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While several numerical techniques are available for predicting the dynamics of non-Markovian open
quantum systems, most struggle with simulations for very long memory and propagation times, e.g., due to
superlinear scaling with the number of time steps n. Here, we introduce a numerically exact algorithm to
calculate process tensors—compact representations of environmental influences—which provides a
scaling advantage over previous algorithms by leveraging self-similarity of the tensor networks that
represent the environment. It is applicable to environments with Gaussian statistics, such as for spin-boson-
type open quantum systems. Based on a divide-and-conquer strategy, our approach requires only
Oðn log nÞ singular value decompositions for environments with infinite memory. Where the memory
can be truncated after nc time steps, a nominal scaling Oðnc log ncÞ is found, which is independent of n.
This improved scaling is enabled by identifying process tensors with repeatable blocks. To demonstrate the
power and utility of our approach, we provide three examples. (1) We calculate the fluorescence spectra of a
quantum dot under both strong driving and strong dot-phonon couplings, a task requiring simulations over
millions of time steps, which we are able to perform in minutes. (2) We efficiently find process tensors
describing superradiance of multiple emitters. (3) We explore the limits of our algorithm by considering
coherence decay with a very strongly coupled environment. The observed computation time is not
necessarily proportional to the number of singular value decompositions because the matrix dimensions
also depend on the number of time steps. Nevertheless, quasilinear and sublinear scaling of computation
time is found in practice for a wide range of parameters. While there are instances where existing methods
can achieve comparable nominal scaling by precalculating effective propagators for time-independent or
periodic system Hamiltonians, process tensors contain all the information needed to extract arbitrary
multitime correlation functions of the system when driven by arbitrary time-dependent system Hamil-
tonians. The algorithm we present here not only significantly extends the scope of numerically exact
techniques to open quantum systems with long memory times, but it also has fundamental implications for
the simulation complexity of tensor network approaches.
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I. INTRODUCTION

A common challenge in quantum technology is the
ubiquity of dephasing and dissipation caused by interactions
between quantum systems and their surrounding environ-
ment [1]. Thus, understanding environmental influences is
crucial for mitigating them [2–6] or even using them to
enhance the functionality of quantum devices, as in phonon-
assisted state preparation [7,8] or environment-assisted

quantum transport [9–11]. A standard approach for model-
ing the dynamics of open quantum systems is the Lindblad
master equation [1,12]. This equation can be derived using
perturbation theory and the Born-Markov approximation,
which assumes that the environment is static and memory-
less and couples only weakly to the system. However, this is
often an oversimplification, andmore sophisticatedmethods
are required to accuratelymodel the dynamics inmany cases,
where the structure of the environment matters or where the
coupling is strong. Examples include solid-state quantum
dots (QDs) coupled to local phonon environments [4,13–16],
charge or excitation transport in biomolecules [10,17,18],
ultrafast spin dynamics [19,20], spontaneous emission in
photonic structures [21,22], and superconducting qubits in
quantum computers [2].
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Beyond the restrictive weak-coupling Born-Markov
approximation, the regime of non-Markovian dynamics
[23] arises. Here, a quantum system triggers a dynamical
evolution of the environment, and the environment’s
response feeds back to the system at a later point in time,
constituting a time-nonlocal memory. Several strategies
have been discussed for modeling non-Markovian dynam-
ics [23]. One general strategy is to solve the Schrödinger
equation for the total closed system composed of the
system of interest and its environment. Because environ-
ments typically consist of a large number—often a
continuum—of degrees of freedom, this becomes numeri-
cally intractable unless the model is somehow reduced to a
finite number of effective degrees of freedom. How to
choose the relevant degrees of freedom differs from method
to method: Mean-field, cumulant, or cluster expansions
[24,25] are based on the assumption that higher-order
correlations are negligible, and thus one may consider
only degrees of freedom within the subspace of product
states, or states with low-order correlations. Other methods
based on techniques from many-body quantum theory
employ efficient representations of the total system such
as multilayer multiconfiguration time-dependent Hartree
wave functions [26] or matrix product states [18,27,28]. In
the reaction coordinate mapping [29], parts of the envi-
ronment are explicitly taken into account by extending the
system of interest. A similar concept is to replace the actual
environment by a small set of auxiliary oscillators [30].
A second general strategy for simulating open quantum

systems is to keep the description confined to the degrees of
freedom of the system but to account for environmental
effects via equations of motion that are nonlocal in time.
For example, the Nakajima-Zwanzig formalism [1,31]
explicitly includes memory effects of the form of an
integral over past times. The Feynman-Vernon path-integral
formalism [32] encapsulates environmental effects in an
influence functional, which acts as a trajectory-dependent
weight in a sum over all possible system trajectories. This
formalism is the starting point for several practical methods
for open quantum systems simulation. For Gaussian envi-
ronments with exponentially decaying bath correlations,
repeated time differentiation of the Feynman-Vernon path
sum gives rise to a set of hierarchical equations of motion
(HEOM) [33,34]. Alternatively, the path sum can be
expressed as a stochastic average with bath correlations
encoded in the noise statistics [35], from which one can
derive non-Markovian stochastic Schrödinger equations
[36–38]. The combination of both ideas leads to equations
for a hierarchy of pure states (HOPS) [39]. These concepts
can be further generalized, e.g., to stochastic master
equations for non-Gaussian environments [40] and to open
quantum systems simulations where the environment is
continuously measured [41].
Here, we focus on the question of how to predict non-

Markovian dynamics for both long propagation times and

long memory times. While some specific features of long
time dynamics—such as the nature of the steady state—
may sometimes be more accessible straightforwardly, the
problem of modeling non-Markovian dynamics over long
times is important but challenging. For example, one may
want to find the general time evolution, or multitime
correlations of a system, but in all the methods described
above, it is generally hard to track such non-Markovian
dynamics over long times. Even though strategies of
explicitly representing environment degrees of freedom
at first glance seem to scale linearly with the total number
of time steps n, i.e., OðnÞ, they tend to become inaccurate
with increasing propagation time. This is due to the
increase with time of the number of degrees of freedom
of the environment that can be excited and thus entangled
with the system. For example, consider the discretization of
a continuum of phonon modes by energy intervals of width
ℏΔω. Propagating over a time te, energy-time uncertainty
implies that a discretization of Δω≲ 1=te is required to
preclude resolving a difference between the continuum and
the discretized model. The need for a finer discretization
results in a scaling of Oðn2Þ unless a more sophisticated,
e.g., adaptive, discretization is used, or the resolution of
individual sampling points is blurred by some form of line
broadening [27]. In approaches where the environment is
mapped to a chain of coupled oscillators [18,27], this
statement is related to the observation that the Lieb-
Robinson theorem restricts environment excitation to a
light cone [42], which increases in size with increasing
propagation time te. Similarly, stochastic sampling requires
more trajectories to reach the same accuracy when the
propagation time te is increased. Hence, most numerical
methods for open quantum systems show superlinear
scaling with the number of time steps n.
For direct applications of the Feynman-Vernon influence

functional approach, one finds exponential scaling with n.
However, a reformulation into the iterative scheme QUAPI
[43,44] yields truly linear scaling when the memory time of
the environment is finite, so the memory can be truncated
after nc time steps. Such an approach, however, retains
exponential scaling with the memory time nc. It could be
expected that OðnÞ is the natural lower bound for the
scaling, in particular, for general open quantum systems
with time-dependent driving, because, at the very least,
OðnÞ observables have to be obtained in order to extract the
full time evolution. However, another way to simulate open
quantum system dynamics is to construct effective propa-
gators for the reduced system density matrix before
propagating the system using a series of small matrix
multiplications, such as in the transfer tensor [45] and the
small matrix decomposition of the path-integral (SMatPI)
[46] approaches. For the special case of a time-independent
or periodically driven system Hamiltonian, time translation
invariance allows one to only calculate effective propaga-
tors over short times and reuse them for the propagation
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over much longer times n ≫ nc. While the propagation
over n time steps, in principle, scales linearly in n, it does so
with a very small prefactor, whereas precalculating the
effective propagators is formally constant in n but typically
with a larger prefactor, as it has to incorporate the
complexity of the environment response within the memory
time nc. Hence, in most practical applications, the latter
dominates, which results in sublinear behavior with n. In
contrast, for applications involving nonperiodic time-
dependent Hamiltonians, the effective propagator must
be recalculated for each time step [47].
In this paper, we introduce an algorithm based on the

process tensor (PT) framework that demonstrates sublinear
scaling of the numerically demanding step. A PT captures
environment influences equivalent to the Feynman-Vernon
influence functional in a numerically exact way and can be
efficiently represented in the form of a matrix product
operator (MPO) [48,49]. Once obtained, an open quan-
tum system with an arbitrary time-dependent system
Hamiltonian can be propagated in time by simple matrix
multiplications on a vector space given by the product of
the system Liouville space and the inner dimension of the
PT-MPO, which we denote as χ. The bottleneck in MPO
techniques is the MPO compression, i.e., the reduction of
the inner dimension χ, using rank-reducing operations,
often achieved by truncated singular value decomposition
(SVD).We show that the self-similarity of time-independent
Gaussian environments—which include electromagnetic
environments, typical vibrational baths, and the paradig-
matic spin-boson model—can be exploited to devise a
divide-and-conquer scheme that reduces the number
of SVDs from Oðn2Þ in the algorithm introduced by
Jørgensen and Pollock [49] to Oðn log nÞ. If the memory
time is further limited to nc time steps, we arrive at a
theoretical scaling Oðnc log ncÞ, constant in n. The actual
scaling can be larger than this, as the bond dimension χ, and
thus the time required for SVD evaluation, can depend on
the propagation time. However, we will see from numerical
results that sublinear scaling with n is indeed seen in the
examples we study.
To test the performance of our algorithm in practice and

to demonstrate a sample of new applications it enables, we
provide several examples: First, we investigate the fluo-
rescence spectra of semiconductor QDs coupled to a bath of
acoustic phonons with strong driving. While being of
considerable interest for experiments [50,51], numerically
calculating QD fluorescence spectra is a challenging multi-
scale problem because the width of the zero-phonon line is
determined by radiative lifetimes of the order of nano-
seconds; however, typical phonon memory times are of the
order of picoseconds, and strong driving forces us to use
small time steps on the femtosecond scale. The sublinear
scaling of our algorithm enables us to obtain numerically
exact spectra from simulations involving a million time
steps within minutes on a conventional laptop computer.

Second, we use the capability of our algorithm to deal with
very many time steps to study superradiance of multiple
emitters without making any rotating wave approximation
(RWA). This allows us to describe the breakdown of
superradiance in the presence of disorder and dephasing
due to interactions with phonon environments. Finally, we
discuss coherence decay for a system with strong coupling
to an environment with a strongly peaked spectral density.
This example illuminates where the limitations of our
algorithm arise.
The article is structured as follows: In Sec. II, we

introduce and describe our algorithm, where, in Sec. II A,
we first summarize the PT formalism, on which our
algorithm is based. For comparison with the commonly
used sequential algorithm by Jørgensen and Pollock [49],
and to introduce quantities also used in our approach, we
revise the PT calculation scheme for Gaussian environments
in Ref. [49] in Sec. II B. Then, we introduce our divide-and-
conquer scheme in Sec. II C and introduce periodic PTs in
Sec. II D. The examples of fluorescence spectra, multi-
emitter superradiance, and coherence decay are discussed in
Secs. III A–III C, respectively. Our results are summarized
in Sec. IV.

II. THEORY

A. Process tensors

An open quantum system is defined by dividing the total
system into a system of interest S and an environment E.
Correspondingly, the total Hamiltonian is decomposed into
H ¼ HS þHE, where HS is an arbitrary, possibly time-
dependent, system Hamiltonian and HE is the environment
Hamiltonian, which also includes the interaction with the
system of interest. In this paper, we present an algorithm
applicable to environments with Gaussian correlations,
focusing on a generalized spin-boson model consisting
of a few-level system coupled linearly to a bath of harmonic
oscillators, described by

HE ¼
X
k

ℏωkb
†
kbk þ

X
k

ℏðgkb†k þ g�kbkÞÔ; ð1Þ

where Ô is a Hermitian operator acting on the system
Hilbert space. The environment Hamiltonian is conven-
iently characterized by the spectral density JðωÞ ¼P

k jgkj2δðω − ωkÞ. Here, we choose to work in the basis
where the coupling is diagonal Ô ¼ P

u λujuihuj with a set
of basis states jui of the system Hilbert space.
Throughout this article, we use a compact Liouville

space notation and assume a uniform time grid tj ¼
t0 þ jΔt with time step Δt. For example, the reduced
system density matrix ρ̄ðtÞ ¼ TrE½ρðtÞ� at time tj is denoted
by ρ̄αj ¼ ρ̄sj;rjðtjÞ¼hsjjρ̄ðtÞjrji, where sj and rj are system
Hilbert space indices, which are combined into the
Liouville space index αj ¼ ðsj; rjÞ. The time argument tj
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is implied in the index αj. In this notation, the reduced
density matrix ρ̄αn at a final time tn can be expressed as [32]

ρ̄αn ¼
X

αn−1;…;α0

F αn;…;α1

�Yn
l¼1

Mαl;αl−1

�
ρ̄α0 ; ð2Þ

where Mαl;αl−1 ¼ ðeLSΔtÞαl;αl−1 describes the free evolution
of the system during one time step Δt under the free system
Liouvillian; e.g.,LS½ρ̄� ¼ −ði=ℏÞ½HS; ρ̄�, andF αn;…;α1 is the
Feynman-Vernon influence functional [32], which exactly
captures all environment influences in the limit Δt → 0.
For the generalized spin-boson model, the influence

functional is given by [49,52]

F αn;…;α1 ¼
Yn
i¼1

Yi
j¼1

½bi−j�αi;αj ¼
Yn
j¼1

Yn−j
l¼0

½bl�αlþj;αj ; ð3Þ

where the factors ½bi−j�αi;αj are related to the bath corre-
lation function via

½bði−jÞ�αi;αj ¼ e−ðλsi−λri Þðηi−jλsj−η
�
i−jλrj Þ ð4Þ

with αj ¼ ðsj; rjÞ and λs;r as defined above, and [53]

ηi−j ¼
�R ti

ti−1 dt
0 R t0

ti−1
dt00Cðt0 − t00Þ i ¼ jR ti

ti−1 dt
0 R tj

tj−1 dt
00Cðt0 − t00Þ i ≠ j;

ð5Þ

where

CðtÞ ¼
Z

∞

0

dωJðωÞ
�
coth

�
1

2
βℏω

�
cosðωtÞ − i sinðωtÞ

�
:

ð6Þ

The memory of the environment is finite if the bath
correlation function CðtÞ vanishes after nc time steps, i.e.,
Cðt≥ncΔtÞ≈0, which implies ηl≥nc ≈ 0 and ½bl≥nc �αi;αj ≈ 1.
In this case, it is sufficient to consider at most nc terms in the
second product in the right-hand side of Eq. (3).
Performing the Feynman-Vernon summation in Eq. (2) is

notoriously difficult. For a system Hilbert space of dimen-
sion D, the sum involves D2n terms and, thus, scales
exponentially with the total number of time steps n. This
issue can be addressed [49,52] by representing the influ-
ence functional in a more convenient form using matrix
product operators (MPOs) [54,55]. It is then referred to as
the process tensor matrix product operator (PT-MPO),

F αn;…;α1 ¼
X

dn−1;…;d1

Qαn
1;dn−1

Qαn−1
dn−1;dn−2

…Qα2
d2;d1

Qα1
d1;1

; ð7Þ

where the monolithic tensor F αn;…;α1 is decomposed into a
set of smaller elements Qαl

dl;dl−1
, which are regarded as

matrices with respect to the inner bond indices dl. The latter
serve the purpose of conveying time-nonlocal information,
i.e., memory, over multiple time steps. The maximal
dimension χ of the inner bonds dl strongly depends on
the complexity of the environment [48].
The PT-MPO representation achieves the reduction of

Eq. (2) to

ρ̄αn ¼
X

αn−1 ;…;α0
dn−1 ;…;d1

�Yn
l¼1

Qαl
dl;dl−1

Mαl;αl−1

�
ρ̄α0 ; ð8Þ

which can be summed sequentially, one time step at a time,
with the complexity of n matrix multiplications of dimen-
sion D2χ. The main challenge for simulating the open
quantum system is thus to bring the influence functional in
Eq. (3) into the form of the PT-MPO in Eq. (7).

B. Sequential algorithm

Jørgensen and Pollock [49] devised the algorithm that is
currently most commonly used to obtain PTs in MPO form
for Gaussian environments. To distinguish it from our
divide-and-conquer scheme, we refer to the approach in
Ref. [49] as the sequential algorithm. The common starting
point of both algorithms is the graphical representation of
the double product on the right-hand side of Eq. (3) in
the form of a triangular tensor network (introduced in
Ref. [52]), depicted in Figs. 1(a) and 1(c) for n ¼ 8 time
steps and memory cutoff nc ¼ 6. The latter limits the
maximum length of the rows.
Each node represents a factor cαlβlþ1;βl

¼ δβlþ1;βl ½bl�αlþj;βl,
where system Liouville space indices αl are represented by
upward facing links, while βlþ1 and βl are links to the left
and right, respectively. Left or right dangling indices are
traced out. Note that, in the notation of Ref. [49], the
upward facing links are meant to pass by those nodes
further up the tensor network and then connect to the same
outer index αl. The more conventional interpretation of
tensor networks, where a bottom node is instead connected
to its neighbor to the top, is regained by adding a fourth
leg with index α̃l at the bottom of each node (except those
on the bottom row) via another Kronecker delta, i.e.,
c̃αl;α̃lβlþ1;βl

¼ cαlβlþ1;βl
δαl;α̃l . In the following, however, we retain

the notation of Ref. [49], labeling only three indices on
such tensors.
In the sequential algorithm, the PT is written as a product

of rows,

F αk;…;α1 ¼
Yk
j¼1

Cαk;…;αj ¼
Yk
j¼1

� X
βk−jþ1;…;β0

Yk−j
l¼0

c
αlþj

βlþ1;βl

�
; ð9Þ

where Cαk;…;αj is the jth row in the tensor network, which,
as described above, may be reduced to a product of at
most nc terms if memory truncation is employed. The PT
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F αk;…;α1 is constructed by multiplying row after row from
bottom to top using the recursion visualized in Fig. 1(b),

F̃ αk;…;α1
ðk∶jþ1Þ ¼ Cαk;…;αjF̃ αk;…;α1

ðk∶jÞ ; ð10Þ

with initial value F̃ αk;…;α1
ðk∶1Þ ¼ Cαk;…;α1 . The final PT is

identified as F αn;…;α1 ¼ F̃ αn;…;α1
ðn∶nÞ . Crucially, the iteration

in Eq. (10) retains the MPO form F̃ αk;…;α1
k∶j ¼P

dk;…;d1

Q
k
l¼1½f̃αlk∶j�dl;dl−1 , with

½f̃αlk∶jþ1�dl;dl−1 ¼ ½f̃αlk∶j�d0l;d0l−1 ½cαl �βl;βl−1 : ð11Þ

However, the dimension of inner indices dl ¼ ðd0l; βlÞ is
expanded to the product of the inner dimension of the
previous PT d0lwith that of a single row βl. If χ0 denotes the
typical inner dimension of the MPO F̃ αk;…;α1

ðk∶jÞ and the inner

dimension of a single line corresponds to D2 with system
Hilbert space dimension D, the inner dimension of the
product is now increased to χ ¼ χ0D2. To keep the inner

dimensions tractable, the MPO is compressed by sweeping
across it and applying truncated SVDs to every element. In
the forward direction (increasing time-step indices), one
calculates the SVD,

½f̃αlk∶j�dl;dl−1 ¼
X
s

Udl;sσsV
†
s;ðαl;dl−1Þ; ð12Þ

with non-negative singular values σs and matrices U and V
with orthogonal columns. Keeping only terms s with
significant values σs ≥ ϵσ0, where ϵ is a given truncation
threshold and σ0 is the largest singular value, one replaces

½f̃αlk∶j�s;dl−1 ← V†
s;ðαl;dl−1Þ; ð13aÞ

½f̃αlþ1

k∶j �dlþ1;s
←

X
dl

½f̃αlþ1

k∶j �dlþ1;dl
Udl;sσs; ð13bÞ

which passes on the singular values—indicators for the
importance of the represented degree of freedom—to the
next element in the PT while simultaneously reducing

FIG. 1. Tensor network for a PT with n ¼ 8 time steps and memory cutoff nc ¼ 6 using the sequential algorithm by Jørgensen and
Pollock [49] [(a),(b)] as well as our divide-and-conquer scheme [(c),(d)], respectively. Panels (a) and (c) show the subdivision of the
overall tensor network into different blocks (black rectangles) to be contracted from bottom to top. In the sequential algorithm, this is
done row by row (b). The divide-and-conquer algorithm is based on the observation that the last block in panel (c), formed by the
topmost n=2 lines, exactly matches the part of the already-contracted network shaded in red. This enables a contraction of multiple rows
at a time as depicted in panel (d). The black semicircle seen here represents a “closure” that describes tracing out dangling bonds; see text
for further discussion.
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the inner dimension to the number of significant singular
values. A forward sweep is followed by an analogous
backward sweep. While this scheme to compress the
PT-MPO was introduced in Ref. [49], we find empirically
that changing the order of sweeps, namely, performing the
backward sweep before the forward sweep, leads to smaller
inner PT dimensions χ and hence to shorter computation
times. For all simulations presented here, we therefore
consistently compress PT-MPOs in this reversed order. The
combination and backward sweep is diagrammatically
represented in Fig. 2(a).

Overall, the calculation of a PT-MPO using the sequen-
tial algorithm requires Oðn2Þ SVDs without memory
truncation or OðnncÞ SVDs with memory truncation.
Exact algorithms to perform SVDs of N ×M matrices
with N > M generally require OðNM2Þ floating point
operations. Denoting by χ0 the typical inner bond dimen-
sion of the PT-MPO after the previous iteration step, the
corresponding matrix dimensions for a single SVD as in
Eq. (12) are M ¼ D2χ0 and N ¼ D4χ0, respectively, where
a factor D2 in the long matrix dimension N stems from the
outer bonds of the PT-MPO while the remaining factors
originate from combined inner indices. Consequently, the
number of floating point operations required per SVD
is Oðχ03D8Þ.

C. Divide-and-conquer algorithm

Guided by the visual representation of the PT contraction
in Fig. 1(c), we suggest an alternative algorithm based on
the observation that the triangular tensor network contains a
high degree of self-similarity: The first and second rows are
identical up to a shift. Rows three and four together form a
shifted and truncated replica of the combination of rows
one and two. Similarly, rows five to eight are the same as
the part of rows one to four shaded in red in Fig. 1(c).
Concretely, the tensor network can be contracted in

blocks of rows, with sizes progressing in powers of two, by
iterating:

F̃ αk;…;α1
k∶2mþ1 ¼ Bαk;…;αð2mþ1ÞF̃ αk;…;α1

k∶2m ; ð14Þ

where the block Bαk;…;αð2mþ1Þ is itself contained in the MPO
of F̃ αk;…;α1

k∶2m and can be written as

Bαk;…;αð2mþ1Þ ¼
X

dk−2m ;…;d0

qdk−2m
Yk−2m
l¼1

½f̃αlk∶2m �dl;dl−1 : ð15Þ

Here, qdk−2m , represented as a black semicircle in Fig. 1(d),
defines objects we call “closures” that describe tracing out
dangling bonds. A similar object has been referred to as a
“cap tensor” in other works [56]. Such objects are trivial
before MPO compression, but after compression, they
become nontrivial. However, the closures can be calculated
iteratively from PT-MPOs by using trace preservation [57].
For the generalized spin-boson model considered here, one

starts with qdn¼1 ¼ 1 and iterates qdi−1 ¼
P

di qdiQ
αi¼ðx;xÞ
di;di−1

,
where x is a fixed but arbitrary system Hilbert space index
(e.g., x ¼ 1). As can be seen in Eq. (4), setting αi ¼ ðx; xÞ
results in ½bði−jÞ�αi¼ðx;xÞ;αj ¼ 1. This effectively terminates
the double product in Eq. (3) at an earlier time step.
The proposed algorithm follows the divide-and-conquer

paradigm because the total number of rows of the tensor
network is divided into an upper and a lower block,
where only the lower block has to be calculated explicitly.

FIG. 2. (a) MPO combination and compression by backward
sweep used in the sequential algorithm [see Fig. 1(b)]. The units
enclosed by the dashed lines are combined into a single matrix. A
truncated SVD UP†PΣV† is performed, where P denotes the
projection onto the space spanned by singular vectors with
singular values σ ≥ ϵσ0, which is shown as a triangle, reducing
a thick connection (with large dimensions) to a thin connection
(with smaller dimensions). The dotted lines indicate units that are
combined to form the nodes in the updated PT-MPO. The part
PΣV† is passed onto the nodes corresponding to the previous time
step, before another SVD is performed. This process is repeated
until the first time step is reached. (b)MPO combination and index
preselection for the divide-and-conquer method [see Fig. 1(d)]. A
forward sweep with truncated SVDs UΣP†PV† is performed on
the last matrix of the bottom PT-MPOblock before it overlaps with
matrices of the top PT-MPO block. The corresponding matrices
UΣ are passed onto the next MPO matrix. SVDs are performed at
the top and bottom blocks independently. Singular values from
both SVDs are used to identify the projectors onto the subspaces

spanned by singular vectors for which σð1Þσð2Þ ≥ ϵσð1Þ0 σð2Þ0 , which
is shown as a large triangle with three external legs. Updated
blocks of the PT-MPO are formed by compressing the Kronecker
product of the corresponding matrices Vð1Þ† and Vð2Þ† using these
projectors (dotted boxes). These steps are repeated until the last
time step is reached.
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The lower block is then again divided into two halves, and
so on. Like other divide-and-conquer schemes, such as the
famous fast Fourier transformation algorithm [58,59] or
efficient modular path-integral techniques for multisite
problems [60], the numerical complexity is reduced from
Oðn2Þ to Oðn log nÞ operations. In our case, these oper-
ations are SVDs.
Despite the favorable scaling with n, the divide-and-

conquer algorithm faces some challenges. These arise
because of the size of the matrices we must combine. In
the sequential algorithm, each step combines a MPO with
potentially large inner dimension χ0 and a single line of
relatively small inner dimension D2. In contrast, in our
divide-and-conquer algorithm, two MPOs of similar inner
dimensions χ0 are combined to χ ¼ χ02. Because of the
scaling of SVD routines with the third power of the
combined inner dimension together with a factor D2 from
the outer bond, the direct application of SVDs would lead
to a typical complexity Oðχ06D2Þ per SVD, which is
prohibitively demanding. Clearly, a different way to com-
bine two MPOs is needed.
Here, we address this issue by preselecting relevant

degrees of freedom: Suppose we wish to update an MPO
with matrices ½f̃αlk∶j�d0l;d0l−1 by multiplying it with an MPO

with matrices ½g̃αl �d00l ;d00l−1 . We first perform SVDs on the

individual matrices ½f̃αlk∶j�d0l;d0l−1 ¼
P

sU
ð1Þ
d0l;s

σð1Þs Vð1Þ†
s;ðαl;d0l−1Þ and

½g̃αl �d00l ;d00l−1 ¼
P

t U
ð2Þ
d00l ;t

σð2Þt Vð2Þ†
t;ðαl;d00l−1Þ, respectively. Then, the

matrices of the combined MPO can be formally written as

½f̃αlk∶jþ1�ðd0l;d00l Þ;ðd0l−1;d00l−1Þ
¼ ½f̃αlk∶j�d0l;d0l−1 ½g̃αl �d00l ;d00l−1
¼

X
s;t

ðUð1Þ
d0l;s

Uð2Þ
d00l ;t

Þσð1Þs σð2Þt ðVð1Þ†
s;ðαl;d0l−1ÞV

ð2Þ†
t;ðαl;d00l−1ÞÞ: ð16Þ

Note again that, to keep the notation similar to the sequential
algorithm inRef. [49], Eq. (16) is considered an elementwise
product for each value of αl. In the established notation for
more general tensor networks, Eq. (16) would be considered
a contraction over outer indices after including a Kronecker
delta ½f̃αlk∶jþ1�ðd0l;d00l Þ;ðd0l−1;d00l−1Þ ¼

P
α̃l
½f̃α̃lk∶j�d0l;d0l−1 ½δα̃l;αl g̃αl �d00l ;d00l−1 .

To reduce the inner dimension, we keep only combina-
tions of indices ðs; tÞ for which the product of singular

values σð1Þs σð2Þt ≥ ϵselectσ
ð1Þ
0 σð2Þ0 exceeds a value determined

by a given threshold ϵselect. In practice, the new matrix is
directly set to

½f̃αlk∶jþ1�ðs;tÞ;ðd0l−1;d00l−1Þ ← Vð1Þ†
s;ðαl;d0l−1ÞV

ð2Þ†
t;ðαl;d00l−1Þ ð17Þ

for the subset of ðs; tÞ obeying the condition above, while
the remaining terms are passed on to the next matrices of
the original MPOs:

½f̃αlþ1

k∶j �d0lþ1
;s ←

X
d0l

½f̃αlþ1

k∶j �d0lþ1
;d0l
Uð1Þ

d0l;s
σð1Þs ; ð18Þ

½g̃αlþ1 �d00lþ1
;t ←

X
d00l

½g̃αlþ1 �d00lþ1
;d00l
Uð2Þ

d00l ;t
σð2Þt : ð19Þ

The combined forward sweep, selection, and combina-
tion process is depicted in Fig. 2(b). It is followed by a
backward sweep to further reduce bond dimensions. Over a
wide range of different examples, we find that the selection
reduces the combined inner dimensions from χ02 to λχ0,
with an empirical factor λ between 2 and 12. The resulting
number of floating point operations per SVDOðλ3χ03D2Þ is
therefore nominally comparable to that in the sequential
algorithm, Oðχ03D8Þ. However, the massive reduction of
inner bonds by our selection strategy comes at the cost of
not guaranteeing an optimal low-rank approximation. This
can result in larger bond dimensions χ0 and therefore in
higher numerical demands per SVD compared to the
sequential algorithm. As discussed in more detail in
Appendix A, this issue can be ameliorated by choosing
different thresholds for the selection and backward sweep
compared to the forward sweep, which we parametrize by
the ratios rs ¼ ϵselect=ϵforward and rb ¼ ϵbackward=ϵforward,
while at the same time, we obtain similar accuracies as
for the sequential algorithm if we identify ϵforward (the
largest of our thresholds) with the nominal threshold ϵ of
the sequential algorithm.
Finally, it is noteworthy that our divide-and-conquer

algorithm can be implemented in place, i.e., in such a way
that only a single copy of the full PT-MPO has to be stored,
despite the combination of MPO matrices at different
positions in the MPO chain. This reduces the memory
footprint of the algorithm. Furthermore, as the line sweeps
access the individual MPO matrices in a predictable order,
storing the PT-MPO on a hard disk and preloading blocks
of matrices can be efficiently implemented, with only a
small overhead of about 10% in overall computation time.
This process enables the calculation of PTs with many
more time steps n than would be possible if required to
keep the full MPO in memory.
However, it should be noted that, as discussed above, the

time required for each SVD scales as Oðχ3Þ. Since χ, in
general, depends on the complexity of the environment as
well as on the total propagation time in the spirit of the
Lieb-Robinson theorem [42], the actual scaling of the
computation time with n may be larger than the scaling
Oðn log nÞ of the number of SVDs in the divide-and-
conquer algorithm. Benchmarking the numerical run times,
as is done in Sec. III, is therefore essential to assess the
overall scaling of the algorithm for typical scenarios in
open quantum systems.
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D. Finite nc and periodic process tensors

Auseful feature of the sequential algorithm is that it profits
significantly from memory truncation. If the memory of
the environment becomes negligible after nc time steps, the
number of overlapping columns in subsequent rows in the
tensor network is limited to nc − 1, as can be seen, e.g., in
the three bottom rows of Fig. 1(a). Only in the overlap region
do MPO compression sweeps have to be performed, reduc-
ing the number of SVDs to OðnncÞ. This suggests that it is
alsoworthwhile to investigate howmemory truncation can be
incorporated into the divide-and-conquer algorithm.
To this end, consider an intermediate step in the divide-

and-conquer algorithm where a block of 2nc rows is formed
by two blocks of nc rows, as depicted in Fig. 3(b) for
nc ¼ 4. In principle, following the same rationale as in
the sequential algorithm, sweeping only over the finite
overlap of nc − 1 columns would produce an algorithm
scaling as Oðnc log nÞ. Notably, for nc ≪ n, this means
that obtaining the total PT involves fewer than n SVDs,
which implies that many MPO matrices of the final PT
must be exact copies of others.
In fact, one can identify a structure in PTs that can be

repeated indefinitely. Such an observation is analogous to
that made in introducing repeating tensors that represent the
state of spatially infinite systems with translational invari-
ance, in algorithms such as infinite density-matrix renorm-
alization group (iDMRG) [61], infinite time-evolving block
decimation (iTEBD) [62], and infinite projected entangled
pair states (iPEPS) [63]. We now consider how this can be
constructed for the periodic PT. Consider again the exten-
sion of the tensor network from nc to 2nc rows. For this
step, the iteration in Eq. (14) becomes

F̃
α3nc−1;…;α1
3nc−1∶2nc ¼ F̃

α3nc−1;…;αncþ1

2nc−1∶nc F̃
α2nc−1;…;α1
2nc−1∶nc ; ð20Þ

as shown in Fig. 3(c). This result has explicit elements:

½f̃αl3nc−1∶2nc �ðdl;d0lÞ;ðdl−1;d0l1 Þ

¼

8>>><
>>>:
½f̃αl2nc−1∶nc �dl;dl−1δd0l;1δd0l−1;1 l≤ nc

½f̃αl2nc−1∶nc �dl;dl−1 ½f̃
αl−nc
2nc−1∶nc �d0l;d0l−1 nc < l≤ 2nc

½f̃αl−nc2nc−1∶nc �d0l;d0l−1δdl;1δdl−1;1 l > 2nc;

ð21Þ

where we define ½f̃αl2nc−1∶nc �dnc ;dnc−1 ¼ δdnc ;dnc−1 to artificially
extend the overlap from nc − 1 to nc columns. This process
achieves a particular partitioning, where the first and last
cases in Eq. (21) correspond to the areas shaded in blue and
green, respectively, in Figs. 3(b) and 3(c). If shifted and put
together, they exactly reproduce the original block
F̃

α2nc−1;…;α1
2nc−1∶nc consisting of the bottom nc rows.
The role of the middle section in Eq. (21), visualized as

an orange box in Figs. 3(b) and 3(c), becomes clear when
the tensor network is further extended by another nc rows,

as in Fig. 3(a). The overlap region with the new block of
rows again contains nc columns; however, these are exact
copies of the (orange) middle section of the MPO, so they
do not have to be calculated anew. Note that the fact that
multiple central (orange) blocks fit seamlessly together is
nontrivial, as the inner bonds between the subsequent
matrices in the MPO have been strongly modified by
MPO compression, so their relation to the bonds in the
original tensor network is no longer obvious. In particular,

FIG. 3. (a) Tensor network with many time steps, n ≫ nc,
decomposed into blocks of length nc. The parts of the tensor
network highlighted in orange are identical. (b) First 2nc rows of
the tensor network subdivided into four blocks, where blocks of
the same color are identical. The combination of a blue block
stacked on top of a green block forms an orange block, which can
be used as a fundamental unit of a periodic PT and can then be
repeated indefinitely, as depicted in diagram (a). This result is due
to the fact that the left and right interfaces of the orange block,
marked by the light blue arrow in diagram (c), seamlessly link
together, even after MPO compression of the first nc rows.
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inner bonds at different positions within the MPO generally
have different dimensions. Here, however, we have con-
structed the central (orange) blocks in such a way that the
left and right bonds, as shown by the links marked by
the light blue arrow in Fig. 3(c), correspond exactly to the
bonds between the first (blue) and last (green) sections in
Eq. (21). This process allows us to repeat the orange block
indefinitely, and we arrive at the periodic PT F αn;…;α1 ¼P

dn;…d1 qdn
Q

n
l¼1Q

αl
dl;dl−1

, with

Qαl
ðd0l;d00l Þ;ðd0l−1;d00l1 Þ

¼
( ½f̃αl2nc−1∶nc �d0l;d0l−1δd00l ;1δd00l−1;1 l≤ nc

½f̃αðlmod 2ncÞ
2nc−1∶nc �d0l;d0l−1 ½f̃

αððl−ncÞmod 2ncÞ
2nc−1∶nc �d00l ;d00l−1 l > nc;

ð22Þ

where again the matrices ½f̃αl2nc−1∶nc �d0l;d0l−1 are those of

the MPO F̃
α2nc−1;…;α1
2nc−1∶nc describing the bottom nc lines of

the tensor network. In practice, it is useful to compress the
periodic part of the PT-MPO once more in a final step using
our preselection scheme for combining MPOs with large
inner dimensions, described in Eq. (16). In doing so, care
must be taken not to modify the left and right interfaces.
To summarize this section, if the memory of a Gaussian

environment is finite, a periodic PT can be obtained using
only Oðnc log ncÞ rank-reducing SVDs. Remarkably, this
result is constant in the overall propagation time te ¼ nΔt
and again provides a nominal scaling advantage over the
sequential algorithm with OðnncÞ. A further advantage of
the periodic PT is that the memory requirements for storing
it are OðncÞ, much smaller than those for storing a full
PT OðnÞ.
In the following sections, we will showcase the power of

our divide-and-conquer scheme with and without memory
truncation on a series of applications.

III. APPLICATIONS

A. Fluorescence spectra of quantum dots

1. Model and context

Self-assembled III–V semiconductor QDs are key ele-
ments for photonic quantum technologies [64]. Because
of their strong interaction with light, they can be used as
bright sources of pure single photons [8,65], entangled
photon pairs [66,67], and other nonclassical multiphoton
states [68,69]. However, electronic excitations in QDs also
strongly interact with longitudinal acoustic phonons. The
resulting non-Markovian effects are significant, so they
typically cannot be fully described byweak-couplingmaster
equations [70]. While polaron master equations accurately
account for phonon effects in the limit of weak driving [16],
these break down under strong-driving conditions [70].
Therefore, numerically exact path-integral techniques based
on QUAPI [43,44] have been applied [8,71] to investigate

the dynamics of driven QDs and other dissipative few-level
systems [72].
While path-integral techniques have allowed calculations

of some features of quantum dots, a numerically exact
calculation of the spectra of strongly driven QDs is
difficult. Multitime correlations (as needed to obtain
emission spectra) can be calculated with such approaches
[73–75], but reaching convergence remains a challenge
because of a separation of timescales (see Appendix B for a
convergence study): Because of the long radiative lifetimes
in QDs, the dynamics has to be propagated to a few
nanoseconds in order to avoid artifacts in the Fourier-
transformed spectrum. Typical phonon memory times span
several picoseconds. When considering driving with high
laser intensities, or strongly off-resonant driving [76], the
resulting oscillatory dynamics makes it necessary to choose
small time steps Δt of the order of a few femtoseconds.
Taken together, these separate timescales yield a problem
where both the number of time steps n and the memory
cutoff nc must be large to produce accurate results.
Moreover, to analyze phonon sidebands, spectra are often
presented on a logarithmic scale, which makes numerical
errors quite prominent. One should therefore use very small
MPO compression thresholds in PT simulations, resulting
in sizable inner dimensions χ. Nevertheless, for the
reasons explained above, this challenging problem can
be addressed using our divide-and-conquer scheme, in
particular, when combined with the use of a periodic PT.
In Fig. 4, we present the fluorescence spectra of a QD

driven with Rabi frequency Ω and coupled to a bath of
phonons, showing how the Mollow triplet [77] is affected
by this bath. The phonon-free system evolution with
driving and radiative decay with rate κ is given by the
Lindblad master equation

∂

∂t
ρ ¼ LSρ ¼ −ði=ℏÞ½HS; ρ� þ κDσ−ðρÞ; ð23Þ

with system Hamiltonian HS ¼ ℏ
2
Ωσx and Lindbladian

DAðρÞ ¼ AρA† −
1

2
ðA†Aρþ ρA†AÞ: ð24Þ

Here, the QD is modeled as a two-level system with ground
and exciton states jgi and jei, respectively, and we use
the conventional notation for operators σþ ¼ jeihgj,
σ− ¼ jgihej, and σx ¼ σþ þ σ−. The spectrum is obtained
as the Fourier transform of the two-time correlations:

SðωÞ ¼ lim
t→∞

lim
τ∞→∞

Re

�Z
∞

0

dτ½hσþðtþ τÞσ−ðtÞi

− hσþðtþ τ∞Þσ−ðtÞi�e−iωτ
�
; ð25Þ
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where the coherent scattering contribution (elastic peak)
has been subtracted.
For comparison, the spectra for simulations without

phonons—as would be relevant for a driven atom—are
shown as light blue lines in Figs. 4(c)–4(e) for different
Rabi frequencies Ω and fixed radiative decay rate
κ ¼ ð0.5 nsÞ−1. In this case, one sees the characteristic
Mollow triplet [77] with a central peak at the two-level
transition frequency and two side peaks at frequencies�Ω.
The ratio between the heights of the central peak and each
side peak is 3∶1, while the ratio between the integrated
areas is 2∶1 [78]. The shape of the atomic Mollow triplet is
explained in terms of laser-dressed states, i.e., eigenstates
j�i ¼ ðjgi � jeiÞ= ffiffiffi

2
p

of the Hamiltonian HS with eigen-
values �ℏΩ=2. Optical transitions j−i → j−i and jþi →
jþi both contribute to the central peak at the two-level
transition frequency, while transitions jþi → j−i and
j−i → jþi are responsible for the side peaks at Ω and
−Ω, respectively.

2. Simulation results and discussion

In solid-state QDs, emission spectra are strongly affected
by interactions with phonons. The QD-phonon interaction
is of the form of a spin-boson model, corresponding to
Eq. (1) with a coupling operator Ô ¼ jeihej. The phonon
spectral density takes the super-Ohmic form

JðωÞ ¼ ω3

4π2ρℏc5s
ðDee−ω

2a2e=ð4c2sÞ −Dhe−ω
2a2h=ð4c2sÞÞ2: ð26Þ

For a GaAs-based QD, we take parameters given in
Ref. [79] corresponding to electron and hole radii
ae ¼ 4 nm and ah ¼ ae=1.15, respectively, and we show

the resulting spectral density in Fig. 4(b). The correspond-
ing polaron shift or reorganization energy

R
∞
0 dωJðωÞ=ω ≈

0.072 meV is absorbed into the definition of the excited-
state energy. The remaining physical and convergence
parameters for our simulations using divide-and-conquer
combined with periodic PTs are the initial phonon temper-
ature T ¼ 4 K, time discretization Δt ¼ 0.01 ps, memory
time tmem ¼ ncΔt with nc ¼ 2048, total propagation time
te ¼ nΔt with n ¼ 221 ≈ 2 × 106, and MPO compression
threshold ϵ ¼ 10−12.
Previous works have addressed QD fluorescence spectra

in the regime of weak Rabi driving using polaron master
equations [15,80], or path-integral calculations [75]. There,
two effects have been identified: First, compared to the
phonon-free spectra, simulations with phonons reveal a line
broadening, which also reduces the heights of the peaks.
Second, the side peaks are shifted towards the center due to
phonon renormalization of the transition dipole. These
effects can be seen in Fig. 4(c), where we show the weak-
driving case of ℏΩ ¼ 0.05 meV.
Importantly, the ability of our divide-and-conquer algo-

rithm to treat problems with many time steps enables us to
also investigate the regime of stronger driving, beyond the
range of previouswork. InFig. 4(d),we see that on increasing
the driving strength to ℏΩ ¼ 0.5 meV, three changes occur:
The spectral lines are broadened, an asymmetric background
arises, and there is a notable change in the relative height of
the three Mollow peaks, with the low-energy side peak now
dominating the emission. We discuss each of these features
in turn. The broadening seen is consistent with behavior
known in the weak-coupling limit [16], where the linewidth
is proportional to the spectral density JðωÞ evaluated at
the Rabi frequency ω ¼ Ω. Since JðΩÞ is significant at

FIG. 4. (a) Cartoon of fluorescence experiment. The external laser drive dresses the ground and excited states of the QD. In the absence
of a phonon environment, photon emission can be understood in terms of optical transitions between laser-dressed states. Black arrows
indicate transitions contributing to photons at the central frequency of the two-level system, whereas red and blue arrows depict
transitions detuned by −Ω and Ω from the central frequency, respectively. (b) Super-Ohmic phonon spectral density of a QD with
electron radius ae ¼ 4 nm. (c)–(e) Fluorescence spectra of driven QDs with different driving strengths Ω, shown on a logarithmic
intensity scale. Insets depict the same spectra on a linear scale. The simulations were performed over n ¼ 221 time steps of size
Δt ¼ 0.01 ps using periodic PTs with a memory cutoff at nc ¼ 211 time steps.
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ℏΩ ¼ 0.5 meV—see Fig. 4(b)—the broadening here
becomes large. Regarding the asymmetric background, this
feature is similar to that seen in the phonon sideband in
an undriven QD [81]. Finally, the relative peak heights can
be understood as the result of fast thermalization in the
dressed-state basis. Thermalization predominantly occupies
the lower dressed state j−i because the energetic splitting
between jþi and j−i is larger than the thermal energy
ℏΩ > kBT ≈ 0.34 meV. Hence, emission from jþi is
quenched. Moreover, the direct transition j−i → j−i emit-
ting photons at the frequency of the central peak also
competes with phonon-assisted photoemission processes,
where an energy ℏΩ is efficiently absorbed into the phonon
bath. The photon with the remaining energy contributes
instead to the lower energy side peak.
Considering even larger driving with ℏΩ ¼ 5 meV, as

depicted in Fig. 4(e), we find a restoration of the character-
istic Mollow triplet with a 3∶1 ratio between the heights of
central and side peaks just like in the phonon-free simu-
lations. This result is due to dynamical decoupling from
phonons [5,82,83],which occurs because the spectral density
JðωÞ becomes small for frequencies ω≳ 5 meV=ℏ; see
Fig. 4(b).

3. Scaling of computation time

We next discuss the computational cost of these calcu-
lations for the various different algorithms presented
above. In Fig. 5, we show the computation time, defined
as the total elapsed time from the start to the end of the
program on a conventional laptop computer with an Intel
Core i5-8265U processor.
For the sequential algorithm by Jørgensen and Pollock

[49], we initially see the expected superlinear increase in
computation time up to about n ∼ 1000 time steps, with a
scaling compatible with the Oðn2Þ behavior of the number
of SVDs in the algorithm [cf. dotted and dashed lines
indicating slopes corresponding to Oðn2Þ and OðnÞ scal-
ing, respectively]. For larger n, where n > nc ¼ 2048, the
scaling switches to linear, which again matches the expect-
ation of OðnncÞ SVDs. The sequential algorithm data are
limited to n≲ 10 000 time steps due to the computation
time required beyond this.
The divide-and-conquer scheme similarly shows an

initial superlinear scaling for n ≪ nc, but it is approx-
imately 1 order of magnitude faster than the sequential
algorithm after n ∼ 100 time steps. After the kink at n ∼ nc,
this algorithm scales more slowly, with a slope on the
double-logarithmic scale that indicates sublinear behavior.
As discussed in Sec. II, it can be beneficial to use

different compression thresholds for selection, backward,
and forward sweeps. The computation time for simulations
with threshold ratio rb ¼ rs ¼ 0.2 is also shown in the
figure and is seen to be a factor of 3 smaller than that with
rb ¼ rs ¼ 1. We have checked that this change corresponds
to a reduction of the maximal inner bond dimension of the

final PT from χ ¼ 158 to χ ¼ 133. When studying accu-
racy vs the forward compression threshold ϵ, we find
similar accuracies for both values of threshold ratios. These
calculations allow us to reach n ∼ 1 000 000 time steps;
the ultimate limitation in this case is the storage of the full
PT-MPO, which requires over 400 gigabytes, rather than
the computation time.
Considering the periodic PT algorithm, we show results

from switching to periodic PTs after calculating an inter-
mediate PT of nc rows using the divide-and-conquer
scheme with rb ¼ rs ¼ 0.2. As anticipated, in this case,
the computation time remains constant until about n ∼
1 000 000 time steps because no more numerical resources
have to be spent on PT calculation. At extremely large
n ∼ 107, the time becomes dominated by the propagation of
the open quantum system in Eq. (8), where PT-MPO is
contracted with the set of system propagators Mαl;αl−1 via
the outer indices and by the extraction of the observables.
Even though this only involves matrix multiplications,
which are much less demanding than SVDs, they have
to be applied at each time step, so linear scaling arises for
extremely large n. The prefactor of this linear scaling is,
however, far smaller than that of the other algorithms in
Fig. 5, as is clear from the vertical offset on the double-
logarithmic graph. Storing the periodic PT requires less
than 2 gigabytes, which eliminates the need for writing to
and reading from a hard disk.
Finally, we want to point out that there are occasions

where PT-MPOs can be employed with genuine sublinear
scaling with respect to n. For example, if one is interested in
the stationary states of an open quantum system with time-
independent or periodic system Hamiltonians, one can

FIG. 5. Computation time as a function of the total number of
simulation time steps n, on a double-logarithmic scale. Results
are shown for the sequential algorithm, the divide-and-conquer
scheme with different ratios rb ¼ rs between compression thresh-
olds for backward and forward sweeps, and the periodic PT
approach starting from a divide-and-conquer calculation with
rb ¼ rs ¼ 0.2. For reference, linear and quadratic scaling with n
are depicted as dashed dark-gray and dotted light-gray lines,
respectively.
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contract the periodic PT with the corresponding system
propagators. Thereby, one obtains an effective propagator
for the system expanded by the inner dimension of the
PT-MPO at the periodic cut, which can be diagonalized.
The stationary state(s) is then given by the eigenvector(s) of
the effective propagator corresponding to eigenvalue(s)
with value 1 (see Ref. [43] for a similar discussion of
diagonalizing the QUAPI tensor). In addition, multitime
correlations can be calculated directly from considering the
other eigenvalues and eigenvectors. Moreover, for time-
independent or periodic system Hamiltonians, it would be
particularly useful to generate transfer tensor [45] or SMatPI
[46] small matrix propagators from PT-MPOs. This would
enable a significant reduction in the prefactor of the linear
term in the runtime because the propagation then involves
only matrix-vector multiplications with dimensions D2

instead of D2χ, and thus it would extend the sublinear
regime to even longer overall propagation times. On the
other hand, the inner bonds of PT-MPOs carry information
needed to describe environment responses to more general
interventions on the system [2,48], which makes periodic
PT-MPOs particularly useful for investigations of systems
under pulsed driving [84,85] and multi-environment sys-
tems [13,56].

B. Superradiance

1. Model and context

Superradiance is a dramatic consequence of collective
quantum behavior [86,87], where N emitters act as one,
resulting in spontaneous emission rates that scale super-
extensively with N. It occurs when the interemitter dis-
tances are much smaller than the wavelength of the emitted

light, making the emitters spatially indistinguishable [see
Fig. 6(a)], and when the energies of emitters are the same,
making them spectrally indistinguishable. In this case, if all
emitters are prepared in their excited state at t ¼ 0, the
emitted intensity features a characteristic burst at short
times and a slowly decaying tail at long times, in distinction
to the exponential decay that occurs for independent or
distinguishable emitters [87]. Concomitant with superra-
diance is the existence of subradiant states, which are
optically inactive and so can be used to store excitations or
quantum information over long periods of time. Because of
recent advances in fabrication, it has become possible to
explore collective effects of a few spectrally indistinguish-
able solid-state QDs, including coupling multiple QDs into
the same photonic waveguide [88–91]. As in the previous
section, consideration of semiconductor QDs raises the
issue of phonon effects, and a key theoretical question is
thus modeling of imperfections and environmental effects
in real-world solid-state devices [13].
The standard model to consider for superradiance is N

two-level systems coupled to the electromagnetic field via
an electric dipole interaction. We can thus write the full
Hamiltonian (i.e., HS þHE) as [86,87]

H ¼
XN
j¼1

ℏωjσ
þ
j σ

−
j þ

X
k

ℏωka
†
kak

þ
X
j;k

ℏðgj;ka†k þ g�j;kakÞðσ−j þ σþj Þ; ð27Þ

where ωj is the transition frequency of emitter j, ωk is the
frequency of photon mode k, gj;k are the light-matter

FIG. 6. (a) Cartoon showing N ¼ 5 two-level quantum emitters confined to a region much smaller than the wavelength of the emitted
light. If the emitters are also spectrally indistinguishable, they effectively couple to the electromagnetic field as a single emitter, resulting
in superradiant emission. (b) Superradiant transitions between states in the Dicke ladder. (c) Emitted intensity vs time for N ¼ 1;…; 5
superradiant identical emitters. Points show analytic results of rate equations (see text); lines represent divide-and-conquer PT
simulations without memory truncation. The inset shows the spectral density used to model radiative decay at rate κ. This spectral
density is flat around the central frequency ωR with smooth edges. (d) Breakdown of superradiance for N ¼ 3 emitters upon increasing
spectral distinguishability. The transition frequencies of the emitters are detuned by −Δ=2, 0, and Δ=2, respectively, from the central
frequency. (e) Effect of phonon baths on superradiance for N ¼ 2 degenerate quantum dots, for a variety of temperatures T.
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coupling constants, a†k and ak create and destroy a photon
in mode k, and σþj and σ−j describe the excitation and
deexcitation of the jth emitter. Throughout this example,
we assume gj;k ¼ gk is real and independent of j, which
implies that all emitters couple to the photon environment
with the same phase, as is crucial for superradiance [86,87].
The Hamiltonian written above is a multimode gener-

alization of the Dicke model, without any rotating wave
approximation. As such, the time evolution of this model
will involve high frequencies, associated with the character-
istic frequencies ωj, ωk. In many cases, it is preferable to
make a RWA, yielding the Tavis-Cummings model, which
would then allow one to shift to a frame in which these high
frequencies are eliminated. However, doing so changes the
system-environment coupling in a way that precludes the
direct application of the PT-MPO formalism discussed
above: After the RWA, the system-environment coupling
no longer takes the simple product form in Eq. (1), and it
instead involves two different system operators coupling to
the environment. While approaches exist to construct tensor
network representations for the evolution of such problems
[92], they involve tensors with larger internal dimensions.
However, our divide-and-conquer scheme enables us to
resolve very many time steps. As such, we are able to
calculate a PT-MPO for the photonic environment with the
original electric dipole coupling in Eq. (27) without making
the RWA. In Appendix C, we discuss an alternative
perspective, starting from the Tavis-Cummings model (with
the RWA) and reintroducing counterrotating terms as an
approximation, controlled by adding a common carrier
frequency ωR to the system frequencies ωj, ωk.

2. Comparison of numerical and analytic results

Starting from Eq. (27), we directly apply our algorithm
to the environment Hamiltonian HE ¼ H −HS with sys-
tem Hamiltonian HS ¼

P
j ωjσ

þ
j σ

−
j . The form of the light-

matter coupling is advantageous, as degeneracies allow
us to treat relatively large N exactly. Specifically,

P
j σ

x
j

has a spectrum with only N þ 1 different eigenvalues
−N;−N − 2;…; N, allowing us to construct PTs with only
ðN þ 1Þ2 instead of 22N different outer indices α [52,71].
As a result, the PT-MPO calculation is so efficient that it is
the final contraction—describing the propagation of the
N-emitter system in a 22N-dimensional space—rather than
the PT calculation that currently limits the number of
emitters N in our numerically exact simulations.
The spectral density used for the PT-MPO calculation,

shown in the inset to Fig. 6(c), is chosen as

JðωÞ ¼ κ

2π

1

1þ e−ω=w
1

1þ eð2ωR−ωÞ=w : ð28Þ

This expression has a wide, flat region around ω ≈ ωR with
a constant value κ=ð2πÞ, so in the Markov limit, a single

emitter would spontaneously decay with rate κ. The edges
of this box-shaped spectral density are rounded using
logistic functions centered at ω ¼ 0 and ω ¼ 2ωR, respec-
tively, with transition widths w ¼ ωR=10. We find such
rounding produces PT-MPOs with smaller inner dimen-
sions than for a sharp cutoff. Throughout this discussion,
we choose ωR ¼ 1000κ, time steps Δt ¼ 1=ð8192κÞ, total
number of time steps n ¼ te=Δt ¼ 32768, and MPO
compression threshold ϵ ¼ 10−9. The divide-and-conquer
algorithm is applied without memory truncation. The
emitted intensity IðtÞ¼−ð∂=∂tÞPjnjðtÞ is extracted using
central differences IðtÞ ≈ −

P
j½njðtþ ΔtÞ − njðt − ΔtÞ�=

ð2ΔtÞ, where njðtÞ denotes the occupation of the jth emitter.
The results of such calculations for identical emitters, with
ωj ¼ ωR, are shown by solid lines in Fig. 6(c).
For comparison to these simulations, Fig. 6 also shows

analytic results. These results are found using the standard
approach of considering transitions between the ladder of
Dicke states, as depicted in Fig. 6(b), and considering the
result in the RWA (i.e., Tavis-Cummings model). The
validity of the RWA is controlled by the size of ωR
compared to other parameters. The Dicke states jJ;Mi
are eigenstates of the collective angular momentum oper-
ator Ĵx=y=z ¼

P
N
j¼1 σ

x=y=z
j , specifically, the total angular

momentum Ĵ2jJ;Mi ¼ JðJ þ 1ÞjJ;Mi and its z component
ĴzjJ;Mi ¼ MjJ;Mi. Starting from the fully excited state,
jJ ¼ N=2;M ¼ N=2i, the dynamics is restricted to the states
with J ¼ N=2 and M ¼ −J;…; J. The light-matter inter-
action involves the collective lowering operator Ĵ−, which
gives rise to optical transitions between states jJ;Mi and
jJ;M − 1i. The rates ΓJ;M for these transitions can be
found using Fermi’s golden rule, which yieldsΓJ;M ¼ κðJ þ
MÞðJ −M þ 1Þ [87]. The sequential photon emission proc-
esses can be solved analytically; the solutions are listed
explicitly inAppendixDandare shownbypoints inFig. 6(c).
We see in Fig. 6(c) that the emitted intensities from

N ¼ 1;…; 5 indistinguishable (ωj ¼ ωR for all j) quantum
emitters obtained from the PT-MPO simulations very closely
match the analytical results. As noted above, the PT-MPO
calculations are for the Dicke model (without RWA), while
the analytic results are for the Tavis-Cummings model, with
the RWA in the light-matter coupling; this confirms theRWA
would bevalid for these parameters.While not clearly visible
in the figure, there are discrepancies between the two
calculations at early times, t≲ 1=ωR. These differences
are due to the difference of models with and without the
RWA: There are transient effects of turning on the matter-
light coupling, including the counterrotating terms at t ¼ 0.
We have checked that, as expected, such effects can be
reduced by increasing ωR (not shown).

3. Effects of distinguishability and decoherence

While the results above demonstrate the ability of the
PT-MPO approach to recover superradiant dynamics for the
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Dicke model, the fact that all results were recoverable from
analytic calculations suggests such an approach was not
needed. However, the PT-MPO approach includes the full
description of environment influences and so can be used in
situations where no analytic solutions are available. Here,
we use it to present results on how superradiance is
destroyed by spectral distinguishability and decoherence.
Figure 6(d) shows the breakdown of superradiance for

N ¼ 3 quantum emitters when they become spectrally
distinguishable. This breakdown is implemented by chang-
ing the system Hamiltonian by setting different values
for the two-level transition frequencies ω1 ¼ ωR − Δ=2,
ω2 ¼ ωR, and ω3 ¼ ωR þ Δ=2. We note that this can be
done with a single calculation of the PT-MPO and by just
changing the system propagator with which it is then
contracted. Indeed, with increasing frequency detuning
between emitters, Δ, the superradiant intensity burst is
suppressed and replaced by oscillations around an expo-
nentially decaying intensity. At sufficiently large Δ, one
recovers monoexponential decay with rate κ as is expected
for independent emitters.
The PT-MPO approach also allows us to investigate how

superradiance is affected when the emitters are additionally
coupled to other environments, such as phonons. These can
affect the emission dynamics by dephasing interemitter
coherences and by accumulating which-path information,
i.e., which of the emitters is excited and which is not. In
Fig. 6(e), we show the corresponding intensity for N ¼ 2
spectrally indistinguishable semiconductor QDs (ωj ¼ ωR),
with each QD coupled to a bath of longitudinal acoustic
phonons. For this bath, we use the same spectral density and
parameters as in Fig. 4; we thus present results in physics
units and require a specific choice of κ ¼ 1=64 ps−1. We
find that superradiant emission is already slightly sup-
pressed due to QD-phonon interactions for baths at initial
temperature T ¼ 0 K; similar behavior persists up to tem-
peratures of T ¼ 4 K. Signatures of superradiance start to
significantly decrease from about T ¼ 10 K and almost
vanish at liquid-nitrogen temperature T ¼ 77 K.

C. Coherence decay with a strongly peaked
spectral density

1. Motivation and model

To determine the practical limits of what our divide-and-
conquer approach can achieve, we consider strong coupling
to a bath with strongly peaked spectral density. Such
environments can be addressed by approximate methods
such as the reaction coordinate approach [93,94] or by
specialized numerically exact techniques like hierarchical
equations of motion (HEOM) [33]. However, such envi-
ronments have been challenging for PT-MPO-based
approaches due to long memory times and correspondingly
large inner PT-MPO dimensions. As such, they can serve as
a critical test for new PT-MPO algorithms.

To explore the behavior of such models, we consider the
free decay dynamics of the spin-boson model. In other
words, we consider a two-level system, with vanishing
system Hamiltonian HS ¼ 0 and system-environment cou-
pling operator Ô ¼ jeihej. We then consider the decay of
initially prepared coherences, i.e., the time evolution of
hσxðtÞi for initial state ρ̄ð0Þ ¼ 1

2
ðjgi þ jeiÞðhgj þ hejÞ. This

setup is particularly well suited for studying the conver-
gence, as the coherences react much more sensitively to the
environment than occupations. Furthermore, for HS ¼ 0,
the model reduces to the independent boson model, for
which analytical solutions are available for comparison.
Moreover, as ½HS;HE� ¼ 0, the Trotter error, i.e., the error
due to the finiteness of the time step Δt, vanishes.
We take the spectral density to have the form

JQDTðωÞ ¼
ηωΩ4

ðΩ2 − ω2Þ2 þ 4ω2γ2
ð29Þ

defined by interaction strength η, central frequency Ω, and
damping γ. This form of spectral density is commonly used
to describe quantum dissipative tunneling [18,93], such as
in charge or excitation transfer in biological or chemical
molecular systems. It can be derived from a hierarchical
model, where the two-level system couples to a single
nuclear coordinate with frequency Ω, which in turn is
damped by an Ohmic bath [93]. In this interpretation, η is
set by the Ohmic damping strength, and γ ¼ η=ð2MÞ,
whereM is the nuclear mass. Throughout this example, we
set ℏ ¼ 1 and use dimensionless parameters Ω ¼ 10 and
γ ¼ 1, while we vary the coupling strength η. Note that
JQDTðωÞ is depicted in the inset of Fig. 7(a). The initial bath
temperature is set to T ¼ 0.

2. Numerical results and computation time

Figures 7(a) and 7(b) show the time evolution of the
coherence, calculated using the sequential and the divide-
and-conquer algorithms, for η ¼ 0.01;Δt ¼ 1=32 and
η ¼ 0.1;Δt ¼ 1=128, respectively. For the case HS ¼ 0
that we consider, exact results can be obtained by polaron
transformation [16],

hσxi¼ exp

�Z∞
0

dω
JðωÞ
ω2

ðcosωt−1Þcothðβω=2Þ
�
; ð30Þ

where cothðβω=2Þ → 1 for zero temperature T → 0. These
results are shown for comparison in Fig. 7. For the weaker
coupling, we see that both methods are capable of recov-
ering the exact result when the compression threshold ϵ is
small enough. For the stronger coupling strength, con-
vergence is not reached, as discussed further below.
Of particular interest here is how the computation time

for the construction of the PT-MPOs scales as a function of
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the compression threshold ϵ. This case is presented in
Fig. 7(c) for baths with coupling strengths η ¼ 0.01,
η ¼ 0.04, and η ¼ 0.1 and time steps Δt ¼ 1=32. For weak
coupling η ¼ 0.01, we find the divide-and-conquer scheme
to be about 1 order of magnitude faster than the sequential
algorithm for all relevant compression thresholds. As
shown in Fig. 7(a) for this coupling, both methods
reproduce exact results for small thresholds ϵ ¼ 10−9,
while they incur comparable numerical errors for large
thresholds ϵ ¼ 10−6.
Increasing the coupling to η ¼ 0.04, the computation

time required for the divide-and-conquer scheme is still
shorter than for the sequential algorithm when the threshold
ϵ remains large enough. However, the divide-and-conquer
computation time increases faster with decreasing threshold
than the time for the sequential algorithm. This increase
eliminates the computational advantage over the sequential
approach at about ϵ≲ 10−9. This increase in computation
time corresponds to an increase in the maximal inner
dimension of the PT-MPO at intermediate steps of the
algorithm, as is shown in Fig. 7(d). From this figure, we
may note that the bond dimension resulting from the
divide-and-conquer calculation is notably larger than for
the sequential algorithm at the same cutoff. This suggests
some inefficiency in how the truncation is applied in the

divide-and-conquer algorithm, so it may be possible to
improve performance further with more sophisticated
approaches to truncation [95,96].
Increasing the coupling further to η ¼ 0.1, we again see a

crossover in computation times on reducing ϵ, but in this
case, it occurs at about ϵ ¼ 3 × 10−6. Once again, this
increased computation time is associated with a larger
maximal inner dimension. Moreover, for this coupling
strength, Fig. 7(b) shows that the convergence behavior
of the divide-and-conquer algorithm can be less regular than
that of the sequential algorithm: We see large errors at late
times due to the fact that the preselection of products of
singular values does not provide the locally optimal low-
rank approximation, as discussed in detail in Appendix A.
There, we also demonstrate that this can be combatted by
using a finer threshold for the selection process, charac-
terized by the ratio rs ¼ ϵselect=ϵforward. Setting rs ¼ 0.1 in
simulations in Fig. 7(b), we see the results of the divide-and-
conquer approachmatch those of the sequential algorithm at
ϵ ¼ 10−6. However, we note that neither algorithm has
converged to the exact result for such a value of ϵ.
Moreover, we find that the choice of rs ¼ 0.1 can lead to

an order-of-magnitude speedup of the divide-and-conquer
algorithm for simulations with strong system-environment
coupling η ¼ 0.1 depicted in Fig. 7(c), rendering the

FIG. 7. (a) Free decay of coherences in a two-level system with spectral density JQDTðωÞ [cf. Eq. (29)] for parameters η ¼ 0.01,
Ω ¼ 10, γ ¼ 1. Note that JQDTðωÞ is shown in the inset. Exact results for the time evolution of coherences are shown by the solid black
line, and results for the different PT-MPO algorithms are indicated by points. Although an internal time step Δt ¼ 1=32 is used, data
points are only shown at times tj ¼ ð1=4Þj for clarity. (b) Time evolution for η ¼ 0.1 and Δt ¼ 1=128, where the PT-MPO results are
not converged. The divide-and-conquer algorithm with equal thresholds ϵ for forward and backward sweeps (shown, in this case, as a
thin green solid line) converges less regularly than the sequential algorithm; this can be ameliorated by choosing a nonunity threshold
ratio rs ¼ 0.1 in the preselection stage of the divide-and-conquer block combination. (c) Computation times of the sequential and the
divide-and-conquer algorithms for different coupling strengths η as a function of the truncation threshold ϵ. (d) Maximal inner PT
dimension encountered at intermediate steps in the respective algorithm.
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computation time of the divide-and-conquer scheme close to
that of the sequential algorithm, even for the most challeng-
ing parameter regime with small truncation thresholds.
The identification of the main drawback of our divide-

and-conquer algorithm suggests that even more challenging
open quantum systems with strong system-environment
coupling and very long memory times can be tackled by
developing and implementing higher-quality low-rank
approximations for the combination of PT-MPO blocks
with large inner dimensions.

IV. SUMMARY

We have introduced an approach for numerically exact
simulations of non-Markovian open quantum systemswith a
scaling advantage over established techniques. Most tech-
niques that account for non-Markovian effects scale quad-
raticallyOðn2Þ with the number of times steps n, or linearly
OðnncÞ if thememory can be truncated after nc time steps. In
contrast, we arrive at amethod that calculates the PT-MPO—
a compact representation of the Feynman-Vernon influence
functional—in Oðn log nÞ or Oðnc logncÞ rank-reducing
operations for situations without and with memory trunca-
tion, respectively. Once the PT-MPO is obtained, the system
dynamics are simulated with linear complexity OðnÞ with a
small prefactor. We achieve this enhancement by exploiting
the high degree of self-similarity in the tensor network
representing the influence functional, which enables two
novel developments: a divide-and-conquer strategy to con-
tract PT-MPOs with a large number of time steps, and the
construction of periodic PTs with blocks that can be repeated
indefinitely. To demonstrate that the theoretical scaling
advantage can be realized in practice, we have applied our
approach to several examples of challenging multiscale
problems of technological interest and compared it with
the established sequential PT-MPO calculation scheme
introduced by Jørgensen and Pollock [49].
For calculations of the fluorescence spectrum of a semi-

conductor QD strongly coupled to a super-Ohmic phonon
bath, we indeed find good agreement between the theoreti-
cally expected scaling behaviors. We observe sublinear
scaling over a wide range of practically relevant propagation
times with n ¼ 103 to n ¼ 106 time steps. The combination
of divide-and-conquer with periodic PTs enables well-
converged calculations of the resonance fluorescence spectra
of driven QDs, which requires simulations of quantum
dynamics over millions of time steps. Our method produces
these spectra within minutes, whereas the current standard
PTalgorithm of Ref. [49] would require weeks to months to
achieve the same results.
In the example of superradiant emitters, we demonstrate

several additional aspects enabled by our algorithm: First,
the possibility of resolving many time steps facilitates the
treatment of problems in quantum optics beyond the RWA.
The PT-MPO approach allows combination of multiple
environments, which facilitates investigations of the

breakdown of superradiance with additional couplings to
vibrational environments. Such numerically exact studies
including effects of local environments are relevant for
current efforts by several research groups to realize co-
operative emission [88,97] in spectrally tunable semicon-
ductor QDs [89–91], as well as in organic systems [98].
The ability of the divide-and-conquer scheme to explicitly
model both optical decay and phonon dephasing promises
tremendous acceleration of investigations of a whole class
of challenging scenarios, for example, where photonic
environments as well as phonon baths are strongly struc-
tured and nonadditive cross interactions between different
environments are important [99,100].
While our first two examples clearly show the significant

practical utility of our novel approach, a detailed analysis of
performance hints at a potential disadvantage of the divide-
and-conquer algorithm. It requires the combination of PTs
with large inner dimensions. We have shown how to
significantly reduce the cost associated with this by prese-
lecting degrees of freedom based on SVDs of the individual
PTs. This combination strategy, however, does not lead to a
locally optimal rank reduction like a SVD of the combined
PT, which can result in the appearance of a larger number of
singular values above the compression threshold than are
found for the PT-MPO in the sequential algorithm of
Ref. [49]. Consequently, the inner dimension χ of the PT
may be increased, and thereby the computation time needed
to perform each SVD may also increase. This limitation of
the divide-and-conquer approach is illustrated in our final
example: free coherence decay with a model spectral density
consisting of a narrow peak. This choice is motivated by the
expectation of large inner dimensions χ, which are controlled
by the bath coupling strength in such a case. Indeed, we find
that on increasing the coupling strength, there is a cross-over
from a regime where the divide-and-conquer algorithm
outperforms the sequential algorithm to a regime where
the sequential algorithm performs better. Simple strategies to
mitigate the extra singular values appearing in the divide-
and-conquer scheme, e.g., by using different compression
thresholds at different steps in the algorithm, are promising.
Such numerical experiments support a picture that the

optimal strategy for PT-MPO calculations is a balance
between reducing the number of SVDs (or alternative rank-
reducing operations) and reducing the numerical effort of
each individual operation. The divide-and-conquer algo-
rithm provides a scaling advantage for the number of
operations but at the cost of increasing the effort of each
operation. However, it should be noted that the increased
inner PT dimension of the divide-and-conquer algorithm is
not due to the divide-and-conquer strategy per se: It is a
consequence of the suboptimal compression after joining
two PT-MPOs with large inner dimensions. It would thus
be worthwhile for future work to explore other strategies to
combine large PT-MPOs, e.g., alternate criteria for select-
ing singular values, or other methods for low-rank matrix
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approximations [95,96]. Alternatively, one may also con-
struct approaches that interpolate between the sequential
and the divide-and-conquer approaches: for example,
merging fixed-size blocks of the tensor network instead
of single lines in the sequential algorithm, or by sweeping
and compressing PT-MPOs multiple times after combining
into blocks and allowing a different compression threshold
for each sweep. We also note that periodic PTs can be
readily calculated starting from blocks obtained with the
sequential algorithm. This could lead to a sizable reduction
of computation time when propagating open quantum
systems coupled to environments with finite memory times
but very strong system-environment couplings.
Finally, it is noteworthy that, even though we have

implemented the divide-and-conquer approach only for
bosonic environments, as defined in Eq. (1), in principle,
it can be extended to the more general class of Gaussian
environments [92,99], which includes, e.g., fermionic envi-
ronments of impurity problems [101,102]. Moreover, PTs
describing environments coupled to small quantum systems
can be reused for simulations forwhich the system of interest
is coupled to another subsystem. Extending the system
Hilbert space is accommodated simply by modifying the
outer bonds of the PT-MPO [57,71]. Thus, the PT-MPO
calculated in our first example can be readily employed to
obtain spectra of QDs embedded in microcavities, which is
another current topic of interest [103]. A variant of this
approach was used in Ref. [13] to investigate cooperative
emission from two QDs, each additionally strongly coupled
to a local phonon environment, providing numerically exact
predictions including possible cross interactions between
different environments. Furthermore, Ref. [56] delivers a
proof of principle for scaling up PT-MPO-based numerically
exact approaches to small networks of open quantum
systems. Given this wider context, progress in methods
for constructing PT-MPOs has immediate implications for
a large class of topical problems in open quantum systems.

Note added.— Recently, a related preprint [104] by Link
et al. showed how periodic PTs can also be calculated using
iTEBD methods.

The data presented in this article is available via [105].
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APPENDIX A: DIFFERENT THRESHOLDS
FOR SELECTION, BACKWARD,

AND FORWARD SWEEPS

We now discuss how choosing different thresholds for
forward and backward sweeps as well as for the selection of

products of singular values can affect the performance of
the divide-and-conquer algorithm. To this end, we first
review the role of canonical forms for the optimality of
matrix product state (MPS) compression [55,106]. We then
discuss the combination based on selecting products of
singular values before providing numerical examples.

1. Locally optimal MPS truncation

A general pure state jψi of a one-dimensional quantum
system with L sites, each described by a Hilbert space of
dimension d, can be expanded as

jψi ¼
X

σ1;…;σL

cσ1;…;σL jσ1;…; σLi; ðA1Þ

where jσ1;…; σLi are products of local basis states and
cσ1;…;σL are the dL expansion coefficients. They can be
exactly expressed as matrix products

cσ1;…;σL ¼
Xχ1
a1¼1

…
XχL−1

aL−1¼1

Mσ1
a0;a1M

σ2
a1;a2…MσL

aL−1;aL ; ðA2Þ

where a0 ¼ aL ¼ 1 are dummy indices. The dimensions χL
of indices al, in general, grow exponentially towards the
center, e.g., χL=2 ≤ dL=2 for even L. To approximate the
state jψi by an MPS jψ trunci with truncated bond dimension
D between sites l and lþ 1, it is advisable to first use the
gauge freedom of the inner bonds to bring the MPS into the
mixed-canonical form [55]

cσ1;…;σL

¼
X

a1;…;aL−1

Aσ1
a0;a1A

σ2
a1;a2…Aσl

al−1;alsalB
σlþ1
al;alþ1

BσL
aL−1;aL; ðA3Þ

with
P

σ A
σ†Aσ ¼ 1 and

P
σ B

σBσ† ¼ 1. With these con-
ditions, the Schmidt decomposition at the bond between
sites l and lþ 1 is given by

jψi ¼
Xχl
al¼1

sal jaliAjaliB; ðA4Þ

with bases for the left and right blocks,

jaliA ¼
X

σ1;…;σl

ðAσ1…AσlÞ1;al jσ1;…; σli; ðA5Þ

jaliB ¼
X

σlþ1;…;σL

ðBσlþ1…BσLÞal;1jσlþ1;…; σLi; ðA6Þ

respectively, where the orthonormality Ahalja0liA ¼
Bhalja0liB ¼ δal;a0l of the Schmidt basis follows directly
from the orthonormality of Aσl and Bσl . Given the Schmidt
decomposition (A4), the locally optimal approximation to
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jψi by an MPS with reduced dimension D, guaranteed by
the Eckart-Young-Mirsky theorem [107], is obtained by
neglecting the smallest singular values

jψ trunci ¼
XD
al¼1

sal jaliAjaliB; ðA7Þ

which is equivalent to restricting the sum over al in the
mixed-canonical MPS representation in Eq. (A3) to the first
D terms. The truncation error at a single site is

ElðDÞ ¼ kjψi − jψ truncik22 ¼
Xχl

al¼Dþ1

s2al : ðA8Þ

A general MPS as in Eq. (A2) can be brought into the
mixed-canonical form of Eq. (A3) by sweeping, e.g., in the
forward direction (from l ¼ 1 to l ¼ L − 1) while perform-
ing SVDs. There, the MPS matrices are replaced by

Mσl
al−1;al → Uðσl;al−1Þ;ãl sãlV

†
ãl;al

; ðA9aÞ

Aσl
al−1;ãl

≡Mσl
al−1;ãl

← Uðσl;al−1Þ;ãl ; ðA9bÞ

Mσlþ1

ãl;alþ1
←

X
al

sãlV
†
ãl;al

Mσlþ1
al;alþ1

: ðA9cÞ

The normalization property
P

σ A
σ†Aσ ¼ 1 for MPS matri-

ces to the left of the link l during the forward sweep follows
from the orthonormality of the columns of Uðσl;al−1Þ;ãl .
Analogously, a backward sweep (from l ¼ L to l ¼ 2)
creates the orthonormality condition

P
σ B

σBσ† ¼ 1 for all
MPS matrices to the right of the link l during the sweep.
To summarize, the locally optimal compression of a

noncanonical MPS, in principle, requires a first sweep
along one direction without truncation to restore the
canonical form, before the inner bond dimensions are
reduced in a subsequent sweep along the opposite direction
with truncated SVDs. The overall error is then bounded by
[106] kjψi − jψ truncik22 ≤ 2

P
L
l¼1 ElðDÞ. These results for

MPS similarly apply to MPOs with only subtle differences,
such as that MPOs are generally not normalized to unity
and may require rescaling [108].

2. Backward versus forward sweep thresholds

Despite the fact that the PT-MPO is not of canonical
form after incorporating another row of the tensor network
into the PT-MPO, it is standard practice for the sequential
algorithm [49] to truncate small singular values in every
sweep. Empirically, this is justified by the observation that
the potentially suboptimal low-rank approximation—and
thus larger bond dimensions of PT-MPOs after compres-
sion for the same accuracy—is typically overcompensated
by the reduced computation time due to much smaller bond
dimensions during the second sweep.

Here, we investigate whether a similar practice is also
advisable for the divide-and-conquer algorithm. There, the
combination of blocks takes place before the backward
sweep; i.e., the backward sweep is responsible for restoring
the canonical form. By choosing different compression
thresholds for backward and forward sweeps, which we
characterize by the ratio rb ¼ ϵbackward=ϵforward, we inter-
polate between the choices of equal thresholds rb ¼ 1, as is
the common practice for the sequential algorithm [49], and
rb → 0, where the MPO is only brought to canonical form
so that the truncation during the subsequent forward sweep
is locally optimal. For a fixed forward sweep threshold
ϵforward ¼ ϵ, the latter can lead to smaller inner bond
dimensions compared to calculations with rb ¼ 1 and,
hence, to an overall faster algorithm. The optimal choice
for rb in different scenarios is explored below in numerical
experiments.

3. Preselection thresholds

The preselection process in Eq. (16) consists of combin-
ing MPO matrices ½f̃αlk∶j�d0l;d0l−1 and ½g̃αl �d00l ;d00l−1 by first

constructing SVDs of the individual matrices ½f̃αlk∶j�d0l;d0l−1¼P
sU

ð1Þ
d0l;s

σð1Þs Vð1Þ†
s;ðαl;d0l−1Þ and ½g̃αl �d00l ;d00l−1 ¼

P
t U

ð2Þ
d00l ;t

σð2Þt ×

Vð2Þ†
t;ðαl;d00l−1Þ. Then, combined indices ðs; tÞ corresponding

to small products of singular values σð1Þs σð2Þt <

ϵselectσ
ð1Þ
0 σð2Þ0 are disregarded. This process does not result

in the locally optimal low-rank approximation for a given
bond dimension either. However, it is noteworthy that if the
outer bonds αl on the combined MPO matrices acted on
different spaces described by different indices αl and α0l,
respectively, the decomposition of the matrix

Mðd0l;d00l Þ;ððαl;d0l−1Þ;ðα0l;d00l−1ÞÞ

¼ ½f̃αlk∶j�d0l;d0l−1 ½g̃
α0l �d00l ;d00l−1

¼
X
s;t

ðUð1Þ
d0l;s

Uð2Þ
d00l ;t

Þσð1Þs σð2Þt ðVð1Þ†
s;ðαl;d0l−1ÞV

ð2Þ†
t;ðα0l;d00l−1ÞÞ ðA10Þ

is—up to reordering of singular values—the SVD
M ¼ UΣV†, with U ¼ Uð1Þ ⊗ Uð2Þ, V† ¼ Vð1Þ† ⊗ Vð2Þ†,
and Σ ¼ Σð1Þ ⊗ Σð2Þ, with ΣðiÞ ¼ diagðσðiÞÞ the diagonal
matrices containing the individual singular values. Hence,
by the Eckart-Young-Mirsky theorem [107], our trunca-
tion procedure based on products of singular values is
optimal in this expanded space. The combined matrix
½f̃αlk∶jþ1�ðd0l;d00l Þ;ðd0l−1;d00l−1Þ ¼ ½f̃αlk∶j�d0l;d0l−1 ½g̃αl �d00l ;d00l−1 in Eq. (16)
can be obtained by eliminating one outer bond

½f̃αlk∶jþ1�ðd0l;d00l Þ;ðd0l−1;d00l−1Þ
¼

X
α0l

δαl;α0lMðd0l;d00l Þ;ððαl;d0l−1Þ;ðα0l;d00l−1ÞÞ: ðA11Þ
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Hence, what makes our selection procedure suboptimal is
that it neglects the fact that only the elements of M with
α0l ¼ αl have to be reproduced by the low-rank approxi-
mation. Again, one strategy to compensate for this is to
choose a smaller threshold ϵselect for the selection of
products of singular values, which we characterize by
the ratio rs ¼ ϵselect=ϵforward.

4. Numerical study of optimal threshold ratios

We now investigate how the overall computation time of
PT-MPO simulations is affected by the threshold ratios rb
and rs. Figure 8(a) shows results for PT-MPOs for a
quantum dot coupled to longitudinal acoustic phonons as
in Sec. III A. The PT-MPO is calculated by the divide-and-
conquer algorithm using the same spectral density as in
Fig. 4, threshold ϵforward¼ϵ¼10−12, time step Δt¼0.01ps,
and total propagation time te ¼ 20.48 ps.
First, we find that reducing only the backward sweep

threshold ratio rb already results in faster PT-MPO con-
struction with an optimal ratio around rb ∼ 0.7. The
computation time can be further reduced by simultaneously
decreasing the threshold used for preselection via rs,
where less than half the computation time is required for
the choice rs ¼ rb ¼ 0.2 compared to equal thresholds
rs ¼ rb ¼ 1. In contrast, here, decreasing only rs does not
lead to a better overall performance. This suggests that, in
the example studied here, the preselection is already nearly
optimal in selecting relevant degrees of freedom, while the
MPO after selection and combination deviates considerably
from its canonical form. The former can be explained by
the fact that what dominates the computation time are the
last few iterations of the divide-and-conquer algorithm,
where the inner dimensions are largest. In this example, this
involves the combination of elements that are shifted by a
number of time steps of the order of the memory time nc,
where the new block overlaps with the long tail of the MPO
with elements that are nearly independent of the outer index
αl, as ½bαi;αjl � → 1 for l → nc, irrespective of the values of αi
and αj. In this case, it can be expected that the difference
between Eqs. (A10) and (A11) becomes less relevant.
Moreover, the fact that decreasing rs along with rb is more
efficient than the decrease of rb alone can be attributed to
consistency: When ϵselect < ϵbackward, terms are eliminated
in a way that is not locally optimal during the preselection
that would otherwise allow the canonicalization during the
backward sweep to result in a more compact and accu-
rate form.
A somewhat different picture unfolds for the example of

the spin-boson model with strongly peaked spectral density
with coupling strength η ¼ 0.01 and total propagation time
te ¼ 8 discussed in Sec. III C, for which we plot the
computation time for varying threshold ratios rb and rs
in Fig. 8(b). There, decreasing only rb increases the
computation time, while decreasing rs is found to be more
efficient. The main difference from the situation in Fig. 8(a)

is that, in the parameter regime considered in Fig. 8(b), the
final time te is still well within the memory time of the
environment, and the preselection combines MPO matrices
whose elements depend significantly on the outer indices.
As such, optimal compression of Eq. (A10) does not
necessarily compress Eq. (A11) optimally, and the prese-
lection based on products of singular values is not a perfect
proxy for the SVD of the product of the MPO matrices. As
small rs increases the inner bond dimension after the
selection process, it appears that truncating sooner rather
than later, i.e., already during the backward sweep by
keeping rb ¼ 1, is the best strategy to minimize the overall
computation time in this situation.
To test the hypothesis that the truncation strategy should be

chosen differently depending on whether the total propaga-
tion time exceeds the physical memory time of the environ-
ment, we show in Fig. 8(c) the computation times for
simulations as in Fig. 8(b) but with larger total propagation
time te ¼ 64. In this case, we indeed find that the optimal
strategy is to reduce both threshold ratios rs and rb, as the
situation is more comparable to the one in Fig. 8(a).

APPENDIX B: CONVERGENCE
OF FLUORESCENCE SPECTRA

To demonstrate that calculating fluorescence spectra of
quantum dots in the strong driving limit indeed puts strong

FIG. 8. Computation time for PT calculation as a function of
ratios between backward versus forward sweep thresholds
r ¼ rb ¼ ϵbackward=ϵforward, selection threshold versus forward
sweep threshold r ¼ rs ¼ ϵselect=ϵforward, and both, r ¼ rb ¼ rs.
Results are shown for (a) a quantum dot coupled to phonons as in
Sec. III A and strongly peaked spectral densities as in Sec. III C
with coupling strength η ¼ 0.01 for total propagation times
te ¼ 8 (b) and te ¼ 64 (c), respectively.
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requirements on the convergence parameters, we compare
in Fig. 9 the spectra obtained for ℏΩ ¼ 5 meV in Fig. 4(e)
with simulations where a single convergence parameter is
varied.
The impact of a too-coarse time discretization can be

observed in Figs. 9(a) and 9(b), where panel (a) shows the
spectra on a logarithmic scale while panel (b) shows the left
Mollow peak enlarged and on a linear scale. The overall
memory time ncΔt ¼ 20.48 ps is kept fixed; i.e., nc is
varied along with the time steps Δt. For larger time steps
Δt ¼ 320 fs, one already finds many features of the spectra
well reproduced on the logarithmic scale. Note, however,
that sizable deviations are still found on the linear scale in
panel (b) for Δt ¼ 160, suggesting that our choice for Δt ¼
10 fs in the main text is indeed of the required order of
magnitude for convergence. In additional calculations (not
shown), we kept this time step Δt ¼ 10 fs while varying
the memory cutoff nc. We found that the algorithm leads to
the fastest results for nc ¼ 2048memory time steps; i.e., no
gain is made by truncating the memory earlier.
In Figs. 9(c) and 9(d), we show that reducing the overall

number of time steps from n ¼ 221 to n ¼ 219 results in

oscillatory artifacts in the spectra, as the total propagation
time te ¼ nΔt is too short for all itinerant excitations in the
two-time correlation function to decay. One can also see, on
the linear scale in panel (d), that the low-energy peak is not
sampled sufficiently.
Finally, the impact of the compression threshold is

analyzed in Figs. 9(e) and 9(f). This seems less severe,
as it mainly leads to small blips on top of the otherwise
well-reproduced spectra. Note, however, that we find
deviations of the two-time correlation functions in the time
domain by less than or around 10−4 when comparing
simulations with ϵ ¼ 10−12 to those with ϵ ¼ 10−11 (not
shown). This result indicates that such small thresholds are
required for well-converged dynamics, yet small errors
in temporal data may be averaged out by the Fourier
transform.
In any case, the chosen convergence parameters

Δt ¼ 10 fs, nc ¼ 211, and n ¼ 221 used for the simulations
in Fig. 4 are indeed not too far from the minimal require-
ment for well-converged spectra.

APPENDIX C: REVERSE ROTATING
WAVE APPROXIMATION

In this appendix, we discuss how one may consider
Eq. (27) as a “reverse rotating wave approximation” of the
standard model of superradiance, which uses the Tavis-
Cummings model. In this picture, we consider using the
reverse RWA to convert a system-environment coupling
that is not of the product form required to match Eq. (1) into
such a form. In such a picture, we consider ωR as a
convergence parameter that determines the quality of the
approximation.
We start by summarizing the standard RWA, starting

from Eq. (27). Such an approximation is valid if the typical
value of the emitter frequencies, ωj, is much larger than the
couplings gk. The RWA is achieved by first applying a time-
dependent unitary to change to a rotating frame,

UðtÞ ¼ eiωRð
P

j
σþj σ

−
j þ
P

k
a†kakÞt: ðC1Þ

Here, ωR is a reference frequency, typically chosen to be
similar to the emitter frequencies ωj. If a wave function
jΨðtÞi obeys the Schrödinger equation iℏð∂=∂tÞjΨðtÞi ¼
HjΨðtÞi, then jΨ0ðtÞi ¼ UðtÞjΨðtÞi obeys

iℏ
∂

∂t
jΨ0ðtÞi ¼

�
UHU† þ iℏ

∂U
∂t

U†
�
jΨ0ðtÞi

¼ H0jΨ0ðtÞi; ðC2Þ

with

FIG. 9. Convergence of fluorescence spectra with respect to
time step Δt (a),(b), total number of time steps n (c),(d), and
truncation threshold ϵ (e),(f). Left panels (a),(c),(e) use the
logarithmic scale; right panels (b),(d),(f) show a zoom into the
left peak on a linear scale. The remaining parameters are the same
as for Fig. 4(e).
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H0 ¼
XN
j¼1

ℏðωj − ωRÞσþj σ−j þ
X
k

ℏðωk − ωRÞa†kak

þ
X
j;k

ℏgkða†kσ−j þ akσ
þ
j Þ

þ
X
j;k

ℏgkða†kσþj ei2ωRt þ akσ−j e
−i2ωRtÞ: ðC3Þ

The RWA is completed by neglecting the counterrotating
terms, i.e., the terms oscillating with frequency �2ωR,
which is justified if the reference frequency ωR is much
larger than any other frequency in the system. The impact
of these terms on the dynamics on a coarse-grained time-
scale T is of the order

1

T

Z
T

0

dte�i2ωRt ¼ e�i2ωRT − 1

�i2ωRT
¼ O

�
1

ωRT

�
: ðC4Þ

With the definition of relative frequencies ω̃j ¼ ωj − ωR
and ω̃k ¼ ωk − ωR, the RWA turns the multimode Dicke
model of Eq. (27) into the multimode Tavis-Cummings
model

H̃ ¼
XN
j¼1

ℏω̃jσ
þ
j σ

−
j þ

X
k

ℏω̃ka
†
kak

þ
X
j;k

ℏgkða†kσ−j þ akσ
þ
j Þ: ðC5Þ

Equation (C5) has the advantage that only comparatively
slow oscillations with frequencies of the order ω̃j and gk
have to be resolved; fast oscillations with frequencies ωR
are eliminated. One may also note that after this process,
the value ωR does not appear: As long as the RWA is valid,
models with different values of ωR will all map to the same
approximate model.
We may now consider this process in reverse. If one

requires a solution of the multimode Tavis-Cummings
model in Eq. (C5), a reverse rotating wave approximation
can be applied by introducing a reference frequency ωR,
which now takes the role of an additional convergence
parameter. As seen in Eq. (C4), the error introduced by the
reverse RWA can be systematically reduced by increasing
the frequency ωR. Our divide-and-conquer algorithm is key
to dealing with the small time steps Δt needed to resolve
the fast oscillations ωRΔt ≪ 1. As noted above, the value
of ωR does not enter the calculation as long as it is large
enough. Thus, one may also use the above arguments to
model systems where the physical ωR is too large even for
the divide-and-conquer approach. A RWA can be made to
eliminate the original common frequency, and then the
reverse RWA can be made to recover a model of the form of
Eq. (1), allowing the use of the PT-MPO approaches
described in this paper.

APPENDIX D: ANALYTIC EXPRESSION
FOR PHOTON INTENSITIES FROM IDEAL

SUPERRADIANT EMITTERS

Here, we derive analytic expressions for the intensity of
photons emitted fromN ideal superradiant emitters coupled
to a flat (Markovian) bath of photon modes. As described in
the main text, the dynamics is governed by a sequence of
photon emission processes between the Dicke states jJ;Mi
and jJ;M − 1i with rates ΓJ;M ¼ κðJ þMÞðJ −M þ 1Þ,
where J ¼ N=2 and M ¼ J; J − 1;…;−J. We denote by

p½N�
M the populations of the Dicke state jN=2;Mi. The

corresponding rate equations are

∂

∂t
p½N�
N=2 ¼ −ΓN=2;N=2p

½N�
N=2 ðD1aÞ

for the Dicke state with maximal excitation M ¼ N=2 and

∂

∂t
p½N�
M ¼ ΓN=2;Mþ1p

½N�
M − ΓN=2;Mp

½N�
M ðD1bÞ

for the remaining Dicke states with M < N=2. These
equations are solved by

p½N�
N=2ðtÞ ¼ e−ΓN=2;N=2t ðD2aÞ

and

p½N�
M ðtÞ ¼ ΓN=2;Mþ1

Zt
0

dτe−ΓN=2;Mðt−τÞp½N�
Mþ1ðτÞ; ðD2bÞ

respectively, where we have already incorporated the
initial condition of initially maximally excited emitters

p½N�
N=2ð0Þ ¼ 1; p½N�

M<N=2ð0Þ ¼ 0. It can be seen that the

solution p½N�
M ðtÞ can be calculated by integrating over the

solutions p½N�
Mþ1ðtÞ after multiplying with a simple expo-

nential kernel. Hence, all Dicke state populations can be

obtained one at a time by Eq. (D2b) starting from p½N�
N=2ðtÞ

given in Eq. (D2a).
Because the Dicke state jJ;Mi carriesM þ J excitations,

the emitted photon intensity, i.e., the negative change of the
total emitter excitation, is

I½N� ¼ −
∂

∂t

XN=2

M¼−N=2

ðM þ N=2Þp½N�
M : ðD3Þ

For up to N ¼ 5, we thus find

I½1�

κ
¼ e−κt; ðD4aÞ

I½2�

2κ
¼ ð2κtþ 1Þe−2κt; ðD4bÞ
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I½3�

3κ
¼ ð12κt − 7Þe−3κt þ 8e−4κt; ðD4cÞ

I½4�

4κ
¼ ð36κt − 23Þe−4κt þ ð18κtþ 24Þe−6κt; ðD4dÞ

I½5�

5κ
¼

�
80κt −

143

3

�
e−5κt þ

�
128κt −

16

3

�
e−8κt

þ 54e−9κt: ðD4eÞ
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