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Abstract

This work is concerned with semi-Latin rectangles (SLRs). These designs are row-column
designs with nice combinatorial properties; and were introduced in Bailey and Monod
(2001). They generalize the Latin squares (LSs) and semi-Latin squares (SLSs) and are
useful for many experimental situations in diverse sectors, ranging from agriculture to the
industry. We classify these designs as balanced semi-Latin rectangles (BSLRs) and non-
balanced semi-Latin rectangles (NBSLRs) and develop some constructions, via algorithms,
for good SLRs, that is, SLRs with good statistical properties for each classification using
some combinatorial approaches. BSLRs do not always exist, but when they exist, they
are optimal among other SLRs in their class over a range of criteria. When a BSLR does
not exist, good designs can be sought among RGSLRs, particularly for large number of
blocks, if they exist. Hence for the NBSLRs we concentrate on regular-graph semi-Latin
rectangles (RGSLRs). For each classification, constructions are given for designs with
block size two and for those with block size larger than two; and for block size two, we
consider situations when the number of treatments is odd and also when it is even. The
construction involving RGSLRs with block size two having an odd number of treatments
is generalized to accommodate more columns and a table showing starters in some cyclic
groups of small odd orders, 5 to 15 is given to facilitate the construction. Some direct
constructions, for different situations, have been developed for RGSLRs whose number
of treatments is even and whose block size is two less the number of treatments. These
are backed up with some examples, which when compared with designs of the same size
obtained via complementation, they are found to be identical under one of the methods
but isomorphic under the other method. Finally, for each of BSLRs and RGSLRs, we have
given a table containing sets of parameters, which can combine to give a design alongside
their construction and also where the design (or its construction, as the case may be) can
be found in the thesis.
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Chapter 1

Introduction

1.1 Introductory remarks

A semi-Latin rectangle (SLR) consists of v symbols (treatments) in h rows and p columns
with k& treatments in each row-column intersection (block) and each treatment appears a
definite number of times, n,, say, in each row and also a definite number of times, n., say,
in each column, where v, h,p, k,n, and n. are positive integers: see Bailey and Monod
(2001) and Uto and Bailey (2020). In particular, h,p,k > 1, v|kh and v|kp. We note
that at least one of n, and n. need not be unity; and h and p can have the same value
or otherwise, though in Bailey and Monod (2001), where these designs were introduced,
application was made to plant disease experiments which involve h < p, where h denotes
the number of leaf-heights considered in the experiment and p, the number of plants.
Moreover, n. = n, if and only if h = p; n, > n,, if and only if p > h and n, > n,, if and
only if h > p: see Uto and Bailey (2020). We represent the structure by (h x p)/k, which
is read as h-by-p-by-k. If the rows and columns of a SLR are ignored, then the resulting
block design is its quotient block design (QBD). We restrict the QBD to being binary,
that is, each treatment appearing at most once in each block.

Semi-Latin rectangles (SLRs) thus constitute a class of row-column designs and they
possess some nice combinatorial properties, which include, amongst others, orthogonal-
ity of its treatments with respect to the row and column strata and also n,— and n.—
resolvability of the design: see Bailey and Monod (2001) and Uto and Bailey (2020).

Row-column designs are known to be useful designs for performing experiments in sit-
uations where there are two nuisance factors whose levels constitute the rows and columns,
respectively, of the design, thereby controlling heterogeneity in the experimental units in
two directions by reducing variability in experimental error. Thus the blocking in a row-
column design is in two directions: see, for example, Williams and John (1996), Choi and
Gupta (2008), Datta et al. (2017) and Godolphin (2019b).

Row-column designs such as the Latin square (LS) and semi-Latin square (SLS) which

have been greatly studied in the literature could be derived from a SLR; they are special



cases of the SLR and should not be confused with it. That is, the SLR generalizes both
the LS and SLS: see Uto and Bailey (2020). In particular, if h = p and v = kh, then
ne = n, = 1 and the resulting design is essentially a SLS. Moreover, if h = p and
v = h, then if we allow k£ = 1, it implies that n. = n, = 1 and the design reduces
to a LS. It follows that a SLS is a one-step generalization of the LS. Concerning Latin
squares (LSs), see, for example, Bose and Nair (1941) and Ai et al. (2013); and for semi-
Latin squares (SLSs), see Preece and Freeman (1983), Bailey (1988, 1992), Bedford and
Whitaker (2001) and Soicher (2013). By superimposing two LSs of the same order, if each
ordered pair of sybols (treatments) appears exactly once, then the two LSs are said to be
orthogonal. In particular, a set of more than two LSs are said to be mutually orthogonal,
called mutually orthogonal Latin squares (MOLSs), if every pair of LSs in the set are
orthogonal. Furthermore, a set of MOLSSs is said to be complete if its cardinality is 1 less
the order of each LS in the set. MOLSs are useful in the construction of other designs such
as affine-resolvable designs: see, for example, John and Williams (1995, Chapters 1 & 4),
as well as Raghavarao and Padgett (2005, Chapters 4 & 9).

Moreover, by superimposing a set of MOLSs, where the treatment sets of the various
LSs are pairwise disjoint, the resulting SLS is known as a Trojan square by Darby and
Gilbert (1958). See also Edmondson (1998) for some discussion on this. A Trojan square,
when it exists, is optimal among all SLSs and incomplete block designs of the size of its
QBD over a range of criteria which include the A-, D- and FE-criteria: see Cheng and
Bailey (1991).

In practice, for certain experimental situations where the number of treatments avail-
able is a divisor of the number of plots available under each level of the row and column
factors, the row (or column) factor may have more levels than the column (or row) factor,
that is, the values of h and p may be different. However, in certain other situations, the
values of h and p may be the same but the number of treatments available for the experi-
ment is probably less than the number of plots available under each level of the row factor,
hence, of column factor as well such that each treatment would need to appear more than
once in each row and in each column. Hence in situations like these, a LS or SLS can not
fit in and the SLR becomes a useful design.

Apart from the aforementioned application of SLRs involving plant disease experi-
ments, they can also be used for conducting several other experiments, amongst which
are food sensory experiments, consumer testing experiments and in similar experiments
where a SLS can be used as reported in Bailey (1992): see Bailey and Monod (2001) and
Uto and Bailey (2020).

There can be different kinds (or classes) of SLRs depending on the composition of their
QBDs. For purposes of this work, we classify them into two main classes, viz, balanced
semi-Latin rectangles (BSLRs) and non-balanced (or unbalanced) semi-Latin rectangles
(NBSLRs).

We have named SLRs whose QBDs are balanced incomplete-block designs (BIBDs)



as BSLRs otherwise we call them NBSLRs. see Uto and Bailey (2020) for discussions on
BSLRs. BIBDs are binary incomplete-block designs that are proper and equireplicate and
whose treatments concur the same number of times, for all pairs. Such designs do not
always exist, but when they exist they are optimal over all incomplete-block designs of its
size. Moreover, the estimation of elementary contrasts for treatment effects is done with
the same variance: see Kiefer (1975). It follows that when a BSLR exists, it is optimal
over its class: see Uto and Bailey (2020).

Moreover, for the NBSLRs, our focus is on those whose QBDs are regular-graph de-
signs (RGDs) which are named RGSLRs in Bailey and Monod (2001). RGDs are binary
incomplete-block designs that are close to balanced in the sense that the difference in the
treatment concurrence counts between any two pairs of distinct treatments is at most unity.
They give good designs for experiments, particularly, for large number of blocks, if they
exist. In particular, when they exist, a D—optimal (or A-optimal or E—optimal) design for
sufficiently large number of blocks is among them: see Cheng (1992), which confirms the
earlier conjecture by John and Mitchell (1977). BIBDs are considered as a special case of
RGDs: see Kreher et al. (1996). Within the class of RGDs, the BIBD-extended designs,
called BIBD-extended RGDs, where each comprises a RGD part and a BIBD part, as
extension have been found to produce highly A- and D—efficient designs among RGDs, if
sufficiently large number of copies of a BIBD are added to a RGD: see Cakiroglu (2018).
We call RGSLRs whose QBDs are BIBD-extended, BIBD-extended RGSLRs and in the
particular case that a BSLR is adjoined to a RGSLR to give the extension, we call it a
BSLR-extended RGSLR.

We give constructions for SLRs which have good statistical properties, that is, their
QBDs are BIBDs, which implies BSLRs, when they exist. However, when a BSLR does
not exist, we go for RGSLRs (if they exist), which are ‘close’ in some sense to BIBDs, in
particular, we go for those ones whose QBDs are BIBD-extended; or in situations that we
can obtain a BSLR that conforms in size to RGSLR and on the same treatment set, we
simply extend the RGSLR by the BSLR to obtain a BSLR-extended RGSLR, since these

give designs with good statistical properties.

1.2 Method of randomization of SLRs

The randomization procedure for a SLR is as follows: randomize all rows, randomize all
columns independently of the rows, and then within each cell, independently randomize

the order of the treatments.

1.3 BSLRs and RGSLRs

A BSLR is a SLR whose QBD is a BIBD, that is, its QBD is a binary, equireplicate and

proper incomplete-block design which has a constant concurrence counts, A (A being a



positive integer), between every pair of distinct treatments, that is, every pair of distinct
treatments appears the same number of times in a block. A block design is incomplete if
each block does not contain all the treatments, that is, the size of each block is less than the
number of treatments in the design. As mentioned earlier, it is binary if every treatment
appears at most once in each block. Moreover, a design is said to be equireplicate if each
treatment appears the same number of times in the design, and in particular, for binary
designs, equireplication implies each treatment appears in the same number of blocks. A
design being proper means that its blocks are equal in size, that is, each block contains
the same number of treatments. For a BIBD, since it is binary, equireplicate and proper,
then each treatment appearing the same number of times implies that it appears in the
same number of blocks.

Similarly, a RGSLR is a NBSLR whose QBD is a RGD, which is ‘close’ in some sense
to being balanced as no two treatment concurrence counts differ by more than unity.

A BSLR does not always exist, just like a BIBD. For a fixed set of parameters
v, by p, Ny, e, ky A, it exists only if the conditions in (1.1) and (1.2) are satisfied: see Uto
and Bailey (2020). That is, the necessary conditions for the existence of a BSLR are as
given in (1.1) and (1.2).

vhn, = vpn, = khp (1.1)

AMv—1)=hn.(k—1)=pn.(k—1) (1.2)

We note that RGSLRs also need to satisfy the condition in (1.1). Clearly, what distin-
guishes a BSLR from a RGSLR is the balance property expressed in (1.2). Moreover, for
certain sets of parameters a BSLR fails to exist, a RGSLR may exist.

Let V = {1,...,v} denote the treatment set of a RGSLR. For all 7 € V', let 7 appear
with z treatments in A* blocks of its QBD. Similarly, let 7 appear with y treatments in \
blocks. Then a set of parameters which satisfy (1.3) and (1.4) (making a sensible choice
of z and y such that A* = ) £ 1) can give the set of parameters that can make a RGSLR.

However, in Table 7.2, we have assumed \* to be greater than \.

r+y=v-—1 (1.3)

Nz + Ny =hn.(k—1) =pn.(k —1) (1.4)

We note that adjoining multiple copies of a BSLR gives another BSLR: see Theorem
4.7.1. However, this does not hold for a RGSLR (except with some suitable permutations
applied to the treatments in each copy of the ‘parent’ design made) as the resulting design
without some suitable permutation of the treatments of the ‘parent’ design will violate
the treatment concurrence counts requirements; but if a BSLR is adjoined to a RGSLR, it
gives another RGSLR: see Theorem 5.1.1. We call the resulting design a BSLR~extended

4



RGSLR since it is directly extended by a BSLR. Moreover, block (cell) complementation
of a BSLR (or RGSLR) gives another BSLR (or RGSLR): see Theorems 4.6.1 and 6.5.1
for the case of BSLR and RGSLR, respectively.

Similarly, if the ‘parent’ and complementary designs, for the case involving a BSLR are
adjoined, then the resulting design is also a BSLR: see Theorem 4.7.2. However, for this
to work, both the ‘parent’ design and the complementary design need to have same block
size, that is, k = v/2 such that k + k¥ = v, k' being the block size of the complementary
design.

Moreover, given an (h x p)/k BSLR (or RGSLR), a transposition of it gives a (p x h)/k
BSLR (or RGSLR).

1.4 Good designs for experiments

Good designs for experiments are usually sought among connected designs. In a connected
design, all elementary contrasts of treatment effects are estimable: see, for example, Rao
(1958) and Godolphin (2019a). If these contrasts can be estimated with the same variance,
then the design is said to be balanced. In particular, such design is said to be variance
balanced. The notion of connectedness of a design can also be viewed as having a chain
of treatments in which every pair of adjacent treatments in the chain concurs in at least
one block of the design: see, for example, Tianyao and Yu (2010). For a design with v
treatments, this is akin to having a v—gon (a polygon with v vertices), where the vertices
correspond to the treatments and each pair of adjacent vertices which forms an edge on
the v—gon appears as a block in the design. Hence, from each vertex of the v—gon, every
other vertex can be reached via an edge or a sequence of edges. Typical of a connected
design is the balanced incomplete-block design (BIBD), which when it exists, is known to
be optimal over a range of criteria among all incomplete block designs of its size. The
canonical efficiency factors of a BIBD are all equal: see, for example John and Williams
(1982). This equality of all its canonical efficiency factors implies it is efficiency balanced.
Hence a BIBD is both variance balance and efficiency balanced. Moreover, an efficiency
balanced design that is equireplicate (having equal replication of its treatments) is variance
balanced: see Tianyao and Yu (2010).

Apart from connectedness, some other nice properties of a design include, amongst
others, binarity, equireplication (mentioned above) and equal-sized blocks. A BIBD pos-
sesses all these properties. Designs which possess the property of binarity are called binary
designs. Moreover, designs with equal-sized blocks are also known as proper designs.

For some parameter sets that a BIBD does not exist, search is usually made among
regular-graph designs (RGDs) which are close to balanced designs in the sense that no
two pairs of distinct treatments differ in their concurrence counts by more than unity. It
has been conjectured in John and Mitchell (1977) that a D-optimal (or A- optimal or
E-optimal) incomplete-block design is among RGDs, provided a RGD exists. However,



Jones and Eccleston (1980) found some counterexamples regarding A-optimality; and
Constantine (1986) refuted it with respect to the E-optimality. In the light of these,
Cheng (1992) confirms the conjecture for sufficiently large number of blocks

Moreover, by the conjecture in John and Mitchell (1977), conjecture 2 of John and
Williams (1982) implies that, if a RGD exists, then an A—optimal RGD is also D-optimal
and vice versa. However, Cakiroglu (2018) gives a counterexample to this (though under
a given situation), where the A-best RGD is found to be different from the D-best design
for the case where the RGD is not extended by adding copies of a BIBD to it; but when
the RGD is extended with sufficient copies of a BIBD, the D-best RGD is found to remain
D-best BIBD-extended RGD and also becomes the A-best BIBD-extended RGD, hence
no counterexample for the case where the RGD is BIBD-extended.

Concerning designs that are obtained via complementation; it is conjectured that an
A-optimal (or D-optimal) design has as its complement an A—optimal (or D-optimal)
design over an appropriate class of complementary designs. However, the conjecture holds
if the ‘parent’ design is a BIBD: see John and Williams (1982).

Thus, by the discussions above, when a BSLR exists, it is optimal over all SLRs of
its size: see Uto and Bailey (2020), and its complementary SLR, which is also a BSLR is
optimal over an appropriate class of SLRs. Moreover, when a BSLR does not exist, good
SLRs can be found among BIBD-extended RGSLRs and their complements also produce
good SLRs.

1.5 Organization of the chapters

This thesis consists of seven chapters; each chapter contains an introduction. Chapter 2
gives a background of the work containing some definitions and discussions of some basic
concepts and also some related works on the class of designs considered in this thesis are
brought to view together with some information on how we approached the work.

The main work that has been done can be divided into two major parts, viz, BSLRs
and NBSLRs, where we consider RGSLRs. These two parts are captured in four chapters,
viz, chapters 3, 4, 5 and 6. Chapters 3 and 4 which constitute one part of the work are
dedicated to BSLRs. In particular, Chapter 3 concerns BSLRs with £ = 2 and the relevant
algorithms are given for each case regarding the nature of the value of v, that is, when v
is even and when it is odd. Designs with k& > 2 are discussed in Chapter 4.

Moreover, the second part of the work spans Chapters 5 and 6 where NBSLRs with
k = 2 are considered in Chapter 5 while Chapter 6 concerns NBSLRs with &£ > 2 . The
relevant algorithms are also given.

The last chapter, gives a summary of the main results and some general comments
with some conclusions and suggestions for further work. Moreover, separate tables of

parameters that can give designs that are BSLRs and RGSLRs are also presented.



Chapter 2

Historical Background

2.1 Introduction

In this chapter, we give a historical background of this work. Some terms and concepts
associated with the work are discussed. A description of the design under investigation, the
semi-Latin rectangle alongside some of its applications in the design of various experiments
ranging from Agriculture to the industry are given. Again, we show how the semi-Latin
rectangle is related to some other designs—the Latin squares and semi-Latin squares, which
could be derived from it; and also discuss some concepts related to the efficiency and
optimality of designs. Finally, a related work by Bailey and Monod (2001) which stands
out as the pioneer work on semi-Latin rectangles is quoted, and also a recent work by
Uto and Bailey (2020) which introduces balanced semi-Latin rectangles is also quoted,

alongside our direction of research.

2.2 Definitions and Notations

Definition 2.2.1. Let © denote the set of plots of an experiment, and V' the set of
associated treatments. Denote by ||, the number of plots and |V| = v, the number of

treatments. Again, let 7 denote a function such that
T: Q=Y

YV w € Q, there exists t € V such that 7(w) = ¢. Then 7 is said to be a design.
We note that treatment ¢ is allocated to plot w, or equivalently, plot w receives treat-
ment ¢. Thus, a design, indeed, specifies the allocation of treatments to plots in an

experiment.

Definition 2.2.2. Let V denote the treatment set of a design, d with cardinality, |V| = v.
Suppose the v treatments are allocated to the plots, arranged in b blocks, each being of
size kj, j = 1,2,...,b; and each treatment is replicated r; times, ¢ = 1,2,...,v. Then d is

said to be a block design.



Remark. In particular, d is said to be a complete block design if k; = v Vj, and all the
treatments appear in each block. But if k; < v, then it is described as an incomplete block

design.

Definition 2.2.3. Let d be a block design. Denote by n;;, the number of times that the
ith treatment appears in the jth block, or equivalently, the number of plots in block j
that receive the ith treatment. Then d is called a binary design if n;; = 0 or 1.

We note that, if d is binary, its incidence matrix, N = (n;;) has all its entries as Os and
1s: see, for example, John and Williams (1995, chapter 1). Furthermore, binary designs
have maximal trace of their information matrix, hence an (M, S)-optimal design can be
found among them. The (,j)th element, i # j of the concurrence matrix of such class
of designs gives the number of blocks in which the ith treatment concurs with the jth

treatment: see, for example, John and Williams (1982).

Definition 2.2.4. Let d denote a block design with b blocks, and k;, j = 1,2,...,b the
number of plots in the jth block, called the size of the jth block. Suppose k; = k Vj.
Then d is said to be a proper block design with block size k.

Definition 2.2.5. Given a design, d with treatment set V. Denote the cardinality of V,
|V| =wv. Let 14,7 = 1,2,...,v denote the number of times the ith treatment appears in the
design, called the number of replications (or the replication number) of the ith treatment.

Suppose 1; = r Vi. Then d is called an equireplicate design with replication number r.

Definition 2.2.6. A binary, proper and equireplicate design d(v,k, \) is said to be a
balanced incomplete block design (BIBD) if every pair of treatments appear together
(or concur) in a constant number, A of blocks. The design (or combinatorial) parame-
ters v, k, A denote the respective number of treatments, block size and between-treatment
concurrences, called the concurrence number: see, for example, Calinski and Kageyama
(2003, Chapter 6), Morgan (2007), Raghavarao and Padgett (2005, Chapter 4), Stinson
(2004, Chapter 1), Hedayat et al. (1995), Abel (1994), Hanani (1961), and Bose (1939) for
various descriptions/discussions of this design. Its parameters satisfy the combinatorial

properties:
vr = bk (2.1)
AMv—=1) = r(k—-1) (2.2)
where v < b.
The parameters b and r denote the numbers of blocks and replications of each treatment
(or the replication number of each treatment) in the design, respectively; and could be

obtained from (2.1) and (2.2), simultaneously with known values of v,k and A. The

restriction, v < b is called Fisher’s inequality.

Definition 2.2.7. Given a BIBD, d with parameters v,b, 7, k, \. Suppose v = b , and
consequently r = k, such that \M(v — 1) = k(k — 1). Then d is said to be a symmetric
BIBD.



Remark. If d is a symmetric (v,b,7, k, A\)-BIBD, then any pair of blocks in d contain A
number of treatments in common; which is a useful result for constructing new BIBDs

from old ones: see, for example, Stinson (2004, chapter 2).

Definition 2.2.8. Let d(v,b,r, k,A) denote a balanced incomplete block design (BIBD).
Then d is said to be a-resolvable if its b blocks can be subdivided into s groups called
superblocks (or a-resolution sets), each containing b* blocks such that in each superblock
(or a-resolution set) every treatment is replicated exactly o (> 1) times. This leads to
the following restrictions on the parameters, viz: b = sb*, r = sa, va = kb*, ba = rb*.

In particular, d is affine a-resolvable if, in addition to being a-resolvable, it satisfies fur-
ther condition that every pair of distinct blocks from the same superblock (or a-resolution
set) contain the same number, say, ws, of treatments in common, and every pair of blocks
from distinct superblocks contain the same number, say, bs, of treatments in common,
where ws = k(a —1)/(b* = 1) =k —r + A, and bs = ka/b* = k?/v.

We note that if @« = 1, d reduces to a 1-resolvable and affine 1-resolvable design,
respectively, which for simplicity are called resolvable and affine resolvable designs: see,
for example, Calinski and Kageyama (2003, chapter 9), Kadowaki and Kageyama (2009),
and Raghavarao and Padgett (2005, chapter 4) for discucussions on the general case of
the concept of a (> 1)-resolvability, as well as that of affine a-resolvability; and Bailey

et al. (1995), Bose (1942) for the particular case of these concepts, when a = 1.

Definition 2.2.9. A binary, equireplicate block design is said to be a regular graph
design (RGD) if no two pairs of distinct treatments differ in their concurrences by more
than unity, in absolute terms. Moreover, there exists two distinct treatment concurrences,
A and A + 1 in the design: see, for example, Cakiroglu (2018), Cheng (1978), John and
Mitchell (1977).

Let treatments i and ', ¢ # ¢/ concur in ;7 blocks. Denote \;;» by A. Suppose (I,1') is
another distinct pair of treatments with concurrences A;r. Then Ay needs to be either A
or A + 1, assuming \;z < Ay such that [\; — \jy| = 0 or 1.

Remark. On the contrary, suppose Az > Ay, then Ay would be either A or A —1, and the
absolute difference in the treatment-concurrences between distinct pairs of treatments is
invariant.

However, we observe that, John and Mitchell (1977) and John and Williams (1982)
consider a BIBD to belong to the class of RGDs

Definition 2.2.10. Let V denote the set of treatments associated with a design, d. Denote
by |[V| = v, the number of treatments in d. Suppose p,q € Z (p,q > 1) denote the respective
numbers of rows and columns of a p-by-q array. Let the v treatments be allocated to plots,
grouped in two directions, viz, the rows and columns, denoting two blocking factors such
that they form this array. Then d is said to be a row-column design with p rows, ¢ columns
and pq row-column intersections called cells/ blocks if k& (> 1) treatments corresponding

to the plots are embedded in each row-column intersection.



Definition 2.2.11. An n x n Latin square is an arrangement of v = n treatments in n
rows and n columns, thereby forming an n-by-n array with n? cells, such that each cell
contains k = 1 plot, accommodating one treatment, and each treatment appears exactly

once in each row and exactly once in each column.

Remark. A Latin square is said to be in standard form if its first row and column contain
treatments that appear in a natural order. Each cell of a Latin square denotes a row-
column intersection. Again, an n x n Latin square is also called a Latin square of order

n.

Definition 2.2.12. Let €2 denote a set of plots, with cardinality, || = kn?, and V the set
of treatments with cardinality, |V| = kn. Suppose the kn treatments are arranged in an
n-by-n array consisting of the kn? plots displayed in n rows and n columns such that each
row-column intersection (block) contains k(> 1) plots, hence k distinct treatments. Then
this arrangement constitutes an (n x n)/k semi-Latin square if each treatment appears

exactly once in each row, and exactly once in each column.

Definition 2.2.13. Let h,p,k,n, and n. € Z. Suppose k > 1; h,p > 1; and v|kh, kp.
Then, we define an (h x p)/k semi-Latin rectangle to be a row-column design in which v
treatments are arranged into h rows and p columns, where each row-column intersection
(block) contains k treatments, and each treatment appears the same number, n, of times
in each row, and also the same number, n. of times in each column.

We note that n. < n, <= h < p. Similarly, n. > n, <= h > p

Remark. The definition of semi-Latin rectangle given in Bailey and Monod (2001) does

not accommodate h = p, as h < p is assumed; and by virtue of this, n, > n..

In a semi-Latin rectangle, each row-column intersection constitutes a block. By ig-
noring the rows and columns classification, its quotient block design results. Semi-Latin
rectangles exhibit the property of orthogonality with respect to the row and column strata:
see Bailey and Monod (2001). Its treatments are orthogonal to the row strata, in the sense
that each treatment appears the same number, n, of times in each row. Similarly, the
treatments are also orthogonal to the column strata since each treatment occurs the same
number, n. of times in each column. This design is also, in general, n,- and n.-resolvable
with regards to the rows and columns, respectively.

Within the sphere of semi-Latin rectangles, there exist some designs whose quotient
block design gives a balanced incomplete block design (BIBD), which we shall designate
balanced semi-Latin rectangle (BSLR). Again, a pair of semi-Latin rectangles could possess
the property of isomorphism; such semi-Latin rectangles are known as isomorphic semi-

Latin rectangles.

Definition 2.2.14. A balanced semi-Latin rectangle (BSLR) is a semi-Latin rectangle
with the property that its quotient block design forms a balanced incomplete-block design
(BIBD). It is, indeed, a semi-Latin rectangle with an additional property of balance.

10



Definition 2.2.15. Suppose I'; and I'y denote two semi-Latin rectangles. Then I'y and
I'y are isomorphic if there exists a sequence of permutations involving the rows, columns

and treatments such that when these are applied to one of them it leads to the other.

Definition 2.2.16. Let (G, +) denote a finite Abelian group of order v with 0 as the
identity element. Suppose G = (Z,,+), where Z,, is the set of integers, reduced mod v.
Suppose further that k& and A satisfy 2 < k < v, A > 0. Let S = {a1,a9,...,ap} C Zy,
with cardinality, |S| = k. If the multiset {(a; — ay) mod v : a;,ay € S,i # i'}, the set of
the differences between all possible pairs of elements of S contains each non-zero element
of Z, exactly A times, then S is said to be a difference set (or a perfect difference set)
of cardinality k£ and index A, or simply, a (v, k, \)-difference set for Z,. In particular,
Av—1) = k(k—1) if the (v, k, A)-difference set, S exists.: see, for example, Stinson (2004,
chapter 3).

We note that if S is a (v, k, A)-difference set for Z,, it generates a (v, k, A)-symmetric
BIBD by a cyclic development of it, via successive addition of each element of Z, to the
elements of S, reduced mod v. Again, the set, S forms the initial block of the BIBD.

Remark. A generalization of the concept of difference set gives the difference family.

Suppose Z, is as defined before, and 0, v, k, X satisfy the conditions in definition 2.2.16.
Let [S1,S9,...,.5;] be such that S; C Z,, for i = 1,2,...,l and |S;| = k, Vi € {1,2,...,1},
and the multiset union, | J\_,{(ay — aw) mod v : ay,ay € Si,u # u'} contains each non-
zero element of Z, exactly A times. Then, the sets Si,59,...,S; together constitute a
(v, k, \)-difference family for Z,. In particular, | = QEZ:B € Z, or equivalently, A(v — 1) =
0(mod k(k — 1)) if the (v, k, A)-difference family, [S1, Sa, ..., Si] exists.

Definition 2.2.17. Let c denote a non-zero n-component vector of coefficients; and T,
an n-component vector of parameters. Suppose n > 2. Define ¢’ = (¢, c2,...,¢,), and

T = (11,72,...Tn) . Again, let
n
cdr= Z CiTi (2.3)
i=1
denote a linear combination in 7, where 7; is the effect of treatment ¢. Then c/7 is a
n
cl= Z ¢ =0
i=1

where 1 is an n-component vector of 1s.

contrast if

Remark. ¢/t is said to be a simple (or elementary) contrast if there are only two non-zero

entries, 1 and —1 in the coefficient vector, ¢’. Again, ¢/7 is said to be normalized if

n
cc= E cg =1
i=1

11



Given ¢/t as defined in (2.3). Suppose I'T is another contrast in 7, where 1' =
(l1,l2, ..., 1), such that 't = 3" i, and I'l = Y7 [; = 0. If ¢l = 0, or equiva-

lently, in scalar notation i ; ¢;l; = 0, then ¢/7 and 't are said to be orthogonal.

Definition 2.2.18. Let d be a (v, b, r, k)-design. Then d is said to be connected if all the

elementary contrasts of its treatment parameters are estimable.

Remark. A design that is not connected is said to be disconnected.

2.3 Preliminaries

Semi-Latin rectangles (SLRs) form an important class of row-column designs with in-
teresting/attractive combinatorial properties. From the general perspective, row-column
designs admit two systems of blocks: the rows and columns, hence control heterogeneity
in the experimental units which could have some effect on the response, in two directions,
as well, corresponding to the rows and columns.

Most of the classical row-column designs, which include, amongst others, the Latin
squares, Youden Squares, and generalized Youden designs have only one plot in each row-
column intersection (cell), hence just one treatment can be applied to each cell, which
could lead to the experimenter spending more resources—materials, time and cost in per-
forming his experiment using such designs, which would involve more replications of each
treatment, compared to when he uses a similar design with more plots in each row-column
intersection (though this may involve fewer number of replications of each treatment): see,
for example, Datta et al. (2017), Datta et al. (2014, 2015, 2016), Dash et al. (2014), Donev
(1998), Shah and Sinha (1996), John and Williams (1995, Chapter 5), Shah and Sinha
(1989, Chapter 4), Agrawal (1966), for a general description of row-column designs; Keed-
well and Dénes (2015), Ai et al. (2013), Raghavarao and Padgett (2005, Chapters 4 &
9), Raghavarao (1971, Chapter 1), Bose et al. (1960), Bose and Nair (1941), Bose (1938),
for several discussions on Latin squares; Preece (1996), John and Williams (1995, Chapter
5), Shrikhande (1951), Raghavarao (1971, Chapter 6) for discussions on Youden squares;
and Colbourn (1996), Ash (1981), Kiefer (1975), Ruiz and Seiden (1974) for generalized
Youden designs.

The semi-Latin rectangle is one of such designs with multiple, in general, k(> 1)
plots in each row-column intersection, called a block, thereby allowing for more treatment
allocation to each block in the design, and subsequently saving materials, time and cost,
geared towards enhancing efficient use of resources in a comparative experiment. For
instance, an experimenter may wish to compare eight treatments. To do this, he will need
a total of sixty-four plots, if he uses a Latin square, each treatment being replicated eight
times. But he could do the same experiment with just thirty-two plots using a semi-Latin
rectangle that has fewer number of replications, four, say, for each treatment: see Figure

2.3, which offers a 50% reduction in the experimental material requirement.
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Semi-Latin rectangles have been found useful in agricultural experiments, such as plant
disease experiments; food sensory experiments; as well as consumer testing experiments.
For instance, a (4 x 8)/2 semi-Latin rectangle involving eight plants and pairs of half-
leaves at four heights has been used for experiment on tobacco plants at Rothamsted
Experimental Station to check whether a mechanism to inhibit tobacco mosaic virus had
been transferred to following generations given that it was present in certain transgenic
plants. Eight treatments were used, where each was a solution made from an extract of one
of the offspring plants. In particular, experiments on plant diseases often use half-leaves
as experimental units, and the numbers of leaf-heights (h), and plants (p) used, in general,
correspond to the numbers of rows and columns of the design, respectively (h < p): see
Bailey and Monod (2001).

In food sensory experiments, there are p panellists, and h food-tasting sessions, where
the treatments are the various food items available for tasting. Each panellist is made
to taste k items of food in each of h sessions, where h< p, and k = 2 or 3. For the
consumer testing experiments, p consumers are available for the experiment, which is to
be performed in h weeks. Various brands of a given consumer good to be tested constitute
the treatments. Each consumer tests k& brands of the product each week: see Bailey and
Monod (2001). Moreover, Bailey (1992) describes some experimental situations where a
semi-Latin square can be used. In similar experimental situations where the number of
rows is not identical to the number of columns, a semi-Latin rectangle becomes a useful
design.

We give a few illustrative examples of semi-Latin rectangles in Figures 2.1, 2.2 and
2.3. Figures 2.1 and 2.2 can be found in Bailey and Monod (2001). In Figure 2.1, there
are four treatments arranged in eight blocks of two plots, each which are embedded in a
2-by-4 array. This design, has, indeed, a simple orthogonal block structure, viz (2 x 4) —
2: see Nelder (1965), but we shall denote this by (2 x 4)/2 in conformity with modern
literature. That is, there are two rows and four columns, with two plots in each row-
column intersection of the design. Each treatment appears twice in each row, and exactly
once in each column. The design in Figure 2.2 is a (4 x 8)/2 semi-Latin rectangle. It
has four rows, eight columns and two plots in each block. There are eight treatments;
each appears twice per row and once per column, just like the design in Figure 2.1. The
randomized form of the design in Figure 2.2 was used for the experiment on tobacco plants
mosaic virus at the Rothamsted Experimental Station: see Bailey and Monod (2001). The
design in Figure 2.3 is a (2 x 4)/4 semi-Latin rectangle. It has eight treatments just like
the one in Figure 2.2, but there are two rows, four columns, and four plots in each block.
Each treatment makes an appearance two times in each row, and once in each column,

just like the designs in Figures 2.1 and 2.2.
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313
3 414 1|1 2|2 3

Figure 2.1: Semi-Latin rectangle for four treatments in blocks of size two

4 5|5 6|6 7|7 00 1|1 2|2 3|3 4
1 712 013 1/4 2|5 3|6 4|7 5|0 6
0 3|1 4|2 5|3 6|4 7[5 06 1|7 2
2 6|3 7{4 0|5 1|6 2|7 3|0 4|1 5

Figure 2.2: Semi-Latin rectangle for eight treatments in blocks of size two

2.4 Relationship with Latin squares and semi-Latin squares

An immediate generalization of the Latin square is the semi-Latin square, which is further
generalized by the semi-Latin rectangle.

The Latin square has the same number of rows as columns, and each treatment appears
equally often (just once) in each row, and also once in each column. Again, it has only
one experimental unit (plot) in each row-column intersection (cell), hence only one treat-
ment can be applied there; while the semi-Latin square, like the semi-Latin rectangle has
multiple, in general, k£ (> 1) units in each row-column intersection (block), though with
the restriction/limitation of equal number of rows as columns, as well as the appearance
of each treatment, exactly once in each row and also in each column: see, for example,
Soicher (2013), Parsad (2006), Bedford and Whitaker (2001), Bailey and Royle (1997),
Bailey and Chigbu (1997), Bailey (1992, 1988), Preece and Freeman (1983), as well as
Rojas and White (1957) for several discussions on semi-Latin squares.

Let T denote an (h x p)/k semi-Latin rectangle. Suppose h = p = n, say, and n, =
n. = 1; where n, and n. denote the respective number of times each treatment appears
in each row and column of the semi-Latin rectangle. Then I' reduces to an (n x n)/k
semi-Latin square. Denote this design A. Furthermore, if k£, the number of plots in each
row-column intersection of A is equal to 1, then it reduces to an n x n Latin square.

Hence, the semi-Latin rectangle is a generalization of the Latin square/semi-Latin
square, or equivalently, the Latin squares/semi-Latin squares are special cases of the semi-

Latin rectangle.

3 4 7 8|1 2 5

Figure 2.3: Semi-Latin rectangle for eight treatments in blocks of size four
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2.5 The Quotient block design of a semi-Latin rectangle and

some related matrices

Definition 2.5.1. Given an (h X p)/k semi-Latin rectangle, I'. Denote by I'*, the incom-
plete block design obtained by ignoring the rows and columns of I'. Then I'* is said to be
the quotient block design (QBD) of T'.

We note that T'* is indeed a (v,b,r, k)-design, where v = kh/n. = kp/n,, b = hp,
r = hn, = pn., and k < v.

Definition 2.5.2. Let d denote a (v, b,r, k) design. Suppose N = (n;;) is a matrix, where
i=1,2,...,v; j =1,2,...,b. If n;; is the number of times that the ith treatment appears in
the jth block, such that n;; € Z, n;; > 0V 4, j, then N = (n;;) is said to be the incidence

matrix of I'*.

Remark. The incidence matrix, N of d is a v-by-b treatments-by-blocks matrix with non-
negative entries. The structure of d is completely determined by its incidence matrix, N:
see, for example, Jacroux (1980). In particular, if d is binary, n;; = 0 or 1.

In general, the sum of the entries on each row of N gives the number of replications of
the treatment corresponding to that row. Again, if this sum is a constant for all the rows,
it follows that d is an equireplicate block design.

Similarly, the sum of the entries on each column of N gives the size of the block
corresponding to that column. Also, if this sum gives a constant value for all the columns,

then d is a proper block design.

Definition 2.5.3. Given a v-by-b incidence matrix, N of a (v,b,r, k) design, d. Let NN’
denote a matrix of the product of N and N’, where N’ is the transposed matrix of N.

Then NN’ is said to be the concurrence matrix of d.

Remark. The concurrence matrix, NN’ of d is a square matrix of order v. If d is binary,
then the ith leading diagonal entry of NN’ is, simply, the number of times that the ith
treatment appears in the design, called the number of replications, r; of the ith treat-
ment, i = 1,2, ..., v; while each off-leading diagonal entry, (i,i’) ,i # ¢’ corresponds to the
number of blocks that treatments ¢ and i" appear together, called the number of concur-
rences between treatments i and 7/, and denoted \;z. Furthermore, if d is, in addition,
equireplicate, each leading diagonal entry has the same value, r, say.

Again, if each leading diagonal entry has a constant value, r, and in addition each pair
of its off-leading diagonal entries differ by not more than 1, in absolute terms, then d is,
thus, a regular graph design (RGD). Suppose d is an RGD and each off-leading diagonal
entry is equal to the other, then it is a balanced block design (BBD): see, for example,
Jacroux (1980).

Definition 2.5.4. Let d be a binary, proper and equireplicate (v, b, r, k)-design. Suppose

L is the symmetric, non-negative definite, and zero-row-sums as well as zero-column-sums
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matrix of order v defined by
L=rI—-k ‘NN (2.4)

where [ is an identity matrix of order v. Then L is said to be the information matrix of d.

The scaled version of the information matrix given in (2.4) is thus
L*=r'L=1-(rk)"'NN’ (2.5)
which is called the scaled information matrix: see, for example, Soicher (2013).

Remark. The information matrix of a design is not of full rank. It has rank of at most
v —1, that is rank(L) = rank(L*) < v — 1. In particular, the equality holds if the design is
connected, such that the upper bound of its rank is attained. Hence rank(L) = rank(L*) =
v — 1, if d is connected.

Conversely, the strict inequality holds if d is disconnected; such that rank(L) =
rank(L*) < v — 1.

Definition 2.5.5. Let A denote an m X n matrix; and A~ a matrix of order n x m
satisfying
AATA=A (2.6)

Then, A~ is said to be a generalized inverse of A: see, for example, John and Williams
(1995, Appendix A) and Searle (1982, chapter 8).

Remark. A~ is also known as g-inverse, pseudo inverse, or conditional inverse: see, for
example, John and Williams (1995, Appendix A).

For a given A, there could be many generalized inverses, A~ since there exist many A~
that could satisfy (2.6): see, for example, Searle (1982, chapter 8). Hence, a generalized
inverse of a singular matrix is not, generally, a unique matrix.

However, there exists a unique version of the generalized inverse, A" of A, called the

Moore-Penrose generalized inverse.

Definition 2.5.6. Let A be an arbitrary m x n real matrix. Suupose there exists a unique

n x m real matrix, AT satisfying the following conditions:

AATA=A (2.7)
ATAAT = AT (2.8)
(AATY = AAT (2.9)
(ATA)Y = ATA (2.10)

Then AT is said to be the Moore-Penrose generalized inverse of A: see, for exam-
ple, Courrieu (2005), John and Williams (1995, Appendix A), Searle (1982, chapter 8),
Plemmons and Cline (1972), as well as Penrose (1955).
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Remark. The four conditions given in (2.7), (2.8), (2.9), and (2.10) are usually called the
Penrose conditions: see, for example, Searle (1982, chapter 8). For a given matrix, A"
to be called the Moore-Penrose generalized inverse of another, A, it must satisfy the four
Penrose conditions; and it is unique for a given A. Since (2.7) is identical to (2.6) if the
different notations, AT and A~ for the generalized inverses are ignored, it follows that AT
is a generalized inverse which satisfies three extra conditions, viz, (2.8), (2.9), and (2.10).

If a given generalized inverse satisfies (2.8), in addition, then it is called a reflexive
generalized inverse: see, for example, Searle (1982, chapter 8).

Suppose A is non-singular, then its inverse is unique, and this is identical to the regular
inverse. Thus, A~ = A~! = A%+, where A~ is the regular inverse: see, for example, Searle
(1982, chapter 8).

Again, suppose B denote an information matrix of order v for a (v,b,r, k)-design.
Provided d is connected, then (B + aJ) is non-singular, where a # 0 is any real scalar,
and .J, a matrix of 1s, also of the same order as B. Consequently, (B + a.J)~! is another
version of generalized inverse of B: see, for example, John (1980, chapter 2) and Shah

(1959).

Definition 2.5.7. Let X € R" be a random vector. Suppose F' = (fij), 4,5 =1,2,...,n is

a positive semi-definite matrix such that

COV(XivXj)> { 7é]

fij = L
Var(X;), =]

where Cov(Xj;, X;) is the covariance between X; and Xj, i # j; and Var(X;) is the
variance of X;. Then F' = (f;;) is said to be the variance-covariance matrix, or simply,

the covariance matrix of X.

Remark. Suppose d is a (v, b, r, k)-design. Suppose further that B denote the information
matrix of d. Let E denote any generalized inverse of B. Then F is a variance-covariance
matrix for estimating the variance of treatment contrasts a’r in d, where Var(g’;) =
o?a’Ba: see Morgan (2007).

2.6 Design Efficiency

The efficiency of a design of a given size is concerned with the measure of the gain (or
loss) resulting from the use of the design. Blocking, which reduces the error variance; as
well as small block sizes often lead to a gain in efficiency compared to when large block
sizes are used: see, for example, John and Williams (1995, chapter 2). A design in which
the gain is high (or the loss is low) is, thus, an efficient design; and this is achievable by
binary designs.

Equivalently, design efficiency could be viewed as the performance ability (or inability)
of a design in estimating elementary contrasts of its treatment parameters with minimal

variances, which leads to a high (or low) precision in the estimation.
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Definition 2.6.1. Given a (v, b, r, k)-design, d. Let 7; be a parameter denoting the effect
of the ith treatment, ¢ = 1,2,...,v. Again, let 7, i # i’ denote the effect of another
treatment, /. Then, the difference, 7; — 7;s, between the effects of treatments i and 7/,
i # 1 is an elementary contrast.

Let Ti/—\n/ denote the estimator of this contrast. Denote Ti/—\n-/ by 7; — 7, and its
variance by Var(7; — 7). If L*~ is a generalized inverse of the scaled information matrix,
L* =1~ (rk)"*NN' of d, then

Var(#; — 7) = (L5 + L, — 2L% )o? /r (2.11)
where L}, u = i,i' is the uth leading diagonal entry of L*~, L’ is the (i,7')th entry of

the same matrix, L*~ and o2 is the error variance: see, for example, Bailey (2009), Bailey
(2004, chapter 4), as well as John and Williams (1995, chapter 2).

Remark. In general, given a (v,b,r, k)-design, d with the scaled information matrix, L*,

let ¢’ =3]_ | ¢;7i be a contrast in 7, and /7 =Y, ¢;7;, its estimator. Then

SV 2 L e
Var(c'7) = Var( ) c¢f) = g ei=l
Z o r > i sz
2
= (L) = (2.12)
r
;}:1 62 c/'L*~

where

=L G A scale factor, and <% 2 a scalar which depends on the coefficient
vector ¢’ :r(cl, €2, ..., Cy) and the design, ci 1b111t not on the experimental material: see, for
example, Bailey and Royle (1997). It is obvious from (2.12) that Var(c'#) is a product of
these two quantities and the error variance, 2.

In particular, if the vector ¢ (or ¢’) has only two non-zero entries, 1 and —1, then
T =37 ¢ reduces to 7; — 7y, i # i’ which is an elementary contrast. Consequently,
Var(c't) = Var(f; —7) = (L + L}, —2L}, )o?/r, obtained by using (2.12), which result
is identical to (2.11).

Again, if d is connected, all the elementary contrasts of its treatment parameters are

v) _ v(v=1)

estimable. Hence there are (2 = ——5— estimable distinct elementary contrasts.

Definition 2.6.2. Suppose d is a connected (v,b,r, k)-design. Let L]~ + L}, — 2L}, in
(2.11) be denoted v;y, i # i’ such that (2.11) becomes
Var(i'i — 7A'7/) = UZ'Z'/O'2/7“

Let

Var(7; — 7¢) = (o /1") (o2 /7)( ZZ’U” )/v(v—1)

ii>q
where 94 is the average over the values of v;; for all distinct pairs, ¢ and ¢’ of treatments.
Denote Var(7; — 7;7) by v. Then

0= (@)@ DS v ol - 1) (2.13)

i3>
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is the average variance of all the (’2’) estimated elementary contrasts (or pairwise compar-

isons) of the treatment parameters in d.

Remark. v provides a good measure of the efficiency of d. To enhance the efficiency of d,

the value of ¥ needs to be small.

Definition 2.6.3. Suppose d is a connected (v, b, 7, k)-design with the associated scaled
information matrix, L* = I — (rk)"'NN’. Denote by ey, ea, ..., €,_1, the non-zero eigen-
values of L*. Then ey, es,...,e,—1 are called the canonical efficiency factors (c.e.f.s) of
d.

Remark. Since L* is not of full rank, there exists at least one zero eigenvalue. Again,
because d is connected, rank(L*) = v — 1: see the remark in definition 2.5.4. Hence, there
are v — 1 non-zero eigenvalues, with only one of it being zero.

Let |Q| = vr = bk denote the number of experimental units in d. Then |Q] > v+b—1:
see, for example, Jacroux (1978). Consequently, v(r—1) > b—1, or equivalently, b(k—1) >
v — 1.

Suppose d is disconnected, then L* would have fewer number of eigenvalues that are
non-zeros, with more than one being zero, since in that case, rank(L*) < v — 1.

The canonical efficiency factors are often utilized through some function of it to mea-

sure the efficiency of a design. This needs to be large enough to enhance a design efficiency.

Definition 2.6.4. Let d be a (v, b, r, k)-design. Suppose each elementary contrast, 7; — 7/,
where i # i’ is estimable in d. We remind that Var(#; — 7y) = v;z0?/r, where vy =
Ly + L, —2L;,,i# i see definition 2.6.2. Define e; by

202 /r 2

- = 2.14
i Vo [r vy ( )

where 202 /r is the variance associated with the estimator of the elementary contrast (or
pairwise comparison), 7; — 7,7, i # 4’ for a complete block design with the same parameters
as d; which is believed to have the minimum value for this variance: see, for example,
John and Mitchell (1977). Then e;; is the efficiency factor for the elementary contrast (or
pairwise comparison), 7; — 7;, which compares treatment ¢ with treatment ', i # i’; and
has values between 0 and 1: see, for example, Bailey and Royle (1997). It is also called

the pairwise efficiency factor.

Remark. The pairwise efficiency factor, e; V pair (i,7') of treatments, i # i’ is not less
than the minimum of the canonical efficiency factors: see, for example, John and Williams
(1982).
By virtue of (2.14), (2.11) is identical to
202 1
Var(#; — ) =~ (2.15)

o€
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Hence, from (2.15), it is obvious that the variance, Var(7; — 7;) of the estimated
elementary contrast, 7; — 7 of the treatment parameters 7; and 7, ¢ # i’ is proportional
to the reciprocal of the efficiency factor for the contrast 7, — 7+, for a fixed r.

Again, the harmonic mean (HM) of the efficiency factor, e; for all pairwise compar-
isons 7; — 7y, 1 # 4’ is proportional to the reciprocal of the average variance, v of all the
estimated elementary contrasts; and this is seen as follows:

Since each contrast is estimable in d, thus making d connected, there exists (;) = %
estimable distinct pairwise contrasts, which correspond to the number of values of e
obtainable. Thus

1

221' Dirsi(l/egr)
v(v—1)
v(v—1)
= 2.16
25 (L) 210
v(v—1)

D Dirsq Vid

Harmonic mean of e;;; =

obtained by using (2.14) in (2.16)
1

~
202/7') 211}2(:1;,>11) i1

202 /r)

—

(20%/1)

Sl S| =

Hence, the desired result.

There is a quantity which measures the average variance, v over all estimated elemen-
tary contrasts of treatment parameters in a given design relative to the average of the
same variance for a complete block design with the same parameters. This is the overall

average efficiency factor of the design.

Definition 2.6.5. Let d be a (v, b, 7, k)-design. Suppose d is connected. Let a quantity,

E, be defined by
202 r  w(v—1)

B, =21 _
’ v D Zz”>i V!

Then F, is the overall average efficiency factor of d.

(2.17)

Remark. The quantity, F, associated with d gives a measure of how good d is relative to a
complete block design of the same size/parameters. A design with a high efficiency factor
would tend to have low variances of within-block estimators (contrasts): see, for example,
Bailey and Royle (1997).

Bailey and Royle (1997) give four measures of the efficiency of a design, viz, the
harmonic mean, A; the geometric mean, D; and the minimum, E of the canonical efficiency

factors; as well as the minimum, E’ of the efficiency factors, e;; for elementary contrasts.
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2.7 Design optimality

Designs within a given class are usually compared to determine the one(s) that outperform
(perform best) and could, as such, be preferred over the other design(s) in that class, for
purposes of experimentation.

Design optimality is, thus, concerned with finding (or choosing) the best possible re-
alizable design(s) from amongst a given class of designs. This usually involves imposing
certain well- and predefined conditions (or criteria), called optimality criteria, which fol-
lows somewhat from their corresponding efficiency measure. The design(s) which is/are
found to be the best under the imposed criterion(a) is/are said to be the optimal design(s)
in that class with respect to that criterion(a).

Optimality criteria are said to be functionals of the information matrix of the design:
see, for example, Das (2002), and Cheng (1978).

Definition 2.7.1. Let D(v,b,r, k) denote a class of designs with the same values of the
parameters v, b, r, k. Denote by ¢, an optimality criterion. Let d be any design in D. Then
d™ € D is said to be optimal in D with respect to v, or simply, ¥-optimal, if it satisfies

the condition in % over other competing designs in D.

We note that, this condition, usually involves an optimization (maximization or mini-
mization) of some function of the canonical efficiency factors of a design. Thus, canonical
efficiency factors play a vital role in determining optimal designs.

Some of the commonly used optimality criteria include the A-, D-, and FE-criteria.
Under these three criteria, a balanced incomplete block design (BIBD), when it exists, is
known to be optimal; and when a BIBD does not exist, it is conjectured that the A-, D-,
and E-optimal designs are to be found among regular-graph designs (RGDs), if such exist:
see, for example, John and Mitchell (1977).

Remark. If more than one design in D satisfies the condition in 1, then each of those
designs satisfying this condition is said to be ¥-optimal in D.

Again, suppose 1 and ¢ are two distinct optimality criteria. If d* is ¥-optimal amongst
all the competing designs in D, it may not necessarily be ¢-optimal in the same class: see,
for example, John and Williams (1995, chapter 2).

Definition 2.7.2. Let d be a (v,b,r, k)-design with the treatments and blocks sets V
and B, respectively, where the cardinalities of V and B, denoted |V| and |B| are, v and b,
respectively. Suppose d* is a (v*,b*,r*, k*)-design obtained from d by interchanging the
roles of V and B such that the block labels for those blocks in which the ith treatment in d*
appears, i € {1,2,...,v*} correspond to the treatment labels of those treatments in the jth
block of d, i = j € {1,2,...,b}; or equivalently, the treatment labels for those treatments
contained in the jth block of d*, j € {1,2,...,0*} correspond to the block labels of those
blocks that contain the ith treatment in d, j =i € {1,2,...,v}. Then d* is said to be the

dual design of d, and vice versa.
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As an illustration, suppose d is a (4,6, 3,2)-design. Denote by b;, i = 1,2,...,6 its
blocks formed by the elements in the braces.

Suppose d: by = {71, 72},ba = {71, 73}, b3 = {71, 74}, ba = {72, 73}, b5 = {72, 74}, and bg =
{m3,m}. Let b7, i = 1,2, ...,4 denote the blocks of its dual design, d*. Then d* is the design:

by = {71,712, m3},b5 = {71, 74,75}, b5 = {12, 74, 76}, and b = {73, 75,76 }.

Notice that d* is a (6,4,2,3)-design. Again, d is a BIBD with A\ = 1, whereas d* is

not.

We note that v* = b,b* = v,r* = k,and k* = r. Again, If N is the incidence matrix
of d, then N’ is the incidence matrix of d*, and wice versa. Their information matrices
are of order v and b, respectively. Suppose d is connected, and consequently, d* is also
connected. Then, their canonical efficiency factors (c.e.f.s), including multiplicities are
identical apart from the excess |b — v|, each with value equal to 1. In particular, if b > v,
then d* has at least the same number of c.e.f.s as d, and the excess b — v is attributed to
d*. On the contrary, if b < v, then d* has fewer c.e.f.s than d such that each of the excess
v — b c.e.fis is attributed to d: see, for example, Bailey (2004, chapter 4) and John and
Williams (1995, chapter 2).

Remark. The dual design becomes most useful if v is very large compared to b, as the
c.e.f.s can be easily obtained from its dual: see, for example, John and Williams (1995,
chapter 2).

If d is a BIBD, then d* is also a BIBD <= d is symmetric.

Again, d* is A-, D-, or E- optimal <= d is A-, D-, or E- optimal, respectively: see, for
example, John and Mitchell (1977). These authors observe that this is true for situations

where d or d* is (or not) a regular graph design.

We now describe some basic optimality criteria:

2.7.1 A-optimality criterion

The A-optimality criterion is concerned with maximizing the harmonic mean, A, of the
canonical efficiency factors of a design. Equivalently, it minimizes the average variance of
the estimators of elementary treatment contrasts: see, for example, Soicher (2013), Bailey
and Cameron (2009), Morgan (2007), Bedford and Whitaker (2001), Bailey and Royle
(1997), John and Williams (1982), John (1981), as well as Cheng (1978).

Definition 2.7.3. Given a class, D(v, b, r, k) of designs for a given set (v, b, r, k) of param-
eters, where the parameters have their usual meaning. On the basis of canonical efficiency
factors, d™ € D is said to be A-optimal in D if the harmonic mean of its canonical ef-
ficiency factors is at least as large as that of d’ € D, V d’ # d*, where d' is any other
competing design in D. That is, the harmonic mean of the canonical efficiency factors of

d™ cannot be less than that of any other competing design in the same class with it.
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In particular, for connected designs, the harmonic mean, A, of its canonical efficiency

factors is given by:
v—1

—1
X

Remark. The harmonic mean, A of the canonical efficiency factors of a connected design

A:

is identical to the overall average efficiency factor, F,, based on pairwise treatment dif-
ferences, given in (2.17): see, for example, Bailey (2004, chapter 4), as well as John and
Williams (1995, chapter 2).

Definition 2.7.4. Given a (v, b, r, k) design, d, let d’ denote a (v, b, 7', k") design obtained
from d whose blocks are formed by the complementary treatments in the corresponding
block of d, such that ¥ = v — k,and v’ = b — r. Then, d’ is said to be the complementary
design of d.

Considering the (4,6,3,2,1)-BIBD, d given in section 2.7, let b,, i = 1,2, ...,6 denote
the blocks of its complementary design, d’. Then d’ is the design with the following block
composition:

by = {ms, 7}, b = {10, 7}, b4 = {12, 73},0) = {71, 74},05 = {71, m3},and by = {71, 72 };
which is also a BIBD. In particular, d’ is also, by coincidence, a (4,6, 3,2, 1)-BIBD.

Remark. Suppose d° is a complete block design with the same number of treatments, v
and blocks, b just like d and d’. Hence v = k%, and b = r°*, where k% and r°* denote the
respective block size and replication number of each treatment in d®. Then d’ = d* \ d
such that the incidence matrix of d’ is J — N, where J is the incidence matrix of d°°, which
is a v X b matrix of 1s, and N the incidence matrix of d.

The complement of a BIBD is of necessity a BIBD. This property also hold for a RGD.
Also, It is conjectured that if a design is A-optimal, then its complementary design is also
A-optimal: see, for example, John and Williams (1982).

Again, suppose e;,i = 1,2, .,...,v — 1 are the canonical efficiency factors (c.e.f.s) of d.
Let €}, i =1,2,...,v — 1 denote the c.e.f.s of d’. Then,

e, =1—a(l —e¢)

where « = rk/r'k': see, for example, John and Williams (1982).

2.7.2 D-optimality criterion

The D-optimality criterion involves maximizing the geometric mean, D, of the canonical
efficiency factors of a design. Equivalently, it minimizes the volume of a confidence ellipsoid
containing the estimated treatment contrasts: see, for, example, Soicher (2013), Bailey and
Cameron (2009), Morgan (2007), Bedford and Whitaker (2001), Bailey and Royle (1997),
John and Williams (1982), and Cheng (1978).
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Definition 2.7.5. Let D(v,b,r, k) denote a class of designs with the same values of
v,b,7, k. Based on canonical efficiency factors, a design, d* within D is said to be D-
optimal in D if the geometric mean of its canonical efficiency factors is at least as large
as that of any other competing design within the same class. Hence d* has a geometric

mean efficiency factor which is not less than that of any other competing design in D.

The geometric mean, D, of the canonical efficiency factors of a connected design is

given by:

Remark. Conjecture 3 of John and Williams (1982) implies that if d™ is a D-optimal

design, then its complementary design is also D-optimal.

2.7.3 FE-optimality criterion

The F-optimality criterion seeks to maximize the minimum, F, of the canonical efficiency
factors of a design. Equivalently, it minimizes the maximum variance over all normalized
treatment contrasts: see, for example, Soicher (2013), Bailey and Cameron (2009), Morgan
(2007), Bedford and Whitaker (2001), Bailey and Royle (1997), Jacroux (1980), John and
Williams (1982), and Cheng (1978).

Definition 2.7.6. Let d* denote a design within the class, D(v, b, r, k) of designs. Suppose
canonical efficiency factors is used as a basis for finding the optimal design in D. Then, d™
is considered E-optimal in D if its minimum canonical efficiency factor is at least as large
as that of any other competing design within this class. That is, the minimum canonical

efficiency factor of d* cannot be less than that of any other competing design, d’ in D.

Remark. The E-criterion entails that, if d* € D is E-optimal over D, then

gllg%((min{el, €2, ..., ey—1}) < €,
where e is the smallest canonical efficiency factor of d*. Note that if the strict inequality
holds, then the E-optimal design in D, d* is unique. However, if the equality holds, then
there are more than one design in D that are F-optimal.
There exists another useful criterion for assessing the optimality of a design(s) known

as the (M, S)-optimality criterion.

2.7.4 (M,S)-optimality criterion

The (M, S) optimality criterion involves a two-stage optimization procedure (maximization
at the first stage and minimization at the second stage). The first stage involves selecting
from a given class of designs those ones whose information matrices have maximal trace.

At the second stage, the particular design(s) from amongst those with maximal trace of
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their information matrices whose squared information matrices have minimal trace is then
selected, which is/are the (M, S)-optimal design(s): see, for example, John and Williams
(1982), Jacroux (1978), as well as Eccleston and Hedayat (1974).

Definition 2.7.7. Let D(v,b,7, k) denote a class of designs with the same parameters
v,b, 7, k. Let D* be the set of all d* in D whose information matrices have maximal trace.
Let d** € D* be such that its squared information matrix has minimal trace over D*.
Then d** is said to be (M, S)-optimal in D.

Remark. The first stage is the M-optimality, while the second is the S-optimality: see,
for example, John and Williams (1982), as well as Eccleston and Hedayat (1974). Thus
(M, S)-optimality combines both the M- and S-optimality components.

(M, S)-optimal designs are usually sought for among the class of binary designs, as
such designs maximize the trace of their information matrix. Also, an (M, S)-optimal
optimal design minimizes the sum of squares of all concurrences between pairs of distinct
treatments among the competing designs. Moreover, a BIBD (or RGD), when it exists,
is (M, S)-optimal; but when such designs do not exist, some of the concurrences between
pairs of distinct treatments will differ by 2, or even more: see, for example, John and
Williams (1982).

An (M, S)-optimal design is, usually, a connected design; though it may not always
be: see, for example, Jacroux (1978). Suppose an (M, S)-optimal design is connected, the
trace of its scaled information matrix is identical to the sum, Zf:_ll e; of its c.e.f.s.; while
the sum, Z;:ll e% gives the trace of its squared scaled information matrix.

The (M, S)-optimality, thus, involves selecting a subclass of designs which maximize

Zf;ll e; amongst all the designs in its class, at the first stage, and then choosing from
2

the selected subclass that which minimize Zf:_ll e; amongst all designs in the selected

subclass, at the second stage.

Given a class, D(v,b, k) of designs, the existence of an (M, S)-optimal design in D
which is connected <= b(k — 1) > v — 1. Again, the connectedness of an (M, S)-optimal
design in D is guaranteed if (kK — 1)(rmax + Tmin) = v — 1, where rypax and ry, are the
respective maximum and minimum number of replications of the treatments in the design:
see, for example, Jacroux (1978). In particular, if D comprises equireplicated designs, the
preceding condition reduces to 2r(k —1) > v — 1.

Furthermore, considering the class, D(v, b, k) of binary designs, let d* € D denote an
(M, S)-optimal design in D. Suppose D'(v,b,v — k) denote the class of complementary
designs that correspond to D. Let d™ € D’ denote the complementary design of d.
Then, d*’ is (M, S)-optimal in D’. Similar property holds for the dual design of d*, if D
comprises proper equireplicated designs: see, for example, Jacroux (1978).

John and Williams (1982) conjecture that an (M, S)-optimal design which is A-optimal
is also D-optimal; and also that an (M, S)-optimal design that is D-optimal is A-optimal.
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2.8 Related work and direction of research

There are many discussions on semi-Latin squares (SLSs) in the literature, leaving behind,
the generalized form of it, the semi-Latin rectangle. A pioneering work on semi-Latin
rectangles (SLRs) can be found in Bailey and Monod (2001).

These authors constructed efficient (h x p)/k semi-Latin rectangles for v = 2n treat-
ments, where h = n,p = 2n,k = 2 and 2 < n < 10, using combinatorics, via starters and
the cyclic method for constructing balanced tournament designs. Each treatment of their
designs appears once in each column and twice in each row. Their constructions, except
for the case n = 2 yielded designs whose QBDs are RGDs, which have been conjectured
to possess optimal properties over other designs in its class, when they exist: see, for
example, John and Williams (1982), as well as John and Mitchell (1977).

Uto and Bailey (2020) gives some properties and conditions necessary for a balanced
semi-Latin rectangle (BSLR) to exist, giving some algorithms for constructing such designs
when each row-column intersection (block) contains k = 2 treatments. The algorithms
generate designs of the class h = v, p = vd, where 6 = (v — 1)/2 for situations that v is
odd and h = v/2, p = v(v — 1)/2 for the case that v is even. They also suggest methods
of deriving some other classes of designs from the constructions.

In this work, we concentrate on BSLRs and RGSLRs, with a view to finding some suit-
able techniques to facilitate the construction of efficient SLRs of various classes and sizes,
giving generalizations in some cases using combinatorics via concepts like graph distance,
parallel classes, starters, balanced tournament designs (BTDs), difference sets/families, a-
resolvable BIBDs, group-divisible designs that are regular-graph designs, as well as undi-
rected terrace and the cyclic constructions. We also employ the concepts of permutation
and complementation. Moreover, in some cases, we develop constructions by extending
the work of Bailey and Monod (2001).
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Chapter 3

Balanced Semi-Latin Rectangles
with Block Size Two

3.1 Introduction

We shall, in this chapter, consider semi-Latin rectangles whose quotient block desigsns
(QBDs) are balanced incomplete-block designs (BIBDs) and each row-column intersection
of the design contains exactly two treatments. We name such designs balanced semi-Latin
rectangles (BSLRs) with block size two and give constructions for this class of designs
using some combinatorial approaches. We dwell on two concepts, viz, distances (graph
distances)—-the length of the shortest path between pairs of vertices of a regular n-gon (a
regular polygon with n vertices) and parallel classes for a set of v symbols (treatments)—
sets of blocks which partition the treatment set. Our constructions consider both odd and
even number of treatments; and for each case an algorithmic procedure for constructing
the design is given and backed up with some examples. New designs are obtained via
some modifications of the procedures and also by transpositions. Moreover, some designs
of larger sizes are also obtained. Some illustrative examples are also given for each case.
Part of the results obtained have been published: see Uto and Bailey (2020).

3.2 Structure and associated properties of the design

The design under discussion has v treatments arranged in an i X p array consisting of h rows
and p columns, where there are exactly two treatments in each row-column intersection.
Denoting the structure of the design by (h X p)/2; each treatment appears n, number
of times in each column, where n, = 2h/v. Similarly, each treatment appears n, number
of times per row, where n, = 2p/v. Hence, overall, the replication number per treatment
is 2hp/v. We note that n. and n, may (or may not) be distinct. Consequently, h and
p may (or may not) also be distinct. In particular, h is identical to p if and only if n.

is identical to m,. Furthermore, for this design, its quotient block design (QBD) which
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contains hp blocks is an irreducible (or unreduced) BIBD, consisting of all the (72’) distinct
2-treatment subsets of v, where each subset is of multiplicity A, and these constitute the

cells entries (blocks) of the design.

3.3 Concepts used in the Construction of the designs

We concentrate on two concepts-distances and parallel classes by utilizing an n-gon, as

given in section 3.1.

Definition 3.3.1. Let A denote a regular n-gon. Denote by V = {1,2,...,n} its vertex
set. Suppose the vertices are labelled in a cyclic order, with an edge between vertices 4
and 7 + 1 (reduced modulo n, if necessary). Let 6 = |n/2]. For all i,i € Vi’ # i, we
define d(i,i') € [1, 6] to be

16 7) n— i —i| if i —i| > 6,
1,1) =
il — | it i —i| <.

Then d(i,4") is said to be the distance between the vertices, ¢ and #'.
Remark. d(i,i') is the length of the shortest path connecting the pair, i and ' of vertices.

Definition 3.3.2. Let V denote the set of treatments of a (v,2,A)-BIBD, I', where 2
divides v. Denote by B = {Bj}?-:l, its set of blocks; and r = 2b/v. Let A; C B,
where A; = {Alm}v/2 Ay being the mth block in A;, I = 1,2,...,r. Suppose for all

m=1>

v/2 v/2
Apny Aimy € Apy Apy N Ay = 0, where m’ # m, so that | J Apn| = Y. |Ain| = v. Then

m=1 m=1

Aj, 1=1,2,...,r is said to be a parallel class (or resolution class) in I.
A; is a set of blocks in I" which partition V.

Remarks. e Each treatment appears in exactly one block within each parallel class.
e Each parallel class contains v/2 blocks.

e The partition of B into parallel classes, Aj, As, ..., A, gives a resolution. Hence, T’

satisfying this property is said to be resolvable.

3.4 Basic construction when v is odd

When the set of treatments of the design to be constructed has cardinality equal to an odd
number, we approach the construction as follows: By putting n = v in Definition 3.3.1,
we have 6 = (v — 1)/2. Furthermore, by identifying the treatments with the vertices of
a regular v-gon and combining the vertices into pairs that are at unique distances apart,
the entries of the cells in the first row of the design are obtained. For each pair, (i,i") of

vertices, d(i,4") € [1,0]; and for each unique distance, there are v distinct pairs of vertices
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associated with it, which we generate using a cyclic approach given below. These are then
utilized in the construction.

Let the jth pair of vertices at a distance, u apart be denoted by S,; = {j,j + u},
where j = 1,2,...,v, and u = 1,2, ...,6; with a reduction (modulo v) for each component.
Furthermore, let the v distinct pairs of vertices for each u be denoted by S, = {Sy; }2-’:1.

From the foregoing, it is obvious that, S,1 = {1,1 + u}, Su2 = {2,2 + u},. . .,
Suv = {v,v+wu}. Similarly, S1; = {j,j + 1}, Soj = {j, 7 +2}, . . ., S5; = {j,j + 0}, where
there is a reduction (modulo v) for each component.

An algorithmic procedure for constructing the design is presented in section 3.4.1.

3.4.1 An algorithmic procedure for constructing the design using dis-
tances

1. Put Syj = {j,j+u}, where j = 1,2, ...,v for each u = 1,2, ..., , and with a reduction

(modulo v) for each component.

2. Make a Latin square, A, of order v using the sets Sy1, Syu2, ---, Supy as symbols, where
u=1,2,...,0.

3. Juxtapose the Latin squares Aq, Ag, ..., As made in 2., one beside another.
Comments. (1) Using the algorithmic procedure in section 3.4.1, a (v x vd)/2 balanced

semi-Latin rectangle is obtained. That is, the design has h = v rows and p = vd

columns. The constructed design is of the form

Aq AV A(S

The Latin square, A,, u = 1,2,...,d can take the form

Sul Su2 SUU

Suv Sul to Su,v—l
A, =

Su2 Su3z Sui
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Note that, the order of juxtaposition of the Latin squares is immaterial, that is, it

need not necessarily follow a natural order. Hence, can take any order.

(2) Furthermore, this algorithm produces designs where each pair of treatments concur
once per row and A\ = h times, overall. Moreover, each treatment appears v — 1
times per row and v(v — 1) times, overall. Thus, the QBD of the constructed design
is a (v,b,7,2,v)-BIBD, where b = v?(v — 1)/2 = hp and r = v(v — 1) = 2p.

The construction is illustrated with the following examples

Example 3.4.1. Let v = 3. Then § = 1, h = 3 and p = 3. The constructed design is

shown in Figure 3.1.

Figure 3.1: A (3 x 3)/2 balanced semi-Latin rectangle for 3 treatments

Remarks. e Notice that the design in Figure 3.1 has the same number of rows and

columns, which is a special case of the semi-Latin rectangle.

e Each treatment appears twice per row and also twice per column, hence, 6 times

overall.
e Moreover, each pair of treatments concur 3 times in the design.
e The Quotient block design of this design is a (3,9, 6, 2, 3)-BIBD.

Example 3.4.2. Let v = 5. Then § = 2, h = 5 and p = 10. The constructed design is
presented in Figure 3.2.

Notice that this design takes the form

Ay Ay

where
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Figure 3.2: A (5 x 10)/2 balanced semi-Latin rectangle for 5 treatments

and
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M=y 1|5 2|1 3|2 4|3 5
3 5 4 1 5 2 1 3 2 4
2 4 3 5 4 1 5 2 1 3
Remarks. ¢ In this example, the number of columns in the design is double the number
of rows.

e Each treatment appears 4 times per row and 2 times per column, hence, 20 times

overall.
e Moreover, each pair of treatments concurs 5 times in the design.
e The Quotient block design of this design is a (5, 50, 20, 2, 5)-BIBD.

Example 3.4.3. Let v = 7. Then § = 3, h = 7 and p = 21. We obtain the design in
Figure 3.3.

Remarks. e The number of columns in the constructed design is 3 times the number

of rows.

e Each treatment appears 6 times per row and 2 times per column, hence, 42 times

overall.
e Moreover, each pair of treatments concurs 7 times in the design.
e The Quotient block design of this design is a (7,147,42,2,7)-BIBD.

Example 3.4.4. If v =9, then § =4, h =9 and p = 36. We obtain the design in Figure
3.4

Remarks. e In Example 3.4.4, the number of columns in the design is 4 times the

number of rows.

e Each treatment appears 8 times per row and 2 times per column, hence, 72 times

overall.
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12|2334/45(56(6 7|7 1|13|24|35/46[57(61|72||14|25|36(4 7516273

71122 3|34/45|56(67||7213/24(35/46(57|61|73|14/25(36(47|51]6 2

6 7|7 1|1 2|2 3|3 4|4 5|56|6 1|7 2|1 3|2 4|3 5(46|5 7|6 2|7 3|14|25/36(4 7|51

566 7|71|12(23|34/45||5 7617 2|13|24|35/46|51|62|73|14(25|36/47

45|56(6 7|7 1|12|23/34||46(57|6 1|7 2|1 3|24|{35|4751|62|73|14(2536

34(45/56(6 7|7 1|12|23||35(46(57|6 1|7 2|13|24|36/4 751|627 3|14|25

233445566 7|71|12||24(35(46(57|61|72/13)|2536(47|51|62|7 3|14

Figure 3.3: A (7 x 21)/2 balanced semi-Latin rectangle for 7 treatments

112]13(4]5|6|7|8[9(1|2|3|4|5|6(7|8|9(|1(2(34|5(6|7|8(9]/1]2|3|4|5|6|7|8|9
213(4|5|6(7(8]9|1(3(4(5(6|7|8(9[1[2{4|5|6|7|8][9|1|2(3(|5|6|7|8|9(1]2|3|4

91112|3(4(5|6|7(8(|9]1]2]|3|4|5/6|7|8]9/1]2]3(4|5|6|7|8(9(1|2|3]4|5|6|7|8

11213(4(5|6(7[8(9(2|3|4(5(6|7|8|9(1(|3]4|5|6|7|8]9]1|2|/4|5|6|7(8]|9|1|2|3
81911(2(3]4|5|6|7||89]1(2|3|4(5|6|7(8|9(1]2(3|4|5|6|7(|8]9|1|2(3(4|5|6|7

911(2|3|4(5|6|7|8|1(2|3{4|5(6|7|8(9(2(3|4|5(6|7|8]|9(1(3|4[5|6(7|8|9]1]|2

7181911|2(3(4(5|6/(7(8(9]1]2]|3|4(5]6(7|8|9(1]2]3|4|5|6(|7[8({9|1|2|3]4|5|6
81911(2(3(4|5|6|7(|9]1]2|3|4|5|6|7|8]1|2(3]4(5(6|7|8]9(2|3|4|5(6|7|8]9|1

6|7|8(9(1]2]|3|4(5(|6]7[8]9|1|2]3]4|5(6|7[8/9(1]|2|3|4|5||6|7|8|9[1]2|3|4|5

7181911(2(3(4(5|6/(8(9(1]2|3|4|5(6|7(9|1|2|3]4|5|6|7|8([1]2(3|4|5|6|7|8]9

516|7|8(9]1(2]|3|4(|5]6]7(8|9|1]2]3(4|5|6|7(8]9(1|2|3(4(|5|6|7|8|9(1|2|3|4
6|7(819(11(2|314|5(|7(8|9(1|2(3|4|5(6(8]9]|1|2(3|4|5|6(7(9|1]2|3({4|5|6|7|8

415|6(7(8(911|2(3(|4|5(6|7(8[9(1(2|3(4|5|6|7|8|9(1(2|3(4|5/6|7[8]9(1|2|3

516|7|8(9(1]2]|3|4(|6]7[8]9|1|2]3]4|5|7|8(9[1(2|3|4|5|6(|8]9]|1|2(3(4|5|6|7

314(5|6|7(8|9(1|2(13(4|5(6|7(8]|9|1(2(3(4|5|6|7|8]9(1(2(|3|4[5|6(7|8|9]1]|2
415|6(7(8]9|1|2(3(|5|6|7|8(9[1(2(3|4(6|7|8/9|1|2|3(4|5(|7|8|9|1(2]3|4|5|6

21314|5(6]7|8|9(1(|2(3]4|5|6|7|8]9|1|2|3(4|5(6|7|8|9[1(2|3|4|5(6|7|8]9|1

314|5(6(7(8]|9|1(2(|4]5]6|7|8|9]1]2|3|5|6]78(9|1|2|3/4|6|7|8|9[1[2|3|4|5

Figure 3.4: A (9 x 36)/2 balanced semi-Latin rectangle for 9 treatments
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e Moreover, each pair of treatments concurs 9 times in the design.

e The Quotient block design of this design is a (9,324, 72,2,9)-BIBD.

Comments. (1) The Latin squares, A,, u = 1,2,...,0 used in the construction are not

necessarily cyclic.

(2) For construction purposes, we introduced the double vertical lines. However, these

should be ignored in the course of randomization.

(3) The algorithmic procedure given in Section 3.4.1, when implemented, produces de-
signs with a unique property that each treatment appears £ = 2 times in each

column: see the preceding examples. This has to be so since h = v.

3.5 Basic construction when v is even

For those experimental situations where the cardinality of the set of treatments of the
design under construction is an even number, we begin by making a resolvable design via
combining pairs of treatments (blocks) into parallel classes with the aid of a regular n-gon,
where n = v — 1. To achieve this, we proceed as follows: one treatment is designated a
special symbol, oo, say, and the remaining v — 1 treatments are then identified with the
vertices of an n-gon (where n = v—1) which in union with the symbol, co are combined into
v/2 distinct pairs (blocks), which partition the set of treatments to form a parallel class;
and overall, there are r = v — 1 parallel classes: see, for example, Street and Street (1987,
Chapter 2) and Cameron (1994, Chapter 8). The treatment pairs in these parallel classes
form the entries of the cells (blocks) of the initial row of the design under construction
and are further utilized in the construction.

We denote by V = {1,2,...,n} U {oo}, the treatment set of the design, and V= =
{1,2,...,n}, the set of vertices of a regular n-gon. Notice that ¥V =V~ U {o0}.

As in definition 3.3.2, we designate A;, | = 1,2,...,v — 1 the lth parallel class, and
proceed to give an algebraic expression for generating the mth block in A; denoted A;,,
where m = 1,2, ...,v/2.

For I =1,2,...,v — 1, we obtain Ay, to be

{l,o0} ifm=1,
A =

{l+m—-1,1—-m+1} ifme (1,v/2]

where each component is reduced modulo v — 1. Notice that, A;; = {1,00}, A2; = {2,000},
iy Ay—11 = {v —1,00}; and in general, for each I, Aj; = {l,00}.

An algorithmic procedure for the construction of the design is presented in section
3.5.1.
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3.5.1 An algorithmic procedure for constructing the design using par-
allel classes

v/2
m=1"

1. Generate {4;,} the v/2 blocks that make up A;, where [ =1,2,...,v — 1,

{ly0} ifm=1,
Al =

{l+m—-11-m+1} ifme(1,v/2]
and each component is reduced modulo v — 1.

2. Make a Latin square, =; of order v/2 using the blocks Aj1, Ap, . . ., Aj,/0, as

symbols, where [ =1,2,...,v — 1.
3. Juxtapose the Latin squares =1, =Zo, ..., =,_1 made in 2, one beside another.

Comments. (1) The design resulting from implementing the algorithm is an (h x p)/2
BSLR, where h = v/2,and p = v(v — 1) /2. It takes the form

w
[1]
no

[1]

v—1

(2) The Latin squares, Z;, where [ = 1,2,...,v — 1 can take the cyclic form; but this is

not a necessity. If it is cyclic, it can be of the form

An A Az

Ay An Al g1
=, =

Ap A3 e Ap

where © = v/2. Furthermore, as noted in section 3.4.1, the Latin squares can be

juxtaposed in any order, not necessarily in a natural sequence.

esigns produced via the algorithm has A = 1 per row an = h, overall. Kac

3) Desi duced via the algorithm has A = 1 dA=h 1. Each
treatment is replicated v — 1 times per row and v(v — 1)/2 times overall. Hence, its
QBD is a (v,b, 7,2, h)-BIBD, where b = (v/2)?(v — 1) = hp and r = v(v — 1)/2 = p.
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We illustrate the construction with the following examples.

Example 3.5.1. Let v = 4. Then h =2 and p = 6. The design takes the form

w
(1]
[\&)
(11
w

where
1 00 2 3
==
2 3 1 00
2 0 3 1
=9 =
3 1 2 00
and
3 00 1 2
1 2 3 00

Hence, the design is a (2 x 6)/2 BSLR: see Figure 3.5.

Figure 3.5: A (2 x 6)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments

Remarks. e Notice that each treatment appears 3 times in each row and exactly once

in each column. Thus, it appears 6 times, overall.
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e Each pair of treatments occurs exactly once per row and 2 times, overall, in the
design. Its QBD is a (4,12,6,2,2)-BIBD

Example 3.5.2. Let v = 6. Then h = 3 and p = 15. The design takes the form

[
[1]
[N}
[1]
w
[1]
iy
[1]
ot

where

1 00 2 5 3 4
Z1=] 3 4 1 0 9 5
2 5 | 3 4 | 1 0
2 oo | 3 1 4 5
E2=1 5 2 0 3 1
3 1 4 5 | 2
3 o | 4 2 | 5 1
S3=| 5 1 3 0 4 2
4 2 | 5 1 3
1 oo 5 3 1 2
S4=] 2 4 50 5 3
5 3 1 2 | 4
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0 1 4| 2
E5 = 3 5 0 1
4 2 3 5 00

1 c0|2 5|3 42 o0 1 513 co|4 2|5 1 co|5 3 2 |l 4 3
3 4|1 co|2 bH|4 5 00 115 1|3 oof4d 2 214 oo 3 3|5 oo 4
2 5|3 4|1 0|3 1 5 ool|4 2|5 1|3 o© 3|1 2 00 412 3 00

Figure 3.6: A (3 x 15)/2 balanced semi-Latin rectangle for 6 treatments

Remarks. Notice that each column of the design contains each treatment exactly once,
while each row has each treatment appearing 5 times. Hence, overall, each treatment
appears 15 times. Furthermore, each pair of treatments concurs exactly once in each row

and 3 times, overall, in the design. The design has as its QBD, a (6,45, 15,2, 3)-BIBD.

Example 3.5.3. Let v = 8. Then h = 4 and p = 28. The design can be represented in

skeletal form as

—_

1] Z2 || B3 || B4

[1]
[1]
at
[1]
(@}
[1
3

We give the full design in Figure 3.7.

Remarks. The number of columns in the design is 7 times the number of rows. For each
row, each treatment makes an appearance 7 times; and for each column, it appears exactly
once. Hence, overall, each treatment is replicated 28 times. Moreover, the concurrence
number per row of the design is unity and is 4, overall. Hence, its QBD is a (8,112, 28,2,4)-
BIBD.

3.6 Some derivable designs from the basic constructions

Definition 3.6.1. Let I'; and I'y denote two (h xp)/k SLRs for v treatments. We consider

I'y and I's to be the same if their corresponding cell entries are the same, otherwise they
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7165 ool 1760|217 ]|oo||3]2]|1]|col|d4|3]|2|cc|bd|4]|3 |

Figure 3.7: A (4 x 28)/2 balanced semi-Latin rectangle for 8 treatments

are different.

However, if their corresponding cell entries are not the same, it may be possible, in
some cases that, performing at least one of the following: a permutation of the rows, a
permutation of the columns, and a permutation of the treatments of I'y (or I'y) leads to
Iy (or I'1). In this situation, I'y and T's are said to be isomorphic, otherwise they are
non-isomorphic. More formally, we consider I'y and I's to be isomorphic if there is at
least one of a permutation of the rows, a permutation of the columns, and a permutation
of the treatments that takes either of the two designs to the other, otherwise they are
non-isomorphic designs. Note that if I'; is isomorphic to I's, then I's is also isomorphic to
.

Given the construction procedures for an (h x p)/2 balanced semi-Latin rectangle
(BSLR) for v treatments in sections 3.4.1 and 3.5.1, we deduce from them new designs
having the same number of treatments by modifying step 3 of these procedures. One
of such modifications involves juxtaposing the Latin squares underneath instead of be-
side. This modification, for instance, produce designs isomorphic to those obtained by a
transposition of the designs obtained via the algorithm. We designate any design for a
given v obtained by a direct implementation of the algorithmic procedure the parent/basic
design and the design obtained by this modification of step 3 of the procedure with jux-
taposition(s) done underneath an alternative basic design. Moreover, a transposition of
the alternative basic design produces another design with the same number of rows and
columns as the basic design which is isomorphic to the basic design.

More designs can also be obtained via appropriate juxtapositions if the set of Latin
squares used in the construction has cardinality equal to a nonprime.

Moreover, some designs of larger sizes can also be deduced from the basic (or alter-

39



native basic) design by making multiple copies of it and subsequently, juxtaposing them

appropriately.

3.6.1 Designs with h =v(v—1)/2 rows and p = v (or v/2) columns

From our previous constructions which produce basic designs for v treatments in h rows
and p columns, the modification described in section 3.6, which involves juxtaposing the
Latin squares, this time, one underneath another produces another balanced semi-Latin
rectangle for v treatments, which is the alternative basic design. The number of rows and
columns of the alternative basic design are in reversed order with that of the basic design.

Suppose v is odd, where the basic design has v treatments, h = v rows and p =
vd = v(v — 1)/2 columns, a downward juxtaposition of the Latin squares Aj, Ag, ..., As
produces an alternative basic design with v treatments, where h = v(v — 1)/2 rows and

p = v columns. This design takes the form

As

Similar results follow if v is even, where in this case, the basic design contains v
treatments in h = v/2 rows and p = v(v — 1)/2 columns. Hence, juxtaposing the Latin
squares, =1, =9, ..., =,_1 underneath, we obtain an alternative basic design which has v

treatments in v(v — 1)/2 rows and v/2 columns. The design takes the form

1

[1]
N

[1]
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Remark. As noted in sections 3.4.1 and 3.5.1, the juxtaposition of the Latin squares must
not follow a fixed order.

Notice that the number of rows of the alternative basic design is identical to the number
of columns of the basic design and vice versa.

A design of the same size as the one considered in this section can be obtained by
simply, transposing the basic design, that is, interchanging the roles of rows and columns
in the basic design. The design resulting from this transposition is isomorphic to the
alternative basic design. In particular, if each constituent Latin square is symmetric and
there is a definite (same) order of juxtaposition of the Latin squares in both the basic and
alternative basic designs, then the design obtained via transposition of the basic design is
the same as the alternative basic design, since in this case their corresponding blocks (cell
entries) are the same.

Similarly, transposing the alternative basic design produces a design which is also of
the same size as the basic design and isomorphic to it. These two designs are the same if

the aforementioned condition is satisfied.
We now give some examples.
Example 3.6.1. Let v =5 and § = 2 as in Example 3.4.2. Then we obtain a (10 x 5)/2

BSLR by juxtaposing the Latin square As underneath Aj;. The resulting design is an

alternative basic design and is presented in Figure 3.8.

By simply transposing the (5 x 10)/2 BSLR of Figure 3.2, the basic design, another
version of a (10 x 5)/2 BSLR results which is isomorphic to the alternative basic design

in Figure 3.8 and is presented in Figure 3.9.

Remark. The isomorphism of the designs in Figures 3.8 and 3.9 can be seen by imposing
the permutation «, 8 and I on the columns, rows and treatments, respectively of either

design, where

1 2 3 4 5
1 54 3 2

12345 6 7 89 10
1543 26 10 9 8 7

and
1 2 3 4 5

1 2 3 45

the identity permutation.
Now, by transposing the alternative basic design, we obtain another version of the
(5 x 10)/2 BSLR: see Figure 3.10. Notice that the design in Figure 3.10 is isomorphic to
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Figure 3.8: A (10 x 5)/2 balanced semi-Latin rectangle for 5 treatments obtained by

juxtaposition underneath

the basic design, and vice versa. An application of the permutation «, S and I to the

rows, columns and treatments, respectively of either of these designs reveals this.

Example 3.6.2. Let v = 7 and 6 = 3 as in Example 3.4.3. We obtain a (21 x 7)/2 BSLR
by juxtaposing the Latin squares Aj, Ay and Aj, one underneath another. The design
resulting from this juxtaposition is an alternative basic design and is presented in Figure

3.11.

By transposing the (7 x 21)/2 BSLR of Figure 3.3, the basic design, we obtain another
(21 x 7)/2 BSLR, which is isomorphic to the alternative basic design in Figure 3.11). The
resulting design is presented in Figure 3.12.

Moreover, we transpose the alternative basic design to obtain another (7x21)/2 BSLR:

see Figure 3.13, which is isomorphic to the basic design.

Example 3.6.3. Let v =9 and § = 4 as in Example 3.4.4. Then we obtain a (36 x 9)/2
BSLR by juxtaposing the Latin squares Ai, As, As and A4, one underneath another.

This design is an alternative basic design: see Figure 3.14.
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Figure 3.9: A (10 x 5)/2 balanced semi-Latin rectangle for 5 treatments obtained by

transposition of the basic design in Figure 3.2

By transposing the (9 x 36)/2 BSLR of Figure 3.4 which serves as the basic design, we
obtain another (36 x9)/2 BSLR isomorphic to the alternative basic design: see Figure 3.15.
Furthermore, by transposing the alternative basic design, we obtain another (9 x 36)/2

BSLR: see Figure 3.16, which is isomorphic to the basic design in Figure 3.4.

Example 3.6.4. Let v = 4 as in Example 3.5.1. By juxtaposing =1, 22 and Z3 under-
neath, the resulting design is a (6 x 2)/2 BSLR, which is shown in Figure 3.17 .

Notice that, in this example, transposing the basic design in Figure 3.5 leads to a
design which is identical to the alternative basic design given in Figure 3.17. Similarly,
transposing the alternative basic design results in the basic design. However, these are
mere coincidences, and do not happen in general.

We note, as given earlier in the remark in section 3.6.1 that, in particular, the afore-
mentioned property of these designs hold if the juxtaposed Latin squares that make the
designs are each symmetric and also the order of their juxtaposition(s) in both the basic
and alternative basic designs are the same. For instance, in this example, each of the Latin

squares =1, =9, and =3 that make the basic and alternative basic designs is symmetric,
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Figure 3.10: A (5 x 10)/2 balanced semi-Latin rectangle for 5 treatments obtained via

transposition of Figure 3.8

and also in both designs the order of juxtapositions follow the sequence =1, =5, =3.

Example 3.6.5. Let v = 6 as in Example 3.5.2. Juxtaposing =i, Z2, =3, =4 and =5
underneath results in a (15 x 3)/2 BSLR, which is the alternative basic design: see Figure
3.18.

Now, by transposing the basic design in Figure 3.6, we obtain another version of the
(15 x 3)/2 BSLR presented in Figure 3.19. Notice that, the designs in Figures 3.19 and
3.18 are isomorphic designs.

Moreover, by transposing the design in Figure 3.18, we obtain another (3x15)/2 BSLR

which is isomorphic to the basic design in Figure 3.6. This is shown in Figure 3.20.

Example 3.6.6. Let v = 8 as in Example 3.5.3. We juxtapose =1, =9, =3, Z4, Z5, =g,
and Z7 underneath to obtain a (28 x 4)/2 BSLR, the alternative basic design, and this is

shown in Figure 3.21.

A transposition of the basic design in Figure 3.7 gives a design which is isomorphic
to the alternative basic design in Figure 3.21. The transposed design is shown in Figure
3.22.

Moreover, a transposition of the alternative basic design also gives another design

which is isomorphic to the basic design: see Figure 3.23
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Figure 3.11: A (21 x 7)/2 balanced semi-Latin rectangle for 7 treatments obtained by

juxtaposition underneath

3.6.2 Designs of the classes (mv xnv)/2 and (av/2 x bv/2)/2, where mn = ¢
and ab=v —1

Given our construction (or modified construction) which produces a BSLR for v treatments
that is a basic (or an alternative basic) design, we obtain more designs if either 6 or v—1 is
a nonprime corresponding to the case where v is odd or even via some alternative form of
juxtapositions, which is bidirectional. This involves juxtaposing the Latin squares in both
directions (sideways and underneath) instead of exclusively to one direction as before.
Suppose v is odd. We remind that the basic design has the parameters: h = v rows and
p = vd columns; while the alternative basic design has h = vd rows and p = v columns. Let
0 be a nonprime. Furthermore, let m,n € Z, where 1 < m,n < § such that § = mn. Then,
for any such m,n, we obtain an (h* x p*)/2 BSLR for the same number of treatments as
the basic (or alternative basic) design by another modification of step 3 of the procedure

in section 3.4.1 via an appropriate juxtaposition of the Latin squares, Ay, Ao, ..., As some
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Figure 3.12: A (21 x 7)/2 balanced semi-Latin rectangle for 7 treatments obtained by

transposition of Figure 3.3

of them beside and the rest underneath, where h* = mv and p* = nv.

Notice that, if m = n = ¢, say, then h* = p* = gqv. Hence, the produced design has
identical number of rows as columns, which is a special case of the semi-Latin rectangle.
Clearly, m is identical to n if and only if § is a perfect square. Hence, if § is not a perfect
square, m and n are found to be distinct with at least 2 values for each.

Similarly, if v is even, where in this case, the parameters of the basic design are
h =wv/2 rows and p = v(v — 1)/2 columns; and for the alternative basic design, these are
h = v(v—1)/2 rows and p = v/2 columns. Let v — 1 be a nonprime. Furthermore, let
a,b € Z, where 1 < a,b < v — 1 such that v — 1 = ab. Then, for any such a, b, we obtain
an (ht x p™)/2 BSLR for the same number of treatments by also modifying step 3 of the
procedure in section 3.5.1 via juxtaposing the Latin squares, =1, =2, ..., =,_1 both beside
and underneath as in the case where v is odd. Note that h* = av/2 and p™ = bv/2.

In particular, if a = b = ¢, say, then h™ = p* = cv/2. In this circumstance, as before,
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12|7116756(45[34(23|13|72|6157/46[35(24|14|73|62514736(25

2312|7116 7|56(45|34|24|13|72(61|57|46|35|25|14|73|62|51|4736

34(2 3|1 2|71|67|56/45(35(24|13|72|61|57/46(36(25|14|73|62|5147

4513 4|2 3|1 2|71|67|56[(46[35|24|13|72615747]|36|{25|14|736251

56(45(34|23(12|71(67|57/46|35(24|13|7261|51{47|36(25|14|7 3|62

6 7(56/45/34(|23|12|71|61|57|46(35|24|13|72|62]51{47|36|25|14|73

7116 7(56(45|34|23|12|72|61|57/46|{35|24|13|73|6251|47|36(25|14

Figure 3.13: A (7 x 21)/2 balanced semi-Latin rectangle for 7 treatments obtained by

transposition of Figure 3.11

the produced design has identical number of rows as columns. It is obvious that a is
identical to b if and only if v — 1 is a perfect square. Thus, in situations where v — 1 is not

a perfect square, a and b are found to be distinct with at least 2 values for each

Example 3.6.7. We refer to Example 3.4.4, where v = 9 and § = 4. In this example,
m =n = 2. Hence, ¢ = 2 and h* = p* = 18. The resulting (18 x 18)/2 BSLR is shown in
Figure 3.24.

Example 3.6.8. Let v — 1 = 9. Notice that, in this example, a = b = 3. Hence, ¢ = 3.
Consequently, ht = p™ = 15, and the resulting design is a (15 x 15)/2 BSLR: see Figure
3.25.

Comments. (1) Notice that, in Example 3.6.7, with § = 4 being the square of a prime,
there is only one admissible value for both m and n, which is 2. Notice also that, in
Example 3.6.8, 3 is the only admissible value for a and b since 9 is a perfect square

and being the square of 3.

(2) Now, suppose 0 = 12, which happens if and only if v = 25, then there are distinct val-
ues for m and n. In particular, the admissible values are (m,n) = (2,6), (6, 2), (3,4)
and (4, 3). Hence, by an appropriate modification of step 3 of the algorithmic proce-
dure in section section 3.4.1, we obtain a (50 x 150)/2 BSLR and (75 x 100)/2 BSLR
for the pairs (m,n) = (2,6) and (3,4), respectively; and a (150 x 50)/2 BSLR and
(100 x 75)/2 BSLR for the pairs in reversed order.
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Figure 3.14: A (36 x 9)/2 balanced semi-Latin rectangle for 9 treatments obtained by

juxtaposition underneath
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Figure 3.15: A (36 x 9)/2 balanced semi-Latin rectangle for 9 treatments obtained by

transposition of Figure 3.4
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Figure 3.16: A (9 x 36)/2 balanced semi-Latin rectangle for 9 treatments obtained by

transposition of Figure 3.14

Similarly, suppose v — 1 = 15, then there are distinct admissible values for a and
b which form the pairs, viz, (a,b) = (3,5) and (5,3). Hence, by an appropriate
modification of step 3 of the algorithmic procedure in section 3.5.1, a (24 x 40)/2
BSLR and (40 x 24)/2 BSLR can be obtained.

The aforementioned designs obtained for nonprime values of d (or v — 1), where
1 <m,n<d(orl<a,b<wv—1) aresome other possibilities of balanced semi-Latin

rectangles obtained by modifying step 3 of the procedure.

However, if we allow m = 1 and n = §, for the designs in the first part of (2), we
have a (25 x 300)/2 BSLR, which is precisely, a basic design. Similarly, if we allow
m = ¢ and n = 1, we have a (300 x 25)/2 BSLR, the alternative basic design.

Furthermore, for the designs in the second part of (2), if we allow a = 1 and b = v—1,
we have an (8 x 120)/2 BSLR, which is precisely, the basic design . Similarly, if we
allow a = v—1and b = 1, we have a (120 x 8)/2 BSLR , the alternative basic design.
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Figure 3.17: A (6 x 2)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments obtained

by juxtaposition underneath

(4) The double vertical and horizontal lines in the designs show the various points of

juxtaposition.

3.6.3 Designs of inflated sizes

Given an (hxp)/2 BSLR for v treatments from our basic (or modified basic) constructions,
which is the basic (or alternative basic) design. We obtain some designs of larger sizes
having the same number of treatments as the basic (or alternative basic) design by making
multiple copies of it, and subsequently, making appropriate juxtaposition(s).

Suppose v is odd. We remind that h = v and p = vd. Let the derived design be
(k' x p')/2, where b/ = ah and p’ = bp (a and b being positive integers and are not all 1s).
We make b copies of the basic design, juxtapose them beside, and subsequently, make a
copies of the resulting design and juxtapose them underneath. Alternatively, one can start
by making a copies of the basic design, juxtaposing them underneath, and subsequently,
making b copies of the resulting design and then juxtaposing them beside. In particular,
a="h'/h and b= p'/p.

Notice that, if a = b = 1, it reduces to the basic design. For the special case, where
either a =1 and b > 1 or @ > 1 and b = 1, the juxtaposition is one-sided. In particular,
if a =1and b > 1, then the construction simply involves making b copies of the basic
design and juxtaposing them beside. Conversely, for the situation where ¢ > 1 and b = 1,

a copies of the basic design are made and the juxtaposition is underneath.
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1 00 2 5 3 4
3 4 1 00 2 5
2 4 1 00
2 00 3 1 4 5
4 5 2 00 3 1
1 4 5) 2 00
3 00 4 2 5 1
5 1 3 00 4
4 2 5 1 3 00
4 00 5 3 1 2
1 2 o0 ) 3
5 3 1 2 4 00
5 00 1 4 3
3 5 00 1 4
1 4 2 3 5 00

Figure 3.18: A (15 x 3)/2 balanced semi-Latin rectangle for 6 treatments obtained by

juxtaposition underneath

Now, suppose v is even. Let the derived design be (h! x p')/2, where hf = yh and
pl=2p (y and z being positive integers and are not all 1s); and reminding that h = v/2,
p =v(v—1)/2. In a similar manner like in the case where v is odd, we make z copies of
the basic design, juxtapose them beside, and subsequently, make y copies of the resulting
design and juxtapose them underneath. This can also be achieved by first making y copies
of the basic design, juxtaposing them underneath, and subsequently, making z copies of
the resulting design and then juxtaposing them beside. We note that, y = hf/h and
z=pl/p.

It is obvious that, if y = z = 1, we have the basic design. Furthermore, if either y = 1
and z > 1 or y > 1 and z = 1, the juxtaposition is one-sided. In particular, if y = 1
and z > 1, then the construction simply involves making z copies of the basic design and
juxtaposing them beside; and if y > 1 and z = 1, y copies of the basic design are made

and the juxtaposition is underneath.

Comment. For the case where v is odd, suppose p|h’ and h|p’. Let h' = sp and p’ = th,
where s and ¢ are positive integers not all 1s. Then, the alternative basic design can
be utilized, viz: make t copies of the alternative basic design, juxtapose them beside,

and subsequently, make s copies of the resulting design and juxtapose them underneath.
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1 00 3 4 2 )
2 5 1 00 3 4
3 4 2 5 1 00
2 00 4 5 3 1
3 1 2 00 4 )
4 5) 3 1 2 00
3 00 5 1 4 2
4 2 3 00 ) 1
) 1 4 2 3 00
4 00 1 2 ) 3
5 3 4 00 1 2
1 2 5) 3 4 00
) 00 2 3 1 4
1 4 ) 00 2 3
2 3 1 4 ) 00

Figure 3.19: A (15 x 3)/2 balanced semi-Latin rectangle for 6 treatments obtained by

transposition of the basic design

However, if these 2 conditions and the preceding ones are met, the basic design as well as
the alternative basic design can be utilized for the construction of the derived design.

In a similar manner, for even v, suppose p|h! and hlpf. Let At = fp and p' = gh,
where f and g are positive integers not all 1s. Then, the alternative basic design can also
be utilized by making g copies of the alternative basic design, juxtaposing them beside,

and subsequently, making f copies of the resulting design and juxtapose them underneath.

1 c0|3 42 5|2 oc0|4 5|3 1|3 oco|ldb 1|4 2|4 ool 2|5 3|5 oc0|2 3|1 4
2 5|1 co|3 4|3 1|2 co|4 5|4 2|3 oo|b 1|5 3|4 co|1l 2|1 4|5 0|2 3
3 412 5|1 ocofl4 5|3 1|2 ocof|d 1|4 2|3 oof|l 2|5 3|4 0|2 3|1 4|5

Figure 3.20: A (3 x 15)/2 balanced semi-Latin rectangle for 6 treatments obtained by

transposition of the alternative basic design
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Figure 3.21: A (28 x 4)/2 balanced semi-Latin rectangle for 8 treatments obtained by

juxtaposition underneath
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Figure 3.22: A (28 x 4)/2 balanced semi-Latin rectangle for 8 treatments obtained by

transposition of the basic design
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1143 215(4]13|3[]6[5[4|4|7|6|5|5[1|7[6]6 11707
co|d |6 00| 6|7 | 1joo|7|1|2|oc0|1]|2|3|oc|2|3]|4]o0 415 |00
21114 312|541 4]3|6[5|5[4|7|6|6|5[1]|7]|7 2111
7|oo| b 1|oo| 6| 7| 2]c0|T7T|1|3|oo|ll]|24|cc|2]|3|5bd|cc|3|4]| 6
3121 413|12|5|5[4]3[6|6|5|4|7|7]6|5]1]1 6212
6|7 |00 7|11 ool 6||1]|2]c0| 7|23 ]|oco|1]|3]4|occ|2] 4 oo| 3|5
41312 51413265 [4|3|7]|6[5[4|1]7]6]|5]2 71613
516 |7 |oo||6|T7T|1]oo||7]|1]2|ocof1|2]3]|oco|2]|3]|4]|o0] 3 5 ool 4
Figure 3.23: A (4 x 28)/2 balanced semi-Latin rectangle for 8 treatments obtained by
transposition of the alternative basic design

1212 3|3 4|4 5|56(6 778899 1|1 3|2 4|3 5|46|5 76879819 2
9 1|11 2|2 3|3 4/45/56|(6 7|7 8899 2|1 3/24(35(46|5 7|6 8|7 9|81
8 919 1|1 2(2 3|3 4/4 5|5 6(6 7|7 8|8 1|9 2|1 3|2 4|3 5|4 6|5 7|6 8|79
7 81899 1(1 2|2 3|3 4|4 5|(56(6 7|7 9|!8 1|9 2|1 3|2 4|3 5/46|5 7|68
6 7|7 8(8 99 1|1 22 3|3 4|4 5|5 66 8798 1|9 21 3|2 4|3 5|4 6|57
566 7(7 8(8 99 1|1 2|2 3|3 4|4 5|5 7|6 8798 1|9 2|1 3|2 4|3 5|46
4 5(56(6 7|7 8[89(9 1|1 2|2 3|3 446|576 8798 1|9 2|1 3|2 4|35
3 4/45(56(6 7|7 8899 1|1 2|2 3|3 5/46|5 763879819 2|1 3|24
2 3|3 4(45(56(6 7|7 8899 1|1 2|2 4|3 5/46/|5 76 8|79[81|9 2|13
1 4(2 5|3 6|4 7|5 8|6 9(7 1(8 2|9 3||1 5|2 6|3 7|4 8|59/6 1|7 2(8 3|9 4
9 3|1 4(25(3 647|586 9|7 1|8 2|9 4|1 5/26(3 748|596 1|7 2|83
8 2|19 3|1 42 5(36(4 7|5 8|6 97 18 3|9 4|1 5(26(3 7|4 8|59|6 1|7 2
7118 2(9 3|1 4(25[36(4 7|58|6 972|839 4(15(26[3 7|4 8|59|61
6 9|7 1(8 2(9 3|1 42 5|3 6(4 7|5 8|6 1|7 2|8 3|9 4|1 5|2 6(3 7|4 8|59
5 8|16 9(7 1(8 2|9 3|1 4|2 5|3 6|4 7|5 9|6 1|7 2|8 3|9 4|1 5|26|3 7|48
4 7(5 86 9|7 1|8 2|9 3|1 4|2 5|3 6|4 8(59(6 1|7 2|8 3|9 4|1 5/2 6|37
36/4 7(58(6 9|7 1829 3|1 4|25|3 748|596 1|7 2|8 3|9 4|1 5|26
25364758697 1|8 2|93/14(126|3 748596 1|7 2|8 3|9 4|15

Figure 3.24: An (18 x 18)/2 balanced semi-Latin rectangle for 9 treatments obtained by

modifying step 3 of the algorithmic procedure
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9 5|1 412 3|7 |8 6|1 62 5|3 4|8 |9 7|2 7|3 6|4

8 6|9 5|1 4|2 3|7 o9 7|1 6|2 5|3 4|8 ool 8|2 7|3

oo

Figure 3.25: A (15 x 15)/2 balanced semi-Latin rectangle for 10 treatments obtained by
slightly modifying step 3 of the algorithmic procedure

Again, if these 2 conditions and the preceding ones are met, the basic design as well as

the alternative basic design can be used for the construction.

We give some examples.

Case 1: Some examples when v is odd

Example 3.6.9. To make, for instance, a (3 x 6)/2 BSLR for 3 treatments; notice that,
the conditions for using the basic design and alternative basic design in the construction
are satisfied, where a = s = 1 and b = ¢t = 2 such that A’ = h = p and p’ = 2p = 2h.
Notice also that, § = 1, and we have a trivial case, where the alternative basic design is
identical to the basic design.

We make b =t = 2 copies of the (3 x3)/2 BSLR in Figure 3.1 which serves as both the

basic and alternative basic design, and then juxtapose them beside. The resulting design

o7




is shown in Figure 3.26, where the double vertical lines show the point of juxtaposition.
In a similar manner, to obtain a (6 x 3)/2 BSLR for the same number of treatments

as above; notice that @ = s = 2 and b = t = 1 such that ' = 2h = 2p and p’ = p = h.

Thus, we make a = s = 2 copies of the basic design/alternative basic design and juxtapose

underneath: see Figure 3.27.

Figure 3.27: A (6 x 3)/2 balanced semi-Latin rectangle for 3 treatments

Remark. Another (6 x 3)/2 BSLR for 3 treatments can be obtained by transposing the
(3 x 6)/2 BSLR with 3 treatments. Similarly, transposing the (6 x 3)/2 BSLR obtained
by juxtaposition underneath produces another (3 x 6)/2 BSLR.

If interest is to make, say, a (3 x 12)/2 BSLR, this can be achieved by making either
4 copies of the basic design and juxtaposing them beside or by simply making 2 copies of
the (3 x 6)/2 BSLR and also juxtaposing them beside.
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Comment. The double vertical and horizontal lines are used for construction purposes and

show the points of juxtaposition.

Example 3.6.10. Suppose we wish to make a (6 x 9)/2 BSLR for 3 treatments, we start
by making b = 3 copies of the basic design and juxtaposing them beside: this gives a
(3 x 9)/2 BSLR, which we then make a = 2 copies of it and juxtapose underneath to
obtain the required design. Alternatively, this construction can be approached by first
making a = 2 copies of the basic design and juxtaposing them underneath, which gives
rise to a (6 x 3)/2 BSLR; and subsequently, b = 3 copies of the resulting (6 x 3)/2 BSLR
are then made and juxtaposed beside to obtain the required design. The required (6 x9)/2
BSLR is shown in Figure 3.28.

Figure 3.28: A (6 x 9)/2 balanced semi-Latin rectangle for 3 treatments

Example 3.6.11. Suppose interest is to make a (5 x 30)/2 BSLR for 5 treatments, we
make 3 copies of the (5 x 10)/2 BSLR in Figure 3.2, which serves as the basic design in
this case and juxtapose them beside. Clearly, in this example, a = 1 and b = 3. However,
p 1 h'. Hence the alternative basic design cannot be used for the construction. The desired
design is presented in Figure 3.29.

Similarly, a (20 x 10)/2 BSLR for 5 treatments can be made by first making 4 copies
of the parent design and subsequently, juxtaposing them underneath (since a = 4 and
b=1): see Figure 3.30.

Remark. By making t = 2 copies of the alternative basic design, juxtaposing them be-
side, and subsequently, making s = 2 copies of the resulting design and juxtapose them
underneath gives another (20 x 10)/2 BSLR for 5 treatments.
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Figure 3.29: A (5 x 30)/2 balanced semi-Latin rectangle for 5 treatments

Case 2: Some examples when v is even

Example 3.6.12. To make, for instance, a (2 x 12)/2 BSLR for 4 treatments, we make
z = 2 copies of the (2 x 6)/2 BSLR in Figure 3.5 which serves as the basic design and then
juxtapose them beside. The resulting design is shown in Figure 3.31, where the double

vertical lines show the point of juxtaposition.

In a similar manner, to obtain a (4 x 6)/2 BSLR for the same number of treatments
as above, we also make 2 copies of the basic design, but this time, we juxtapose them
underneath as shown in Figure 3.32

Notice that, in this example, h’ = h and p’ = 2p such that y = 1 and z = 2, for the
earlier design; while for the latter design, h' = 2h and p’ = p such that y =2 and 2z = 1.

Comments. (1) To make, for instance, a (6 x 4)/2 BSLR. Notice that h' = p, hence
f = 1. Similarly, p' = 2h such that g = 2. Hence, we simply make g = 2 copies
of the alternative basic design shown in Figure 3.17 and juxtapose them beside: see
Figure 3.33. Alternatively, the same design can be obtained by a transposition of
the (4 x 6)/2 BSLR. It is obvious that p { p', hence the basic design cannot be used
directly.

(2) The triple vertical lines in Figure 3.33 is for purposes of construction; it shows the

point of juxtaposition of the 2 copies of the alternative basic design.

(3) Suppose interest is to make, say, a (6 x 6)/2 BSLR, this can be achieved by making
3 copies of the basic design and juxtaposing them underneath. Another version of
this design can be obtained by making 3 copies of the alternative basic design and

subsequently, juxtaposing them beside: see Figures 3.34 and 3.35, respectively.

Example 3.6.13. Suppose interest is to make a (15x15)/2 BSLR for 6 treatments. Notice
that y =5, 2 =1, f =1 and g = 5. Hence, both the basic design and the alternative basic
design can be utilized just like in the construction of the (6 x 6)/2 BSLR in the comments
section of Example 3.6.12.
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Figure 3.31: A (2 x 12)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments
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Figure 3.33: A (6 x 4)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments obtained

by juxtaposition of 2 copies of the alternative basic design beside

We make y = 5 copies of the (3 x 15)/2 BSLR in Figure 3.6, which serves as the basic
design in this case, and juxtapose them underneath: see Figure 3.36. Another version of
this design can be obtained by making g = 5 copies of the alternative basic design shown
in Figure 3.18 and juxtaposing them beside. The resulting design is presented in Figure
3.37.

Comment. The double horizontal and vertical lines in Figures 3.36 and 3.37 show the

respective point of juxtapositions of copies of the basic and alternative basic designs.

Example 3.6.14. To make a (9 x 30)/2 BSLR for 6 treatments via juxtaposition, we
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Figure 3.34: A (6 x 6)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments obtained

by juxtaposition of 3 copies of the basic design underneath

Figure 3.35: A (6 x 6)/2 balanced semi-Latin rectangle (BSLR) for 4 treatments obtained

by juxtaposition of 3 copies of the alternative basic design beside

observe that p = 15 and h' = 9, hence p t A and we cannot use the alternative basic

design. However, h' = 3h and p' = 2p, giving y = 3 and z = 2. Thus, we utilize the
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Figure 3.36: A (15 x 15)/2 balanced semi-Latin rectangle for 6 treatments obtained via

the basic design
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Figure 3.37: A (15 x 15)/2 balanced semi-Latin rectangle for 6 treatments obtained via

the alternative basic design
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Figure 3.38: A (9 x 30)/2 balanced semi-Latin rectangle for 6 treatments

basic design by making 2 copies of it, juxtaposing them beside, and subsequently, making

3 copies of the resulting design and juxtaposing them underneath: see Figure 3.38

Remark. The juxtaposition is in two stages. The design resulting from the first stage of

juxtaposition is a (3 x 30)/2 BSLR. A juxtaposition of 3 copies of it gives the required
(9 x 30)/2 BSLR.

In a similar way, the same design can be obtained by first making 3 copies of the basic

design, juxtaposing them underneath, and subsequently, making 2 copies of the resulting
design and then juxtaposing them beside. In this case, a (9 x 15)/2 BSLR is obtained

at the first stage of juxtaposition, whose 2 copies juxtaposed beside produces the desired

design.
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Chapter 4

Balanced Semi-Latin Rectangles

with Larger Block Sizes

4.1 Introduction

This chapter focuses on balanced semi-Latin rectangles with block sizes greater than two,
that is, there are more than two treatments in each row-column intersection of the design.
Just like the designs discussed in Chapter 3, for these designs, their quotient block designs
are BIBDs. We denote the structure of this design for a given number, v, of treatments
by (h x p)/k, where k > 2. Each treatment appears khp/v times, overall, in the design. It
appears n, = kp/v times in each row and n. = kh/v times in each column. Furthermore,
as noted in section 3.2, the values of h and p are not necessarily distinct.

Some algorithmic procedures are given for constructing designs of different classes.
More designs are obtained via some modifications of the algorithms, by transpositions
and also by employing complementation of different kinds. Designs of larger sizes are also
obtained by making multiple copies of designs of smaller sizes and then putting them in
an array of appropriate size. In some cases, we also make use of Latin squares of different
compositions to make more designs of larger sizes that have identical number of rows
and columns if certain conditions are satisfied. We give, in addition, some examples to

illustrate the constructions.

4.2 Construction Approaches

We give some constructions for these designs using some procedures such as a modified
version of the distance approach we used in the preceding chapter. Some concepts such
as distance, difference sets/difference families, affine resolvability and complementation
are also utilized in the construction. For those classes of designs that we give a direct
construction for, having v treatments, h rows, p columns and block (cell) size k, we obtain

an equivalent design—having the same value of h, p, and v, though with block size, k&’ via
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block complementation, where &’ = v — k. This involves taking a BSLR for a given h, p, v
and k obtained by direct construction, and putting in each cell those treatments that are
missing from it. We adopt this approach, in particular, when &’ > k.

If ¥ = k, then n. = 1 if and only if h = 2. In this case, we adopt another form of
complementation for the construction, we name it column complementation. This involves
filling the cells in row 1 of a 2 x p array with appropriate entries (where the entries of these
cells form the p blocks of a BIBD) and then putting in the cell in row 2 of each column
those treatments that are missing from the cell directly above it.

We also employ another form of complementation that we name row complementation.
This would be used to obtain construction for designs with p = 2 and ¥’ = k, hence n,, = 1.
We note that if ¥ = k, then n, = 1 if and only if p = 2. The procedure is akin to the
construction by column complementation and involves filling each cell in column 2 of an
h x 2 array by the complement of the set of treatments of the cell in column 1 of the same
row, where the entries of the A cells in column 1 form the A blocks of a BIBD.

We note that, in general, if ¥’ = k, then n. = t if and only if h = 2¢, where t = 1,2, ....
Similarly, if ¥’ = k, then n, = u if and only if p = 2u, where u = 1,2, ...

4.3 Constructions based on distances

Let V ={1,2,...,v} denote the set of treatments of the design under construction, where
v is odd. We obtain constructions for BSLRs with £k = 3. We begin by identifying
the treatments with the vertices of a regular v-gon and then forming triples/blocks by
combining each vertex, ¢ with adjacent vertices i and ¢”, each being equidistant from 1,
with distance, d(i,1') = d(i,i") = 1, where 4,7',i" = 1,2, ...,v, i # i’ #i". This is repeated
for all values of ¢ with the nonadjacent vertices, i’ and i for which d(i,4") = d(i,i") =
2,3,...,0, where 6 = (v —1)/2, since v is odd. Hence, overall, vd triples are generated and
utilized in the construction.

Given a vertex i with 2 distinct vertices, ¢ and ¢”, each being equidistant from ¢ and
which combine with i to form the triple, {4,4',i"}, where 4,4 ,¢" = 1,2,...,v, i # i’ #i".
For each I € {1,2,...,d}, let S}, denote the wth triple formed such that d(i, ") = d(i,i") =
[. Then S, = {w,w + l,w — I}, where each component is reduced modulo v, for all
1=1,2,3,...,0. and w = 1,2, ..., 0.

Notice that, Sjp = {1,1+ 1,1 =1}, Sp={2,2+ 1,21}, . . ., Spw ={v,v+1,v—1}.
Similarly, S1,, = {w,w+ 1,w—1}, Sy, = {w,w+2,w—2}, . . ., S50 = {w, w~+ 0, w—0}.

For each | = 1,2,3,...,4, a Latin square of order v is made using Sj1, Sja,...,5, as
symbols and these are then inserted into an array of appropriate size to obtain the required

design.

Theorem 4.3.1. The set, {Sp,}o,_1, of all generated triples that facilitates the construc-

tion of the balanced semi-Latin rectangle, where | = 1,2,...,6; § = (v —1)/2 and v is
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odd forms a 3-resolvable (v,vd,36,3,3)-BIBD, where 6 denote the number of 3-resolution
classes.

Proof. Let V. ={1,2,...,v} denote the set of vertices of a v-gon which corresponds to the
set of treatments of a design. Relabel these vertices in a cyclic order as ¢,7+ 1,7+ 2,...,1+
(6—1),i+0d,i—6,i—(0—1),....,i —2,i— 1, where i € V, and the addition/subtraction is
performed modulo v. For each i € V and ¢’ € V\{i}, it follows that i =i £ d(i,i'), where

d(i,4") denote the distance between the vertices i and ', defined by

i — | if i — i <6,
d(i,i') = (4.1)

v— i —i| if i —i| > 6.

\

In particular, for all 7 < 4/,

i+d(i, i) i )i —i| <,

i—d(i,i') if i’ —i| > 6.

Similarly, if ¢ > ¢/, the positive and negative signs are exchanged, that is,

(

i—d(i, i) if i’ —i| <6,

i+d(, i) if | —i] > 6.

By the construction, for each | € {1,2,3,...,0}, each vertex, i associates with the
pair (i — l,i 4+ 1), which are equidistant from it to form a triple/block, {i,i + [,i — [},
where ¢ = 1,2,...,v (hence v triples are formed) such that d(i,i + 1) = d(i,i — 1) = .
Clearly, each of the vertices i + [ and i — [ is distinct from ¢, since [ # 0. Similarly,
d(i — 1,9+ 1) = 2l or v — 2l, which are both nonzero, since 2/ is even and v is odd, and
also | # 0. Obviously, both ¢ — [ and i + [ are also distinct from each other, for all i € V|
hence no two vertices within a set of triples are identical, which makes the design binary.
Now, since d(i,7 + 1) = d(i,i — I) = [, for all [, then it follows that, i and i + [ associate
with ¢ — [ and ¢ + 2[. Similarly, ¢ and ¢ — [ associate with ¢ + [ and i — 2[. Notice that, in
these cases, d(i — 1,1+ 2l) = d(i +[,i — 2l), which by (4.1) has the value 3l if 3] < ¢, such
that [ < §/3; or has the value v — 31, if 31 > §, such that [ > §/3. Suppose | = v/3. Then
[ > §/3, since v > 0 such that d(i —[,7 + 2l) = d(i + [,i — 2[) has the value v — 3l. Now,
if | = v/3, then v — 31 = 0. Conversely, if v — 3l = 0, then I = v/3. Hence v — 3l = 0 if
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and only if | = v/3. Thus, the vertices, i — and i + 2l are identical if and only if [ = v/3,
hence under this condition, each forms identical triple with the pair, (4,7 + ) of vertices.
Similarly, the vertices ¢ 4+ [ and i — 2l are also identical if and only if [ = v/3, and under
this condition, each forms identical triple with the pair, (i,7 — [) of vertices.

Furthermore, since v is odd, then v — 2 is also odd. Suppose i and i+ are two vertices.
Then by the construction, there exists a vertex, i*, say, such that d(i,*) = d(i + [,i%),
that is, 7 and ¢ + [ are equidistant from ¢*.

Similarly, suppose ¢ and i —[ are two vertices. Then ¢* is such that d(i,7*) = d(i—1,7*).

From the foregoing discussion, it follows that the pair, (i,7 + [) of vertices forms sets
of triples with ¢ — [, i + 2l and @*, viz, {i,0 + 1,7 — I}, {i,0 + [,i + 2{}, and {3, + {,7*}.
Similarly, the pair (7,7 —[) forms the triples {i,i—1,i—2l}, {i,i—1,i+1}, and {¢,7—1,7*}.
Thus every pair of vertices appear together in 3 triples (blocks), making A = 3, where only
the pairs (i,7 +v/3), for any i € V form identical sets of triples each time they appear
together.

Since, for each [ € {1,2,3,...,d}, there are v triples (blocks), then there are vd blocks,
overall. Moreover, for each [ € {1,2,3,...,6}, each vertex (treatment), i € V' appears in
3 blocks, hence it appears in 30 blocks, overall. There are 3 plots in each block, hence,
for each [, there are 3v plots, and overall, there are 3vd plots. Moreover, each treatment
appears at most once in each block. Since each treatment appears in 30 blocks/plots in
the design, then, overall, the v distinct treatments appear in 3dv plots, which is identical
to the total number of plots.

Hence the design has v vertices/treatments arranged in vd incomplete blocks of size 3
which are divided into ¢ 3-resolution classes, where each [ € {1,2,...,0} corresponds to a 3-
resolution class and contains v blocks, and each treatment appears in 3 blocks within each
3-resolution class, hence 3§ times, overall. Furthermore, overall, each pair of treatments
appears together in 3 blocks. It follows that the set of all vd triples form a 3-resolvable
(v, 04, 34, 3,3)-BIBD; and by putting i = w, for all i € V', the theorem follows.

|

Corollary 4.3.1. The BIBD has repeated blocks, each with multiplicity 3 if and only if
I = v/3. Consequently, the support size, the number of distinct blocks in the BIBD is
v(0—1)+v/3=vd—2v/3, where § = (v—1)/2.

Corollary 4.3.2. If 3|v, then by Corollary 4.3.1, the number of distinct blocks in the
3-resolution class associated with | = v /3 is precisely v/3. It follows from Corollary 4.5.1
that the number of distinct blocks in the BIBD is 2v/3 less the total number of blocks.

4.3.1 Construction for designs of the class (vxv)/3, where § = (v—1)/2 >
1 and v is odd

An array of size v x dv is created whose columns are divided into § equal subdivisions,

separated by double vertical lines and the Latin squares are then inserted, one to each
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subdivision.

An algorithmic procedure for constructing the design

1. Foreach!=1,2,3,...,d, make a Latin square of order v with {5, }5,_; as the symbol

set, where Sy, = {w, w + [,w — [} and each component is reduced modulo v.

. Create a v X v array and divide its columns into § equal subdivisions of v columns

each, separated by double vertical lines.

. Insert the Latin squares made in step 1 into the array, one in each subdivision.

Remark. The insertion of the Latin squares into the array does not need to follow a
definite order, that is, any of the Latin squares can be inserted in any subdivision of

the array.

The constructed design has as its QBD a (v,v%d, 3v8,3,3v)-BIBD. Hence it is a
BSLR.

For row 1 of the design, S;; = {1,1+ 1,1 — [} gives the entries of the cell (block)
in column 1 of the [th subdivision, where | = 1,2,3,...,d; and in general, for this
row, Sy, = {w,w + l,w — [} gives the entries of the cell in column w of the Ith
subdivision, where w = 1,2, ..., v. Notice that Sy, is identical to Si; + (w —1), where
w > 1, that is, for instance, Sjp = Sy +1, S3=S1+2=(Sp+1)+1= 5 +1,
Sy =8Sn+3=(51+2)+1 = Si3+1, and so on. Hence the blocks in each subdivision

can be generated by a cyclic development of its initial block.

Example 4.3.1. Let v = 5, then 6 = 2. Hence the design is of size (5 x 10)/3: see Figure

4.1.

12 5|2 113 42(45 351413 4|/245[351(412|5
51 4|1 512 3 1|3 2145 3|52 3|1 34|245|35 1|4
45 3|5 411 2 5|2 113 4 2141252313 4|245|3
34245 3|514]|1 5(2 3 113 51|41 2|52 3|13 4|2
231|3 2145 3|5 411 2 5112 45|351(412|523|134

Figure 4.1: A (5 x 10)/3 balanced semi-Latin rectangle for 5 treatments

Example 4.3.2. Let v = 7, then 6 = 3. Hence the design is of size (7 x 21)/3: see Figure

4.2.

Example 4.3.3. Let v = 9, then 6 = 4. Hence the design is of size (9 x 36)/3: see Figure

4.3.
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Figure 4.2: A (7 x 21)/3 balanced semi-Latin rectangle for 7 treatments

4.3.2 Designs of the class (év x v)/3

Given the algorithmic procedure in section 4.3.1, where there are v treatments in v rows
and dv columns. Let the array size in step 2 be dv x v such that the rows are divided
into § equal subdivisions of v rows each, separated by double horizontal lines. Then this
modification produces the desired design, which is a BSLR for v treatments in v§ rows
and v columns.

For instance, in Example 4.3.2, where v = 7, and § = 3. Putting the Latin squares
(the order of doing this being immaterial) in a (21 x 7) array which is partitioned into
3 subdivisions with respect to the rows and separated by double horizontal lines, where
each subdivision has 7 rows produces a BSLR for 7 treatments in 21 rows and 7 columns:

see Figure 4.4.

Remark. Another design of the same size can be obtained by a transposition of the design
in Figure 4.2. The design in Figure 4.4 and that obtainable by transposing the design in

Figure 4.2 are isomorphic.
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1/213(4(5]6|7[8|9(1/2|3(4|5]6|7(8|9](1(2|3[4|5|6|7(8|9]1]2|3[4|5/6|7|8]9

203|415|6(7|8|9[1|3[4|5/6|7|8(9|1]2(14]5|6|7|8|9]1|2|3||5|6|7(8]9|1|2|3|4

911(2(3(4|5]6|7[8||89[1]|2(3|4|5|6|7||7(8]9]|1[2|3|4(5(|6(|6|7[8|9[1|2|3[4|5

911(2(3(4|5]6|7[8||9(1(2]|3(4|5]6|7|8||9(1[2]|3[4|5|6|7(8(|9|1(2|3({4|5|6|7|8

11213(4(5]6|7[8|9([2|3|4(5|6|7|8[9|1|3|4|5(6|7[8|9(1|2|4]5|6[7|8]9(1{2]3

819|1(2|3|4(5|6|7||7[8[9(1(2|3]4|5|6(6[7(8]|9]1|2|3|4|5(|5|6[7|8]9|1|2|3|4

819(1(2|3|4(5|6]7||8]9(1(2(3|4[5|6|7(|8[9]1|2]3|4|5|6|7||8|9]1|2|3/4(5|6]|7
911(2(3(4|5]6|7[8||1{2]3|4(5|6[7|8[9|2(3[4|5[|6|7|8[9[1(|3|4|5|6[{7|8|9|1|2
7181911123415 (6||6]|7|8[9(1(2|3|4[5(5|6|7|8]|9]1(2(3|4]4|5|6|7|8|9]|1|2|3
T18(9(11]12]|3(4(5(6||7|8]|9]1(2|3|4|5]|6(7|8|9|1|2|3[4|5|6/|7|8[9(1(2|3|4|5|6

8191112(3(4|5[6[7|9|1]2|3|4[5|6(7|8|1/2]3[4|5[6|7|8[9](2|3[4]|5/6[7[8|9]1

61781911123 |4[5||5|6|7|8(9|1]2|3|4||4(5[6|7[8|9[1(2(3||3|4|5|6({7|8|9[1|2

6178191123 |4(5||6|7[8|9(1|2]3|4|5||6[7[8|9[1|2|3(4|5||6|7|8|9(1|2]|3[4|5

7181911|2(3|4|5(6(8]9|1]2|3({4|5|6[7(9]1|2|3(4|5|6|7[8|1{2|3{4|5|6|7|8]9
5(6(7[8|9(1|2|3(4(/4(5|6|7|8({9(1|2(3(3[4|5|6|7(8]9]|1[2(2|3|4|5(6|7[8|9]1
5(6|7[8|9(1(2|3[4|5](6|7(8|9(1(2|3[4|5]|6|7(8]9]|1]2|3[4||5|6(7(8]9|1|2|3|4

617181911123 |4[5||7(8]9]1(2|3[4|5|6||8{9]1]|2[3|4|5(6(7(|9|1]2|3({4|5|6|7|8

415678191 |2[3||3{4(5|6[7|8[9|1|2||2(3[4|5|6|7|8[9(1||1/2{3|4|5|6|7[8|9

415/6(7(8|9]1|2[3||4|5(6|7(8|9[1|2|3||4|5]6]|7[8|9]1(2(3(|4|5]|6|7(8|9]|1|2|3

5(6(7[8|9(1|2|3[4]6[7|8]9|1({2|3|4(5(7[8|9]1(2(3]4|5[6(8[9|1[2(3({4]|5|6/|7

31415[(6|7|8|9(1(2(12|3(4|5|6]7|8|9|1|1[2|3|4|5|6|7|8[9(9|1|2|3[4|5|6|7]|8

31415(6|7|8|9(1(2(3|4|5|6|7[8(9(1]2(3[4]5|6|7|8]|9]1(2|3|4|5]|6|7|8|9|1]|2

415|6(7|8|911|2[3||5|6|7|8(9|1]2|3|{4||6(7[8|9[1|2|3(4|5||7|8]9|1{2|3|4|5|6

203|4(5|6(7|8|9(1|1]2|3[4|5|6(7|8[9(19]1|2[3]4|5|6|7|8|18]|9(1({2[3|4|5|6]|7

2(3|415|6|7|8|9(1(/2(3|4|5|6{7|8|9[1(2]3|4|5(6|7[8]|9[1(2|3|4|5(6|7[8|9]1

314|5(6|7|8[9|1(2||4|5(6|7(8|9[1|2|3||5(6|7|8[9|1|2(3(4(|6|7[8|9[1|2]|3[4|5

11213(4(5]6|7[8|9(9/1(|2(3[4|5|6|7|8(8|9]|1(2|3[4|5|6|7|7[8]9[1|/2|3(4|5]|6

Figure 4.3: A (9 x 36)/3 balanced semi-Latin rectangle for 9 treatments

4.3.3 More designs

If § which specifies the number of Latin squares involved in the construction is a nonprime,

more possibilities can be obtained by adapting the procedure in section 4.3.1, via adjusting

the array size by taking into consideration each pair of factors (a pair of distinct factors

used differently when in reversed order) of the number of Latin squares, the order of each

Latin square and the total number of blocks in the QBD of the basic design, the design

obtained by implementing the procedure in section 4.3.1.

For instance, 4 Latin squares are involved in the construction of the (9 x 36)/3 BSLR
73

in Figure 4.3. Since 4 is a product of 2 and 2, then the 4 Latin squares can be put in an
(18 x 18) array, thereby obtaining another possibility of a BSLR for 9 treatments whose
QBD has 324 blocks just like the basic design in Figure 4.3. The resulting (18 x 18)/3

BSLR is shown in Figure 4.5.
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Figure 4.4: A (21 x 7)/3 balanced semi-Latin rectangle for 7 treatments
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Figure 4.5: A (18 x 18)/3 balanced semi-Latin rectangle for 9 treatments
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4.4 Constructions based on difference sets/difference fami-

lies
4.4.1 Preliminaries

Let G = (Z,,+) denote a group formed by Z,, the set of integers (mod v). We had
previously defined a (v, k, \)-difference set for Z, to be a k—element subset of Z,, for which
the differences between all possible pairs of its elements give all the non-zero elements of
Z,, each of them exactly A\ times : see Definition 2.2.16, see also Stinson (2004, Chapter
3). We note that a (v, k, A)-difference set for Z, does not always exist. If it exists, then
% = 1, where k is the size of the difference set and satisfies 2 < k < v, A (> 0) is the
index. Hence, if a difference set exists, it generates a symmetric (v, k, A)-BIBD, denoted
(v, k, A\)-SBIBD via a cyclic development of the difference set which involves successive
addition of an element of Z,,.

Furthermore, a difference family (which has more than one set) generalizes the concept
of difference set. Let 5 = % If a (v, k, \)-difference family for Z, exists, then 8 > 1,
where 8 € Z specifies the number of sets in the family: see, for example, Stinson (2004,
Chapter 3), for discussions and examples of difference sets and difference families.

Notice that, for a difference set, 5 = 1.

Example 4.4.1. The set {1,2,4} is a (7, 3, 1)-difference set in (Z7,+), thus it generates
a (7, 3, 1)-SBIBD. Notice that 8 = 1 and the differences (modulo 7) between all possible
pairs of elements of the set yield £1,4+2 and 43, that is, elements of the set {1,2,3,4,5,6},
which is precisely the set Z7\{0}, where each element appears exactly once.

Similarly, {1,2,6,12} is a (13,4,1)-difference set in (Z13,+), thus it generates a (13,
4, 1)-SBIBD. Some other examples include: {1,2,3}, which is a (4, 3, 2)-difference set in
(Z4,+); {1,2,7,9,19}, which is a (21, 5, 1)-difference set in (Za1,+); {1,3,4,5,9} which
is an (11, 5, 2)-difference set in (Z;1,+); {1,2,3,5,6,9,11} which is a (15,7,3)-difference
set in (Z15,+); and {1,7,9,10,12, 16, 26, 33,34}, a (37,9,2)-difference set in (Zs7,+).

Furthermore, the sets {1,2,5} and {2,4,10} constitute a (13, 3, 1)-difference family
in (Z13,+), and this generates a (13, 3, 1)-BIBD. Notice that § = 2 and the differences
between all possible pairs of elements (modulo 13) with respect to the 1st set give: +1,4+3
and +4, which is the set {1,3,4,9,10,12}. For the 2nd set, the differences are +2,+6
and +8 which constitute the set {2,5,6,7,8,11}. Let A = {1,3,4,9,10,12} and B =
{2,5,6,7,8,11}. Then, it is obvious that A U B = Z13\{0}, each element of the set
appearing exactly once.

Also, {{1,2,4},{3,5,6}} is a (7, 3, 2)-difference family in (Z7, +), and thus generates
a (7, 3, 2)-BIBD; {{1,2,4,25},{1,11,19,31}, {1, 5,27,33}} is a (37, 4, 1)-difference family
in (Zs7,+), and thus generates a (37,4, 1)-BIBD; and {{1,3,5},{2,6,3},{3,2,1},{4,2,1}}
is a (7, 3, 4)-difference family in (Z7,+), hence generates a (7, 3, 4)-BIBD.

Definition 4.4.1. Let S denote a (v, k, A)-difference set in (Z,,+). Then for all j € Z,,
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S+j={i+j:1€ S} is said to be a translate of S.

Remark. We regard the set of integers modulo v as {1,2,,...,v}. Notice that if j = v, then
S + j =5, which makes S a translate of itself. Furthermore, the set of all v translates of
S gives the block set of a symmetric (v, k, A)-BIBD.

4.4.2 Construction Procedure

Given the treatment set, V = {1,2,...,v} of a design. Suppose a (v, k, A)-difference set
(or difference family) exists in (Z,,+). Then we begin by utilizing the difference set (or
difference family) to obtain a (v, k, \)-BIBD wvia successive addition of 1 to each element
of the set(s), reduced mod v, and subsequently, utilizing the blocks of the BIBD in our
construction of BSLR.

In general, the number of blocks generated for the BIBD is Sv, where Sv > v. In
particular, with a difference set, v distinct blocks are generated. Similarly, if a difference
family exists, each set in the family generates v blocks, and overall, v (> v) blocks are
generated.

Then, with the BIBD, some BSLRs of appropriate sizes can be constructed.

Let S denote a (v, k, A)-difference set and Sj, its jth translate, where j = 1,2,...,v.
For all j € {1,2,...,v}, define S; = S+ (j —1), where S+ (j—1) ={m+(j —1) : m € S}.
Notice that there are v translates of S, viz, 51,53,...,5,, where S =5, S =S5+1,....5, =
S+ (v —1). Similarly, let A, denote the yth member set of a (v, k, A)-difference family,
where y = 1,2,...,3. Let A,; denote the jth translate of A,, where j = 1,2,...,v. For
all y € {1,2,...,0} and j € {1,2,...,v}, define Ay; = A, + (j — 1), where A, + (j — 1) =
{n+(—1):n e A}. Notice that, for all y, there are v translates of A,, which are
Ayi, Aya,..., Ayy, where Ayp = Ay, Ay = Ay +1,..., Ayy = Ay + (v —1). In particular,
Ay = Ay, Ay = As,..., Ag = Ap.

In the case that a difference set exists, the v translates of S, that is, 51,99,...,5, are
then used as symbols to make a Latin square of order v. Similarly, if a difference family
exists, then for all y, Ay1, Ay2,..., Ay, are used as symbols to make a Latin square. These
Latin squares are then inserted into an array of appropriate size to obtain the desired

design.

4.4.3 Construction for designs of the class (v x fv)/k

A (v x Bv)/k array is created and the columns are divided into S subdivisions, each
subdivision having v columns and separated by double vertical lines. Subsequently, each

Latin square is inserted into a subdivision to give the desired design.

An algorithmic procedure for the construction

1. Identify a (v, k, A)-difference set (or difference family) in (Z,, +), if it exists
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2. If a difference set exists, for all j € {1,2,...,v}, put S; = S+(j—1), where S+(j—1) =
{m+ (5 —1):m e S}. But if a difference family exists, for all y € {1,2,..., 5} and
je{1,2,..,v}, put Ay; = Ay+(j—1), where Ay +(j—1)={n+(—1):ne A},

Alv—1
and 8 = 20—

3. In the case where a difference set exists, make a Latin square of order v using
S51,52,...,5, as symbols; and in the case where a difference family exists, for all

y € {1,2,..., 5}, make a Latin square of order v with A1, Aya,..., Ay, as symbols.

4. Create a (v x fv) array and divide its columns into 8 equal subdivisions of v columns

each, separated by double vertical lines.

5. Insert the Latin squares made in step 3 into the array, one in each subdivision.

Remark. In general, 8 Latin squares are required for the construction. Just like in section
4.3.1, any of the Latin squares can be inserted in any subdivision of the array. Notice
that, if a difference set is used for the construction, then 8 = 1 such that Sv = v. Hence,
the number of columns in the array of the design is identical to the number of rows, which

is clearly, a design with the same number of rows as columns.

Example 4.4.2. Let v = 7. For k = 3, we recognize that there exists a (7, 3, 1)-difference
set in (Z7,+), which is {1,2,4}: see Example 4.4.1. Notice that 5 = 1, hence fv = T.
From this set of parameters, we obtain a (7 x 7)/3 BSLR for 7 treatments. A direct

implementation of the algorithmic procedure produces the desired design: see Figure 4.6.

12 412 3 5|3 46(45 7561672713
713112423 5|3 46|45 7|56 1|67 2
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346(45 7|56 1|67 2713|1242 335
235(346(45 7|56 1672|7131 24

Figure 4.6: A (7 x 7)/3 balanced semi-Latin rectangle for 7 treatments

Example 4.4.3. Let v = 13. we utilize the set {1,2,6,12}, which is a (13,4,1)-difference
set in (Z13,+), as given in Example 4.4.1. A direct implementation of the algorithm with
B =1 leads to the design in Figure 4.7.

Note that, in the construction, we set a = 10, b = 11, ¢ = 12 and d = 13, with a

reduction (modulo 13) in the addition.
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Figure 4.7: A (13 x 13)/4 balanced semi-Latin rectangle for 13 treatments

Example 4.4.4. Let v = 13. To obtain, for instance, a (13 x 26)/3 BSLR for 13 treat-
ments, we recognize that there exists a (13,3, 1)-difference family in (Z;3,+) (formed by
the sets {1,2,5} and {2,4,10}) as given in Example 4.4.1.

Notice that, 8 = 2, hence fv = 26 and 2 Latin squares are to be used in the construc-
tion. In constructing the design, we put the treatment labels a, b, ¢ and d for 10, 11, 12
and 13, respectively, with a reduction (modulo 13) in the addition. By implementing the

algorithm, the desired design is obtained and presented in Figure 4.8.

Example 4.4.5. Let v = 7. To obtain, for instance, a (7 x 28)/3 BSLR for 7 treat-
ments, we utilize the (7,3, 4)-difference family in (Z7,+) given in Example 4.4.1, where
the component sets are {1,3,5}, {2,6,3}, {3,2,1}, and {4,2,1}.

Notice that, in this example, 8 = 4, hence fv = 28 and 4 Latin squares are required
for the construction. The design produced via a direct implementation of the algorithm

is shown in Figure 4.9.

Remark. Any existing difference set or difference family can be used in a similar manner

to obtain the corresponding design.

4.4.4 Designs of the class (v x v)/k

Given the algorithmic procedure in section 4.4.3, if step 4. is modified to read “create a
(Bv xv)/k array and divide the rows into 8 subdivisions of equal size, separated by double
horizontal lines.”, this leads to another class of BSLRs with v treatments, having Sv rows

and v columns.
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Figure 4.8: A (13 x 26)/3 balanced semi-Latin rectangle for 13 treatments

As an illustration, if a (26 x 13) array is created and the 2 Latin squares used in

constructing the design in Figure 4.8 are inserted, then the resulting design is a (26 x 13)/3
BSLR

Remark. Transposing a corresponding (v x Sv)/k BSLR leads to a BSLR of the same size

as the one in this section.

4.4.5 More designs from the constructions

Suppose 3, the number of Latin squares used in the preceding constructions is a nonprime.
Then, just like in section 4.3.3, the array size can be adjusted to obtain some more designs
of appropriate sizes, whose rows and columns are multiples of v.

For instance, in constructing the (7 x 28)/3 balanced semi-Latin rectangle for 7 treat-
ments in Figure 4.9, 4 Latin squares (each of order 7) were used. Since 4 is a nonprime,
then the 4 Latin squares can be put in a (14 x 14) array to obtain a (14 x 14)/3 BSLR for

7 treatments.

Remark. The number of blocks in the QBD of the new design is invariant, that is, it has
precisely identical number of blocks as the basic design as well as the alternative basic

design.
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Figure 4.9: A (7 x 28)/3 balanced semi-Latin rectangle for 7 treatments

4.5 Constructions based on complete sets of mutually or-
thogonal Latin squares (MOLSSs)

4.5.1 Preliminaries

Definition 4.5.1. Let A and A denote two Latin squares of the same order, n, say. Then
A and A are said to be mutually orthogonal if when A (or A) is superimposed on A (or
A), the n? cells of the resulting array consists entirely of every ordered pair of symbols of

A and A, each appearing in exactly one cell.

Definition 4.5.2. Let A = {L;}!_; denote a set of ¢ Latin squares of the same finite
order, m, say. Then the L;s are said to constitute mutually orthogonal Latin squares if

for all u,w € {1,2,...,t}, L, and L,, are orthogonal, where u # w.

In particular, t < m — 1. Furthermore, if m is a power of a prime, then there exists a
set of m — 1 mutually orthogonal Latin squares.
Remark. A is said to be a complete set of mutually orthogonal Latin squares if t = m — 1.

A complete set of MOLSs can be used in conjunction with a square array containing
treatment symbols to obtain an affine resolvable BIBD, and this design is also called
balanced square lattice design: see, for example, John and Williams (1995, Chapters
1 & 4), as well as Raghavarao and Padgett (2005, Chapters 4 & 9). See also Street and

80



Street (1987, Chapter 8) for discussion on affine resolvability of a BIBD. Its definition is
also contained in definition 2.2.8 in Chapter 2 of this work. This is then utilized in our
construction of BSLRs.

Besides having each treatment appearing in exactly one block of each superblock (repli-
cate or resolution class) of a BIBD, hence no two blocks containing any treatment in com-
mon which is basic to all resolvable designs, affine resolvable designs possess an additional
property that any two blocks from distinct resolution classes contain an equal number, by
of treatments in common. This is consistent with our notation in definition 2.2.8. Given
an affine resolvable (v, k, A)-BIBD with b* blocks in each resolution class, then by = k/b*,
where b* = v/k. Consequently, bs reduces to k?/v: see, for example, Street and Street
(1987, Chapter 8) and Raghavarao and Padgett (2005, Chapter 4).

4.5.2 Construction procedure

Let V = {1,2,...,v} denote a set of treatments, where v = g2, g = p®, p being a prime,
and x € Z, x > 1.

The ¢? treatments are arranged in a g x g array as given in Figure 4.10

1 2 g
g+1 g—+2 2g
2g+1 29 + 2 39
3g+1 3g + 2 4g

(9-2)g+1|(g—2)g+2 |- |g(g—1)
(g-Dg+1|(g—1g+2|--| ¢

Figure 4.10: An arrangement of the g? treatments in a (g x g) array

A complete set, g — 1 MOLSs, each of order ¢ is then used in conjunction with the g2
treatments in the array to obtain a (g2, g(g+1),9+1, g, 1)-BIBD which is affine resolvable
via grouping those treatments that appear together in each row, and also those in each
column of the array to form two resolution classes. The remaining g—1 classes are obtained
by using each of the g — 1 orthogonal Latin squares-grouping those treatments which are
in correspondence with each symbol of the Latin square with respect to position. Notice
that the BIBD has g + 1 resolution classes, where each class has g blocks, each being of

size g.
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Now, for all i € {1,2,...,g+ 1}, let B;; denote the jth block in the ith resolution class
of the BIBD, where j = 1,2, ..., g. Then for each i, make a Latin square of order g using
Bj1, Bia, . . .,B;y as symbols; and subsequently, insert the Latin squares into an array of

appropriate size to obtain the desired design.

4.5.3 Construction for designs of the class (g x g(g +1))/g

We create a g x g(g + 1) array and divide its columns into g + 1 subdivisions, each
subdivision having g columns and separated by double vertical lines. The Latin squares
are then inserted into the various subdivision-one Latin square in each subdivision to give

the design.
An algorithmic procedure for the construction
1. For all i € {1,2,...,g + 1}, obtain B;; as described previously, where j = 1,2, ..., g.

2. For each i, make a Latin square, L; of order g using B;1, B2, . . .,Bj4 as symbols

3. Create a g X g(g + 1) array and divide its columns into g + 1 subdivisions of equal

sizes, separated by double vertical lines.
4. Insert the Latin squares made in 2. into the array, one in each subdivision.

Remark. Just like in the previous constructions, the insertion of the Latin squares into
the array does not need to follow a definite order-any of the Latin squares can be inserted

in any subdivision of the array.

Example 4.5.1. Let v = 9 such that ¢ = 3. Then an implementation of the algorithmic
procedure produces a (3 x 12)/3 BSLR.

The 3 x 3 array containing the treatments is obtained to be

1 2 3
4 5 6
7 8 9

Let A; and Ao constitute a complete set of orthogonal Latin squares of order 3 with the
symbol set {A, B, C}, where
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and

Ar=| B C A

C A B

We obtain, for instance, B1; = {1,2,3}, Bis = {4,5,6}, Biz = {7,8,9}; Ba1 = {1,4,7},
B22 = {2,5,8}, Bg3 = {3,6,9}; Bg1 = {1,5,9}, B32 = {2,6,7}, ng = {3,4, 8}; and
By = {1,6,8}, Byo = {2,4,9}, Bss = {3,5, 7}, for the 1st, 2nd, 3rd, and 4th resolution
classes, respectively.

Suppose we put the Latin squares L1, Lo, L3 and L4 obtained from these in the array
in a natural order, then we obtain the design shown in Figure 4.11.

123/1456(789|147/258[369|159(267|348|168(249|357

789(123/1456(369(147|258(348{159(267|357/1628(249

456(789(123|258(369(1471267|348|159(249{357|1638

Figure 4.11: A (3 x 12)/3 balanced semi-Latin rectangle for 9 treatments

Example 4.5.2. Suppose v = 16. Then g = 4; and from the construction, a (4 x 20)/4
BSLR is obtained.

Notice that, for this example, the treatment array is thus

1 2 3 4
) 6 7 8
9 10 11 12

13 14 15 16

Let Ay, Ao, and Ajs form a complete set of MOLSs of order 4 with the symbol set
{A, B,C, D}, where
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A B C D

B A D C
A =

C D A B

D C B A

A B C D

C D A B
Ay =

D C B A

B A D C

and

A B C D

D C B A
Ag =

C D A B

The Byjs are, for instance, Bi1 = {1,2,3,4}, B2 = {5,6,7,8}, Biz = {9,10,11,12},
Byy = {13,14,15,16}; Bo; = {1,5,9,13}, By = {2,6,10,14}, Bog = {3,7,11,15},
Boy = {4,8,12,16}; Bs; = {1,6,11,16}, Bss = {2,5,12,15}, B33 = {3,8,9,14}, Bgy =
{4,7,10,13}; By = {1,7,12,14}, Byo = {2,8,11, 13}, By = {3,5,10,16}, B4y = {4,6,9,15};
and Bs; = {1,8,10,15}, Bsa = {2,7,9,16}, Bss = {3,6,12,13}, Bsy = {4,5,11, 14}, for
the 1st, 2nd, . . ., 5th resolution classes, respectively.

If we put the Latin squares Ly, Lo, L3, Ly and L5 obtained from these in the array in
a natural order, we obtain the design in Figure 4.12.

Suppose the Latin squares are inserted in a different order, say, Ls, L1, Lo, Ls, Ly,
then this produces the design in Figure 4.13.
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159131234123 /412 |3]|4|1[2]3] 4
216 (10|14 5|6 |7 |86 |5|8|7|7|8|5|61|8|7|6]5
3|7 (1115|910 (11 |12} 11 (12| 9 |10 12|11|10| 9 (|10 9 |12 |11
4 | 8 (12116131415 |16| 16 |15 |14 |13 || 14|13 |16 | 15| 15 |16| 13| 14
13/1151]9 4111213 41112713 4 11123 4 11123
4|26 (10| 8|5 |6 |7 7|6 |5 |8|6|7|8|5|5|8|7]6
153 |7 (11|12 9 10|11} 10| 11|12 | 9 9 |12 |11 (10| 11]10]| 9 |12
16| 4 |8 (1216|1314 |15 13|16 |15 | 14| 15|14 |13 |16 | 14| 15|16 | 13
9 (13| 1|5 3|4 |1 234 |1]2|3 |41 |2|]3]4|1]2
10[14(2(6 || 78[5 |6||8|7|6|[5||5 |67 |8]|6|5|8]|7
11|15} 3 |7 |11}(12}9 |10} 9 10|11 |12} 10| 9 |12 |11 |12 |11|10| 9
12|16 4 | 8 ||15|16 |13 |14 | 14|13 |16 |15} 16 |15 |14 |13 || 13|14 | 15| 16
519 1131 213141 213141 21341 213|141
6 (10142 6|7 |8 |5 |5|8|7|6|8|5|6|7|7]|]6]|5]8
711|153 (j10j 11129 |12 9 (10|11 | 11|10 9 |12} 9 |12| 11|10
8 12|16 | 4 || 14| 15|16 |13 || 15|14 |13 16| 13|16 | 15|14 |16 |13 | 14 | 15
Figure 4.12: A (4x20)/4 balanced semi-Latin rectangle for 16 treatments with constituent
Latin squares arranged in a natural order
112|314 115|913 1]|2]|3]4 112|314 112|314
6 |5 |8 |72 |6 |10/14|5|6|7|8|8|7|6|5|7|8|5]6
111129 (10| 3 |7 (11|15} 9|10 |11 |12] 10| 9 |12 11| 12|11 |10| 9
16 |15 (14 {13 4 | 8 |12 |16 13|14 |15|16| 15|16 |13 |14 | 14 |13 |16 | 15
4 1123131594123 4|1]|2|3|4]|1|2]3
716 |5 |8|14|2]6|10|8|5|6|7|5|8|7T|6|6]|7]|8]|5
1011129 |15 3 | 7 11|12} 9 (10|11} 11|10| 9 |12} 9 |12| 1110
13|16 |15 (14|16 | 4 | 8 |12| 16|13 |14 |15 14|15 |16 |13 || 15|14 | 13 | 16
314112 9 113|115 314112 314112 314|112
8| 7|6 | 510|142 |6 7|8|5|6|6|5|8|7|5]|6|7]8
9 11011 (1211|153 | 7 |11 }12| 9 |10| 1211110 9 || 10| 9 |12 |11
1411316 15| 12|16 | 4 | 8 |15 |16 |13 |14 | 13|14 |15 |16 | 16| 15| 14 | 13
2134|159 |13/1(2|3 41234 |1]|2]3|4]1
518 | 7|6| 6101426 |7|8|5|8|5|6|7|7]|]6]|5]8
12| 9 (1011 7 |11 |15 3 ||10| 11|12} 9 9 1121110} 11]10| 9 |12
15|14 113 (16| 8 |12 16| 4 || 14|15 |16 |13 || 16 |13 |14 |15 | 13 |16| 15| 14

Figure 4.13: A (4 x 20)/4 balanced semi-Latin rectangle for 16 treatments with a different

arrangement of the constituent Latin squares

4.5.4 Construction for designs of the class (g(g + 1) X g)/g

We adapt the construction given in section 4.5.3, but this time, the created array that

accommodates the constituent Latin squares is of size g(g + 1) X g, and the rows of this

array are divided into g + 1 equal subdivisions of g rows each which are separated by

double horizontal lines. Each constituent Latin square is then inserted into a subdivision
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12 3(4 5 6|7 8 91 4 7{2 5 8|3 6 9
78 9|1 2 3|4 5 6|3 6 9|1 4 712 5 8
4 5 6|7 8 9|1 2 3|2 5 8|3 6 9|1 4 7
1 5 9|2 6 713 4 8|1 6 8{2 4 9|3 5 7
3 4 81 5 9|2 6 73 5 7|1 6 8|2 4 9
2 6 713 4 8|1 5 9|2 4 93 5 7|1 6 8

Figure 4.14: A (6 x 6)/3 balanced semi-Latin rectangle for 9 treatments

of the array (the order being immaterial) to obtain the design.
We note that a design of the same size can be obtained via transposition of a corre-
sponding (g x g(g +1))/g BSLR.

4.5.5 Construction for designs of the class (ge X gs)/g, where es =g+ 1

Given the construction in section 4.5.3. Suppose g + 1, the number of constituent Latin
squares is a nonprime. By putting es = g + 1, where e,s € Z and 1 < e,s < g+ 1;
modifying step 3 by creating an array of size (ge x gs) and dividing its rows and columns
into e and s subdivisions of equal sizes, respectively, we obtain a design of corresponding

size, for all e, s.

Remark. This construction provides some designs other than the (g x ges)/g that would
be obtained by directly implementing the algorithmic procedure if g + 1 = es. However,
their quotient block design is the same for a design of a given size.

Furthermore, there can be as many designs depending on the number of possible values
of the pair (e, s). In particular, if g + 1 is a perfect square, then e can be identical to s.
Hence, in the construction, there is a possibility of having a design with identical number

of rows as columns.

Example 4.5.3. For instance, notice that, in example 4.5.1, g + 1 = 4, hence there are 4
constituent Latin squares, A1, Ao, A3 and Ay, that make the design. Thus e = s = 2 and
we obtain a (6 x 6)/3 BSLR as a possibility: see Figure 4.14

Notice that the design in Figure 4.14 takes the form

A || Ao

As | Ay

However, A;, i = 1,2,3,4 can appear in any subdivision of the (6 x 6) array, leading
to various non-isomorphic designs.

As another illustration, suppose v = 25 such that ¢ = 5. Then g + 1 = 6, and
(e,s) = (2,3),(3,2). Hence, a (10 x 15)/5 BSLR and a (15 x 10)/5 BSLR can be obtained.
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Note that a direct implementation of the algorithmic procedure in section 4.5.3 would
produce a (5 x 30)/5 BSLR instead.

Similarly, if g + 1 = 16, then the possibilities are BSLRs of the sizes (60 x 60)/15,
(30 x 120)/15, and (120 x 30)/15. Again, a direct implementation of the procedure in
section 4.5.3 would produce a (15 x 240)/15 BSLR.

4.6 Constructions based on Complementation

4.6.1 Preliminaries

Complementation is a useful concept for obtaining another BIBD from an existing one,
as the complement of a BIBD is another BIBD with the same numbers of treatments and
blocks, though other parameters may be different. Suppose there exists a BIBD with the
parameters (v, b, 7, k, A), then its complementary design, which is the design obtained by
replacing the treatments of each block by those treatments that are missing from it is a
BIBD with the parameters (v,b, 7', k', \'), where 7’/ =b—r, k' =v—k,and N = b—2r+ X:
see for example, Raghavarao and Padgett (2005, Chapter 4) and Street and Street (1987,
Chapter 2).

We designate each construction for an (h x p)/k BSLR for v treatments we have given
so far, both in the current chapter and the preceding chapter a direct construction. Notice
that ¥ = k, if and only, if v = 2k such that k = v/2. Similarly, ¥’ > k, if and only, if
v > 2k such that k < v/2; and k¥’ < k, if and only, if v < 2k such that k > v/2. We
adopt three approaches to complementation, viz, block (cell) complementation, column
complementation, and row complementation. In cell complementation, the complemen-
tation is done with respect to each cell, while column and row complementations involve
complementation with respect to each column and each row, respectively.

Furthermore, using cell complementation, we concentrate on obtaining BSLRs with
k" > k, or equivalently, v > 2k such that, k < v/2, for convenience, since it may be easier
to obtain a direct construction for BSLRs with small values of k. However, we employ
column and row complementations to obtain designs with two rows and two columns,
respectively in situations where v = 2k such that k = v/2, which is identical to ¥,
provided there exists a BIBD with p blocks to facilitate column complementation, and

similarly, there need to exist a BIBD with h blocks to facilitate row complementation.

4.6.2 Construction by block (cell) complementation

For a given v and k, given any direct construction for an (h x p)/k BSLR, we obtain
construction for an (h x p)/k’ BSLR for the same number of treatments via block com-

plementation, where ¥’ = v — k.

Theorem 4.6.1. Let T' denote an (h X p)/k balanced semi-Latin rectangle for v treatments
whose @BD is a (v, hp,hn, = pnc,k,\)-BIBD, where n. = kh/v, n, = kp/v and A =
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hn.(k—1)/v—1. Suppose I" is a design obtained from T' by replacing the treatments in each
cell of I' with those treatments that are missing from that cell, called the complementary
treatments with respect to that cell. Then I is an (h x p)/k" BSLR for the same number
of treatments whose QBD is a (v, hp, h(p —n,) = p(h —n.), k', \')-BIBD, where k' = v —k
and X' = hp — X\ — 2(hn, — ).

Proof. Let V.= {1,2,...,v} denote the set of treatments in I'. Furthermore, let S;; and SZ{j
denote the set of treatments in the (7, j)th cell of I' and I, respectively, where i = 1,2, ..., h
and j = 1,2,...,p. Then for each i € {1,2,..,h} and j € {1,2,...,p}, S;; = V\Sj;. Notice
that |Sj;| = k, for all ¢ and j, where k < v, since S;js are incomplete blocks. Hence
Sij CV, S, CV and Sj; # 0. It follows that &' = |S};| = v — k, where k' < v.

Let o € V. Then « appears n, times, that is, in n, cells per row and in n. cells per
column in I'. Let n] and n!, denote the respective number of cells in each row and column
of TV that a appears. Then n], = p — n, and n., = h — n.. By Corollary 4.6.2, n!. > 0 and
n.. > 0. Then it follows that I is an (h X p)/v — k SLR.

We now investigate whether the QBD of I' is balanced. Let B = {B; }?ﬁ ; denote the
set of blocks in the QBD of I' such that |B| = hp and |B;| = k for all j = 1,2,..., hp.
Let A = {Bj : « € Bj}. Then |A| = hn, = pn,; A’ = {B; : a ¢ B;} = B\A; and
|A'| = hp — hn, = h(p — n,). Also, |A’| = hp — pn. = p(h — n.). Hence |A’| is a positive
integer by Corollary 4.6.2.

Now, let 8 € V, where  # «; and let C = {B; : (o,8) € B;}. Then |C| = X;
C"={Bj : (a,B) ¢ Bj} = B\C; and |C’'| = hp — A. Furthermore, by letting £ = {B; :
a € Bj, 5 ¢ Bj} = A\C, then |E| = hn, — A, which is identical to pn. — A.

Let H = {Bj : B € B;j}. Then |H| = hn, = pn. = |A|. Let L ={B; : f € Bj,a ¢
B;} = H\C. Then |L| = hn, — A, which is identical to pn. — A.

Notice that, for o and 3 to appear together in the same block of the QBD of IV,
then there must be a corresponding block in the QBD of I' that contains neither of them.
Suppose Z denotes a collection of all such blocks in I'. Then Z = {B; : o« ¢ B;, ¢ B;} =
B\EULUC = C'\E U L. Notice that EN L = (. Hence |Z| = |C'| — (|E| + |L]) =
(hp — A) — 2(hn, — A). We note that |Z| is the number of blocks in the QBD of I' that
neither a nor 8 makes an appearance, that is, those blocks where « is missing and 5 is
also missing.

Now, let W denote a collection of all corresponding blocks in I formed from each
member block of Z. Then W = {V\B, : a ¢ Bj, 8 ¢ B;} and |W| is precisely the number
of blocks in the QBD of T” that contain both « and 8. Since |W| = |Z], it follows that
N =hp—X—2(hn, — \).

Hence the QBD of IV is balanced, being a (v, hp, hn.. = pnl, k', \')-BIBD, where n/. =
p—np,n.=h—n., k' =v—kand N = hp— X —2(hn, — \); making I" an (h X p)/k’
BSLR.

|
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Comment. The proof of Theorem 4.6.1 can be approached more easily by simply showing
that I” is an (h x p)/k’ SLR for v treatments, where ¥’ = v — k and then recognizing that
its QBD is a BIBD, since the complement of a BIBD is another BIBD as I" is a design
complementary to I'.

Note that, since the cells in I" constitute incomplete blocks, then the set of treatments
in each cell of ' is a proper subset of its entire set of treatments and is non-empty, where
each cell contains the same number of treatments, since I' is a SLR. Similarly, the set of
treatments in each cell of I is also a proper subset of the set of treatments in I" and is
also non-empty. Moreover, all the treatments in I are also the entire treatments in I" and
each cell of I contains the same number of treatments..

Now, since each cell of I contains the same number of treatments, then to show that
I is a SLR, it is sufficient to show that there are positive integers, n,. and n. such that
each treatment appears n) times per row and n/, times per column, where n], = p—n, and
n.. = h —n. (where n, and n. denote the respective number of times that each treatment
appears per row and per column in I'). Notice that, by Corollary 4.6.2, each of n). and n/,
is a positive integer

Finally, since the QBD of I'" is a BIBD, then I is an (h x p)/k’ BSLR for v treatments.

Corollary 4.6.1. hp — A — 2(hn, — \) = hp — 2hn, + X\ and is identical to h(p —n,)(v —
kE—1)/(v—1)

Corollary 4.6.2. n, < p and n. < h since k < v, as the blocks are incomplete.

Corollary 4.6.3. By Corollaries 4.6.1 and 4.6.2, N > 0. X' =0 if and only if k = v — 1.
For values of k <v—2, N >0

Remark. By Corollary 4.6.3, if k = v — 1, then &’ = 1. It follows that each cell of I has
exactly 1 treatment with no pair, making A’ = 0 and if h = p, I is trivially, a Latin square

of order p, which is a trivial case of the SLR.
Corollary 4.6.4. If p > 2n, (or h > 2n.) and k < v/2, then X > \.

Proof. Given A = hn,.(k —1)/v—1and X = h(p —n,)(v —k —1)/v — 1. Then X > X if
and only if h(p — n,)(v — k — 1) > hn,(k — 1). Notice that, if p — n, > n, and v — k > k,
then ' > \. The last two statements are equivalent to p > 2n, and v > 2k, respectively;
and the last expression is equivalent to k& < v/2. Hence the result follows. Furthermore,

since hn, = pn., by putting n, = pn./h, then p > 2n, becomes h > 2n,. [ |

Remark. Similarly, if p < 2n, (or h < 2n.) and k > v/2, then X < X; and if p = 2n, (or
h =2n.) and k = v/2, then ' = \.

Moreover, since n,. = p —n, and n., = h — n., then the following statements are
equivalent: p > 2n, and n,. > n, (h > 2n. and n. > n.); p < 2n, and n\. <n,) ( h < 2n,

and n!, < n.); and p = 2n, and n, = n, (h = 2n. and n,, = n.).
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Corollary 4.6.5. hn, < (A + hp)/2.

Proof. From the combinatorial properties of BSLRs, A < hn, < hp. Notice that hp — X =
2(hn, — A) if and only if hn, = (A + hp)/2, which is the average of A\ and hp. Similarly,
hp — A > 2(hn, — A) if and only if hn, < (A + hp)/2; and hp — X < 2(hn, — A) if and only
if hn, > (A + hp)/2.

From Theorem 4.6.1, if hp — A = 2(hn, — A), then X' = 0. Similarly, if hp — A >
2(hn, — \), then X > 0; and if hp — A < 2(hn, — \), then X < 0.

Since by Corollary 4.6.3, X > 0, then hp — A > 2(hn, — \). It follows that hn, <
(A+ hp)/2.

|

Remark. (A + hp)/2 € Z if and only if 2 divides (A + hp), that is, where both A and hp
are either even or odd; or A = 0 and hp is even.
Notice that Corollary 4.6.5 is also evident by imposing the nonnegativity condition of

N, where ) is as given in Theorem 4.6.1.

Corollary 4.6.6. k¥’ = v — 1, if and only, if k = 1 and consequently, \ = 0. Then
XN = hp — 2hn,, and provided, k' > 1, or equivalently, v > 2, then X' > 0 such that
p > 2n,. Similarly, since hn, = pn., then it also follows that h > 2n..

Corollary 4.6.7. Let k' = k, where k > 1. Thenv—k = k such that v = 2k, where v > 2,
or equivalently, k = v/2. Hence A > 0, X' > 0, where N = (hp — hn,)\/hn, = Anl./n,.
Similarly, N = Anl,/n..

Corollary 4.6.8. Corollary 4.6.7 stipulates that if the conditions given there are satisfied,
then both A and X' are strictly positive; and provided nl. > n, (or equivalently, n!, > n.),
then N > X. Similarly, if n!. < n, (or equivalently, n!, < n.), then N < X\ ; and if n]. = n,

(or equivalently, n.. = n.), then N = \.

Remark. Since n,. = p —n, and n., = h — n,, then Corollary 4.6.8 is equivalent to saying
that if those conditions are satisfied; if p > 2n, (or h > 2n.), then X > A. Similarly, if
p < 2n, (or h < 2n.), then N < X; and if p = 2n, (or h = 2n.), then N = \.

Corollary 4.6.9. By Theorem 4.6.1 and Corollary 4.6.6 , an (h x p)/v—1 BSLR, where

h = p can be obtained via cell complementation of a Latin square of order p.

Construction procedure

Suppose T' exists and whose direct construction is given. Let V = {1,2,...,v} denote
the treatment set of I'; and let S;; denote the set of treatments in the (7,j)th cell of T,
where i = 1,2,...,h and j = 1,2,...,p. For each (i, j)th cell in I', by replacing S;; with
Slfj = V\Si;, where ng is the set of treatments complementary to S;;, that is, the set of
treatments that are missing from S;;, we obtain an (h x p)/k’ BSLR, where k' = v — k,

and our interest is on k' > k.
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Remark. The BSLR obtained by cell complementation will hereinafter be called a com-
plementary BSLR.

An Algorithm for the construction

1. Obtain a direct construction for an (h x p)/k BSLR for v treatments.
2. Create an h X p array.

3. For i = 1,2,...,h and 7 = 1,2,...,p, put in the (i,7)th cell of the array, the set,
ng = V\S;; of treatments, where S;; is the set of treatments in the corresponding

cell of the design in step 1.

Remark. An implementation of this algorithm produces a complementary BSLR for v
treatments that is of size (h X p)/k’, where k' = v — k.

An (hxp)/v—1 BSLR for which h = p that is a complementary design can be obtained
by implementing the algorithm with the design in step 1 being a p x p Latin square.

Example 4.6.1. We obtain, by block complementation, a (7x7)/4 BSLR for 7 treatments
shown in Figure 4.15 using the (7 x 7)/3 BSLR for 7 treatments given in Figure 4.6 as the

parent design.

3567146 71257123623 47|1345|2456

1236(2347/1345(2456(3567|1467(1257

12571236234 7|1345/2456(3567(14¢6°7

146 7125 7I1236(2347|1345|245¢6|356°7

Figure 4.15: A (7 x 7)/4 complementary BSLR for 7 treatments

Notice that the parent design has n. = n, = 3 and A = 7. It follows that its QBD is
a (7,49,21,3,7)-BIBD. The complementary design has the parameters n/, = n/. = 4 and
N = 14. Hence its QBD is a (7,49, 28,4, 14)-BIBD, which conforms to Theorem 4.6.1 and
the Corollaries.

Notice that, for instance, p > 2n,., h > 2n,, and k < v/2. Hence X' > \: see Corollary
4.6.4.
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Example 4.6.2. From the (3 x 15)/2 BSLR for 6 treatments shown in Figure 3.6, in
Chapter 3, we obtain a corresponding complementary design which is a (3 x 15)/4 BSLR

shown in Figure 4.16.

2 3|1 3|1 2|1 3|2 4|1 2|1 2|1 3|2 3|1 2(1 2{3 4|1 2|2 3|1 4
4 5|4 ool ool|4 5|5 003 co||4 5|5 0|4 0|3 5|4 oo|b oof|3 4|5 co|d oo
1 2|2 3|1 3|1 2|1 3|2 42 3|1 2|1 3|3 4|1 2|1 2|1 4|1 2|2 3
5 o4 5|4 0|3 c0ld H|b oo|4 co|d 5|5 o0|ldb co|3 5|4 5 0|3 4|5 o0
1 3|1 2|2 3|2 4|1 2|1 3|1 3|2 3|1 2|1 2|3 4 2 3|1 4|1 2
4 00|55 0|4 5|5 0|3 |4 5|5 0|4 co|d 5|4 co|d 0|3 5 o0|b 0|3 4

Figure 4.16: A (3 x 15)/4 complementary BSLR for 6 treatments

Remark. The treatment set for either design is V = {1,2,...,00}, where co is a special
treatment symbol that was used in the construction of the parent design, that is, the
(3 x 15)/2 BSLR for 6 treatments.

We remind that in the parent design, n. = 1, n, = 5, and A = 3 , hence its QBD
being a (6,45, 15,2, 3)-BIBD: see the remarks section in Example 3.5.2. Notice that, for
the complementary design, n/, = 2, n,, = 10 and X = 18, with a (6,45, 30,4, 18)-BIBD as
its QBD, which is consistent with the results of Theorem 4.6.1 and the Corollaries.

Example 4.6.3. By our earlier remark, a (4x4)/3 BSLR for 4 treatments can be obtained

via block complementation by using a Latin square of order 4 as a parent design.

Let the parent design be the Latin square in Figure 4.17. Then we obtain the comple-

mentary design shown in Figure 4.18.

Figure 4.17: A 4 x 4 Latin square used to obtain a (4 x 4)/3 BSLR via block complemen-

tation

Notice that, in the Latin square, n, = n. = 1 and its QBD is trivially a (4,16,4,1,0)-
BIBD; while for the complementary design, the parameters n) = n., = 3 and its QBD is a
(4,16, 12,3, 8)-BIBD. These results conform to the Corollaries.
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Figure 4.18: A (4 x 4)/3 complementary BSLR for 4 treatments

4.6.3 Construction by column complementation

We consider construction for BSLRs for v = 2k treatments in two rows and p columns,
which are precisely BSLRs of the class (2 x p)/k, where k = v/2. Notice that, for such
designs, each treatment would need to appear exactly once in each column, that is, n, = 1.
Similarly, for each row, each treatment needs to appear p/2 times, making n,, = p/2. These
follow from k = v/2, h = 2, and p. Furthermore, the construction works if and only if
there exists a BIBD for v = 2k treatments in p blocks of size k = v/2, since it follows that

there also exists a BIBD in 2p blocks for the same values of v and k.

Construction procedure

Suppose there exists a BIBD for v treatments in p blocks of size v/2. The p blocks of the
BIBD are inserted into the first row of a (2 x p) array, thereby forming row 1 of the design.
Then the treatments/entries for each cell in row 2 of the design are generated via column
complementation, viz obtaining the complement of those treatments of the corresponding
cell in row 1, which are precisely, the treatments that are missing from the cell directly
above it.

Let V = {1,2,...,v} denote the set of treatments of the BIBD which corresponds to
the set of treatments for the BSLR under construction. Let ¢ and j denote the respective
row and column labels for the array, where i = 1,2 and j = 1,2, ...,p. Furthermore, let
A;j denote the set of treatments in the (7, j)th cell. Then for all j, put Ay; = Bj, where
Bj is the jth block of the BIBD. Put Ag; = V\B;.

An Algorithm for the construction

1. Obtain a BIBD for v treatments in p blocks of size k = v/2, if one exists.
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2. Create a 2 x p array and insert the p blocks from the BIBD obtained in step 1 to
form row 1 of the design by putting A;; = Bj, for all j = 1,2, ...,p where Ay; is the
set of treatments in the jth cell of row 1, and Bj is the jth block of the BIBD.

3. For all j =1,2,...,p, put Ay; = V\Bj, where V is the set of treatments, and Ay; is
the set of treatments in the jth cell of row 2, that is, cell (2, 7).

Comments. Another BSLR of the same size and isomorphic to that obtained via the
algorithm can be obtained by cell complementation of the constructed design. This is
equivalent to swapping the cells in each column.

Each row of the design is a BIBD. The construction involves adding a complementary
BIBD to an existing/parent BIBD, which results in another BIBD. Hence the QBD of
the constructed design is a BIBD comprising 2 BIBDs each of which contains v = 2k
treatments in p incomplete blocks of size k = k' = v/2, each treatment being replicated
n, = n,. = p/2 times and concurrences \; = \] = p(k —1)/2(2k —1). Overall, there are 2p
blocks, and each pair of treatments concur in A = p(k — 1)/2k — 1 blocks. We note that,
A1 = A}, since n, = n).: see Corollary 4.6.7. Notice that A\; = \/2.

Example 4.6.4. We observe, from our foregoing discussion that, if p = 10, for instance,
then the treatment concurrences, A in the SLR under construction is given by A = 10(k —
1)/(2k — 1), which is identical to (k —1)/(k/5 — 1/10). Notice that A\=5—5/(2k — 1) €
Z, U {0} if and only if 2k — 1 = 1,5 such that & = 1,3. In particular, if £ = 1, then
A = 0, the trivial case; and if £ = 3, then A\ = 4. Furthermore, v = 2k = 6, n. = 1,
and n, = 5. Hence there exists a (2 x 10)/3 BSLR for v = 6 treatments whose QBD is a
(6,20,10,3,4)-BIBD. It follows that there exists a (6, 10,5, 3,2)-BIBD which can serve as
a parent BIBD (a BIBD whose blocks are to form row 1 of the BSLR under construction

and whose complement forms row 2) for the construction, since A\; = A/2 = 2 is an integer.

We first give a construction for a parent BIBD.

Construction of a parent BIBD

Notice that the parent BIBD contains 6 treatments in 10 blocks of size 3 where each
treatment is replicated 5 times and each pair of treatments concur 2 times. We approach
it from a combinatorial perspective. Let the treatment set be V = {1,2,3,4,5,00}. By
identifying treatments 1 to 5 with the vertices of a 5-gon and the treatment with label co
kept outside the polygon, associate each pair of vertices at distance 1 with the symbol oo,
forming a triple/block each time. This generates the first 5 blocks, viz, By = {1,2, 00},
By = {2,3,00}, Bs = {3,4,00}, By = {4,5,00}, Bs = {5,1,00}. The remaining 5 blocks
are generated by associating the same pairs of vertices at distance 1, this time with the
unique vertex that is equidistant from each vertex in each 2-subset of vertices at distance
1. This gives Bg = {1,2,4}, By = {2,3,5}, Bs = {3,4,1}, By = {4,5,2}, Byp = {5, 1,3}.

Notice that each unique vertex is at distance (v — 2)/2 from each member vertex of the
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2-subsets. We now obtain, as follows, an expression for easily generating the 10 blocks of
the BIBD

Let the treatments that make the vertices of the 5-gon be numbered in a cyclic order,
viz, i,i+1,i4+2,1—2,i—1, where i € V'\{oo}, reducing each component modulo 5. Notice
that, for each i € V\{oo}, the pairs ii,7 £ 1 are each at distance 1, and by denoting the
unique vertex equidistant from both ¢ and ¢ + 1 by 741, then 7541 =i+ 14 (v —2)/2
or i — (v — 2)/2, which simplifies to (2¢ + v)/2 or (2i — v + 2)/2, respectively with a
reduction modulo 5 for each component. Similarly, if the pair (i,7 — 1) of vertices is
considered, then the unique vertex, 7;;_1 that is equidistant from each of these vertices is
Tiie1 = (20 +v — 2)/2 or (2i —v)/2, where each component is also reduced modulo 5.

Let B; denote the jth block of the BIBD, for all j = 1,2,...,10. Define

B, - {j,j+1,00} ifj=1,2,...,5 (42)
{4, i+ 1,754 ,ifj=6,7,..,10
where each component is reduced modulo 5, and 7j5i+1 = (25 +v)/2 or (2j — v+ 2)/2,
reducing each component modulo 5, as well. Notice from (4.2) that, By = {1,2,00}, By =
{2,3,00}, Bg = {3,4,00}, B4 = {4,5,00}, B5 = {5, 1,00}, B6 = {1,2,4}, B7 = {2,3,5},
Bg = {3,4,1}, By = {4,5,2} and Byo = {5, 1,3}, as before.

Remark. Notice that, with an initial block, Bf € {By, Ba, ..., Bs}, the other 4 blocks can
be generated by a cyclic development of Bf. Hence, B = B} + (j—1), for j =2,3,4,5,
which is equivalent to BJ* = B]’-‘_1 + 1, for j = 2,3,4,5, with reduction modulo 5. Note
that B, +0 ={x+d : z € B,}, and 0o + 0 = 0.

Notice that, Bj, for instance, where B} € {B1, By, ..., B5} is obtained to be B} = B} +
3. Suppose Bf = By = {1,2,00}. Then B} = {4,5,00}, which is the block B, obtained
before. Furthermore, using the equivalent expression, suppose B = B3 = {3,4,00}. Then
B} = B} + 1, which also results in B} = {4,5, 00}, as before.

Similarly, by developing an initial block, B € {Bs, Bz, ..., Bio}, the remaining blocks
can also be generated. Thus, the blocks can be generated, viz, Bj+ = B6+ +(j — 1), for
7 =17,8,9,10, which is equivalent to B;f = B;f_l +1. For instance, By = Bgr + 2. Suppose
Bf = Bg = {1,2,4}. Then By = {3,4,1} = Bs. Moreover, if the equivalent expression is
used, then By = Bf + 1. Suppose Bf = By = {2,3,5}. Then Bf = {3,4,1}, as before.

We note that B can be any set in { By, Ba, ..., Bs}. Similarly, Bér can also be any set
in {Bg, B, ..., Bio}, not necessarily By and Bg, respectively.

We now proceed to construct the (2 x 10)/3 BSLR for 6 treatments by implementing
the algorithm: see Figure 4.19.

Notice from the design in Figure 4.19 that, for cell (i,5), where i = 1,2 and j =
2,00y 5,7, .0, 10,
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12 00[2 3 0|34 00(45 00[51 00|12 4|23 5|34 1{45 2|51 3

35 4141 552 1{13 2{24 31|35 00041 00(d2 0|13 |24

Figure 4.19: A (2 x 10)/3 BSLR for 6 treatments obtained by column complementation

i = An+(G-1) ,ifj=2,...,5
A+ (j—1) ,ifj=7,..10
where each component is reduced modulo 5. This shows that, given, for instance, the
entries in each cell of column 1, the entries of the cells in columns 2 to 5 can be generated by
a cyclic development of the cell in column 1 of the corresponding row via successive addition
of 1 (reduced modulo 5). For instance, A14 = A11+3, noting that A;;+v = {y+7:y € 4;;
and oo + 1 = co. Similarly, Ass = A1 + 4.

Similarly, given the entries in each cell of column 6, the entries of the cells in columns 7
to 10 can be generated by a cyclic development of the cell in column 6 of the corresponding
row via successive addition of 1 (reduced modulo 5). For instance, A1y = A6 + 1; and
similarly, Aog = Asg + 2.

Notice also that cell complementation of the design in Figure 4.19 produces the design
in Figure 4.20, which is of the same size and can also be obtained by swapping the cells

in each column of the original design.

35 4(41 5(52 1|13 2|24 3|35 00(41 00| 2 00|l 3 00|24 o0

120023 0|34 00(45 00|51 0|12 423 5|34 145 2|51 3

Figure 4.20: A (2 x 10)/3 BSLR for 6 treatments obtained by cell complementation of the
design in Figure 4.19

4.6.4 Construction by row complementation

In a similar manner to obtaining designs with two rows, where we filled the first row of
the design with the blocks of a BIBD, and then generated the entries of each cell in the
second row by taking the complement of the entries in corresponding cell in the first row.
We modify, slightly, this procedure to obtain designs for two columns by filling the ffirst
column of an h x 2 array with the h blocks of a BIBD; and then generating the entries of
each cell in the second column by obtaining the complement of corresponding cell in the

first column.
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Given V = {1,2,...,v}, the set of treatments of the BIBD and the BSLR under con-
struction. Let R;; denote the set of treatments in the (7, j)th cell of the h x 2 array, where
1 =1,2,...,h and j = 1,2. Then for all ¢, put R;; = B;, where B; is the ith block of the
BIBD used for the construction. Put R;; = V\B;.

An Algorithm for the construction

1. Obtain a BIBD for v treatments in i blocks of size k = v/2, if one exists.

2. Create an h x 2 array and insert the h blocks from the BIBD obtained in step 1 to
form column 1 of the design by putting R;; = B;, for all i = 1,2, ..., h where R;; is
the set of treatments in the ith cell of column 1, and B; is the ¢th block of the BIBD.

3. For all i = 1,2,...,h, put Rjs = V\B;, where V is the set of treatments, and R;o is

the set of treatments in the ith cell of column 2, that is, cell (i, 2).

This procedure produces an (h x 2)/k BSLR for v treatments, where k = v/2.
Comments. Another (h x 2)/k BSLR, where k = v/2 can be obtained via cell complemen-

tation of the constructed design, and this is equivalent to swapping the cells in each row.
The resulting design is isomorphic to that obtained via the algorithm.

The construction works if and only if there exists a BIBD for v = 2k treatments in A
blocks of size k = v/2, since there will also exist a BIBD in 2h blocks for same v and k.

This design is analogous to the design with two rows in the preceding section. For
instance, each column of the design in this section is a BIBD, just like each row in the
previous design. In particular, the same BIBD used in the construction of the (2 x p)/k
BSLR in the preceding section can also be used for this construction, if it is required that

h =p.

4.7 Constructions for designs of larger sizes

BSLRs of larger sizes can be obtained from another BSLR of smaller size, both having
same number of treatments by making copies of the smaller design and then putting them
in an array of appropriate size. The design obtained has identical block size, as the original
design of smaller size but there are usually, more rows and/or columns, making it larger,

except in the trivial case that involves only one copy of the ’smaller design ’.

Theorem 4.7.1. Let Ay denote an (h x p)/k BSLR for v treatments. Suppose Ao is a
design obtained from A1 by making copies of A1 and putting them in an ht x p' array,
where h|ht and p|pt. Then Ay is an (bt x p')/k BSLR.

Proof. Let a8 copies of A1 be made and put in an array which has been partitioned into
« sub-rows and [ sub-columns such that there are h rows in each sub-row and p columns

in each sub-column. Since h\hT and p\pT, then it follows that hf = ah and pf = Bp.
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Clearly, the array is of size (ah x Bp). Hence Ag is of size (ah x p)/k, since Ay contains
k treatments in each row-column intersection.

Let n, and n. denote the respective number of times each treatment appears per row
and per column in A;. Similarly, let nl and n{ denote corresponding parameters in As.
Suppose Ay is a SLR. Then there exists nl € Z+ and nl € Z.. Notice that ni = fn, and
nl = an,, both positive integers, making As. a SLR.

Furthermore, since Ay is a BSLR, then its QBD is a BIBD, which contains hp blocks.
The QBD of Ay contains afShp blocks (which is a multiple of the number of blocks in Ay)
and these are the hp blocks in A; each with multiplicity a3. It follows that As is a BSLR.

Corollary 4.7.1. If =1, then A1 and Ay have the same number of columns and Ao is
an (ah x p)/k BSLR. Similarly, if o = 1, then Ay and Agy have the same number of rows
and Ag is an (h x Bp)/k BSLR. Furthermore, if « = f =1, then Ag is trivially A;.

Corollary 4.7.2. Let p > h. If B > «, then Ay contains more columns than rows.
However, if p > h and 8 < «, then Ag may (or may not) have more columns than rows.
In particular, As would have more columns that rows if the difference Bp — ah > 0 but
fewer columns than rows if Bp — ah < 0. Similarly, if h > p and o > (8, then there are
more rows than columns in Ay. But if h > p and a < (3, then Ay may (or may not)
have more rows than columns. In this case, Ao would have more rows than columns if
ah — Bp > 0 but would have fewer rows than columns if ah — Bp < 0. Moreover, if B > 1,
then Ay contains more columns than Aq; and similarly, if a > 1, then Ay contains more
rows than Ai. Hence, if at least one of o and B is greater than 1, then Ao is larger in

size than Aq.

Corollary 4.7.3. Since the QBD of Ay is a (v, hp, hn, = pne, k, \)-BIBD, then the QBD
of Ag is a (v,thT,thl = anl,k‘,)\T)—BIBD, where bt = ah, pt = pp, hinl = aBhn,,
which is identical to afpn.; and X = af\.

Corollary 4.7.4. By the last expression in Corollary 4.7.3, A1 and As have identical

concurrences if and only if the construction of Ao involves only one copy of A1, that is,

the trivial case of As.

Corollary 4.7.5. a = nz/nc and is identical to h'/h. Similarly, 8 = nl/nr, which is
identical to p'/p.

Corollary 4.7.6. By Corollary 4.7.5, o = 1 if and only if ht = h. Similarly, § = 1 if
and only if pi = p.
4.7.1 Construction procedure

Given an (h x p)/k BSLR for v treatments, we name it an initial design and then make
copies of this initial design; create an array of size corresponding to the size of the design

whose construction is sought; and subsequently, insert these copies into the array.
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Example 4.7.1. Suppose a (4 x 10)/3 BSLR for 6 treatments is of interest. Then the
(2 x10)/3 BSLR in Figure 4.19 can serve as the initial design. Hence, by making 2 copies
of the basic design, and subsequently putting them in a (4 x 10) array, we obtain the
design of Figure 4.21.

12 00[2 3 0|34 00(45 00[51 00|12 4|23 5|34 1{45 2|51 3

35 4(41 5(52 1|13 2|24 3|35 00(41 00| 2 00|l 3 00|24 o0

12 0|23 0|34 |45 |b1 |12 4|23 5|34 1|45 2|51 3

35 4(41 5/52 1|13 2|24 3|35 00[(41 00| 2 00|l 3 00|24 o0

Figure 4.21: A (4 x 10)/3 BSLR for 6 treatments obtained by inserting 2 copies of an

initial design

Comments. Notice in Example 4.7.1 that, by Theorem 4.7.1 and Corollary 4.7.5, o = 2
and 8 = 1, hence o > B. The construction produces a design with fewer rows than
columns: see Corollary 4.7.2. Note that h < p and ah < Bp.

Furthermore, the QBD of the design produced is a (v, aShp, afhn, = afpn., k, afN)-
BIBD: see Corollary 4.7.3 and Theorem 4.7.1. where v =6, h=2, p =10, n, =5 n, = 1,
k =3 and A = 4. Hence the QBD of the design in Figure 4.21 is a (6, 40, 20, 3, 8)-BIBD.

4.7.2 Designs of the classes (2h x p)/k and (h x 2p)/k

Given an initial design, an (h X p)/k BSLR for v treatments. Then by the method given
in section 4.7.1, a corresponding (2h x p)/k (or (h x 2p)/k) BSLR can be obtained by
making 2 copies of the initial design and then inserting them into the 2h x p (or h x 2p)
array.

However, we note that, if K = v/2, then a design of the same size can also be obtained
by putting the (h x p)/k BSLR for v treatments with its complementary design, which is
also an (h x p)/k BSLR for v treatments in an array of corresponding size. The designs

obtained using the two methods are isomorphic.

Theorem 4.7.2. Let Ay denote an (h x p)/k BSLR for v treatments, where k = v/2.
Let Ay denote its complementary design, the design obtained from Ay by replacing the
treatments in each cell of A1 with the treatments missing from that cell. Then the design
resulting from putting A1 and Ay in an array of appropriate size is a BSLR for the same

number of treatments.

Proof. Let V ={1,2,...,v} denote the set of treatments in each of A; and Ay. Let 7 € V.

For all 7 € V, let n, and n. denote the number of times 7 appears in each row and each
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column, respectively, of Ai. Since Ay is complementary to Aj, then its treatment set is
identical to that of A; and it also has the same number of rows and columns, hence same
number of blocks as A1. Moreover, since k = v/2, then each cell of Ag contains &' = v/2
treatments, since &’ = v — k. Hence, each cell in the overall design also contains v/2
treatments Let n,. and n/, denote the respective number of times that 7 appears in each
row and each column of Ay. Then by Theorem 4.6.1, n,. = p — n, and n,, = h — n., which
are all positive integers.

Since there are 2 BSLRs to be used in the construction, supposing the array is of size
2h x p and also supposing As is placed underneath A; in the array, then we obtain another
design that has 2h rows and p columns. Denote this design by I'12, and let n;} and nf
denote the number of times that 7 appears in each row and each column, respectively
of T'12. Suppose I'1o is a SLR. Then n;” and n} must be positive integers. Notice that
n,” = n,, where n, € Z4 and n = n. + n.. whose value is h € Z,. Hence I'15 is a SLR.

Furthermore, by Theorem 4.6.1, As is a BSLR. Notice that the QBD of I'15 comprises
the blocks of two BIBDs, hence it is also a BIBD. Thus I'15 is a BSLR.

Now, supposing A; is placed underneath A, in the array, then another design, I's1, say,
is obtained. Notice that the QBDs of I'12 and I'9; are identical, hence they have same
parameters. For instance, in I'y1, 7 appears n, +n. times in each column, and in each row
it appears n.. times, both positive integers. Hence, I'9; is also a BSLR.

Moreover, suppose As is places beside Ay in the array. Let the new design be denoted
I'}5. Let n and n} denote the number of times 7 appears per row and column, respectively.
Then n) = n, + n/. and n} = n., which are both positive integers, making I'{, a SLR.
Notice that I']5 also contain identical blocks as I';2 and I's1, hence same QBD and is thus
a BSLR. Suppose A; is placed beside As in the array. Then this produces another design,
'}, say, which has identical QBD as I'},, where 7 appears n, + n, times in each row and
n, in each column. Hence I'}; is also a BSLR.

Since each of the four possible designs is a BSLR, then the result of the theorem
follows. |

Corollary 4.7.7. The QBD of each resulting BSLR, I'12, I'21, I'fy and I'S; is a (v, 2hp, 2hn, =
2pn. = hp,v/2,2X\)-BIBD. The number of replications of each treatment in each of these

designs is identical to the number of blocks in A1 or As.

Corollary 4.7.8. This construction works only if both A1 and Ao have identical block
size, k =v/2, since k and k' can only be equal if v = 2k such that k =v/2 and k' =v/2,

where k' = v — k.
Corollary 4.7.9. The order in which A1 and Ay are inserted into the array is immaterial.

Example 4.7.2. Let A; denote the (2 x 10)/3 BSLR for 6 treatments in Figure 4.19;
and let Ao denote its complementary design in Figure 4.20. Then, we obtain a (4 x 10)/3
BSLR for 6 treatments by putting A; and As in a 4 x 10 array. Supposing we insert Ao
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underneath Aj, then the design presented in Figure 4.22 is obtained, which is another

design of the same size as the design in Figure 4.21 and is also isomorphic to it.

120023 0|34 00(45 00|51 o012 423 5|34 145 2|51 3

35 4(41 5|52 1|13 2|24 3|35 00[(41 00[b 2 00|l 3 00|24 00

35 4141 552 1({13 2{24 3|35 0041 00(d2 0|13 |24

12 0|23 0|34 |45 |b1 |12 4|23 5|34 1|45 2|51 3

Figure 4.22: A (4 x 10)/3 BSLR for 6 treatments obtained by inserting a complementary

design underneath an initial design

Comments. If Aq is inserted underneath As in the array, another design of the same size
is also obtained, which is isomorphic to each of the other two designs. A (2 x 20)/3 BSLR
can be obtained by putting either of A; and Ay beside the other in a 2 x 20 array. Similarly,
swapping the order of inserting them into the array produces another design of the same
size as the former, the two being isomorphic.

We note that another (4 x 10)/3 BSLR for the same number of treatments can also
be obtained by inserting 2 copies of Ag, the complementary design to A;. The resulting
design is isomorphic to each of the other three designs of its size.

By Corollary 4.7.7, the QBD of this design is a (6,40, 20, 3, 8)-BIBD, which is identical
to the QBD of the design in Figure 4.21.

4.7.3 Designs with h=p

In our previous constructions of BSLRs for those experimental situations where h < p or
h > p, in most cases, we juxtaposed certain Latin squares to obtain a basic (initial) design
from where a design of larger size was obtained by making copies of the initial design and
then juxtaposing them appropriately.

However, in certain experimental situations, interest may be on designs which have
identical number of rows and columns, that is, h = p. In this circumstance, the basic design
(or some other initial design) may be utilized in various ways to obtain constructions for
designs of such class if it satisfies certain conditions, as discussed below. In particular, we
give three approaches to achieving this. One of the procedures involves making copies of
an initial design that satisfy the given condition and then juxtaposing them appropriately;
while the other two procedures involve making a single Latin square whose symbols take

different forms, for different procedures.
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Suppose the initial design is an (h X p)/k BSLR for v treatments, where h < p. If h
divides p, then making p/h copies of the initial design and inserting them in a p x p array,
one underneath another produces a (p x p)/k BSLR. Similarly, if the initial design is such
that h > p, then, provided p divides h, by making h/p copies of the initial design and then
inserting them into an h x h array, one beside another produces an (h x h)/k BSLR.

Furthermore, suppose there exists a BIBD for v treatments in p blocks of size k. Then
a (p x p)/k BSLR can also be obtained by making a p x p Latin square whose symbol set
is constituted by the labels of the p blocks of the BIBD. Similarly, if there exists a BIBD
for v treatments in h blocks of size k, then an (h x h)/k BSLR can be obtained by making
a Latin square of order h with symbols, the labels of the h blocks of the BIBD.

Moreover, suppose h < p. If the initial design consists of 6 sub-Latin squares, A;,
where i = 1,2,...,0, and 6 = p/h, the ith Latin square being of order p/# = h with its
symbol set comprising the labels of those blocks in row 1, say, of the ith subdivision of
the columns of the initial BSLR. Then a (p x p)/k BSLR can also be obtained by making
another Latin square, I', say, of order 6, whose symbols are A;, where i = 1,2, ...,6.

Similarly, if p < h, let the initial design consist of 1 sub-Latin squares, T,, where
u=1,2,...,m, and n = h/p, the uth Latin square being of order h/n = p with its symbol
set comprising the p labels of those blocks in column 1, say, of the uth subdivision of the
rows of the initial BSLR. Then an (h x h)/k BSLR can also be obtained by making another

Latin square, =, say, of order 1, whose symbols are the labels of T, where u = 1,2, ..., 7.

Example 4.7.3. Suppose we wish to make a (12 x 12)/3 BSLR for 9 treatments. We can
make use of the (3 x 12)/3 BSLR in Figure 4.11: see example 4.5.1.

Notice that the initial design consists of § = 4 sub-Latin squares, A;, wherei =1,2,3,4
and h = 3. Each Latin square is of order h = 3. The symbols of A1, for instance, are Ajq,
Ao and Ajs.

Notice also that the design in Figure 4.11 takes the form

A | Az || As || Ag

where

A | A2 | A

Ay = Az | Air | Arz

Ag | A1z | Ann

with Ay1, A2, and Aj3 being the sets {1,2,3}, {4,5,6}, and {7, 8,9}, respectively;
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Agy | Az | Ao

A2 =1 Ags | Agy | Agy

Ago | Agg | A

where Agq, Ago, and Agg are the sets {1,4,7}, {2,5,8}, and {3,6,9}, respectively;

Aszy | Azz | Asz

A3 =1 Ass | Az | Aso

Asp | Az | Az

with Asi, Ase, and Ass being the sets {1,5,9}, {2,6,7}, and {3,4, 8}, respectively; and

Ay | Ago | Ags

Ao =] Ays | Agr | Ao

Asp | Asz | A

where Aygy, Ag2, and Ayg are the sets {1,6,8}, {2,4,9}, and {3,5, 7}, respectively.

By making a Latin square of order § = 4 using A;, As, A3, and A4 as symbols, we
obtain the design shown in Figure 4.23.

Notice that the resulting design shown in Figure 4.23 takes the form

Ay [ Ag | As | Ay

Ay | A | Ax | As

Az | Ay | A1 | Ao

Ao [ Az | Ayl Ay

We note that each row of the (3 x 12)/3 BSLR is a BIBD for 9 treatments in 12 blocks
of size 3. Another (12 x 12)/3 BSLR for 9 treatments can be obtained by making a Latin
square of order 12 whose symbols are the block labels, Aj1, Ao, . . ., A4s, of the BIBD.
The design produced through this procedure is shown in Figure 4.24

Moreover, by making 4 copies of the (3 x 12)/3 BSLR and putting them in a 12 x 12

array, we obtain the design shown in Figure 4.25

103



123/456(789|147|258|369|159/267348|168|249|357
7891234563691 47|258|348(159(26 35 7(168(2409
456(789|123|258[369|147|26T7|3438|15 249357168
168|249/357|123/456(789(147/258369|1509(267(3438
35 7(168(249|789|123/45¢6|3609|147|2528|348|159]|2
24935716 8|456(789|123|258[369[|147|]267|348|159
159|226 7|3 48|168|249|35 712345678 147|258|3609
348(159(26 735 7/1638[249|789|123/456(3629|147|258
26 7(348[159|249(357|1628||456|789|12 2583609147
147|258|369|159|267|348||168/249357|123|456|7
369(147(258|348[159(267|357|1628(249|789|123|4506
258360914726 7/348|159|249/357|1628||45¢6|789|123
Figure 4.23: A (12 x 12)/3 BSLR for 9 treatments obtained by making a Latin square
with symbols another Latin square
123|/456(789|147|258369|159/2617|/348|16138249|357
35 7(123{456(789(147|2528[369[159(267|348|1638(249
24935 7(123{456(789|147/2528[369|159(267|3 428|168
168/249/357|123|456|(789|147/258369|159267|3438
348163824935 7(123/456[789|147/258[369|159|26°7
26 7(348(168(249(357|123/456({789|147|2528[369[(159
15926 7/348|/168|249/357|123|/456|789|147/258[369
369(159(26 7348162824935 7|123/456|[789|147|2538
25836915926 7(348|1628|249(357|123/456|(789|147
147|/258/369|159|2617|348|1638|249|357|123/45¢6|789
7891472583691 509(26 7348163824935 7|123/456
456(789|147/258{369|159|267|348|168/24935 7123

Figure 4.24: A (12 x 12)/3 BSLR for 9 treatments obtained by making a Latin square
with symbols the blocks of a BIBD

4.8 Obtaining a lot more designs from the constructions

We observe that, in general, for those basic designs which involve arrangements of two

or more Latin squares, a large number of designs other than the ones already discussed
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123/456(789|147|258|369|159/267348|168(249|357
78 9|1 23/4561369|147(258|348(159(267(|35 716238249
456(789|123(258{369(1471267|3428|159|249(35 7|1

123/456(789|147|258{369159267|3428|1638(249357
78 9|1 23/4561369|147(258348(159(267(|35 716238249
456(789|123|258[(369|147|26T7|348|159(249|357]|1 8
123/456(789|147|258|369|159/267348|168|249|357
78911 23/456(1369147/258|348(159(26735 71638249
456(789|123|258(369|147|26T7|3 48|15 9249|3571 8
123/456(789|147|258|369|159/267348|168(249|357
7891123/456(1369147/258348(159(26735 71638249
456(789|123|258(369|147|26T7|3 48|15 9249|3571 8

Figure 4.25: A (12 x 12)/3 BSLR for 9 treatments obtained by making 4 copies of a
(3 x 12)/3 BSLR for 9 treatments

can be obtained. This involves permuting the rows and columns of each Latin square. A
permutation of the rows of each Latin square leads to non-isomorphic designs, since each
row of the Latin square is only a part of the entire row. However, permuting the columns
of each Latin square leads to isomorphic designs, since each column of the Latin square is
also a column in the design.

Moreover, for any basic design whose construction involves arrangement of two or more
Latin squares, a random ordering of the Latin squares within its array leads to designs

that are isomorphic.
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Chapter 5

Non-balanced Semi-Latin

Rectangles with Block Size Two

5.1 Introduction

This chapter is concerned with semi-Latin rectangles whose quotient block designs (QBDs)
are basically not BIBDs and whose row-column intersections, each contains exactly 2
treatments. We give constructions for semi-Latin rectangles (SLRs) of this class whose
QBDs are regular-graph designs (RGDs). We consider SLRs of this kind for those sizes
that a balanced semi-Latin rectangle (BSLR) fails to exist (if they exist). This is so,
since RGDs are, particularly, for large number of blocks, known to contain a design with
optimality properties regarding the commonly used criteria, the A-, D- and E-criteria (if
any exist). SLRs whose QBDs are RGDs are known as regular-graph semi-Latin rectangles
(RGSLRs): see Bailey and Monod (2001). Different RGSLRs may have different values of
any given optimality criterion. Following John and Mitchell (1977), we are assuming that
the optimal designs would be found in the RGDs.

RGDs are close to balanced, in the sense that treatment concurrences differ by at most
1 in absolute terms. However, they are not the same as nearly balanced designs, which
were defined by Cheng and Wu (1981). We note that nearly balanced designs are not
equireplicate and so cannot occur as a QBD of a SLR. We consider, in particular, SLRs
whose QBDs are BIBD-extended RGDs which would give designs with good statistical
properties: see Cakiroglu (2018) for discussions on BIBD-extended RGDs. We consider
cases where the number of treatments, v is even and also when it is odd. When v is even,
we extend the constructions given in Bailey and Monod (2001) to obtain larger designs.
When v is odd, we give construction for a basic design which is then extended to obtain

constructions for larger designs.

Theorem 5.1.1. Let A;, wherei = 1,2 denote 2 semi-Latin rectangles with the treatment
set V.={1,2,...,v}. Suppose Ay is an (h x p)/k RGSLR and Az is an (h x p')/k BSLR.
Then the design obtained by putting A1 and Ao, side by side, in an h x p’ array is an
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(h x p")/k RGSLR for v treatments, where p’ =p+p'.

Proof. Let = denote the resulting design on putting A; and As in the array; and let n.
and n, denote the number of times each treatment appears in each column and each row of

=. Since A;, where ¢ = 1,2 are semi-Latin rectangles, then for all A;, there exist ng) and

) both positive integers such that each o € V appears ng) and n,@ times, per column

nl
and row, respectively, in A;.

Notice that since the array contains h rows and p” columns, where p” = p + p/, then
p' = p” — p. Furthermore, since A7 and Ay are put side by side in the array, it follows
that each column in Aj is a column in Z, and each column in As is also a column in Z.
Hence, the combination of columns in A; and As make =. Notice also that for all ¢ = 1, 2,
ngi) = kh/v, which is a positive integer since v|kh, as A; and Ay are SLRs and this is
identical to n.. Hence n. is a positive integer. Similarly, each row in = is a combination
of corresponding rows in A; and As, and the combination of all corresponding rows in A
and Ay make =. Hence, n, = n&l) + n7(~2), which is a sum of two positive integers, hence a
positive integer. Thus = is a SLR.

Now, since A is a RGSLR, then there are 2 distinct treatment concurrence counts.
Let A1 and A9 denote these concurrence numbers, then |A2 — A;| = 1. Furthermore, since
A, is a BSLR, denote by A, the unique treatment concurrence number. For all o, 8 € V,
« and 3 appear together in either A\; or Ay blocks in A; and in A blocks in Ag. Since the
QBD of = comprises the set of blocks from both A; and As, then o and 8 concur in either
A1+ A or Ay + A blocks in =.

Let )\I = A1+ A and )\g = A2 + A. Notice that \)\; — /\J{] = |[A2 — A1| = 1. Since each
of A1 and Aj has the same set of treatments, V', where |V| = v, it follows that = is an

(h x p")/k RGSLR for v treatments, where p” = p + p'. [ |

Comment. Each column of A;, for all ¢ = 1,2 constitute a column in Z. Furthermore,

each row in Z is a combination of corresponding rows from A; and As.

5.2 Construction when v is even

Definition 5.2.1. Let S; C Zgy,, wherei = 1,...,m and |S;| = 2, for all i. We regard Zo,,
to be the set {1,...,2m}. Let {S;}/*, constitute a partition of Zsg,,. Define S; = {x;, y;},

where z; and y; are such that

+7 if 1 <m,
H(y; — ) =
m twice if i = m.

Then {S;}", is called a starter for the cyclic group formed by Zs,, under addition in
Bailey and Monod (2001).
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Figure 5.1: A BTD(6)

Notice that —i = 2m — i such that —m = m. Hence U {x(y; — x;)} contain m twice

(which come from S,,) and every other element of ng\{2m} exactly once (where each
comes from a unique S;, for ¢ < m).

As an illustration, let m = 4. Then the sets {6,7},{1,3},{2,5} and {4,8} consti-
tute a starter in Zg. Notice that the differences between the elements of these sets are
+1,+2, +3 and 4(twice), respectively, where 4 = —4 in Zsg.

Definition 5.2.2. Let V = {1,...,2m} denote a set of teams available for a league
tournament which is to consist of 2m — 1 rounds, where each round is to be played on m
grounds. Let the league schedule form an m x (2m — 1) array whose cells are constituted
by the (2;” ) = m(2m—1) distinct pairs of teams from V such that each pair of teams plays
once, overall and each team plays once in each round and at most twice on each ground.
Then the league schedule is said to constitute a balanced tournament design (BTD) for
the 2m teams, denoted BTD(2m): see Anderson (1997, Chapter 10).

We give an example of a balanced tournament design for 6 teams (BTD(6)): see Figure
5.1. Notice that there are 5 rounds (where each round corresponds to a column) and 3

grounds (where each ground corresponds to a row), that is, m = 3.

Definition 5.2.3. Let Q = {A;}7! denote a complete set of m — 1 mutually orthogonal
Latin squares (MOLSs) of order m, where m is a prime or prime power. For all i =
1,2,...,m — 1, let S; denote the set of symbols in A;, where S; NSy = 0, for all ¢ # 7'
Let ' = {A(l), A A(k)} be a subset of 2, where the cardinality of ', |T'| = k and
ke{23,..,m—1}. If AW A@ AWK are superimposed and the superimposition
is regarded as having v = mk symbols (treatments), rather than k treatment factors with

m levels each, then the resulting design is said to be an (m x m)/k Trojan square.

We give an example of a (4 x 4)/2 Trojan square in Figure 5.2. Notice that the symbol
sets, S1 and Sy of the two superimposed orthogonal Latin squares that make the Trojan
square are S; = {1,3,5,7} and S = {2,4, 6,8}, which are disjoint.

Definition 5.2.4. Let X be a non-empty set, and f a function such that f : X —
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Figure 5.2: A (4 x 4)/2 Trojan square

X. Suppose f is a bijection, that is, one-to-one and also onto, then f is said to be a

permutation of X.

Remark. In general, suppose X and Y are 2 non-empty sets, and ¢ a function such that
g: X — Y. Then g is said to be one-to-one if for all x1,29 € X, g(z1) = g(x2) means
that x1 = x2. Similarly, g is said to be onto if for all y € Y, there exists € X such that
9(x) = y.

Bailey and Monod (2001) give constructions for RGSLRs of the size h = n, p = 2n
and k = 2 for v = 2n, where 2 < n < 10, which is clearly, an (n x 2n)/2 RGSLR for
2n treatments. These authors employ two methods in their construction, viz, the use
of starter and also balanced tournament design for 2n teams (BTD(2n)), obtained via
exchange of a pair of rows in some columns of a cyclic tournament schedule for 2n teams
(a balanced resolvable incomplete-block design for 2n treatments and block size 2) and
then adding an extra column to the BTD(2n), where the entries in each cell of the added
column correspond to the pair of treatments (teams) required to make each treatment
appear twice in the corresponding row. They show that a starter exists for the group Zo,
if and only if n =0 (or 1) mod 4. They also show that if a SLR can be derived from a
cyclic tournament schedule via exchange of a pair of rows in some columns, then n # 2
mod 3. Furthermore, they give that their constructions work for all values of n # 2 (or 11)
mod 12.

Our construction extends theirs, for some values of h = m (where m is identical to n
in the construction given by Bailey and Monod (2001) indicating the number of rows) to
give constructions for RGSLRs with v = 2m treatments and k = 2 treatments per block
where the number of columns is p = 2m + m(2m — 1) = m(2m + 1) via putting a RGSLR
(consisting of 2m treatments in m rows and 2m columns) obtained via the construction by
Bailey and Monod (2001) and a BSLR (consisting of m rows and m(2m—1) columns) in an
m X m(2m+ 1) array, when both designs exist. We also obtain constructions for RGSLRs

with h = m rows and p = 2m + mf = m(0 + 2) columns, where § = 1,2, 4. In particular,
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if @ = 1, we put a RGSLR for 2m treatments (having m rows and 2m columns) and a
Trojan square with 2m treatments in an m x 3m array. The Trojan square is obtained by
superimposing 2 orthogonal Latin squares of order m, where one consists of odd number
symbols and the other consists of even number symbols, when the construction involves
the use of starter; but the symbol set of the 2 orthogonal Latin squares that make the
Trojan is adjusted when we use an alternative construction that involves a BTD(2m).
Similarly, if # = 2, we put an (m x 2m)/2 RGSLR for 2m treatments and another RGSLR
of the same size and same set of treatments (obtained by a permutation of the treatments
within each cell of the parent RGSLR) in an m x 4m array. Furthermore, if § = 4, we
make 2 new RGSLRs, each consisting of the same set of treatments and also being of
the same size as the parent RGSLR by applying a different permutation each time to the
treatments within each cell of the parent RGSLR and then putting the parent RGSLR
with the 2 new RGSLRs in an m x 6m array.

Moreover, more designs are derived from the basic constructions by creating an array
of appropriate size and then rearranging the component designs within the array.

We note that the constructions given by Bailey and Monod (2001) produce designs
whose QBDs consist of an RGD with an extension, which is a BIBD; and whose treatment
concurrence counts are 1 and 2. Hence, the QBD of their designs are BIBD-extended
RGDs. It follows that each construction presented here also produce designs whose QBDs
are BIBD-extended.

5.3 Construction for designs of the class (m x m(2m +1))/2,
where v = 2m

We extend the construction of (m x 2m)/2 RGSLR for 2m treatments given in Bailey

and Monod (2001) by putting the RGSLR and a BSLR on the same set of treatments

(obtained via the method of Chapter 3) in an m x m(2m + 1) array, when both designs

exist. We note that m in this construction is identical to n in the construction given in

Bailey and Monod (2001).

5.3.1 Construction procedure
1. Obtain an (m x 2m)/2 RGSLR for v = 2m treatments.
2. Obtain an (m x m(2m — 1))/2 BSLR on the same set of 2m treatments.

3. Create an m x m(2m + 1) array and put the BSLR and the RGSLR.

Remark. The order which the constituent designs in steps 1 and 2 are put in the array
is immaterial; it can be in any order. A different arrangement of these designs within
an array of the same size as in step 3 produces another RGSLR of the same size as the
former. The construction produces an (m x m(2m+1))/2 BSLR~extended RGSLR for 2m
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Figure 5.3: A1: A (3 x 6)/2 RGSLR for 6 treatments

treatments as a basic design; that is, the resulting design has a RGSLR part and a BSLR
part as its extension such that its QBD is a BIBD-extended RGD with the treatment
concurrence counts being A+ 1 and A+ 2, where ) is the constant concurrence counts from
the BSLR.

If the array in step 3 is transposed, then we obtain another class of designs which are
(m(2m + 1) x m)/2 BSLR-extended RGSLRs on the same set of 2m treatments.

A larger BSLR-extended RGSLR of size (m x m(2+1(2m —1)))/2 (where [ > 1) which
contains m(1 — 2m + {(2m — 1)) or equivalently, m(l — 1)(2m — 1) more columns than
the basic design can be obtained from the basic design by making (I — 1) extra copies
of the BSLR obtained in step 2 and then putting these extra copies of the BSLR with
the basic design in an m x m(2 4 [(2m — 1)) array. The resulting design has treatment
concurrence counts being 1 + I\ or 2 + [A. Moreover, by also changing the array size to
m(2 4+ 1(2m — 1)) x m, the resulting designs are of the class (m(2 4 1(2m — 1)) x m)/2.

Example 5.3.1. Let v = 6. Then we can obtain a (3 x 21)/2 BSLR-extended RGSLR by
putting a (3 x 6)/2 RGSLR and a (3 x 15)/2 BSLR in a 3 x 21 array.

Notice that m = 3. Hence [ needs to be 1 to achieve the required number of columns,
21, which is identical to m(2 + [(2m — 1)).

Let A; and As denote the (3 x 6)/2 RGSLR and (3 x 15)/2 BSLR, respectively. We
adapt A; from Bailey and Monod (2001) and Ay from Chapter 3 of this thesis. We obtain
Ay and As to be as shown in Figures 5.3 and 5.4, respectively. If Z; denote the BSLR-
extended RGSLR obtained by putting A; and A in a 3 x 21 array, then we obtain Z; to
be the design in Figure 5.5.

Remark. Notice that the treatment concurrence counts in the design, =1 shown in Figure
5.5 are 4 and 5, which are the sum of concurrence counts from A; and A,. In particular,
the treatment concurrence counts in A is 3.

Suppose a (3 x 51)/2 BSLR-extended RGSLR for the same number of treatments, 6
is required, then this can be obtained by making 2 extra copies of As and putting them
with Z; in a 3 x 51 array. This is so, since | = 3 as m(2+{(2m — 1)) = 51. Moreover, the

resulting design has treatment concurrence counts to be 10 and 11.
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1 6(2 5|3 4|12 6|3 1(4 5|3 6|4 2|5 1|4 6|5 3|1 2|5 6|1 4|2 3

34(1 6(2 5|4 5]2 63 1||51|36(4 2|1 246|532 356|114

251341163 1452642513 6|5 3|1 246|142 356

Figure 5.4: Ag: A (3 x 15)/2 BSLR for 6 treatments

25/26(36|53/14(41||116(25/34(26/31|45/36|42/51(46|53|12|56|14

23

16(45/51|46(23|32||34|16[25(45|26(31|51|36|4 2|1 246532356

14

34|13 1|14 2|1 2|5 6(5 6|2 5|3 4|16|31|45(26(42|51|36[53|12(46|1 4|23

56

Figure 5.5: Z;: A (3 x 21)/2 BSLR-extended RGSLR for 6 treatments

Example 5.3.2. Let v = 8. Then we obtain a (4 x 36)/2 BSLR-extended RGSLR by
putting a (4 x 8)/2 RGSLR and a (4 x 28)/2 BSLR in an array of size 4 x 36.

Notice in this example that m = 4 and | = 1. Let A; and Ay denote the (4 x 8)/2
RGSLR and (4 x 28)/2 BSLR. Denote by Eg the (4 x 36)/2 BSLR-extended RGSLR under
construction. Then we obtain A;, As and =5 to be the designs shown in Figures 5.6, 5.7

and 5.8, respectively.

Figure 5.6: Aj: A (4 x 8)/2 RGSLR for 8 treatments
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18|127136145|28[31{47]56/38|42(51|67||48]53|62|71|58|64(73[12||6 875|142 3||781625

34

45(18|27136|56283147||67|3842/51|7148]53|62|12|58|64|73||23|68|75|14(34|78|16

25

36|4518{2714756|2831|51|67|38|42(62(71]48|53|[73|12(58|64|14/23|68|75|2534(78

27136/45|18|31)14756(28||42]51|6 7|3 8||53|62|71148||64|73|12|58|75/14(2 3|6 8||16]2534

78

Figure 5.7: Ag: A (4 x 28)/2 BSLR for 8 treatments

Figure 5.8: Z2: A (4 x 36)/2 BSLR-extended RGSLR for 8 treatments

Remark. Notice that the treatment concurrence counts in =5 are 5 and 6.

5.4 Construction for designs of the class (m x 3m)/2, where

v=2m

The designs considered in this section are a special case of RGSLRs of the class (m xm(0+
2))/2, where v = 2m and 6 = 1. Our construction for this class of designs involves putting
an (m x 2m)/2 RGSLR for 2m treatments and an (m x m)/2 Trojan square (obtained by
superimposing 2 orthogonal Latin squares of order m) in an m x 3m array.

We utilize the constructions in Bailey and Monod (2001) that use starter (and BTD(2n)
in the alternative) in conjunction with a Trojan square. Hence there need to exist a starter
in Zo,, and there also need to exist at least a pair of MOLSs of order m, which guarantees
the existence of a Trojan square. Furthermore, for the alternative construction, apart
from a Trojan square existing, the condition for deriving a SLR from a cyclic tournament

schedule via exchange of a pair of blocks in some columns must be satisfied: see Bailey and
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Monod (2001). For the method involving starter, the symbol set of one of the 2 orthogonal
Latin squares that constitute the Trojan square comprises odd number symbols while the
symbols of the other Latin square are precisely, even number symbols; but the symbol sets
for the 2 Latin squares are modified to suit the construction when we use the alternative
approach. We note that for every finite order, m, where m # 2 or 6, there exists a Latin

square with at least one orthogonal mate: see Bose et al. (1960).

5.4.1 Construction via starter

A starter exists for the group Zg,, if and only if m = 0 (or 1) mod 4: see Bailey and
Monod (2001).

Suppose a starter exists in Zo,,. Suppose further that there exists at least a pair of
MOLSs of order m. The construction involves obtaining the m starter sets and putting
the entries of these sets in the m cells in the initial column of an m x 3m array (one set
to a cell) thereby forming the initial blocks for the m rows, which are then developed,
cyclically, via successive addition of 1 modulo 2m to the entries in the cells to generate the
first 2m columns. The remaining m columns are obtained by adjoining a Trojan square
obtained by superimposing two MOLSs whose symbol sets are constituted by the odd
number treatments and even number treatments, respectively.

We proceed to give an algorithmic procedure for constructing the design.

5.4.2 Algorithmic procedure for constructing the design via starter

1. Label the treatments 1, 2, ..., 2m.

2. Partition the treatment set into m pairs, that is, m 2-subsets, viz {x1,y1}, {z2, 2},
.« o {®m, Ym} such that the differences (reduced modulo 2m) between these pairs
of treatments are +£1, +£2, . . ., +m, respectively, thereby forming a starter in the

cyclic group Zoyy,.

3. Create an m x 3m array and label its rows ¢ = 1,2,...,m and its columns j =
1,2,....2m,2m + 1, ..., 3m.

4. For all i = 1,2, ...,m, insert in the cell in position (i, 1) of the array (that is, the cell

in row ¢ and column 1), the 2-subset, {z;,y;} obtained in step 2.

5. For all ¢ = 1,2,...,m, develop the block in position (i, 1), which contains {z;,y;},
cyclically, via successive addition of 1 (mod 2m), thereby generating the block in

position (i, j), for all j = 2,3, ..., 2m.

6. Make a Trojan square via superimposition of two orthogonal Latin squares of order
m, where in one of the Latin squares the symbols are the odd number treatments,

while the symbols of the other Latin square are the even number treatments.
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7. Insert the Trojan square obtained in 6. to fill columns 2m + 1 to 3m of the array

created in 3.

Remark. The pairs of treatments in the m 2-subsets that constitute the starter, where
the differences between the treatments in these sets reduced modulo 2m are +1, +2, . .
., £m, satisfy the property that any pair with the differences +§, where § € {1,2,...,m}
correspond to a pair of vertices of a regular 2m-gon which are at distance ¢, when the set
of treatments are identified with the vertices of the 2m-gon.

If the array size in step 3 is modified to be 3m x m and the roles of rows and columns
are exchanged such that the Trojan square now appears between rows 2m + 1 and 3m.
Then the resulting design is a (3m x m)/2 RGSLR.

Furthermore, if the Trojan square is inserted first into the array before the other
component design in either of the situations described above, it produces another design
of the same size as the former. For each situation, the design obtained by swapping the
order of the two constituent designs is isomorphic to the original design.

The construction described above will always produce an (m x 3m)/2 RGSLR for 2m
treatments if a starter exists and there are at least 2 MOLSs, each being of order m,

provided m is an even number.

Theorem 5.4.1. Let T denote an (m x 2m)/2 RGSLR for 2m treatments obtained via
a starter for Zo, by a cyclic development of the blocks in the initial column containing
the m 2-subsets of the starter. Let A be an (m x m)/2 Trojan square on the same set of
treatments as I', where one of the constituent Latin squares of A consists of odd number
symbols and the other Latin square consists of even number symbols. If T' and A are put
in an m x 3m array, then the resulting design is an (mx3m)/2 RGSLR for 2m treatments,

if and only if m is even.

Proof. Let V. ={1,2,....m —1,m,m+ 1,...,2m — 1,2m} denote the symbol set of I" and
A.

Since A is a SLS, then each treatment appears exactly once in each row and in each
column. Similarly, in each column of I', each treatment appears once but appears twice
in each row. Now, each row of the design resulting from putting I' and A in the m x 3m
array is constituted by the cells from corresponding rows of I and A, hence each treatment
appears in each row of the resulting design 3 times (a positive integer number of times)
which is the sum of the number of times it appears in each row of I' and A combined.
Moreover, the columns in the overall design is constituted by the overall columns in both
I" and A; each column in I' is a column in the overall design, and each column in A is also
a column in the overall design. Since each treatment appears the same number of times
(exactly once) in each column of I' and A, then it also appears exactly once (a positive
integer number of times) in each column of the overall design. Hence each treatment
appears a constant number of times in each row and similarly, a constant number of times

in each column, which makes the resulting design a SLR.
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Let L; and Ly denote the two orthogonal Latin squares, each of order m that make
A with respective symbol sets V; and V. Partition V' into V; and V; such that |Vi| =
|[Va] = m. Suppose Vi = {1,3,...,2m — 1}, the set of odd number symbols, such that
Vo ={2,4,...,2m}, the set of even number symbols. Since the L; and Ly are orthogonal
and Vi and V, are disjoint, then A consists of the m? distinct pairs of symbols from V;
and V5, each appearing exactly once.

Notice that the m? pairs of symbols in A are the result of the cross product of the
sets, V1 and V5. Denote this cross product by V; x Va. For all (i,i) € Vi x Vs, let d(i,14)

denote the distance between i and i/, where

i’ — il if |i' —i| < m,
d(i,i') =

2m — |i' — 4| if i —i] > m.

Let D = {d(i,4")} denote the set of distances between each pair, (i,i’) of symbols. Then
D = {1,3,...,dmax}, which consists of only the odd number symbols, since each pair of
symbols in A involves an odd and even number symbols. Furthermore, dy.x = m—1, if m
is even. Notice that if m is even, then m — 1 is odd such that for all ¢ € Vi, im —1 € V5,
hence the pair (i,4") = (¢,i+m—1) constitutes a cell in A. Similarly, if V} is the set of even
number symbols and V5 consists of odd number symbols, then for all i € V1, i+m—1 € Vs,
hence the pair (7,4") = (i,i = m — 1) also constitutes a cell in A. Moreover, let |D| = w.
Then w = m/2

Since the number of cells/pairs of symbols in A is m?; if m is even, then w | m? such
that A consists of m?/w = 2m pairs of distinct symbols for each unique distance, d* € D.
To show that this is true, we proceed as follows:

For all d* € D, there exists i € V; and ¢ & d* € V5 such that the pairs (i,7 + d*) =
(i, +d*), (i,i — d*) in A constitute treatment symbols that are at a distance, d*, where
the addition and subtraction are performed modulo 2m. Notice that what distinguishes
the two pairs are their second entries, (i + d*) and (i — d*).

Since m being even implies dpax = m — 1, then 3 d* = m — 1 € D such that for each
the second entries are i +m — 1 and i —m+ 1, which are distinct since —1 =2m —1 # 1, as
m # 1. Hence, there are two distinct pairs for each 4, and thus 2m distinct pairs overall,
for all the i’s. Similarly, if d* = m — 1 — s, where s = 2,4, ..., m — 2, then for each i, the
second entries become ¢ + m — 1 — s and ¢« — m + 1 + s, which are also distinct, since
—1—s=2m—(1+s) # 1+ s. Thus, there are also two distinct pairs for each ¢ and
consequently, 2m distinct pairs, overall for all ¢’s.

Hence, if m is even, then each distance, d* € D has the same number of pairs, 2m
of treatment symbols associated with it. The overall design, in this case, has no pair in
the part constituted by A for which d* = m, but there are m such distinct pairs in row
m, say, in the part constituted by I', where each pair concurs twice there. This is so

since one of the started 2-subsets used to generate I' contains a pair of treatments whose
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differences (modulo 2m) is m twice while the treatment pairs that make the remaining
m — 1 2-subsets are such that their differences are £u, for all © = 1,2, ..., m — 1. Hence,
the sum of concurrences for each pair at distance m in the overall design is 2. Similarly,
for all d* = y € D, where y < m — 1, each pair concurs once in the part constituted by
A, and also once in row y, say, in the part constituted by I', where y = 1,3,...,m — 1,
making the sum of concurrences for each pair of symbols at an odd distance (< m — 1)
in the design to be 2, also. However, each pair for which the distance is an even number,
w, say, where w is less than m does not concur at all in the part constituted by A, but
concurs only once in row w, say, in the part constituted by I', where w = 2,4, ...,m — 2,
hence overall, concurs once. Thus, the number of concurrences for any pair of treatment
symbols in the overall design is either 1 or 2, making it a RGSLR.

|

Comment. If m is odd, the construction would not give a RGSLR, which is seen as follows:

In this case, dmax = m. Notice that if m is odd, then for all i € Vi, i = m € V5, for
situations whether V; consists of odd number symbols (which implies V5 comprises even
number symbols) or V; comprises even number symbols (which implies V5 comprises odd
number symbols). Hence the pair (i,7) = (i,7 & m) constitutes a cell in A. By letting
|D| =n. Then n = (m + 1)/2. We note that % = @ + 1.

Bearing in mind that there are m? cells/pairs of symbols in A; if m is odd, then 7 { m?
and there are 2m pairs of symbols for each d* < dpyax, and m pairs for d* = dyax. This
can be seen as follows:

For all d* € D, there exists i € V; and ¢ & d* € V5 such that the pairs (i,7 & d*) =
(4,7 + d*),(i,i — d*) in A are treatment symbols that are at a distance, d*, where the
addition and subtraction are performed modulo 2m. As before, what distinguishes the
two pairs are their second entries, (i + d*) and (i — d*).

If m is odd and consequently, dy.x = m, then 3 d* = m € D such that for each i the
second entries are thus ¢ +m and ¢ — m, which are identical, since m = —m (mod 2m).
Now, suppose d* = m — [, where [ = 2,4,...,.m — 1. Then for each ¢, the second entries
become i +m — [ and i — m + [, which are distinct, since —I = 2m — [ # [, for all [. Hence,
in A; for odd m, 3 d* = m € D, with only one pair for each i € V7 (since its second entries
in V4 are the same), and consequently, m pairs overall, for all the ¢’s. Similarly, for each
d* < m, there are two distinct pairs for each ¢ (since it has distinct second entries), and
overall, 2m pairs for all the ¢’s.

Hence, from the foregoing discussions, it is clear that, if m is odd, then there are m
distinct pairs of treatment symbols for which d* = m (where there is only one pair for each
i) in the part of the overall design constituted by A; and each of these pairs also concurs
twice in row m, say, in the part constituted by I', which makes the sum of concurrences for
each pair of symbols in the overall design with this property to be 3, while it is 2 for every
other pair with d* € D\{m}, and 1 for those pairs with d* ¢ D, which are those with
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Figure 5.9: A (4 x 12)/2 RGSLR for 8 treatments

even distances, x, which appear only in row z, say, in the part of the design constituted
by I', where z = 2,4,...,m — 1. This means that, in this circumstance, there are three
distinct concurrences, 1, 2 and 3 in the overall design. Thus, the design obtained via the
above procedure will not be a RGSLR.

Corollary 5.4.1. The (m x 3m)/2 RGSLR for 2m treatments resulting from the con-

struction is such that m = 0 mod 4.

Remark. The 3m? blocks in the design consists of m(m + 1) blocks from an RGD and
m(2m — 1) blocks from a BIBD. Hence its QBD is a BIBD-extended RGD. Notice that
2m—1> m+1 for all m > 2. Hence the BIBD part contributes more blocks to the design
than the RGD.

Example 5.4.1. Let v = 8. Then m = 4. We obtain a (4 x12)/2 RGSLR for 8 treatments
whose QBD is BIBD-extended as shown in Figure 5.9.

Notice from Figure 5.9 that the set of treatments, V' = {1,2,...,8}. Notice also that
the following 2-subsets of V' form a starter in Zg: {1,2}, {5,7}, {3,6} and {4,8}, where
the differences between the pairs in each set are £1, +2, £+3 and 4, respectively. We note
that 4 = —4 in Zsg.

Comments. By virtue of the construction, the design could be subdivided into two sec-
tions, viz, a rectangle and square, as demarcated by the double vertical lines, where the
rectangular section is a (4 x 8)/2 RGSLR for 8 treatments and the square section is a
(4 x 4)/2 Trojan square obtained by superimposing a Latin square whose treatment set
is V1 = {1,3,5,7}, the set of odd number treatments on another Latin square which
is orthogonal to it and whose treatment set is Vo = {2,4, 6,8}, the set of even number
treatments.

The rectangle contains pairs of treatments at all the distances, d = 1,2, 3, and 4; and
those pairs at an equal distance appear in a single row. For instance, pairs at distance d,

appear in row d. For all d < 4, each pair concurs once; and for d = 4, it concurs twice.
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Furthermore, the square contains those pairs of treatments at odd distances, d = 1
and 3, only (where each of these pairs appears exactly once); thus, no block contains
treatments for even d. As a consequence, the treatment concurrences are 0 and 1 (which
is true for any Trojan square), with 0 corresponding to the concurrence counts for pairs of
treatments at even distances (the missing pairs), and 1, otherwise. Two rows (rows 1 and
4 in this case), each contains entirely pairs of treatments for a unique d, that is d = 1 and
3 for all pairs in rows 1 and 4, respectively; but for he remaining two rows, that is, the 2
middle rows-rows 2 and 3 each contains pairs for each odd value of d, the same number
of times, 2.

Hence, overall, in the design, every pair of treatments either concurs once or twice.
Those that concur once are those for which d is an even number less than 4, that is, where
d = 2; while those pairs for which d = 4 or an odd number concur twice.

The design has its QBD consisting of 48 blocks, which comprises an RGD and a BIBD.
The RGD component consists of 20 blocks (4 distinct blocks in the last row of the rectangle
and the 16 blocks from the Trojan square) while the BIBD component consists of 28 blocks
(all the remaining blocks in the rectangle).Thus the design is a RGSLR whose QBD is a

BIBD-extended RGD with treatment concurrence counts being 1 and 2.

5.4.3 Some Important Notes

If m is odd, then the number of pairs of symbols for each d* < dpn.x = m is 2m =

m2—m m{m— .
(n(1+1)/211 = (Wfil)};. Furthermore, V3 x Va| = m? = 1(m) + 2m(m — 1)/2 gives the

total number of cells/pairs of symbols in A. This is true since m € D, and there are m

pairs for which d* = m given by (i,7 =m), Vi € V4 and i £ m € Va, where (i,i £ m) is
simply, the unique pair (i,7 +m) or (i,7 —m), since (i,i +m) = (i,4 —m) in Zoy,. Notice
that ¢ = m € Vs, which comprises even number symbols if Vi consists of odd number
symbols (since odd+ odd = even). Similarly, if V; consists of even number symbols, then
i+m € Vb, which consists of odd number symbols (since even+ odd = odd). But for even
m, d* € D is less than m, for each pair, with dy.x = m — 1 (since in this case, supposing
there exists d* = m, then for all i € Vi, i + m & V5, whether V; consists of odd or even
number symbols, as odd £ even = odd (or even + even = even), which is a contradiction
in the sense that each pair consists of elements from the same set, V7. So we cannot have
a pair at distance m in the Trojan square.

Furthermore, if m is odd, every partition of V into V; and V5 of sizes m will always
lead to the constructed design containing at least one pair with concurrence 3. To show
this, we proceed as follows:

Let n,(V;) and ne(V;) denote the respective number of odd and even number symbols
in V;, where [ = 1,2 for any partition of V' into V; and Va, with |Vi|=|Va|= m, and n,(V}),
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ne(V;) € [0,m], V1= 1,2 such that

2 2
Zno(‘/z) = Zne(‘/l) =m.
=1 =1

Similarly, no(Vt) + ne(vt) = |Vt| =m, no(‘/l) = ne(v’)7 and
ne(Vi) = no(Vr) (5.1)

where [,I' € {1,2}, 1 A" and t =1, 1'.
Notice that, if m is odd, every partition of V' into V; and V3 leads to n,(Vy) # ne(V1).
Similarly, n,(V2) # ne(V2). Consequently, by (5.1), no(Vi) # no(V2).

Theorem 5.4.2. Let V = {1,2,...,2m} be partitioned into Vy and Va of the same size, m.
Let AT denote a Trojan square of side m obtained by superimposing a Latin square, L
on its orthogonal mate Lo, and whose symbol sets correspond to Vi and Vs, respectively.
Furthermore, let DT = {d(i,i') : i € V1,4i' € Va}, where d(i,i') is the distance between the
vertices corresponding to the treatment symbols i and i’ in' V. If m is odd, then for any such
partition, the number of pairs of treatment symbols in A" for which d(i,i') = m is n* =

m—2b, whereb = |H|, H={ptm :p e Vi,ptm € Vi, where p is odd and p£m is even}.

Proof. Note that m is odd. Let A={zx:z € Vi, xisodd}, B={y:y € Vs, yis even},
C={zx+m:2e€ A}, A ={2:2€ VW, ziseven}, and B’ = {u : u € V5, w is odd}.
Partition C' into D and D', where D = {z +m : z € A,x +m € B} , and D' =
{x4+m:2z € A x+m € A’}. Furthermore, let £ = {z 4+ m : 2 € A’}. In a similar
manner, partition F into F and F’, where F' = {z+m : z € A',z+m € B}, and
Fr={z+m:z2€A,z4+me A}.

Hence, |A| = no(V1) = ¢, say, and |B| = n.(V2) = ¢, where ¢ € [0,m]. Notice that A’
is identical to V1\A so that |A'| = n.(V1) = m — |A| = m — ¢. Similarly, B’ is identical
to V5\B so that |B'| = ny,(V2) = m — |B| = m — q. Since DT concerns those pairs of
symbols that make the cells in AT, then for all z € A and y € B, there is a cell in
AT containing the pair, (z,y) such that d(z,y) = d* € D%, where d(z,y) is odd, and
y=x+d". Also, for all z € A’ and u € B’, there is a cell in A" containing the pair, (2, u)
such that d(z,u) € DT, where d(z,u) is odd, and u = z + d*. Thus, the (z,y) and (z,u)
pairs in AT have the property that d(z,vy),d(z,u) is odd. Since m is odd, then d* = m is
associated with those (z,y) and/or (z,u) pairs in A" for which y = 2 + m = z — m, and
u = z +m = z —m, thus making y and u unique pairs for x and z, respectively.

We note that, in general, ¢ € [0,m]. Let |D| = a and |D’| = b, where a € [0,q],
b€ [0,s] and s = min{q,m — q}. Notice that, a + b= |C| = |A| = q.

Let |F| = cand |F'| = d, where ¢ € [0, m—gq], and d € [0, ¢], where t = min{m —gq, ¢} =
min{g,m — g} = s. Notice that each of F' and D’ involves a correspondence between

elements of the same pair of sets, A and A’, hence d = b.
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Now, ¢ +d = |E| = |A| = m — q. Notice that, if m — ¢ = 0, then ¢ = d = 0.
Similarly, if m — ¢ = m, then ¢ = m and d = 0. For the case that ¢ € (0,m), if ¢ = 0,
then d (= m — q) # 0 (since m — ¢ € (0,m), otherwise a contradiction) and vice versa.
Moreover, if d = ¢, then ¢ (= m — 2q) # 0, since m is odd.

Hence, overall, with A as the originating set, there are a corresponding treatment
symbols from B (which are precisely, the elements of D) and the remaining ¢ — a = b of
them from A’ (which are precisely, the elements of D’), thus only the a symbols form pairs
at distance m with the elements of A in AT. Similarly, overall, with A’ as the originating
set, there are ¢ corresponding symbols from B’ (which are precisely, the elements of F')
and the remaining m — g — ¢ = d of them from A (which are precisely, the elements of F’),
hence only the ¢ symbols form pairs at distance m with the elements of A’ in A*. Thus,
for odd m, and ¢ € [0, m], n* = a + c.

Since ¢ = a+ b, and m — ¢ = ¢+ d, then ¢ + (m — q) = (a +b) + (¢ + d) = m. Thus,
a+c=m—(b+d). Recall that b = d. Consequently a+c=m —2b. Hence n* = m — 2b.

|

Corollary 5.4.2. n* € [1,m], and its value is always odd.

Proof. Since m is odd, and 2b is always even, then n* = m — 2b # 0, and is odd.

We remind that b € [0,s], where s = min{q, m — ¢}. The maximum value of n* is
attained if and only if 2b attains its minimum value, that is, if b attains its minimum
value. Thus n* is maximum if and only if b = 0. Hence the upper bound for n* = m.

Furthermore, since n* is non-negative, and also, as given in the introductory part of
this proof non-zero, for odd m. Then, n* is strictly positive (that is n* > 0) for odd m.
Consequently, the lower bound for n* is 1, since n* € Z.

Hence, since for odd m the upper bound for n* = m, and its lower bound 1, then
n* € [1,m], and its value is always odd.

|

Corollary 5.4.3. If m is even, then n* = m — (bt + dT), where b = |S|, S = {g+m :
g € Vi,g+m € Vi, where both g and g +=m are odd}; and d' = |T|, T ={j+tm:j €
Vi,j £ m € Vi, where both j and j £ m are even}.

In this case n* € [0,m], and it has an even value if it is non-zero.

In conclusion, since by Corollary 5.4.2, if m is odd, n* is at least 1. Then, A™ contains
n* pairs of symbols (which is at least one and at most m) for which d(i,4") = m, where each
of these pairs already concurs twice in row m, say, in the part of the design constituted by
I", thus making the sum of concurrences for each of the n* pairs to be 3. Hence, it follows
that every partition of V into V; and Vs of sizes m will always lead to the constructed

design containing at least one pair with concurrence 3.

121



5.4.4 An alternative construction for (m x 3m)/2 RGSLRs for v = 2m

treatments

If m is even, an alternative construction for an (m x 2m)/2 RGSLR for 2m treatments
which involves the use of a balanced tournament design (BTD(2m)) via exchange of a
pair of blocks in some columns: see Bailey and Monod (2001) can also be utilized in
combination with a Trojan square to obtain an (m x 3m)/2 RGSLR for 2m treatments in
a manner similar to the previous method that involves the use of starter. But this time,
the set of symbols Vi and V5 of the 2 Latin squares that make the Trojan square are such
that each of them consists of those entries in m/2 cells (combined) that appear in either
of the last two columns of the (m x 2m)/2 RGSLR.

The aforementioned construction for the (m x 2m)/2 RGSLR is based on the cyclic
group Zom—1. Moreover, if a SLR can be derived from a cyclic tournament schedule via
exchange of a pair of blocks in some columns, then m # 2 (mod 3): see Bailey and Monod
(2001).

Put w = 2m — 1 and regard Z,, the set of integers modulo u as {1,...,u}. Denote
the treatment set by V' = {1,...,u} U {oco}. Create an array of size m x 3m and label its
rows ¢ = 1,...,m — 1,00 and the columns j = 1,...,u,00,u +2,...,3m. Let S;; denote
the set of entries in the cell in position (i, j).

We give an algorithmic procedure for constructing the design below

5.4.5 An algorithmic procedure for the alternative construction

1. Create an m x 3m array and label its rows ¢ = 1,...,m — 1,00 and the columns

7=1,...,u,00,u+2,...,3m, where u =2m — 1..
2. Fori=1,...,m—1land j=1,...,u, put S;; = {j+1,j —i}; and put Se; = {j, 00}.

3. Forj=1,...,u—1landi=1: € {2j,-25}N{1,...,m—1}, exchange S;+; with Su;,

where ¢* is the unique entry in the intersection region of the sets.
4. Fori=1,...,m— 1, put Sjnc = {3i/2,—-3i/2}; and put Seoeo = {u,0}.

5. Make a Trojan square by superimposing 2 Latin squares, each being of order m
(from a set of MOLSs) and whose symbol sets, V; and Vs, respectively, are the
overall entries in any m/2 cells (chosen such that V4 and V5 are disjoint) in column

57, where j© = u or oo.

6. Put the Trojan square obtained in step 5 into the remaining section of the array,

spanning columns u + 2 to 3m.

Remark. The overall design comprises both an (m x 2m)/2 RGSLR and an (m x m)/2
Trojan square, hence can be subdivided into a rectangle and square, where the rectangle

corresponds to the (m x 2m)/2 RGSLR and the square corresponds to the Trojan square.
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The (m x 2m)/2 RGSLR is formed by the cells in columns 1 to oo, where the column
label oo is equivalent to w + 1, but the symbol oo is used for purposes of the construction.
Similarly, the cells in columns u 4 2 to 3m constitute the Trojan square.

Each pair of treatments that appear as a block in the rectangular section concurs
exactly once there except the pairs in columns u and co where each of them concurs twice
in the rectangle (in these 2 columns, precisely). The pattern of forming V; and V5, ensures
that the entries in any cell in either of columns w and oo, which constitute the pairs that
concur higher in the rectangle do not appear as a block in the Trojan-the square section,
since the cells in the Trojan square are constituted by pairs of symbols from the cross
product between V; and V5. Hence no pair in columns u and co appears as a block in the
square section. Moreover, each pair in the square section also appears exactly once in the
rectangle, but there are some pairs in the rectangle which are missing from the square.

Notice that, in the overall design, the rectangular section constitutes 2m? blocks while
the square section constitutes m? blocks. Furthermore, apart from the 2m blocks in
columns u and oo, there are 2m(m — 1) other blocks in the rectangle. Notice also that
2m(m — 1) > m? for all m > 2, since 2(m — 1) —m > 0 for all m > 2. Notice also that
2m(m — 1) — m? = m(m — 2). Hence there are m(m — 2) pairs of treatments that appear
as a block in the rectangle and not in the square, hence they are precisely the pairs with
concurrences 0 in the Trojan and 1 in the overall design. Notice also that there is a total of
m+m? = m(m + 1) pairs with concurrences 2 in the overall design, where m of them are
the distinct pairs in columns v and u+ 1 while m? of them are from the square. Moreover,
m(m —2) <m(m+1) if m > 0 and that m(m — 2) = 0 if m = 2 but has a value that is a
positive integer for all m > 2. Hence when a Trojan square exists, the overall design has
m(m — 2) (fewer) treatment pairs with concurrences 1 and m(m + 1) (more) pairs with
concurrences 2.

Thus, in summary, the treatment concurrences are 2 for each pair in columns » and
oo. Similarly, the concurrences are 2 for those pairs in the rectangle that also appear in
the square; but it is 1 for those pairs in the rectangle that are missing from the square.
Hence the treatment concurrences in the overall design are 1 and 2, hence the construction
produces a RGSLR.

The QBD of the constructed design is a BIBD-extended RGD comprising an RGD
part formed by the m(m + 1) blocks in columns oo to 3m and a BIBD part formed by the
m(2m — 1) blocks in columns 1 to u, as the extension. Hence there are more blocks in the
BIBD component than the RGD since m(2m — 1) > m(m + 1) for all m > 2.

Example 5.4.2. Let v = 8. Then the corresponding (4 x 12)/2 RGSLR whose QBD
is BIBD-extended obtained via the algorithmic procedure in section 5.4.5 is as shown in
Figure 5.10.

By replacing the treatment symbol co by 8, the design in Figure 5.10 transforms to
the design shown in Figure 5.11.
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Figure 5.11: An alternative (4 x 12)/2 RGSLR for 8 treatments with the treatment symbol
oo replaced by 8

Comment. Notice that the designs shown in Figures 5.9 and 5.11 are non-isomorphic,
that is, neither of them can be obtained from the other by a permutation of its rows, a
permutation of its columns, a permutation of its treatments or a combination of more
than one of these. The symbol sets of the 2 Latin squares that make the Trojan square
component in Figure 5.10 are V; = {1,2,5,6} and Vo = {3,4, 7, 0o} obtained by pooling the
treatments from 2 distinct cells in either column 7 or column co. Note that treatments from

any other different pairs of cells can be combined to give V; and Vs, provided Vi NV5 = 0.

5.5 Construction for designs of the class (m x 4m)/2, where

v =2m

We give construction for (m x 4m)/2 RGSLRs for 2m treatments which is another special
case of (m x m(6 + 2))/2 RGSLRs with 2m treatments, where § = 2. The construction is

equivalent to putting two (m x 2m)/2 RGSLRs for 2m treatments in an m X 4m array,
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where the distinct treatment concurrence counts, A; and A9 for both constituent SLRs are
such that A, A2 € {\, A+ 1}, for A = 1 but in one of the SLRs, those treatment pairs with
a higher treatment concurrence counts, A + 1 in the other SLR has a lower concurrence
count, A in it whilst some treatment pairs which concur a fewer number of times, A in the
other now concur a higher number of times, A + 1 in it. We obtain a parent (m x 2m)/2
RGSLR via starter or BTD if the condition for using each approach is satisfied: see Bailey
and Monod (2001), and then obtain the other from the parent design .

Let A; and Ay denote the two constituent RGSLRs that make the design, where A
is the parent design. If A; is obtained via starter, then As is obtained by first identifying
a set of m blocks in row m of A; containing distinct pairs of treatments (where the
differences modulo 2m between these pairs of treatments in each of the blocks is m) which
are precisely, those pairs of treatments that concur a higher number of times, 2 in A; and
also form a parallel class. Denote this parallel class P;. Similarly, if A; is obtained via
BTD, then P; is constituted by the pairs of symbols in the m cells in either of columns u
and oo, which are the pairs that concur higher (also twice) in this case, where u = 2m — 1
and oo is used for purposes of construction to label column « + 1. Another parallel class,
Ps, say, is obtained from P; by applying a permutation, «, say, that relabels the treatments
in each set of P; such that P, contains no set in common with P;. As is then obtained
by applying « to relabel the treatments within each block of Aj, thereby generating the
corresponding block in Ag. If Aj and A are put (in any order) in an m x 4m array, the
resulting design is an (m x 4m)/2 RGSLR for 2m treatments.

We give algorithmic procedures for construction based on the 2 methods in sections

5.5.1 and 5.5.2, respectively.

5.5.1 An algorithmic procedure for the construction via starter

1. Label the treatments 1, 2, ..., 2m.

2. Partition the treatment set into m pairs, that is, m 2-subsets, viz {x1,y1}, {%2,v2},
.« o {®m, Ym} such that the differences (reduced modulo 2m) between these pairs
of treatments are £1, +2, . . ., +m, respectively, thereby forming a starter in the

cyclic group Zoyy,.

3. Create an m X 4m array and label its rows ¢ = 1,2,...,m and its columns j =
1,2,....2m,2m+1,....4m.

4. For all i = 1,2, ...,m, insert in the cell in position (i, 1) of the array (that is, the cell

in row ¢ and column 1) the 2-subset, {x;,y;} obtained in 2.

5. For all i = 1,2,...,m, develop the block in position (i,1) , which contains {z;,y;},
cyclically, via successive addition of 1 (mod 2m), thereby generating the block in

position (i, j), for all j = 2,3, ...,2m.

125



6.

Denote by P;, the parallel class formed by m blocks containing distinct pairs of
treatments in row m (between columns 1 and 2m of the array) where the treatments
in each of these blocks concur twice in this row, that is, each block in row m between
columns 1 and 2m has multiplicity 2; then, find a permutation, a that relabels the
treatments in each set in P; to obtain another parallel class, P», where P, contains
no pair in common with P; and P; U P, gives the edges of a connected design, that

is, a single polygon on 2m vertices.

Apply «a to every treatment in the first design A;, which occupies columns 1 to 2m

of the array to obtain As occupying columns 2m + 1 to 4m.

5.5.2 An algorithmic procedure for the construction via BTD

1.

2.

Label the treatments 1,...,u, 0o, where u = 2m — 1.

Create an m x 4m array and label its rows ¢ = 1,...,m — 1,00 and the columns

j=1...,u,00,u+2,...,4m.

Fori=1,...om—1landj=1,...,u, put S;; = {j+1,j—i}; and put Sec; = {j, 00}.

Forj=1,...,u—landi=1* € {2j,—-25}N{1,...,m—1}, exchange S;+; with S;,

where ¢* is the unique entry in the intersection region of the sets.

. Fori=1,...,m—1, put Sinc = {3i/2,—3i/2}; and put Secco = {u,0}.

. Denote by Py, the parallel class formed by the m blocks in either of columns u and oo

where the treatments in each of these blocks concur once in each of these columns,
that is, each block in either column u or column oo has multiplicity 2 (while the other
treatments in the rest of the blocks concur only once); then, find a permutation, ~,
say, that relabels the treatments in each set in P, to obtain another parallel class,
P>, where P contains no pair in common with P; and P; U P, gives the edges of a

connected design, that is, a single polygon on 2m vertices.

Apply v to every treatment in the first design Ay, which occupies columns 1 to oo

of the array to obtain As occupying columns u + 2 to 4m.

5.5.3 Basis for imposing the restriction that P, UP, should give the edges

of a polygon on 2m vertices

If we have 6 treatments and 6 edges, one possibility is a hexagon, another possibility is

2 triangles. If we have 6 blocks of size 2, the hexagon is best because the other one is

not connected. If we consider a BIBD-extended design, suppose we have all pairs from
6 treatments in that BIBD. Then for our BIBD-extended design, having a BIBD and
adding an optimal design to it should be better than adding a non-optimal design. A

good strategy is that what is added should be good in the smallest case.
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For instance, consider the two designs for 6 treatments in 6 blocks of size 2-the hexagon
and the 2 triangles. For the design that constitutes the hexagon, its scaled information
matrix has the eigenvalues 0.0000, 0.2500 (2), 0.7500 (2) and 1.0000, where the values
in the brackets are the corresponding multiplicities; giving the c.e.f.s of the design to be
0.2500 (2), 0.7500 (2) and 1.0000 such that the A-, D- and E-efficiency measures are
0.4286, 0.5119 and 0.2500, respectively. Similarly, for the design with the 2 triangles,
the eigevnalues of its scaled information matrix are 0.0000 (2) and 0.7500 (4) with the
corresponding multiplicities in brackets, hence the c.e.f.s are 0.0000, 0.7500 (4) and the
A-, D- and E-efficiency measures are all zero, showing that the design with the hexagon is
better than the one with 2 triangles with respect to the A-, D- and E-optimality criteria.

Now, consider the BIBD-extended designs consisting of all the (g) = 15 blocks from
the BIBD and the 6 blocks from each of the hexagon and the 2 triangles added to it. The
scaled information matrix of the BIBD-extended design has eigenvalues 0.0000, 0.5000 (2),
0.6429 (2) and 0.7143, which gives the c.e.f.s as 0.5000 (2), 0.6429 (2) and 0.7143, for the
case that the hexagon is added to the BIBD. Hence the A-, D- and E-efficiency measures
are 0.5875, 0.5938 and 0.5000, respectively. Similarly, for the BIBD-extended design where
the 2 triangles are added to the BIBD, its scaled information matrix has the eigenvalues
0.0000, 0.4286 and 0.6429 (4), giving the c.e.f.s to be 0.4286 and 0.6429 (4), and the A-,
D- and E-efficiency measures to be 0.5845, 0.5928 and 0.4286, respectively.

Hence, the BIBD-extended design is better on all the 3 optimality criteria (A-, D- and
E-) when the hexagon is added to the BIBD than when the 2 triangles are added.

Comments. Let the constructed design be I'. Then, by the algorithm, I' takes the form

I'= A1 A2

Another design of the same size can be obtained by swapping the order of inserting A;
and As in the array, where the design resulting from the swapping is isomorphic to the
original design, T.

Furthermore, if the array size is adjusted to 4m x m, and the roles of rows and columns
are exchanged, then the resulting design is a (4m x m)/2 RGSLR.

Again, by adjusting the size of the array to 2m x 2m, and then putting A; and As, we
obtain another design, I'*, say, which is a (2m x 2m)/2 RGSLR, and can take the form

Ay
"=

Ao

if A is inserted in the array to cover rows 1 to m and then Ay which covers rows m + 1
to 2m. However, if A; and As are put in reversed order in the array, it produces another

design of the same size, the two designs being isomorphic.
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Figure 5.12: I': A (5 x 20)/2 RGSLR for 10 treatments

The quotient block design (QBD) of Ay, where g = 1,2 is a BIBD-extended RGD.
It comprises an RGD with m blocks (whose blocks are P), and a BIBD which has b =
m(2m — 1) blocks (having index, A = 1), as extension. Hence, the overall design, I" or
I'™ has its QBD comprising an RGD with 2m blocks (whose blocks are P; U Py) whose
treatment concurrence counts are 0 and 1, and a BIBD with b = 2m(2m — 1), A = 2, as
extension. In particular, for Ay, g = 1,2, the treatment concurrences are 2 for each pair
in P, and 1, otherwise. Since P, N Py = (), then each pair in Py, g = 1,2 appears exactly
once in Ay, g # ¢'. Hence, in I" or I'*, the treatment concurrences are 3 for each pair in
Py U P, and 2, otherwise. Thus, I or I'* is a RGSLR whose QBD is a BIBD-extended
RGD.

Moreover, since the constructed design is a RGSLR whose QBD is a BIBD-extended
RGD, then by virtue of the BIBD component, it is a connected design.

We illustrate the construction with the following examples

Example 5.5.1. Let v = 10. Then m = 5. The sets {5,6}, {1,9}, {3,10}, {4,8} and
{2, 7}, for instance, form a starter in Zo, and we obtain a (5 x 20)/2 RGSLR, I as shown
in Figure 5.12 using the algorithmic procedure given in section 5.5.1.

Notice that A; and As are the designs shown in Figures 5.13 and 5.14, respectively,
where P, = {{2,7}, {3,8}, {4,9}, {5,10}, {6,1}}. Similarly, P» = {{2,3}, {4,7}, {5,8},
{6,9}, {1,10}}.

We note that P, was obtained by imposing a permutation, a on the treatments in each

set of P, where

1 23 45 6 7 8 9 10

Q
I

10 2 4561378 9

Notice that P, contains no pair in common with P;, that is Py NP, = (). Also P, U P,
form the edges of a 10-gon (or decagon). The QBD of A; comprises P;, which is an RGD
with 5 blocks and a BIBD with b = 45, A = 1, as extension.

Similarly, the QBD of Ay comprises P», which is also an RGD with 5 blocks, as before

and a BIBD (with the same value of b and A as A1), as extension.
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4 8|5 9|6 10|7 1|8 2|9 3|10 4|1 5|2 6|3 7

2 7|3 8|4 9|5 1016 1|7 2|8 3|9 4|10 5|1 6

10 8{2 9(4 105 2|6 4|1 5|3 6|7 1|8 3|9 7

5 7|6 8|1 93 1017 2|8 4|9 5|10 6|2 1|4 3

2 3|4 7|5 8|6 9|1 10|13 2|7 4|8 5|9 6|10 1

Figure 5.14: Ag: A (5x10)/2 RGSLR for 10 treatments obtained from A; via the permu-

tation, a

The design, I', shown in Figure 5.12 is a RGSLR whose QBD is a BIBD-extended
RGD, comprising an RGD with 10 blocks, whose blocks are P, U P, and a BIBD with
b =90, A = 2, as extension. The blocks of the RGD form the edges of a 10-gon ( or

decagon). The design is connected since it contains a BIBD.

Example 5.5.2. Let v = 18. Then m =9, and the sets {16,17}, {3,5}, {10, 13}, {4, 8},
{2,15}, {6,12}, {7,14}, {1,11} and {9, 18}, for instance, form a starter in Z;g, and we
obtain a (9 x 36)/2 RGSLR for 18 treatments as shown in Figure 5.15 via the algorithmic
procedure in section 5.5.1, where A; and As are the designs shown in Figures 5.16 and
5.17, respectively.

Notice that P, = {{9,18}, {10,1}, {11,2}, {12,3}, {13,4}, {14,5}, {15,6}, {16,7},
{17,8}}. Similarly, P, = {{9,10}, {11,18}, {12,1}, {13,2}, {14,3}, {15,4}, {16,5},
{17,6}, {8,7}}. P> was obtained by imposing a permutation /5 on the treatments in each

set of P;, where

1 23 45 6 78 9 10 11 12 13 14 15 16 17 18
8123 45 6 7 9 11 12 13 14 15 16 17 8 10

Notice also that, P» contains no pair in common with P;, and P; U P, form the edges
of an 18-gon (or octadecagon). The QBD of A; comprises P, which is an RGD with 9
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Figure 5.16: Aj: A (9 x 18)/2 RGSLR for 18 treatments obtained via starter
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Figure 5.17: Ag: A (9 x 18)/2 RGSLR for 18 treatments obtained from A; by imposing

the permutation, 8

3 4|13 1|4 2|1 2|5 oo|b oof|l 2|1 4|2 5|4 5H|loo 3|0 3

Figure 5.18: A (3 x 12)/2 RGSLR for 6 treatments

blocks, and a BIBD with b = 153, A = 1, as extension.

Similarly, the QBD of Ay comprises P5, which is also an RGD with 9 blocks, like P,
and a BIBD (with the same value of b and A as in A;), which is the extension.

The design, I', shown in figure 5.15 is a RGSLR with QBD a BIBD-extended RGD,
comprising an RGD with 18 blocks, whose blocks are P U P, and a BIBD with b =
306, A = 2, as extension, where the blocks of the RGD form the edges of anl8-gon (or

octadecagon). It is a connected design by virtue of the BIBD component,

Example 5.5.3. Let v = 6. Then m = 3. We obtain a (3 x 12)/2 RGSLR shown in
Figure 5.18 via the procedure in section 5.5.2.
Notice from Figure 5.18 that P, = {{1,4},{2,3},{5,00}}, and P, = {{4,2},{5,1}, {00, 3}}.
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Furthermore, the permutation

1 2 3 4 5 o
’)/:
4 51 2 oo 3

was imposed on every treatment in P; to obtain P, and also on every treatment in Ay to
obtain As.

5.6 Construction for designs of the class (m x 6m)/2, where

v=2m

An (m x 6m)/2 RGSLR for 2m treatments is another special case of (m x m(0 + 2))/2
RGSLRs for 2m treatments, where 6§ = 4. The construction given here extends the
construction for (m x 4m)/2 RGSLRs given in section 5.5.1. In this case, the design under
construction requires an extra 2m columns more than an (m x 4m)/2 SLR (but on the
same set of treatments with cardinality 2m), and similarly, 4m columns more than an
(m x 2m)/2 SLR.

We start by obtaining a parent (m x 2m)/2 RGSLR for 2m treatments, where this
parent design occupies columns 1 to 2m of an m x 6m array. We modify the two procedures
in Section 5.5, viz, two permutations are sought. A parallel class is identified in row m
(or either of columns v and oo, where u = 2m — 1) of the parent design, as described in
section 5.5 depending on the method used. One of the permutations is first applied to the
treatments within each set in the parallel class to obtain another parallel class. The other
permutation is then imposed, also on the treatments within each set in the same parallel
class from the parent design to obtain a third parallel class.

Let a1 and as denote the permutations; and let P;, P, and P3 denote the three parallel
classes, respectively. Suppose a; is applied to P;. Then «; relabels the treatments within
each cell in the parent design to obtain treatments to be contained in a corresponding
cell between columns 2m + 1 and 4m of an m X 6m array. Similarly, as permutes the
treatments within each cell in the parent design to generate entries for a corresponding
cell between columns 4m + 1 and 6m of the same array.

The choices of a; and ag are such that, P;, P, and P; are pairwise disjoint, that is,
P, and Py contain no pair of treatment symbols in common, for all ¢, = 1,2, 3, where
t # t'; and the ‘union’ of each pair of these parallel classes gives the edges of a connected
design, that is, a single polygon on 2m vertices. Moreover, we choose P3 such that each
pair of symbols in it are equidistant from each other on the 2m-gon formed by P, U Ps,
where the distance between the symbols of each pair on the 2m-gon is maximal, m, giving

the diameter of the 2m-gon.
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5.6.1 An algorithmic procedure for constructing the designs via starter

1

2

Label the treatments 1, 2, ..., 2m.

Partition the treatment set into m pairs, that is, m 2-subsets, viz {x1,y1}, {z2,vy2},
.« o {®m, ym} such that the differences (reduced modulo 2m) between these pairs
of treatments are +£1, +£2, . . ., +m, respectively, thereby forming a starter in the

cyclic group Zoyy,.

. Create an m x 6m array and label its rows ¢ = 1,2,...,m and its columns j =

1,2,...,6m.

. Forall i =1,2,...,m, insert in the cell in position (7, 1) of the array (that is, the cell

in row ¢ and column 1) the 2-subset, {x;, y;} obtained in step 2.

. For all i = 1,2,...,m, develop the block in position (i,1) , which contains {x;,y;},

cyclically, via successive addition of 1 (mod 2m), thereby generating the block in

position (i, j), for all j = 2,3, ...,2m.

. Denote by Pi, the parallel class formed by m distinct pairs of treatment symbols in

row m between columns 1 and 2m of the array, where each pair concurs twice in this
row; and find a permutation, oy, say, of the treatments that relabels the treatments
in each pair in P; to obtain another parallel class, P>, where P, contains no pair in
common with P;. Find another permutation, oo of the treatments and impose it
on P; to relabel the treatments within its pairs, thereby obtaining another parallel
class, P3, where P3 contains no pair in common with P; U P; and for all ¢ # t/,
where t = 1,2,3. P, U Py gives the edges of a connected design-a single polygon on

2m vertices.

Apply a1 to every treatment in the first design Y1, which occupies columns 1 to 2m
of the array to obtain T in columns 2m + 1 to 4m . Similarly, apply as to T1 to
obtain T3 to fill columns 4m + 1 to 6m.

5.6.2 An algorithmic procedure for the construction via BTD

1.

Label the treatments 1,...,u, 00, where u = 2m — 1.

. Create an m x 6m array and label its rows ¢ = 1,...,m — 1,00 and the columns

j=1...,u,0c0,u+2,...,4m,...,6m.

Fori=1,...,m—1landj=1,...,u, put S;; = {j+1,j—i}; and put Se; = {j, 00}.

Forj=1,...,u—landi=1*€{2j,—-25}N{1,...,m—1}, exchange S;+; with So;,

where i* is the unique entry in the intersection region of the sets.

. Fori=1,...,m—1, put Sisc = {3i/2, —3i/2}; and put Sscco = {u,o0}.
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6. Denote by P, the parallel class formed by the m blocks in either of columns u and oo
where the treatments in each of these blocks concur once in each of these columns ,
that is, each block in either column u or column oo has multiplicity 2 (while the other
treatments in the rest of the blocks concur only once); then, find a permutation, 71,
say, that relabels the treatments in each set in P, to obtain another parallel class,
P>, where P contains no pair in common with P;. Find another permutation, v
and apply it to each treatment in P; to obtain another parallel class P3, where P
contains no pair in common with P; U Py; and for all w = 1,2,3, where w # w/,

P, U P, gives the edges of a connected design—a single polygon on 2m vertices.

7. Apply 71 to every treatment in the first design Yy, which occupies columns 1 to co
of the array to obtain Y9 occupying columns u + 2 to 4m. Similarly, apply 2 to T
to obtain Y3 to fill columns 4m + 1 to 6m.

Comments. Let ) denote the constructed design. Then, by the algorithm, 2 takes the

form

Q= Tl TQ T3

where T, [ = 1,2, 3 can appear in any order in the array. Thus another design of the same
size can be obtained by interchanging the positions where Y;, | = 1,2,3 appears in an
array of the same size. This means that, in addition to €2, there are n, —1 other designs of
the same size that can be obtained by randomly ordering the constituent designs within
the array, where n, =3 P3 = 3!. Each resulting design is isomorphic to €.

Furthermore, if the array size is adjusted to 6m x m, and the roles of rows and columns
in the entire array are exchanged, then the resulting design is a (6m xm)/2 RGSLR. Other
designs of the same size can be obtained if the positions of the T;s are interchanged within
an array of the same size.

Again, by adjusting the size of the array to 3m x 2m, and then putting T;, Yo and
T3, we obtain another design, 2*, say, which is a (3m x 2m)/2 RGSLR for 2m treatments,

and takes the form

= 71,

if they are put in the array in a natural order such that T appears between rows 1 and

m, To appears between rows m + 1 and 2m and then Y3 appears between rows 2m + 1 to
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3m. Any change in ordering within an array of the same size produces another design of
the same size which is isomorphic to Q*.

Moreover, if the array size is adjusted to 2m x 3m, and the roles of rows and columns
are exchanged within Y, for all [ = 1,2,3, then the resulting design is a (2m x 3m)/2
RGSLR. Also different orderings/arrangements within arrays of the same size produce
designs of the same size that are isomorphic.

The QBD of 1;, I = 1,2,3 is a BIBD-extended RGD. It comprises an RGD with
m blocks (whose blocks are F;), and a BIBD which has b = m(2m — 1) blocks (having
index, A = 1), as extension. Hence, the overall design (whether 2, Q% or any of the
other possibilities) has its QBD comprising an RGD with 3m blocks (whose blocks are
P, U P, U P ) which has concurrence counts 0 and 1, and a BIBD with b = 3m(2m — 1),
A = 3, as extension. Thus, the overall design is a RGSLR whose QBD is a BIBD-extended
RGD whose treatment concurrence counts are 3 and 4.

In particular, for T;, where [ = 1,2, 3, the treatment concurrence counts are 2 for each
pair in P and 1, otherwise. Since for all [ # ', P,N Py = () (the P;s are pairwise disjoint),
then each pair in P;, where 1= 1,2, 3 appears exactly once in YT for all [ # I’. Hence in
Q, Q* or any of the other possibilities, the treatment concurrence counts are 4 for each
pair in P; U P, U P3, and 3, otherwise. That is, if A\, denote the treatment concurrence

counts between the pair (u,u’) in the overall design, then

3
4, if (u,u') € U P,
Auw! = =1

3, otherwise.
Moreover, by virtue of the BIBD component, it is a connected design.

We illustrate the construction with the following example

Example 5.6.1. Let v = 10. Then m = 5 and the sets {5,6}, {1,9}, {3,10}, {4,8} and
{2, 7}, as was given in example 5.5.1, form a starter in Zjo. By the procedure in section
5.6.1, we obtain €, a (5x30)/2 RGSLR for 10 treatments whose QBD is a BIBD-extended
RGD: see Figure 5.19.

Notice that P, = {{2, 7}, {3,8}, {4,9}, {5,10}, {6,1}}. Similarly, P» = {{2,3}, {4, 7},
{5,8}, {6,9}, {1,10}} and P5 = {{2,1}, {7,10},{4,5}, {9,8},{6,3}}.

P, and P53 can be obtained from P; by imposing the permutations, a; and as, respec-

tively, on every treatment in P;, where

1 23 45 6 7 8 9 10

a1 =
10 2 45 61378 9
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Figure 5.19: : A (5 x 30)/2 RGSLR for 10 treatments

and

123 45 6 7 8 9 10
a9 =

327496110 5 8

Notice that VI # I', PUPy form the edges of a 2m-gon. Notice also that (P{UP)NPs =
(PPN P3)U(P,NPs)=1(. Hence PPN P3; = P,NP3 = and P, N P, NP3 = (). Thus,
PiNP,=P NP;=P,NP;=(), that is, P;, P, and P are pairwise disjoint since P} # ()
for any [ = 1,2,3. Moreover, PLUP,, PiUPs, and P, U Ps, each form the edges of a 10-gon

Notice also that, each constituent design, Y1, To and Y3 in Figure 5.19, comprises an
RGD, PFj, which has 5 blocks (whose treatment concurrences are 0 and 1) and a BIBD
with 45 blocks (whose treatment concurrences are 1), which is the extension.

The constructed design, €2, is thus, a RGSLR whose QBD is BIBD-extended, compris-
ing an RGD with 15 blocks, whose blocks are P; U P, U P3 (having concurrences 0 and
1) and a BIBD with 135 blocks, A = 3, as extension. Overall, in the design, each pair
of treatments in P} U P, U P53 concurs 4 times, while each of those pairs that are not in
P, U P, U P3 concurs 3 times.

Notice that © extends the (5 x 20)/2 RGSLR for 10 treatments (I') shown in Figure
5.12 by adding an extra 10 columns to it.

Example 5.6.2. Let v = 6. Then m = 3. An implementation of the algorithm in section
5.6.2 produces the (3 x 18)/2 RGSLR shown in Figure 5.20.

Notice from Figure 5.20 that P, = {{1,4},{2,3},{5,00}, P» = {{4,2},{5,1}, {0, 3}}
and P3 = {{1,3},{2,5}, {4, 00}}. Furthermore, the permutation 7, where

1 23 4 5 o©

il
4 5 1 2 oo 3
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Figure 5.20: A (3 x 18)/2 RGSLR for 6 treatments

imposed on every treatment in P; gives P». Similarly, P can be obtained by applying the

permutation 79 to every treatment in P;, where

1 2 3 45 o
Y2 =
1 2 5 3 4

5.7 Construction when v is odd

We give constructions for (m x nm)/2 RGSLRs where the number of treatments, v = m
is odd. As in the previous constructions, we consider designs whose QBDs are BIBD-
extended. We give constructions for designs with n = 1,2,...,t, where t < §, § =
(m — 1)/2. In particular, if m is an odd prime, then ¢t = §. But if m is not an odd prime,
then t < §. When 1 = 1, we obtain the parent/basic design, which is then utilized to
give constructions for larger designs with higher values of n. We also give, in addition, a
general construction for these. Moreover, if n = §, the construction gives a BSLR.

In the designs under construction, each treatment appears n, = 2n times in each row
and n., = 2 times in each column, hence overall, appears 2nm times. Moreover, for any
treatment of the design, the sum of concurrences with other treatments is 2nm.

Furthermore, in a similar manner to when v was even, we obtain RGSLRs whose QBDs
are also BIBD-extended by adding a BSLR to a RGSLR, where both contain the same

treatments and are conformable with respect to size.

5.7.1 Construction for (m x m)/2 RGSLRs

The designs considered in this section are a special case of the (m x nm)/2 RGSLRs given
in the preceding section where n = 1. They are the basic design from which the larger
designs can be obtained. It follows from the discussion in the preceding section that each
treatment of these designs appears 2 times in each row and in each column, hence appears
2m times in the design. Similarly, for each treatment, the sum of concurrences with the
other treatments is 2m, which is identical to its replication number but doubles the number

of treatments.

137



5.7.2 Some preliminaries

Let the treatment set be denoted V' = {1,...,m}. The m treatments can be put in m
sets of size 2 such that each treatment appears in 2 sets and each time with a different
treatment, that is, it appears 2 times overall and the multiplicity of each set is 1, hence no
repeats of the sets. To find an appropriate allocation (pattern) of concurrences for each
treatment, « € V with its pair within its set and also with distinct pairs from other sets
(where any pair from another set when paired with « is not a pair contained in any of the
sets) such that these concurrences sum to 2m, we proceed as follows. Firstly, we find the
number of distinct pairs that a requires from external sets, that is, other sets excluding
the set where it is contained.

Denote the member sets for the m sets by A;, where ¢ = 1,...,m. Since A;, for
all ¢ contains distinct treatments and each treatment appears 2 times among the sets
with no repeats of A;, then for a,8 € A;, there exist Ay and A;r, where ¢ # ' # i”
such that « € Ay and 8 € Ay. It follows that A; N Ay = {a}, 4; N Ay = {f} and
AN (Ap UAp) = (AinAy) U (AN Ap) = A,

For a fixed «, between A, and A;», o has exactly 1 distinct pair such that it does
not form a set which is already among the A;s; this pair is from A;» and is precisely the
element in the singleton A;#\{3}. Denote this treatment by e.

Now, by excluding A;, Ay and A;», there are m — 3 sets left which contain, overall,
2(m — 3) treatments from which a can select distinct pairs from, since these 2(m — 3)
treatments are not all distinct. Notice that for each of the m — 3 sets, there are also 2
other sets which contain its elements (treatments)-1 treatment contained in one set and the
remaining treatment in the other set, since each treatment appears 2 times overall among
the sets and with a different treatment each time. Moreover, € is among the remaining
2(m — 3) treatments, that is, it also appears in one of the (m — 3) sets. Hence needs to
be excluded, that is, not to be counted twice. Similarly, the single element, p, say, in the
singleton A;\{a} also appears a second time, among the 2(m — 3) elements, which also
needs to be excluded from there when counting since {p} U {a} = Ay ({a} C A} ), which
is among the A;s.

Finally, after excluding the 2 treatments, € and p from the 2(m — 3) elements, each
of the remaining 2(m — 3) — 2 (or 2(m — 4)) treatments appears 2 times and needs to be
counted exactly once to make a distinct pair with a. Thus there are 2(m —4)/2 =m — 4
distinct pairs with « from among the 2(m — 3) elements.

Overall, considering all the pairs, there is a total of 1 + (m — 4) = m — 3 distinct
treatments from among the sets where a does not appear (where 1 in the summand
accounts for the treatment €) that can concur with «, that is, when any of them is paired
with « it does not appear as a set among the A;s.

Notice that, there are 2 distinct treatments, 8 and p which are in the sets A; and A;,

respectively, where o makes an appearance, hence can also concur with « differently. The
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value 2 denoting the number of distinct treatments can also be seen by noting that for all
a € V, there are m — 1 distinct treatments which can concur with a. Moreover, m — 3 <
m — 1. By letting « denote the number of treatments that complement the concurrences
of the m — 3 treatments from external sets where o does not make an appearance. Then
m—3+x = m—1, which implies that z = 2. Now, let A1 denote the treatment concurrence
counts between a and each of § and p. Similarly, let Ao denote the treatment concurrence
counts between « and each of the m — 3 treatments from external sets, that is, those sets
where a does not make an appearance. Then, for the concurrence relationship, it follows
that

201 + (m — 3))\2 =2m (52)

where m > 3.

The only solution set that satisfies (5.2) is (A1, A2) = (3,2), which gives a RGD. It is
revealed in (5.2) that, to have a RGD, the only appropriate pattern of concurrences for
all @ € V is to have a concur 3 times with each of the 2 treatments, 5 and p that appear
in the same set with it, that is every pair in the same set needs to appear 3 times as a
block. Similarly, o needs to concur 2 times with each of the remaining m — 3 distinct
treatments which do not appear in the same set with it and also when paired with a does
not make one of the m sets. In particular, o concurs 2 times with each element of the set
V*=V\{B,p: \1 =3} U{a}, for all « € V, where |V*| =m — 3.

The aforementioned m sets, A, Aag,..., Ay, take the form {1,1 + ¢}, {2,2+ ¢}, ...,

{m —1,m —1+ ¢}, {m,m + c}, if a cyclic construction is used, where ¢ € {1,2,...,d},
d = (m —1)/2. In particular, if ¢ = §, then the m sets are identical to {1, (m + 1)/2},
{2,(m+3)/2}, ..., {m —1,3(m — 1)/2}, {m, (3m — 1)/2}, respectively with reduction
modulo m.

Comment. The concurrence relationship between the treatments so that we get a RGD
can be viewed in a much more simple way by expressing the sum of concurrences, 2m as
a sum of two components, viz,

2m = (m—1)2+2 (5.3)

Notice that the right hand side of (5.3) is identical to (m — 3)2+ 2(3) or 2(3) + (m — 3)2,
showing that the only way to have a RGD is for each treatment to have two concurrences
of 3 and all the rest (m — 3 of them) equal to 2. Hence the QBD will be a BIBD if m = 3,
since each treatment will have precisely 2 (all) concurrences 3.

Furthermore, notice that if m = 3, then § = 1, where 6 = (m—1)/2. Since m is an odd
prime, as will be seen later in section 5.8.4, a (3 x 3)/2 RGSLR for 3 treatments which
is a special case of an (m x nm)/2 RGSLR for m treatments, where m =3 and n =1 (n
having the value ¢§) is a BSLR.
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5.7.3 Construction procedure

Notice that the RGSLR under construction requires m? blocks. We use the cyclic group
Zy, and regard Z, as {1,2,...,m}. Notice that each set among the A;s generates all the
other sets, that is, m blocks by its cyclic development via successive addition of 1 reduced
modulo m, hence for each of these m pairs to appear 3 times in the design, as required,
we need 3 sets from the A;s where each of them can generate m blocks. Thus with these 3
sets, 3m blocks, that is, 3 rows (or columns) can be generated in the design. Furthermore,
for each of the m — 3 other pairs which is identical to the number of rows (or columns) left;
notice that m—3 = 2(6 —1). Hence with each of the § —1 other possible values of ¢ another
set of m blocks (1 row or column) can be generated, and each block also generates the
rest via the same procedure and overall m(d — 1) blocks which is equivalent to § — 1 rows
(or columns). By making 2 copies of the m(d — 1) blocks, which is equivalent to 2 copies
of the § — 1 distinct sets of m blocks we obtain a total of 2m(d — 1) blocks which can be
used to form the remaining 2(6 — 1) = m — 3 columns. Notice that 2m(§ — 1) + 3m = m?,
the total number of blocks, as required. Moreover, each block from the 3 sets of the A;s
appears 3 times in the design while each block obtained from each of the other possible
values of ¢ appears 2 times.

Now to arrange the m? blocks into an m x m array to make an (m x m)/2 RGSLR
under construction, we modify the starter sets we used in the previous sections for some
constructions involving designs with even value of v. This time, each treatment appears
in 2 sets and the pairs of treatments in the m starter sets are such that, overall, the set
of differences between the treatments in these sets (with a reduction modulo m) consists
of £1,42,...,4(6 — 1), £6 with the multiplicity 3 for one of them (that is, one of these
differences is identified with 3 sets in the starter) while the multiplicity is 2 for each of
the other 6 — 1 values (that is, the other § — 1 differences are identified with 2 sets each
in the starter). The set of differences is thus a multiset which consists of all the non-zero
elements of Z,,. We note that, any one of these differences can have the higher multiplicity.
However, each time the starter sets are reformulated such that more sets are identified
with another value of the differences, it produces another design of the same size.

However, for purposes of describing the construction, we choose one of them, +6,
to have the higher multiplicity, 3, that is, 3 sets in the starter are identified with the
differences +6 while the elements of the set {£1,42,...,£(6—1)} has multiplicity 2 each,

that is, each of these other differences is identified with 2 sets in the starter.

Definition 5.7.1. Let there be m non-empty sets (m being odd) consisting of 2-subsets
of Z,, with each element appearing a constant number of times, overall, each time with
a different element. We regard Z,, to be the set {1,...,m}. Let the differences between
the elements of these sets, modulo m, constitute a multiset consisting of all the non-zero
elements of Z,,. Denote the multiset of differences by A = {£v;}]",. Let there exist
+60 € A whose multiplicity is \*, say, while the multiplicity of every other element of A is
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A* — 1, where \* € Z, A* > 1. Then the m sets constitute a starter for the cyclic group
Lo

Let S,; denote the Ith set from the starter sets for which the differences, modulo m,

between its elements are +u, where v =1,2,...,§ and
1,2,3 ifu=74,

[ =
1,2 ifu<é.

We proceed to give a table showing starters in Z,, for small odd values of m: see Table

5.1. An algorithmic procedure for constructing the design is also given in section 5.7.4.

Table 5.1: Starters in Z,, for some small odd values of m

m starter

5} {1,2} {1,3} {2,4} {4,5} {3,5}

7 {1,2} {3,5} {2,5} {3,6} {4,6} {1,7} {47}

9 {1,2} {4,6} {3,6} {3,7} {8,4} {2,8} {57} {1,90 {5,9}

5.7.4 An algorithmic procedure for the construction

1. Label the treatments 1, 2, ..., m.

2. Form m sets each of size 2 with the m treatments such that each treatment appears
2 times among the sets, each time with a different treatment and the differences
(reduced modulo m) between the pairs of treatments in these sets are +1, +2, . . .
44, the non-zero elements of Z,,, whose multiplicities are 3 for +§ and 2 for others,

and these form a starter for the cyclic group Z,,.
3. Create an mxm array and label its rows i = 1, 2, ..., m and its columns j = 1, 2, ..., m.
4. For all u=1,2,...,9, and
1,2,3 ifu=74,
[ =
1,2 ifu<é.

put Sy; in the cell in position (1, j) of the array, that is, the cell in row 1 and column
j, where S;; denotes the [th set in the starter for which the differences (reduced

modulo m) between its elements is +u, and
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' 0,0 +1,m ifu=>9,
j:
w,m—u ifu <é.

5. For all j = 1,2,...,m, develop the block in position (1, 7), cyclically, via successive

addition of 1 (mod m), thereby generating the m blocks in each column.

Comments. Each treatment appears 2 times in each row and in each column, hence appears
2m times overall which is identical to the sum of concurrences with each treatment. In
particular, if u = §, then each pair of treatments with the difference +4 concurs 3 times in
the design, once in each of columns §, d +1 and m which are the columns generated by the
starter set for which the difference between its constituent treatments is +4. Similarly, if
u < 9§, then for any u € {1,2,...,(d — 1)}, each pair of treatments with the differences +u
concurs 2 times in the design, once in columns v and m — u. Notice that § + 1 = m — §.

The number of sets in the starter associated with each unique difference which cor-
responds to the multiplicity of that difference can be seen by writing m = 2§ + 1 as
2(6 — 1) + 3(1), where 6 > 1, showing that among the m sets consisting of pairs of treat-
ments whose differences consist of elements of the set {£1,+2,...,£(5 — 1), £d}, 3 of
the sets are identified with one difference, +4 in this case (that is, the difference, £ has
multiplicity 3) while 2 sets are identified with each of the other § — 1 differences (that is,
every other difference that is less than ¢ in absolute terms has multiplicity 2) .

Moreover, if the starter sets are put either in a different order in the cells in row 1 of
the array or they are put in the cells in column 1, say, instead of row 1, then the design
obtained by this different arrangement of the sets is isomorphic to the former design. As
noted earlier, if a different element from the set of differences (reduced modulo m) is
allocated a higher multiplicity, then another set of pairs of treatments now appear more
often as a block in the design, thereby producing a different design. In this circumstance,
the 3rd set identified with the difference of higher multiplicity in the starter can be put in
the last cell of row 1, which means a slight modification of the algorithmic procedure.

The QBD of the constructed design consists of a RGD and BIBD. Hence it is a BIBD
extended design. The RGD component consists of blocks from a single column, j €
{9,541, m}, that is a column where each pair of treatments in it concurs a higher number
of times, 3 in the overall design and its treatment concurrence counts are 0 and 1. Hence
the RGD component contributes m blocks to the overall design. Similarly, the BIBD part
consists of m(m — 1) blocks formed by the rest of the columns, m — 1 of them. The
treatment concurrence counts in the BIBD part of the design is 2. Hence, in the overall

design, each pair of treatments concur in either 2 or 3 blocks.

Example 5.7.1. Let v = 5. Then the sets {1, 2}, {4,5}, {1,3}, {2,4} and {3,5} with the
differences +1, +1, £2, £2, and + 2, respectively, constitute the starter.
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5> 112 415 3|1 2|3 4

Figure 5.22: Another (5 x 5)/2 RGSLR for 5 treatments

Notice that S11 = {1,2}, Sis = {4,5}, So1 = {1,3}, Sog = {2,4} and So3 = {3,5}
Notice also that the difference £2 is of higher multiplicity, 3.
By the algorithmic procedure, we obtain the (5 x 5)/2 RGSLR for 5 treatments as

shown in Figure 5.21.

Remark. Supposing we decide to allocate the higher multiplicity, 3 to the differences +1
instead of £2, that is, we want a design for which any pair of treatments with the differences
+1 concurs a higher number of times, 3. Then the starter set can be reformulated to suit
this.

The sets, {1, 2}, {2,3}, {4,5}, {1,4} and {3, 5} with the differences +£1,4+1,+1, £2 and +
2, respectively, for instance, form another starter that can be used to obtain such design,
which is another (5 x 5)/2 RGSLR for 5 treatments, and is as shown in Figure 5.22

Example 5.7.2. Let v = 7. Then we obtain a (7x7)/2 RGSLR for 7 treatments as shown
in Figure 5.23 using the given procedure, where the starter comprises the sets {1, 2}, {1, 7},

{3,5}, {4,6} {2,5}, {3,6} and {4,7}.
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T 112 4|1 412 5|3 5|7 63 6

Figure 5.23: A (7 x 7)/2 RGSLR for 7 treatments

Notice that the differences (reduced modulo 7) between the treatments in the starter
sets are +1,4+1,£2,+£2,+3 + 3 and + 3, respectively, with the respective multiplicities
being 2, 2, and 3 for the differences +1, +£2 and +3.

Remark. The construction can be generalized for higher values of 1 as given in section
5.7.5.

5.7.5 Generalization of the construction for (m x nm)/2 RGSLRs when
v =m is odd

We give a general construction for the aforementioned class of designs, wheren = 1,2,...,t,
t <§and d = (m—1)/2. In particular, if m is an odd prime, then ¢ = §. But if m is not an
odd prime, then ¢t < §. When n = 1, the parent/basic design is obtained which is utilized
to obtain larger designs with higher values of . Moreover, if n = §, then the construction
gives a BSLR. As before, we use the cyclic group Z,, and regard Z,, as {1,2,...,m}.
Let the treatment set be denoted by V' = {1,2,...,m}, For all ¢ € V, to have a
RGD, a sensible choice for its concurrence relationship with the other m — 1 treatments

is governed by (5.4).

2nAi + (m — 1 —2n)Ag = 2mny (5.4)

where m > 2n + 1.

From (5.4), A1 and Ay need to be 2n + 1 and 27, respectively. Hence, o € V needs to
concur with 2n treatments in 2n + 1 blocks and with the other m — 1 — 27 treatments in
2n blocks.

We give an algorithmic procedure for the generalized construction in the next section.
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Remark. Notice that (5.4) can also be seen from 2nm = (m—1)2n+2n = (m—1-2n)2n+
2n(2n + 1) which is identical to 2n(2n+ 1) + (m — 1 — 2n)2n. Hence, to have a RGD, each

treatment needs to have 27 concurrences of 27 + 1 and all the rest (m — 1 — 2n of them)

equal to 2n. Thus if m = 2n + 1, then each treatment will have precisely all concurrences
being 217+ 1 and the QBD will be a BIBD making the constructed design a BSLR. Notice
also that if m = 2np 4+ 1, then 6 = 7, which is consistent with the condition above for
obtaining a BSLR.

5.7.6 An algorithmic procedure for the generalized construction

1.

2.

Label the treatments 1, 2, ..., m.

Form m sets each of size 2 with the m treatments where each treatment appears 2
times among the sets and the differences (reduced modulo m) between the pairs of
treatments in these sets are £1, 2, . . ., &4, the non-zero elements of Z,,, whose
multiplicities are 3 for 9 and 2 for others, and these form a starter for the cyclic

group Zn,.

Create an m x nm array and label its rows ¢ = 1,2,...,m and its columns j =

1,2,...,nm.

. Forallu=1,2,...,9, and

1,2,3 ifu=34,
| =

1,2 ifu<é.

put S, in the cell in position (1, j) of the array, that is, the cell in row 1 and column j,
where S,; denotes the [th set in the starter for which the difference (reduced modulo

m) between its elements is +u, where

0,0+ 1,m ifu=>9,

u,m—u ifu <§é.

. For j = 1,2,...;m, develop the block in position (1,7), cyclically, via successive

addition of 1 (mod m), thereby generating the m blocks in each column. Stop here

if a design with n = 1 is required.

. If » > 1, then denote the design obtained in step 5 by A;. Find n — 1 distinct

generators of Z,, and denote them by aq,as,...,a;_1 corresponding to the order
they are to be used in permuting the treatments, viz, a; is the first to be used and

ay—1, the last, where as # £ap, aq,...,fasq foralls =1,2,...,n—1and op = 1.
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Figure 5.24: A (5 x 10)/2 RGSLR for 5 treatments

7. For all s = 1,2,...,n — 1, apply as to A; via multiplication by the treatments
within its blocks to obtain A,, where ¢ =1+ s and A, is the ¢gth constituent design,

q=2,...,m.

Comments. The overall design consists of 7 constituent designs, A1, As,...,A;. Each
constituent design is an (m x m)/2 RGSLR for m treatments and has a QBD consisting
of a RGD (having m blocks) and a BIBD (having m(m — 1) blocks). The overall design
consists of mn blocks in the RGD component of its QBD. Similarly, the BIBD component
contributes mn(m — 1) blocks to the overall design. Hence the QBD of the overall design
is BIBD-extended, where the BIBD component is the extension.

Moreover, the restrictions on choosing the permutations ag, as,...,a,_1 is to ensure
that the permutations do not result in blocks with the same pairs concurring a higher
number of times in more than 1 constituent design such that with the various constituent
designs, the overall design remains a RGD.

Since the design contains nm columns, then if all the starter sets were to be obtained,
it would require pm sets, where each set generates a column and the multiplicities of the
differences is as follows. Notice that nm = n[2(6—n)+(2n+1)] = 2n(6—n)+(2n+1)n. Hence
the starter sets for the overall design contain treatment pairs with § distinct differences
where 7 of these differences are of multiplicity 27 + 1 each, while the multiplicity of the
other 6 — n of them is 2n each.

Example 5.7.3. Let v = 5 and n = 2. Then by implementing the algorithm, using the
generator, a; = 2, we obtain a (5 x 10)/2 RGSLR as shown in Figure 5.24.

Remark. Notice that each pair with the differences =1 concurs 2 times in A1 and 3 times
in Ao. Similarly, each pair with the differences +2 concurs 3 times in A;. and 2 times in
As.

Furthermore, the treatment concurrence counts in the RGD part in the overall design

is 1 for each pair of treatments (which comprises the concurrences from the RGDs in both

146



7 112 4|1 4|2 5|3 5|7 6|3 6||7 2(4 1|2 1|4 3|6 3|7 5|6 5

Figure 5.25: A (7 x 14)/2 RGSLR for 7 treatments

A1 and Ay which are 0 and 1 in each-noting that there is no repetition of blocks in the
2 RGDs, whose overall blocks consist of all the possible pairs of treatments exactly once,
each), hence the RGD part is a BIBD. Similarly, for the BIBD part, the concurrence
counts is 4 (2 from each of A; and A2). Hence, the treatment concurrence counts is 5 for
each pair of treatments in the overall design.

Notice that the RGD part in A; is constituted by the pairs of treatments with the
differences +2 which can be seen to be the pairs in any of columns 2, 3 and 5. Similarly,
pairs with the differences +1 constitute the RGD part in As: see the pairs in any of the
2nd, 3rd and 5th columns that Ay occupies or equivalently, any of columns 7, 8 and 10
of the overall design. Hence the cells in columns 5 and 10, for instance, constitute the
RGD component of the overall design (which is a BIBD), and the cells from the rest of
the columns constitute another BIBD component. Hence, the QBD of the overall design
is a BIBD.

The QBD of the design is the same as that of the (5 x 10)/2 BSLR shown in Figure
3.2 in Chapter 3 of this thesis.

Example 5.7.4. Let v = 7 and n = 2 . Then the design obtained via the algorithmic
procedure is as shown in Figure 5.25 if the generator oy = 2 is used to permute the
treatments in A; to obtain Ay. The design obtained is a (7x14)/2 RGSLR for 7 treatments.

Example 5.7.5. Let v = 7 and = 3. Then the construction gives a (7 x 21)/2 RGSLR
as shown in Figure 5.26, if the generators a; = 2 and ap = 3 are the permutations applied

to A1 to obtain As and Ag, respectively.

Remark. Notice that the QBD of the (7 x 21)/2 RGSLR for 7 treatments shown in Figure
5.26 is BIBD-extended; consisting of a RGD and a BIBD as the extension.
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Figure 5.26: A (7 x 21)/2 RGSLR for 7 treatments

Notice also that this design has the same QBD as the (7 x 21)/2 BSLR in Figure 3.3
in Chapter 3 of this thesis.

Comment. Now, we have found a concept called undirected terrace to be a useful and
efficient technique that we can utilize to obtain the starter sets for the case where v = m

is odd which enhances the construction.

5.8 Another approach to obtaining the general construction

via undirected terrace

We employ the concept known as undirected terrace to obtain the starter sets for the
generalized construction of (m x nm)/2 RGSLRs when v = m is odd. This provides a
more convenient and efficient means for obtaining these sets for odd values of m. As in
the previous section, we use the cyclic additive group, Z,, for the integers modulo m and
regard Z,, to be the set {1,...,m}.

5.8.1 TUndirected terrace and associated starter sets

Let m € Z, where m is odd. Then the sequence 1, m, 2, m—1, 3, m—2,...,(m+1)/2
forms an undirected terrace for Z,,: see, for example, Bailey (1984) and Durier et al.
(1997) for discussions on this concept.

Some small examples include 1, 5, 2,4, 3;1,7,2,6,3,5,4;and 1,9,2,8,3,7,4,6,5
which are undirected terraces for Zs, Z7 and Zg, respectively.

By writing down the plus/minus differences between each adjacent (successive) pair,

modulo m, and considering the row as a circle that joins up the two ends, we have
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+1,£2,...,2(m—1)/2,£(m—1)/2,+(m—3)/2,...,£1,+(m—1)/2. For instance, in the
example for Z7, we get +1, 42, £3,4£3,+2, +1, +3. Hence the pairs of elements which give
these differences, which are the sets {1, 7}, {7,2}, {2,6}, {6,3}, {3,5}, {5,4}, and {4, 1},
respectively constitute a starter. Similarly, the corresponding starter sets based on the
undirected terraces for Zs and Zg given above are {1,5}, {5,2}, {2,4}, {4,3}, {3,1} with
the differences being +1,+2,+£2,+1, +£2 and {1,9}, {9,2}, {2,8}, {8,3}, {3,7}, {7,4},
{4,6}, {6,5}, {5,1} with the differences +1,+2, +3, +4, +4, £3, +2, +1, +4, respectively.

5.8.2 Procedure

We obtain the basic design in a similar manner as before but using the starter sets obtained
from the undirected terrace and then utilize the basic design to obtain larger designs. As
before, we denote the basic design A;. In certain situations, to obtain a larger design,
we use only one generator of Z,, (an element of Z,, that is coprime to m), «, say, where
a # 1,m—1. We multiply (successively), each treatment in A; by « to obtain A;4; (where
Ay is the Ith constituent design) for all [ = 1,...,n7— 1, that is, we apply « to A; to obtain
As, and similarly to As to obtain Ag, and so on until the overall design is generated. In
other cases we use more than one generator.

If m is an odd prime, then we obtain designs for values of n = 1,2, ... ¢, where t = ¢,
and 0 = (m — 1)/2 using a single generator, a. Moreover, to obtain a design with n > 4,
we use more than one generator. Let Ay, . . ., A; denote the constituent designs for the
construction, where A; is the basic design obtained when n = 1.

Let (y —1)0 +1 < n < yd, where y = [n/d], n > 1. Denote y generators of Z,, by
ai, ..., 0y, where ay # 1,m — 1 for any t € {1,...,y}. If y = 1, then it implies that
1 < n < 6, hence we use one generator, a1 = «, say (any generator that satisfies the
aforementioned condition can be used). Thus, we multiply each treatment in A; by « to
obtain As. Similarly, we multiply each treatment in As by a to obtain As; and so on until
each treatment in A, _; is multiplied by « to obtain A,,. This generates the overall design
under construction.

Similarly, if y = 2, then it follows that 6+1 < n < 2§ and we use two generators, o and
ag, where oy is used in the same manner (successively) as « to obtain Ag, . . ., As; while
ap is then applied to every treatment in A; to obtain Asiq, then «ay is applied to every
treatment in As;q to obtain As o, and this continues until A, is obtained by multiplying
every treatment in A, _1 by aa. The successive procedure continues depending on the value
of y until the generator, ,, has been applied to every treatment in A; to obtain A¢,_1)541,
then ay on every treatment in A, _1)541 to obtain A, _1)542, and so on until oy, is used
to multiply every treatment in A,_; to obtain A, hence the overall design generated.

On the other hand, if m is not an odd prime, then we obtain designs for values of
n = 1,2,...,t, where t < ¢ and whose value is given by t = %cp(m), where ¢(m) =

m [](1—1/p), where the product is taken over the distinct prime numbers that divide m,
plm
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and ¢(m) is called Euler’s totient function or Euler’s phi function, which gives the number
of integers in the range 1 to m that are coprime to m. In this situation, to obtain designs
for values of n > 1, we use one generator of Z,,, «, say, where o # 1,m — 1 and as before,
any generator that satisfies this condition can be used. Thus « is applied in a successive
manner as before by multiplying every treatment in A; by « to obtain As; then « is also
imposed in a similar manner on the treatments in Ay to obtain As; and so on until it is
multiplied by every treatment in A,_; to obtain A,, thus generating the overall design.

We give in the next section an algorithmic procedure for the construction.

5.8.3 An algorithmic procedure for the Generalized construction via
undirected terrace

1. Label the treatments 1, 2, ..., m.

2. Form a sequence of the elements of Z,, that constitutes an undirected terrace for Z,,,
viz, 1, m, 2, m—1, 3, m—2,...(m+1)/2. Consider the row/sequence as a circle that

joins up the two ends and then combine each adjacent (successive) pair of elements

such that the differences between these pairs, modulo m, are £1,4+2,...,£(m —
3)/2,£(m — 1)/2,£(m — 1)/2,£(m — 3)/2,...,£1,£(m — 1)/2, thus forming m
starter 2-subsets for Z,,. Label the starter sets S1, S2, . . ., S, in the order these

differences are listed.

3. Create an m x nm array and label its rows ¢ = 1,2,...,m and its columns j =

1,2,...,nmm.

4. Fori=1and j =1,...,m, put in the cell in position (1, ) of the array, the jth set,

S; from the starter.

5. For j = 1,2,...,m, develop the block in position (1,j), cyclically, via successive
addition of 1 modulo m, thereby generating the m blocks in each column. Stop here

if a design with n =1 is required.

6. If n > 1, then denote the design obtained in step 5 by Ay and let A, ..., A, denote
the other constituent designs that make the overall design under construction. Let
y = [n/é6] and (y —1)0 +1 < n < yd, where § = (m —1)/2. Let ay,...,ay be y
generators of Z,,, where ay # 1,m —1 for any t € {1,...,y}. If y = 1, which implies
that n < 6, then multiply each treatment in A; by a; = «, say, to obtain A;;; for
alll =1,...,n7— 1, thus generating the overall design.

7. If y > 1, which implies n > § (involving designs with an odd prime value of m in
our construction), then multiply each treatment in A; by a1 to obtain A;y; for all
l=1,...,0 — 1. Similarly, multiply each treatment in A; by ag to obtain As;1 and
then multiply each treatment in Asy; by as to obtain Agyy4q foralll=1,...,6 —1.
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Figure 5.27: A (7 x 28)/2 RGSLR for 7 treatments

Continue this successive procedure until «,, is used to multiply every treatment in
Ay to obtain A,_1)541 and subsequently each treatment in A(,_1)s4; is multiplied
by ay to obtain Ay, _q)s441 for all I =1,...,7 —1— (y — 1)d. This generates the

overall design under construction.

Example 5.8.1. Let m = 7 and n = 4. Then by the algorithmic procedure we obtain
a (7 x 28)/2 RGSLR shown in Figure 5.27, where every treatment in A; was multiplied
by a1 = 2 to obtain Ajyq for [ = 1,2. Similarly, every treatment in A; was multiplied by
oo = 3 to obtain Ay.

Example 5.8.2. Let m = 9 and 7 = 3. Then by the algorithmic procedure we obtain a
(9 x 27)/2 RGSLR shown in Figure 5.28 where each treatment in A; was multiplied by
o =5 to obtain Ajyq for all l =1, 2.

On the basis of our new method of obtaining the general construction which utilizes
the concept, undirected terrace, we give an enlarged table of starters in Z,, for various
odd values of m shown in Table 5.2. However, for lack of space, the corresponding starter
sets for Zi5 is omitted from Table 5.2 and presented, here, separately, viz, {1,15}, {15, 2},
{2,14}, {14,3}, {3,13}, {13,4}, {4,12}, {12,5}, {5,11}, {11,6}, {6,10}, {10,7}, {7,9},
{9,8}, {8,1}.

5.8.4 Realizing a BSLR from the construction

Note that the design obtained via the construction in section 5.8.3 is an (m x nm)/2

RGSLR for m treatments, where m is odd and 7 corresponds to the number of constituent
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Figure 5.28: A (9 x 27)/2 RGSLR for 9 treatments

SLRs used in the construction. If m is an odd prime and n = d, where § = (m — 1)/2,
then the construction gives a BSLR. This can be seen as follows.

Notice that if n = 1, we have an (mxm)/2 RGSLR for m treatments, which is the basic
design. Denote this basic design by A;. Note that the starter used in the construction of A;
consists of m sets, where m = 2§ + 1. Let D = {£1,...,+5} denote the set of differences
(modulo m) between the elements contained in the starter sets, where the cardinality of
D, |D| = 26 = m — 1. The elements of D correspond to the non-zero elements of Z,,
and their multiplicities in the starter are 3 (higher) for each of £J and 2 (lower) for the
rest, as can be noticed in step 2 of the procedure in section 5.8.3. The multiplicity of
each element of D in the starter corresponds to the number of sets in the starter that
contain elements whose difference (modulo m) gives the specified element of D. This also
corresponds to the treatment concurrence counts for any pair of treatments in Ay whose
difference (modulo m) is the specified element of D.

Columns 1, ..., 6§ of A; are generated from a series of § starter sets whose elements have
the differences +1,...,+4d, respectively. Similarly, another series of § starter sets with
the differences between their elements being =£6,...,41 are used to generate columns
0+ 1,...,20, respectively. Finally, the remaining starter set for which the differences

between its elements are +J is used to generate column m. Moreover, each starter set
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Table 5.2: Starters in Z,, for more odd values of m

m starter

5 {1,5) {5,2} {2,4} {4,3} {3,1}

7 {1,7){7,2) {2,6) {6,3) {3,5) {5,4} {4,1}

9 {1,9}{9,2} {2,8) {8,3} {3,7} {7,4} {4,6} {6,5} {5,1}

11 {1,11411,242,10}{10,3}3,9} {9,4} {4,8} {8,5} {5,7} {7,6} {6,1}

13 {1,13413,242, 1212, 33, 1111, 4}4, 1010, 5%5,9} {9,6} {6,8} {8,7} {7,1}

generates m distinct blocks, which form a column in A;. Thus there are md distinct
blocks in columns 1 to §, which form a BIBD with treatment concurrence counts, unity.
Similarly, there are md distinct blocks (the same set of overall blocks as before) in columns
0 + 1 to 26, which also form a BIBD with treatment concurrence counts, unity. However,
the last column, column m, contains m distinct blocks which form a RGD with treatment
concurrence counts 0 and 1 (assuming m > 3). In particular, if m = 3, then column
m consists of all the possible pairs of 3 treatments, each pair appearing exactly once
(since there are 3 distinct pairs, where 3 coincides with (g)), thus forming a BIBD with
treatment concurrence count 1. Hence the QBD of Ay consists of a BIBD with treatment
concurrence counts 2 and a RGD with treatment concurrence counts 0 and 1 (if m > 3),
giving a BIBD-extended RGD. However, in the case where m = 3, the QBD of A; is
trivially a BIBD with treatment concurrence counts, 3. In this case, let Ay = A.

Moreover, each row and each column of Ay (or A) contains each treatment exactly two
times (an integer number of times). Hence A; is a RGSLR, since its QBD is a RGD while
A is a BSLR, as its QBD is a BIBD.

Suppose m > 3 and n > 1. Call Ay a constituent design in the BSLR, whose realization
from the construction is sought. FEach stage of permutation (involving multiplication)
described in step 6 of the procedure in section 5.8.3 results in another constituent RGSLR.
The QBD of the resulting constituent RGSLR also comprises a BIBD with the same overall
blocks as the BIBD in Aj, hence same treatment concurrence counts, 2 and also a RGD
(which are the blocks in its last column) with concurrence counts 0 and 1. Also, at each
stage of permutation, a different pair of elements in D (elements with 4 sign before them)
become the difference identified with each of the m pairs of elements that make the last
column of the particular constituent design generated. This continues until (if possible—
depending on the value of n) all the pairs of elements in D that are relatively prime to
m are identified in a similar manner. Note that after all the elements in D which are

relatively prime to m have been identified in a similar manner, then for higher values of n
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there are repeats.

Now, let m be an odd prime and 1 = §, then overall, by the permutations, each of
the 0 pairs of elements (involving + sign) in D would have taken their turn of becoming
the difference attributed to m distinct pairs of elements that constitute the blocks in
the last column of the constituent design (a column with pairs of treatments of higher
concurrences, 3) generated at a given stage of permutation. This is so since for prime m,
each non-zero element of Z,, (which is an element of D) is relatively prime to m. Hence
the md distinct blocks in the last columns of the d constituent designs constitute a BIBD
with A = 1, which makes the QBD of the overall design to consist of § copies of a BIBD
each with A = 2 and another BIBD with A = 1 such that the QBD of the overall design is
a BIBD whose treatment concurrence counts is A = 2§ + 1.

Moreover, we remind that each constituent design is a SLR (RGSLR), where each
treatment appears twice per row and per column. Note that each row of the overall design
is constituted by the corresponding rows in the § constituent designs while each column in
any of the constituent designs is also a column in the overall design. hence each treatment
in the overall design appears 2 times per row and twice per column ( integer number of
times). Thus the overall design obtained from our construction of RGSLR in this special
case has a QBD that is a BIBD. In the special case that the QBD of a RGSLR is a BIBD,
the resulting design is a BSLR.

Hence, if m is an odd prime and 1 = J, then the construction described in section 5.8.3
produces a BSLR.

Example 5.8.3. If m = 3, then § = 1. Let n = 1. Then the design resulting from the
construction is a (3 x 3)/2 BSLR for 3 treatments. Similarly, iif m = 5, then § = 2 such
that if n = 2, we have a (5 x 10)/2 BSLR for 5 treatments from the construction.

5.9 More RGSLRs of large sizes

In a similar manner to the case where v was even, when v is odd, RGSLRs of large sizes
whose QBDs are BIBD-extended can also be obtained by extending a RGSLR with a
BSLR. This involves putting a RGSLR and a BSLR of corresponding sizes in an array of
appropriate size. The resulting design is also a RGSLR: see Theorem 5.1.1.

The aforementioned procedure is applicable if and only if the RGSLR and BSLR used
for the construction conform in size and set of treatments, that is, if they have the same
number of rows (or columns) and same block size and both of them contain the same
treatments.

BSLRs for odd number of treatments whose constructions can be found in Chapter 3 of
this thesis can be useful for such construction when there exist both designs of conformable

sizes.

Example 5.9.1. A (5 x 15)/2 RGSLR for 5 treatments can be obtained by putting a
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(5x5)/2 RGSLR and a (5 x 10)/2 BSLR where each of them contains the same set of 5

treatments.

12|11 3|2 4|4 5|3 5|1 2|1 3|2 4|4 5|3 5|2 4|2 1|4 3|3 5|1 5

2312413 5[5 1|4 1|2 3|24|3 5|51|41(41|4 3|1 5|5 2|3 2

3413 5|4 1|1 2|5 2|3 4354 1|1 2|5 2|1 3|1 5|3 2|2 4|54

4 5|4 1|5 2|2 3|1 3|4 5(4 1|5 2|2 3|1 3|35|3 2544|4121

5 1|5 2|1 3|3 4|2 4|5 1|5 2|1 3|3 4|2 4|5 2|5 4|2 1|1 3|4 3

Figure 5.29: A (5 x 15)/2 RGSLR for 5 treatments

Remark. The deign in Figure 5.29 involves adding the RGSLR in Figure 5.24 (which is
precisely a (5 x 10)/2 BSLR) to the (5 x 5)/2 RGSLR in Figure 5.21, where each of them
contains 5 treatments on the same set.

However, any other BSLR on the same set of 5 treatments that conforms in size, such

as the design in Figure 3.2 in Chapter 3 of this thesis can also be used.
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Chapter 6

Non-balanced Semi-Latin
Rectangles with Larger Block

Sizes

6.1 Introduction

This chapter considers semi-Latin rectangles (SLRs) whose row-column intersections (blocks)
contain k treatments, where k& > 2 and whose quotient block designs (QBDs) are not
combinatorially balanced. As in the preceding chapter, we concentrate on SLRs whose
QBDs are regular graph designs (RGDs), thus giving regular-graph semi-Latin rectangles
(RGSLRs). We give constructions for RGSLRs of some small sizes whose QBDs are BIBD-
extended. Some concepts such as undirected terrace are employed to obtain the designs.
We also exploit the constructions given in Bailey and Monod (2001). Some designs are also
obtained via block complementation. Moreover, adjoining BSLRs to an already obtained
RGSLR, or adjoining the RGSLR to another after a suitable permutation of treatments,

gives designs for larger sizes, just as in Chapter 5.

6.2 Construction of a (5 x5)/3 RGSLR for v =5 treatments

We denote the set of treatments by V' = {1,...,5} and use the cyclic group Zs, the integers
modulo 5 for the construction, where we regard Zs as {1,...,5}. We start by obtaining a
starter set using undirected terrace in a similar manner as in section 5.8.1 of Chapter 5.
There are 5 sets that constitute the starter, but this time, since k = 3, each starter set is
a 3-subset of Zs. Moreover, since for a design of this size, each treatment needs to appear
3 times in each row, that is, the parameter n, = 3 and we are interested in putting the
m starter sets in a single (the initial) row of an array of appropriate size, then the starter
sets need to be a 3-resolution class, thus, each treatment needs to appear 3 times among

the m sets, that is, in 3 sets.
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We remind that the sequence 1, m, 2, m—1, 3, m—2, ..., (m+ 1)/2 constitutes an
undirected terrace for Z,,. Thus 1, 5, 2, 4, 3 constitutes an undirected terrace for Zs. By
considering the row/sequence as a circle that joins up the two ends and then extending
the earlier procedure, viz, combining every 3 successive elements, we obtain the starter
sets to be {1,5,2}, {5,2,4}, {2,4,3}, {4,3,1} and {3,1,5}.

The procedure involves putting the starter sets in the 5 cells in the initial row of a 5x 5
array and then developing the block formed by each starter set, cyclically, via addition of
1, modulo 5, to generate entries to fill succeeding cells in its column. We summarize the

procedure for the construction in section 6.2.1.

6.2.1 Procedure for the construction

1. Denote the treatment set by V' ={1,...,5}.

2. Form a sequence of elements of Zs that constitute an undirected terrace for Z5 and
then using the elements of this sequence, obtain a 3-subset starter consisting of 5 sets
by combining every 3 elements of the sequence in succession, regarding the sequence

as a circle that joins up the two ends; and number the starter sets S;, j = 1,...,5.
3. Create a 5 x 5 array and label its rows ¢ = 1,...,5 and columns j =1,...,5.

4. For j =1,...,5, put S; in the cell in position (1,7) of the array and develop the
block formed by S}, cyclically, via addition of 1, modulo 5, thereby forming column
7, for all j.

Comments. The QBD of the design under construction is a RGD if and only if its concur-
rence relationship is given by
2M1 +2X9 =30 (6.1)

which gives the solution set {A1, A2} = {7,8}. Hence each treatment needs to concur 7
times with 2 treatments, each and 8 times with each of the other 2 treatments.

Notice that the pairwise differences, modulo 5, resulting from the pairs within the
triples that make the starter sets are £1, £2, +1; 42, +2, +1; £2, £1, +1; +1, +2, £2; and +
2,£1,%£2 for S, j = 1,...,5, respectively. Hence, the overall multiplicities of the differ-
ences are 7 and 8 for +1 and £2, respectively. Moreover, these differences consist of all
the non-zero elements of Zs.

Notice also that the multiplicities of the pairwise differences have identical values as
A1 and Az, which must be so. The value, 30 on the right hand side of (6.1) is the sum of
concurrences with any given treatment, which is given by r(k—1), where r = 15. Moreover,
the sum of multiplicities of all pairwise differences balances this value-30, which must be.
Hence, since the differences £2 has a higher multiplicity—8, then, for the concurrence

pattern, it follows that each pair of treatments within any triple that makes any starter
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Figure 6.1: A (5 x 5)/3 RGSLR for 5 treatments

set which has the differences +2 concurs in 8 blocks in the design while each pair with the
differences +1 concurs in 7 blocks.

Moreover, n,, = n. = 3 which is identical to k, the block size, where n, and n. have the
same meaning as previously used, denoting the respective number of times each treatment

appears per row and per column.

By using the procedure in section 6.2.1, we obtain the design shown in Figure 6.1

6.3 Construction of a (3 x 6)/4 RGSLR where v =6

We exploit the construction given in Bailey and Monod (2001), which uses balanced tour-
nament designs (BTDs) via an exchange procedure to obtain RGSLRs for block size two
when the number of columns is double the number of rows, the number of treatments is
identical to the number of columns and the number of rows is not congruent to 2 modulo
3.

Notice that the number of rows in the design under construction satisfies the afore-
mentioned congruence relationship and also have similar parameters (though differing in
block size and also in the per row and per column replication numbers of its treatments,
n, and n., respectively) with the designs captured by the specified construction in Bailey
and Monod (2001). Our construction also involves a row exchange but with a different
exchange pattern as there are now more treatments per block.

Notice also that, for a design of this size, each treatment needs to appear 4 times
per row (n, = 4) and 2 times per column (n. = 2), hence 12 times, overall. Hence
n, = 2n. = k. Moreover, its QBD is a RGD if its concurrence relationship is governed by
(6.2)

A1+ 4Xy = 36 (6.2)

where (A1, A2) = (8,7). Hence each treatment needs to appear with precisely 1 treatment
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in 8 blocks and with the other 4 treatments in 7 blocks, each.
Let V.= {1,...,5} U{oo} denote the treatment set. We use the cyclic group Zs for
the construction and regard Zs as {1,...5} such that V = Zs U {c0}. We give a summary

of the construction procedure in the next section.

6.3.1 Procedure for the construction

1.

Label the treatments 1,...,5, cc.

. Create a 3 x 6 array and label its rows ¢ = 1,2, 00 and the columns j =1,...,5, 00,

where these (with the exception of the symbol co) are regarded as elements of Zs.

. Fori=1,2and j=1,...,5 put S;; = {j £ei}2_,, which is the set, {j +4,j —i,j +

2i,j — 21}, where Sj; denotes the set of entries in the cell in position (4, j); and put
Seoj to consist of 2 copies of {j, 00}, that is, Sw; is a multiset of entries in the cell

in position (oo, j).

. For j=1,...,4 and i = i®, exchange {j +i®,j —i®} C S;s; with one copy of {j, 00}

in Sooj, where i* € {2(2)7,—-2(2)j} N {1,2} (or simply, i* € {47,—4j} N {1,2}) is
the unique element in the intersection region of the sets, thereby leaving one copy

of {j,00} in S;.

For j =5 and i = 1,2, exchange {5+1¢,5—1i} C S;5 with one copy of {5,000} in Seos,
where S5 is a multiset of entries in the cell in position (oo, 5) containing 2 copies

of {5,00} and after the exchanges, S5 no longer contain the treatments {5, co}.

. For j = oo and i = 1,2, put Sisc = {£3ai/2}2_,, which is the set {3i/2, —3i/2,

a=1»
3(2)i/2,—3(2)i/2}, or simply, {3i/2,—3i/2, 3i,—3i}; and put Seceo to consist of 2
copies of {5,00}. Finally, for each i € {1,2}, exchange {3i/2,—3i/2} C Sixc with
one copy of {5,00} in Seeo and after the exchanges, Soooo n0 longer contain the

treatments {5, co}.

Comments. At the end of step 3; for each column j € {1,...,5}, each treatment, 7 €

V\{j, 00} appears once in each cell, that is, for each column, all the treatments except

{j, 00} appear in each cell between rows 1 and 2 while the treatments j and oo, each appears

2 times in the last cell which corresponds to the row label co. Hence each treatment appears

2 times in each column which corresponds to the parameter, n. denoting the number of

times each treatment should appear in each column of the design under construction.

Similarly, for each row, i € {1,2}, each treatment except co appears 4 times—once in each

cell except one cell where the column label coincides with the label of that treatment.

Moreover, in the last row, between columns 1 and 5, the treatment co appears 10 times—

twice in each cell, while every other treatment appears 2 times in a single cell and none

in others.
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1 cofl3 1]4 2|4 0|5 0|5
3 4|14 5|5 1|1 22 3|3 2
3 4|12 0|3 oo|l 2|5 |5 o©
5 2|1 3|2 413 5|4 1|1 4
2 5|4 5|5 1|5 3|1 44 1
1 c0|2 0|3 0|4 |2 3|3 2

Figure 6.2: A (3 x 6)/4 RGSLR for 6 treatments

By the procedure given in section 6.3.1, the design is as shown in Figure 6.2.

Remark. Notice that the cells in cols 5 and oo contain identical entries, where pairs of
entries of the same kind (those entries where one is negative of the other, modulo 5)
likewise the entries 5 and oo concur a higher number of times, 8 while other pairs concur

7 times, each. Hence the design is group-divisible with groups {5,000}, {1,4} and {2, 3}.

6.4 Construction of a (4 x 8)/6 RGSLR, where v = 8

In situations where the number of rows of a SLR is congruent to 0 or 1 modulo 4, there is
a construction method in Bailey and Monod (2001) which uses starter to obtain RGSLRs
whose number of columns doubles the number of rows with the block size being 2 and
the number of treatments being identical to the number of columns. We exploit this
construction to obtain the design under construction.

Notice that, in the design under construction, the aforementioned congruence relation-
ship regarding the number of rows is satisfied and the parameters (apart from the block
size as well as n, and n. that is higher) conform to that of a design of a given size that
can be obtained using this method.

Notice that this design requires each treatment to appear 3 times per column (n. = 3)
and 6 times per row (n, = 6), and 24 times, overall. Furthermore, n, = 2n, = k. Hence,
to have a QBD which is an RGD, a sensible choice of the concurrence relationship is shown
in (6.3).

A1+ 69 =120 (6.3)

where (A1, A2) = (18,17). Hence each treatment needs to appear with precisely 1 treatment
in 18 blocks and with the other 6 treatments in 17 blocks, each.

Let V = {1,...,8} denote the set of treatments. We use the cyclic group Zg for the
construction and regard Zg as {1,...,8}. Our method involves finding first, an initial
2-subset starter in Zg (where the differences, modulo 8, between the pairs in the starter

sets are 1, £2, +3 and 4 (twice), consisting of all the non-zero elements of Zg): see Bailey
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and Monod (2001) for 2-subset starters; see also section 5.4.1 in Chapter 5 of this thesis.
The starter sets are assigned labels, S1, So, S3 and Sy, respectively which are written
down as a row considering it as a cyclic route originating from 57, forming triples with
every 3 consecutive set labels and on getting to Sy joins it up with S7 and then Sy, where
necessary to form the last triple, thus giving 4 triples, overall. The entries from the pooled
sets that constitute the 4 triples are then used to form the entries of the 4 cells in the
initial column of a 4 x 8 array and each block thus formed in the initial column is then
developed cyclically via addition of 1, modulo 8,to generate the remaining blocks for each
TOW.

We now summarize the procedure for constructing the design in section 6.4.1.

6.4.1 Procedure for the construction

1. Label the treatments 1,...,8.

2. Form an initial 2—subset starter in Zg (consisting of four 2-subsets) and label them
S;, where i = 1,...,4; hence S; = {z;,y;}, for all i and are such that, overall, the dif-
ferences, +(y; —x;), modulo 8, between z; and y; consist of £1,+2, +3 and 4(twice),

which are all the non-zero elements of Zg.

3. For i = 1,...,4, put Siyrin = {xs, v, Tir, yir, i, yir b, where Sy is the ith set of
pooled entries from 3 consecutive starter sets S;, S; and S;». For instance, when
1 = 1, then we have S123 obtained by pooling the entries in S1, So and S3; and when
1 = 4 we join up S4 with S7 and Sy by pooling their entries to obtain Sy12, where
each set of pooled entries contains 6 treatments, corresponding to the required block

size.
4. Create a 4 x 8 array and label its rows ¢ = 1,...,4 and columns j =1,...,8.

5. Fori =1,...,4, put S;y7;» in the cell in position (7,1) of the array and develop the
initial block formed there in row ¢, cyclically, via addition of 1 modulo 8 to generate

the other blocks in its row.

Comments. For row i = 1,...,4, the set S;;» which contains pooled entries from three
2—subset starter sets constitutes the initial block. The cyclic development of the initial
block in each row is akin to developing each 2—subset starter set contained in S;;;» and
then combining the generated entries for each block. Since each of these 2-subset starter
sets generates each element of Zg 2 times by the cyclic development, then it follows that
each treatment appears 6 times per row, as required. Similarly, each treatment appears
3 times per column since by the pooling, each S;, for ¢ = 1,...,4 is contained in 3 S;;/;»

sets, hence its entries are contained in these 3 sets. Note that, for the sets, S;, i =1,...,4
4

which constitute a 2-subset starter in Zg, |J S; contains each element of V' exactly once.
i=1
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1 212 3|3 4/4 5|5 6|6 7|7 8|8 1
4 6|5 7|6 8|7 1|(8 2|1 3|2 43 5
5 8|6 1|7 2|8 3|1 412 5|3 64 7
4 6|5 7|6 8|7 1|(8 2|1 3|2 43 5
5 8|6 1|7 2|8 3|1 412 5|3 64 7
3 714 8|5 1|6 2|7 3|8 4|1 52 6
5 8|6 1|7 2|8 3|1 412 5|3 6|4 7
3 714 8|5 1|6 2|7 3|8 41 52 6
1 212 3|3 4/4 5|5 6|6 7|7 8|8 1
3 714 8|5 1|6 2|7 3|8 4|1 5|2 6
1 212 3|3 414 5|5 6|6 7|7 8|8 1
4 6|5 7|6 8|7 1|8 2|1 32 43 5

Figure 6.3: A (4 x 8)/6 RGSLR for 8 treatments

Moreover, each pair of treatments with the difference 4, modulo 8, which has a higher
multiplicity appears a higher number of times, 18 in the design while pairs with other
differences concur fewer times, 17. The design is group-divisible with groups being {1, 5},
{2,6}, {3,7} and {4, 8}.

Using the procedure in section 6.4.1, we obtain the design shown in Figure 6.3.

Remark. Notice that the sets {1,2}, {4,6}, {5,8} and {3,7} denoting Si, S2, S3 and
Sy, respectively, whose differences, modulo 8, are +1,+2,4+3 and 4 (twice) constitute
the initial 2-subset starter in Zg used for the construction. Notice also that Sis3 =
{1,2,4,5,6,8}, Sa34 = {3,4,5,6,7,8}, S341 = {1,2,3,5,7,8} and Sq12 = {1,2,3,4,6,7}.

6.5 Construction of (m x2m)/k RGSLRs, where k = 2(m—1),

m > 2 and v = 2m

We exploit the constructions given in Bailey and Monod (2001), which involves the use of
starters and balanced tournament designs (BTDs). We note, in particular, that, designs of
the sizes whose constructions are given in sections 6.3 and 6.4 belong to the aforementioned
class. Hence, we generalize the constructions given there to this general class. For each
method used, the relevant restriction on the row parameter, m in this case, given in Bailey
and Monod (2001) applies. That is, for the method that involves BTD, m is not congruent

to 2 modulo 3; and for the method that involves starter, m is congruent to 0 or 1 modulo
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4. Moreover, as also given in Bailey and Monod (2001), between the two methods, the
constructions accommodate values of m that are not congruent to 2 or 11 modulo 12.
Notice that each treatment of the design is required to appear n, = 2(m — 1) times per
row, n, = m—1 times per column, and 2m(m—1) times, overall.. The sum of concurrences
is 2m(m — 1)(2m — 3) and the design will be a RGD if the concurrence relationship for

pairs of treatments is governed by

A1+ 2(m — 1) 2 = 2m(m — 1)(2m — 3) (6.4)

which gives A = 2(m — 1)? and Ay = 2m? — 4m + 1. Hence each treatment is required
to concur with precisely 1 treatment in 2(m — 1)? blocks and with the rest (2(m — 1) of
them) in 2m? — 4m + 1 blocks, each.

6.5.1 Construction via BTDs

Let V. ={1,...,2m —1} U{oo} denote the treatment set, where (m > 3) is not congruent
to 2 modulo 3. Let w = 2m — 1 be prime. We use the cyclic group Z,, the integers
modulo w, and regard Z,, as {1,...w} such that V = Z,, U {oo}. We give an algorithmic
procedure for constructing the design. The algorithm generalizes the procedure given in

section 6.3.1.

An algorithmic procedure for the construction

1. Label the treatments 1,...,w, oo, where w = 2m — 1 is prime.

2. Create an m x 2m array and label its rows ¢ = 1,...,m — 1,00 and the columns
j=1,...,w,00, where these (with the exception of the symbol co) are regarded as

elements of Z,,.

3. Fori=1,....m—1and j =1,...,w, put S;; = {j j:si}?:_ll, which is the set,
{j+4,j—14,7+2i,5—2i,...,j+ (m—1)i,j — (m — 1)i}, where S;; denote the set
of entries in the cell in position (7,7); and put S; to consist of m — 1 = k/2 copies

of {j, 00}, that is, Sw; is a multiset of entries in the cell in position (oo, j).

4. Forj=1,...,w—1andi=ig, whereq=1,...,m—2, exchange {j+ig, j—ig} C Sis;
with one copy of {j,00} in S, for all ¢, where iy € {2(¢ + 1)j,—2(¢ + 1)j} N
{1,...,m — 1} is the unique element in the intersection region of the sets for a fixed
q; thereby leaving precisely one copy of {j, o0} left in S, since m — 2 copies are

exchanged by this procedure.

5. For j = wand ¢ = 1,...,m — 1, exchange {w + i,w — i} C Sj, with one copy of
{w, 00} in Seow, where Suyy is a multiset of entries in the cell in position (oo, w)
containing m— 1 copies of {w, co} and after all the exchanges, Sx,, no longer contain

the treatments {w, co}.
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6. For j = oo and i = 1,...,m — 1, put Sinc = {£3ai/2 le_ll, which is the set
{3i/2,-3i/2, 3(2)i/2,-3(2)i/2,...,3(m — 1)i/2,—3(m — 1)i/2}; and put Sseo to
consist of m — 1 copies of {w,oc0}. Finally, for each ¢ € {1,...,m — 1}, exchange
{3i/2,—3i/2} C Sixc with one copy of {w, 00} in Ssse and after all the exchanges,

Seoco 10 longer contain the treatments {w, co}.

Comments. Notice in step 4 that if ¢ = 1, then we have i} € {2(2)j,—2(2)7}n{1,...,m—
1}, which is identical to i} € {4j,—45} N {1,...,m — 1}. Similarly, if ¢ = m — 2, then
it € {2(m—1)j,—2(m —1)j}n{1,...,m—1}.

At the end of step 3, for each column j € {1,...,w}, each treatment, 7 € V\{j, 0o}
appears once in each cell between rows 1 and m — 1 while the treatments j and oo, each
appears m — 1 times in the last cell which corresponds to the row label co. Hence each
treatment appears m — 1 times in each column and this corresponds to the parameter, n.
denoting the number of times each treatment should appear in each column of the design
under construction. Similarly, in each row i € {1,...,m — 1}, between columns 1 and w,
each treatment, 8 € V\{oo} appears once in every other cell except the cell in position
(i, 8), that is, the cell whose column label corresponds to 3, for a fixed i € {1,...,m —1}.
This means that, for each ¢ € {1,...,m — 1}, B € S;j, for each j # 3. Hence it appears
w—1 = 2m—2 times, which is identical to 2(m —1), the parameter n, denoting the number
of times each treatment should appear per row. However, in row oo, each treatment (other
than the treatment oo) appears m—1 times in a single cell whose column label corresponds
to the label of that treatment while the treatment with the label co appears (m—1)(2m—1)
times, that is, (m — 1) times in each cell.

Moreover, at the end of step 6, in the full design, each cell in column w also appears as
a cell in column oo (not necessarily in the same row). In column w, each pair of treatments
of the same kind, {w + i, w — i}, which is identical to {i, —i}, that is {£i} or equivalently,
{i,w—1i} for alli =1,...,m — 1 appears higher in the design. Similarly, the pair {w, co}
also appears higher. Each of such pairs appears m — 1 times in each of columns w and oo
(2 columns) and m — 2 times in the rest of the columns, 2(m — 1) of them. Hence each of

such pairs concur in
A =2(m—1)+2(m—1)(m—2) =2(m — 1)*

as required. Similarly, every other pair of treatments not of the same kind as above concur
m — 1 times in a single column and concurs m — 2 times in other columns. Hence each of

these pairs concur in
Ao =1(m — 1)+ (m—2)(2m — 1) = 2m? — 4m + 1.

as also required.
The design is thus group-divisible with groups {w, oo}, {1,w—1}, {2,w—2},...,{m—
1,m}.
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6.5.2 Construction via starter

We generalize the ideas in section 6.4 to give construction for (m x 2m)/k RGSLRs, where
E=2m—1), v = 2m and m (> 4) is congruent to 0 or 1 modulo 4. We use the
cyclic group Za,, the integers, modulo 2m, and regard Za,, as {1,...,2m}. We give an
algorithmic procedure for the construction in the next section. The algorithm generalizes

the procedure given in section 6.4.1.

6.5.3 Procedure for the construction

1. Label the treatments 1,...,2m.

2. Form an initial 2-subset starter in Zsg,, (consisting of m 2-subsets) and label them
S;i, where i = 1,...,m; hence S; = {z;,y;}, for all i and are such that, overall, the
differences, +(y; —x;), modulo 2m, between x; and y; consist of £1, +2, ..., m(twice),

which are all the non-zero elements of Zo,,.

3. For i =1,...,m, put Siit1._itm—2 = {Zi, Yis Tit1, Yit1s- -« » Titm—2, Yi+m—2}, Where
Siit1..i+m—2 is the ith set of pooled entries from m — 1 consecutive starter sets
Si, Sit1y- -+, Si+m—2. Forinstance, when ¢ = 1, we have Si2._,,—1 obtained by pooling
the entries in S1, ..., S,—1; and so on, and when you get to the end, join up .S,, with
S1 until the number of sets whose entries are pooled is m — 1. In particular, when
1 = m, we have Sp,1..m—2 obtained by pooling the entries in Sy, S1, ..., Sm—2. Note

that each set of pooled entries contains 2(m — 1) treatments, which is the required

block size.
4. Create an m x 2m array and label its rows ¢ = 1,...,m and columns j =1,...,2m.
5. For i = 1,...,m, put Sji+1. i+m—2 in the cell in position (i,1) of the array and

develop the initial block formed there in row i, cyclically, via addition of 1 modulo

2m to generate the other blocks in its row.

Comments. Fori = 1,...,m, the set Sjjt1. i+m—2 which contains pooled entries from m—1
2—subset starter sets constitutes the initial block. The cyclic development of the initial
block in each row is akin to developing each 2—subset starter set contained in Sj;11. j+m—2
and then combining the generated entries for each block. Since each of these 2-subset
starter sets generates each element of Zs,, 2 times by the cyclic development, then it
follows that each treatment appears 2(m — 1) times per row, as required. Similarly, each
treatment appears m — 1 times per column since by the pooling, each S;, fori=1,...,m

is contained in m — 1 Sj;41. ;1m—2 sets, hence its entries are contained in these m — 1 sets.
m

Also S;, where i = 1,...,m constitute a 2-subset starter in Zs,,, where |J S; contains
i=1
each element of V' exactly once.
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Moreover, each pair of treatments with the difference m, modulo 2m, which has a
higher multiplicity concurs a higher number of times, \; = 2(m — 1)? in the design while
pairs with the other differences, each concurs fewer times, Ao = 2m? — 4m + 1. Notice
that A\; and A9 are quadratic factors in m. Note that A\; can be viewed this way: each
pair with the difference m appears in m — 1 blocks in 2 columns, each (columns ¢ and
¢+ m, where c is the first column it appears) and appears in m — 2 blocks in each of the

remaining 2m — 2 = 2(m — 1) columns. Hence
A =2(m—1)+2(m—1)(m —2) = 2(m — 1)*

Similarly, A2 can be seen by noting that each pair with any difference other than 4 appears
m — 1 times in exactly 1 column and m — 2 times in each of the remaining 2m — 1
columns.Thus

Ao =1(m—1)+ (2m —1)(m —2) = 2m? —4m + 1

The design is thus group-divisible with groups being {1, m+1},{2,m+2},...,{m—1,2m—
1}, {m,2m}.
Notice that A\; and Ao satisfy (6.4).

6.5.4 Construction of RGSLRs via complementation

Just like the complement of a BIBD is another BIBD, the complement of a RGD is also
another RGD: see, for example, John and Williams (1982). Hence a RGSLR can be
obtained from another RGSLR by complementing the within-block treatments, which we
name block (cell) complementation, that is, replacing each block of the ‘parent” RGSLR
by those treatments that are missing there. In particular, given a RGSLR on a treatment
set, V' (where the cardinality of V' is v) and having block size k, we employ the concept
of block complementation to obtain another RGSLR on the same set of treatments but
with block size k' = v — k by putting in each block of the ‘parent’ design, the set, V'\S;;
of treatments, where S;; is the set of treatments in the cell in position (7, j) of the ‘parent
design’, for all ¢ and j. This procedure provides an alternative construction for obtaining
a RGSLR with block size v — k when there exists another RGSLR with block size k. It
can be used to obtain RGSLRs of the class specified in section 6.5 whose direct methods

of construction are given in sections 6.5.1 and 6.5.2.

Theorem 6.5.1. Let h,p, k,v be positive integers.. For a fixed h,p, k, let Ay denote an
(h x p)/k RGSLR on the treatment set V, where V.= {1,2,...,v}. Let S;; denote the set
of entries in the cell in position (i,7) of A1, wherei =1,...,h and j =1,...,p. Let Ag
denote a design obtained from Ay by putting S;; to be ng = V\S;j, for all i and j, where
S}; is the set of entries in the corresponding cell, (i,j) in Ag. Then Az is an (h x p)/K'
RGSLR on the same treatment set as A1, where k' = v — k.

Proof. We first investigate whether Ag is a SLR.
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Since A; is a SLR, then each treatment appears n, times in each row and n. times in
each column, where n,.,n. € Z,. It follows that, if Ao is a SLR, then each treatment needs
to appear n; times, say, in each row and n} times, say, in each column, where n;,n} € Z,..

Letl 7 € V. Then for all 7 € V, since Ay is a SLR whose QBD is binary, it implies
that, for all i = 1,..., h, 7 appears in n, cells. Similarly, for all j = 1,...,p, 7 appears in
ne cells. Now, in Ag, for all ¢ =1,... A, every 7 € V appears in p — n, cells, which are,
precisely, those cells it does not appear in Aj. Similar to this, in Ao, for all j =1,...,p,
each 7 € V appears in h — n, cells, which are, precisely, those cells it does not appear in
A;. Notice that since Aq is a SLR, then for all i =1,...,hand j =1,...,p, |Si;| = k,
where k > 0, thus Sj; # 0 for all i and j. Since S;; C V/, it follows that, S;; = V\S;; C V,
for all 7 and j hence S;; # () such that k' = [S};| > 0, where |S};| = [V\S;;| = v—k. Notice
that p —n, > 0, as n, < p since its QBD is binary and 7 € V does not appear in all the
cells—the blocks being incomplete. Similarly, h — n. > 0, as n. < h. It follows from these
discussion that As is a SLR on the set, V' of treatments.

Now, since Aj is a RGSLR, then its QBD is a RGD, thus has two distinct treatment
concurrence counts for all pairs of treatments. Denote by Ay, the QBD of Ay. Furthermore,
denote by A1 and A9, the two classes of concurrences. Then [A2 — A1| = 1 or equivalently,
Ao = A1 = 1. Notice that each 7 € V appears in hn, blocks, overall, hence since there are
hp blocks in Aj, it implies that 7 does not appear in hp — hn, = h(p — n,) blocks. Let
T1,T9,T3 € V. Let 7 appear with  in A1 blocks and with 73 in Ay blocks. Moreover, 7,
for instance, appears without 7 in hAn, — Ay blocks. Similarly, 71 appears without 73 in
hn, — A9 blocks.

We now investigate whether the QBD of As is a RGD. Let As denote the QBD of As.
We note that, for any cell in position (4, j), if 71,72 € S;j, then 7,7 ¢ ng. Conversely,
if m,m0 € Sl{j, then 71,7 ¢ S;;. Hence 71,72 € Sl{j if and only if 71,7 ¢ S;;. Similarly,
71,73 € Sj; if and only if 71,75 ¢ S;;. Let A} and Ay denote the treatment concurrence

counts for the pairs {7, 72} and {71, 73}, respectively, in Ay, that is, the respective number

h,p)

of blocks that these pairs of treatments appear together in As. Let B = {S”}El D=(1,1)

the set of all blocks in the design which has cardinality, |B| = hp. We have that

A = B = (JA1] + |A2] — A1) (6.5)

and
Ay = |B| = (|A1] + |A3] = A2) (6.6)

where A; = {S;; : 7, € S5}, for all I = 1,2,3. Note that |A;| = hn,, for all [ =1, 2,3.

Hence from (6.5), A} = hp — 2hn, + A\;. Similarly, from (6.6), \;, = hp — 2hn, + Aa.
Notice that |\, — A}| = [A2 — A1| = 1. This result holds for any set of treatments in V
which have different concurrence counts in A1, hence in Ay. Thus the QBD of Ay is a
RGD. Tt follows that As is an (h X p)/k’ RGSLR on the same treatment set as Ay, where
K =v—k.
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4 6|5 7|6 8|7 1|{8 2|1 3|2 43 5
5 8|6 1|7 2|8 3|1 412 5|3 64 7
3 714 8|5 1|6 2|7 3|8 41 5|2 6
5 8|6 1|7 2|8 3|1 412 5|3 6|4 7
3 714 8|5 1|6 2|7 3|8 41 5|2 6
1 212 3|3 4/4 5|5 6|6 7|7 8|8 1
3 714 8|5 1|6 2|7 3|8 41 5|2 6
1 212 3|3 4|4 5 6|6 7|7 8|8 1
4 6|5 7|6 8|7 1|8 2|1 32 4|3 5
1 212 3|3 414 5|5 6|6 7|7 8|8 1
4 6|5 7|6 8|7 1(8 2|1 32 43 5
5 8|6 1|7 2|8 3|1 412 5|3 6|4 7

Figure 6.4: A (4 x 8)/6 RGSLR for 8 treatments obtained via block complementation

Example 6.5.1. As an illustration, by applying block complementation to the (4 x 8)/2
RGSLR for 8 treatments shown in Figure 5.6 in Chapter 5, we obtain the (4x8)/6 RGSLR

for 8 treatments shown in Figure 6.4.

Comments. Notice that the designs shown in Figures 6.3 and 6.4 obtained by a direct
method via starter and block complementation, respectively, are isomorphic. This can be

seen by applying the permutation, «; to the rows of the design shown in Figure 6.4, where

1 2 3 4
a1 =

2 3 41
Similarly, if the permutation, ay (which reverses ) given below is applied to the rows of

the design shown in Figure 6.3, then it leads to the other design.

1 2 3 4
a9 =

4 1 2 3

Moreover, in general, a rearrangement of the pooled starter sets among the m cells

of the initial column leads to a different design each time. In particular, if step 5 of the
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1 3|1 3|1 21 2|2 3|2 3
4 co|4 5|4 5|4 c0|db x|H o©
2 3|1 22 3|1 2|1 4|1 4
4 513 o©o|4 00|33 5|5 oco|dH o0
1 212 411 3|3 4|1 2|1 2
5 o0 |b oc0|H o0|dH |3 4|3 4

Figure 6.5: A (3 x 6)/4 RGSLR for 6 treatments obtained via block complementation

procedure in section 6.4.1 is modified slightly by putting S934, S341, S412 and Sie3 in the
cells in positions (1,1), (2,1), (3,1) and (4, 1), respectively, then we get exactly the design
in Figure 6.4.

Example 6.5.2. From the first part of the design in Figure 5.20 in Chapter 5, that
is, the first 6 columns which constitute a (3 x 6)/2 RGSLR for 6 treatments; by block
complementation, we obtain the design shown in Figure 6.5.

Notice that the design shown in Figure 6.5, obtained via block complementation, is

identical to the design shown in Figure 6.2, obtained by a direct approach.

6.6 RGSLRs of larger sizes

As mentioned in section 6.1, a RGSLR of larger size can be obtained by adjoining a
BSLR to a RGSLR, where both constituent designs exist and are of conformable sizes.
Furthermore, by applying a suitable permutation of treatments to a RGSLR and then
adjoining it to the ‘parent’ RGSLR also gives another RGSLR of larger size, if both
designs also conform in size. We adopt this procedure to obtain designs of sizes larger
than that of a given ‘parent’ RGSLR.

Example 6.6.1. Let h =5, p = 15, k = 3 and v = 5. By putting a (5 x 5)/3 RGSLR
and a (5 x 10)/3 BSLR shown in Figures 6.1 and 4.1, respectively, side by side, we obtain
the (5 x 15)/3 RGSLR shown in Figure 6.6.

Example 6.6.2. Let h =3, p =12, k = 4 and v = 6. By applying the permutation « to

every treatment of the design in Figure 6.2 (the ‘parent’ design), where

1 2 3 4 5 o©

3451 0o 2

and then putting the resulting design with the ‘parent’ design, side by side, we obtain the

design shown in Figure 6.7.
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Figure 6.6: A (5 x 15)/3 RGSLR for 5 treatments
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Figure 6.7: A (3 x 12)/4 RGSLR for 6 treatments
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Chapter 7

Conclusion

7.1 Introduction

This chapter showcases, in summary form, the main results of the work that has been done
in this thesis, and also makes some relevant conclusion about the work. We consider semi-
Latin rectangles (SLRs) whose quotient block designs (QBDs) are balanced incomplete-
block designs (BIBDs), that is, the balanced semi-Latin rectangles (BSLRs) and those
that their QBDs are not balanced—the non-balanced semi-Latin rectangles (NBSLRs),
separately. For each case, we consider designs with block size 2 and those with block sizes
larger than 2. Moreover, a table showing some sets of parameters that can give designs for

each of BSLRs and RGSLRs is given. Some suggestions for further work are also given.

7.2 Balanced semi-Latin rectangles

We have developed some constructions for BSLRs of various classes and sizes, ranging
from the case where the block size, k is 2 to the case where k > 2. For k£ = 2, we have
employed, basically, two concepts, viz, graph distance and parallel classes to obtain basic
designs for those experimental situations where the number of treatments, v is odd and
even, respectively. An algorithm is given for each construction. These have been published:
see Uto and Bailey (2020). When v is odd, the algorithm produces a BSLR with h = v
rows and p = vd columns, where § = (v — 1)/2 which is precisely a (v x vd)/2 BSLR.
Similarly, when v is even, the corresponding algorithm produces designs with h = v/2
rows and p = v(v — 1)/2 columns. The two constructions via these algorithms serve as
basic constructions for obtaining larger designs.

For k > 2; if v is odd and k = 3, we have given a construction procedure which involves
a modification of the distance approach that was used to obtain designs for £ = 2. We have
also utilized the concepts of difference sets/difference families for Z,, the set of integers,
modulo v (when they exist) to obtain designs for those values of k that these exist. In

particular, if a difference set exists, then the design obtained from the construction has
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same number of rows as columns. We have always regarded Z, as {1, ...,v}. Furthermore,
if k£ is a prime power and v is the square of k, then the concept of affine resolvability via
a complete set of MOLSs and a square array of order k can also be employed to obtain
designs of appropriate sizes. The algorithm given for each of these procedures produces
the basic design from which larger designs can also be obtained.

In both cases, that is, whether k = 2 or k£ > 2, if certain conditions are satisfied, that
is, if in situations where multiple Latin squares are used for the basic construction and
the number of Latin squares involved is a nonprime, then certain rearrangements of the
basic design produce designs of different other sizes. In particular, if the number of Latin
squares used in the construction is a perfect square, then it is possible to obtain, as one
of the arrangements, a BSLR with same number of rows as columns. Moreover, designs
of larger sizes can be obtained from the basic design by making multiple copies of it and
then making appropriate juxtapositions of the copies, which may involve juxtaposing all
the copies side by side, under or a combination of these.

A BSLR does not always exist. It exists only if
vhn, = vpn. = khp (7.1)

and
AMv—=1)=hn.(k—1) =pn.(k—1), (7.2)

that is, (7.1) and (7.2) give necessary conditions for a BSLR to exist. Moreover, when a
BSLR exists, it is optimal over every other SLR of its size, thus giving the best design
for experiment: see Uto and Bailey (2020). This is so since its QBD is a BIBD, which is
known to be optimal (under a range of criteria) over all incomplete-block designs of its
size.

We present, in Table 7.1, some sets of parameters that can make a BSLR alongside
their constructions, if that has been covered by one of our methods. However, for any
set of parameters in the table which our construction methods do not cover, we leave it
blank. The Solution column contains some information regarding where the particular
design or its construction can be found in the thesis, quoting the relevant Figure label, if
the design has been written out or the relevant section, if the design is covered by one of
our methods but is not written out. Note that, wherever JSTP appears in the Solution
column in the table, it means that the design with the corresponding set of parameters
also appears in Uto and Bailey (2020), which is a publication in JSTP—an acronym for
Journal of Statistical Theory and Practice.

The table consists of parameter sets for designs with h < p, h and p being the number
of rows and columns, respectively. We note that if a design with h < p exists, then
there also exist a corresponding design with the values of h and p swapped (also swapping
the values of n, and n.) such that the new design has A’ = p rows and p’ = h columns,
where p > h. Furthermore, the various parameters have their usual meanings, for instance,

r = hn, = pn. denotes the replication number of each treatment in the design while b = hp
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denotes the number of blocks. n* specifies the number of different possible arrangements
into a BSLR (based on our methods) with the same value of b and other parameters while
toggling with the values of h and p (also adjusting the values of n, and n.) in situations
that h < p, for each set of parameters in the table. However, for a given set of parameters,
if h = p, and the set of parameters gives a basic design, then the value of n* = 1, as
can be seen from the table. Furthermore, if h < p, then for each set of parameters that
satisfy this, the value of h can be swapped with p (likewise n, and n.) to give another set
of parameters that can make an equivalent design—a design of the same size as would be
obtained via transposition of the former, which also generates the same number of designs
(possibilities) as with the former set of parameters, where in this case, there are more rows
than columns.

Now, whether h < p (as in the table) or A’ > p’ (after swapping), there may be a
possibility of obtaining a design which contains identical number of rows as columns. Let
h < p. Suppose p = he, and the basic construction involves e constituent Latin squares,
then if € is a perfect square, it may be possible to have one of the arrangements to have
identical number of rows as columns. But if € is a nonprime that is not a perfect square,
there are also other possibilities: see Uto and Bailey (2020). In all these cases, r remains
constant since the various QBDs are the same. Hence, overall, with the same QBD, if
h # p in the original set of parameters in the table, a total of 2n* designs can be generated
if € is a nonprime that is not a perfect square (n* with h < p and also another n* with
B’ > p', the swapped parameters). This is so since by the construction methods, for every
(h x p)/k BSLR there is a corresponding (h’ x p')/k BSLR, where h/ = p and p' = h
which can be obtained by changing the order of juxtaposition of the constituent designs.
However, if € is a perfect square, then, overall, the number of different arrangements
becomes 2(n* — 1) + 1 =2n* — 1.

For instance, by our construction methods, a design such as the (3 x 60)/2 BSLR
in S/N 14 of Table 7.1 can have its blocks arranged into a (6 x 30)/2 BSLR and also a
(12 x 15)/2 BSLR. By the construction methods, a (60 x 3)/2 BSLR, (30 x 6)/2 BSLR
and (15 x 12)/2 BSLR can be obtained by changing the other of juxtaposition each time,

thus giving 2n* = 6 designs, overall.

7.3 Non-balanced semi-Latin rectangles

When no BSLR exists, good SLRs can be found among RGSLRs (if they exist), partic-
ularly, if the number of blocks, hp is reasonably large. This is so since the QBD of a
RGSLR is a RGD, and RGDs, when they exist, are known to contain the D-optimal (or
A-optimal or E-optimal) design, provided the number of blocks is reasonably large: see
Cheng (1992). Cakiroglu (2018), under the A—optimality and D-optimality, asserts that,
RGDs, under the condition of having large number of blocks, contain the A-optimal (or

D-optimal) design, if any exists. Moreover, extending RGDs with copies of BIBDs produce
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designs with good statistical properties: see Cakiroglu (2018). If the QBD of a RGSLR
consists of a RGD and BIBD, we call it BIBD-extended RGSLR; however, in the case
where a BSLR is adjoined to RGSLR, we call it a BSLR~extended RGSLR.

For even v and k = 2, we have extended the constructions in Bailey and Monod (2001)
to obtain BIBD-extended RGSLRs for some values of h = m rows and p = m(6 + 2)
columns, where v = 2m and 0 = 1,2, 4. In particular, for § = 1, the construction involves
a Trojan square and for the other values of @ it involves some suitable permutations of the
treatments of the ‘parent’ design—the design obtained from the constructions in Bailey and
Monod (2001). For the permutation, if # = 2, then exactly 1 permutation is required and
if @ = 4, then 2 permutations are required, and the permutations are applied successively,
one after the other, to the treatments in the ‘parent’ design. Moreover, for odd v, we have
obtained constructions for designs with h = p = m and v = m using the concept of starter
in Zp,. This is further generalized to designs with more columns using the concept of
permutation. Starter sets in Z,, for small odd values of m up to 15 are given. Undirected
terrace provides a more convenient approach to generating the starter sets. Also, for the
case that v is odd, under certain conditions, as shown in section 5.8.4, a BSLR can be
realized from our construction of RGSLRs.

Moreover, for k > 2, our constructions are based on certain concepts like undirected
terrace. We have also exploited the constructions in Bailey and Monod (2001) to obtain
more constructions and this has been generalized to give a direct construction for designs of
sizes that can also be obtained via block complementation. In one of these direct methods,
there is some requirement that the order of the group be prime; and designs obtained
using this method is found to be identical to that obtained via block complementation.
The other direct construction produces designs that are isomorphic to those obtained via
complementation. However, with a slight modification of the procedure, it produces same
design as complementation would do.

In both cases, that is, for k > 2, larger designs can be obtained by adjoining a BSLR of
conformable size to a RGSLR or adjoining a RGSLR to another after a suitable permuta-
tion of treatments, that is, for a given ‘parent’ RGSLR, a suitable permutation is applied
to its treatments to obtain another RGSLR which is then adjoined to the ‘parent’ design.

Table 7.2 shows sets of parameters that can give a RGSLR, where x denotes the number
of treatments that can concur with another a higher number, A\* of times while y denotes
the number of treatments that concur with it less number, A’ of times, that is we have
assumed each treatment of the design to concur with x treatments a higher number of
times, \* and with y treatments less number of times, \’. Just like in Table 7.1, Table
7.2 contains parameter values for which h < p. Furthermore, if an (h x p)/k RGSLR for
v treatments exists, then there also exists a corresponding (p x h)/k RGSLR. Hence, for
each combination of parameters in the table that make a design, another set of parameters
not listed in the table can be obtained by exchanging the values of h and p, if h and p are

different values.
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7.4 Some important general remarks concerning the designs

Algorithms are given for the constructions and we note, in general, that among the designs
obtained, there are some whose number of rows are identical to the number of columns.
Being a SLR, the parameters, n, and n., denoting the number of times each treatment
appears in each row and in each column, respectively, are not all equal to 1. Hence a SLR
can have identical number of rows as columns without being a semi-Latin square (SLS).
Note in particular that it can only be a SLS if these two parameters are each equal to 1.
Moreover, if in addition to n, and n. being 1, the block size, k is also 1, then the design
is trivially a Latin square (LS).

For a fixed set of parameters, h, p and k, a (p x h)/k SLR can be obtained from an
(h x p)/k SLR by transposing the (h x p)/k SLR: see Uto and Bailey (2020).

Moreover, we have established that, for both BSLRs and RGSLRs, block complemen-
tation can be a useful concept for obtaining a new SLR (within either of these two classes)
from another, hence providing a convenient means of obtaining SLRs of these classes, par-
ticularly, for much higher values of k. For BSLRs, in the case where the design has precisely
2 rows or 2 columns and k = v/2, we have also considered other forms of complementation,
which we name column complementation and row complementation, respectively. Hence,
given any BSLR or RGSLR, a new BSLR or RGSLR, as the case may be, can be obtained
by employing the concept of block complementation, while in particular cases of BSLRs,
where there are 2 rows or 2 columns, column and row complementations, respectively, can
also be useful.

Among some classes of designs obtained, we have found some designs to be isomorphic.
Furthermore, complementation works in every case in obtaining a design of the class given
in section 6.5. However, the direct construction method given there that uses an exchange
algorithm works only for prime values of w and it also produces identical designs as
would be obtained via complementation. The method which involves a cyclic development
of initial blocks formed by pooled starter sets produce designs which are isomorphic to
those that would be produced via complementation, but with a slight modification of
the procedure which involves rearrangement/repositioning of the starter sets among the
cells in the initial column, it can produce designs that are identical to that obtained via

complementation.

7.5 Suggestions for further work

Efforts can be geared towards obtaining some more general constructions for good SLRs to
fill in the gap for designs of those sizes not covered by this work, particularly, for situations
where k > 2 and a BSLR fails to exist. More investigations can be made into the class of
RGSLRs.

Moreover, it is also worth investigating the isomorphism classes of SLRs.
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In experimental situations where the outcome of one observation might be affected by
other treatments in the same cell, there is need to consider obtaining designs that suit this
situation. Also, if the rows correspond to time, then there might be a carry-over effects
from the treatments in the same column but in the previous time. It might be of interest

to consider how to obtain designs for this purpose.

176



Table 7.1: Table of parameters for some BSLRs

S/N|v|k D | Ne|ng| A Construction b Solution
1 3 distance 9 Figure 3.1
2 12 Two copies of 1+ 18 Figure 3.26

juxtaposition beside
3 61 6 parallel class 12 Figure 3.5
4 12] 1 12 two copies of 3 + 24 Figure 3.31
juxtaposition beside
5 416123412 two copies of 3 + 24 Figure 3.32
juxtaposition underneath
6 2118{1|19|6]18 three copies of 3 + 36 Section 3.6
juxtapositions beside
7 616|336/ 18 three copies of 3 + 36 Figure 3.34
juxtaposition underneath
8 51101245120 distance 50 Figure 3.2;
JSTP
9 3115115315 parallel class 45 Figure 3.6;
JSTP
10 313011106 |30 two copies of 9 + 90 Section 3.6
juxtaposition beside
11 61151256130 two copies of 9 + 90 Section 3.6
juxtaposition underneath
12 31451111519 45 three copies of 9 + 135 Section 3.6
juxtaposition beside
13 911513 |51]9]45 three copies of 9 + 135 Section 3.6
juxtaposition underneath
14 3160 11(20(12]| 60 four copies of 9 + 180 Section 3.6
juxtaposition beside
15 6 (30| 2 [10]12]| 60 two copies of 10 + 180 Section 3.6
juxtaposition underneath
16 121154 | 5 |12 60 four copies of 9 + 180 Section 3.6
juxtaposition underneath
17 21 6| 7|42 distance 147 Figure 3.3
18 42 12|14 84 two copies of 17 + 294 Section 3.6
juxtaposition beside
19 141214 |6 |14]| 84 two copies of 17 + 294 Section 3.6
juxtaposition underneath
20 71632 |18(21|126 three copies of 17 + 441 Section 3.6

juxtaposition beside
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S/Nlv|k|h| p |neln.| XA| 7 Construction b Solution
21 21|21 | 6 | 6 |21|126] (rearrangement of 20) or three copies | 441 Section 3.6
of 174 juxtaposition underneath
22 7|84 ]2|24|28|168 four copies of 17 + 588 Section 3.6
juxtaposition beside
23 14| 42 | 4 |12|28|168 two copies of 18 + 588 Section 3.6
juxtaposition underneath
24 21128 | 6|8 |28[168 juxtaposition 588 Section 3.6
of transpose of 17 beside 21
25 4128 |1 |7 28 parallel class 112 Figure 3.7
26 4156|114 56 two copies of 25 + 224 Section 3.6
juxtaposition beside
27 812812|7]|8] 56 two copies of 25 + 224 Section 3.6
juxtaposition underneath
28 4184 |1 |21|12| &4 three copies of 25 + 336 Section 3.6
juxtapositions beside
29 12128 (3| 7 (12| 84 three copies of 25 + 336 Section 3.6
juxtaposition underneath
30 913628972 distance 324 Figure 3.4
31 2118|1814 141972 rearrangement of 30 324 Figure 3.24;
JSTP
32 9|72 |2 (16|18|144 two copies of 30 + 648 Section 3.6
juxtaposition beside
33 18136 | 4 | 8 |18]144 two copies of 30 + 648 Section 3.6
juxtaposition underneath
34 9 1108 | 2 |24|27|216 three copies of 30 + 972 Section 3.6
juxtaposition beside
35 18| 54 | 4 |12|27|216 three copies of 31 + 972 Section 3.6
juxtaposition beside
36 27136 | 6 | 8 127|216 three copies of 30 + 972 Section 3.6
juxtaposition underneath
37 9 1144 | 2 |32|36|288 four copies of 30 + 1296 Section 3.6
juxtaposition beside
38 18] 72 | 4 |16 |36 | 288 two copies of 33 + 1296 Section 3.6
juxtaposition beside
39 414 3|3 |8]|12 difference set or 16 Figure 4.18

block complementation

of a Latin square of order 4
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S/Nlv|k|h| p |neln.| XN | 7 Construction b Solution
40 211011{5] 4|10 distance + 20 Figure 4.19
column complementation
41 2120 |1]10] 8 |20 two copies of 40 + 40 Section 4.7
juxtaposition beside
42 411012|5] 8 |20 two copies of 40 + 40 Figure 4.21
juxtaposition underneath
43 2130 1]15| 12 30 three copies of 40 + 60 Section 4.7
juxtaposition beside
44 61103 |5]12 |30 three copies of 40 + 60 Section 4.7
juxtaposition underneath
45 2140 11]20]| 16 | 40 two copies of 41 + 80 Section 4.7
juxtaposition beside
46 4120 |2 |10| 16 | 40 two copies of 41 + 80 Section 4.7
juxtaposition underneath
47 81104 |5 16 | 40 four copies of 40 + 80 Section 4.7
juxtaposition underneath
48 7 7|21 difference set 49 Figure 4.6
49 14 14 | 42 | two copies of 48 + juxtaposition | 98 Section 4.4
beside or difference family
50 7121 131|921 | 63 |three copies of 48 4 juxtaposition | 147 Figure 4.2
beside or distance
51 7128|312 28 | &4 four copies of 48 + 196 Figure 4.9
juxtaposition beside or
difference family
52 7135|3|15] 35 |105 five copies of 48 + 245 Section 4.4
juxtaposition beside
53 7142 | 3 |18] 42 | 126 two copies of 50 + 294 Section 4.3
juxtaposition beside
54 14121 |6 |9 |42 |126 two copies of 50 + 294 Section 4.3
juxtaposition underneath
55 56 21| 48 |168 difference family 448 Section 4.4
56 112 421 96 | 336 two copies of 55 + 896 Section 4.4
juxtaposition beside
57 16| 56 | 6 |21| 96 |336 two copies of 55 + 896 Section 4.4
juxtaposition underneath
58 8 1168 | 3 |63|144|504 three copies of 55 + 1344 Section 4.4
juxtapositions beside
59 24| 56 | 9 |21]144|504 three copies of 55 + 1344 Section 4.4

juxtaposition underneath
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S/N h|lpl|ne|n-|A|r Construction b |n*| Solution
60 311211143 |12 MOLS/affine resolvable 36 | 2 |Figure 4.11
designs
61 6|2 12 rearrangement of 60 36 Figure 4.14
62 24| 1 24 two copies of 60 + 72 Section 4.5
juxtaposition beside
63 (9136 (12[2|4|6 |24 two copies of 60 + 72 | 2 | Section 4.5
juxtaposition underneath
64 1913|3361 129 (36 three copies of 60 + 108 | 3 | Section 4.5
juxtaposition beside
65 913|618/ 2|69 (36 three copies of 61 + 108| 3 | Section 4.5
juxtaposition beside
66 9139|1213 |49 (36 three copies of 60 + 108 | 3 | Section 4.5
juxtaposition underneath
67 | 9133 |48|1 |16|12|48 four copies of 60 + 144| 3 | Section 4.5
juxtaposition beside
68 |9 (3|6 |24 2|8 12|48 four copies of 61 + 144 | 3 | Section 4.5
juxtaposition beside
69 | 9 (3|12]12| 4 |4 |12|48| rearrangement of 67 (or 68) or four |144| 3 | Figure 4.23
copies of 60 + juxtaposition underneath
or a Latin square with symbols the
constituent Latin squares in 60
70 19 (3] 3(60|1/|20|15|60 five copies of 60 + 180| 3 | Section 4.5
juxtaposition beside
71 191(3]6(30]2|10|15|60 five copies of 61 + 180| 3 | Section 4.5
juxtaposition beside
72 19 1312|154 |5 |15|60 juxtaposition of transpose 180| 3 | Section 4.5
of 60 beside 69
73 1131313263 |6 |13|78 difference family 338| 1 | Figure 4.8
74 16|43 (152 ]10(18|30 block complementation of 9 45 | 1 |Figure 4.16
75 16 (14| 3 (30| 2 |20(36|60 block complementation of 10 90 | 2 | Section 4.6
76 | 6 (4| 6 |15]| 4 (10|36|60 block complementation of 11 90 | 2 | Section 4.6
77T 16 |4]3(45] 2 |30]|54|90 block complementation of 12 135| 2 | Section 4.6
78 16 (4] 9|15| 6 |10|54|90 block complementation of 13 135| 2 | Section 4.6
79 | 7|4 T7T|T7T|4]4]|14|28 block complementation of 48 49 | 1 |Figure 4.15
80 (1314|1313 4| 4 |13|52 difference set 169| 1 | Figure 4.7
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Table 7.2: Table of parameters for some RGSLRs

S/N P | ne |y NI r Construction b Solution
1 52| 2 21310 Starter sets + 25 | Figure 5.21
cyclic development
of initial blocks
2 151216 7 | 8 30| Adjoining a BSLR to a RGSLR | 75 | Figure 5.29
3 61112 1126 Adapting 18 | Figure 5.3,
BM (2001)-Method 2 (BTD) if the symbol
oo is replaced
by 6
4 91113 11219 27
5 12|14 2 | 3 12| Adjoining another RGSLR to | 36 | Figure 5.18
the design in S/N 3 (oo
retained) after a
suitable permutation
6 181116 31418 Adjoining two RGSLRs to 54 | Figure 5.20
the design in S/N 3 (oo
retained) after
suitable permutations
7 211 1|7 4|5 |21| Adjoining a (3 x 15)/2 BSLR | 63 | Figure 5.5
to the design in S/N 3
8 91213 3| 4 |18| Transposition of the design 54 | Section 5.6
in S/N 3 (oo retained)
and adjoining of two
RGSLRs to it after suitable
permutations
9 1212 | 4 4|5 |24 72
10 1213 |4 71836 108
11 1813 |6 10111154 162
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S/N| v |k|h Ne|ny |z |y| N | X | r Construction b Solution
12 | 7|2|7|7|2]2]|2 23|14 Starter sets + 49 | Figure 5.23
cyclic development
of initial blocks
13 1712711412 |4 1(4|2] 4|5 |28| Adjoining another RGSLR to | 98 | Figure 5.25
the design in S/N 12 after
a suitable permutation
14 17121712812 |8(2[4]9 [10]56| Adjoining four RGSLRs after | 196 | Figure 5.27
suitable permutations
15 1824 (8|1 |2(1|6]1]2]38 Adapting 32 | Figure 5.6
BM (2001)-Method 1 (Starter)
16 |8 (2|4 |12{1[3|5|2| 1|2 |12| Adjoining a (4 x 4)/2 Trojan | 48 | Figure 5.9;
square to the design see also
in S/N 15 Figure 5.10
17 | 8124 |16|1 |4 |2|5]2|3 |16 64
18 [ 8(2]4(36|1][9|1|6|5 |6 |36| Adjoining a (4 x 28)/2 BSLR | 144 | Figure 5.8
to the design in S/N 15
19 | 8|28 |12|2 |3 (3|43 |4 |24 96
20 | 8128|162 |4 (43|45 (32 128
21 | 8121812002 |5 (5[2|5]6 (40 160
22 | 81212163 |4 (6]|1|6 |7 (48 192
23 | 8121121203 |5 (4[3|8]9 (60 240
24 | 8212|2413 |6 |2|5|10|11|72 288
251912191912 (2|2|6]2)|3]18 Starter sets + 81 | Sections 5.7
cyclic development and 5.8
of initial blocks
26 | 91(219(27|2|6|6]|2]| 6|7 |54| Adjoining three RGSLRs after | 243 | Figure 5.28
suitable permutations
27 (10|25 (101 |2 1|8 1] 2|10 Adapting 50 | Figure 5.13

BM (2001)-Method 1 (Starter)
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S/N| v |k|h|p|nc|n.|z|y | N [X]|r Construction b Solution
28 [1012|5(20| 1|4 |2 2|3 (20| Adjoining another RGSLR to | 100 | Figure 5.12
the design in S/N 27 after
a suitable permutation
29 |10|2|5(30| 1|6 (3]6]3]4]30 Adjoining two RGSLRs 150 | Figure 5.19
to the design in S/N 27
after suitable permutations
30 [18]2|9(18| 1|2 |1|16] 1| 2|18 Adapting 162 | Figure 5.16
BM (2001)-Method 1 (Starter)
31 [18]219(36| 1|4 (2|15 2| 3 |36| Adjoining another RGSLR to |324 | Figure 5.15
the design in S/N 30 after
a suitable permutation
32 |5 (3|15|5(13 32|27 |8|15 Starter sets + cyclic 25 | Figure 6.1
development of initial blocks; also
by block complementation
33 [ 5(3|5(15|3 |9 (2| 2[22|23|45| Adjoining a BSLR to a RGSLR | 75 | Figure 6.6
34 (6 (3|24 |1|2(3|2]1]|2]|4 8
35 1631261 |3(2[/3[2]3]6 12
36 | 63|28 |1 |4(1]4]3]4]8 16
37 161314162 (3(4]1]4]5]|12 24
38 163482 (41(2/3]6]7]16 32
39 16413624 1]4]7|8|12 Direct construction via 18 | Figures 6.2
an exchange algorithm; also and 6.5
block complementation
40 | 6 |4(3|12|2 | 8 |2| 3 |14|15|24| Adjoining a RGSLR to another | 36 | Figure 6.7
after a suitable permutation
41 | 84|28 |14 |3]4|3|4]|8 16
42 |8 |44 8|2 ]4(6|1|6]|7]|16 32
43 | 81648316 1|6 |17|18|24 Pooled starter sets + cyclic 32 | Figures 6.3
development of initial blocks; and 6.4

also block complementation
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