from which α can select distinct pairs from, since these 2(m − 3)

treatments are not all distinct. Notice that for each of the m − 3 sets, there are also 2

other sets which contain its elements (treatments)-1 treatment contained in one set and the

remaining treatment in the other set, since each treatment appears 2 times overall among

the sets and with a different treatment each time. Moreover, ε is among the remaining

2(m − 3) treatments, that is, it also appears in one of the (m − 3) sets. Hence needs to

be excluded, that is, not to be counted twice. Similarly, the single element, ρ, say, in the

singleton Ai′\{α} also appears a second time, among the 2(m − 3) elements, which also

needs to be excluded from there when counting since {ρ} ∪ {α} = Ai′ ({α} ⊂ A′i), which

is among the Ais.

Finally, after excluding the 2 treatments, ε and ρ from the 2(m − 3) elements, each

of the remaining 2(m− 3)− 2 (or 2(m− 4)) treatments appears 2 times and needs to be

counted exactly once to make a distinct pair with α. Thus there are 2(m− 4)/2 = m− 4

distinct pairs with α from among the 2(m− 3) elements.

Overall, considering all the pairs, there is a total of 1 + (m − 4) = m − 3 distinct

treatments from among the sets where α does not appear (where 1 in the summand

accounts for the treatment ε) that can concur with α, that is, when any of them is paired

with α it does not appear as a set among the Ais.

Notice that, there are 2 distinct treatments, β and ρ which are in the sets Ai and Ai′ ,

respectively, where α makes an appearance, hence can also concur with α differently. The

138

value 2 denoting the number of distinct treatments can also be seen by noting that for all

α ∈ V , there are m− 1 distinct treatments which can concur with α. Moreover, m− 3 <

m− 1. By letting x denote the number of treatments that complement the concurrences

of the m− 3 treatments from external sets where α does not make an appearance. Then

m−3+x = m−1, which implies that x = 2. Now, let λ1 denote the treatment concurrence

counts between α and each of β and ρ. Similarly, let λ2 denote the treatment concurrence

counts between α and each of the m− 3 treatments from external sets, that is, those sets

where α does not make an appearance. Then, for the concurrence relationship, it follows

that

2λ1 + (m− 3)λ2 = 2m (5.2)

where m ≥ 3.

The only solution set that satisfies (5.2) is (λ1, λ2) = (3, 2), which gives a RGD. It is

revealed in (5.2) that, to have a RGD, the only appropriate pattern of concurrences for

all α ∈ V is to have α concur 3 times with each of the 2 treatments, β and ρ that appear

in the same set with it, that is every pair in the same set needs to appear 3 times as a

block. Similarly, α needs to concur 2 times with each of the remaining m − 3 distinct

treatments which do not appear in the same set with it and also when paired with α does

not make one of the m sets. In particular, α concurs 2 times with each element of the set

V ∗ = V \{β, ρ : λ1 = 3} ∪ {α}, for all α ∈ V , where |V ∗| = m− 3.

The aforementioned m sets, A1, A2, . . . , Am take the form {1, 1 + c}, {2, 2 + c}, . . .,
{m − 1,m − 1 + c}, {m,m + c}, if a cyclic construction is used, where c ∈ {1, 2, . . . , δ},
δ = (m − 1)/2. In particular, if c = δ, then the m sets are identical to {1, (m + 1)/2},
{2, (m + 3)/2}, . . ., {m − 1, 3(m − 1)/2}, {m, (3m − 1)/2}, respectively with reduction

modulo m.

Comment. The concurrence relationship between the treatments so that we get a RGD

can be viewed in a much more simple way by expressing the sum of concurrences, 2m as

a sum of two components, viz,

2m = (m− 1)2 + 2 (5.3)

Notice that the right hand side of (5.3) is identical to (m− 3)2 + 2(3) or 2(3) + (m− 3)2,

showing that the only way to have a RGD is for each treatment to have two concurrences

of 3 and all the rest (m− 3 of them) equal to 2. Hence the QBD will be a BIBD if m = 3,

since each treatment will have precisely 2 (all) concurrences 3.

Furthermore, notice that if m = 3, then δ = 1, where δ = (m−1)/2. Since m is an odd

prime, as will be seen later in section 5.8.4, a (3 × 3)/2 RGSLR for 3 treatments which

is a special case of an (m× ηm)/2 RGSLR for m treatments, where m = 3 and η = 1 (η

having the value δ) is a BSLR.

139

5.7.3 Construction procedure

Notice that the RGSLR under construction requires m2 blocks. We use the cyclic group

Zm and regard Zm as {1, 2, . . . ,m}. Notice that each set among the Ais generates all the

other sets, that is, m blocks by its cyclic development via successive addition of 1 reduced

modulo m, hence for each of these m pairs to appear 3 times in the design, as required,

we need 3 sets from the Ais where each of them can generate m blocks. Thus with these 3

sets, 3m blocks, that is, 3 rows (or columns) can be generated in the design. Furthermore,

for each of the m−3 other pairs which is identical to the number of rows (or columns) left;

notice that m−3 = 2(δ−1). Hence with each of the δ−1 other possible values of c another

set of m blocks (1 row or column) can be generated, and each block also generates the

rest via the same procedure and overall m(δ − 1) blocks which is equivalent to δ − 1 rows

(or columns). By making 2 copies of the m(δ − 1) blocks, which is equivalent to 2 copies

of the δ − 1 distinct sets of m blocks we obtain a total of 2m(δ − 1) blocks which can be

used to form the remaining 2(δ− 1) = m− 3 columns. Notice that 2m(δ− 1) + 3m = m2,

the total number of blocks, as required. Moreover, each block from the 3 sets of the Ais

appears 3 times in the design while each block obtained from each of the other possible

values of c appears 2 times.

Now to arrange the m2 blocks into an m ×m array to make an (m ×m)/2 RGSLR

under construction, we modify the starter sets we used in the previous sections for some

constructions involving designs with even value of v. This time, each treatment appears

in 2 sets and the pairs of treatments in the m starter sets are such that, overall, the set

of differences between the treatments in these sets (with a reduction modulo m) consists

of ±1,±2, . . . ,±(δ − 1),±δ with the multiplicity 3 for one of them (that is, one of these

differences is identified with 3 sets in the starter) while the multiplicity is 2 for each of

the other δ − 1 values (that is, the other δ − 1 differences are identified with 2 sets each

in the starter). The set of differences is thus a multiset which consists of all the non-zero

elements of Zm. We note that, any one of these differences can have the higher multiplicity.

However, each time the starter sets are reformulated such that more sets are identified

with another value of the differences, it produces another design of the same size.

However, for purposes of describing the construction, we choose one of them, ±δ,
to have the higher multiplicity, 3, that is, 3 sets in the starter are identified with the

differences ±δ while the elements of the set {±1,±2, . . . ,±(δ−1)} has multiplicity 2 each,

that is, each of these other differences is identified with 2 sets in the starter.

Definition 5.7.1. Let there be m non-empty sets (m being odd) consisting of 2-subsets

of Zm with each element appearing a constant number of times, overall, each time with

a different element. We regard Zm to be the set {1, . . . ,m}. Let the differences between

the elements of these sets, modulo m, constitute a multiset consisting of all the non-zero

elements of Zm. Denote the multiset of differences by A = {±νi}mi=1. Let there exist

±θ ∈ A whose multiplicity is λ∗, say, while the multiplicity of every other element of A is

140

λ∗ − 1, where λ∗ ∈ Z, λ∗ > 1. Then the m sets constitute a starter for the cyclic group

Zm.

Let Sul denote the lth set from the starter sets for which the differences, modulo m,

between its elements are ±u, where u = 1, 2, . . . , δ and

l =


1, 2, 3 if u = δ,

1, 2 if u < δ.

We proceed to give a table showing starters in Zm for small odd values of m: see Table

5.1. An algorithmic procedure for constructing the design is also given in section 5.7.4.

Table 5.1: Starters in Zm for some small odd values of m

m starter

5 {1, 2} {1, 3} {2, 4} {4, 5} {3, 5}

7 {1, 2} {3, 5} {2, 5} {3, 6} {4, 6} {1, 7} {4, 7}

9 {1, 2} {4, 6} {3, 6} {3, 7} {8, 4} {2, 8} {5, 7} {1, 9} {5, 9}

5.7.4 An algorithmic procedure for the construction

1. Label the treatments 1, 2, ..., m.

2. Form m sets each of size 2 with the m treatments such that each treatment appears

2 times among the sets, each time with a different treatment and the differences

(reduced modulo m) between the pairs of treatments in these sets are ±1, ±2, . . .,

±δ, the non-zero elements of Zm, whose multiplicities are 3 for ±δ and 2 for others,

and these form a starter for the cyclic group Zm.

3. Create an m×m array and label its rows i = 1, 2, ...,m and its columns j = 1, 2, ...,m.

4. For all u = 1, 2, . . . , δ, and

l =


1, 2, 3 if u = δ,

1, 2 if u < δ.

put Sul in the cell in position (1, j) of the array, that is, the cell in row 1 and column

j, where Sul denotes the lth set in the starter for which the differences (reduced

modulo m) between its elements is ±u, and

141

j =


δ, δ + 1,m if u = δ,

u,m− u if u < δ.

5. For all j = 1, 2, ...,m, develop the block in position (1, j), cyclically, via successive

addition of 1 (mod m), thereby generating the m blocks in each column.

Comments. Each treatment appears 2 times in each row and in each column, hence appears

2m times overall which is identical to the sum of concurrences with each treatment. In

particular, if u = δ, then each pair of treatments with the difference ±δ concurs 3 times in

the design, once in each of columns δ, δ+1 and m which are the columns generated by the

starter set for which the difference between its constituent treatments is ±δ. Similarly, if

u < δ, then for any u ∈ {1, 2, . . . , (δ− 1)}, each pair of treatments with the differences ±u
concurs 2 times in the design, once in columns u and m− u. Notice that δ + 1 = m− δ.

The number of sets in the starter associated with each unique difference which cor-

responds to the multiplicity of that difference can be seen by writing m = 2δ + 1 as

2(δ − 1) + 3(1), where δ ≥ 1, showing that among the m sets consisting of pairs of treat-

ments whose differences consist of elements of the set {±1,±2, . . . ,±(δ − 1),±δ}, 3 of

the sets are identified with one difference, ±δ in this case (that is, the difference, ±δ has

multiplicity 3) while 2 sets are identified with each of the other δ − 1 differences (that is,

every other difference that is less than δ in absolute terms has multiplicity 2) .

Moreover, if the starter sets are put either in a different order in the cells in row 1 of

the array or they are put in the cells in column 1, say, instead of row 1, then the design

obtained by this different arrangement of the sets is isomorphic to the former design. As

noted earlier, if a different element from the set of differences (reduced modulo m) is

allocated a higher multiplicity, then another set of pairs of treatments now appear more

often as a block in the design, thereby producing a different design. In this circumstance,

the 3rd set identified with the difference of higher multiplicity in the starter can be put in

the last cell of row 1, which means a slight modification of the algorithmic procedure.

The QBD of the constructed design consists of a RGD and BIBD. Hence it is a BIBD

extended design. The RGD component consists of blocks from a single column, j ∈
{δ, δ+1,m}, that is a column where each pair of treatments in it concurs a higher number

of times, 3 in the overall design and its treatment concurrence counts are 0 and 1. Hence

the RGD component contributes m blocks to the overall design. Similarly, the BIBD part

consists of m(m − 1) blocks formed by the rest of the columns, m − 1 of them. The

treatment concurrence counts in the BIBD part of the design is 2. Hence, in the overall

design, each pair of treatments concur in either 2 or 3 blocks.

Example 5.7.1. Let v = 5. Then the sets {1, 2}, {4, 5}, {1, 3}, {2, 4} and {3, 5} with the

differences ±1,±1,±2,±2, and± 2, respectively, constitute the starter.

142

1 2 1 3 2 4 4 5 3 5

2 3 2 4 3 5 5 1 4 1

3 4 3 5 4 1 1 2 5 2

4 5 4 1 5 2 2 3 1 3

5 1 5 2 1 3 3 4 2 4

Figure 5.21: A (5× 5)/2 RGSLR for 5 treatments

1 2 3 5 1 4 2 3 4 5

2 3 4 1 2 5 3 4 5 1

3 4 5 2 3 1 4 5 1 2

4 5 1 3 4 2 5 1 2 3

5 1 2 4 5 3 1 2 3 4

Figure 5.22: Another (5× 5)/2 RGSLR for 5 treatments

Notice that S11 = {1, 2}, S12 = {4, 5}, S21 = {1, 3}, S22 = {2, 4} and S23 = {3, 5}.
Notice also that the difference ±2 is of higher multiplicity, 3.

By the algorithmic procedure, we obtain the (5 × 5)/2 RGSLR for 5 treatments as

shown in Figure 5.21.

Remark. Supposing we decide to allocate the higher multiplicity, 3 to the differences ±1

instead of±2, that is, we want a design for which any pair of treatments with the differences

±1 concurs a higher number of times, 3. Then the starter set can be reformulated to suit

this.

The sets, {1, 2}, {2, 3}, {4, 5}, {1, 4} and {3, 5} with the differences±1,±1,±1,±2, and ±
2, respectively, for instance, form another starter that can be used to obtain such design,

which is another (5× 5)/2 RGSLR for 5 treatments, and is as shown in Figure 5.22

Example 5.7.2. Let v = 7. Then we obtain a (7×7)/2 RGSLR for 7 treatments as shown

in Figure 5.23 using the given procedure, where the starter comprises the sets {1, 2}, {1, 7},
{3, 5}, {4, 6} {2, 5}, {3, 6} and {4, 7}.

143

1 2 3 5 2 5 3 6 4 6 1 7 4 7

2 3 4 6 3 6 4 7 5 7 2 1 5 1

3 4 5 7 4 7 5 1 6 1 3 2 6 2

4 5 6 1 5 1 6 2 7 2 4 3 7 3

5 6 7 2 6 2 7 3 1 3 5 4 1 4

6 7 1 3 7 3 1 4 2 4 6 5 2 5

7 1 2 4 1 4 2 5 3 5 7 6 3 6

Figure 5.23: A (7× 7)/2 RGSLR for 7 treatments

Notice that the differences (reduced modulo 7) between the treatments in the starter

sets are ±1,±1,±2,±2,±3 ± 3 and ± 3, respectively, with the respective multiplicities

being 2, 2, and 3 for the differences ±1, ±2 and ±3.

Remark. The construction can be generalized for higher values of η as given in section

5.7.5.

5.7.5 Generalization of the construction for (m × ηm)/2 RGSLRs when

v = m is odd

We give a general construction for the aforementioned class of designs, where η = 1, 2, . . . , t,

t ≤ δ and δ = (m−1)/2. In particular, if m is an odd prime, then t = δ. But if m is not an

odd prime, then t < δ. When η = 1, the parent/basic design is obtained which is utilized

to obtain larger designs with higher values of η. Moreover, if η = δ, then the construction

gives a BSLR. As before, we use the cyclic group Zm and regard Zm as {1, 2, . . . ,m}.
Let the treatment set be denoted by V = {1, 2, . . . ,m}, For all σ ∈ V , to have a

RGD, a sensible choice for its concurrence relationship with the other m − 1 treatments

is governed by (5.4).

2ηλ1 + (m− 1− 2η)λ2 = 2mη (5.4)

where m ≥ 2η + 1.

From (5.4), λ1 and λ2 need to be 2η + 1 and 2η, respectively. Hence, σ ∈ V needs to

concur with 2η treatments in 2η + 1 blocks and with the other m− 1− 2η treatments in

2η blocks.

We give an algorithmic procedure for the generalized construction in the next section.

144

Remark. Notice that (5.4) can also be seen from 2ηm = (m−1)2η+2η = (m−1−2η)2η+

2η(2η+ 1) which is identical to 2η(2η+ 1) + (m− 1− 2η)2η. Hence, to have a RGD, each

treatment needs to have 2η concurrences of 2η + 1 and all the rest (m− 1− 2η of them)

equal to 2η. Thus if m = 2η + 1, then each treatment will have precisely all concurrences

being 2η+ 1 and the QBD will be a BIBD making the constructed design a BSLR. Notice

also that if m = 2η + 1, then δ = η, which is consistent with the condition above for

obtaining a BSLR.

5.7.6 An algorithmic procedure for the generalized construction

1. Label the treatments 1, 2, ..., m.

2. Form m sets each of size 2 with the m treatments where each treatment appears 2

times among the sets and the differences (reduced modulo m) between the pairs of

treatments in these sets are ±1, ±2, . . ., ±δ, the non-zero elements of Zm, whose

multiplicities are 3 for ±δ and 2 for others, and these form a starter for the cyclic

group Zm.

3. Create an m × ηm array and label its rows i = 1, 2, ...,m and its columns j =

1, 2, ..., ηm.

4. For all u = 1, 2, . . . , δ, and

l =


1, 2, 3 if u = δ,

1, 2 if u < δ.

put Sul in the cell in position (1, j) of the array, that is, the cell in row 1 and column j,

where Sul denotes the lth set in the starter for which the difference (reduced modulo

m) between its elements is ±u, where

j =


δ, δ + 1,m if u = δ,

u,m− u if u < δ.

5. For j = 1, 2, ...,m, develop the block in position (1, j), cyclically, via successive

addition of 1 (mod m), thereby generating the m blocks in each column. Stop here

if a design with η = 1 is required.

6. If η > 1, then denote the design obtained in step 5 by Λ1. Find η − 1 distinct

generators of Zm and denote them by α1, α2, . . . , αη−1 corresponding to the order

they are to be used in permuting the treatments, viz, α1 is the first to be used and

αη−1, the last, where αs 6= ±α0,±α1, . . . ,±αs−1 for all s = 1, 2, . . . , η−1 and α0 = 1.

145

1 2 1 3 2 4 4 5 3 5 2 4 2 1 4 3 3 5 1 5

2 3 2 4 3 5 5 1 4 1 4 1 4 3 1 5 5 2 3 2

3 4 3 5 4 1 1 2 5 2 1 3 1 5 3 2 2 4 5 4

4 5 4 1 5 2 2 3 1 3 3 5 3 2 5 4 4 1 2 1

5 1 5 2 1 3 3 4 2 4 5 2 5 4 2 1 1 3 4 3

Figure 5.24: A (5× 10)/2 RGSLR for 5 treatments

7. For all s = 1, 2, . . . , η − 1, apply αs to Λ1 via multiplication by the treatments

within its blocks to obtain Λq, where q = 1 + s and Λq is the qth constituent design,

q = 2, . . . , η.

Comments. The overall design consists of η constituent designs, Λ1,Λ2, . . . ,Λη. Each

constituent design is an (m ×m)/2 RGSLR for m treatments and has a QBD consisting

of a RGD (having m blocks) and a BIBD (having m(m − 1) blocks). The overall design

consists of mη blocks in the RGD component of its QBD. Similarly, the BIBD component

contributes mη(m− 1) blocks to the overall design. Hence the QBD of the overall design

is BIBD-extended, where the BIBD component is the extension.

Moreover, the restrictions on choosing the permutations α1, α2, . . . , αη−1 is to ensure

that the permutations do not result in blocks with the same pairs concurring a higher

number of times in more than 1 constituent design such that with the various constituent

designs, the overall design remains a RGD.

Since the design contains ηm columns, then if all the starter sets were to be obtained,

it would require ηm sets, where each set generates a column and the multiplicities of the

differences is as follows. Notice that ηm = η[2(δ−η)+(2η+1)] = 2η(δ−η)+(2η+1)η. Hence

the starter sets for the overall design contain treatment pairs with δ distinct differences

where η of these differences are of multiplicity 2η + 1 each, while the multiplicity of the

other δ − η of them is 2η each.

Example 5.7.3. Let v = 5 and η = 2. Then by implementing the algorithm, using the

generator, α1 = 2, we obtain a (5× 10)/2 RGSLR as shown in Figure 5.24.

Remark. Notice that each pair with the differences ±1 concurs 2 times in Λ1 and 3 times

in Λ2. Similarly, each pair with the differences ±2 concurs 3 times in Λ1. and 2 times in

Λ2.

Furthermore, the treatment concurrence counts in the RGD part in the overall design

is 1 for each pair of treatments (which comprises the concurrences from the RGDs in both

146

1 2 3 5 2 5 3 6 4 6 1 7 4 7 2 4 6 3 4 3 6 5 1 5 2 7 1 7

2 3 4 6 3 6 4 7 5 7 2 1 5 1 4 6 1 5 6 5 1 7 3 7 4 2 3 2

3 4 5 7 4 7 5 1 6 1 3 2 6 2 6 1 3 7 1 7 3 2 5 2 6 4 5 4

4 5 6 1 5 1 6 2 7 2 4 3 7 3 1 3 5 2 3 2 5 4 7 4 1 6 7 6

5 6 7 2 6 2 7 3 1 3 5 4 1 4 3 5 7 4 5 4 7 6 2 6 3 1 2 1

6 7 1 3 7 3 1 4 2 4 6 5 2 5 5 7 2 6 7 6 2 1 4 1 5 3 4 3

7 1 2 4 1 4 2 5 3 5 7 6 3 6 7 2 4 1 2 1 4 3 6 3 7 5 6 5

Figure 5.25: A (7× 14)/2 RGSLR for 7 treatments

Λ1 and Λ2 which are 0 and 1 in each–noting that there is no repetition of blocks in the

2 RGDs, whose overall blocks consist of all the possible pairs of treatments exactly once,

each), hence the RGD part is a BIBD. Similarly, for the BIBD part, the concurrence

counts is 4 (2 from each of Λ1 and Λ2). Hence, the treatment concurrence counts is 5 for

each pair of treatments in the overall design.

Notice that the RGD part in Λ1 is constituted by the pairs of treatments with the

differences ±2 which can be seen to be the pairs in any of columns 2, 3 and 5. Similarly,

pairs with the differences ±1 constitute the RGD part in Λ2: see the pairs in any of the

2nd, 3rd and 5th columns that Λ2 occupies or equivalently, any of columns 7, 8 and 10

of the overall design. Hence the cells in columns 5 and 10, for instance, constitute the

RGD component of the overall design (which is a BIBD), and the cells from the rest of

the columns constitute another BIBD component. Hence, the QBD of the overall design

is a BIBD.

The QBD of the design is the same as that of the (5 × 10)/2 BSLR shown in Figure

3.2 in Chapter 3 of this thesis.

Example 5.7.4. Let v = 7 and η = 2 . Then the design obtained via the algorithmic

procedure is as shown in Figure 5.25 if the generator α1 = 2 is used to permute the

treatments in Λ1 to obtain Λ2. The design obtained is a (7×14)/2 RGSLR for 7 treatments.

Example 5.7.5. Let v = 7 and η = 3. Then the construction gives a (7× 21)/2 RGSLR

as shown in Figure 5.26, if the generators α1 = 2 and α2 = 3 are the permutations applied

to Λ1 to obtain Λ2 and Λ3, respectively.

Remark. Notice that the QBD of the (7× 21)/2 RGSLR for 7 treatments shown in Figure

5.26 is BIBD-extended; consisting of a RGD and a BIBD as the extension.

147

1 2 3 5 2 5 3 6 4 6 1 7 4 7 2 4 6 3 4 3 6 5 1 5 2 7 1 7 3 6 2 1 6 1 2 4 5 4 3 7 5 7

2 3 4 6 3 6 4 7 5 7 2 1 5 1 4 6 1 5 6 5 1 7 3 7 4 2 3 2 6 2 5 4 2 4 5 7 1 7 6 3 1 3

3 4 5 7 4 7 5 1 6 1 3 2 6 2 6 1 3 7 1 7 3 2 5 2 6 4 5 4 2 5 1 7 5 7 1 3 4 3 2 6 4 6

4 5 6 1 5 1 6 2 7 2 4 3 7 3 1 3 5 2 3 2 5 4 7 4 1 6 7 6 5 1 4 3 1 3 4 6 7 6 5 2 7 2

5 6 7 2 6 2 7 3 1 3 5 4 1 4 3 5 7 4 5 4 7 6 2 6 3 1 2 1 1 4 7 6 4 6 7 2 3 2 1 5 3 5

6 7 1 3 7 3 1 4 2 4 6 5 2 5 5 7 2 6 7 6 2 1 4 1 5 3 4 3 4 7 3 2 7 2 3 5 6 5 4 1 6 1

7 1 2 4 1 4 2 5 3 5 7 6 3 6 7 2 4 1 2 1 4 3 6 3 7 5 6 5 7 3 6 5 3 5 6 1 2 1 7 4 2 4

Figure 5.26: A (7× 21)/2 RGSLR for 7 treatments

Notice also that this design has the same QBD as the (7× 21)/2 BSLR in Figure 3.3

in Chapter 3 of this thesis.

Comment. Now, we have found a concept called undirected terrace to be a useful and

efficient technique that we can utilize to obtain the starter sets for the case where v = m

is odd which enhances the construction.

5.8 Another approach to obtaining the general construction

via undirected terrace

We employ the concept known as undirected terrace to obtain the starter sets for the

generalized construction of (m × ηm)/2 RGSLRs when v = m is odd. This provides a

more convenient and efficient means for obtaining these sets for odd values of m. As in

the previous section, we use the cyclic additive group, Zm for the integers modulo m and

regard Zm to be the set {1, . . . ,m}.

5.8.1 Undirected terrace and associated starter sets

Let m ∈ Z+, where m is odd. Then the sequence 1, m, 2, m− 1, 3, m− 2, . . . , (m+ 1)/2

forms an undirected terrace for Zm: see, for example, Bailey (1984) and Durier et al.

(1997) for discussions on this concept.

Some small examples include 1, 5, 2, 4, 3; 1, 7, 2, 6, 3, 5, 4; and 1, 9, 2, 8, 3, 7, 4, 6, 5

which are undirected terraces for Z5, Z7 and Z9, respectively.

By writing down the plus/minus differences between each adjacent (successive) pair,

modulo m, and considering the row as a circle that joins up the two ends, we have

148

±1,±2, . . . ,±(m−1)/2,±(m−1)/2,±(m−3)/2, . . . ,±1,±(m−1)/2. For instance, in the

example for Z7, we get ±1,±2,±3,±3,±2, ±1,±3. Hence the pairs of elements which give

these differences, which are the sets {1, 7}, {7, 2}, {2, 6}, {6, 3}, {3, 5}, {5, 4}, and {4, 1},
respectively constitute a starter. Similarly, the corresponding starter sets based on the

undirected terraces for Z5 and Z9 given above are {1, 5}, {5, 2}, {2, 4}, {4, 3}, {3, 1} with

the differences being ±1,±2,±2,±1,±2 and {1, 9}, {9, 2}, {2, 8}, {8, 3}, {3, 7}, {7, 4},
{4, 6}, {6, 5}, {5, 1} with the differences ±1,±2,±3,±4,±4, ±3,±2, ±1,±4, respectively.

5.8.2 Procedure

We obtain the basic design in a similar manner as before but using the starter sets obtained

from the undirected terrace and then utilize the basic design to obtain larger designs. As

before, we denote the basic design Λ1. In certain situations, to obtain a larger design,

we use only one generator of Zm (an element of Zm that is coprime to m), α, say, where

α 6= 1,m−1. We multiply (successively), each treatment in Λl by α to obtain Λl+1 (where

Λl is the lth constituent design) for all l = 1, . . . , η−1, that is, we apply α to Λ1 to obtain

Λ2, and similarly to Λ2 to obtain Λ3, and so on until the overall design is generated. In

other cases we use more than one generator.

If m is an odd prime, then we obtain designs for values of η = 1, 2, . . . , t, where t = δ,

and δ = (m− 1)/2 using a single generator, α. Moreover, to obtain a design with η > δ,

we use more than one generator. Let Λ1, . . ., Λη denote the constituent designs for the

construction, where Λ1 is the basic design obtained when η = 1.

Let (y − 1)δ + 1 ≤ η ≤ yδ, where y = dη/δe, η ≥ 1. Denote y generators of Zm by

α1, . . . , αy, where αt 6= 1,m − 1 for any t ∈ {1, . . . , y}. If y = 1, then it implies that

1 ≤ η ≤ δ, hence we use one generator, α1 = α, say (any generator that satisfies the

aforementioned condition can be used). Thus, we multiply each treatment in Λ1 by α to

obtain Λ2. Similarly, we multiply each treatment in Λ2 by α to obtain Λ3; and so on until

each treatment in Λη−1 is multiplied by α to obtain Λη. This generates the overall design

under construction.

Similarly, if y = 2, then it follows that δ+1 ≤ η ≤ 2δ and we use two generators, α1 and

α2, where α1 is used in the same manner (successively) as α to obtain Λ2, . . ., Λδ; while

α2 is then applied to every treatment in Λ1 to obtain Λδ+1, then α2 is applied to every

treatment in Λδ+1 to obtain Λδ+2, and this continues until Λη is obtained by multiplying

every treatment in Λη−1 by α2. The successive procedure continues depending on the value

of y until the generator, αy has been applied to every treatment in Λ1 to obtain Λ(y−1)δ+1,

then αy on every treatment in Λ(y−1)δ+1 to obtain Λ(y−1)δ+2, and so on until αy is used

to multiply every treatment in Λη−1 to obtain Λη, hence the overall design generated.

On the other hand, if m is not an odd prime, then we obtain designs for values of

η = 1, 2, . . . , t, where t < δ and whose value is given by t = 1
2ϕ(m), where ϕ(m) =

m
∏
p|m

(1−1/p), where the product is taken over the distinct prime numbers that divide m,

149

and ϕ(m) is called Euler’s totient function or Euler’s phi function, which gives the number

of integers in the range 1 to m that are coprime to m. In this situation, to obtain designs

for values of η > 1, we use one generator of Zm, α, say, where α 6= 1,m− 1 and as before,

any generator that satisfies this condition can be used. Thus α is applied in a successive

manner as before by multiplying every treatment in Λ1 by α to obtain Λ2; then α is also

imposed in a similar manner on the treatments in Λ2 to obtain Λ3; and so on until it is

multiplied by every treatment in Λη−1 to obtain Λη, thus generating the overall design.

We give in the next section an algorithmic procedure for the construction.

5.8.3 An algorithmic procedure for the Generalized construction via

undirected terrace

1. Label the treatments 1, 2, ..., m.

2. Form a sequence of the elements of Zm that constitutes an undirected terrace for Zm,

viz, 1, m, 2, m−1, 3, m−2, . . . (m+1)/2. Consider the row/sequence as a circle that

joins up the two ends and then combine each adjacent (successive) pair of elements

such that the differences between these pairs, modulo m, are ±1,±2, . . . ,±(m −
3)/2,±(m − 1)/2,±(m − 1)/2,±(m − 3)/2, . . . ,±1,±(m − 1)/2, thus forming m

starter 2-subsets for Zm. Label the starter sets S1, S2, . . ., Sm in the order these

differences are listed.

3. Create an m × ηm array and label its rows i = 1, 2, ...,m and its columns j =

1, 2, ..., ηm.

4. For i = 1 and j = 1, . . . ,m, put in the cell in position (1, j) of the array, the jth set,

Sj from the starter.

5. For j = 1, 2, ...,m, develop the block in position (1, j), cyclically, via successive

addition of 1 modulo m, thereby generating the m blocks in each column. Stop here

if a design with η = 1 is required.

6. If η > 1, then denote the design obtained in step 5 by Λ1 and let Λ2, . . . ,Λη denote

the other constituent designs that make the overall design under construction. Let

y = dη/δe and (y − 1)δ + 1 ≤ η ≤ yδ, where δ = (m − 1)/2. Let α1, . . . , αy be y

generators of Zm, where αt 6= 1,m− 1 for any t ∈ {1, . . . , y}. If y = 1, which implies

that η ≤ δ, then multiply each treatment in Λl by α1 = α, say, to obtain Λl+1 for

all l = 1, . . . , η − 1, thus generating the overall design.

7. If y > 1, which implies η > δ (involving designs with an odd prime value of m in

our construction), then multiply each treatment in Λl by α1 to obtain Λl+1 for all

l = 1, . . . , δ − 1. Similarly, multiply each treatment in Λ1 by α2 to obtain Λδ+1 and

then multiply each treatment in Λδ+l by α2 to obtain Λδ+l+1 for all l = 1, . . . , δ− 1.

150

1 7 2 6 3 5 4 2 7 4 5 6 3 1 4 7 1 3 5 6 2 3 7 6 4 2 1 5

7 2 6 3 5 4 1 7 4 5 6 3 1 2 7 1 3 5 6 2 4 7 6 4 2 1 5 3

2 1 3 7 4 6 5 4 2 6 7 1 5 3 1 4 5 7 2 3 6 6 3 2 7 5 4 1

1 3 7 4 6 5 2 2 6 7 1 5 3 4 4 5 7 2 3 6 1 3 2 7 5 4 1 6

3 2 4 1 5 7 6 6 4 1 2 3 7 5 5 1 2 4 6 7 3 2 6 5 3 1 7 4

2 4 1 5 7 6 3 4 1 2 3 7 5 6 1 2 4 6 7 3 5 6 5 3 1 7 4 2

4 3 5 2 6 1 7 1 6 3 4 5 2 7 2 5 6 1 3 4 7 5 2 1 6 4 3 7

3 5 2 6 1 7 4 6 3 4 5 2 7 1 5 6 1 3 4 7 2 2 1 6 4 3 7 5

5 4 6 3 7 2 1 3 1 5 6 7 4 2 6 2 3 5 7 1 4 1 5 4 2 7 6 3

4 6 3 7 2 1 5 1 5 6 7 4 2 3 2 3 5 7 1 4 6 5 4 2 7 6 3 1

6 5 7 4 1 3 2 5 3 7 1 2 6 4 3 6 7 2 4 5 1 4 1 7 5 3 2 6

5 7 4 1 3 2 6 3 7 1 2 6 4 5 6 7 2 4 5 1 3 1 7 5 3 2 6 4

7 6 1 5 2 4 3 7 5 2 3 4 1 6 7 3 4 6 1 2 5 7 4 3 1 6 5 2

6 1 5 2 4 3 7 5 2 3 4 1 6 7 3 4 6 1 2 5 7 4 3 1 6 5 2 7

Figure 5.27: A (7× 28)/2 RGSLR for 7 treatments

Continue this successive procedure until αy is used to multiply every treatment in

Λ1 to obtain Λ(y−1)δ+1 and subsequently each treatment in Λ(y−1)δ+l is multiplied

by αy to obtain Λ(y−1)δ+l+1 for all l = 1, . . . , η − 1 − (y − 1)δ. This generates the

overall design under construction.

Example 5.8.1. Let m = 7 and η = 4. Then by the algorithmic procedure we obtain

a (7 × 28)/2 RGSLR shown in Figure 5.27, where every treatment in Λl was multiplied

by α1 = 2 to obtain Λl+1 for l = 1, 2. Similarly, every treatment in Λ1 was multiplied by

α2 = 3 to obtain Λ4.

Example 5.8.2. Let m = 9 and η = 3. Then by the algorithmic procedure we obtain a

(9 × 27)/2 RGSLR shown in Figure 5.28 where each treatment in Λl was multiplied by

α = 5 to obtain Λl+1 for all l = 1, 2.

On the basis of our new method of obtaining the general construction which utilizes

the concept, undirected terrace, we give an enlarged table of starters in Zm for various

odd values of m shown in Table 5.2. However, for lack of space, the corresponding starter

sets for Z15 is omitted from Table 5.2 and presented, here, separately, viz, {1, 15}, {15, 2},
{2, 14}, {14, 3}, {3, 13}, {13, 4}, {4, 12}, {12, 5}, {5, 11}, {11, 6}, {6, 10}, {10, 7}, {7, 9},
{9, 8}, {8, 1}.

5.8.4 Realizing a BSLR from the construction

Note that the design obtained via the construction in section 5.8.3 is an (m × ηm)/2

RGSLR for m treatments, where m is odd and η corresponds to the number of constituent

151

1 9 2 8 3 7 4 6 5 5 9 1 4 6 8 2 3 7 7 9 5 2 3 4 1 6 8

9 2 8 3 7 4 6 5 1 9 1 4 6 8 2 3 7 5 9 5 2 3 4 1 6 8 7

2 1 3 9 4 8 5 7 6 1 5 6 9 2 4 7 8 3 5 7 3 9 1 2 8 4 6

1 3 9 4 8 5 7 6 2 5 6 9 2 4 7 8 3 1 7 3 9 1 2 8 4 6 5

3 2 4 1 5 9 6 8 7 6 1 2 5 7 9 3 4 8 3 5 1 7 8 9 6 2 4

2 4 1 5 9 6 8 7 3 1 2 5 7 9 3 4 8 6 5 1 7 8 9 6 2 4 3

4 3 5 2 6 1 7 9 8 2 6 7 1 3 5 8 9 4 1 3 8 5 6 7 4 9 2

3 5 2 6 1 7 9 8 4 6 7 1 3 5 8 9 4 2 3 8 5 6 7 4 9 2 1

5 4 6 3 7 2 8 1 9 7 2 3 6 8 1 4 5 9 8 1 6 3 4 5 2 7 9

4 6 3 7 2 8 1 9 5 2 3 6 8 1 4 5 9 7 1 6 3 4 5 2 7 9 8

6 5 7 4 8 3 9 2 1 3 7 8 2 4 6 9 1 5 6 8 4 1 2 3 9 5 7

5 7 4 8 3 9 2 1 6 7 8 2 4 6 9 1 5 3 8 4 1 2 3 9 5 7 6

7 6 8 5 9 4 1 3 2 8 3 4 7 9 2 5 6 1 4 6 2 8 9 1 7 3 5

6 8 5 9 4 1 3 2 7 3 4 7 9 2 5 6 1 8 6 2 8 9 1 7 3 5 4

8 7 9 6 1 5 2 4 3 4 8 9 3 5 7 1 2 6 2 4 9 6 7 8 5 1 3

7 9 6 1 5 2 4 3 8 8 9 3 5 7 1 2 6 4 4 9 6 7 8 5 1 3 2

9 8 1 7 2 6 3 5 4 9 4 5 8 1 3 6 7 2 9 2 7 4 5 6 3 8 1

8 1 7 2 6 3 5 4 9 4 5 8 1 3 6 7 2 9 2 7 4 5 6 3 8 1 9

Figure 5.28: A (9× 27)/2 RGSLR for 9 treatments

SLRs used in the construction. If m is an odd prime and η = δ, where δ = (m − 1)/2,

then the construction gives a BSLR. This can be seen as follows.

Notice that if η = 1, we have an (m×m)/2 RGSLR for m treatments, which is the basic

design. Denote this basic design by Λ1. Note that the starter used in the construction of Λ1

consists of m sets, where m = 2δ + 1. Let D = {±1, . . . ,±δ} denote the set of differences

(modulo m) between the elements contained in the starter sets, where the cardinality of

D, |D| = 2δ = m − 1. The elements of D correspond to the non-zero elements of Zm
and their multiplicities in the starter are 3 (higher) for each of ±δ and 2 (lower) for the

rest, as can be noticed in step 2 of the procedure in section 5.8.3. The multiplicity of

each element of D in the starter corresponds to the number of sets in the starter that

contain elements whose difference (modulo m) gives the specified element of D. This also

corresponds to the treatment concurrence counts for any pair of treatments in Λ1 whose

difference (modulo m) is the specified element of D.

Columns 1, . . . , δ of Λ1 are generated from a series of δ starter sets whose elements have

the differences ±1, . . . ,±δ, respectively. Similarly, another series of δ starter sets with

the differences between their elements being ±δ, . . . ,±1 are used to generate columns

δ + 1, . . . , 2δ, respectively. Finally, the remaining starter set for which the differences

between its elements are ±δ is used to generate column m. Moreover, each starter set

152

Table 5.2: Starters in Zm for more odd values of m

m starter

5 {1, 5} {5, 2} {2, 4} {4, 3} {3, 1}

7 {1, 7} {7, 2} {2, 6} {6, 3} {3, 5} {5, 4} {4, 1}

9 {1, 9} {9, 2} {2, 8} {8, 3} {3, 7} {7, 4} {4, 6} {6, 5} {5, 1}

11 {1, 11}{11, 2}{2, 10}{10, 3}{3, 9} {9, 4} {4, 8} {8, 5} {5, 7} {7, 6} {6, 1}

13 {1, 13}{13, 2}{2, 12}{12, 3}{3, 11}{11, 4}{4, 10}{10, 5}{5, 9} {9, 6} {6, 8} {8, 7} {7, 1}

generates m distinct blocks, which form a column in Λ1. Thus there are mδ distinct

blocks in columns 1 to δ, which form a BIBD with treatment concurrence counts, unity.

Similarly, there are mδ distinct blocks (the same set of overall blocks as before) in columns

δ + 1 to 2δ, which also form a BIBD with treatment concurrence counts, unity. However,

the last column, column m, contains m distinct blocks which form a RGD with treatment

concurrence counts 0 and 1 (assuming m > 3). In particular, if m = 3, then column

m consists of all the possible pairs of 3 treatments, each pair appearing exactly once

(since there are 3 distinct pairs, where 3 coincides with
(
3
2

)
), thus forming a BIBD with

treatment concurrence count 1. Hence the QBD of Λ1 consists of a BIBD with treatment

concurrence counts 2 and a RGD with treatment concurrence counts 0 and 1 (if m > 3),

giving a BIBD-extended RGD. However, in the case where m = 3, the QBD of Λ1 is

trivially a BIBD with treatment concurrence counts, 3. In this case, let Λ1 = Λ.

Moreover, each row and each column of Λ1 (or Λ) contains each treatment exactly two

times (an integer number of times). Hence Λ1 is a RGSLR, since its QBD is a RGD while

Λ is a BSLR, as its QBD is a BIBD.

Suppose m > 3 and η > 1. Call Λ1 a constituent design in the BSLR, whose realization

from the construction is sought. Each stage of permutation (involving multiplication)

described in step 6 of the procedure in section 5.8.3 results in another constituent RGSLR.

The QBD of the resulting constituent RGSLR also comprises a BIBD with the same overall

blocks as the BIBD in Λ1, hence same treatment concurrence counts, 2 and also a RGD

(which are the blocks in its last column) with concurrence counts 0 and 1. Also, at each

stage of permutation, a different pair of elements in D (elements with ± sign before them)

become the difference identified with each of the m pairs of elements that make the last

column of the particular constituent design generated. This continues until (if possible–

depending on the value of η) all the pairs of elements in D that are relatively prime to

m are identified in a similar manner. Note that after all the elements in D which are

relatively prime to m have been identified in a similar manner, then for higher values of η

153

there are repeats.

Now, let m be an odd prime and η = δ, then overall, by the permutations, each of

the δ pairs of elements (involving ± sign) in D would have taken their turn of becoming

the difference attributed to m distinct pairs of elements that constitute the blocks in

the last column of the constituent design (a column with pairs of treatments of higher

concurrences, 3) generated at a given stage of permutation. This is so since for prime m,

each non-zero element of Zm (which is an element of D) is relatively prime to m. Hence

the mδ distinct blocks in the last columns of the δ constituent designs constitute a BIBD

with λ = 1, which makes the QBD of the overall design to consist of δ copies of a BIBD

each with λ = 2 and another BIBD with λ = 1 such that the QBD of the overall design is

a BIBD whose treatment concurrence counts is λ = 2δ + 1.

Moreover, we remind that each constituent design is a SLR (RGSLR), where each

treatment appears twice per row and per column. Note that each row of the overall design

is constituted by the corresponding rows in the δ constituent designs while each column in

any of the constituent designs is also a column in the overall design. hence each treatment

in the overall design appears 2δ times per row and twice per column (integer number of

times). Thus the overall design obtained from our construction of RGSLR in this special

case has a QBD that is a BIBD. In the special case that the QBD of a RGSLR is a BIBD,

the resulting design is a BSLR.

Hence, if m is an odd prime and η = δ, then the construction described in section 5.8.3

produces a BSLR.

Example 5.8.3. If m = 3, then δ = 1. Let η = 1. Then the design resulting from the

construction is a (3 × 3)/2 BSLR for 3 treatments. Similarly, iif m = 5, then δ = 2 such

that if η = 2, we have a (5× 10)/2 BSLR for 5 treatments from the construction.

5.9 More RGSLRs of large sizes

In a similar manner to the case where v was even, when v is odd, RGSLRs of large sizes

whose QBDs are BIBD-extended can also be obtained by extending a RGSLR with a

BSLR. This involves putting a RGSLR and a BSLR of corresponding sizes in an array of

appropriate size. The resulting design is also a RGSLR: see Theorem 5.1.1.

The aforementioned procedure is applicable if and only if the RGSLR and BSLR used

for the construction conform in size and set of treatments, that is, if they have the same

number of rows (or columns) and same block size and both of them contain the same

treatments.

BSLRs for odd number of treatments whose constructions can be found in Chapter 3 of

this thesis can be useful for such construction when there exist both designs of conformable

sizes.

Example 5.9.1. A (5 × 15)/2 RGSLR for 5 treatments can be obtained by putting a

154

(5× 5)/2 RGSLR and a (5× 10)/2 BSLR where each of them contains the same set of 5

treatments.

1 2 1 3 2 4 4 5 3 5 1 2 1 3 2 4 4 5 3 5 2 4 2 1 4 3 3 5 1 5

2 3 2 4 3 5 5 1 4 1 2 3 2 4 3 5 5 1 4 1 4 1 4 3 1 5 5 2 3 2

3 4 3 5 4 1 1 2 5 2 3 4 3 5 4 1 1 2 5 2 1 3 1 5 3 2 2 4 5 4

4 5 4 1 5 2 2 3 1 3 4 5 4 1 5 2 2 3 1 3 3 5 3 2 5 4 4 1 2 1

5 1 5 2 1 3 3 4 2 4 5 1 5 2 1 3 3 4 2 4 5 2 5 4 2 1 1 3 4 3

Figure 5.29: A (5× 15)/2 RGSLR for 5 treatments

Remark. The deign in Figure 5.29 involves adding the RGSLR in Figure 5.24 (which is

precisely a (5× 10)/2 BSLR) to the (5× 5)/2 RGSLR in Figure 5.21, where each of them

contains 5 treatments on the same set.

However, any other BSLR on the same set of 5 treatments that conforms in size, such

as the design in Figure 3.2 in Chapter 3 of this thesis can also be used.

155

Chapter 6

Non-balanced Semi-Latin

Rectangles with Larger Block

Sizes

6.1 Introduction

This chapter considers semi-Latin rectangles (SLRs) whose row-column intersections (blocks)

contain k treatments, where k > 2 and whose quotient block designs (QBDs) are not

combinatorially balanced. As in the preceding chapter, we concentrate on SLRs whose

QBDs are regular graph designs (RGDs), thus giving regular-graph semi-Latin rectangles

(RGSLRs). We give constructions for RGSLRs of some small sizes whose QBDs are BIBD-

extended. Some concepts such as undirected terrace are employed to obtain the designs.

We also exploit the constructions given in Bailey and Monod (2001). Some designs are also

obtained via block complementation. Moreover, adjoining BSLRs to an already obtained

RGSLR, or adjoining the RGSLR to another after a suitable permutation of treatments,

gives designs for larger sizes, just as in Chapter 5.

6.2 Construction of a (5× 5)/3 RGSLR for v = 5 treatments

We denote the set of treatments by V = {1, . . . , 5} and use the cyclic group Z5, the integers

modulo 5 for the construction, where we regard Z5 as {1, . . . , 5}. We start by obtaining a

starter set using undirected terrace in a similar manner as in section 5.8.1 of Chapter 5.

There are 5 sets that constitute the starter, but this time, since k = 3, each starter set is

a 3-subset of Z5. Moreover, since for a design of this size, each treatment needs to appear

3 times in each row, that is, the parameter nr = 3 and we are interested in putting the

m starter sets in a single (the initial) row of an array of appropriate size, then the starter

sets need to be a 3-resolution class, thus, each treatment needs to appear 3 times among

the m sets, that is, in 3 sets.

156

We remind that the sequence 1, m, 2, m− 1, 3, m− 2, . . . , (m+ 1)/2 constitutes an

undirected terrace for Zm. Thus 1, 5, 2, 4, 3 constitutes an undirected terrace for Z5. By

considering the row/sequence as a circle that joins up the two ends and then extending

the earlier procedure, viz, combining every 3 successive elements, we obtain the starter

sets to be {1, 5, 2}, {5, 2, 4}, {2, 4, 3}, {4, 3, 1} and {3, 1, 5}.
The procedure involves putting the starter sets in the 5 cells in the initial row of a 5×5

array and then developing the block formed by each starter set, cyclically, via addition of

1, modulo 5, to generate entries to fill succeeding cells in its column. We summarize the

procedure for the construction in section 6.2.1.

6.2.1 Procedure for the construction

1. Denote the treatment set by V = {1, . . . , 5}.

2. Form a sequence of elements of Z5 that constitute an undirected terrace for Z5 and

then using the elements of this sequence, obtain a 3-subset starter consisting of 5 sets

by combining every 3 elements of the sequence in succession, regarding the sequence

as a circle that joins up the two ends; and number the starter sets Sj , j = 1, . . . , 5.

3. Create a 5× 5 array and label its rows i = 1, . . . , 5 and columns j = 1, . . . , 5.

4. For j = 1, . . . , 5, put Sj in the cell in position (1, j) of the array and develop the

block formed by Sj , cyclically, via addition of 1, modulo 5, thereby forming column

j, for all j.

Comments. The QBD of the design under construction is a RGD if and only if its concur-

rence relationship is given by

2λ1 + 2λ2 = 30 (6.1)

which gives the solution set {λ1, λ2} = {7, 8}. Hence each treatment needs to concur 7

times with 2 treatments, each and 8 times with each of the other 2 treatments.

Notice that the pairwise differences, modulo 5, resulting from the pairs within the

triples that make the starter sets are±1,±2,±1;±2,±2,±1;±2,±1,±1;±1,±2,±2; and ±
2,±1,±2 for Sj , j = 1, . . . , 5, respectively. Hence, the overall multiplicities of the differ-

ences are 7 and 8 for ±1 and ±2, respectively. Moreover, these differences consist of all

the non-zero elements of Z5.

Notice also that the multiplicities of the pairwise differences have identical values as

λ1 and λ2, which must be so. The value, 30 on the right hand side of (6.1) is the sum of

concurrences with any given treatment, which is given by r(k−1), where r = 15. Moreover,

the sum of multiplicities of all pairwise differences balances this value–30, which must be.

Hence, since the differences ±2 has a higher multiplicity–8, then, for the concurrence

pattern, it follows that each pair of treatments within any triple that makes any starter

157

1 5 2 5 2 4 2 4 3 4 3 1 3 1 5

2 1 3 1 3 5 3 5 4 5 4 2 4 2 1

3 2 4 2 4 1 4 1 5 1 5 3 5 3 2

4 3 5 3 5 2 5 2 1 2 1 4 1 4 3

5 4 1 4 1 3 1 3 2 3 2 5 2 5 4

Figure 6.1: A (5× 5)/3 RGSLR for 5 treatments

set which has the differences ±2 concurs in 8 blocks in the design while each pair with the

differences ±1 concurs in 7 blocks.

Moreover, nr = nc = 3 which is identical to k, the block size, where nr and nc have the

same meaning as previously used, denoting the respective number of times each treatment

appears per row and per column.

By using the procedure in section 6.2.1, we obtain the design shown in Figure 6.1

6.3 Construction of a (3× 6)/4 RGSLR where v = 6

We exploit the construction given in Bailey and Monod (2001), which uses balanced tour-

nament designs (BTDs) via an exchange procedure to obtain RGSLRs for block size two

when the number of columns is double the number of rows, the number of treatments is

identical to the number of columns and the number of rows is not congruent to 2 modulo

3.

Notice that the number of rows in the design under construction satisfies the afore-

mentioned congruence relationship and also have similar parameters (though differing in

block size and also in the per row and per column replication numbers of its treatments,

nr and nc, respectively) with the designs captured by the specified construction in Bailey

and Monod (2001). Our construction also involves a row exchange but with a different

exchange pattern as there are now more treatments per block.

Notice also that, for a design of this size, each treatment needs to appear 4 times

per row (nr = 4) and 2 times per column (nc = 2), hence 12 times, overall. Hence

nr = 2nc = k. Moreover, its QBD is a RGD if its concurrence relationship is governed by

(6.2)

λ1 + 4λ2 = 36 (6.2)

where (λ1, λ2) = (8, 7). Hence each treatment needs to appear with precisely 1 treatment

158

in 8 blocks and with the other 4 treatments in 7 blocks, each.

Let V = {1, . . . , 5} ∪ {∞} denote the treatment set. We use the cyclic group Z5 for

the construction and regard Z5 as {1, . . . 5} such that V = Z5 ∪{∞}. We give a summary

of the construction procedure in the next section.

6.3.1 Procedure for the construction

1. Label the treatments 1, . . . , 5,∞.

2. Create a 3× 6 array and label its rows i = 1, 2,∞ and the columns j = 1, . . . , 5,∞,

where these (with the exception of the symbol ∞) are regarded as elements of Z5.

3. For i = 1, 2 and j = 1, . . . , 5, put Sij = {j± εi}2ε=1, which is the set, {j+ i, j− i, j+

2i, j − 2i}, where Sij denotes the set of entries in the cell in position (i, j); and put

S∞j to consist of 2 copies of {j,∞}, that is, S∞j is a multiset of entries in the cell

in position (∞, j).

4. For j = 1, . . . , 4 and i = i•, exchange {j + i•, j − i•} ⊂ Si•j with one copy of {j,∞}
in S∞j , where i• ∈ {2(2)j,−2(2)j} ∩ {1, 2} (or simply, i• ∈ {4j,−4j} ∩ {1, 2}) is

the unique element in the intersection region of the sets, thereby leaving one copy

of {j,∞} in S∞j .

5. For j = 5 and i = 1, 2, exchange {5 + i, 5− i} ⊂ Si5 with one copy of {5,∞} in S∞5,

where S∞5 is a multiset of entries in the cell in position (∞, 5) containing 2 copies

of {5,∞} and after the exchanges, S∞5 no longer contain the treatments {5,∞}.

6. For j = ∞ and i = 1, 2, put Si∞ = {±3αi/2}2α=1, which is the set {3i/2,−3i/2,

3(2)i/2,−3(2)i/2}, or simply, {3i/2,−3i/2, 3i,−3i}; and put S∞∞ to consist of 2

copies of {5,∞}. Finally, for each i ∈ {1, 2}, exchange {3i/2,−3i/2} ⊂ Si∞ with

one copy of {5,∞} in S∞∞ and after the exchanges, S∞∞ no longer contain the

treatments {5,∞}.

Comments. At the end of step 3; for each column j ∈ {1, . . . , 5}, each treatment, τ ∈
V \{j,∞} appears once in each cell, that is, for each column, all the treatments except

{j,∞} appear in each cell between rows 1 and 2 while the treatments j and∞, each appears

2 times in the last cell which corresponds to the row label∞. Hence each treatment appears

2 times in each column which corresponds to the parameter, nc denoting the number of

times each treatment should appear in each column of the design under construction.

Similarly, for each row, i ∈ {1, 2}, each treatment except ∞ appears 4 times–once in each

cell except one cell where the column label coincides with the label of that treatment.

Moreover, in the last row, between columns 1 and 5, the treatment ∞ appears 10 times–

twice in each cell, while every other treatment appears 2 times in a single cell and none

in others.

159

1 ∞ 3 1 4 2 4 ∞ 5 ∞ 5 ∞

3 4 4 5 5 1 1 2 2 3 3 2

3 4 2 ∞ 3 ∞ 1 2 5 ∞ 5 ∞

5 2 1 3 2 4 3 5 4 1 1 4

2 5 4 5 5 1 5 3 1 4 4 1

1 ∞ 2 ∞ 3 ∞ 4 ∞ 2 3 3 2

Figure 6.2: A (3× 6)/4 RGSLR for 6 treatments

By the procedure given in section 6.3.1, the design is as shown in Figure 6.2.

Remark. Notice that the cells in cols 5 and ∞ contain identical entries, where pairs of

entries of the same kind (those entries where one is negative of the other, modulo 5)

likewise the entries 5 and ∞ concur a higher number of times, 8 while other pairs concur

7 times, each. Hence the design is group-divisible with groups {5,∞}, {1, 4} and {2, 3}.

6.4 Construction of a (4× 8)/6 RGSLR, where v = 8

In situations where the number of rows of a SLR is congruent to 0 or 1 modulo 4, there is

a construction method in Bailey and Monod (2001) which uses starter to obtain RGSLRs

whose number of columns doubles the number of rows with the block size being 2 and

the number of treatments being identical to the number of columns. We exploit this

construction to obtain the design under construction.

Notice that, in the design under construction, the aforementioned congruence relation-

ship regarding the number of rows is satisfied and the parameters (apart from the block

size as well as nr and nc that is higher) conform to that of a design of a given size that

can be obtained using this method.

Notice that this design requires each treatment to appear 3 times per column (nc = 3)

and 6 times per row (nr = 6), and 24 times, overall. Furthermore, nr = 2nc = k. Hence,

to have a QBD which is an RGD, a sensible choice of the concurrence relationship is shown

in (6.3).

λ1 + 6λ2 = 120 (6.3)

where (λ1, λ2) = (18, 17). Hence each treatment needs to appear with precisely 1 treatment

in 18 blocks and with the other 6 treatments in 17 blocks, each.

Let V = {1, . . . , 8} denote the set of treatments. We use the cyclic group Z8 for the

construction and regard Z8 as {1, . . . , 8}. Our method involves finding first, an initial

2–subset starter in Z8 (where the differences, modulo 8, between the pairs in the starter

sets are ±1,±2,±3 and 4 (twice), consisting of all the non-zero elements of Z8): see Bailey

160

and Monod (2001) for 2–subset starters; see also section 5.4.1 in Chapter 5 of this thesis.

The starter sets are assigned labels, S1, S2, S3 and S4, respectively which are written

down as a row considering it as a cyclic route originating from S1, forming triples with

every 3 consecutive set labels and on getting to S4 joins it up with S1 and then S2, where

necessary to form the last triple, thus giving 4 triples, overall. The entries from the pooled

sets that constitute the 4 triples are then used to form the entries of the 4 cells in the

initial column of a 4 × 8 array and each block thus formed in the initial column is then

developed cyclically via addition of 1, modulo 8,to generate the remaining blocks for each

row.

We now summarize the procedure for constructing the design in section 6.4.1.

6.4.1 Procedure for the construction

1. Label the treatments 1, . . . , 8.

2. Form an initial 2–subset starter in Z8 (consisting of four 2-subsets) and label them

Si, where i = 1, . . . , 4; hence Si = {xi, yi}, for all i and are such that, overall, the dif-

ferences, ±(yi−xi), modulo 8, between xi and yi consist of ±1,±2,±3 and 4(twice),

which are all the non-zero elements of Z8.

3. For i = 1, . . . , 4, put Sii′i′′ = {xi, yi, xi′ , yi′ , xi′′ , yi′′}, where Sii′i′′ is the ith set of

pooled entries from 3 consecutive starter sets Si, Si′ and Si′′ . For instance, when

i = 1, then we have S123 obtained by pooling the entries in S1, S2 and S3; and when

i = 4 we join up S4 with S1 and S2 by pooling their entries to obtain S412, where

each set of pooled entries contains 6 treatments, corresponding to the required block

size.

4. Create a 4× 8 array and label its rows i = 1, . . . , 4 and columns j = 1, . . . , 8.

5. For i = 1, . . . , 4, put Sii′i′′ in the cell in position (i, 1) of the array and develop the

initial block formed there in row i, cyclically, via addition of 1 modulo 8 to generate

the other blocks in its row.

Comments. For row i = 1, . . . , 4, the set Sii′i′′ which contains pooled entries from three

2–subset starter sets constitutes the initial block. The cyclic development of the initial

block in each row is akin to developing each 2–subset starter set contained in Sii′i′′ and

then combining the generated entries for each block. Since each of these 2-subset starter

sets generates each element of Z8 2 times by the cyclic development, then it follows that

each treatment appears 6 times per row, as required. Similarly, each treatment appears

3 times per column since by the pooling, each Si, for i = 1, . . . , 4 is contained in 3 Sii′i′′

sets, hence its entries are contained in these 3 sets. Note that, for the sets, Si, i = 1, . . . , 4

which constitute a 2-subset starter in Z8,
4⋃
i=1

Si contains each element of V exactly once.

161

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1

4 6 5 7 6 8 7 1 8 2 1 3 2 4 3 5

5 8 6 1 7 2 8 3 1 4 2 5 3 6 4 7

4 6 5 7 6 8 7 1 8 2 1 3 2 4 3 5

5 8 6 1 7 2 8 3 1 4 2 5 3 6 4 7

3 7 4 8 5 1 6 2 7 3 8 4 1 5 2 6

5 8 6 1 7 2 8 3 1 4 2 5 3 6 4 7

3 7 4 8 5 1 6 2 7 3 8 4 1 5 2 6

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1

3 7 4 8 5 1 6 2 7 3 8 4 1 5 2 6

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1

4 6 5 7 6 8 7 1 8 2 1 3 2 4 3 5

Figure 6.3: A (4× 8)/6 RGSLR for 8 treatments

Moreover, each pair of treatments with the difference 4, modulo 8, which has a higher

multiplicity appears a higher number of times, 18 in the design while pairs with other

differences concur fewer times, 17. The design is group-divisible with groups being {1, 5},
{2, 6}, {3, 7} and {4, 8}.

Using the procedure in section 6.4.1, we obtain the design shown in Figure 6.3.

Remark. Notice that the sets {1, 2}, {4, 6}, {5, 8} and {3, 7} denoting S1, S2, S3 and

S4, respectively, whose differences, modulo 8, are ±1,±2,±3 and 4 (twice) constitute

the initial 2–subset starter in Z8 used for the construction. Notice also that S123 =

{1, 2, 4, 5, 6, 8}, S234 = {3, 4, 5, 6, 7, 8}, S341 = {1, 2, 3, 5, 7, 8} and S412 = {1, 2, 3, 4, 6, 7}.

6.5 Construction of (m×2m)/k RGSLRs, where k = 2(m−1),

m > 2 and v = 2m

We exploit the constructions given in Bailey and Monod (2001), which involves the use of

starters and balanced tournament designs (BTDs). We note, in particular, that, designs of

the sizes whose constructions are given in sections 6.3 and 6.4 belong to the aforementioned

class. Hence, we generalize the constructions given there to this general class. For each

method used, the relevant restriction on the row parameter, m in this case, given in Bailey

and Monod (2001) applies. That is, for the method that involves BTD, m is not congruent

to 2 modulo 3; and for the method that involves starter, m is congruent to 0 or 1 modulo

162

4. Moreover, as also given in Bailey and Monod (2001), between the two methods, the

constructions accommodate values of m that are not congruent to 2 or 11 modulo 12.

Notice that each treatment of the design is required to appear nr = 2(m−1) times per

row, nc = m−1 times per column, and 2m(m−1) times, overall.. The sum of concurrences

is 2m(m − 1)(2m − 3) and the design will be a RGD if the concurrence relationship for

pairs of treatments is governed by

λ1 + 2(m− 1)λ2 = 2m(m− 1)(2m− 3) (6.4)

which gives λ1 = 2(m − 1)2 and λ2 = 2m2 − 4m + 1. Hence each treatment is required

to concur with precisely 1 treatment in 2(m − 1)2 blocks and with the rest (2(m − 1) of

them) in 2m2 − 4m+ 1 blocks, each.

6.5.1 Construction via BTDs

Let V = {1, . . . , 2m− 1}∪ {∞} denote the treatment set, where (m ≥ 3) is not congruent

to 2 modulo 3. Let w = 2m − 1 be prime. We use the cyclic group Zw, the integers

modulo w, and regard Zw as {1, . . . w} such that V = Zw ∪ {∞}. We give an algorithmic

procedure for constructing the design. The algorithm generalizes the procedure given in

section 6.3.1.

An algorithmic procedure for the construction

1. Label the treatments 1, . . . , w,∞, where w = 2m− 1 is prime.

2. Create an m × 2m array and label its rows i = 1, . . . ,m − 1,∞ and the columns

j = 1, . . . , w,∞, where these (with the exception of the symbol ∞) are regarded as

elements of Zw.

3. For i = 1, . . . ,m − 1 and j = 1, . . . , w, put Sij = {j ± εi}m−1ε=1 , which is the set,

{j + i, j − i, j + 2i, j − 2i, . . . , j + (m− 1)i, j − (m− 1)i}, where Sij denote the set

of entries in the cell in position (i, j); and put S∞j to consist of m− 1 = k/2 copies

of {j,∞}, that is, S∞j is a multiset of entries in the cell in position (∞, j).

4. For j = 1, . . . , w−1 and i = i•q , where q = 1, . . . ,m−2, exchange {j+i•q , j−i•q} ⊂ Si•qj
with one copy of {j,∞} in S∞j , for all q, where i•q ∈ {2(q + 1)j,−2(q + 1)j} ∩
{1, . . . ,m− 1} is the unique element in the intersection region of the sets for a fixed

q; thereby leaving precisely one copy of {j,∞} left in S∞j , since m − 2 copies are

exchanged by this procedure.

5. For j = w and i = 1, . . . ,m − 1, exchange {w + i, w − i} ⊂ Siw with one copy of

{w,∞} in S∞w, where S∞w is a multiset of entries in the cell in position (∞, w)

containing m−1 copies of {w,∞} and after all the exchanges, S∞w no longer contain

the treatments {w,∞}.

163

6. For j = ∞ and i = 1, . . . ,m − 1, put Si∞ = {±3αi/2}m−1α=1 , which is the set

{3i/2,−3i/2, 3(2)i/2,−3(2)i/2, . . . , 3(m − 1)i/2,−3(m − 1)i/2}; and put S∞∞ to

consist of m − 1 copies of {w,∞}. Finally, for each i ∈ {1, . . . ,m − 1}, exchange

{3i/2,−3i/2} ⊂ Si∞ with one copy of {w,∞} in S∞∞ and after all the exchanges,

S∞∞ no longer contain the treatments {w,∞}.

Comments. Notice in step 4 that if q = 1, then we have i•1 ∈ {2(2)j,−2(2)j}∩{1, . . . ,m−
1}, which is identical to i•1 ∈ {4j,−4j} ∩ {1, . . . ,m − 1}. Similarly, if q = m − 2, then

i•m−2 ∈ {2(m− 1)j,−2(m− 1)j} ∩ {1, . . . ,m− 1}.
At the end of step 3, for each column j ∈ {1, . . . , w}, each treatment, τ ∈ V \{j,∞}

appears once in each cell between rows 1 and m− 1 while the treatments j and ∞, each

appears m − 1 times in the last cell which corresponds to the row label ∞. Hence each

treatment appears m− 1 times in each column and this corresponds to the parameter, nc

denoting the number of times each treatment should appear in each column of the design

under construction. Similarly, in each row i ∈ {1, . . . ,m− 1}, between columns 1 and w,

each treatment, β ∈ V \{∞} appears once in every other cell except the cell in position

(i, β), that is, the cell whose column label corresponds to β, for a fixed i ∈ {1, . . . ,m− 1}.
This means that, for each i ∈ {1, . . . ,m − 1}, β ∈ Sij , for each j 6= β. Hence it appears

w−1 = 2m−2 times, which is identical to 2(m−1), the parameter nr denoting the number

of times each treatment should appear per row. However, in row∞, each treatment (other

than the treatment∞) appears m−1 times in a single cell whose column label corresponds

to the label of that treatment while the treatment with the label∞ appears (m−1)(2m−1)

times, that is, (m− 1) times in each cell.

Moreover, at the end of step 6, in the full design, each cell in column w also appears as

a cell in column∞ (not necessarily in the same row). In column w, each pair of treatments

of the same kind, {w+ i, w− i}, which is identical to {i,−i}, that is {±i} or equivalently,

{i, w− i} for all i = 1, . . . ,m− 1 appears higher in the design. Similarly, the pair {w,∞}
also appears higher. Each of such pairs appears m− 1 times in each of columns w and ∞
(2 columns) and m− 2 times in the rest of the columns, 2(m− 1) of them. Hence each of

such pairs concur in

λ1 = 2(m− 1) + 2(m− 1)(m− 2) = 2(m− 1)2

as required. Similarly, every other pair of treatments not of the same kind as above concur

m− 1 times in a single column and concurs m− 2 times in other columns. Hence each of

these pairs concur in

λ2 = 1(m− 1) + (m− 2)(2m− 1) = 2m2 − 4m+ 1.

as also required.

The design is thus group-divisible with groups {w,∞}, {1, w−1}, {2, w−2}, . . . , {m−
1,m}.

164

6.5.2 Construction via starter

We generalize the ideas in section 6.4 to give construction for (m×2m)/k RGSLRs, where

k = 2(m − 1), v = 2m and m (≥ 4) is congruent to 0 or 1 modulo 4. We use the

cyclic group Z2m, the integers, modulo 2m, and regard Z2m as {1, . . . , 2m}. We give an

algorithmic procedure for the construction in the next section. The algorithm generalizes

the procedure given in section 6.4.1.

6.5.3 Procedure for the construction

1. Label the treatments 1, . . . , 2m.

2. Form an initial 2–subset starter in Z2m (consisting of m 2-subsets) and label them

Si, where i = 1, . . . ,m; hence Si = {xi, yi}, for all i and are such that, overall, the

differences, ±(yi−xi), modulo 2m, between xi and yi consist of ±1,±2, . . . ,m(twice),

which are all the non-zero elements of Z2m.

3. For i = 1, . . . ,m, put Sii+1...i+m−2 = {xi, yi, xi+1, yi+1, . . . , xi+m−2, yi+m−2}, where

Sii+1...i+m−2 is the ith set of pooled entries from m − 1 consecutive starter sets

Si, Si+1, . . . , Si+m−2. For instance, when i = 1, we have S12...m−1 obtained by pooling

the entries in S1, . . . , Sm−1; and so on, and when you get to the end, join up Sm with

S1 until the number of sets whose entries are pooled is m − 1. In particular, when

i = m, we have Sm1...m−2 obtained by pooling the entries in Sm, S1, . . . , Sm−2. Note

that each set of pooled entries contains 2(m − 1) treatments, which is the required

block size.

4. Create an m× 2m array and label its rows i = 1, . . . ,m and columns j = 1, . . . , 2m.

5. For i = 1, . . . ,m, put Sii+1...i+m−2 in the cell in position (i, 1) of the array and

develop the initial block formed there in row i, cyclically, via addition of 1 modulo

2m to generate the other blocks in its row.

Comments. For i = 1, . . . ,m, the set Sii+1...i+m−2 which contains pooled entries from m−1

2–subset starter sets constitutes the initial block. The cyclic development of the initial

block in each row is akin to developing each 2–subset starter set contained in Sii+1...i+m−2

and then combining the generated entries for each block. Since each of these 2-subset

starter sets generates each element of Z2m 2 times by the cyclic development, then it

follows that each treatment appears 2(m− 1) times per row, as required. Similarly, each

treatment appears m− 1 times per column since by the pooling, each Si, for i = 1, . . . ,m

is contained in m− 1 Sii+1...i+m−2 sets, hence its entries are contained in these m− 1 sets.

Also Si, where i = 1, . . . ,m constitute a 2-subset starter in Z2m, where
m⋃
i=1

Si contains

each element of V exactly once.

165

Moreover, each pair of treatments with the difference m, modulo 2m, which has a

higher multiplicity concurs a higher number of times, λ1 = 2(m− 1)2 in the design while

pairs with the other differences, each concurs fewer times, λ2 = 2m2 − 4m + 1. Notice

that λ1 and λ2 are quadratic factors in m. Note that λ1 can be viewed this way: each

pair with the difference m appears in m − 1 blocks in 2 columns, each (columns c and

c+m, where c is the first column it appears) and appears in m− 2 blocks in each of the

remaining 2m− 2 = 2(m− 1) columns. Hence

λ1 = 2(m− 1) + 2(m− 1)(m− 2) = 2(m− 1)2

Similarly, λ2 can be seen by noting that each pair with any difference other than 4 appears

m − 1 times in exactly 1 column and m − 2 times in each of the remaining 2m − 1

columns.Thus

λ2 = 1(m− 1) + (2m− 1)(m− 2) = 2m2 − 4m+ 1

The design is thus group-divisible with groups being {1,m+1}, {2,m+2}, . . . , {m−1, 2m−
1}, {m, 2m}.

Notice that λ1 and λ2 satisfy (6.4).

6.5.4 Construction of RGSLRs via complementation

Just like the complement of a BIBD is another BIBD, the complement of a RGD is also

another RGD: see, for example, John and Williams (1982). Hence a RGSLR can be

obtained from another RGSLR by complementing the within-block treatments, which we

name block (cell) complementation, that is, replacing each block of the ‘parent’ RGSLR

by those treatments that are missing there. In particular, given a RGSLR on a treatment

set, V (where the cardinality of V is v) and having block size k, we employ the concept

of block complementation to obtain another RGSLR on the same set of treatments but

with block size k′ = v − k by putting in each block of the ‘parent’ design, the set, V \Sij
of treatments, where Sij is the set of treatments in the cell in position (i, j) of the ‘parent

design’, for all i and j. This procedure provides an alternative construction for obtaining

a RGSLR with block size v − k when there exists another RGSLR with block size k. It

can be used to obtain RGSLRs of the class specified in section 6.5 whose direct methods

of construction are given in sections 6.5.1 and 6.5.2.

Theorem 6.5.1. Let h, p, k, v be positive integers.. For a fixed h, p, k, let ∆1 denote an

(h× p)/k RGSLR on the treatment set V , where V = {1, 2, ..., v}. Let Sij denote the set

of entries in the cell in position (i, j) of ∆1, where i = 1, . . . , h and j = 1, . . . , p. Let ∆2

denote a design obtained from ∆1 by putting Sij to be S′ij = V \Sij, for all i and j, where

S′ij is the set of entries in the corresponding cell, (i, j) in ∆2. Then ∆2 is an (h × p)/k′

RGSLR on the same treatment set as ∆1, where k′ = v − k.

Proof. We first investigate whether ∆2 is a SLR.

166

Since ∆1 is a SLR, then each treatment appears nr times in each row and nc times in

each column, where nr, nc ∈ Z+. It follows that, if ∆2 is a SLR, then each treatment needs

to appear n∗r times, say, in each row and n∗c times, say, in each column, where n∗r , n
∗
c ∈ Z+.

Letl τ ∈ V . Then for all τ ∈ V , since ∆1 is a SLR whose QBD is binary, it implies

that, for all i = 1, . . . , h, τ appears in nr cells. Similarly, for all j = 1, . . . , p, τ appears in

nc cells. Now, in ∆2, for all i = 1, . . . , h, every τ ∈ V appears in p − nr cells, which are,

precisely, those cells it does not appear in ∆1. Similar to this, in ∆2, for all j = 1, . . . , p,

each τ ∈ V appears in h− nc cells, which are, precisely, those cells it does not appear in

∆1. Notice that since ∆1 is a SLR, then for all i = 1, . . . , h and j = 1, . . . , p, |Sij | = k,

where k > 0, thus Sij 6= ∅ for all i and j. Since Sij ⊂ V , it follows that, S′ij = V \Sij ⊂ V ,

for all i and j hence S′ij 6= ∅ such that k′ = |S′ij | > 0, where |S′ij | = |V \Sij | = v−k. Notice

that p − nr > 0, as nr < p since its QBD is binary and τ ∈ V does not appear in all the

cells–the blocks being incomplete. Similarly, h− nc > 0, as nc < h. It follows from these

discussion that ∆2 is a SLR on the set, V of treatments.

Now, since ∆1 is a RGSLR, then its QBD is a RGD, thus has two distinct treatment

concurrence counts for all pairs of treatments. Denote by Λ1, the QBD of ∆1. Furthermore,

denote by λ1 and λ2, the two classes of concurrences. Then |λ2 − λ1| = 1 or equivalently,

λ2 = λ1 ± 1. Notice that each τ ∈ V appears in hnr blocks, overall, hence since there are

hp blocks in Λ1, it implies that τ does not appear in hp − hnr = h(p − nr) blocks. Let

τ1, τ2, τ3 ∈ V . Let τ1 appear with τ2 in λ1 blocks and with τ3 in λ2 blocks. Moreover, τ1,

for instance, appears without τ2 in hnr − λ1 blocks. Similarly, τ1 appears without τ3 in

hnr − λ2 blocks.

We now investigate whether the QBD of ∆2 is a RGD. Let Λ2 denote the QBD of ∆2.

We note that, for any cell in position (i, j), if τ1, τ2 ∈ Sij , then τ1, τ2 6∈ S′ij . Conversely,

if τ1, τ2 ∈ S′ij , then τ1, τ2 6∈ Sij . Hence τ1, τ2 ∈ S′ij if and only if τ1, τ2 6∈ Sij . Similarly,

τ1, τ3 ∈ S′ij if and only if τ1, τ3 6∈ Sij . Let λ′1 and λ′2 denote the treatment concurrence

counts for the pairs {τ1, τ2} and {τ1, τ3}, respectively, in Λ2, that is, the respective number

of blocks that these pairs of treatments appear together in Λ2. Let B = {Sij}(h,p)(i,j)=(1,1),

the set of all blocks in the design which has cardinality, |B| = hp. We have that

λ′1 = |B| − (|A1|+ |A2| − λ1) (6.5)

and

λ′2 = |B| − (|A1|+ |A3| − λ2) (6.6)

where Al = {Sij : τl ∈ Sij}, for all l = 1, 2, 3. Note that |Al| = hnr, for all l = 1, 2, 3.

Hence from (6.5), λ′1 = hp − 2hnr + λ1. Similarly, from (6.6), λ′2 = hp − 2hnr + λ2.

Notice that |λ′2 − λ′1| = |λ2 − λ1| = 1. This result holds for any set of treatments in V

which have different concurrence counts in Λ1, hence in Λ2. Thus the QBD of ∆2 is a

RGD. It follows that ∆2 is an (h× p)/k′ RGSLR on the same treatment set as ∆1, where

k′ = v − k.

167

4 6 5 7 6 8 7 1 8 2 1 3 2 4 3 5

5 8 6 1 7 2 8 3 1 4 2 5 3 6 4 7

3 7 4 8 5 1 6 2 7 3 8 4 1 5 2 6

5 8 6 1 7 2 8 3 1 4 2 5 3 6 4 7

3 7 4 8 5 1 6 2 7 3 8 4 1 5 2 6

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1

3 7 4 8 5 1 6 2 7 3 8 4 1 5 2 6

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1

4 6 5 7 6 8 7 1 8 2 1 3 2 4 3 5

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1

4 6 5 7 6 8 7 1 8 2 1 3 2 4 3 5

5 8 6 1 7 2 8 3 1 4 2 5 3 6 4 7

Figure 6.4: A (4× 8)/6 RGSLR for 8 treatments obtained via block complementation

�

Example 6.5.1. As an illustration, by applying block complementation to the (4× 8)/2

RGSLR for 8 treatments shown in Figure 5.6 in Chapter 5, we obtain the (4×8)/6 RGSLR

for 8 treatments shown in Figure 6.4.

Comments. Notice that the designs shown in Figures 6.3 and 6.4 obtained by a direct

method via starter and block complementation, respectively, are isomorphic. This can be

seen by applying the permutation, α1 to the rows of the design shown in Figure 6.4, where

α1 =

1 2 3 4

2 3 4 1


Similarly, if the permutation, α2 (which reverses α1) given below is applied to the rows of

the design shown in Figure 6.3, then it leads to the other design.

α2 =

1 2 3 4

4 1 2 3


Moreover, in general, a rearrangement of the pooled starter sets among the m cells

of the initial column leads to a different design each time. In particular, if step 5 of the

168

1 3 1 3 1 2 1 2 2 3 2 3

4 ∞ 4 5 4 5 4 ∞ 5 ∞ 5 ∞

2 3 1 2 2 3 1 2 1 4 1 4

4 5 3 ∞ 4 ∞ 3 5 5 ∞ 5 ∞

1 2 2 4 1 3 3 4 1 2 1 2

5 ∞ 5 ∞ 5 ∞ 5 ∞ 3 4 3 4

Figure 6.5: A (3× 6)/4 RGSLR for 6 treatments obtained via block complementation

procedure in section 6.4.1 is modified slightly by putting S234, S341, S412 and S123 in the

cells in positions (1, 1), (2, 1), (3, 1) and (4, 1), respectively, then we get exactly the design

in Figure 6.4.

Example 6.5.2. From the first part of the design in Figure 5.20 in Chapter 5, that

is, the first 6 columns which constitute a (3 × 6)/2 RGSLR for 6 treatments; by block

complementation, we obtain the design shown in Figure 6.5.

Notice that the design shown in Figure 6.5, obtained via block complementation, is

identical to the design shown in Figure 6.2, obtained by a direct approach.

6.6 RGSLRs of larger sizes

As mentioned in section 6.1, a RGSLR of larger size can be obtained by adjoining a

BSLR to a RGSLR, where both constituent designs exist and are of conformable sizes.

Furthermore, by applying a suitable permutation of treatments to a RGSLR and then

adjoining it to the ‘parent’ RGSLR also gives another RGSLR of larger size, if both

designs also conform in size. We adopt this procedure to obtain designs of sizes larger

than that of a given ‘parent’ RGSLR.

Example 6.6.1. Let h = 5, p = 15, k = 3 and v = 5. By putting a (5 × 5)/3 RGSLR

and a (5× 10)/3 BSLR shown in Figures 6.1 and 4.1, respectively, side by side, we obtain

the (5× 15)/3 RGSLR shown in Figure 6.6.

Example 6.6.2. Let h = 3, p = 12, k = 4 and v = 6. By applying the permutation α to

every treatment of the design in Figure 6.2 (the ‘parent’ design), where

α =

1 2 3 4 5 ∞

3 4 5 1 ∞ 2,


and then putting the resulting design with the ‘parent’ design, side by side, we obtain the

design shown in Figure 6.7.

169

1 5 2 5 2 4 2 4 3 4 3 1 3 1 5 1 2 5 2 3 1 3 4 2 4 5 3 5 1 4 1 3 4 2 4 5 3 5 1 4 1 2 5 2 3

2 1 3 1 3 5 3 5 4 5 4 2 4 2 1 5 1 4 1 2 5 2 3 1 3 4 2 4 5 3 5 2 3 1 3 4 2 4 5 3 5 1 4 1 2

3 2 4 2 4 1 4 1 5 1 5 3 5 3 2 4 5 3 5 1 4 1 2 5 2 3 1 3 4 2 4 1 2 5 2 3 1 3 4 2 4 5 3 5 1

4 3 5 3 5 2 5 2 1 2 1 4 1 4 3 3 4 2 4 5 3 5 1 4 1 2 5 2 3 1 3 5 1 4 1 2 5 2 3 1 3 4 2 4 5

5 4 1 4 1 3 1 3 2 3 2 5 2 5 4 2 3 1 3 4 2 4 5 3 5 1 4 1 2 5 2 4 5 3 5 1 4 1 2 5 2 3 1 3 4

Figure 6.6: A (5× 15)/3 RGSLR for 5 treatments

1 ∞ 3 1 4 2 4 ∞ 5 ∞ 5 ∞ 3 2 5 3 1 4 1 2 ∞ 2 ∞ 2

3 4 4 5 5 1 1 2 2 3 3 2 5 1 1 ∞ ∞ 3 3 4 4 5 5 4

3 4 2 ∞ 3 ∞ 1 2 5 ∞ 5 ∞ 5 1 4 2 5 2 3 4 ∞ 2 ∞ 2

5 2 1 3 2 4 3 5 4 1 1 4 ∞ 4 3 5 4 1 5 ∞ 1 3 3 1

2 5 4 5 5 1 5 3 1 4 4 1 4 ∞ 1 ∞ ∞ 3 ∞ 5 3 1 1 3

1 ∞ 2 ∞ 3 ∞ 4 ∞ 2 3 3 2 3 2 4 2 5 2 1 2 4 5 5 4

Figure 6.7: A (3× 12)/4 RGSLR for 6 treatments

170

Chapter 7

Conclusion

7.1 Introduction

This chapter showcases, in summary form, the main results of the work that has been done

in this thesis, and also makes some relevant conclusion about the work. We consider semi-

Latin rectangles (SLRs) whose quotient block designs (QBDs) are balanced incomplete-

block designs (BIBDs), that is, the balanced semi-Latin rectangles (BSLRs) and those

that their QBDs are not balanced–the non-balanced semi-Latin rectangles (NBSLRs),

separately. For each case, we consider designs with block size 2 and those with block sizes

larger than 2. Moreover, a table showing some sets of parameters that can give designs for

each of BSLRs and RGSLRs is given. Some suggestions for further work are also given.

7.2 Balanced semi-Latin rectangles

We have developed some constructions for BSLRs of various classes and sizes, ranging

from the case where the block size, k is 2 to the case where k > 2. For k = 2, we have

employed, basically, two concepts, viz, graph distance and parallel classes to obtain basic

designs for those experimental situations where the number of treatments, v is odd and

even, respectively. An algorithm is given for each construction. These have been published:

see Uto and Bailey (2020). When v is odd, the algorithm produces a BSLR with h = v

rows and p = vδ columns, where δ = (v − 1)/2 which is precisely a (v × vδ)/2 BSLR.

Similarly, when v is even, the corresponding algorithm produces designs with h = v/2

rows and p = v(v − 1)/2 columns. The two constructions via these algorithms serve as

basic constructions for obtaining larger designs.

For k > 2; if v is odd and k = 3, we have given a construction procedure which involves

a modification of the distance approach that was used to obtain designs for k = 2. We have

also utilized the concepts of difference sets/difference families for Zv, the set of integers,

modulo v (when they exist) to obtain designs for those values of k that these exist. In

particular, if a difference set exists, then the design obtained from the construction has

171

same number of rows as columns. We have always regarded Zv as {1, . . . , v}. Furthermore,

if k is a prime power and v is the square of k, then the concept of affine resolvability via

a complete set of MOLSs and a square array of order k can also be employed to obtain

designs of appropriate sizes. The algorithm given for each of these procedures produces

the basic design from which larger designs can also be obtained.

In both cases, that is, whether k = 2 or k > 2, if certain conditions are satisfied, that

is, if in situations where multiple Latin squares are used for the basic construction and

the number of Latin squares involved is a nonprime, then certain rearrangements of the

basic design produce designs of different other sizes. In particular, if the number of Latin

squares used in the construction is a perfect square, then it is possible to obtain, as one

of the arrangements, a BSLR with same number of rows as columns. Moreover, designs

of larger sizes can be obtained from the basic design by making multiple copies of it and

then making appropriate juxtapositions of the copies, which may involve juxtaposing all

the copies side by side, under or a combination of these.

A BSLR does not always exist. It exists only if

vhnr = vpnc = khp (7.1)

and

λ(v − 1) = hnr(k − 1) = pnc(k − 1), (7.2)

that is, (7.1) and (7.2) give necessary conditions for a BSLR to exist. Moreover, when a

BSLR exists, it is optimal over every other SLR of its size, thus giving the best design

for experiment: see Uto and Bailey (2020). This is so since its QBD is a BIBD, which is

known to be optimal (under a range of criteria) over all incomplete-block designs of its

size.

We present, in Table 7.1, some sets of parameters that can make a BSLR alongside

their constructions, if that has been covered by one of our methods. However, for any

set of parameters in the table which our construction methods do not cover, we leave it

blank. The Solution column contains some information regarding where the particular

design or its construction can be found in the thesis, quoting the relevant Figure label, if

the design has been written out or the relevant section, if the design is covered by one of

our methods but is not written out. Note that, wherever JSTP appears in the Solution

column in the table, it means that the design with the corresponding set of parameters

also appears in Uto and Bailey (2020), which is a publication in JSTP–an acronym for

Journal of Statistical Theory and Practice.

The table consists of parameter sets for designs with h ≤ p, h and p being the number

of rows and columns, respectively. We note that if a design with h < p exists, then

there also exist a corresponding design with the values of h and p swapped (also swapping

the values of nr and nc) such that the new design has h′ = p rows and p′ = h columns,

where p > h. Furthermore, the various parameters have their usual meanings, for instance,

r = hnr = pnc denotes the replication number of each treatment in the design while b = hp

172

denotes the number of blocks. n∗ specifies the number of different possible arrangements

into a BSLR (based on our methods) with the same value of b and other parameters while

toggling with the values of h and p (also adjusting the values of nr and nc) in situations

that h ≤ p, for each set of parameters in the table. However, for a given set of parameters,

if h = p, and the set of parameters gives a basic design, then the value of n∗ = 1, as

can be seen from the table. Furthermore, if h < p, then for each set of parameters that

satisfy this, the value of h can be swapped with p (likewise nr and nc) to give another set

of parameters that can make an equivalent design–a design of the same size as would be

obtained via transposition of the former, which also generates the same number of designs

(possibilities) as with the former set of parameters, where in this case, there are more rows

than columns.

Now, whether h < p (as in the table) or h′ > p′ (after swapping), there may be a

possibility of obtaining a design which contains identical number of rows as columns. Let

h < p. Suppose p = hε, and the basic construction involves ε constituent Latin squares,

then if ε is a perfect square, it may be possible to have one of the arrangements to have

identical number of rows as columns. But if ε is a nonprime that is not a perfect square,

there are also other possibilities: see Uto and Bailey (2020). In all these cases, r remains

constant since the various QBDs are the same. Hence, overall, with the same QBD, if

h 6= p in the original set of parameters in the table, a total of 2n∗ designs can be generated

if ε is a nonprime that is not a perfect square (n∗ with h < p and also another n∗ with

h′ > p′, the swapped parameters). This is so since by the construction methods, for every

(h × p)/k BSLR there is a corresponding (h′ × p′)/k BSLR, where h′ = p and p′ = h

which can be obtained by changing the order of juxtaposition of the constituent designs.

However, if ε is a perfect square, then, overall, the number of different arrangements

becomes 2(n∗ − 1) + 1 = 2n∗ − 1.

For instance, by our construction methods, a design such as the (3 × 60)/2 BSLR

in S/N 14 of Table 7.1 can have its blocks arranged into a (6 × 30)/2 BSLR and also a

(12 × 15)/2 BSLR. By the construction methods, a (60 × 3)/2 BSLR, (30 × 6)/2 BSLR

and (15× 12)/2 BSLR can be obtained by changing the other of juxtaposition each time,

thus giving 2n∗ = 6 designs, overall.

7.3 Non-balanced semi-Latin rectangles

When no BSLR exists, good SLRs can be found among RGSLRs (if they exist), partic-

ularly, if the number of blocks, hp is reasonably large. This is so since the QBD of a

RGSLR is a RGD, and RGDs, when they exist, are known to contain the D-optimal (or

A-optimal or E-optimal) design, provided the number of blocks is reasonably large: see

Cheng (1992). Cakiroglu (2018), under the A–optimality and D–optimality, asserts that,

RGDs, under the condition of having large number of blocks, contain the A-optimal (or

D-optimal) design, if any exists. Moreover, extending RGDs with copies of BIBDs produce

173

designs with good statistical properties: see Cakiroglu (2018). If the QBD of a RGSLR

consists of a RGD and BIBD, we call it BIBD-extended RGSLR; however, in the case

where a BSLR is adjoined to RGSLR, we call it a BSLR-extended RGSLR.

For even v and k = 2, we have extended the constructions in Bailey and Monod (2001)

to obtain BIBD-extended RGSLRs for some values of h = m rows and p = m(θ + 2)

columns, where v = 2m and θ = 1, 2, 4. In particular, for θ = 1, the construction involves

a Trojan square and for the other values of θ it involves some suitable permutations of the

treatments of the ‘parent’ design–the design obtained from the constructions in Bailey and

Monod (2001). For the permutation, if θ = 2, then exactly 1 permutation is required and

if θ = 4, then 2 permutations are required, and the permutations are applied successively,

one after the other, to the treatments in the ‘parent’ design. Moreover, for odd v, we have

obtained constructions for designs with h = p = m and v = m using the concept of starter

in Zm. This is further generalized to designs with more columns using the concept of

permutation. Starter sets in Zm for small odd values of m up to 15 are given. Undirected

terrace provides a more convenient approach to generating the starter sets. Also, for the

case that v is odd, under certain conditions, as shown in section 5.8.4, a BSLR can be

realized from our construction of RGSLRs.

Moreover, for k > 2, our constructions are based on certain concepts like undirected

terrace. We have also exploited the constructions in Bailey and Monod (2001) to obtain

more constructions and this has been generalized to give a direct construction for designs of

sizes that can also be obtained via block complementation. In one of these direct methods,

there is some requirement that the order of the group be prime; and designs obtained

using this method is found to be identical to that obtained via block complementation.

The other direct construction produces designs that are isomorphic to those obtained via

complementation. However, with a slight modification of the procedure, it produces same

design as complementation would do.

In both cases, that is, for k ≥ 2, larger designs can be obtained by adjoining a BSLR of

conformable size to a RGSLR or adjoining a RGSLR to another after a suitable permuta-

tion of treatments, that is, for a given ‘parent’ RGSLR, a suitable permutation is applied

to its treatments to obtain another RGSLR which is then adjoined to the ‘parent’ design.

Table 7.2 shows sets of parameters that can give a RGSLR, where x denotes the number

of treatments that can concur with another a higher number, λ∗ of times while y denotes

the number of treatments that concur with it less number, λ′ of times, that is we have

assumed each treatment of the design to concur with x treatments a higher number of

times, λ∗ and with y treatments less number of times, λ′. Just like in Table 7.1, Table

7.2 contains parameter values for which h ≤ p. Furthermore, if an (h × p)/k RGSLR for

v treatments exists, then there also exists a corresponding (p × h)/k RGSLR. Hence, for

each combination of parameters in the table that make a design, another set of parameters

not listed in the table can be obtained by exchanging the values of h and p, if h and p are

different values.

174

7.4 Some important general remarks concerning the designs

Algorithms are given for the constructions and we note, in general, that among the designs

obtained, there are some whose number of rows are identical to the number of columns.

Being a SLR, the parameters, nr and nc, denoting the number of times each treatment

appears in each row and in each column, respectively, are not all equal to 1. Hence a SLR

can have identical number of rows as columns without being a semi-Latin square (SLS).

Note in particular that it can only be a SLS if these two parameters are each equal to 1.

Moreover, if in addition to nr and nc being 1, the block size, k is also 1, then the design

is trivially a Latin square (LS).

For a fixed set of parameters, h, p and k, a (p × h)/k SLR can be obtained from an

(h× p)/k SLR by transposing the (h× p)/k SLR: see Uto and Bailey (2020).

Moreover, we have established that, for both BSLRs and RGSLRs, block complemen-

tation can be a useful concept for obtaining a new SLR (within either of these two classes)

from another, hence providing a convenient means of obtaining SLRs of these classes, par-

ticularly, for much higher values of k. For BSLRs, in the case where the design has precisely

2 rows or 2 columns and k = v/2, we have also considered other forms of complementation,

which we name column complementation and row complementation, respectively. Hence,

given any BSLR or RGSLR, a new BSLR or RGSLR, as the case may be, can be obtained

by employing the concept of block complementation, while in particular cases of BSLRs,

where there are 2 rows or 2 columns, column and row complementations, respectively, can

also be useful.

Among some classes of designs obtained, we have found some designs to be isomorphic.

Furthermore, complementation works in every case in obtaining a design of the class given

in section 6.5. However, the direct construction method given there that uses an exchange

algorithm works only for prime values of w and it also produces identical designs as

would be obtained via complementation. The method which involves a cyclic development

of initial blocks formed by pooled starter sets produce designs which are isomorphic to

those that would be produced via complementation, but with a slight modification of

the procedure which involves rearrangement/repositioning of the starter sets among the

cells in the initial column, it can produce designs that are identical to that obtained via

complementation.

7.5 Suggestions for further work

Efforts can be geared towards obtaining some more general constructions for good SLRs to

fill in the gap for designs of those sizes not covered by this work, particularly, for situations

where k > 2 and a BSLR fails to exist. More investigations can be made into the class of

RGSLRs.

Moreover, it is also worth investigating the isomorphism classes of SLRs.

175

In experimental situations where the outcome of one observation might be affected by

other treatments in the same cell, there is need to consider obtaining designs that suit this

situation. Also, if the rows correspond to time, then there might be a carry-over effects

from the treatments in the same column but in the previous time. It might be of interest

to consider how to obtain designs for this purpose.

176

Table 7.1: Table of parameters for some BSLRs

S/N v k h p nc nr λ r Construction b n∗ Solution

1 3 2 3 3 2 2 3 6 distance 9 1 Figure 3.1

2 3 2 3 6 2 4 6 12 Two copies of 1+ 18 1 Figure 3.26

juxtaposition beside

3 4 2 2 6 1 3 2 6 parallel class 12 1 Figure 3.5

4 4 2 2 12 1 6 4 12 two copies of 3 + 24 2 Figure 3.31

juxtaposition beside

5 4 2 4 6 2 3 4 12 two copies of 3 + 24 2 Figure 3.32

juxtaposition underneath

6 4 2 2 18 1 9 6 18 three copies of 3 + 36 2 Section 3.6

juxtapositions beside

7 4 2 6 6 3 3 6 18 three copies of 3 + 36 2 Figure 3.34

juxtaposition underneath

8 5 2 5 10 2 4 5 20 distance 50 1 Figure 3.2;

JSTP

9 6 2 3 15 1 5 3 15 parallel class 45 1 Figure 3.6;

JSTP

10 6 2 3 30 1 10 6 30 two copies of 9 + 90 2 Section 3.6

juxtaposition beside

11 6 2 6 15 2 5 6 30 two copies of 9 + 90 2 Section 3.6

juxtaposition underneath

12 6 2 3 45 1 15 9 45 three copies of 9 + 135 2 Section 3.6

juxtaposition beside

13 6 2 9 15 3 5 9 45 three copies of 9 + 135 2 Section 3.6

juxtaposition underneath

14 6 2 3 60 1 20 12 60 four copies of 9 + 180 3 Section 3.6

juxtaposition beside

15 6 2 6 30 2 10 12 60 two copies of 10 + 180 3 Section 3.6

juxtaposition underneath

16 6 2 12 15 4 5 12 60 four copies of 9 + 180 3 Section 3.6

juxtaposition underneath

17 7 2 7 21 2 6 7 42 distance 147 1 Figure 3.3

18 7 2 7 42 2 12 14 84 two copies of 17 + 294 2 Section 3.6

juxtaposition beside

19 7 2 14 21 4 6 14 84 two copies of 17 + 294 2 Section 3.6

juxtaposition underneath

20 7 2 7 63 2 18 21 126 three copies of 17 + 441 2 Section 3.6

juxtaposition beside

177

S/N v k h p nc nr λ r Construction b n∗ Solution

21 7 2 21 21 6 6 21 126 (rearrangement of 20) or three copies 441 2 Section 3.6

of 17+ juxtaposition underneath

22 7 2 7 84 2 24 28 168 four copies of 17 + 588 3 Section 3.6

juxtaposition beside

23 7 2 14 42 4 12 28 168 two copies of 18 + 588 3 Section 3.6

juxtaposition underneath

24 7 2 21 28 6 8 28 168 juxtaposition 588 3 Section 3.6

of transpose of 17 beside 21

25 8 2 4 28 1 7 4 28 parallel class 112 1 Figure 3.7

26 8 2 4 56 1 14 8 56 two copies of 25 + 224 2 Section 3.6

juxtaposition beside

27 8 2 8 28 2 7 8 56 two copies of 25 + 224 2 Section 3.6

juxtaposition underneath

28 8 2 4 84 1 21 12 84 three copies of 25 + 336 2 Section 3.6

juxtapositions beside

29 8 2 12 28 3 7 12 84 three copies of 25 + 336 2 Section 3.6

juxtaposition underneath

30 9 2 9 36 2 8 9 72 distance 324 2 Figure 3.4

31 9 2 18 18 4 4 9 72 rearrangement of 30 324 2 Figure 3.24;

JSTP

32 9 2 9 72 2 16 18 144 two copies of 30 + 648 2 Section 3.6

juxtaposition beside

33 9 2 18 36 4 8 18 144 two copies of 30 + 648 2 Section 3.6

juxtaposition underneath

34 9 2 9 108 2 24 27 216 three copies of 30 + 972 3 Section 3.6

juxtaposition beside

35 9 2 18 54 4 12 27 216 three copies of 31 + 972 3 Section 3.6

juxtaposition beside

36 9 2 27 36 6 8 27 216 three copies of 30 + 972 3 Section 3.6

juxtaposition underneath

37 9 2 9 144 2 32 36 288 four copies of 30 + 1296 2 Section 3.6

juxtaposition beside

38 9 2 18 72 4 16 36 288 two copies of 33 + 1296 2 Section 3.6

juxtaposition beside

39 4 3 4 4 3 3 8 12 difference set or 16 1 Figure 4.18

block complementation

of a Latin square of order 4

178

S/N v k h p nc nr λ r Construction b n∗ Solution

40 6 3 2 10 1 5 4 10 distance + 20 1 Figure 4.19

column complementation

41 6 3 2 20 1 10 8 20 two copies of 40 + 40 2 Section 4.7

juxtaposition beside

42 6 3 4 10 2 5 8 20 two copies of 40 + 40 2 Figure 4.21

juxtaposition underneath

43 6 3 2 30 1 15 12 30 three copies of 40 + 60 2 Section 4.7

juxtaposition beside

44 6 3 6 10 3 5 12 30 three copies of 40 + 60 2 Section 4.7

juxtaposition underneath

45 6 3 2 40 1 20 16 40 two copies of 41 + 80 3 Section 4.7

juxtaposition beside

46 6 3 4 20 2 10 16 40 two copies of 41 + 80 3 Section 4.7

juxtaposition underneath

47 6 3 8 10 4 5 16 40 four copies of 40 + 80 3 Section 4.7

juxtaposition underneath

48 7 3 7 7 3 3 7 21 difference set 49 1 Figure 4.6

49 7 3 7 14 3 6 14 42 two copies of 48 + juxtaposition 98 1 Section 4.4

beside or difference family

50 7 3 7 21 3 9 21 63 three copies of 48 + juxtaposition 147 1 Figure 4.2

beside or distance

51 7 3 7 28 3 12 28 84 four copies of 48 + 196 2 Figure 4.9

juxtaposition beside or

difference family

52 7 3 7 35 3 15 35 105 five copies of 48 + 245 1 Section 4.4

juxtaposition beside

53 7 3 7 42 3 18 42 126 two copies of 50 + 294 2 Section 4.3

juxtaposition beside

54 7 3 14 21 6 9 42 126 two copies of 50 + 294 2 Section 4.3

juxtaposition underneath

55 8 3 8 56 3 21 48 168 difference family 448 1 Section 4.4

56 8 3 8 112 3 42 96 336 two copies of 55 + 896 2 Section 4.4

juxtaposition beside

57 8 3 16 56 6 21 96 336 two copies of 55 + 896 2 Section 4.4

juxtaposition underneath

58 8 3 8 168 3 63 144 504 three copies of 55 + 1344 2 Section 4.4

juxtapositions beside

59 8 3 24 56 9 21 144 504 three copies of 55 + 1344 2 Section 4.4

juxtaposition underneath

179

S/N v k h p nc nr λ r Construction b n∗ Solution

60 9 3 3 12 1 4 3 12 MOLS/affine resolvable 36 2 Figure 4.11

designs

61 9 3 6 6 2 2 3 12 rearrangement of 60 36 2 Figure 4.14

62 9 3 3 24 1 8 6 24 two copies of 60 + 72 2 Section 4.5

juxtaposition beside

63 9 3 6 12 2 4 6 24 two copies of 60 + 72 2 Section 4.5

juxtaposition underneath

64 9 3 3 36 1 12 9 36 three copies of 60 + 108 3 Section 4.5

juxtaposition beside

65 9 3 6 18 2 6 9 36 three copies of 61 + 108 3 Section 4.5

juxtaposition beside

66 9 3 9 12 3 4 9 36 three copies of 60 + 108 3 Section 4.5

juxtaposition underneath

67 9 3 3 48 1 16 12 48 four copies of 60 + 144 3 Section 4.5

juxtaposition beside

68 9 3 6 24 2 8 12 48 four copies of 61 + 144 3 Section 4.5

juxtaposition beside

69 9 3 12 12 4 4 12 48 rearrangement of 67 (or 68) or four 144 3 Figure 4.23

copies of 60 + juxtaposition underneath

or a Latin square with symbols the

constituent Latin squares in 60

70 9 3 3 60 1 20 15 60 five copies of 60 + 180 3 Section 4.5

juxtaposition beside

71 9 3 6 30 2 10 15 60 five copies of 61 + 180 3 Section 4.5

juxtaposition beside

72 9 3 12 15 4 5 15 60 juxtaposition of transpose 180 3 Section 4.5

of 60 beside 69

73 13 3 13 26 3 6 13 78 difference family 338 1 Figure 4.8

74 6 4 3 15 2 10 18 30 block complementation of 9 45 1 Figure 4.16

75 6 4 3 30 2 20 36 60 block complementation of 10 90 2 Section 4.6

76 6 4 6 15 4 10 36 60 block complementation of 11 90 2 Section 4.6

77 6 4 3 45 2 30 54 90 block complementation of 12 135 2 Section 4.6

78 6 4 9 15 6 10 54 90 block complementation of 13 135 2 Section 4.6

79 7 4 7 7 4 4 14 28 block complementation of 48 49 1 Figure 4.15

80 13 4 13 13 4 4 13 52 difference set 169 1 Figure 4.7

180

Table 7.2: Table of parameters for some RGSLRs

S/N v k h p nc nr x y λ′ λ∗ r Construction b Solution

1 5 2 5 5 2 2 2 2 2 3 10 Starter sets + 25 Figure 5.21

cyclic development

of initial blocks

2 5 2 5 15 2 6 2 2 7 8 30 Adjoining a BSLR to a RGSLR 75 Figure 5.29

3 6 2 3 6 1 2 1 4 1 2 6 Adapting 18 Figure 5.3,

BM (2001)-Method 2 (BTD) if the symbol

∞ is replaced

by 6

4 6 2 3 9 1 3 4 1 1 2 9 27

5 6 2 3 12 1 4 2 3 2 3 12 Adjoining another RGSLR to 36 Figure 5.18

the design in S/N 3 (∞

retained) after a

suitable permutation

6 6 2 3 18 1 6 3 2 3 4 18 Adjoining two RGSLRs to 54 Figure 5.20

the design in S/N 3 (∞

retained) after

suitable permutations

7 6 2 3 21 1 7 1 4 4 5 21 Adjoining a (3× 15)/2 BSLR 63 Figure 5.5

to the design in S/N 3

8 6 2 6 9 2 3 3 2 3 4 18 Transposition of the design 54 Section 5.6

in S/N 3 (∞ retained)

and adjoining of two

RGSLRs to it after suitable

permutations

9 6 2 6 12 2 4 4 1 4 5 24 72

10 6 2 9 12 3 4 1 4 7 8 36 108

11 6 2 9 18 3 6 4 1 10 11 54 162

181

S/N v k h p nc nr x y λ′ λ∗ r Construction b Solution

12 7 2 7 7 2 2 2 4 2 3 14 Starter sets + 49 Figure 5.23

cyclic development

of initial blocks

13 7 2 7 14 2 4 4 2 4 5 28 Adjoining another RGSLR to 98 Figure 5.25

the design in S/N 12 after

a suitable permutation

14 7 2 7 28 2 8 2 4 9 10 56 Adjoining four RGSLRs after 196 Figure 5.27

suitable permutations

15 8 2 4 8 1 2 1 6 1 2 8 Adapting 32 Figure 5.6

BM (2001)-Method 1 (Starter)

16 8 2 4 12 1 3 5 2 1 2 12 Adjoining a (4× 4)/2 Trojan 48 Figure 5.9;

square to the design see also

in S/N 15 Figure 5.10

17 8 2 4 16 1 4 2 5 2 3 16 64

18 8 2 4 36 1 9 1 6 5 6 36 Adjoining a (4× 28)/2 BSLR 144 Figure 5.8

to the design in S/N 15

19 8 2 8 12 2 3 3 4 3 4 24 96

20 8 2 8 16 2 4 4 3 4 5 32 128

21 8 2 8 20 2 5 5 2 5 6 40 160

22 8 2 12 16 3 4 6 1 6 7 48 192

23 8 2 12 20 3 5 4 3 8 9 60 240

24 8 2 12 24 3 6 2 5 10 11 72 288

25 9 2 9 9 2 2 2 6 2 3 18 Starter sets + 81 Sections 5.7

cyclic development and 5.8

of initial blocks

26 9 2 9 27 2 6 6 2 6 7 54 Adjoining three RGSLRs after 243 Figure 5.28

suitable permutations

27 10 2 5 10 1 2 1 8 1 2 10 Adapting 50 Figure 5.13

BM (2001)-Method 1 (Starter)

182

S/N v k h p nc nr x y λ′ λ∗ r Construction b Solution

28 10 2 5 20 1 4 2 7 2 3 20 Adjoining another RGSLR to 100 Figure 5.12

the design in S/N 27 after

a suitable permutation

29 10 2 5 30 1 6 3 6 3 4 30 Adjoining two RGSLRs 150 Figure 5.19

to the design in S/N 27

after suitable permutations

30 18 2 9 18 1 2 1 16 1 2 18 Adapting 162 Figure 5.16

BM (2001)-Method 1 (Starter)

31 18 2 9 36 1 4 2 15 2 3 36 Adjoining another RGSLR to 324 Figure 5.15

the design in S/N 30 after

a suitable permutation

32 5 3 5 5 3 3 2 2 7 8 15 Starter sets + cyclic 25 Figure 6.1

development of initial blocks; also

by block complementation

33 5 3 5 15 3 9 2 2 22 23 45 Adjoining a BSLR to a RGSLR 75 Figure 6.6

34 6 3 2 4 1 2 3 2 1 2 4 8

35 6 3 2 6 1 3 2 3 2 3 6 12

36 6 3 2 8 1 4 1 4 3 4 8 16

37 6 3 4 6 2 3 4 1 4 5 12 24

38 6 3 4 8 2 4 2 3 6 7 16 32

39 6 4 3 6 2 4 1 4 7 8 12 Direct construction via 18 Figures 6.2

an exchange algorithm; also and 6.5

block complementation

40 6 4 3 12 2 8 2 3 14 15 24 Adjoining a RGSLR to another 36 Figure 6.7

after a suitable permutation

41 8 4 2 8 1 4 3 4 3 4 8 16

42 8 4 4 8 2 4 6 1 6 7 16 32

43 8 6 4 8 3 6 1 6 17 18 24 Pooled starter sets + cyclic 32 Figures 6.3

development of initial blocks; and 6.4

also block complementation

183

Bibliography

Abel, R. J. R. (1994). Forty-Three Balanced Incomplete Block Designs. Journal of Com-

binatorial Theory, Series A 65, 252–267.

Agrawal, H. (1966). Some Methods of Construction of Designs for Two-Way Elimination of

Heterogeneity, 1. Journal of the American Statistical Association 61 (316), 1153–1171.

Ai, M., K. Li, S. Liu, and D. K. J. Lin (2013). Balanced incomplete Latin square designs.

Journal of Statistical Planning and Inference 143, 1575–1582.

Anderson, I. (1997). Combinatorial designs and tournaments. Oxford University Press,

Oxford.

Ash, A. (1981). Generalized Youden Designs: Construction and Tables. Journal of Sta-

tistical Planning and Inference 5 (1), 1–25.

Bailey, R. A. (1984). Quasi-complete Latin squares: construction and randomization.

Journal of the Royal Statistical Society: Series B (Methodological) 46 (2), 323–334.

Bailey, R. A. (1988). Semi-Latin Squares. Journal of Statistical Planning and Inference 18,

299–312.

Bailey, R. A. (1992). Efficient Semi-Latin Squares. Statistica Sinica 2, 413–437.

Bailey, R. A. (2004). Association schemes: Designed experiments, algebra and combina-

torics. Cambridge University Press, Cambridge.

Bailey, R. A. (2009). Variance and concurrence in block designs, and distance in the

corresponding graphs. The Michigan Mathematical Journal 58 (1), 105–124.

Bailey, R. A. and P. J. Cameron (2009). Combinatorics of optimal designs. In S. Huczyn-

ska, J. D. Mitchell, and C. M. Roney-Dougal (Eds.), Surveys in Combinatorics 2009,

Volume 365, pp. 19–73. Cambridge University Press, Cambridge.

Bailey, R. A. and P. E. Chigbu (1997). Enumeration of semi-Latin squares. Discrete

Mathematics 167/168, 73–84.

184

Bailey, R. A. and H. Monod (2001). Efficient Semi-Latin Rectangles: Designs for Plant

Disease Experiments. Scandinavian Journal of Statistics 28 (2), 257–270.

Bailey, R. A., H. Monod, and J. P. Morgan (1995). Construction and optimality of affine-

resolvable designs. Biometrika 82 (1), 187–200.

Bailey, R. A. and G. Royle (1997). Optimal Semi-Latin Squares with Side Six and Block

Size Two. Proceedings of the Royal Society: Mathematical, Physical and Engineering

Sciences 453 (1964), 1903–1914.

Bedford, D. and R. M. Whitaker (2001). A new construction for efficient semi-Latin

squares. Journal of Statistical Planning and Inference 98, 287–292.

Bose, R. C. (1938). On the Application of the Properties of Galois Fields to the Prob-

lem of Construction of Hyper-Graeco-Latin Squares. Sankhyā: The Indian Journal of

Statistics 3 (4), 323–338.

Bose, R. C. (1939). On the Construction of Balanced Incomplete Block Designs. Annals

of Eugenics 9, 353–399.

Bose, R. C. (1942). A note on the resolvability of balanced incomplete block designs.

Sankhyā: The Indian Journal of Statistics 6 (2), 105–110.

Bose, R. C. and K. R. Nair (1941). On Complete Sets of Latin Squares. Sankhyā: The

Indian Journal of Statistics 5 (4), 361–382.

Bose, R. C., S. S. Shrikhande, and E. T. Parker (1960). Further Results on the Con-

struction of Mutually Orthogonal Latin Squares and the falsity of Euler’s Conjecture.

Canadian Journal of Mathematics 12, 189–203.

Cakiroglu, S. A. (2018). Optimal regular graph designs. Statistics and Computing 28,

103–112.

Caliński, T. and S. Kageyama (2003). Block Designs: A Randomization Approach: Volume

II: Design. Springer-Verlag, New York.

Cameron, P. J. (1994). Combinatorics: topics, techniques, algorithms. Cambridge Uni-

versity Press, Cambridge.

Cheng, C.-S. (1978). Optimality of certain asymmetrical experimental designs. The Annals

of Statistics 6 (6), 1239–1261.

Cheng, C.-S. (1992). On the optimality of (M.S)-optimal designs in large systems. Sankhyā:

The Indian Journal of Statistics, Series A 54, 117–125.

Cheng, C.-S. and R. A. Bailey (1991). Optimality of some two-associate-class partially

balanced incomplete-block designs. The Annals of Statistics 19 (3), 1667–1671.

185

Cheng, C.-S. and C.-F. Wu (1981). Nearly balanced incomplete block designs.

Biometrika 68 (2), 493–500.

Choi, K. C. and S. Gupta (2008). Confounded row–column designs. Journal of statistical

planning and inference 138, 196–202.

Colbourn, C. J. (1996). Youden Designs, Generalized. In C. J. Colbourn and J. H. Dinitz

(Eds.), The CRC Handbook of Combinatorial Designs, pp. 508–511. CRC press, Boca

Raton.

Constantine, G. M. (1986). On the optimality of block designs. Annals of the Institute of

Statistical Mathematics 38 (1), 161–174.

Courrieu, P. (2005). Fast computation of Moore-Penrose inverse matrices. Neural Infor-

mation Processing-Letters and Reviews 8 (2), 25–29.

Darby, L. A. and N. Gilbert (1958). The Trojan square. Euphytica 7, 183–188.

Das, A. (2002). An introduction to optimality criteria and some results on optimal block

design. Design Workshop Lecture Notes, ISI, Kolkata, 1–21.

Dash, S., R. Parsad, and V. Gupta (2014). Efficient Row-Column Designs with Two Rows.

Journal of the Indian Society of Agricultural Statistics 68 (3), 377–390.

Datta, A., S. Jaggi, C. Varghese, and E. Varghese (2014). Structurally Incomplete Row-

Column Designs with Multiple Units per Cell. Statistics and Applications 12 (1&2),

71–79.

Datta, A., S. Jaggi, C. Varghese, and E. Varghese (2015). Some Series of Row-Column

Designs with Multiple Units per Cell. Calcutta Statistical Association Bulletin 67 (265-

266), 89–99.

Datta, A., S. Jaggi, C. Varghese, and E. Varghese (2016). Series of Incomplete Row-

Column Designs with Two Units per Cell. Metodolos̆ki Zvezki 13 (1), 17–25.

Datta, A., S. Jaggi, E. Varghese, and C. Varghese (2017). Generalized confounded row–

column designs. Communications in Statistics-Theory and Methods 46 (12), 6213–6221.

Donev, A. N. (1998). Construction of non-standard row-column designs. In R. Payne

and P. Green (Eds.), Proceedings of the 13th Symposium in Computational Statistics:

COMPSTAT, pp. 275–280. Springer-Verlag, Berlin.

Durier, C., H. Monod, and A. Bruetschy (1997). Design and analysis of factorial sensory

experiments with carry-over effects. Food Quality and Preference 8 (2), 141–149.

Eccleston, J. A. and A. Hedayat (1974). On the theory of connected designs: characteri-

zation and optimality. The Annals of Statistics 2 (6), 1238–1255.

186

Edmondson, R. N. (1998). Trojan square and incomplete Trojan square designs for crop

research. The Journal of Agricultural Science 131, 135–142.

Godolphin, J. (2019a). Conditions for connectivity of incomplete block designs. Quality

and Reliability Engineering International 35 (5), 1279–1287.

Godolphin, J. (2019b). Construction of row–column factorial designs. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 81 (2), 335–360.

Hanani, H. (1961). The Existence and Construction of Balanced Incomplete Block Designs.

The Annals of Mathematical Statistics 32 (2), 361–386.

Hedayat, A. S., J. Stufken, and W. G. Zhang (1995). Contingently and Virtually Balanced

Incomplete Block Designs and their Efficiencies under various Optimality Criteria. Sta-

tistica Sinica 5, 575–591.

Jacroux, M. (1980). On the E-optimality of regular graph designs. Journal of the Royal

Statistical Society. Series B (Methodological) 42 (2), 205–209.

Jacroux, M. A. (1978). On the properties of proper (M, S) optimal block designs. The

Annals of Statistics 6 (6), 1302–1309.

John, J. A. (1981). Efficient cyclic designs. Journal of the Royal Statistical Society. Series

B (Methodological) 43 (1), 76–80.

John, J. A. and T. J. Mitchell (1977). Optimal Incomplete Block Designs. Journal of the

Royal Statistical Society, Series B (Methodological) 39 (1), 39–43.

John, J. A. and E. R. Williams (1982). Conjectures for Optimal Block Designs. Journal

of the Royal Statistical Society, Series B (Methodological) 44 (2), 221–225.

John, J. A. and E. R. Williams (1995). Cyclic and Computer Generated Designs. Chapman

and Hall, London.

John, P. W. M. (1980). Incomplete block designs, Volume 1. Marcel Dekker, Inc., New

York.

Jones, B. and J. A. Eccleston (1980). Exchange and interchange procedures to search

for optimal designs. Journal of the Royal Statistical Society: Series B (Methodologi-

cal) 42 (2), 238–243.

Kadowaki, S. and S. Kageyama (2009). Existence of affine α-resolvable PBIB designs with

some constructions. Hiroshima Mathematical Journal 39, 293–326.

Keedwell, A. D. and J. Dénes (2015). Latin Squares and their Applications. Elsevier,

Amsterdam.

187

Kiefer, J. (1975). Balanced Block Designs and Generalized Youden Designs, I. Construc-

tion Patchwork. The Annals of Statistics 3 (1), 109–118.

Kreher, D. L., G. F. Royle, and W. Wallis (1996). A family of resolvable regular graph

designs. Discrete Mathematics 156, 269–275.

Morgan, J. P. (2007). Optimal Incomplete Block Designs. Journal of the American Sta-

tistical Association 102 (478), 655–663.

Nelder, J. A. (1965). The analysis of randomized experiments with orthogonal block

structure. I. Block structure and the null analysis of variance. Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences 283 (1393), 147–

162.

Parsad, R. (2006). A Note on Semi-Latin Squares. Journal of Indian Society of Agricultural

Statistics 60 (2), 131–133.

Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge

Philosophical Society 51, 406–413.

Plemmons, R. J. and R. E. Cline (1972). The generalized inverse of a nonnegative matrix.

Proceedings of the American Mathematical Society 31 (1), 46–50.

Preece, D. A. (1996). Youden Squares. In C. J. Colbourn and J. H. Dinitz (Eds.), The

CRC Handbook of Combinatorial Designs, pp. 511–514. CRC Press, Boca Raton.

Preece, D. A. and G. H. Freeman (1983). Semi-Latin Squares and Related Designs. Journal

of the Royal Statistical Society, Series B (Methodological) 45 (2), 267–277.

Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experi-

ments. John Wiley & Sons, Inc., New York.

Raghavarao, D. and L. V. Padgett (2005). Block Designs: Analysis, Combinatorics, and

Applications. World Scientific, New Jersey.

Rao, V. R. (1958). A note on balanced designs. The Annals of Mathematical Statis-

tics 29 (1), 290–294.

Rojas, B. and R. F. White (1957). The Modified Latin Square. Journal of the Royal

Statistical Society, Series B (Methodological) 19 (2), 305–317.

Ruiz, F. and E. Seiden (1974). On Construction of Some Families of Generalized Youden

Designs. The Annals of Statistics 2 (3), 503–519.

Searle, S. R. (1982). Matrix Algebra useful for Statistics. John Wiley & Sons, Inc., New

York.

188

Shah, B. V. (1959). A generalisation of partially balanced incomplete block designs. The

Annals of Mathematical Statistics 30 (4), 1041–1050.

Shah, K. R. and B. K. Sinha (1989). Theory of Optimal Designs. Springer-Verlag, New

York.

Shah, K. R. and B. K. Sinha (1996). Row–column designs. In S. Ghosh and C. R. Rao

(Eds.), Handbook of Statistics 13, pp. 903–937. Elsevier, New York.

Shrikhande, S. S. (1951). Designs for Two-Way Elimination of Heterogeneity. The Annals

of Mathematical Statistics 22 (2), 235–247.

Soicher, L. H. (2013). Optimal and efficient semi-Latin squares. Journal of Statistical

Planning and Inference 143, 573–582.

Stinson, D. R. (2004). Combinatorial Designs: Constructions and Analysis. Springer-

Verlag, New York.

Street, A. P. and D. J. Street (1987). Combinatorics of Experimental Design. Oxford

University Press, New York.

Tianyao, S. and T. Yu (2010). Optimal efficiency balanced designs and their constructions.

Journal of statistical planning and inference 140, 2771–2777.

Uto, N. P. and R. A. Bailey (2020). Balanced semi-Latin rectangles: Properties, existence

and constructions for block size two. Journal of Statistical Theory and Practice 14 (51).

Williams, E. R. and J. A. John (1996). Row-column factorial designs for use in agricultural

field trials. Journal of the Royal Statistical Society: Series C (Applied Statistics) 45 (1),

39–46.

189

