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Abstract

Recently, new combinatorial structures called dis-

joint partial difference families (DPDFs) and ex-

ternal partial difference families (EPDFs) were

introduced, which simultaneously generalize par-

tial difference sets, disjoint difference families and

external difference families, and have applications

in information security. So far, all known construc-

tion methods have used cyclotomy in finite fields.

We present the first noncyclotomic infinite families

of DPDFs which are also EPDFs, in structures other

than finite fields (in particular cyclic groups and

nonabelian groups). As well as direct constructions,

we present an approach to constructing DPDFs/

EPDFs using relative difference sets (RDSs); as part

of this, we demonstrate how the well‐known RDS

result of Bose extends to a very natural construction

for DPDFs and EPDFs.
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1 | INTRODUCTION

Difference sets (DSs) and difference families are well‐studied combinatorial objects dating back to
the 1930s; difference families are useful for constructing balanced incomplete block designs (BIBDs)
[9, 36]. Disjoint difference families (DDFs) have recently received attention [4, 5, 10], with
applications to design theory [14] and information security [31]. In the early 2000s, motivated by
applications in cryptography, external difference families (EDFs) were introduced [32, 33] and have
been much studied (see, e.g., [6, 8, 18, 21]). In a recent paper [20], partial analogues of DDFs and
EDFs were introduced; these are called disjoint partial difference families (DPDFs) and external
partial difference families (EPDFs). A v s k λ μ( , , , , )‐DPDF (respectively, EPDF) is a set S of s disjoint
k‐subsets of an order‐v group, such that the multiset union of internal (respectively, external)
differences of the sets in S comprises λ copies of each nonidentity element in S, and μ copies of each
nonidentity element not in S. These also generalize the concept of a partial difference set (PDS) (see
[28, 29, 35]) and have applications in information security. In [20], construction methods were given
for DPDFs and EPDFs in GF q( ) (where q is a prime power) using cyclotomic techniques.
Cyclotomy has long been used to produce traditional difference families, beginning with the work of
[36]. This paper takes the first step in going beyond cyclotomy to present a range of other
construction methods in structures other than finite fields.

It is of particular interest to construct families of sets which are simultaneously DPDFs and
EPDFs. It is shown in [20] that such families must partition a PDS, which is regular if it is
proper. As well as the natural theoretical appeal of such examples, DPDFs which partition a
regular PDS correspond to a two‐class association scheme which means they can be used to
obtain partially balanced incomplete block designs (PBIBDs) (see [24] for details).

In [20], DPDFs/EPDFs are obtained by partitioning cyclotomic PDSs in finite fields; for
fields of prime order, these partition the quadratic residues (or nonresidues) modulo p. In this
paper, we address the following questions.

• Can DPDF/EPDF constructions be obtained in abelian groups other than GF q( ( ), +);
particularly for cyclic groups ℤv, where v is not prime?

• Can DPDF/EPDF constructions be obtained in nonabelian groups?

We provide explicit constructions answering both of these questions in the affirmative. We
observe that the LP‐packings introduced in [22] provide other examples of DPDF/EPDFs in a
range of finite abelian groups.

It is known [28, 29] that if D is a regular PDS inℤv, then there are just two possibilities: D or its
complement is the set of nonzero squares (equivalently, nonsquares) in GF v( ) with v 1 mod 4≡

prime, or else D {0}∪ or G D⧹ is a subgroup of G. Constructions of DPDFs and EPDFs partitioning
the former type of PDS was addressed in [20]; in this paper we address the latter situation (although
not limited to the cyclic group setting). In nonabelian groups, while the definitions of these
difference family‐type structures remain valid, very little is known. There are just a few nonabelian
EDFs in the literature (see, e.g., [19]), and before this paper there were no known constructions for
nonabelian DPDFs or EPDFs, so the nonabelian constructions presented here are significant.

We first present explicit constructions in cyclic groups. We next develop constructions in general
finite groups based on relative difference sets (RDSs), in which the subgroup not present in the
union of the sets of the DPDF/EPDF is precisely the forbidden subgroup for the RDS. In particular,
we show how the classic result of Bose [1] which originally constructed RDSs using finite geometry,
very naturally extends to a DPDF/EPDF construction in cyclic groups. We obtain a framework for

2 | HUCZYNSKA and JOHNSON

 15206610, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21930 by U

niversity O
f St A

ndrew
s U

niversity, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



using RDSs for DPDF/EPDF constructions which encompasses this example and generates many
others. Finally, we briefly present DPDFs and EPDFs in cyclic groups which demonstrate that not all
DPDFs must be EPDFs, and vice versa.

Any v s k λ( , , , , 0)‐DPDF which partitionsG H⧹ (for some subgroup H ofG) gives an instance
of a relative difference family. Relative difference families were introduced in [2] and
subsequently explored in various further papers (e.g., [3, 30]). These have mostly been studied
in abelian groups, and are closely related to the concept of group divisible designs. EPDFs also
give examples of bounded external difference families (see [33]).

2 | BACKGROUND

Throughout what follows, we let G be a group, written additively unless otherwise stated, and
let G* denote G {0}⧹ .

For a subset D of G, we define the multiset

D x y x y DΔ( ) = { − : }≠ ∈

and for sets D D G,1 2 ⊆ , we define the multiset

D D x y x D y DΔ( , ) = { − : , }.1 2 1 2∈ ∈

(In multiplicative notation these are D xy x y DΔ( ) = { : }−1 ≠ ∈ and D DΔ( , ) =1 2

xy x D y D{ : , }−1
1 2∈ ∈ respectively.)

For a family A A A= { , …, }s1 of disjoint subsets of G, we define

A AInt( ) = Δ( )
i

s

i
=1


and

A A AExt( ) = Δ( , ).
i j s

i j

1


≤ ≠ ≤

For g G∈ and S G⊆ , we denote the translate g S g s s S+ = { + : }∈ (multiplicatively,
gS gs s S= { : }∈ ).

We begin with a summary of relevant definitions (see [9, 20]).

Definition 2.1. Let G be a group of order v.

(i) A v k λ μ( , , , )‐partial difference set (PDS) is a k‐subset D of G with the property that
the multiset of differences DΔ( ) comprises each nonidentity element of D precisely
λ times, and each nonidentity element of G Dμ⧹ times. If λ μ= then D is simply
called a v k λ( , , )‐difference set (DS); otherwise the PDS is said to be proper. If the
PDS D satisfies D0 ∉ and D D= − (where D d d D− = {− : }∈ ) then it is said to be
regular.

HUCZYNSKA and JOHNSON | 3
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(ii) A v s k λ( , , , )‐disjoint difference family (DDF) is a collection of disjoint k‐subsets
S A A′ = { , …, }s1 of G* with the property that SInt( ′) comprises each nonidentity
element of G precisely λ times. If the disjointness condition is relaxed we obtain a
difference family (DF).

(iii) A v s k λ μ( , , , , )‐disjoint partial difference family (DPDF) is a collection of disjoint k‐
subsets S A A′ = { , …, }s1 of G* with the property that SInt( ′) comprises each
nonidentity element of S A= i

s
i=1∪ precisely λ times, and each nonidentity element

of G Sμ⧹ times. If λ μ= then S′ is a v s k λ( , , , )‐disjoint difference family (DDF).
(iv) A v s k λ( , , , )‐external difference family (EDF) is a collection of disjoint k‐subsets

S A A′ = { , …, }s1 of G* with the property that SExt( ′) comprises each nonidentity
element of G precisely λ times. An EDF which partitions G* is called near‐complete.

(iii) A v s k λ μ( , , , , )‐external partial difference family (EPDF) is a collection of disjoint k‐
subsets S A A′ = { , …, }s1 of G* with the property that SExt( ′) comprises each
nonidentity element of S A= i

s
i=1∪ precisely λ times, and each nonidentity element

of G Sμ⧹ times. If λ μ= then S′ is a v s k λ( , , , )‐external difference family (EDF).

Lemma 2.2.

(i) If S′ is a v s k λ μ( , , , , )1 1 ‐DPDF then

sk k λ sk μ v sk( − 1) = + ( − 1 − ).1 1 (1)

(ii) If S′ is a v s k λ μ( , , , , )2 2 ‐EPDF then

s s k λ sk μ v sk( − 1) = + ( − 1 − ).2
2 2 (2)

Proof. This is immediate upon double‐counting the elements of SInt( ′) and SExt( ′). □

We will also need the definition of an RDS, and its generalization, the divisible difference
set. For a comprehensive survey article on these structures, see [34].

Definition 2.3. Let G be a group of order mn and let H be a normal subgroup of G of
order n. A k‐subset R ofG is an m n k λ( , , , )‐relative difference set (RDS) inG relative to H

if the multiset RΔ( ) comprises each element in G H⧹ exactly λ times, and each
nonidentity element in H exactly 0 times. If n = 1 then R is a DS.

A counting argument shows that, for an m n k λ( , , , )‐RDS, we have the relation
k k mn n λ( − 1) = ( − ) .

Definition 2.4. Let G be a group of order mn and let H be a normal subgroup of G of
order n. A k‐subset D of G is an m n k λ μ( , , , , )‐divisible difference set (DDS) relative to H

if the multiset DΔ( ) comprises each nonidentity element of H exactly λ times, and each
element of G H⧹ exactly μ times. If λ = 0 then D is an RDS.

In general, more is known about RDSs than about DDSs.

4 | HUCZYNSKA and JOHNSON
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Remark 2.5. In Definition 2.3, it is possible to relax the condition that H is a normal
subgroup. An example of an RDS in A5 relative to a subgroup H of order 2 is
presented in [7], which satisfies all conditions of Definition 2.3, except for the
requirement that H is normal (this would be impossible since A5 is a simple group).

2.1 | DPDFs and EPDFs partitioning PDSs

In this section, we will explore the special properties of DPDFs and EPDFs which partition PDSs.
The following key result was proved in [20]:

Theorem 2.6. Let G be a group of order v. Let A A A= { , …, }s1 be a family of disjoint
subsets of G*, each of size k. Then any two of the following conditions implies the third:

(i) A partitions a v k λ μ( , , , )‐PDS in G;
(ii) A is a v s k λ μ( , , , , )1 1 ‐DPDF in G;
(iii) A is a v s k λ λ μ μ( , , , − , − )1 1 ‐EPDF in G.

Moreover, if the PDS in Theorem 2.6 is proper, then it is regular.
As mentioned in Section 1, results have been obtained [28, 29] which significantly restrict

the possibilities for regular PDSs. For cyclic groups, the following holds:

Theorem 2.7. Letℤv be the cyclic group of order v. Let S′ be a v s k λ μ( , , , , )1 1 ‐DPDF and a
v s k λ μ( , , , , )2 2 ‐EPDF in ℤv which partitions a proper PDS. Then

(i) if v is a prime and v 3 mod 4≡ then no such S′ exists;
(ii) if v is a prime and v 1 mod 4≡ then S′ partitions the set of nonzero quadratic residues

or the nonresidues modulo v;
(iii) if v is a composite number then S′ partitions a proper nontrivial subgroup H of ℤv or

its complement Hℤv⧹ .

Proof. It is known [28, 29] that if G is a cyclic group of order v and D is a regular PDS in
G then either v is an odd prime such that v 1 mod 4≡ and D is the set of quadratic
residues (or nonresidues) modulo v; or D {0}∪ or G D⧹ is a subgroup of G. □

Examples of DPDFs and EPDFs partitioning a PDS of each type are given below:

Example 2.8.

(i) Let G = ℤ13; the sets

{1, 3, 9}, {4, 10, 12}

form a (13, 2, 3, 0, 2)‐DPDF and a (13, 2, 3, 2, 1)‐EPDF which partition the quadratic
residues mod 13 (see [20]).

(ii) Let G = ℤ16 and H G= {0, 4, 8, 12} ≤ ; the sets

HUCZYNSKA and JOHNSON | 5
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{1, 9}, {5, 13}, {2, 14}, {6, 10}, {3, 15}, {7, 11}

form a (16, 6, 2, 0, 4)‐DPDF and (16, 6, 2, 14, 8)‐EPDF which partition G H⧹ (see
Theorem 3.6).

The following basic PDS result is useful (see [29]):

Lemma 2.9. Let G be a group of order mn with identity 0 and subgroup H of order n.

(i) The sets H , H {0}⧹ , G H⧹ and G H( ) {0}⧹ ∪ are PDSs, with H {0}⧹ and G H⧹ being
regular.

(ii) H {0}⧹ is an mn n n( , − 1, − 2, 0)‐PDS.
(iii) G H⧹ is an mn mn n mn n mn n( , − , − 2 , − )‐PDS.

In the case when a regular PDS D is a subgroup with the identity removed, then we can
characterize any DPDF or EPDF which partitions D, as follows.

Theorem 2.10. Let G be a group of order mn and H be a subgroup of G of order n. Let
D H= {0}⧹ .

(i) If S′ is an mn s k λ μ( , , , , )‐DPDF (respectively, EPDF) partitioning D, then μ = 0 and S′

is a near‐complete n s k λ( , , , )‐DDF (respectively, EDF) in the group H .
(ii) Each near‐complete n s k λ( , , , )‐DDF (respectively, EDF) in the group H corresponds to

an mn s k λ( , , , , 0)‐DPDF (respectively, EPDF) in G partitioning D.

Proof. For (i), we establish the DDF case; the EDF case then follows by Theorem 2.6. Let S′

be an mn s k λ μ( , , , , )‐DPDF partitioning D. By definition, SInt( ′) must comprise every
element of D (i.e., every nonidentity element of H) λ times and every nonidentity element of
G D⧹ (i.e., G H⧹ ) μ times. Since S D H= ⊆ , all elements of SInt( ′) lie in H*, and so μ = 0.
Thus SInt( ′) comprises λ copies of the nonidentity elements of H , and S′ partitions H*, so S′

is a near‐complete DDF in H . Correspondingly S′ is also a near‐complete EDF in H .
Part (ii) is clear, using the natural embedding of H into G. □

Example 2.11. It can be verified that {1, 4}, {2, 3} form a (5, 2, 2, 1)‐DDF and
(5, 2, 2, 2)‐EDF in ℤ5.

The group ℤ10 contains the subgroup H = {0, 2, 4, 6, 8} ℤ5≅ , via embedding
f : ℤ ℤ5 10→ , x x2↦ . Then {2, 8}, {4, 6} is a (10, 2, 2, 1, 0)‐DPDF and (10, 2, 2, 2, 0)‐
EPDF in ℤ10.

Since EDFs have been well‐studied elsewhere (see [33] and references therein), we
therefore focus on the situation when the PDS D is the complement of a subgroup of G.

The next result guarantees that there exists a DPDF/EPDF of this type, in any group G

containing a normal subgroup H .

Theorem 2.12. Let G be a group of order mn and H a normal subgroup of G of order n.
Then the set of cosets of H in G, excepting H itself, forms an mn m n mn n( , − 1, , 0, − )‐
DPDF and an mn m n mn n( , − 1, , − 2 , 0)‐EPDF.

6 | HUCZYNSKA and JOHNSON
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Proof. By Lemma 2.9, G H⧹ is an mn mn n mn n mn n( , − , − 2 , − )‐PDS. The cosets of
H in G, other than H itself, partition G H⧹ and for each, its internal difference multiset
comprises n copies of H* and 0 copies of G H⧹ . So these cosets from an
mn m n mn n( , − 1, , 0, − )‐DPDF and consequently an mn m n mn n( , − 1, , − 2 , 0)‐
EPDF by Theorem 2.6. □

We end this section with a result about the possible parameters for DPDFs/EPDFs which
partition the complement of a subgroup. We first need a technical lemma which in fact applies
more widely to any DPDF or EPDF; note however it will never apply to any of the DPDFs or
EPDFs from [20] which partition a cyclotomic class.

Lemma 2.13. If sk vgcd( , − 1) = 1 then

(i) For a v s k λ μ( , , , , )1 1 ‐DPDF, either μ = 01 or μ sk=1 .
(ii) For a v s k λ μ( , , , , )2 2 ‐EPDF, either μ = 02 or μ sk=2 .

Proof. For (i), we use Equation (1); rearranging we see that

sk k sk λ μ μ v( − 1) = ( − ) + ( − 1).1 1 1

Hence sk μ v( − 1)1 ; since sk and v − 1 are coprime, sk μ1 , but note μ sk1 ≤ since there
are sk elements in the sets of S′. Hence μ = 01 or μ sk=1 . Part (ii) follows from a similar
rearrangement of Equation (2). □

Theorem 2.14. Let G be a group of order v mn= . Suppose S′ is a v s k λ μ( , , , , )1 1 ‐DPDF
and a v s k λ μ( , , , , )2 2 ‐EPDF that partitions G H⧹ , where H G≤ has order n. Then

(i) n μ1 and n μ2 .
(ii) If mn n mngcd( − , − 1) = 1 then S′ is one of the following:

(a) an mn s k k( , , , − 1, 0)‐DPDF and an mn s k mn n k mn n( , , , − 2 − + 1, − )‐
EPDF;

(b) an mn s k k n mn n( , , , − , − )‐DPDF and an mn s k mn n k( , , , − − , 0)‐EPDF.
(iii) If n = 2 then S′ is one of the following:

(a) an m s k k(2 , , , − 1, 0)‐DPDF and an m s k m k m(2 , , , 2 − 3 − , 2 − 2)‐EPDF;
(b) an m s k k m(2 , , , − 2, 2 − 2)‐DPDF and an m s k m k(2 , , , 2 − 2 − , 0)‐EPDF.

Proof. For (i), using the fact that sk mn n= − and v mn− 1 = − 1 in Equation (1), we
have that

n m k λ n m μ n( − 1)( − 1) = ( − 1) + ( − 1).1 1

So n μ n( − 1)1 , but since n ngcd( − 1, ) = 1, we must have n μ1 . We may apply a
similar argument using Equation (2) to see n μ2 . Part (ii) is an application of Lemma 2.13.
For part (iii), sk v mn n mngcd( , − 1) = gcd( − , − 1) and any common divisor of mn n−

and mn − 1 divides mn mn n n− 1 − ( − ) = − 1, i.e., these quantities are coprime when
n = 2. □

HUCZYNSKA and JOHNSON | 7

 15206610, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21930 by U

niversity O
f St A

ndrew
s U

niversity, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Constructions producing DPDFs/EPDFs of type(a) in Theorem 2.14 (ii)/(iii) are presented
in Section 4 using RDSs, while Section 3 includes constructions giving DPDFs/EPDFs of type
(b) in cyclic groups.

3 | CYCLIC DPDFs/EPDFs

We present constructions for infinite families of DPDFs/EPDFs such that G is a cyclic group, H

is a subgroup of G and the DPDF/EPDF partitions G H⧹ .
In this section, we will use the group ring notation whereby λS indicates the multiset

comprising λ copies of a set S (so in particular λ x{ } indicates λ copies of the singleton set x{ }).
In general we shall avoid this notation in the rest of the paper, to avoid confusion with
multiplicative translates of a set.

We first introduce a family of subsets Si of ℤ m2 (m > 3 odd) which have the useful property
that SΔ( )i and S SΔ( , )i j consist entirely of unions of Sk 's and copies of H {0}⧹ .

Proposition 3.1. Let m > 3 be an odd integer and let G = ℤ m2 . Let H m= {0, } be the
order‐2 subgroup of G.

For i m1 2 − 1≤ ≤ , define

S i m i m i m i= { , − , + , 2 − } ℤ .i m2⊆

Then

(i) For i m1 2 − 1≤ ≤ ,

S S S S= = = .i m i m i m i− + 2 −

In particular S S S, , …,1 2 m−1
2

comprise all the distinct Sj in G ( j m1 2 − 1≤ ≤ ).

(ii) Each S = 4i  and S S{ , …, }1 m−1
2

partition G H⧹ .
(iii) S m SΔ( ) = 4{ } 2 .i i2∪

(iv) S S S SΔ( , ) = 2 2 .i j i j i j− +∪

Proof. Part (i) is immediate from the definition of Si. For part (ii), the fact that m is odd
guarantees that all 4 elements are distinct. It is clear that as i runs through 1, …, m − 1

2
, the

sets Si account for all nonidentity elements of G other than m.
For part (iii), write S A B=i i i∪ , where i1

m − 1

2
≤ ≤ , A i m i= { , + }i and

B m i m i= { − , 2 − }i . Then S A A B B A BΔ( ) = Δ( ) Δ( , ) Δ( , ) Δ( )i i i i i i i∪ ∪ ∪ , where
A B m mΔ( ) = Δ( ) = { , }i i , A B i i m i m i AΔ( , ) = {2 , 2 , + 2 , + 2 } = 2i i i2 and B A BΔ( , ) = 2i i i2 .
For part (iv), S S A A A B B A B BΔ( , ) = Δ( , ) Δ( , ) Δ( , ) Δ( , )i j i j i j i j i j∪ ∪ ∪ , where

A A AΔ( , ) = 2i j i j− , A B AΔ( , ) = 2i j i j+ , B A BΔ( , ) = 2i j i j+ and B B BΔ( , ) = 2i j i j− . Hence
S S S SΔ( , ) = 2 2i j i j i j− +∪ . □

8 | HUCZYNSKA and JOHNSON
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Theorem 3.2. Let m > 3 be an odd number. Let G = ℤ m2 and H m G= {0, } ≤ .
The family of sets S S i′ = { : 1 }i

m − 1

2
≤ ≤ in G given by

S i m i m i m i= { , − , + , 2 − }i

is a m m(2 , , 4, 2, 2 − 2)
m − 1

2
‐DPDF and a m m(2 , , 4, 2 − 6, 0)

m − 1

2
‐EPDF which partitions

G H⧹ .

Proof. By Proposition 3.1, the family S′ partitions S G H= ⧹ . We consider

S SInt( ′) = Δ( )i i=1

m−1
2∪ . Again by Proposition 3.1, the multiset SΔ( )i comprises 4 copies of

m{ } and 2 copies of S i2 . So

S
m

m S S S SInt( ′) = 4
− 1

2
{ } 2( ).m m2 4 −3 −1



 


 ∪ ∪ ∪ ⋯ ∪

If m 1 mod 4≡ ,

S S S S S S S S=m m m m2 4 −1 2 4 − −3
2

−1m−1
2

∪ ∪ ⋯ ∪ ∪ ∪ ⋯ ∪ ∪ ⋯ ∪

while if m 3 mod 4≡ ,

S S S S S S S S= .m m m m2 4 −1 2 4 − −1
2

−1m−3
2

∪ ∪ ⋯ ∪ ∪ ∪ ⋯ ∪ ∪ ⋯ ∪

In either case this union equals S S S S S=1 2 3 m−1
2

∪ ∪ ∪ ⋯ . Hence SInt( ′) comprises

m2 − 2 copies of m{ } and 2 copies of G H⧹ , so is a m m(2 , , 4, 2, 2 − 2)
m − 1

2
‐DPDF. Since

G H⧹ is a m m m m(2 , 2 − 2, 2 − 4, 2 − 2)‐PDS, S′ is a m m(2 , , 4, 2 − 6, 0)
m − 1

2
‐EPDF. □

For m = 3, Theorem 3.2 can still be used but, rather than constructing a family of sets, it
yields just one set {1, 2, 4, 5} which is an RDS.

Example 3.3.

(i) Applying Theorem 3.2 with m = 5 demonstrates that

{1, 4, 6, 9}, {2, 3, 7, 8}

form a (10, 2, 4, 2, 8)‐DPDF and (10, 2, 4, 4, 0)‐EPDF in ℤ10.
(ii) Applying Theorem 3.2 with m = 9 demonstrates that

{1, 8, 10, 17}, {2, 7, 11, 16}, {3, 6, 12, 15}, {4, 5, 13, 14}

form a (18, 4, 4, 2, 16)‐DPDF and (18, 4, 4, 12, 0)‐EPDF in ℤ18.

HUCZYNSKA and JOHNSON | 9
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Next, we present a construction inℤ p2 , where p is a prime congruent to 1 mod 4. It uses the
fact that the nonzero squares in GF p( ) form a PDS when p 1 mod 4≡ [29].

Theorem 3.4. Let p be a prime congruent to 1 mod 4. Let G be the additive group ℤ p2

and let H p G= {0, } ≤ .
Define subsets A A,0 1 of ℤ p2 as follows:

• A s s p s is a nonzero quadratic residue modulo p= { , + ℤ : }p0 2∈

• A t t p t is a quadratic nonresidue modulo p= { , + ℤ : }p1 2∈ .

Note A A p= = − 10 1    and A A Hℤ { } =p2 0 1⧹ ∪ . Then

(i) ( ) ( )A A A p pΔ( ) = ( − 1){ }.
p p

0
− 5

2 0
− 1

2 1∪ ∪

(ii) ( ) ( )A A A p pΔ( ) = ( − 1){ }.
p p

1
− 5

2 1
− 1

2 0∪ ∪

(iii) A A{ , }0 1 forms a p p p p(2 , 2, − 1, − 3, 2 − 2)‐DPDF and a p p p(2 , 2, − 1, − 1, 0)‐
EPDF in ℤ p2 .

Proof. Let Q a a= { , …, }p2 1 p−1
2

be the quadratic residues modulo p, viewed as elements

ofℤ p2 ; similarly, let N b b= { , …, }p2 1 p−1
2

be the quadratic nonresidues modulo p, viewed

as elements of ℤ p2 . For later convenience, we order the elements of Q p2 in increasing
order when viewed as integers, i.e., a a a p0 < < < <1 2 p−1

2
⋯ as integers. Then inℤ p2 ,

A a a p a p a p a Q p Q= { , …, } { + , + , …, + } = ( + ),p p0 1 1 2 2 2p p−1
2

−1
2

∪ ∪

where p Q p x x Q+ = { + : }p p2 2∈ .
Consider AΔ( )0 . Clearly

A Q Q p Q p Q Q p QΔ( ) = Δ( ) Δ( , + ) Δ( + , ) Δ( + ).p p p p p p0 2 2 2 2 2 2∪ ∪ ∪

The multiset of internal differences of a set is unchanged by the translation of the set,
so Q p QΔ( ) = Δ( + )p p2 2 . Since in ℤ p2

a p a p a a p a a p a a

p a a

− ( + ) = − + ( − ) = + ( − ) and ( + ) −

= + ( − ),

i j i j i j i j

i j

we have that Q p Q a p a a a Q p Q pΔ( , + ) = { − ( + ) : , } = ( + Δ( ) + ( ){ }p p i j i j p p
p

2 2 2 2
− 1

2
∈

(in this multiset, unlike in QΔ( )p2 , we have a contribution from terms with indices i j= ).

A similar argument shows that p Q Q p Q pΔ( + , ) = ( + Δ( )) + ( ){ }p p p
p

2 2 2
− 1

2
. Hence, to

determine AΔ( )0 , it suffices to determine QΔ( )p2 .
Denote by Qp the nonzero quadratic residues modulo p viewed as elements ofℤp. It is

well known (see [29]) that, as a subset of ℤp, Qp is a p( , , , )
p p p− 1

2

− 5

4

− 1

4
‐PDS (where the

10 | HUCZYNSKA and JOHNSON
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element {0} also occurs as an internal difference with frequency p − 1

2
). Due to the order

imposed on the elements of Q p2 , it is clear that the elements D a a a a= { − : > }p
i j i j>

2 of
QΔ( )p2 will be precisely the same integers as the corresponding elements

D a a a a= { − : > }p
i j i j> in QΔ( )p , while the elements D a a a a= { − : < }p

i j i j<
2 of QΔ( )p2

will be p D+ p
<, where D a a a a= { − : < }p

i j i j< in QΔ( )p . Combining the multisets QΔ( )p2

and Q p QΔ( , + )p p2 2 therefore yields p − 5

4
copies of Q p Q A( + ) =p p2 0∪ , p − 1

4
copies of

N p N A( + ) =p p2 2 1∪ , and p − 1

2
copies of p{ }. Combining all multisets which make up

AΔ( )0 yields the result.
A precisely analogous argument holds for the quadratic nonresidues N p2 to yield part

(ii) (since Np, the set of quadratic nonresidues modulo p viewed as elements ofℤp, is also

a p( , , , )
p p p− 1

2

− 5

4

− 1

4
‐PDS in ℤp). Finally, combining (i) and (ii) shows that the internal

differences of A A{ , }0 1 comprise p+ = − 3
p p− 5

2

− 1

2
copies of each element of

A A G H=0 1∪ ⧹ , and p2( − 1) copies of the nonzero elements of H , hence form a
DPDF with the stated parameters. Since G H⧹ is a p p p p(2 , 2 − 2, 2 − 4, 2 − 2)‐PDS, the
EPDF result follows. □

Example 3.5.

(i) For p = 5, A = {1, 4, 6, 9}0 and A = {2, 3, 7, 8}1 in ℤ10 form a (10, 2, 4, 2, 8)‐DPDF
and a (10, 2, 4, 4, 0)‐EPDF.

(ii) For p = 13,

A = {1, 3, 4, 9, 10, 12, 14, 16, 17, 22, 23, 25}0

and

A = {2, 5, 6, 7, 8, 11, 15, 18, 19, 20, 21, 24}1

form a (26, 2, 12, 10, 24)‐DPDF and a (26, 2, 12, 12, 0)‐EPDF.

Observe that Example 3.5 (i) is the same DPDF/EPDF obtained in Example 3.3. This is
because, in GF (5), the set of nonzero squares is {1, −1}.

In [27], a characterization is given for nontrivial reversible DDSs in cyclic groups (reversible
means that D D= −1 for the DDS D, where D d d D= { : }−1 −1 ∈ ). The result shows that (up to
complementation and equivalence) there are only two possibilities for such a DDS D and group
G. The first possibility is that G = ℤ p2 , where p is an odd prime with p 1 mod 4≡ and D is

precisely A {0}0 ∪ from Theorem 3.4; D is a p p p( , 2, , − 1, )
p − 1

2
‐DDS in G relative to

H p= {0, }. Our proof of Theorem 3.4 demonstrates directly how the PDS of quadratic residues
mod p gives the required properties for this DDS (whereas the proof in [27] follows from a
structural characterization using Sylow subgroups, combined with parameter restrictions from
[29], so is not constructive).

Finally, we present an infinite family of DPDF/EPDFs constructed via coset partitioning.

HUCZYNSKA and JOHNSON | 11
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Theorem 3.6. Let G = ℤ d12 +4, where d ℕ∈ , and define the subgroups
H d d d= {0, 3 + 1, 6 + 2, 9 + 3} ℤ4≅ and K d= {0, 6 + 2} ℤ2≅ .

Let a H a H{ + , …, + }d1 3 be the cosets of H in G, other than H itself.
Define S′ as follows:

• partition each a H+i ( i d1 ≤ ≤ ) into two nontrival cosets of K , namely, a K+i and
b K+i , where b a d= + (3 + 1)i i ;

• partition each a H+j (d j d+ 1 3≤ ≤ ) into two subsets Bj and Cj, each of the form d d{ , }k l ,
where d d d− = 3 + 1l k (i.e., a a d{ , + (3 + 1)}j j and a d a d{ + (6 + 2), + (9 + 3)}j j or
a d a{ + (9 + 3), }j j and a d a d{ + (6 + 2), + (9 + 3)}j j );

• take S′ to be this collection of d6 sets, each of size 2.

Then S′ is a d d d(12 + 4, 6 , 2, 0, 4 )‐DPDF and a d d d d(12 + 4, 6 , 2, 12 − 4, 8 )‐EPDF.

Proof. It is clear that the sets of S′ partition G H⧹ . Since K KΔ( ) = 2( {0})⧹ and the
multiset of internal differences is unchanged by translation, for any g K+ (g G∈ ), the
multiset g K KΔ( + ) = 2( {0})⧹ . So by partitioning each a H+i ( i d1 ≤ ≤ ) into a K+i

and b K+i , then computing a KΔ( + )i and b KΔ( + )i , we obtain a collection of multisets
comprising d4 copies of d{6 + 2} in total. For each set of the form Bj or Cj, we have

B C d d H KΔ( ) = Δ( ) = {3 + 1, 9 + 3} =j j ⧹ . By partitioning each a H+j (d j d+ 1 3≤ ≤ )
into Bj and Cj, and for each computing BΔ( )j and CΔ( )j , we obtain d4 copies of H K⧹ .
Hence SInt( ′) comprises d4 copies of H {0}⧹ and zero copies ofG H⧹ , so S′ is a DPDF with
the stated parameters. Since G is a d d d d(12 + 4, 12 , 12 − 4, 12 )‐PDS, S′ is also an EPDF
with the stated parameters. □

For a given d, Theorem 3.6 yields several (equally valid) DPDFs/EPDFs depending on the
choices made for the sets.

Example 3.7. Taking d = 1 in Theorem 3.6 will produce a (16, 6, 2, 0, 4)‐DPDF and
(16, 6, 2, 14, 8)‐EPDF which partition G H⧹ , where G = ℤ16 and H = {0, 4, 8, 12}.

(i) From Example 2.8 (ii), one example is {1, 9}, {5, 13}, {14, 2}, {6, 10}, {15, 3}, {7, 11}.
(ii) A different example is {3, 11}, {7, 15}, {13, 1}, {5, 9}, {2, 6}, {10, 14}.

4 | RDS ‐BASED CONSTRUCTIONS FOR DPDFs/EPDFs

In this section, we will show how RDSs can naturally be used to construct DPDFs.
RDSs were first introduced by Bose in [1], though they were not named as such; he

presented his result as the “affine analogue” of Singer's Theorem on DSs. The name and
concept of RDS were formally introduced by Elliott and Butson in [12]. The original
construction of Bose for an RDS has parameters q q q( + 1, − 1, , 1), and is couched in terms of
finite geometry; a formulation in terms of finite fields is given in [15]. A more general result

with parameters q q q( , − 1, , )
q

q
r r− 1

− 1
−1 −2

r

has been proved in various other ways, including via

linear recurring sequences [12] and (in a particularly clear exposition) via linear
functionals [26].

12 | HUCZYNSKA and JOHNSON
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4.1 | Extending the Bose RDS construction to DPDFs/EPDFs

Our first result demonstrates how Bose's original construction elegantly extends to a
construction of a DPDF. Each of the component sets is a Bose RDS. We present it first in
finite field terminology then outline the finite geometry viewpoint.

Theorem 4.1. Let q be a prime power and let α be a primitive element of GF q( )2 with
primitive polynomial f over GF q( ). For each α GF q( )i 2∈ ( i q0 − 22≤ ≤ ), there exist
a b GF q, ( )i i ∈ such that α a b α= +i

i i .

(i) For each c GF q( )*∈ , let

S α GF q α a cα{ ( )* : = + }.c
i i

i
2≔ ∈

Then the family S{ }c c GF q( )*∈ is a multiplicative q q q q( − 1, − 1, , − 1, 0)2 ‐DPDF and a
multiplicative q q q q q q q( − 1, − 1, , ( − 1)( − 2), − )2 2 ‐EPDF in GF q( )*2 .

(ii) For each c GF q( )*∈ , let

S i α S i q′ { : , 0 − 2} ℤ .c
i

c q
2

−12≔ ∈ ≤ ≤ ⊆

Then the family S{ ′}c c GF q( )*∈ is an additive q q q q( − 1, − 1, , − 1, 0)2 ‐DPDF and an
additive q q q q q q q( − 1, − 1, , ( − 1)( − 2), − )2 2 ‐EPDF in ℤq −12 .

Proof. Let c GF q( )*∈ . To construct the set Sc, we first form the multiplicative cosets of
GF q( )* in GF q( )*2 , and express their elements in the form a bα+ (a b GF q, ( )∈ ) via the

primitive polynomial. There are q= + 1
q

q

− 1

− 1

2

cosets, each of the form Ci where

C α GF q= ( )*q
0

+1  ≅ and C α C=i
i
0 ( i q0 ≤ ≤ ) (each of size q − 1). Each coset has the

form

C tα t GF q ta tb α t GF q= { : ( )*} = { + : ( )*}.i
i

i i∈ ∈

Observe that, in each Ci other thanC0, there is a unique element whose coefficient of α
is c, namely, cb a b α( + )i i i

−1 . Hence for each c GF q( )*∈ , we have

{ }S cb a b α cb a b α cb a b α= ( + ), ( + ), …, ( + ) .c q q q1
−1

1 1 2
−1

2 2
−1

As c runs through GF q( )*, the q − 1 sets S{ }c partition the elements of GF q C( )*2
0⧹ .

Now, each Sc is a (multiplicative) q q q( + 1, − 1, , 1)‐RDS inGF q( )*2 with respect to the
multiplicative subgroup αq+1 . In fact, any one of these is a Bose RDS. To see that no
element of C0 arises as a (multiplicative) difference, observe that each element of Sc is in a
distinct coset ofC0. It can be shown by direct calculation in the finite field that every element
of GF q C( )2 0⧹ arises precisely once as a difference, by considering the elements of SΔ( )c
directly (details are left to the reader). Hence the family S{ }c c GF q( )*∈ form a (multiplicative)
q q q q( − 1, − 1, , , 0)2 ‐DPDF and q q q q q q q( − 1, − 1, , ( − 1)( − 2), − )2 2 ‐EPDF.
Finally, take the set of powers of α to convert each Sc to a set

S i α S i q′ = { : , 0 − 2} ℤc
i

c q
2

−12∈ ≤ ≤ ⊆ . It is clear that this yields a collection

HUCZYNSKA and JOHNSON | 13
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S{ ′}c c GF q( )*∈ of additive q q q( + 1, − 1, , 1)‐RDSs which form an additive DPDF and

EPDF in ℤq −12 , with the same parameters as in the multiplicative case. □

This has a natural interpretation in finite geometry. Consider a bα GF q+ ( )2∈ as the
point a b( , ) in the affine plane AG q(2, ). The construction above may be viewed as taking
sets which are lines in a given parallel class (in this case, the class with y c= ). A parallel
class has q lines, each with q points, and the lines in the class partition the points of the
affine plane.

From Bose's paper [1], each line with c 0≠ in the parallel class gives an RDS with the
required parameters, and taking all q − 1 such lines, we obtain the DPDF described. To see this
directly, replace each point in AG q(2, ) by the corresponding power of α via the above
identification. Since (0, 0) does not correspond to a power of α, the line with c = 0 is missing a
point: the differences between all remaining points on this line are all multiples of q + 1. This
corresponds to our omitted subgroup. For any other line, the differences will be precisely one
occurrence of each of the q q( − 1) elements of ℤq −12 that are not multiples of q + 1,
corresponding to our RDS.

We note that the generalized RDS construction with parameters q q q( , − 1, , )
q

q
r r− 1

− 1
−1 −2

r

cannot be used in this way to create a DPDF.

Example 4.2. Consider GF (25) and let α be a primitive element, with primitive
polynomial x x+ + 22 over GF (5). We have

α α α α α α α α α α, = 3 + 4 , = 2 + 4 , = 2 + 3 , = 4 + 4 , = 2.2 3 4 5 6

Here C α α α α= {1 = , 2 = , 3 = , 4 = }0
0 6 18 12 , C α α α α= { , 2 , 3 , 4 }1 , C α= {3 + 4 , 1 +2

α α α3 , 4 + 2 , 2 + }, C α α α α= {2 + 4 , 4 + 3 , 1 + 2 , 3 + }3 , C α α α= {2 + 3 , 4 + , 1 + 4 ,4

α3 + 2 }, C α α α α= {4 + 4 , 3 + 3 , 2 + 2 , 1 + }5 .
Hence S α α α α α= { , , , , }1

1 14 15 10 17 . Taking the powers of α, we obtain
S′ = {1, 14, 15, 10, 17}1 : it can be checked that its internal differences comprise 1 copy
each of ℤ {0, 6, 12, 18}24⧹ and no copies of {6, 12, 18}.

The other sets are obtained similarly:

• S α α α α α S= { , , , , } and ′ = {7, 20, 21, 16, 23}.2
7 20 21 16 23

2

• S α α α α α S= { , , , , } and ′ = {19, 8, 9, 4, 11}.3
19 8 9 4 11

3

• S α α α α α S= { , , , , } and ′ = {13, 2, 3, 22, 5}4
13 2 3 22 5

4 .

Each Sc is a (6, 4, 5, 1)‐RDS and S S S S{ , , , }1 2 3 4 is a (24, 4, 5, 4, 0)‐DPDF and a
(24, 4, 5, 12, 20)‐EPDF.

4.2 | A general RDS construction for DPDFs/EPDFs

In this section, we present an important general approach to constructing DPDFs and EPDFs
using RDSs. When dealing with groups which are not necessarily abelian, we will use
multiplicative notation.

14 | HUCZYNSKA and JOHNSON
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Proposition 4.3. Let G be a group of order mn and let H be a (not necessarily normal)
subgroup of G of order n. If T D D= { , …, }s1 is a family of disjoint k‐subsets of G such that

(i) each Di ( i s1 ≤ ≤ ) is an (m n k λ, , , )‐RDS in G relative to H ;
(ii) T partitions G H⧹ ;

then T is an mn s k sλ( , , , , 0)‐DPDF and an mn s k mn n sλ mn n( , , , − 2 − , − )‐EPDF.

Proof. The multiset TInt( ) comprises sλ copies of each element of G H⧹ , and 0 copies of
H , andT partitions G H⧹ , henceT is an mn s k sλ( , , , , 0)‐DPDF. By Lemma 2.9, G H⧹ is an
mn mn n mn n mn n( , − , − 2 , − )‐PDS and so by Theorem 2.6, T is an
mn s k mn n sλ mn n( , , , − 2 − , − )‐EPDF. □

One natural method of producing a collection of disjoint sets with similar properties is to
take an original set and then form a collection of its translates by suitable group elements. The
next result, based on a lemma in [15], indicates what “suitable” means in this context.

Lemma 4.4. Let G be a group, H a (not necessarily normal) subgroup of G and let D be
an m n k λ( , , , )‐RDS relative to H .

Let g g G1 2≠ ∈ . The translates g D1 and g D2 of D are disjoint if and only if g g H
2
−1

1 ∈ .

Proof. Suppose there is an element in g D g D1 2 ∩ , i.e., g d g d=1 1 2 2 for some d d D,1 2 ∈ .
Then g g d d=

2
−1

1 2 1
−1. If g g H

2
−1

1 ∈ then, since there is no nonidentity element of H of the
form d d2 1

−1, we must have g g = 1
2
−1

1 , i.e., g g=1 2, a contradiction. So in this case g D1 and
g D2 are disjoint. Otherwise g g G H

2
−1

1 ∈ ⧹ ; this element has λ > 0 representations in the
multiset DΔ( ). So there is at least one pair d d D D( , ) ×1 2 ∈ such that d d g g=1 2

−1
2
−1

1.
Hence g d g d=2 1 1 2 and so g D g D > 01 2 ∩ . □

In order for a set of translates of D to partitionG H⧹ , we require k mn n− . Lemma 4.4
suggests translating by the elements of H ; in this case we require n kn mn+ = , i.e.,
k m= − 1. Combining this with the RDS relation k k mn n λ( − 1) = ( − ) (see comment
following Definition 2.3), we have m m m nλ( − 1)( − 2) = ( − 1) , which implies
m nλ= + 2, hence λ = m

n

− 2 .
We present an explicit example of a DPDF/EPDF satisfying Proposition 4.3,

formed from an RDS relative to a subgroup H , translated by the elements of H . It
takes as its main ingredient the nonabelian RDS from [7] mentioned in Remark 2.5.
This RDS is notable as being the first example of an RDS in a finite simple
group with a nontrivial forbidden subgroup. The following DPDF/EPDF
construction is noteworthy since it is the first known nonabelian example of a
proper DPDF or EPDF. Since the group is nonabelian, the result is written in
multiplicative notation.

Proposition 4.5. Let G be the alternating group A5 acting on {1, 2, 3, 4, 5} and let
α = (25)(34).

Let R be the following set of elements of G:

HUCZYNSKA and JOHNSON | 15
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(13542), (154), (14)(23), (13254), (12543), (15324), (245), (132),

(152), (13)(45), (12435), (235), (15234), (15342), (125), (14)(25),

(13)(25), (123), (14325), (23)(45), (14235), (253), (254), (13452),

(12453), (145), (12)(35), (14523), (15)(24).

Let R αR′ = :

(13245), (15243), (14253), (13)(24), (124), (15423), (354), (13425),

(15)(34), (13524), (12)(45), (345), (153), (15)(23), (12)(34), (143),

(134), (12534), (142), (24)(35), (14532), (234), (243), (135),

(12354), (14352), (12345), (14)(35), (15432).

Then

(i) R is a (30, 2, 29, 14)‐RDS in G relative to the subgroup H α= ℤ2  ≅ .
(ii) A R R= { , ′} is a (60, 2, 29, 28, 0)‐DPDF and (60, 2, 29, 28, 58)‐EPDF which partitions

G H⧹ .

Proof. For (i), the proof that R is a (30, 2, 29, 14)‐RDS is the content of the paper [7]. It is
obtained using structural properties of Cayley graphs.

For (ii), we show it satisfies Proposition 4.3. Here m = 30, n = 2, s = 2 and R αR′ =

(the translate of R by α). By inspection, neither element of H id α= { , } is contained in R

nor R′, and these two sets partition G H⧹ . By (i), R is a (30, 2, 29, 14)‐RDS relative to H .
To see that the same is true of R′, observe that RΔ( ′) is the multiset of all elements of the
form αr αr α r r α( )( ) = ( )1 2

−1
1 2
−1 (r r R,1 2 ∈ ), i.e., the multiset αxα x R{ : Δ( )}∈ . Now, RΔ( )

comprises 14 copies of G H⧹ and 0 copies of H . We have αGα G= and
αHα α α α H= {1, } = , so α G H α G H( ) =⧹ ⧹ and hence R RΔ( ′) = Δ( ). Hence by
Proposition 4.3, A is a (60, 2, 29, 28, 0)‐DPDF and a (60, 2, 29, 28, 0)‐DPDF and a
(60, 2, 29, 28, 58)‐EDPF in A5. □

In general, it is not feasible to perform explicit verification of the properties required for
Proposition 4.3: we will therefore establish results which guarantee that large classes of
structures satisfy the requirements of Proposition 4.3. Henceforth we will assume that H is a
normal subgroup of G.

Lemma 4.6. Let G be a group, H a normal subgroup of G and let be D an m n k λ( , , , )‐
RDS relative to H .

(i) D gDΔ( ) = Δ( ) for any g G∈ . In particular, for any g G∈ , any translate gD is an
m n k λ( , , , )‐RDS relative to H .

16 | HUCZYNSKA and JOHNSON
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(ii) D cannot contain more than one representative from any coset gH (g H∈ ). In
particular, k m≤ .

Proof. For (i), gd gd g d d g( ) = ( )1 2
−1

1 2
−1 −1. By definition, the multiset DΔ( ) comprises λ

copies of G H⧹ and 0 copies of H . Since H is a normal subgroup, for any g G∈ we have
gHg H=−1 , and since gGg G=−1 we also have that g G H g G H( ) =−1⧹ ⧹ . So the multiset

gDΔ( ) also has λ copies of G H⧹ and 0 copies of H .
(ii) Suppose D contains elements d d gH1 2≠ ∈ , say d gh=1 1 and d gh=2 2. Then

d d gh gh g h h g H= ( ) = ( )1 2
−1

1 2
−1

1 2
−1 −1 ∈ since H is normal in G. Since D is an RDS relative

to H , we must have d d e=1 2
−1 , i.e., d d=1 2, a contradiction. □

Theorem 4.7. Let G be a group of order mn, let H be a normal subgroup of G of order n,
and suppose there exists an m n m( , , − 1, )

m

n

− 2 ‐RDS R in G relative to H .

Then there exists an mn n m m( , , − 1, − 2, 0)‐DPDF and an mn n m m( , , − 1, ( − 2)

n m n( − 1), ( − 1) )‐EPDF which partitions G H⧹ .

Proof. Suppose we have an m n m( , , − 1, )
m

n

− 2 ‐RDS R. Since R k m= = − 1 = 
G H[ : ] − 1, and by Lemma 4.6 R cannot contain a representative of more than one
coset of H , there is precisely one coset of H with no representative in R. Without loss
of generality, we may replace R by a suitable translate D gR≔ (g G∈ ), so that the
coset without a representative in D is H itself. (This can be the trivial translation by
the identity if H R =∩ ∅.) By a previous result, any translate of R is also an
m n m( , , − 1, )

m

n

− 2 ‐RDS and has its elements in distinct cosets of H . Hence D is an

m n m( , , − 1, )
m

n

− 2 ‐RDS comprising a representative of each coset of H except H

itself.
Let  hD h H= { : }ℋ ∈ ; we shall show this is the desired DPDF/EPDF. Since D

contains no element of H , any translate hD with h H∈ must also have empty
intersection with H (if h hD H( )1 ∈ ∩ then h hd=1 for some d D∈ , i.e., d h h H= −1

1 ∈ ,
impossible). By Lemma 4.4, the sets in ℋ are pairwise disjoint, i.e., their union
comprises kn distinct elements of G. Hence the sets of ℋ partition the mn n kn− =

elements of G H⧹ .
By Lemma 4.6, each set in ℋ is an m n m( , , − 1, )

m

n

− 2 ‐RDS relative to H .

Finally, by Proposition 4.3 ℋ is an mn n m m( , , − 1, − 2, 0)‐DPDF and an
mn n m m n m n( , , − 1, ( − 2)( − 1), ( − 1) )‐EPDF. □

Example 4.8. Let G = ℤ8 and consider the (4, 2, 3, 1)‐RDS D = {1, 6, 7} relative to the
subgroup H = {0, 4}. Note that the coset of H not represented in D is H itself. Then
 = {{1, 6, 7}, {5, 2, 3}}ℋ forms an (8, 2, 3, 2, 0)‐DPDF and an (8, 2, 3, 2, 6)‐EPDF.

Remark 4.9. Observe that the construction in Theorem 4.1 extending the Bose approach
uses a component RDS with parameters q q q( + 1, − 1, , 1), which satisfies the
requirements of Theorem 4.7. This is not a coincidence; we can view the Bose
approach as an instance of Theorem 4.7, in the following way.

In the notation of Theorem 4.1, for each αi ( i q1 ≤ ≤ ), we have α a b α= +i
i i

(a b GF q, ( )i i ∈ ). The multiplicative coset Ci has the form C ta tb α t GF q= { + : ( )*}i i i ∈ ,

HUCZYNSKA and JOHNSON | 17
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and so for any c GF q( )*∈ , the element of Ci which lies in Sc is cb αi
i−1 . Hence we can

write

{ }S cb α cb α cb α= , , …, .c q
q

1
−1

2
−1 2 −1

Taking discrete logs (viewed as elements of ℤq −12 ), we have

{ }( ) ( ) ( )S S c b α b α b α c S′ = log( ) = log( ) + log , log , …, log = log( ) + ′.c c q
q

1
−1

2
−1 2 −1

1

So the q q q q( − 1, − 1, , − 1, 0)2 ‐DPDF and q q q q q( − 1, − 1, , ( − 1)( − 2),2 q q− )2 ‐
EPDF in ℤq −12 obtained in Theorem 4.1 from the extension of the Bose approach may be
viewed as ℋ, where D S= ′1 and H C= log( ) ℤq0 −1≅ , the excluded subgroup.

4.3 | Applications of the general RDS construction

An RDS with parameters n n n( + 1, − 1, , 1) (and H normal in G) can always be used in the
construction of Theorem 4.7. An RDS with these parameters is said to be affine; more detail
about affine RDSs is given in [15, 34], including nonabelian examples. It is conjectured that in
the abelian case, n must be a prime power (see Conjecture 2.4 of [25]).

The following existence result for a nonabelian affine RDS is from [15].

Proposition 4.10. Let n p= r , where p is prime and G( , +) is the cyclic group of integers
modulo p − 1r2 . We define a new addition on the elements of G. Let q p= h and suppose
hv r= 2 , where v is an integer all of whose prime factors divide q − 1. (If q 3 mod 4≡ , we
also need v 0 mod 4≢ ). Then, given j, let r j( ) denote the unique integer i vmod such that

q j q v q1 + ( − 1) mod ( − 1).i ≡

For i j G, ∈ , define the sum i j⊕ as follows:

i j iq j q+ mod − 1.r j v( )⊕ ≡

Then

(i) G( , )⊕ is a nonabelian group if v > 1.
(ii) Let n p= r . If D is an n n n( + 1, − 1, , 1)‐RDS in G( , +) relative to H( , +), and the

automorphism x px↦ fixes D, and H( , )⊕ is a normal subgroup of G( , )⊕ , then D is
an RDS in G( , )⊕ relative to H( , )⊕ .

(iii) When v = 2 and p is odd, the conditions of (ii) are satisfied and so there exist examples
of nonabelian n n n( + 1, − 1, , 1)‐RDSs.

By Theorem 4.7, since H( , )⊕ is required to be a normal subgroup of G( , )⊕ in
Proposition 4.10, any RDS from the above construction guarantees the existence of nonabelian
n n n n( − 1, − 1, , − 1, 0)2 ‐DPDFs and n n n n n n n( − 1, − 1, , ( − 1)( − 2), ( − 1))2 ‐EPDFs.

18 | HUCZYNSKA and JOHNSON
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Next, we seek to identify RDS constructions which satisfy the requirements of Theorem 4.7
but are not of affine type.

We present a general construction for DPDFs and EPDFs using DSs with additional
properties. This result extends and generalises ideas from [13, 17], which use such structures in
cyclic groups to build optimal frequency‐hopping sequences and difference systems of sets.

Theorem 4.11. Let n ℕ∈ and let m n= ( − 1) + 12 .
Let G be a group of order mn and let H be a normal subgroup of order n.
Suppose D is a mn n n n( , ( − 1) + , )2 ‐DS containing H . Let R D H= \ . Then

(i) R is an m n m n( , , − 1, − 2)‐RDS relative to H ;
(ii) the sets

hR h Hℛ = { : }ℋ ∈

form an n n n n n n( [( − 1) + 1], , ( − 1) , ( − 2), 0)2 2 ‐DPDF and an n n( [( − 1) + 1],2

n n n n n n n, ( − 1) , ( − 1)( − 2), ( − 1) )2 2 ‐EPDF in G.

Proof. We show that R is an RDS with the stated parameters. Part (ii) then follows by

observing n= = − 2
m

n

n

n

− 2 ( − 1) − 12

and applying Theorem 4.7.

We have that

D R R H H R HΔ( ) = Δ( ) Δ( , ) Δ( , ) Δ( );∪ ∪ ∪

this multiset union comprises n copies of each nonidentity element of G. Since H is a
subgroup of order n, the multiset HΔ( ) comprises n copies of each nonidentity element of
H and no elements of G H⧹ . Thus each of the n n( − 1)2 elements of G H\ must occur
precisely n times across the multiset union R R H H RΔ( ) Δ( , ) Δ( , )∪ ∪ , and this accounts
for all its n n( − 1)2 2 elements.

Nonidentity elements of H are obtained as differences xy−1 in GΔ( ) precisely when x

and y are distinct and lie in the same coset of H . Since R R H H RΔ( ) Δ( , ) Δ( , )∪ ∪

comprises n copies of G H\ and no copies of H\ {0}, it is clear that R consists of at most
one representative of each nontrivial coset aH of H (R is disjoint from H by
construction). Since there are n( − 1)2 such cosets of H and as R has cardinality n( − 1)2,
R must consist of exactly one representative from each nontrivial coset of H . For any
g aH∈ , where a H∉ , the multiset g H aHΔ( , ) = . From the structure of R, we see that
the multiset R H G HΔ( , ) = \ . Analogously H R G HΔ( , ) = \ . Thus, RΔ( ) comprises
precisely n − 2 copies of G H\ . So R is an n n n n(( − 1) + 1, , ( − 1) , − 2)2 2 ‐RDS
relative to subgroup H . Part(ii) now follows by application of Theorem 4.7. □

Example 4.12. We present both a nonabelian and an abelian example of a (40, 13, 4)‐
DS containing a normal subgroup of order 4 which can be used in Theorem 4.11.

(i) Let G be the semidirect product of C5 and C8 acting via C C C=8 4 2∕ [11]. G is a
nonabelian group with presentation a b a b ba a b, : = = 1, =5 8 4 . Its centre
(a normal subgroup of G by definition) is given by H b b b C= {1, , , }2 4 6

4≅ . From
[9], a (40, 13, 4)‐DS is given by

HUCZYNSKA and JOHNSON | 19

 15206610, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21930 by U

niversity O
f St A

ndrew
s U

niversity, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



D a a a b a b b a b a b b b ab b a b= { , 1, , , , , , , , , , , }.4 4 2 2 2 2 3 2 4 5 5 6 3 7

Here H D⊆ and

R D H a a a b a b a b a b b ab a b= = { , , , , , , , , }4 2 4 2 2 3 2 5 5 3 7⧹

is a (10, 4, 9, 2)‐RDS relative to H . By Theorem 4.11, it yields a nonabelian
(40, 4, 9, 8, 0)‐DPDF and (40, 4, 9, 24, 36)‐EPDF.

(ii) Let G = ℤ40. A (40, 13, 4)‐DS (from [9], arising from PG (3, 3)) is given by

D = {0, 6, 7, 8, 10, 11, 14, 19, 20, 23, 25, 30, 32}

and it contains the subgroup H = 10ℤ = {0, 10, 20, 30}4 . Here H D⊆ and

R D H= = {6, 7, 8, 11, 14, 19, 23, 25, 32}⧹

is a (10, 4, 9, 2)‐RDS in ℤ40. By Theorem 4.11, it yields an abelian (40, 4, 9, 8, 0)‐
DPDF and (40, 4, 9, 24, 36)‐EPDF.

Using a DS result from [17], we can guarantee the existence of an infinite family of DPDFs
and EPDFs in cyclic groups via Theorem 4.11. In fact, [17] provides an explicit construction for
an appropriate family of cyclic DSs (which possess additional properties not required for our
application) using finite geometry; we refer the reader to that paper for more details.

Corollary 4.13. Let n = 2 + 1r , where r is a positive integer and let m n= ( − 1) + 12 .
There exists an mn n n n n( , , ( − 1) , ( − 2), 0)2 ‐DPDF and an mn n n( , , ( − 1) ,2

n n n n n( − 1)( − 2), ( − 1) )2 ‐EPDF in ℤmn.

Proof. It is proved in [17] that for n = 2 + 1r there exists an n n n( (( − 1) + 1), +2

n n( − 1) , )2 ‐DS D in ℤn n(( −1) +1)2 which contains subgroup H n= (( − 1) + 1)ℤn
2 . The

result follows by applying Theorem 4.11. □

Example 4.14. Applying Corollary 4.13 using the DS from [17] with n = 5 yields a
cyclic (85, 21, 5)‐DS given by

D = {0, 1, 2, 4, 7, 8, 14, 16, 17, 23, 27, 28, 32, 34, 43, 46, 51, 54, 56, 64, 68}

which contains the subgroup H = 17ℤ = {0, 17, 34, 51, 68}5 . Let R D H= = {1, 2, 4, 7,⧹

8, 14, 16, 23, 27, 28, 32, 43, 46, 54, 56, 64}. Then R R R R Rℛ = { , + 17, + 34, + 51, + 68}ℋ

is an (85, 5, 16, 15, 0)‐DPDF and a (85, 5, 16, 60, 80)‐EPDF in ℤ85.

We end this section by observing that not all DPDFs/EPDFs with the μ‐value of the DPDF
equal to zero must have constituent sets which are RDSs; see, for example, the construction
below.

Example 4.15. Let ℤ m3 , where m > 3 is an odd number, and let H m m= {0, , 2 } ℤ3≅ .
Let S i m i= { , 3 − }i ( i m1 3 − 1≤ ≤ ). It is straightforward to verify that S SΔ( ) =i i2 and

20 | HUCZYNSKA and JOHNSON
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that the family S S i i m′ = { : 1 , }i
m3 − 1

2
≤ ≤ ≠ form a m(3 , , 2, 1, 0)

m3 − 3

2
‐DPDF and a

m m m(3 , , 2, 3 − 7, 3 − 3)
m3 − 3

2
‐EPDF.

When m = 5, then the sets {1, 14}, {2, 13}, {3, 12}, {4, 11}, {6, 9}, {7, 8} form a
(15, 6, 2, 1, 0)‐DPDF and a (15, 6, 2, 8, 12)‐EPDF in ℤ15.

5 | DPDFs WHICH ARE NOT EDPFs AND VICE VERSA

Although the main focus of the paper has been to consider structures which are simultaneously
DPDFs and EPDFs, we end with some examples which show there exist DPDFs which are not
EPDFs, and EPDFs which are not DPDFs. Our examples occur in cyclic groups.

Proposition 5.1. Let n t= 2 + 1 be an odd number, t > 2. Then in ℤ t2 +1, the family of
sets S′

t t{2, 3}, {4, 5}, …, {2 − 2, 2 − 1}

is a t t t(2 + 1, − 1, 2, 0, − 1)‐DPDF which is not an EPDF for t > 2.

Proof. It is immediate to check for each set S i i= {2 , 2 + 1}i in S′ ( i t1 − 1≤ ≤ ) the
multiset SΔ( ) = {−1, +1}i while S G= * {−1, +1}⧹ . Hence SInt( ′) comprises t − 1 copies
of {−1, +1} and 0 copies of S G= * {−1, +1}⧹ .

The multiset SInt( ) contains n{−1, 1} − 4 times, n{−2, 2} − 5 times and all other
elements of G n* − 6 times, hence S is not a PDS and so S is not an EPDF. □

The existence of an infinite family of EPDFs which are not DPDFs is still an open question
(see Section 6). The following examples in cyclic groups ([23], obtained via computation in GAP
[16]) show that there exist EPDFs which are not DPDFs:

Example 5.2.

(i) {1, 8}, {3, 6} is a (9, 2, 2, 0, 2)‐EPDF in ℤ9 which is not a DPDF;
(ii) {1, 2, 11, 12}, {3, 5, 8, 10} is a (13, 2, 4, 2, 4)‐EPDF in ℤ13 which is not a DPDF.

6 | CONCLUSIONS AND FURTHER WORK

This paper has demonstrated how the recently introduced combinatorial structures of DPDFs and
EPDFs can be constructed in groups other than the additive group of a finite field, using techniques
other than the cyclotomic approach introduced in [20]. In particular, it has demonstrated the
existence of infinite families and individual examples in noncyclotomic abelian groups and
nonabelian groups. In general, our constructions partition the complement of a subgroup.

All constructions in this paper for v s k λ μ( , , , , )1 1 ‐DPDFs which are v s k λ μ( , , , , )2 2 ‐EPDFs
have the property that at least one of the frequencies λ λ μ μ{ , , , }1 2 1 2 takes a zero value (even for
constructions not using RDSs). This is in contrast to the cyclotomic constructions of [20], where
there were numerous examples with all four frequencies nonzero. This motivates the following:
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Open Problem 6.1. Is it possible to obtain families of sets which are both
v s k λ μ( , , , , )1 1 ‐DPDFs and v s k λ μ( , , , , )2 2 ‐EPDFs, not corresponding to cyclotomic
constructions in the additive group of a finite field, such that λ λ μ μ{ , , , }1 2 1 2 are all
nonzero?

To contextualize this Open Problem, we classify below the types of DPDF/EPDF
construction partitioning G H⧹ which we currently know, in terms of the nature of
λ λ μ μ{ , , , }1 2 1 2 :

Theorem 6.2. Let S′ be both a v s k λ μ( , , , , )1 1 ‐DPDF and a v s k λ μ( , , , , )2 2 ‐EPDF which
partitions G H⧹ , H a normal subgroup of G. Then

(i) If S′ consists of all nontrivial cosets of H then λ = 01 and μ = 02 .
(ii) If every set in S′ is a union of at least 2 cosets of H , then λ > 01 , μ > 01 and μ = 02 .
(iii) If the sets of S′ are a subdivision of the nontrivial cosets of H (i.e., formed by

partitioning the cosets) then λ = 01 , μ > 01 and μ > 02 .
(iv) If every set in S′ has at most one representative from each coset of H , then μ = 01 ,

λ > 01 and μ > 02 .

Examples of these types are as follows: for (i), see Theorem 2.12; for (ii), see Theorem 3.2,
and for (iii) see Theorem 3.6. Illustrations of type (iv) include all RDS‐based examples in
Section 4.

Hence, any construction satisfying the Open Problem would need to lie outside the list of
the categories given in Theorem 6.2 (as well as having n > 2 and gcd sk v( , − 1) > 1 by
Theorem 2.14). We note that these account for all examples of DPDFs/EPDFs partitioning the
complement of a subgroup that the authors are currently aware of.

In the final section of this paper, we have provided a brief indication that there exist DPDFs
which are not EPDFs, and vice versa. It would be of interest to find more examples of such
structures, in a variety of groups. In particular:

Open Problem 6.3. Construct an infinite family of EPDFs which are not DPDFs.
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