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A B S T R A C T   

Inexpensive Graphics Processing Units (GPUs) offer the potential to greatly speed up computation by employing 
their massively parallel architecture to perform arithmetic operations more efficiently. Population dynamics 
models are important tools in ecology and conservation. Modern Bayesian approaches allow biologically realistic 
models to be constructed and fitted to multiple data sources in an integrated modelling framework based on a 
class of statistical models called state space models. However, model fitting is often slow, requiring hours to 
weeks of computation. We demonstrate the benefits of GPU computing using a model for the population dy
namics of British grey seals, fitted with a particle Markov chain Monte Carlo algorithm. Speed-ups of two orders 
of magnitude were obtained for estimations of the log-likelihood, compared to a traditional ‘CPU-only’ imple
mentation, allowing for an accurate method of inference to be used where this was previously too computa
tionally expensive to be viable. GPU computing has enormous potential, but one barrier to further adoption is a 
steep learning curve, due to GPUs' unique hardware architecture. We provide a detailed description of hardware 
and software setup, and our case study provides a template for other similar applications. We also provide a 
detailed tutorial-style description of GPU hardware architectures, and examples of important GPU-specific 
programming practices.   

1. Introduction 

Graphics Processing Units (GPUs) are specialised pieces of computer 
hardware designed to facilitate the fast rendering of digital images. This 
involves repeated applications of the same operation on many different 
inputs, such as image pixels. To make this as efficient as possible, GPUs 
are designed to perform many repeats at the same time—i.e., in parallel. 
Their highly parallel architecture makes them well suited for the fast 
execution of certain mathematical and statistical tasks, with hundred- 
fold speed-ups feasible compared with conventional implementations 
(e.g. Lee et al., 2010b; Suchard et al., 2010). Partly driven by the 
popularity of video gaming and crypto-currency mining, powerful GPUs 
have been incorporated into relatively inexpensive consumer-grade 
products, potentially putting GPU computing within reach of ecolo
gists and evolutionary biologists. 

To illustrate the use of GPUs in ecology and evolution, we searched 
the journal Ecological Informatics for articles that mentioned ‘GPU’ in the 
text, and reviewed them to determine how they used the hardware. Of 
the 2150 articles published between 2006 (Volume 1) and 2023 (Vol
ume 76), we found 143 that made clear use of GPUs for scientific 

computation. The first was in 2016 (Millán et al., 2016), and thereafter 
the proportion of articles using GPU computing rose rapidly from 
approximately 1% in 2016 and 2017 to 12–15% in 2021–2023. By far 
the most common use (139 of 143 articles, i.e., 97%) was in machine 
learning where the training phase can readily be parallelised and 
accessible software tools are available to utilise GPUs for this purpose. 
(A review of machine learning in ecology is given by Pichler and Hartig, 
2022.) Typical machine learning applications involved recognition and 
classification of visual images (e.g. Atila et al., 2021) or acoustic re
cordings (e.g. Nanni et al., 2020). The most used software tools were 
those that provide accessible extensions to the Python programming 
language, such as TensorFlow (Abadi et al., 2015), Keras (Chollet et al., 
2015), and PyTorch (Paszke et al., 2019), although alternatives using 
other programming languages are also used, such as the Deep Learning 
Toolbox by MathWorks (Beale et al., 2018), cuDNN (Chetlur et al., 
2014), and Darknet (Redmon, 2013–2016). 

Although GPU computing could potentially benefit other application 
areas, its use in them is less common, likely because of the lack of 
general-purpose GPU-accelerated software tools for those applications. 
Only 4 of the 143 articles reviewed in Ecological Informatics involved 
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uses other than machine learning. One (Wu et al., 2006) used GPUs for 
their original purpose of image visualization, two (Millán et al., 2016; 
Strnad et al., 2018) undertook Monte Carlo simulations using custom- 
written software previously created by some of the same authors, and 
one (Guo et al., 2022) used newly-created custom GPU-accelerated code 
for a mapping application involving the fusion of multiple datasets. 
More widely, there are examples of custom-written software across a 
range of related fields including geospatial modelling (e.g. Kamewar, 
2017; Räss et al., 2019; Sreepathi et al., 2017), environmental modelling 
(e.g. García-Feal et al., 2018; Hou et al., 2023; Sandric et al., 2019; 
Vacondio et al., 2014), ecological modelling (e.g. Rubinpur and Toledo, 
2022; Weiss, 2013; Welch et al., 2013), evolutionary biology (e.g. Chai 
et al., 2013; Pratas et al., 2009; Rajapaksa et al., 2019; Zhou et al., 
2015), epidemiology (e.g. Galvão Filho et al., 2016; Leonenko et al., 
2015; Bisset et al., 2012), medical statistics (e.g. Alsmirat et al., 2017; 
Eklund et al., 2014; Wang et al., 2016), molecular biology (e.g. Ander
son et al., 2008; Zhou et al., 2017) and genetics (e.g. Perez-Wohlfeil 
et al., 2023; Pütz et al., 2013). 

One further application area that can benefit greatly from GPUs is 
some types of statistical modelling. The evaluation of computationally 
expensive likelihood functions (which give the probability density of a 
set of observations, given a model formulation and a set of parameter 
values) or Monte Carlo methods (which estimate quantities of interest 
via simulation methods) can be efficiently parallelised when they 
require many independent replications of the same process or can be 
broken down into many thousands of independent tasks. For example, 
randomisation tests (which compare the distributions of two data sam
ples by repeatedly resampling new observations from the joint pool of 
observations) have been parallelised using GPUs with considerable 
speedups (Van Hemert and Dickerson, 2011). Uptake of GPU hardware 
use for these applications has been slower than for machine learning, 
due to several factors. The first is a required familiarity with lower-level 
programming languages. Programming languages designed for GPU 
computing, or programming language extensions compatible with 
GPUs, necessitate a greater degree of direct memory management to 
remain efficient. This may be unfamiliar to individuals accustomed to 
higher-level languages such as R and Python. The second is that GPUs' 
hardware architecture is different from that of CPUs. Algorithms that are 
computationally efficient on CPUs may parallelise poorly on GPUs. 
Therefore custom GPU implementations of new algorithms often re
quires GPU-specific programming principles that can be time-intensive 
to learn. We discuss some of these principles throughout this article, 
and in Appendix B. Finally, there exist fewer libraries for GPU 
computing that allow simulation of random numbers from non-standard 
distributions. This is a significant barrier to the implementation of many 
simulation based methods (such as Monte Carlo methods), which form a 
large part of the statistical algorithms with high potential for parallelism 
(Terenin et al., 2019). 

The purpose of this article is to encourage wider adoption of 
consumer-level GPU technology for computer-intensive statistical 
inference in ecology. Our target audience falls into two categories. First 
is ecological researchers who are familiar with low-level programming 
languages (such as Python, C, C++ or Fortran) and who could poten
tially benefit from the use of GPU programming to accelerate their 
computations. Second is researchers who are not familiar with such 
languages but who are working on computationally-expensive ecolog
ical problems and wish to ascertain whether their target application 
could potentially benefit from GPU computing significantly enough to 
justify the time and resource investment required to produce a GPU 
implementation. We elucidate which families of algorithms and 
methods are well suited to GPU-style parallelism. We do this via a case 
study, fitting a non-linear state space model for the population dynamics 
of UK grey seals—so far as we are aware, this is the first ecological 
application of GPU computing to state space models. We provide source 
code (see Data Availability Statement) that will reduce the initial time 
investment for producing new custom code of this kind. We also include 

guidance in Appendix A on the installation and use of GPU related 
software, both on personal computers and via cloud computing. In Ap
pendix B we provide a tutorial introduction to GPU computing concepts. 

The rest of the paper is structured as follows. In Section 2, we 
introduce state space models (SSMs) and model fitting, the differences 
between Central Processing Unit (CPU) and GPU architectures, and GPU 
computing. We then outline, in Section 3, the case study SSM and 
associated Monte Carlo fitting algorithm based around a technique 
called particle filtering. We describe a CPU-only implementation and 
show how code profiling (a form of program analysis that can identify 
time and memory-intensive aspects of the calculation) can be used to 
determine how best to parallelise the implementation. We show how 
GPU-programming practices were used and, in Section 4, we report the 
reductions in compute time this implementation achieved and we 
discuss the benefits of using our GPU-based model fitting process, as well 
as some wider implications of this highly-parallel approach. Lastly, in 
Section 5 we discuss lessons from the case study, how these lessons may 
be applied more generally, and the future of GPU computing in 
ecological statistics. 

2. Background 

2.1. Inference for state space models 

SSMs describe the evolution of two linked stochastic processes in 
discrete time: one a hidden process that represents the true state of a 
system, and the other an observed process that depends on the hidden 
process. SSMs are being increasingly used in ecology to model processes 
such as animal movement, epidemics and population dynamics—see, e. 
g., the recent review by Auger-Méthé et al. (2021). 

Our case study is a population dynamics application. Population 
dynamics models are an invaluable tool for wildlife monitoring and 
conservation, for example allowing inference on population changes 
over time that are constrained by the known biology of the species. The 
SSM formulation allows the inclusion of additional information, such as 
the age and sex of individuals, despite these being unobserved when 
surveying the population of interest. A seminal paper on SSMs of pop
ulation dynamics is Buckland et al. (2004) and a full treatment is given 
by Newman et al. (2014). Here we give a brief summary to motivate the 
computational algorithm used for inference in the case study. 

An SSM can be defined as follows. At each discrete occasion t in a 
survey, there exist s hidden states xt,1:s =

(
xt,1, xt,2…xt,s

)
(they are ‘hid

den’ in the sense that their true values are not observed directly). In 
population dynamics applications, these states often represent the 
number of individuals in different age, size and/or sex classes. We call 
the set of all possible values for these states at time t the ‘state space’ and 
denote it X t. The realised value of the hidden state at time t is written xt. 
We denote the set of possible values for all hidden states across all time 
steps by X 1:T , where T is the final time step. We use θ to refer to all 
parameters in the model. The hidden states depend only on their values 
at the previous time step, via a density g(xt |xt− 1, θ), called the ‘state 
transition density’. (We note, to avoid confusion, that in some literature, 
the state transition density is conversely denoted by f , and the obser
vation density by g; also that we use the term ‘density’ to refer to both 
probability density (for continuous variables) and probability mass (for 
discrete variables).) We denote by ζ(x0|θ) the density of the hidden 
states at the time step preceding the start of the survey. 

At each time step t, we make an observation yt , which is dependent 
on the hidden states via a probability density function f

(
yt |xt , θ

)
, called 

the ‘observation density’. The observation yt is dependent only on the 
hidden states at the same point in time, and so is said to be ‘conditionally 
independent’ (given xt) of observations at other time points. 

With these definitions, we can write the likelihood of the model 
parameters θ given the observations y1:T as 
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L (θ|y1:T) =

∫

X 0

ζ(x0|θ)
∫

X 1

…
∫

X T

∏T

t=1
g(xt|xt− 1, θ)f (yt|xt, θ)dxT ⋯dx0. (1) 

Evaluating this likelihood exactly would require performing T + 1 
nested integrals, each of dimension s. Computationally, this is infeasible, 
and so using the likelihood for inference (to find maximum likelihood 
estimates, for example) requires an alternative approach (see Newman 
et al. (2023) for full discussion). 

In the special case where the densities for ζ, f , and g are normal and 
linear, the Kalman filter offers an analytical solution (Kalman, 1960). 
However, in ecological applications, normality or linearity assumptions 
may disagree with species' biology. This can make the resulting model 
unrealistic, or lead to issues with parameter identifiability (Knape, 
2008). 

Bayesian inference permits the use of inference algorithms such as 
Markov chain Monte Carlo (MCMC; see Gelman et al., 1995, for an 
introduction) in conjunction with data augmentation approaches (Bor
owska and King, 2022). Here, the model is ‘augmented’ by sampling 
from the hidden states x0:T as well as the parameters. In this way, the 
likelihood is easier to evaluate: 

L (θ, x0:T |y1:T) = ζ(x0|θ)
∏T

t=1
g(xt|xt− 1, θ)f (yt|xt, θ). (2) 

Data augmentation methods are effective but are burdened with slow 
convergence times due to the increased dimension of the space they 
attempt to explore; Markov chains of this kind often have high posterior 
correlations in latent states and parameter values, leading to infeasible 
computation times to obtain effective sample sizes that are sufficient for 
robust inference (e.g. King, 2011). (Effective sample size, ESS, is a 
measure of the equivalent number of independent samples from the 
posterior distribution and is inversely related to Monte Carlo error.) 
Because of this, more advanced Monte Carlo methods are required. 

In this article we focus on a Monte Carlo approach, known as particle 
filtering, which is one possible alternative to data augmentation. This 
approach consists in estimating the intractable integrals in Eq. 1 by 
averaging over the likelihood values of a large number of simulated 
trajectories through the time-series of hidden states. In this way, algo
rithms such as the bootstrap particle filter (Gordon et al., 1993) allow 
inference on parameter values without directly evaluating the state- 
transition density g(xt |xt− 1), using simulation from the density instead. 

To highlight the benefit of increasing computational efficiency via 
the use of GPUs, we perform a Bayesian case study via particle MCMC 
(pMCMC; Andrieu and Roberts, 2009), the term given to MCMC algo
rithms that use particle filters to estimate the likelihood. These methods 
are computationally expensive, and a pMCMC run can require days or 
weeks to obtain enough samples from the posterior distribution for 
reasonable inference, even using state-of-the-art hardware (Endo et al., 
2019; Kattwinkel and Reichert, 2017). Careful implementation and 
optimization can reduce run-times by up to an order of magnitude; 
however, despite continual advances in the efficiency of CPU-only 
implementations (e.g. Sherlock et al., 2015) and the use of these ad
vances in recent literature (e.g. Finke et al., 2019), CPU-only imple
mentations are often still too slow to be viable without large computing 
clusters (Šukys and Kattwinkel, 2017), especially in situations where the 
hidden states at each time step are of high dimension (such as multiple 
age and sex classes). GPU parallelism is an effective solution to reducing 
this computational burden (Knape and De Valpine, 2012). 

2.2. Graphics processing units 

We present here a brief overview of the most significant differences 
between GPU and CPU hardware, and provide an introduction to the 
basic programming concepts required to utilise GPUs for population 
dynamics modelling and general purpose GPU programming more 
widely. More detailed expositions of efficient GPU programming 

concepts are given by Chopp (2019), Tuomanen (2018), Sanders and 
Kandrot (2010), Cook (2012) and Farber (2011). 

The layout of a CPU, the hardware that executes all commands in 
‘traditional’ computing, can be represented by a simplified example 
layout (Fig. 1 (a)). The ‘cores’, that perform the calculations are 
managed by control structures. These are responsible for delegating 
tasks, scheduling which instructions are passed to which cores, and 
managing memory transfers. Caches on the chip provide fast memory, 
which allow cores to access small amounts of data quickly for efficient 
calculation, with slower Random Access Memory (RAM) available 
elsewhere on the motherboard to store larger quantities of information 
that need to be accessed less frequently. Due to the wide array of tasks 
expected of a modern-day computer, minimising the time it takes for a 
given task to terminate requires dedicating a large amount of the CPU's 
resources to control structures. CPUs typically have a higher clock-speed 
(a measure related to the number of operations the chip can perform 
each second) than GPUs, reducing the time they take to perform an in
dividual task. 

In situations where flexibility is less important, the total number of 
calculations performed per unit of time (computational throughput) can 
be increased by dedicating a higher proportion of resources to compute 
cores. This is the underlying motivation behind the GPU (Fig. 1 (b)). A 
GPU chip is comprised of multiple Streaming Multiprocessors (SM) 
(Fig. 1 (c)). Sacrificing the resources available to the control structures 
constrains the GPU into the SIMD framework (single instruction multi
ple data), which only allows processes to run in parallel if they are 
performing identical tasks. Therefore, while CPUs are faster at per
forming individual tasks, GPUs will provide higher throughput for sci
entific computing applications that involve large numbers of 
independent identical tasks, on different inputs. For example, resam
pling from a given set of observations many times, to produce a non- 
parametric bootstrap distribution of a statistic of interest. A further 
constraint of GPUs is that they typically dedicate fewer resources than 
CPUs to performing double-precision floating point arithmetic. This has 
consequences on numerical stability that will be discussed further in 
following sections. 

At the time of writing there are two companies that produce popular 
consumer-grade GPUs: Nvidia and AMD. The Compute Unified Device 
Architecture (CUDA) (NVIDIA et al., 2020), a proprietary framework for 
Nvidia GPUs, is a useful tool for creating custom parallel GPU functions, 
or ‘kernels’ in CUDA terminology. Due to the popularity of CUDA within 
the scientific computing community, its integration with commonly 
used programming languages in computationally intensive statistics and 
ecological modelling (such as C++ and Fortran), and its high perfor
mance for such applications, we have selected it for our case study. The 
cross-platform OpenCL programming language (Stone et al., 2010) is an 
alternative that allows for the use of GPUs produced by other manu
facturers, such as AMD. Although syntax and terminology vary across 
CUDA and OpenCL, the programming concepts and algorithm design 
choices required for efficient implementations are shared between both 
platforms. 

In CUDA, the independent processes in a parallel calculation, which 
are able to take place simultaneously, are known as ‘threads’, and are 
grouped into ‘warps’ of 32. Threads in a warp execute in lockstep, 
forcing them to each perform the same task at the same time. Warps can 
be packaged together into ‘blocks’ that will be scheduled for execution 
on the same SM. A more detailed introduction to CUDA terminology is 
included in Appendix B. 

3. Materials and methods 

3.1. Grey seal population dynamics model 

The case study is a Bayesian state-space model for the regional 
population dynamics of British grey seals (Halichoerus Grypus) that is 
used in a management context (e.g. Special Committee on Seals, 2021) 
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to estimate total population size and trend as well as demographic pa
rameters. The model, data, prior distributions and a fitting method 
based on particle filtering are described by Thomas et al. (2019); a 
summary is given here. 

The data comprise estimates of the number of pups born (‘pup pro
duction’) each year between 1984 and 2010 in four regions of Scotland 
(North Sea NS, Inner Hebrides IH, Outer Hebrides OH and Orkney OR; 
Fig. 2), along with an independent estimate of the total adult population 
size in 2008 (94,390 animals, SD 978). 

The population dynamics model is structured by age, splitting ani
mals into seven groups: those below one year of age (pups), two years of 
age, and so forth, until the final group which contains all individuals 
aged 6 or higher. After the pup stage, the model tracks only females, and 
animals age 1 or older are referred to as “adults”. Hence the total adult 
female population size in a given year t is Pt =

∑4
r=1
∑7

a=2xt,r,a, where 
xt,r,a denotes the number of seals in age group a in region r at time t, with 
t = 0 corresponding to 1984. 

Under the model, adults survive to the next year with a fixed prob
ability ϕa. Pup survival is assumed to be density dependent: higher 
regional pup production in the previous breeding season (xt− 1,r,1) leads 
to lower pup survival probability (ϕt,r) according to the equation 

ϕt,r =
ϕpmax

1 +
(
βrxt− 1,r,1

)ρ (3)  

where ϕpmax is maximum survival probability (when xt− 1,r,1 = 0), ρ de
termines the shape of the density dependence relationship and βr is 

related to the region-specific carrying capacity (see below). 100
ω % of the 

surviving pups are expected to be female. Following the survival pro
cess, all of the individuals in the population increment their age by one 
year, and each female of breeding age (the final age group only) has a 
pup with probability α, the fecundity parameter. 

In this model, all of the x1:26,1:4,1:7 true age group counts are hidden 
states. We observe a number of pups yt,r for each region and time in
terval, with some normally distributed error relative to the true pup 
production value, such that: 

yt,r ∼ N

(

xt,r,1,
x2

t,r,1

ψ

)

(4)  

where ψ is an observation precision parameter whose value is estimated 
during the model fitting process. 

In 2008, two time points before the end of the survey, we also include 
information provided by an independent estimate of the total adult 
population size by Russell et al. (2016). This total population size is 
assumed to have a gamma distribution with known parameters. An es
timate for the number of adults present in the survey population in 2008 
(denoted by N24, the total count of individuals in year 24) can by ob
tained by scaling the number of adult females with a parameter ω, the 
ratio of the total population size to the number of females: 

N24 = ω
∑4

r=1

∑7

a=2
x24,r,a;N24 − k0 ∼ Gamma(k1, k2) (5)  

with shift (k0 = 59170), shape (k1 = 12.96), and rate (k2 = 2719) pa
rameters. 

The state transition density g(xt |xt− 1, θ) in this model cannot be 
evaluated directly. However, we are able to produce random draws from 
this density by simulating from the sequence of survival processes 
defined above. The number of one year old seals in a region at time t + 1 
(xt+1,r,2) can be obtained with a binomial draw from the number of pups 
in the previous time step (xt,r,1) with probability ϕt,r

ω using eq. 3. The 
division by ω ensures that only female pups are recruited into following 
age stages. In the same way, for adult age groups, the state xt+1,r,a is 
obtained by simulating the number of survivals from the previous time 
step and age group xt,r,a− 1 via a binomial draw with probability ϕa. In the 
case of breeding age females (xt+1,r,7) the number of individuals in the 
following time step is the sum of survivals from both breeding age fe
males (xt,r,7) and females aged five (xt,r,6). The number of pups born in a 
given year (xt+1,r,1) is a binomial draw from the number of surviving 
females (xt+1,r,7) with probability α, the fecundity. Random samples 
from the state transition density are sufficient to produce evaluations of 
the likelihood. This will be discussed in more detail later in this Section. 

Fig. 1. Example layouts of a CPU and GPU. Displays the approximate locations and proportion of chip surface area used by cache memory (crosses), control 
structures (diagonal lines), compute cores (no fill), random access memory (vertical lines) and streaming multiprocessors (horizontal lines). Compute cores perform 
computations. Cache memory allows cores to access information quickly. Control structures allow for faster computation by efficiently managing cores and memory 
usage. Streaming multiprocessors (SM) are used to provide cache and control structures to groups of cores. 
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Fig. 2. Annual grey seal pup production estimates in four regions.  
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The model is Bayesian, and hence prior distributions are required for 
all parameters and the initial states x0,1:4,1:7. Distributions used are given 
in Table 1; full justifications for these distributions are provided by 
Thomas et al. (2019). To aid specification of the four regional carrying 
capacity-related parameters, βr, the prior distributions are set instead on 
regional carrying capacities, χr, where 

χr =
1
βr

(
α⋅ϕpmax⋅ϕ

5
a

2(1 − ϕa) − 1

)
1
ρ. (6)  

3.2. Auxiliary particle filter approach 

To obtain weighted samples from the posterior distribution Thomas 
et al. (2019) used a particle filtering (also called sequential Monte Carlo) 
algorithm. Particle filtering employs a large number of simulated sam
ples generated from the model, each representing a possible state of the 
system, and assigns weights to these samples based on their likelihood of 
producing the observed data. This process begins by first drawing a large 
number of parameter values from the prior distribution, along with 
initial values for each hidden state. Each of these samples is known as a 
particle, and is given an equal starting weight. Each particle's hidden 
states are then projected forwards in time by simulating from the pop
ulation dynamics model, and its weight is updated using the log- 
likelihood of the observed pup production estimate, given the parti
cle's value for the true count (the hidden state). Once this process is 
completed for all time steps, particle weights can be used to produce 
weighted means of the posterior parameter values, or any other statistic 
of interest. 

Particle filtering methods can be inefficient, as the initially proposed 
sets of parameter values do not necessarily produce particles with high 
weights. To remedy this, Thomas et al. (2019) adopted rejection control 
and kernel smoothing methods described by Liu and West (2001), within 
a tempered auxiliary particle filter (Pitt and Shephard, 1999). We do not 
describe this method in detail, as we did not use it for model fitting. As 
noted by Thomas et al. (2019), the kernel smoothing, which consists in 
adding a small jitter to parameter values tied to resampled particles to 
avoid creating identical copies, leads to biased samples from the 

posterior. To minimize this bias, Thomas et al. (2019) used a very small 
amount of kernel smoothing (discount parameter set to 0.99997 where a 
value of 1.0 results in no kernel smoothing), but this meant a large 
number of particles were required for adequate accuracy. Thomas et al. 
(2019) combined results from 4000 replicate runs each of 1,000,000 
particles; this took 72 h to run in parallel batches of 20 on 2 multi-core 
server-class machines using CPU code written in ANSI C, plus a few 
hours of post-processing time to combine the runs. We compare the 
estimates obtained from the GPU algorithm described below with the 
results they obtained. 

3.3. Particle MCMC 

The bias introduced by kernel smoothing can be avoided by using 
particle filtering in a different manner. Rather than using the particle 
filter directly to estimate the posterior distribution of the model pa
rameters, it is instead used as part of an MCMC algorithm. In an MCMC 
algorithm, samples can be obtained from a chosen distribution by via 
repeated evaluation of the likelihood function. For a detailed introduc
tion to MCMC methods, see Gelman et al. (1995); Brooks et al. (2011). 
We used a type of MCMC algorithm called the Metropolis-Hastings al
gorithm, where new sets of parameters are proposed and then either 
accepted or rejected sequentially, based on the change to the posterior 
density. Parameter values with a higher posterior density are always 
accepted, and points with a lower density are accepted with probability 
equal to the ratio of the posterior density given proposed vs current 
parameter values. In this framework, we use the particle filter instead to 
provide an estimate of the log-likelihood for a given set of parameter 
values (the ‘marginal likelihood’), which allows us to calculate the 
acceptance probability. Here a simple particle filtering algorithm is 
used: the bootstrap particle filter (Gordon et al., 1993). The final particle 
weights can be used to derive an unbiased estimate of the log-likelihood 
(Del Moral, 1996), and unbiased log-likelihood estimates have been 
shown to enable samples to be drawn from the exact posterior distri
bution (Andrieu and Roberts, 2009). These samples can be obtained via 
the pMCMC Metropolis-Hastings algorithm (Algorithm F.2, Appendix 
F). The bootstrap filter constitutes the majority of the pMCMC compu
tation time, and so is presented in more detail by Algorithm 1 as a means 
of identifying which aspects are most appropriate for a highly parallel 
approach, and which are most in need of optimisation. A generic version 
of this algorithm that does not contain modifications specific to the case 
study presented in this article is also provided in Appendix F. 

3.4. GPU implementation 

Algorithms are typically either ‘compute-bound’ or ‘memory-bound’. 
In the case of the former, the majority of the compute time is spent 
performing operations on data. In the latter, more time is spent copying 
data between locations in memory. The amount of time taken to copy 
any data from one memory location to another is known as the memory's 
‘latency’. The amount of data that can be transferred from one location 
in memory to another in a given unit of time is known as the memory's 
‘bandwidth’ (e.g., cache memory typically has a lower latency than off- 
chip RAM, although off-chip RAM has higher bandwidth). Memory- 
bound applications are more difficult to parallelise, as adding more 
compute cores does not increase memory bandwidth or reduce its la
tency, which remains the bottleneck of the computation. Compute- 
bound applications are more easily parallelised, as increasing the 
number of cores allows each core to perform a given task on a reduced 
quantity of data. However, as the compute time for each core ap
proaches the latency of the available memory, the benefit of each new 
added core tends to zero. In some cases, using ‘too many’ cores can lead 
to worse performance, due to overheads associated with multi-threading 
and memory management. 

In the case where many CPU cores are available on the same device, 
such as with modern chips housing up to 128 cores on a single die, CPU- 

Table 1 
Summary statistics for the grey seal model prior and posterior distributions. 
Posterior distributions obtained via auxiliary particle filter (APF) are those 
produced by Thomas et al. (2019). Abbreviations: SD denotes standard devia
tion; Be and Ga denote beta and gamma distributions respectively; cc, carrying 
capacity; DD, density dependent; NS, IH, OH, and Ork denote the North Sea, 
Inner Hebrides, Outer Hebrides, and Orkney regions.  

Parameter Prior distribution Prior 
mean 
(SD) 

Posterior 
mean via 
APF (SD) 

Posterior 
mean via 
pMCMC 
(SD) 

Adult survival 
ϕa 

0.8+ 0.17×

Be(1.6, 1.2)
0.90 
(0.04) 0.95 (0.01) 0.95 (0.01)

Pup survival 
ϕpmax Be(2.87, 1.78)

0.62 
(0.20) 0.48 (0.09) 0.48 (0.09)

Fecundity α 0.6+ 0.4× Be(2,1.5)
0.83 
(0.09) 0.90 (0.06) 0.89 (0.06)

DD shape ρ Ga(4,2.5) 10 (5) 5.95 (1.73) 5.62 (0.75)
NS pups at cc 

χNS Ga(4,5000)
20000 
(10000)

15500 
(8210)

17600 
(10200)

IH pups at cc 
χIH Ga(4,1250)

5000 
(2500) 3110 (173) 3080 (87)

OH pups at cc 
χOH Ga(4,3750)

15000 
(7500)

11700 
(535)

11800 
(257)

Ork pups at cc 
χOR Ga(4,10000)

40000 
(20000)

17800 
(1680)

17800 
(786)

Observation 
precision ψ Ga(2.1, 66.67)

140 
(96.61) 112 (34.6) 132 (17.2)

Sex ratio ω 
1.6+

Ga(28.08,3.70E − 3)
1.7 
(0.02) 1.7 (0.02) 1.7 (0.02)
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parallelism can be achieved with far lower overheads. However, these 
chips are not yet widely available to most consumers, largely due to cost. 
Server- or cluster-based parallelism is less efficient because computa
tions become memory-bound more rapidly, as the latency of data 
transfers is increased. This problem is exacerbated for algorithms that 
require regular or semi-regular communication between threads of 
execution. The bootstrap particle filter is an example of this: resampling 
particle weights from the entire population must occur every time step 
(line 5 in Algorithm 1). This places strict upper bounds on the speedups 
that can be achieved without a higher density of compute cores per 
device, and explains why the ‘fine-grain’ parallelism offered by GPUs is 
better adapted to this context. GPUs achieve faster communication by 
giving all of their cores access to the same on-chip global memory, which 
typically has higher bandwidth than the memory available to CPUs (the 
computer's off-chip RAM). In addition to this, cores on the same 
streaming multiprocessor have access to a shared cache, which allows 
for very fast communication between small numbers of threads. 

To determine how best to parallelise a sequence of calculations, it is 
important to first understand which broad sections of this computation 
are most expensive, and whether they are compute-bound or memory- 
bound. It is also important to understand which elements of the algo
rithm require communication between threads, and which calculations 
are necessarily dependent on previous results (perhaps performed by 
other threads). It is worth noting that many algorithms, including Al
gorithm 1, comprise elements with different computational complex
ities. Thus, the proportion of the compute time that is dominated by a 
given element is dependent on the size of the input (in the case of par
ticle filters: the number of particles and the number of observations). 

We implemented the bootstrap particle filter in R (R Core Team, 
2021) version 4.2.1 and used the code profiling facilities provided by the 
profvis package (Chang et al., 2020) to determine the relative allocation 

of compute time to the tasks within the bootstrap filter. This showed that 
the vast majority of compute time was spent projecting particles for
wards to the following time step (Table 2). The proportions of time spent 
on each task are likely to change with the state-dimensionality of the 
application at hand and the amount of interaction between particles 
(Whiteley et al., 2016). Large state-dimensionalities or particle inter
action can lead to a higher proportion of compute time spent on the 
resampling step in particular. In these cases, there exist alternative 
resampling methods to reduce the impact of particle interactions on 
computational cost (e.g. Lee and Whiteley, 2016). Note that imple
mentations of the algorithm in different programming languages, 
especially compiled ones such as C or Fortran, will vary slightly in the 
proportion of compute time spent in each task. 

Whilst it is difficult to profile the time spent performing memory 
allocations in R, many useful tools exist to perform this task for GPU 
implementations (Knobloch and Mohr, 2020). We note that in our 
example, for GPU implementations of the state projection step (line 10 
in Algorithm 1) to remain effective, we must ensure that its computation 
time remains higher than the data-transfer time of hidden states to and 
from GPU memory. We discuss methods of achieving this in more detail 

Algorithm 1. Bootstrap Particle Filter for Marginal Log Likelihood Estimation.  

Table 2 
Proportion of total compute time spent performing the listed tasks in a bootstrap 
particle filter for marginal log-likelihood estimation of the grey seal population 
dynamics model using 216 particles per evaluation, implemented in R.  

Task Proportion of compute time (%) 

Projection of hidden states to the next time step 89.0 
Calculate probability density of observed states 2.91 
Produce initial hidden state values 2.54 
Resample particle weights 1.54 
Other 4.01  
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during following sections. 
The suitability of an algorithm to GPU parallelism depends on the 

hierarchical structure of its for and for each loops. Broadly speaking, an 
algorithm where the parallelism is present in the outermost loops will 
benefit readily from a coarse grain implementation (i.e., CPU-based 
parallelism) whereas algorithms where the parellelism is found in 
inner loops will require fine-grain parallelism with smaller overheads 
(such as GPU computing) to remain efficient. 

In Algorithm 1, the only loop that cannot be parallelised is the pro
cess moving forwards through time (algorithm lines 4 through 18), 
because here the output of one iteration of the loop forms the input to 
the next. Within a given time step, however, each particle is able to 
independently produce a resample (given knowledge of the other log 
weights, in line 5), project its hidden state values forward to the 
following time step (line 10), and evaluate its observation density (line 
11). GPUs do this efficiently with ‘kernels’, which are functions designed 
to be executed only on the GPU. These functions are written not with the 
perspective of the entire algorithm, but with that of a single thread of 
execution, in our case, a particle. Kernels are efficient to launch, 
requiring almost no overhead, making it trivial to launch tens of thou
sands to millions of independent calculations. To illustrate the general 
structure of one of these kernels, we present the pseudocode for the 
forwards projection kernel (line 10) in Algorithm 2. 

Algorithm 2. Hidden State Projection Kernel. 

In Algorithm 2, a locally stored variable (using registers or shared 
memory) is distinguished from the version stored in global memory by 
the subscripts LM, and GM, respectively. By storing variables such as 
seeds for random number generation locally, we avoid needing to up
date the value in global memory (which has a high read/write latency) 
every time we wish to generate a random number. 

When the GPU executes kernels such as Algorithm 2, each warp (a 
group of 32 threads running in parallel) executes each line of code 
simultaneously. By ensuring there are no conditional branches (such as 
an if statement), we avoid situations in which some threads may sit idle 
waiting for the rest of their warp to perform the other part of the branch. 
This idling due to branching is known as ‘warp divergence’, and algo
rithms that include heavy branching are less likely to benefit from SIMD 
parallelism. Also relevant is the total time spent waiting for data to be 
transferred to and from the host (the computer in which the GPUs are 
housed), when no other ‘useful’ calculations can take place on the GPU. 
In our example, code-profiling revealed this is negligibly small, due to 
careful implementation choices that force the GPU to perform ‘single 
threaded’ tasks, avoiding memory transfers to and from the host 

computer's RAM. More detailed examples of this approach are given in 
Appendix B. 

3.5. Tuning 

The number of particle filters used per estimation of the log- 
likelihood (denoted by nf ), and the number of particles used by each 
of these particle filters (denoted by np), are quantities that must be tuned 
for a given application, to obtain high ESSs of the posterior in a 
computationally efficient manner. Increasing nf or np tends to increase 
the ESS of MCMC samples using this log-likelihood estimator (by 
reducing the variance of the estimator), whilst simultaneously reducing 
the number of samples that can be obtained in a given unit of time (due 
to the increased computational cost). We considered values of nf be
tween 1 and 25, and values of np between 210 and 220. In situations 
where an estimate of the log-likelihood is used to calculate MCMC 
acceptance probabilities, Doucet et al. (2015) suggest that an estimator 
of the log-likelihood with a standard deviation slightly larger than 1.0 
leads to efficient use of computational resources. Therefore, we excluded 
combinations of nf and np with standard deviation less than 0.5 or more 
than 2.0. We also excluded any combinations of nf and np that had GPU 
occupancy (a measure of the total number of active threads, relative to 
the theoretical maximum) less than 30%. A grid search over the 
remaining values yielded a selection of nf = 3 and np = 215, using 
average ESS across all parameters over a pilot MCMC chain of 1000 
samples as the selection criterion. For each estimation of the log- 
likelihood, we ran particle filters with the above tuning values simul
taneously on two GPUs, taking the mean likelihood estimate, using a 
total of 2 × 3 × 215 = 196608 particles per log-likelihood estimate. This 
produced estimates with a standard deviation of approximately 0.82. 
These tuning values will vary significantly with the computational 
complexity of the application and the hardware being used. 

A non-isotropic Gaussian random-walk proposal was used for the 
Metrolopis-Hastings step of the pMCMC algorithm (new sets of param
eters are proposed with a normal distribution centred on the previous set 
of parameters, with a variance-covariance matrix structure that allows 
for off diagonal entries, i.e. correlation between parameters). The 
variance-covariance matrix (VCM) of the proposal distribution is a 
tuning parameter that affects the quality of mixing of the resulting 
MCMC chain. Adaptive MCMC algorithms use the VCM of samples ob
tained from the posterior to modify the proposal VCM at regular in
tervals, allowing it to better approximate the correlation structure of the 
posterior distribution, often using a tempering schedule(Mueller, 2010; 
Roberts and Rosenthal, 2009). We used a simpler technique that dis
cards all samples from the posterior obtained from one adaptation of the 
VCM to the next. We began with a diagonal VCM with unit value entries, 
and produced an MCMC chain of 1000 samples from the posterior. The 
number of samples obtained was increased in increments of 1000 until 
10,000 samples were obtained in one adaptive phase. Following this, 
chains with 20,000 and 30,000 samples were used to update the pro
posal VCM twice more. At each iteration, the sample VCM was used as 
the updated proposal VCM. No tempering schedule was used, as all 
previous samples were discarded. See Peters et al. (2010) for a more 
detailed discussion of possible adaptive schemes for ecological pMCMC. 

During the analysis the proposal VCM was held constant and chains 
were initialised at the sample of the most recent adaptive phase with 
highest posterior density. Two chains of 105 samples from the posterior 
were obtained. Given that the iterative process ensures the final chains 
begin in an area of high posterior density, no samples were removed as a 
‘burn-in’. No posterior samples were removed via thinning, as the 
resulting file sizes still allow for fast post-processing (Link and Eaton, 
2012). Convergence was assessed using the Gelman-Rubin diagnostic. 
To visualise posterior marginal distributions, Guassian kernel density 
estimation was used, with bandwidth equal to one fifth of the sample 
standard deviation of posterior samples for each respective parameter. 
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3.6. Equipment 

The machine used for the analysis was equipped with an Intel i7- 
6700k CPU (released in 2015), and two Nvidia RTX 3070 GPUs (a 
desktop card released in 2020) operated with the Nvidia-SMI driver, 

version 470.161.03. Implementations were written in CUDA C++

(NVIDIA et al., 2020), version 11.4, and compiled with the NVCC 
compiler, version 10.1.243. An additional computer (a GPU-equipped 
laptop) was used as part of a benchmarking study, comparing run 
times across a range of hardware, GPU vs CPU and particle numbers 

Fig. 3. Posterior marginal distributions for each parameter (shaded under the curve), with 95% credible intervals (vertical dashed lines) and posterior means (solid 
vertical lines). Prior distributions are given by a solid line with no shading below the curve. Posterior distributions obtained by Thomas et al. (2019) are drawn with 
dotted lines. Numbers above each plot are the posterior mean and standard deviation (in brackets). 
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(Appendix C). 

4. Results 

Trace plots of the MCMC chains displayed good convergence, 
assessed via Gelman-Rubin diagnostics for each parameter (Fig. D.1 in 
Appendix D) and trace plots (Fig. D.2 in Appendix D). Mean ESS across 
model parameters was 1759 samples, ranging from 763 (ϕpmax) to 6290 
(ψ). The MCMC chains took a total of 8435 s to complete (2.34 h). 

Posterior marginal distributions for model parameters are shown in 
Fig. 3 and summarised in Table 1. The posterior mean on adult survival 
ϕa and fecundity α are higher than the prior means, while those on 
maximum pup survival ϕpmax and density dependence shape ρ are lower. 
In all cases there is moderate overlap between prior and posterior dis
tributions, indicating some learning about these parameters from the 
data (and model structure) but also an influence of the prior distribu
tions. Biplots of each parameter pair indicates strong posterior correla
tion between ϕa and ϕpmax (Fig. D.3 in Appendix D). For three of the four 
carrying capacity parameters, χIH, χOH, and χOR the posterior marginal 
distribution is much narrower than the prior, indicating considerable 
learning; these correspond with the regions (Inner Hebrides, Outer 
Hebrides and Orkney) where pup production has levelled off (Fig. 2). 
For the remaining region, North Sea, the pup production trajectory is 
still increasing (Fig. 2) and the corresponding carrying capacity 
parameter χNS posterior distribution is similar to (but slightly lower 
than) the prior. The posterior mean on observation precision is similar to 
the prior but the standard deviation is considerably smaller, indicating 
moderate learning. The prior and posterior distributions on sex ratio ω 
are almost identical. 

The estimated posterior marginal distributions are generally similar 
to those obtained by Thomas et al. (2019) (shown as dashed lines in 
Fig. 3 and summarised in Table 1) using the auxiliary particle filter al
gorithm. Thomas et al. (2019) reported an ESS size of 478 samples, 
lower than for any of the parameters in the analysis undertaken here, so 
we expect more Monte Carlo error in the Thomas results. The distribu
tions for ϕa, ϕpmax, α and ω are nearly identical, although those from 
Thomas et al. (2019) (except ω) are slightly more ‘wiggly’ as might be 
expected from the lower ESS. Estimated posterior means for ρ, χIH, χOH, 
and χOR are nearly identical but the estimated standard deviation is 
somewhat higher using the auxiliary particle filter. Posterior mean and 
standard deviation on χNS are both somewhat lower using the auxiliary 
particle filter, while posterior mean on ψ is lower and standard deviation 
higher. 

Speed comparisons between the implementations are necessarily 
approximate because they used different fitting algorithms (pMCMC vs 
auxiliary particle filter), computing languages (C++ with CUDA vs C) 
and computers. Nevertheless, the difference is striking. Thomas et al. 
(2019) reported an ESS of 478 samples from the posterior, achieved after 
72 h of computing on two computers using 20 CPU cores (plus post- 
processing time, not counted here). Achieving this average ESS via our 
GPU-accelerated pMCMC implementation would require approximately 
40 min, representing a speedup factor of 113. 

5. Discussion 

5.1. Case study: ecological and modelling implications 

Three regions out of four (Inner Hebrides, Outer Hebrides and Ork
ney) are estimated to be at carrying capacity, with the posterior mean 
carrying capacity parameter χ in each region (Table 1) very similar to 
the average observed number of pups in recent years (Fig. 3) and high 
precision of estimates relative to the prior distributions. The manner in 
which growth in pup production slowed over time in these regions was 
evidently informative about the form of the density dependence rela
tionship, since the posterior on the density dependent shape parameter ρ 

was considerably more precise then the prior; the posterior mean of 5.6 
was lower than the prior mean of 10 indicating that the steepness of the 
decline in fecundity as population size increases is less strong than 
envisaged a priori. In the North Sea region pup production is still rising 
at a near-constant rate and hence there is little information about the 
possible carrying capacity: the posterior distribution on χNS has a large 
overlap with the prior (Fig. 3). 

Posterior correlations are jointly high between the two survival 
probability parameters ϕpmax and ϕa (Fig. D.3, Appendix D). This sug
gests weak identifiability of these parameters individually. For example, 
a simultaneous increase in adult survival and decrease in pup survival 
would have similar effects on pup production counts as an increase in 
pup survival with a decrease in adult survival. Due to this weak iden
tifiability, it is difficult to distinguish which of these scenarios is most 
likely. Separate surveys with the aim of estimating a single one of these 
parameters (e.g., using mark-recapture) would be likely to increase the 
certainty in estimates of the other parameter as well, without necessi
tating other changes to the data collection process. Maximum juvenile 
survival ϕpmax is only observed when population size is close to zero, so it 
is not feasible to collect data on this parameter directly. Obtaining ob
servations on ϕt,r may help identify other parameters—the observation 
model would need to be extended to include this, and a simulation study 
could be undertaken to determine the effect of adding information on 
this quantity. 

The posterior distribution for the sex ratio parameter, ω is nearly 
identical to that of the prior. This is noted by Thomas et al. (2019), and is 
reflective of the fact that there is little information in the data on the 
number of adult males throughout the survey. Thomas et al. (2019) 
suggest that ω could be replaced by a male survival parameter if the 
number of unknown males in each region in each year were also 
considered latent states. The primary limitation to their implementation 
of this solution was computation time. Therefore, the accelerated 
method of inference we present in this article could offer an opportunity 
to explore this alternative, which allows for external information or 
expert elicitation on male survival to be included more readily. 

We note the use of a normal distribution to model the (positive) pup 
production estimate in each region for each year. The use of a contin
uous distribution that places probability mass below zero is potentially 
problematic. Therefore, we utilise the greater number of effective 
samples from the posterior we have obtained to investigate this. Due to 
the current specification of the observation precision parameter ψ , the 
probability mass placed below zero is not dependent on the mean, but 
only on ψ. For the smallest value of ψ sampled from the posterior, a mass 
of only 4 × 10− 18 is placed below zero. This is many orders of magnitude 
smaller than the machine epsilon (the smallest number that can be 
added to 1 without causing erroneous rounding back to the value of 1) in 
C, which is on the order of 1× 10− 7. Similarly, the use of a continuity 
correction can make a difference of at most 3.5 × 10− 7 in this case study. 
This difference is only possible for the largest value of ψ sampled by our 
MCMC chain. We are therefore confident that the use of a normal dis
tribution in this modelling context is numerically equivalent to the use 
of a discrete distribution that places no probability mass below zero. 

One advantage of the speed-up obtained by GPU parallelisation for 
our seal application and related nonlinear state-space models is that it 
becomes possible to use simulation studies to assess the accuracy of 
parameter and state estimation. This is relevant because issues have 
been noted with simpler linear normal state-space models, particularly 
in the case where the observation error is significantly larger than the 
process error (Auger-Méthé et al., 2016). We illustrate one such simu
lation in Appendix E. In that case we simulate ‘ideal’ data with multiple 
observations of pup and total population size as well as reducing the 
number of unknown parameters. We find posterior mean parameter 
estimates within 1% of the true value. 
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5.2. Case study: comparison with previous CPU-based analysis 

Having used an APF method that involved kernel smoothing, Thomas 
et al. (2019) report an expected bias in samples from the posterior, 
although the amount of kernel smoothing used was very small and hence 
the size of bias expected to be small. One advantage of GPU parallelism 
in this modelling context is that it allows the use of an unbiased sampling 
method, via pMCMC. In general, the difference between the APF and 
pMCMC posterior marginal distributions were indeed small (Fig. 3). This 
suggests that bias introduced via kernel smoothing is minimal, and that 
it remains a valid method of inference for the case study at hand, 
computational efficiency aside. 

We note a slight increase in the estimate of the observation error 
precision parameter ψ (i.e., higher estimated precision), and a decrease 
in the posterior standard deviation of this parameter, indicating a higher 
certainty on the observation error of pup production estimation. This 
provides more information to ecologists on the efficacy of data collec
tion methods. Thomas et al. (2019) note that the introduction of a 
random effect on the fecundity parameter α is desirable. A reduction in 
the posterior standard deviation of ψ could reduce the extent to which it 
would be confounded with α if this random effect were introduced. We 
also note significant reductions in the posterior standard deviations of 
the density dependence parameter ρ, as well as all three of the carrying 
capacity parameters for which the population was no longer in the 
exponential growth phase (χIH, χOH, χOR, for the Inner Hebrides, Outer 
Hebrides, and Orkney survey areas, respectively). This allows more 
precise extrapolation to estimates of total population size or estimates of 
state values (the number of female seals in a given age group, in any 
particular year of the survey). Although the kernel smoothing procedure 
of the APF appeared to introduce little bias, the slight decoupling of 
states and parameters may have diluted the information in the data 
somewhat, and using an unbiased procedure, pMCMC, may therefore 
lead to more precise estimates on parameters that are well informed by 
the data. 

5.3. Inference using GPUs: context and limitations 

In this article we focused on a case study using particle filtering, 
whose potential for GPU-parallelism has been well explored (e.g. Hen
riksen et al., 2012; Lee et al., 2010b; Sipos et al., 2019). However, 
general tools that provide these implementations to users less familiar 
with GPU-specific programming practices (e.g. Murray, 2013) only 
provide support for a few standard modelling distributions, limiting 
their accessibility to a wider audience. Numerous other applications in 
ecology and evolution stand to gain from GPU parallelism also. 
Computationally expensive algorithms that involve performing inde
pendent tasks over many data points are prime candidates, e.g., those 
involving numerical integration (such as spatial capture recapture 
(Borchers and Efford, 2008; Efford, 2004; Royle and Young, 2008), 
where the unknown activity centre of individuals is marginalised, or 
Joint Species Distribution Modelling (JDSM. For an introduction, see 
Ovaskainen and Abrego, 2020), where marginalising occurs over latent 
variables that drive species co-occurrence). Similarly, algorithms that 
produce large quantities of random samples in parallel, such as 
Approximate Bayesian Computation, achieve impressive speedups when 
executed on GPUs (Kulkarni and Moritz, 2023). Bayesian inference al
gorithms often display potential for parallelism in this way, and the use 
of GPUs to leverage this is an active part of computational research in 
the field (e.g. Beam et al., 2014; Herbei and Berliner, 2014; Terenin 
et al., 2019; White and Porter, 2014; Xue et al., 2016). 

Programs that contain large amounts of branching, such as simula
tions for Individual-Based Models (where the calculations required are 
often dependent on the state or life stage of an individual) are prone to 
‘warp divergence’, which lowers the efficiency of GPUs (Chimeh and 
Richmond, 2018). Calculations with irregular memory access patterns, 
such as the Nested Sampling algorithm for Bayesian inference, are not 

readily suitable to GPU parallelism (Lewis et al., 2015). Further infor
mation on this point is available in Appendix B. 

Algorithm suitability and design are not the only barriers to effective 
GPU-parallelism. As noted by Terenin et al. (2019), another significant 
hurdle is the lack of breadth within GPU-capable random number gen
eration libraries. For example the cuRAND library for CUDA has only 
two options for continuous data: uniform and normal distributions. In 
many real-world modelling situations, observed data are truncated or 
come from asymmetrical distributions. These are hard to approximate 
using transformations of normal or uniform deviates and must often be 
sampled using rejection sampling, which displays warp divergence. In 
these cases, approximately 106 random numbers must be generated 
before GPUs become much faster than CPUs (Askar et al., 2021). The 
creation of open source libraries for GPU random number generation 
from a wide suite of standard distributions would facilitate the paral
lelising of many Monte Carlo algorithms. 

GPU hardware is evolving, with the introduction of more specialised 
cores. One example is the Tensor Core, which can perform a fused 
multiplication and addition, allowing for more efficient matrix multi
plications. However, consumer-grade cards continue to focus on calcu
lations using single-precision floating point numbers (also called floats), 
with the two latest generations of Nvidia cards (Ampere and Ada 
Lovelace) providing only two double-precision cores per streaming 
multiprocessor, equating to a theoretical throughput 64 times smaller 
than that for single-precision floats (Krashinsky et al., 2020; NVIDIA 
Corporation, 2022). Therefore, the use of log-transformations and other 
algorithm adaptations prioritising high numerical stability will continue 
to form a core aspect of GPU programming for computational statistics 
applications. We note that in C and C++, the machine epsilon for single 
precision floats is approximately 1× 10− 7. The lower the machine 
epsilon, the higher the precision of the calculation. Many high-precision 
applications, such as numerical integration for high-dimensional data, 
or p-value calculations within extreme value statistics may not be suit
able for fine-grain parallelism without the creation of specialised 
hardware. 

We benchmark results as an illustration of the potential for GPU code 
greatly reducing compute time, but we note this is not appropriate for 
use as a direct estimation of the differences between the best possible 
compute times achievable by CPUs and GPUs. This is because different 
architectures require different optimisation approaches (Lee et al., 
2010a). In situations where threads of execution require large amounts 
of communication, or when sequential dependence occurs in nested for 
loops, existing CPU clusters are likely to remain a cost-effective method 
of reducing compute time, especially if implementations are ported over 
to compiled languages, such as C and Fortran. Tools such as Rcpp 
(Eddelbuettel, 2013), that allow the use of compiled code within a 
higher-level language are a vital first optimisation step for GPU-parallel 
applications as they provide a more-accessible and more widely docu
mented method of code-acceleration. 

5.4. Optimising aspects of the particle filter 

The variance of an estimate of the likelihood derived by a particle 
filter is proportional to the inverse of the number of particles np (Moral, 
2004). However, the efficiency of a particle filter's execution on a GPU is 
also dependent on np. Values of np that are too low will not utilise 
enough cores simultaneously to achieve high occupancy (a measure of 
the number of current parallel processes relative to a theoretical 
maximum). Values of np that are too high force the GPU to run calcu
lations in serial batches, as there are too many particles for the number 
of cores available. This batching leads to memory and scheduling 
overheads that reduce overall performance. Therefore, it can be ad
vantageous to split the total number of particles across different filters 
that are run in series. The mean of likelihood estimates obtained by these 
nf filters is then used as the final estimate. We suggest performing a grid 
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search over small numbers of plausible values of nf and np, as described 
in Section 3, to determine the combination that strikes the best balance 
between high occupancy, low compute time, and low variance for log- 
likelihood estimates. Situations where low values of np are selected 
along with high values of nf lend themselves to a coarser grain of 
parallelism, making the use of CPU clusters more efficient. Similarly, it is 
easier to achieve higher occupancy on GPUs with fewer compute cores. 
This suggests that older hardware (which tends to contain fewer cores) 
may be considerably more cost effective for certain applications, as 
newer hardware will only achieve high occupancy if the number of 
parallel processes is sufficiently high. Therefore, newer hardware will be 
most efficient when fewer particle filters are used, each with a higher 
number of particles. GPU profiling tools are available to assess occu
pancy levels, so the ideal number of particle filters and total particles can 
be tuned to specific hardware. This is applicable more generally than 
just for particle filtering, as larger batches of calculations, each con
taining fewer processes, will achieve higher occupancy on older hard
ware. Cost efficiency for application-specific computations can therefore 
be obtained by profiling the occupancy of pilot computations on 
different GPUs in the cloud, so that hardware may be selected to achieve 
an optimal balance between price and computational throughput. 

In many computational statistics algorithms, including particle 
filtering, resampling indices across a large set of data occurs regularly 
(such as in line 5 of Algorithm 1), and occupies a significant proportion 
of the total compute time. The choice of resampling algorithm is 
important, as algorithms that have efficient CPU-only implementations 
do not necessarily remain efficient when calculations are performed 
using GPUs. In particular, the rejection algorithm for multinomial 
resampling is prone to warp divergence, as threads in the same warp 
must wait for all others to have accepted a sample before they can 
proceed to generating the following sample). More examples of warp 
divergence are detailed in Appendix B. Efficient alternatives such as the 
Metropolis resampler (whose GPU-parallel performance is examined in 
detail by Murray et al. (2016)) or the Megopolis resampler (Chesser 
et al., 2022) are likely to reduce overall compute time by allowing each 
thread to produce a sample independently. However, as these algo
rithms are only asymptotically unbiased, they may not be optimal for 
applications that require resampling from highly skewed probability 
distributions, as these will necessitate many iterations to produce suf
ficiently unbiased samples, increasing compute time. 

5.5. Conclusions 

GPUs are becoming increasingly used within statistical computing, 
with both hardware and software now being well developed and readily 
accessible to scientists with little GPU-specific programming experience, 
for certain applications. In these applications, largely related to machine 

learning, approximately two orders of magnitude of speed-up can be 
obtained with relatively inexpensive consumer-grade equipment. For 
other custom applications such as state space modelling, knowledge of 
GPU-specific programming practices and lower-level programming 
languages are both still necessary to achieve comparable results. In this 
article we have outlined properties of statistical algorithms that make 
them well- or poorly-suited to GPU parallelism, and have provided ex
amples in each case. Via a population dynamics case study, we have 
demonstrated how these concepts can be utilised to efficiently paral
lelise a computationally expensive algorithm for ecological inference, 
and we provide open source software for this case study that can be used 
as a template for similar applications. 
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Appendix A. Running CUDA code with google cloud 

A.1. Introduction and specifications 

This appendix is designed to provide practical advice on setting up a CUDA-capable Google cloud instance, as well as installing drivers and 
software required to use Nvidia GPUs for scientific computing. This file will cover both the execution of GPU-accelerated code using cloud computing, 
via the Google Cloud service, and the installation of Nvidia GPU drivers and compilers onto this server, if required. There are many other providers of 
similar services. However, they vary in their setup procedures and requirements, and so we provide only a detailed example for the above mentioned 
provider. 

At the time of writing, CUDA-capable Google Cloud options use Linux operating systems (Debian 10, with CUDA 11.3), and the latest CUDA release 
is version 11.8. Given the lack of a simple way of converting a Windows executable to a Linux one when this contains GPU driver calls, the simplest 
way to run CUDA code in the cloud is to compile directly on the Linux server. 

The set of instructions in this file will take as given a basic knowledge of CUDA code, familiarity with the C and C++ programming languages 
(namely makefiles, structs, templates, memory allocation and pointers. Familiarity with terminal windows in Linux or MacOS operating systems is also 
advantageous. 
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A.2. Installing Nvidia drivers and CUDA compilers 

This first set of instructions details the installation of software required to use Nvidia GPUs for scientific computing. These instructions apply both 
to a local machine that contains CUDA-compatible GPUs, or to a server initialised using Google Cloud.  

1. The machine should have a recent installation of the gcc C/C++ compiler  
2. The Nvidia CUDA Toolkit and the Nvidia drivers for any GPUs in the machine should be installed. The CUDA compiler version can be verified 

with the terminal command nvcc--version. The driver versions and some basic diagnostics relating to the GPUs can be queried using the ter
minal command nvidia-smi. 

A.3. Compiling and running code on a local machine 

If a machine with a CUDA compatible GPU is available, with the above drivers installed, then scientific computing code can be compiled and run on 
this machine with the following instructions. See below for using GPUs in the cloud.  

1. A GPU-accelerated project including a makefile, a main file, and any dependencies, can be compiled with the standard make command in a 
terminal window. Example projects, which can serve as a minimal reproducible example, can be found online. For an example of a more 
complicated project with a small handful of dependencies, see the source code made available with this article at https://github. 
com/calliste-fagard-jenkin/GPU-SSMs  

2. In some instances, once the output file has been created by make, it may be necessary to formally add executable permissions to the file using the 
chmod + X < filename> command in a terminal window (open in the same file path as the executable file itself). 

A.4. Using google cloud  

1. A Google Cloud account should be accessible, or created if required. The account requires billing information for the use of GPUs. An application is 
required to increase the quota of available GPUs.  

2. A CUDA-capable Virtual-Machine (VM) instance should be created on Google Cloud. Various choices are available by searching for ‘CUDA’ in the 
Google Cloud ‘Marketplace’. We recommend a VM named “Debian 10 based Deep Learning VM with M97”, as it comes with the necessary drivers 
and compilers pre-installed. At the time of writing, this instance uses CUDA 11.6. Documentation is available if additional information about 
similar Google Cloud VMs is required.  

3. The VM can be launched using the ‘Launch’ button on the aforementioned page, after which the required hardware specification of the VM must be 
selected. For most small projects, 16GB of memory and an SSD boot drive of 30GB should suffice. The number and type of GPUs can be selected at 
this stage.  

4. Once the VM is deployed, which can take a few minutes, the ‘SSH’ button on the VM's page should open a terminal window in the web-browser of 
the local computer, which will provide access to the server. There are other methods for accessing the server (directly via SSH for example. 
However, the browser terminal option is the simplest to use for individuals less familiar with the use of cloud computing).  

5. When accessing the server, it is likely that the automatic download of some CUDA drivers on the VM will need to be confirmed.  
6. At this point, a zip file of the GPU-code repository we wish to execute in the cloud can be transferred to the server. A gear icon in the top right 

corner of this browser terminal shell, or an upwards arrow icon, should open a window that allows the zip file's location on the local computer to be 
specified.  

7. Once the file transfer is complete, the file can be unzipped on the server using the terminal command unzip <filename.zip>. Once the 
decompression is complete, it is necessary to navigate within this directory using the terminal cd < target/directory/path> command. 
From here, the terminal make command should compile the GPU-accelerated code. At this stage, it is possible that there is an incompatibility 
between the CUDA version specified in the makefile of the example code being used, and the CUDA version made available by the server. If this is 
the case, the CUDA version available to the server can be verified with the nvidia-smi command, and the makefile should be updated to reflect 
this.  

8. Once the code is compiled, the executable file should become visible. As with code execution on the local machine, executable permissions may 
need to be given to this file using the chmod +X < filename> command. The executable can then be run on the server with the ./<executable- 
name> command.  

9. Once the executable has finished running, any output files can be transferred back to a local machine by clicking the gear icon in the top right of the 
browser terminal shell again (or a downwards arrow symbol), and selecting download. Once everything is transferred, it is important to stop the 
VM instance. If the instance will not need to be used in the near future, it is best practice to remove the instance entirely, to avoid the risk of 
accidental over-use, which will be charged. 

Appendix B. Introduction to GPU computing concepts 

B.1. Warps, blocks, and threads 

This section aims to highlight the most important GPU programming concepts that greatly aid in understanding parallel architectures more 
generally, and also help to identify families of algorithms in computational statistics that could benefit from a GPU-accelerated implementation. For 
simplicity, Nvidia-specific terminology will be used to remain consistent with the main text. 

Fig. 1c (main text) represents a GPU streaming multiprocessor (SM), which is a collection of cores with fast cache memory shared between them, 
and a small amount of resources for control structures. The longer block of memory in the middle of Fig. 1b (main text) is the GPU's global memory, 
and all information stored here is accessible by all cores (on the GPU), no matter which SM they belong to. 

A single independent stream of computation is known as a thread. On traditional CPU-only machines, we can expect to be able to run up to 128 
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threads simultaneously, on high end consumer products. On GPUs thousands of threads can be run simultaneously with good management of re
sources, illustrating the level of parallelism we wish to leverage. Threads are organised into groups of 32 called ‘warps’. All threads in a warp execute 
each of their instructions at the same time, known as running in ‘lockstep’. These warps are organised into ‘blocks’, which can contain partial warps if 
required, with the unnecessary threads simply running idle. Finally, the set of all blocks is known as the ‘grid’. The significance of these abstractions is 
that all threads in a given block will always be run on the same SM. This means they will all have access to the small cache displayed on the bottom of 
Fig. 1c (main text), allowing threads the opportunity to transfer information from one ‘train of thought’ to another. Threads in different blocks do not 
have this advantage. A final generality which strongly influences our programmatic decisions when working with GPUs is that the scheduling of blocks 
and warps cannot guarantee any specific sequence of operation: it is not possible to choose the particular order in which warps are run within a given 
block, or the order in which blocks will be executed. 

In the remainder of this section, some general GPU programming concepts will be highlighted, to summarise the factors that typically have the 
largest impact on speed of calculation on a GPU. These are ‘warp divergence’, copying data between the host (the computer that houses the CPU and 
GPU) and the device (the GPU), coalesced memory access on the GPU, thread register use, and the significance of block and grid sizes (the number of 
threads per block, and the number of blocks requested by any GPU calculation, respectively). 

B.2. Warp divergence 

Warp divergence occurs as a result of the lockstep nature of threads undertaking their given tasks. Since all threads within a warp must execute 
each of their instructions simultaneously, threads that attempt to perform a different task to others in their warp will cause the remaining threads to 
idle as they wait. As an example consider the Box-Muller transform (Box, 1958) for generating normal deviates, given below as algorithm B.1. 

Algorithm B.1. GPU-accelerated Box-Muller Algorithm for standard normal deviates

Looking at Algorithm B.1 will help to illustrate some GPU-specific programming conventions, and then illustrate the type of algorithm that is 
ideally suited to GPU acceleration. The algorithm is written from the perspective of a single thread: to produce 2N standard-normal deviates, we write 
a function that instead focuses on a single thread of computation, which in this case produces only 2 of the required 2N deviates. This concept holds 
generally for GPU computing with CUDA, as ‘kernels’ (the name for a function that runs on the GPU) are always written for individual threads, 
allowing the parallelism to arise from launching this same kernel many hundreds of thousands, or millions of times. In this situation, each thread is 
aware of its unique identifier within its block of execution, and also of the unique identifier of this block within the collection of blocks which have 
been launched (known as the grid). By combining these unique identifiers with the number of threads contained in each block, a mapping can be 
produced to the set of indices 0,N − 1. This is performed by line 1 in the algorithm. Line 2 ensures that ‘out of bounds’ thread numbers do not result in 
unexpected behaviour. For example, consider producing 20 random deviates with 2 blocks containing 6 threads each. This setup would produce 12 
threads, and values for i from 0 to 11. Since only 10 threads are required to produce 20 deviates, running this kernel for i = 10 or i = 11 may lead to 
attempts to access unassigned memory. The final convention to note is that many GPU-accelerated functions will often return NULL values. This is 
because there is no clean way to ‘collect’ the outputs of each thread and organise them neatly on our behalf. Each thread must know explicitly at which 
memory address(es) it is expected to write its outputs. Memory for this output array must be allocated before the kernel is executed. 

Considering other lines of this algorithm, it is clear that for any instance of the kernel, and any value of i, calculations can be performed completely 
independently for each thread. The thread performing calculations for i = 0 requires no information produced by any other thread, and will be writing 
its output to indices 0 and N of the output array, which are not used by threads with any other value of i. This independence is key for optimal GPU- 
acceleration. If any information needed to be shared between threads, say on line 5 for example, then every other thread would need to be executed up 
until line 5 to guarantee that this information is available (since the order of execution is not guaranteed). We note that on line 3, threads with out of 
bounds values are asked to terminate immediately. In practice, this is not possible, and they must run through lines 4 to 10, waiting for all the other 
threads in their warp to reach the same line before moving on. These idle threads are wasted, since they perform no useful work, but must still be 
scheduled and run in order to obtain useful work from other threads in their warp. Because of this, choosing grid and block sizes that produce as few 
wasted threads as possible can have a significant effect on performance. 

This ‘idling’ behaviour caused by warp divergence becomes dangerous when conditional statements in code lead to multiple useful threads 
performing different tasks. This is illustrated by considering an alternative version of the Box-Muller algorithm, based on using polar coordinates 
(Knop, 1969), shown in algorithm B.2. Lines 6 to 8 of the algorithm contain a while loop. Threads that have passed the check on line 2 must wait for all 
threads in their warp to keep performing this loop before they can move on, since all threads in the warp are in lockstep. In this example, the 
probability that this test fails is approximately 21.4%, and so we have an approximate 95% chance that an entire given warp waits for at least 10 
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iterations of the loop, potentially because of a single slow thread. In this case, the computational cost of this branch is low, which minimises the effect 
of the warp divergence. However, when branches are computationally expensive, even a rare occurrence of branching can have a drastic effect on 
performance. These situations are unfortunately extremely common in computational statistics, with rejection sampling being a simple example. 
Acceptance rates as high a 99% still lead to a 30% chance of a warp being slowed down (Thomas et al., 2009). GPU-accelerations are still beneficial if 
extreme care is taken with the choice of proposal distribution, so as to avoid high rejection rates. A proposal which is more computationally expensive 
to evaluate, but leads to a higher acceptance rate could produce higher throughput, despite its lower efficiency when used in a serial computation. This 
could lead to complicated and perhaps non-intuitive applied approaches (such as importance sampling within rejection sampling) becoming viable in 
certain situations. 

Algorithm B.2. GPU-accelerated Polar Box-Muller Algorithm for standard-normal deviates

Being aware of the possible sources of warp divergence, the proportion of threads we can expect to pursue the most expensive branches, and 
obtaining creative solutions to finding the balance between total throughput and speed of execution for a single thread is integral to efficient GPU 
implementations of scientific algorithms. 

B.3. Memory transfer 

One of the most common bottlenecks in GPU computing is the transfer of memory from the host to the device and vice versa. The performance of 
data transfer can be summarised by two properties of interest: latency and bandwidth. Latency refers to the length of time it takes to send any in
formation between two points, and is often measured with a ‘ping’ time: the time it takes to transfer a given quantity of data from the starting point to 
the end point and back again. Bandwidth refers to the total volume of information that can be sent between two points in a given unit of time, typically 
measured on the order of GB/s in modern graphics cards. Generally, GPU memory bandwidth is higher than CPU memory bandwidth, with only high 
latency and low bandwidth memory transfers being available between the two (Fig. B.1).

Fig. B.1. A diagram illustrating the transfer pathways between host memory, GPU memory, and compute cores. Longer arrows indicate higher latency, and thicker 
arrows indicate higher bandwidth. This figure is adapted from (Lee et al., 2010b, Fig. 2). 

As the figure shows, GPU cores can communicate quickly with on-board GPU RAM to retrieve data mid-computation, but communicating with the 
CPU comes at a much greater cost. High latency means requesting or sending any data at all to the host comes at a relatively high cost, whilst the low 
bandwidth makes it infeasible to transfer large blocks of information to and from the CPU without threads sitting idle for many clock cycles. What the 
CPU lacks in volume, it gains in speed. Single threaded applications typically perform far better on the host, due to the CPU's higher clock speed per 
core, along with the presence of branch prediction and other optimisations provided by its control structures. However, copying data back to the CPU 
to perform ‘inherently sequential’ sections of an algorithm on the host is not necessarily optimal. In many situations, the additional data transfer time 
is greater than the time saved by using the CPU's faster clock-speed. Advanced profiling tools exist to determine which course of action is best for a 
given implementation, such as Nvidia's NSight (Nsight and Edition, 2013) for CUDA. When the burden of copying data from the GPU back to the host 
mid-algorithm is too great, writing GPU ‘parallel’ functions designed to be used by only a single thread is often the only solution. Sometimes a 
reduction can be used, allowing a simple task, such as the summation of values in an array, to be performed by many threads, each performing a single 
step of the calculation (in this case, adding together two ‘adjacent’ numbers). Repeating this process, halving the number of active threads with each 
iteration, until only a single thread is active, allows the vast majority of the summation to be performed in parallel. For detailed examples and 
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explanations on writing and profiling GPU reductions, see Sanders and Kandrot (2010). 
A further important factor affecting performance is whether the GPU memory cache is accessed efficiently. The streaming multiprocessor running a 

block of threads provides them with a cache that has far lower latency than the GPU's global memory. Since threads are in lockstep, all requests to read 
memory as part of a given instruction are made simultaneously for the entire warp. If all threads in a warp make requests for information at 
consecutive memory addresses, which is known as a coalesced memory access, then all of these pieces of information can be loaded from the global 
memory using very few lines of cache. If the memory addresses requested by the threads are far apart, the line of memory sent to the cache to obtain 
one value will not contain the value required by another thread in the warp. This leads to many different lines of cache being read, causing a stall in 
code execution while memory latencies are resolved. 

Consider Fig. B.2 and Fig. B.3, as well as algorithms B.3 and B.4, that illustrate how we can ensure coalesced memory accesses with our GPU 
programming. In the coalesced version (algorithm B.3), a perhaps non-intuitive increment is used: the product of the grid dimension and the block 
size. This obfuscates the number of operations n we wish each thread to perform, by making the number of passes through the while loop entirely 
dependent on the values of B (the block number of the active thread) and TPB (the number of threads in a given block). From Fig. B.2 we see this causes 
‘nearby’ threads to access adjacent memory addresses at a given iteration of the loop, displayed by the grouping of arrow types. The non-coalesced 
version (algorithm B.4) has a more intuitive increment for each thread, but produces an inefficient memory access pattern. Whilst the same thread will 
access adjacent memory addresses at different iterations through the loop, during any given iteration, all of the ‘nearby’ threads are accessing memory 
addresses which are over a block-width away. Poor access patterns such as these can result in an order of magnitude of increased computation time 
when the quantity of information being read is substantial relative to the number of operations being performed (Sanders and Kandrot, 2010).

Fig. B.2. Example of coalesced memory accesses with each thread performing two tasks. Arrows with a dotted line show memory reads in the first time step, and 
arrows with a solid line show memory reads in the second time step. 

Fig. B.3. Example of non-coalesced memory accesses for each thread performing two tasks. Arrows with a dotted line show memory reads in the first time step, and 
arrows with a solid line show memory reads in the second time step. 

Algorithm B.3. GPU number squaring with coalesced accesses.

Algorithm B.4. GPU number squaring without coalesced accesses. 
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B.4. Other considerations 

There are many other important factors that have substantial roles to play in efficient GPU programming that have been omitted. Most notably the 
existence of shared memory, which is accessible by all threads in a block, and is much faster to access than global memory. This can be useful when 
designing kernels in such a way that all threads in a block require access to the same parameter values. 

Software abstractions relating to specific caching strategies also exist, and can have a strong effect on observed latency. One of these strategies 
made available by CUDA is ‘texture memory’. Memory declared as texture memory is cached to prioritise spatial proximity as opposed to memory 
address proximity. As an example, the intensity of the colours red, green and blue in an image can be stored digitally in 3 matrices, each of same 
dimension as the image (in numbers of pixels). Texture memory will prioritise the caching of colour values for pixels that are close together in the 
image, even if the memory addresses where these values are stored are far apart. This can be beneficial when calculations for nearby pixels are 
dependent on the value of other pixels (such as when applying a Gaussian blur filter, for example). Typically this optimisation is used in image 
processing, but could be similarly advantageous in spatial statistics applications, or tasks in which a statistical function must be computed over a large 
grid space where parameter values are dependent on location. 

Finally, the notion of ‘thin’ and ‘fat’ threads is useful, even if not explored here in detail. It suffices to understand that individual threads store a 
‘scratchpad’ of variables they require in fast cache memory, using a software abstraction known as ‘registers’. Because the cache these registers reside 
on is shared by all cores in a streaming multiprocessor, there is a strict upper limit on the number of concurrent warps an SM can schedule, dependent 
on the register space its threads require. Threads that require very little register space are known as ‘thin’, and lead to higher occupancy of the GPU 
hardware, whereas ‘fat’ threads require more register space and may be prone to having too few operations per memory read to hide the latencies 
these reads incur. Modifying the grid dimension and block size can optimise the execution time in these situations for a given graphics card. However, 
these types of optimisations rarely lead to improved performance across a wide range of hardware (especially across generations of graphics cards). In 
situations where threads are unavoidably ‘fat’, some variables or pieces of memory can be carefully re-purposed at different stages of the calculation to 
avoid as many distinct memory allocations as possible. 

Appendix C. Benchmarking 

In this section, we compare the efficacy of CPU-based parallelism and GPU based parallelism for state space model likelihood evaluation using 
particle filters. As the number of parallel cores used by any CPU-based implementation increases, the additional overheads this creates will place a 
practical ceiling on performance. The reduction in efficiency becomes extreme when the computational throughput required per compute core is low, 
relative to the latency of memory used to combine the results of calculations performed by different cores. In the case of the example application, this 
occurs when a small number of total particles is used. 

We exemplify this with a small benchmarking simulation using two machines. The first machine was used to perform the analysis in the main text, 
and is equipped with two RTX 3070 GPUs (5888 ‘CUDA cores’ per GPU). The second was equipped with an Intel i9-9880H CPU (8 cores) and a Quadro 
4000 laptop GPU (2304 ‘CUDA cores’). The execution times of calculations performed using a single core of the latop computer were used as a baseline 
(a speedup factor of 1). 

It is important to note that overheads may skew comparisons when comparing compute times. Therefore, for the CPU-based implementation, the 
time taken to create a parallel cluster was excluded. In the case of the GPU-based implementation, the time taken to allocate GPU memory, and to 
generate initial seeds for the pseudo-random number generators was excluded. This is justified by the tens of thousands of samples typically produced 
over the course of pMCMC (or tens of thousands of particles, during APF model-fitting), that eclipse the compute time of the initial overheads, which 
only need to be performed once. 

Referring to Table C.1, we note that when the number of parallel processes is too low, GPUs provide less relative speedup (the ratio of the speedup 
factor for GPUs relative to 8 Laptop CPUs is lowest for the smallest number of total particles we considered). We also note that as the number of cores in 
a GPU increases, so does the number of parallel processes required for efficiency (the number of total particles at which the maximum speedup is 
achieved is higher for the desktop GPU than for the laptop GPU, and higher still when using two desktop GPUs). Using an additional GPU results in a 
50–70% increase to the speedup factor, when computational throughput is sufficiently high. The Quadro 4000 mobile card demonstrates that when 
using laptop computers, GPUs are capable of accelerating computations a further 20 to 30 fold relative to using eight CPU cores, and by approximately 
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two orders of magnitude compared to using a single CPU core.  

Table C.1 
Speedup ratios of particle filter evaluations, compared to calculations performed with a single CPU core, estimated by timing the execution of 50 
particle filters for the log-likelihood of the grey seal model, described in the main text. All particle filters were evaluated at the maximum a posteriori 
(MAP) of the analysis in the main text.  

Total particles 8 Laptop CPU Cores Laptop GPU Desktop GPU Two Desktop GPUs 

210 1.87 13.16 16.67 15.93 
215 4.37 117.27 167.16 262.64 
216 4.18 106.24 174.43 265.37 
217 4.98 97.36 166.43 279.21 
218 4.90 80.36 137.59 236.24  

Appendix D. MCMC diagnostics
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Fig. D.1. Grey seal case study median Gelman-Rubin shrink factor for all model parameters. Calculated using all 105 samples from both chains, with an initial bin of 
50 samples.  
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Fig. D.2. Grey seal case study MCMC traces. No samples have been removed via thinning. Each colour represents a distinct MCMC chain. Each trace displays all 105 

samples from the posterior.  
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Fig. D.3. Grey seal case study two-way marginal distribution plots. Boxes on the diagonal contain histograms of marginal posterior distributions for each parameter. 
Boxes in the upper-right triangle contain plots from a kernel density estimate of two-way marginal distributions. Boxes in the lower-left triangle contain the two-way 
locations of 1000 samples from the posterior, with means indicated by a cross. 

Appendix E. Simulation from ‘ideal’ conditions 

We illustrate the effectiveness of the GPU pMCMC method for parameter inference via a simulation of the wildlife population dynamics model for 
grey seals. We aim to show that given ‘high quality’ data, the method is capable of producing posterior distributions whose marginal means are 
extremely close to truth. In this context, we define truth as the parameter values from which simulated data were produced. 

When the observation error is larger than the process error, state space models are prone to parameter estimation issues (Auger-Méthé et al., 2016). 
In the grey seal case study presented in this article, pup production estimates are made with an observation error with a coefficient of variation (CV) of 
approximately 9% (ϕ− 0.5, substituting ϕ for the posterior mean for this parameter, obtained from the analysis performed in the main text). However, 

the process that generates pup counts has a CV of 
̅̅̅̅̅̅̅
1− α
nα

√

(as it arises from a binomial distribution), where n is the number of breeding age females in a 
given region, in a given year. For plausible values of n, this quickly falls below 1%. This high observation error, combined with high posterior cor
relations between ϕpmax, ϕa, and α, can cause the means of their marginal posterior distributions to deviate from truth. To remedy this issue for the 
purposes of our illustration, we simplify the model by treating five of the model's parameters as known values. A more detailed investigation is planned 
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for the future. 
We simulated new pup production estimates for all regions, extending the survey to a 100 year time series across the four regions, with an in

dependent estimate of total adult population size occurring each year. Initial pup production counts in year 0 were fixed at the values given by Thomas 
et al. (2019). Marginal posterior correlations between parameters (especially between the vital rates) were minimised by fixing all model parameters 
other than ϕa and the four carrying capacities χIH, χOH, χOR, and χNS. To ensure that biologically plausible parameter values were chosen to conduct the 
simulation, the posterior centroid of an initial analysis on the Thomas et al. (2019) data was selected. We fixed ψ = 816, to ensure a CV of pup 
production estimates of 3.5%. Similarly, we fixed k1 = 104 and k2 = 3.523067, to obtain independent estimates of total population size with CV 1%. 

Two MCMC chains of 5 × 104 were produced. The proposal covariance structure was obtained via the same iterative process described in the main 
text. Samples from these iterative chains were discarded, and therefore no samples from the final chains were removed as a ‘burn in’. Total compute 
time was approximately 6.2 h once the final covariance structure was obtained (and approximately 10.3 h including the adaptive phase). Post 
processing time was negligible. We then compared posterior estimates of parameter values with the known values observations were simulated from. 
We also assessed the method's ability to produce accurate inference on the values of hidden states, by simulating population trajectories from both the 
true parameter values, and parameter values sampled from the posterior distribution.

Fig. E.1. Simulation of 5000 grey seal time series, with model parameters coming from the posterior, prior, and truth (values used to simulate the data used to 
produce the posterior). The median of total pup production counts and total adult counts, across the four survey regions, is plotted for each of the 100 simulated 
years. The 2.5% and 97.5% quantiles for each count are plotted as solid lines. The prior is diffuse, and the posterior and truth curves are similar in each year. 

From Table E.1, we show that the SSM framework (implemented via GPU pMCMC) is capable of producing posterior means that are within 1% of 
the true parameter value, when the observation error is sufficiently low. When simulating new populations, taking parameter values from the posterior 
distribution, or repeatedly using the same parameter values as those used to obtain the posterior, we obtain pup production counts and total adult 
counts with similar means, 2.5%, and 97.5% quantiles (Fig. E.1).  
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Table E.1 
True and posterior mean parameter values, and their percentage differences, to 3 signif
icant figures.   

Truth Estimate Difference (%) 

ϕa 0.95614 0.95618 0.004 
χIH 3083.8 3091.0 0.235 
χOH 11,752 11,822 0.599 
χOR 17,780 17,665 0.645 
χNS 19,588 19,671 0.421  

Fig. E.2. Marginal posterior distributions for each estimated parameter. Individual plot titles provide the marginal posterior means, standard deviations (in pa
rentheses) and effective sample sizes. Posterior means are indicated by a solid vertical line. 95% credible intervals are indicated by dashed vertical lines. The 
parameter value the data were produced from is indicated by a vertical dotted line. Posterior distributions are indicated by a curve with a solid line (with shading 
below the curve). Prior distributions are indicated by a curve with a solid line and no shading below the curve (note these have very little density, relative to the 
posterior). Prior means are not displayed, to enable the shape of posterior marginal distributions to remain clear.  
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Fig. E.3. Gelman-Rubin convergence diagnostic for the estimated parameters.  

Fig. E.4. Final traces for the estimated parameters.  
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Appendix F. pMCMC algorithm 

Algorithm F.1. Bootstrap Particle Filter for Marginal Log Likelihood Estimation.

Algorithm F.2. pMCMC via the Metropolis-Hastings Algorithm.
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