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A B S T R A C T   

Monitoring soil erosion in the Arctic tundra is complicated by the highly fragmentated nature of the landscape 
and the limited spatial resolution of even high-resolution satellite data. The expansion of shrubs across the Arctic 
has led to substantial changes in vegetation composition that alter the spectral reflectance and directly affect 
vegetation indices such as the normalized difference vegetation index (NDVI), which is widely applied for 
environmental monitoring. This change can mask soil erosion if datasets with too coarse spatial resolutions are 
used, as increases in NDVI driven by shrub expansion can obscure concurrent increases in barren land cover. 
Here we created land cover maps from a multispectral uncrewed aerial vehicle (UAV) and land cover survey and 
assessed satellite imagery from PlanetScope, Sentinel-2 and Landsat-8 for several areas in north-eastern Iceland. 
Additionally, we used a novel application of the Shannon evenness index (SHEI) to evaluate levels of pixel 
mixing. Our results show that shrub expansion can lead to spectral confusion, which can obscure soil erosion 
processes and emphasize the importance of considering spatial resolution when monitoring highly fragmented 
landscapes. We demonstrate that remote sensing data with a resolution < 3 m greatly improves the amount of 
information captured in an Icelandic tundra environment. The spatial resolution of Landsat data (30 m) is 
inadequate for environmental monitoring in our study area. We found that the best platform for monitoring 
tundra land cover is Sentinel-2 when used in combination with multispectral UAV acquisitions for validation. 
Our study has the potential to improve environmental monitoring capabilities by introducing the use of SHEI to 
assess pixel mixing and determine optimal spatial resolutions. This approach combined with comparing remote 
sensing imagery of different spatial and time scales significantly advances our comprehension of land cover 
changes, including greening and soil degradation, in the Arctic tundra.   

1. Introduction 

The Arctic tundra has warmed 2–4 times faster than the global 
average in recent decades (Rantanen et al., 2022; Post et al., 2019). This 
warming has led to profound ecological changes, including the 
encroachment of woody shrub species (‘shrubification’) with associated 
geomorphological changes (Kemppinen et al., 2021; Myers-Smith et al., 
2011). Changes in vegetation composition and structure are likely to 
influence slope stability and processes of soil degradation/erosion and 
vice versa (Kemppinen et al., 2022; Eichel et al., 2016; Marston, 2010). 
However, uncertainties remain over the interaction between ecological 
and geomorphological processes in a rapidly changing climate 

(Niittynen et al., 2020; Lara et al., 2018). Large-scale changes in vege
tation structure are commonly inferred from remote sensing data, 
notably the normalized difference vegetation index (NDVI), but these 
assessments are complicated by the interpretation of NDVI values (Giri 
et al., 2013). The calibration of remote sensing data with finer- 
resolution imagery derived from uncrewed aerial vehicles (UAVs) of
fers a way forward. This paper addresses the interpretation of NDVI 
values derived from satellite platforms by comparing high- to mid- 
resolution remote sensing NDVI scenes from Landsat-8 (L8, spatial res
olution 30 m), Sentinel-2 (S2, 10 m) and PlanetScope (PS, 3 m) with 
collected very-high-resolution (0.05 m) multispectral data acquired 
using a UAV. In addition, the effect of different scales on the spectral 
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mixture of pixels is tested by using classified landscapes from the UAV 
images. 

Satellite monitoring indicates widespread long-term greening trends 
across a majority of the circumpolar Arctic within the period 
(1982–2017), reflecting an increase in vegetation productivity (Bhatt 
et al., 2017; Ju and Masek, 2016; Xu et al., 2013), and in some cases a 
shift in plant dominance, in particular to an increase in shrub biomass 
(Weijers et al., 2018; Forbes et al., 2010). 

A warmer, wetter climate is likely to lead to the expansion of shrubs 
with upright growth forms in the tundra (‘shrubification’: Myers-Smith 
and Hik, 2018; Martin et al., 2017; Tape et al., 2012), as growth con
ditions ameliorate. It is estimated that > 50% of the tundra biome will be 
replaced by woody shrubs by 2050 (Meredith et al., 2019). Shrubifica
tion will result in increased canopy cover and woody root mass, which 
will reduce surface wind speeds, intercept rainfall and bind soils to the 
substrate. These processes would tend to reduce soil erosion. The 
magnitude of this effect is not yet clear (Heindel et al., 2017); it is 
therefore essential to monitor shrubification if we are to understand 
geomorphological changes – including soil erosion – and ecological 
changes including vegetation cover in high-latitude areas. 

Soil erosion is a major problem in Iceland, due to a combination of 
fine, low cohesion soils, high winds, grazing pressure and frequent 
freeze thaw cycles (Dugmore et al., 2009; Arnalds, 2015). Vegetation 
cover is a particularly important control on erosion rates, because plants 
have the potential to retard soil loss. A key metric is the ratio of vege
tated to eroded area (Streeter and Cutler, 2020; Barrio et al., 2018; 
Thorsson, 2008). At critically low values of this ratio, a tipping point 
may be reached and rapid soil erosion can lead to irreversible deserti
fication (Rietkerk et al., 2004). 

The obvious way to measure large-scale changes in tundra cover is 
remote sensing, but the unique characteristics of tundra landscapes 
complicate the estimation of land cover change. Tundra ecosystems are 
highly fragmented compared to other biomes (Virtanen and Ek, 2014). 
They consist of a mosaic of different vegetation, geomorphic formations 
and water bodies and are characterised by multiple scales of landscape 
heterogeneity (Stow et al., 2004; McFadden et al., 1998). This hetero
geneity is a result of combined factors related to the harsh Arctic 
climate. The sparse vegetation cover is susceptible to physical forces 
such as wind and frost activity. Combined with seasonal and longer-term 
changes, it affects soil properties and cause small-scale variations in 
vegetation and land cover (Virtanen and Ek, 2014). 

The most commonly used indicator of photosynthetic activity is the 
NDVI, as it can be easily calculated from the near-infrared (NIR) and red 
spectral bands, which have been observed from space since the 1970s 
(Myers-Smith et al., 2020). The applicability of NDVI for the detection of 
vegetation cover has been demonstrated in the Arctic and Antarctic 
environments (Sotille et al., 2020; Fretwell et al., 2011; Laidler et al., 
2008). Yang et al. (2020) suggest that deciduous shrub cover has a 
significant impact on spectral reflectance, particular in the NIR range. 
Increases in shrub cover should lead to higher NIR reflectance; in 
contrast, eroded terrain will have much lower values. The use of NDVI to 
infer land surface change may therefore be complicated if shrubification 
occurs at the same time as soil erosion. In this scenario, increased shrub 
vitality (and higher NIR reflectance) might mask an increase in eroded 
terrain (with an associated decrease in NIR reflectance) (Fig. 1). 

As Fig. 1 demonstrates, large-scale Arctic monitoring studies run the 
risk of inferring the wrong ecological trends from datasets with coarse 
spatial resolution. In the study of Ju and Masek (2016) in Canada and 
Alaska, NDVI trend analysis between AVHRR and Landsat showed 
broadly similar large scale trends but differed considerably from 
regional trend patterns. Siewert and Olofsson (2020) showed in a study 
for northern Sweden that when decreasing resolution from UAV imagery 
to satellite scale, the mean NDVI remained stable, but the biomass and 
gross primary productivity (GPP) calculated from NDVI were under
estimated due to non-linear relationship between remote sensing prod
ucts, ecosystem processes, and spatial heterogeneity. Similarly, research 

from Assmann et al. (2020) in Herschel Island, Canada, revealed that the 
peak in spatial variation is around 0.5 m, at which resolution ecological 
information within plant communities are studied best. When upscaling 
to moderate grain resolution (~10–30 m) (i.e., those typically returned 
by satellite platforms), vital information was lost. 

It is still not well understood how spatial aggregation influences the 
observed ecological heterogeneity in the various Arctic environments 
(Beamish et al., 2020). The spatial resolution and sensors used for 
monitoring are fundamentally related to how we can see and interpret 
the Earth’s surface. One way to address the issues associated with 
coarse-scale satellite measurements, is to calibrate readings with fine- 
scale observations acquired from UAVs. Reduction in the size and cost 
of UAVs has made them more accessible to the research community, 
allowing the acquisition of very-high-resolution and radiometrically 
corrected multispectral imagery in remote areas. These data can be used 
together with field knowledge to compare and evaluate the validity of 
satellite products. 

The major aim of our study is to understand how scale and sensor can 
affect estimations of vegetation cover. We suspected that ongoing soil 
erosion would not be visible in coarse-scale satellite data, due to climate- 
driven increases in photosynthetic activity. To investigate this, we car
ried out a multispectral UAV survey in 2021 at an actively eroding 
tundra rangeland in Iceland. We conducted a land cover classification 
from UAV imagery and compared the land cover maps to high- to mid- 
resolution (3–30 m) satellite imagery. Finally, we explored how 
different spatial resolutions affect spectral mixture and the consequent 
information loss, aiming to identify optimal spatial resolutions required 
for effective monitoring of the Arctic tundra. 

Fig. 1. Spectral confusion caused by mixing of land cover types. a) The three 
functional land cover type Barren, Low-stature Vegetation (Ls-Veg) and 
Medium-stature Shrub (Ms-Shrub) are contributing to the spectral mixing of a 
sensed pixel shown in grey. b) Barren and Ms-Shrub cover is increasing over 
time while Ls-Veg cover decreases, but the pixel NDVI value stays the same. 
Simultaneous changes in cover composition may mask each other, thereby 
impeding observations of land cover change at coarse spatial resolution (after 
Campbell, 2011). 
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2. Study site 

The research was conducted at 12 study sites of 300 × 300 m, located 
in NE-Iceland (Fig. 2a). Sites were selected based on the criteria of low 
topographic variation, homogeneous vegetation cover, and similar hy
drologic conditions. We aimed to cover areas in different degradation 
stages (Fig. 2b). The surveyed sites are located within unfenced range
lands. During the grazing season (May–September) sheep roam freely 
across these rangelands, except for the As-farm site, where grazing is 
only practiced in late summer. Sheep numbers across Iceland have 

declined hugely from a peak in the late 1970s, and we believe that our 
sites exhibited a similar trend (Marteinsdóttir et al., 2017). Conse
quently, stocking densities are low: we rarely saw sheep during our 
fieldwork and if we did, they were in small groups of just a few 
individuals. 

The closest weather station is located in Raufarhöfn, about 30 km 
NW from the study sites (NE for site As). During the observation period 
between 1949 and 2008 the mean annual temperature was 2.5 ◦C and 
the mean annual precipitation 680 mm, both with an increasing trend 
since 1980s (Veðurstofa ́Islands, 2022) (Fig. A1 in Appendix). 

Fig. 2. a) Location of study sites surveyed in 2021 in NE-Iceland. b) UAV photo taken around location Gs2, showing a mosaic of eroded area (light tone) and tundra 
vegetation. c) Ms-Shrub land cover class with uniform patches of taller growing dwarf birch. d) Homogenous Ls-Veg land cover class showing a mixture of gra
minoids, forbs, low-stature shrubs, moss and lichen. e) Barren land cover with exposed Andosols in the foreground and remnant vegetation cover. f) Deflated barren 
land cover with rock debris and recolonising vegetation. (Photos taken by Georg Kodl). 
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The study area is located within the low-shrub tundra sub-zone 
(Walker et al., 2005). The tundra community is dominated mainly by 
medium-stature deciduous shrubs below 60 cm in height, mostly dwarf 
birch (Betula nana) (Fig. 2c). Also notable is the low-growing deciduous 
bog bilberry (Vaccinium uliginosum) and evergreen crowberry (Empetrum 
nigrum). Dwarf willow (Salix herbacea) is present but rarer due to graz
ing. Non-shrubby plants include graminoids (sedges, grasses and 
rushes), forbs, mosses and lichen (Fig. 2d). Plant community composi
tion and susceptibility to erosion is strongly controlled by metre-scale 
mesotopographic variation (slope, topographic position index, aspect, 
elevation), which influences hydrology, snow cover, wind exposure and 
other environmental variables. 

The landscape has a multi-scale topographical structure. In the range 
of 0.5–1 km radius, the lower elevated areas are waterlogged peatlands 
dominated by graminoids, while the higher elevated areas exhibit 
typical mixed tundra vegetation and have eroded surfaces. The higher 
elevated areas are further structured into undulating mounds with a 
diameter of 20–100 m and a height of 1–3 m, and small-scale dome- 
shaped mounds (Icelandic: thúfur) of about 0.5 m in diameter and 0.3 m 
in height, formed by cryoturbation. 

The studied landscape is characterised by numerous erosion patches, 
ranging in size from 1 cm2 to 100s m2, embedded in a tundra vegetation 
matrix (Fig. 2b). The larger erosion patches can be stable over long 
periods of time from decades to centuries (Streeter and Cutler, 2020). 
Soils in this area of Iceland are Andosols, which mainly derive their 
properties from volcanic ejecta. They have a high-water retention ca
pacity and are particularly susceptible to disturbances such as cry
oturbation and aeolian erosion (Arnalds, 2015). Actively deflating areas 
consist of silt-sized soil particles, with remnants of vegetation cover but 
no secondary vegetation regrowth (Fig. 2e). Fully deflated areas consist 
of glacial till and have a darker appearance (Fig. 2f). On this eroded 
cover, recolonising vegetation is commonly established between or 
below the larger debris, mainly stress resistant vegetation as lichen, 
moss, biocrust and to a smaller extent, graminoids and low-growing 
shrubs. 

3. Materials and methods 

3.1. Satellite data 

We compared Landsat-8 (L8), Sentinel-2 (S2), and PlanetScope (PS) 
satellite data with higher resolution data acquired with a UAV (Table 1). 
Cloud or haze free scenes were selected that were closest to the UAV 
acquisition period (Table A1 in Appendix). All downloaded scenes were 
analysis-ready orthorectified products, representing bottom of atmo
sphere reflectance images (Level 2, Table A2 in Appendix). 

Furthermore, we used Landsat-5/7/8 imagery to plot a NDVI time 
series, to test whether continuous soil erosion is evident in the surveyed 

sites from 1984 until 2022. We extracted Landsat Collection 2 Tier 1 
TOA reflectance data, which are most suitable for time series analysis, 
using Google Earth Engine (GEE) Code Editor (Table A3 in Appendix). 
The sensor range differ from Landsat-5/7 and Landsat-8 for the NIR 
band, but Collection 2 post-processed products are well radiometrically 
characterised and inter-calibrated across the different Landsat in
struments (Landsat collection 2, 2021). 

3.2. NDVI and aerial imagery trends 

To understand vegetation trends in our study region we calculated 
the mean NDVI for each site considering only the growing season from 
June to September between 1984 and 2022. 

Each script used for GEE included a feature collection that extracts 
data from each site on a specific date, a function that calculates the mean 
NDVI and a mask function that excludes all classified ‘Cloud’, ‘Cloud 
Shadow’, ‘Dilated Clouds’ and ‘Cirrus’ pixels from the provided 
‘QA_Pixel’ band. NDVI values < 0 were excluded. Datapoints that had 
values < 0.3 NDVI were manually checked to account for scenes that 
were not filtered by the cloud mask. Over 90 datapoints were excluded 
due to cloud coverage or georeferencing issues found in L5 data. 

3.3. Multispectral UAV data collection 

A UAV survey with a multispectral camera was conducted across the 
study area, in the later part of the growing season (23 Aug – 2 Sept 
2021). A DJI Phantom 4 multispectral (P4m) quadcopter was used, 
which is equipped with a Blue (B) (450 nm ± 16 nm); Green (G) (560 nm 
± 16 nm); Red (R) (650 nm ± 16 nm); Red-edge (RE) (730 nm ± 16 nm); 
Near-infrared (NIR) (840 nm ± 26 nm) sensor. Flight planning and 
execution followed the recommendations of the HiLDEN drone network 
protocol (Assmann et al., 2019). A reflectance target (Mapir Inc., San 
Diego) was imaged before, during and after the survey for radiometric 
calibration. Six to eight ground control points (GCPs) were selected prior 
to the flight and geolocated with a Spectra Precision ProMark 120 GPS 
system (Spectra Geospatial, Westminster CO). 

The survey was flown along parallel flight and at an above ground 
altitude of 70 m, resulting in an average ground sampling distance of ~ 
4 cm. Images were acquired with 80% front and side overlap and 2 h 
time difference to solar noon. Site Gs4 was surveyed in the morning due 
to time constraints, resulting in considerable shading effects from thú
furs. Survey details and weather conditions during each flight were 
recorded (Table A4 in Appendix) (UAV survey details in Appendix). 

The UAV data were processed in Pix4D Mapper (Pix4D SA, 
Switzerland). Photogrammetric procedures were applied along with 
georeferencing based on the GCPs and radiometric calibration based on 
photographs of the calibration targets. The processed output comprised 
a digital surface model (DSM) and orthomosaics for each individual 

Table 1 
Characteristics of the remote sensing platforms used in the study. Scene identifiers used for the analysis can be found in the Appendix.  

Remote sensing imagery metadata 

Platform Phantom 4 m PlanetScope Sentinel-2 Landsat-8 Landsat-7 Landsat-5 

Sensor / PSB.SD MSI OLI ETM+ TM 
Spatial resolution 0.05 m 3 m 10 m 30 m 30 m 30 m 
Processing level / L3B L2A L2 L2 L2 
Band Red 650 ± 16 nm 665 ± 15 nm 665 ± 15 nm 660 ± 13 nm 660 ± 30 nm 660 ± 30 nm 
Band NIR 840 ± 26 nm 865 ± 20 nm 833 ± 53 nm 865 ± 14 nm 835 ± 65 nm 830 ± 70 nm 
Radiometric resolution 16-bit 12-bit collected (scaled to 16-bit) 8-bit 8-bit 
Repeated coverage / Daily 5 days 8 days1 16 days 16 days 
Zenith view angle 0◦ 1–5◦ 7.7◦ 0◦ 0◦ 0◦

In operation / Since 2016 Since 2015 Since 2013 Since 1999 1984–1995 
Equatorial crossing2 11:00–15:303 9:30–11:30 10:30 10:00 10:00 9:45  

1 with Landsat 9 since October 2021. 
2 Solar noon at study site 13:00. 
3 UAV acquisition time. 
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band. Furthermore, the NDVI was calculated as the normalized differ
ence between the NIR and red band: 

NDVI =
NIR − Red
NIR + Red

(1)  

3.4. Land cover classification and landscape characteristics 

The aim of the land cover classification is to distinguish the following 
land cover categories: barren, mixed low-stature vegetation (including 
moss, lichen, graminoid, forbs, low-stature shrubs) and medium-stature 
shrub (namely Betula nana or dwarf birch). These classes were chosen to 
investigate the impact of the dwarf birch, a characteristic shrub of the 
Arctic tundra, on the overall spectral mix of the landscape, as this species 
has a high NDVI compared to other vegetation and spreads extensively. 
An advantage is that the dwarf birch is easily distinguishable in UAV 
imagery from other vegetation due to its growth form. 

A ground vegetation survey was carried out in June 2022 to collect 
land cover data for supervised classification (Land cover survey details 
in Appendix). Point coordinates of the following land cover classes were 
collected: barren cover, mixed low-stature vegetation (bog bilberry and 
crowberry), graminoids, forbs, moss, lichen, and medium-stature shrub 
(dwarf birch). The point coordinates were collected across sites Gs1 and 
Gs3. These sites were selected for their representativeness and accessi
bility. Points were selected based on expertise and judgment of the 
surveyor, aiming for a representative sample for each class and spatial 
even distribution. Emphasis was placed on collecting vegetation cover 
information because vegetation types are more challenging to differ
entiate than barren cover in the UAV orthomosaics. 160 data points were 
collected with the Spectra Precision ProMark 120 GPS system. The 
identified land cover were then used to create training and validation 
datasets for the classification. As the land cover types were consistent 
and readily distinguishable across the two ground surveyed sites, we 
were able to manually select the training data for the other sites from the 
very-high-resolution orthomosaics of the UAV data. The relatively sim
ple configuration of the landscape - i.e., three distinct and qualitatively 
different types of land cover - meant that our simplified classification 
system worked well for our sites. 

The following workflow was applied for the classification (Fig. 3): 
All processed orthomosaics were clipped to 300 × 300 m, resampled 

to 5 cm spatial resolution, and merged into one file. We applied the 
Random Forest (RF) algorithm (Belgiu and Drăguţ, 2016) and trained an 

individual model using the multi-spectral bands (B, G, R, RE, NIR), the 
NDVI and the DSM for each of the 12 sites. 

The Orfeo ToolBox (OTB) was used in QGIS (3.22) for the classifi
cation workflow. Image statistics were computed and included in the 
model. Training and validation data for each individual class and site 
was created based on the ground land cover survey and visual inter
pretation of the very-high-resolution UAV imagery. The RF model was 
trained with the TrainImageClassifier, using default settings. 

Afterwards, the ImageClassifier was applied using the trained RF 
model, image statistics and processed layers for each site. Subsequently 
for accuracy assessment, a Confusion Matrix was computed with the 
validation data and the F-score and Kappa were calculated for each site 
(Table 2). Both are established metrics in classification assessment, the 
F-score, a measure that balances precision and recall, is often used to 
evaluate the performance of binary classification models. Kappa, or 
Cohen’s Kappa, is a statistic that measures inter-rater reliability for 
categorical items, comparing the observed agreement with the expected 
agreement by chance (Campbell, 2011). Finally, a majority filter with a 
5 × 5 kernel was applied (using SAGA 7.8.2) to minimise scattered 
misclassified individual pixels. These datasets were the basis for the 
following analysis. 

Fig. 3. Workflow for processing and classification of UAV imagery.  

Table 2 
Results of the percentage of land cover classification for barren, low-stature 
vegetation (Ls-Veg) and medium-stature shrub (Ms-shrub) classes, and the ac
curacy of classification.  

Percentage land cover and classification precision 

Site Barren 
% 

F- 
score 

Ls-Veg 
% 

F- 
score 

Ms-shrub 
% 

F- 
score 

Kappa 

As 1 0.97 53 0.78 45 0.96 0.82 
Gs3 4 0.96 63 0.84 33 0.87 0.83 
Sval1 6 0.96 68 0.83 25 0.90 0.85 
Gs1 11 0.99 57 0.87 32 0.92 0.87 
Reveg 12 0.96 50 0.92 37 0.91 0.89 
Gs4 14 0.96 55 0.90 31 0.94 0.89 
Gs2 16 0.98 53 0.88 31 0.95 0.90 
Sval9 16 0.98 60 0.96 24 0.95 0.95 
Sval8 17 0.96 56 0.96 27 0.95 0.94 
Sval3 18 0.99 58 0.91 24 0.92 0.90 
Sval7 19 0.99 47 0.92 34 0.96 0.92 
Sval6 30 0.98 43 0.88 27 0.92 0.90 
Mean 14 0.97 55 0.89 31 0.93 0.89  
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The probability density function (PDF) was calculated to estimate the 
distributions of bare or shrub patch sizes collected from all sites, 
providing insight into the landscape structure (Moreno-de Las Heras 
et al., 2011). The PDF gives the probability that a patch has a given area, 
P (Patch = a). The patch area for each class was calculated using land
scapemetrics (Hesselbarth et al., 2019) package (1.5.7) in R. Patches were 
defined that were connected within the eight-neighbor rule. For the PDF, 
regular bins were created from log-transformed data, with a bandwidth 
of 0.15. Using log-transformed data has been shown to reduce noise 
occurring at the tail of the curve and underestimating small values with 
high frequencies (White et al., 2008). 

3.5. NDVI and land cover assessment across sensor scales 

To assess the land cover composition for a NDVI value, we compared 
NDVI pixels for each satellite with the underlying land cover classified 
from the UAV. 

NDVI rasters derived from satellites were clipped to the size of the 
study sites and vectorized so that each pixel represents a polygon with 

the NDVI value. Zonal statistics were then calculated for each polygon 
(representing a NDVI pixel) and the land cover composition within. 

3.6. Determination of mixed pixels and the best suitable scale 

To compare how different remote sensing datasets capture the 
landscape we plotted NDVI histograms and visually compared the 
different remote sensing products for site Sval3. The site was chosen 
because it has a moderate amount of barren land with patches of 
different sizes evenly distributed across the landscape. 

Each environment has an inherent structure consisting of functional 
land cover types. These vary in shape, size and position in the landscape. 
To be able to accurately monitor changes in land cover types, a suitable 
spatial scale is necessary. 

To assess the right spatial scale for our degraded tundra environ
ment, we calculated the Shannon evenness index (SHEI) (Vajda, 1950). 
SHEI is a diversity metric used in ecology to assess composition and 
richness in an area (Gergel and Turner, 2017). The function calculates 
the amount of different land cover types (m) in area and their relative 

Fig. 4. NDVI time series of all surveyed sites from 1984 until 2022 over the growing season Jun-Sep from Landsat 5/7/8 imagery, ordered from top-left to bottom- 
right according to increasing barren area. Pixels covered in clouds or shadows were excluded. A steady increasing greening trend is observable. Some sites show a 
decreasing or lateral trend since 2017. The labels at the bottom of the three lower plots indicate the time periods during which different sensors on Landsat satellites 
were used: ‘TM’ for Landsat 5, ‘ETM+’ for Landsat 7, and ‘OLI’ for Landsat 8. This delineation is consistent across all plotted sites. 
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abundances (Pi). It is calculated by dividing the Shannon diversity index 
(SHDI) by its maximum (h (m)) (Eq. (2)). The output ranges between 
0 and 1. In our example, 0 means only one land cover class is present in a 
pixel and 1 indicates that all land cover classes are present at the same 
proportional abundance. 

SHEI can be calculated as: 

SHEI =
SHDI

max(SHDI)
=

∑m

i=1
(Pi*ln(Pi) )

ln(m)
(2) 

The SHEI was calculated for different grid sizes corresponding to 
different remote sensing spatial resolutions of (0.5, 1, 3, 5, 10, 20, 30, 
100, 150) meter. A grid was created with the extent of the studied site 
and specific spatial resolutions. The SHEI was calculated for each grid 
cell fully within the area of land cover classification. The mean of all 
SHEI values for a specific spatial resolution and site was calculated and 
plotted. 

4. Results 

4.1. NDVI and land cover trends 

Analysis of the NDVI time series reveals a greening trend from 1984 
until present for most of the sites (Fig. 4). The sites As, Reveg and Sval6,9 
show a slight decline since 2017, while Gs1,3 and Sval1,8 show no 
change since 2017. The Reveg site was artificially treated with fertiliser 
and seeds from the early 1990s (Sigurður Þór Guðmundsson, pers. com.) 
and shows therefore probably a steeper increase in the 1990s and 2000s. 

To get a qualitative perspective on long-term land cover changes at 
our sites, we compared multiple greyscale aerial photographs - down
loaded from the Land Surveying Service in Iceland (lmi.is) (Table A5 in 
Appendix) - with recent UAV imagery. The images cover the study area 
in July 1980, with an image resolution of ~ 0.73 m per pixel. To illus
trate the changes in land cover in the study region, an example area was 
selected at Sval3, for visual comparison. The historical aerial photo was 
manually co-registered, using six GCPs and a 2nd order polynomial 

transformation to the UAV image. 
At several locations in Sval3 it can be observed that previously 

vegetated areas have turned into barren land (Fig. 5, yellow arrow). 
Further expansion of shrub cover is also visible, though more difficult to 
distinguish (red arrow). Densification of vegetation cover and secondary 
regrowth of eroded patches could also contribute to a greening trend, 
but this is not visible in the comparison. 

4.2. Land cover classification and landscape characteristics 

Overall, the RF classification showed good accuracies with kappa 
values > 0.8 (Table 2). An example of a classified site (Sval3) is shown 
with the corresponding RGB image (Fig. 6). The F-score for the low- 
stature vegetated class returned the lowest values among the classes 
with average values around 0.84. The highest F-score at Sval8 and Sval9 
was derived from a boggy area where extensive, uniform graminoid 
cover was classified easily by the model (Table 2). Lower F-values 
resulted from homogeneous vegetation cover which was harder to 
classify. 

Due to the late stage of the growing season during the UAV survey, 
the leaves of some shrubs had turned yellow, mainly observed on a few 
shrubs in site As, which resulted in some misclassification. Shading ef
fects were mainly caused by thúfurs; this also caused some mis
classifications where non-shrubby vegetation was assigned to the shrub 
class. The shrub class showed high accuracies. This is attributed to the 
contrast between the shrubs and surrounding vegetation, in terms of 
stature and texture. The relatively high NDVI values of the low-growing 
deciduous shrub bog bilberry and graminoids, resulted in some minor 
misclassification as the shrub class. The barren class achieved highest 
scores (Table 2), attributed to the comparatively strong correlation to 
NDVI and NIR. 

The sizes of barren and shrub patches varied greatly among the sites 
ranging from 0.0025 m2 (pixel resolution) to 7045 m2 for barren patches 
(with the largest one found in the most eroded site, Sval6), and 0.0025 
m2 to 18,864 m2 for shrub patches (the largest of which were found in 
the least eroded site, As). In contrast, at the sites As and Gs3 the largest 

Fig. 5. Comparison of site Sval3 of a) a monochrome aerial photograph (taken in July 1980) with (b) RGB UAV imagery (taken in August 2021) overlaid with a 
classified land cover map. In panel a) the dark shaded areas represent shrub cover, grey represents vegetation cover and light grey barren areas. Visible changes in 
texture and tone likely caused by soil erosion is indicated by yellow arrows; red arrows indicate shrub expansion. The arrows are at the same location in both images. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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barren patches reached only up to 370 m2 and 379 m2, respectively, and 
the largest shrub patch in Sval1 was 824 m2 (Table 3). 

The PDF for low eroded (≤6%) and high eroded (>10%) sites fol
lowed different distribution patterns. In contrast, the PDFs for the shrub 
class had similar distribution patterns across all sites (Fig. 7). The patch 
size analysis demonstrated that a significant majority of barren and 
shrub patches fell below the detectability threshold for most satellite 
platforms (as indicated by the dashed lines in Fig. 7). Specifically, 83% 
of the shrub patches and 78% of the eroded patches were below the 0.5 
m threshold. At 3 m spatial resolution, around 2% of barren and shrub 
patches were the same size or larger than the pixel size, while with 10 m 
spatial resolution, only 0.3%. At 30 m resolution, 0.2% in high eroded 
areas and 0.025% in low eroded areas and 0.06% for shrubs were higher 
than the pixel size. 

The PDF of barren and shrub patches show an upward trend from the 
smallest patch size (one pixel 0.0025 m2) to a peak size of about 0.1 m2 

for shrub patches and 0.04 m2 for barren patches. It should be noted that 
the majority filter reduced the number of the smallest patch sizes, which 
explains the initial upward trend. Beyond these sizes, the probability 
decreases with increasing patch size until 100 m2, at which point the 
distribution patterns of low eroded and high eroded areas begin to 
diverge. Low eroded areas experience a further decline in patch proba
bility, while high eroded areas maintain a consistent probability up to a 
size of 1000 m2, followed by a decline. Shrub patches exhibit a smooth 
decreasing trend, with patch sizes in the upper range exceeding 10,000 
m2 (Fig. 5). 

Fig. 6. Site Sval3 a) UAV RGB image b) classified land cover.  

Table 3 
Mean NDVI values for each site and remote sensing dataset. Additionally, the total barren and medium-stature shrub (Ms-Shrub) area, the largest and mean barren and 
Ms-shrub patch size is shown.   

As Gs3 Sval1 Gs1 Reveg Gs4 Gs2 Sval9 Sval8 Sval3 Sval7 Sval6 

UAV 0.74 0.7 0.64 0.67 0.68 0.68 0.64 0.63 0.66 0.66 0.66 0.57 
PS 0.83 0.78 0.73 0.75 0.72 0.73 0.73 0.68 0.7 0.7 0.69 0.63 
S2 0.77 0.73 0.68 0.7 0.69 0.69 0.68 0.66 0.68 0.66 0.69 0.61 
L8 0.74 0.78 0.73 0.75 0.73 0.74 0.74 0.70 0.72 0.71 0.74 0.67 
Total Barren % 1 4 6 11 12 14 16 16 17 18 19 30 
Total Ms-Shrub % 45 33 25 32 37 31 31 24 27 24 34 27 
Barren max patch size [m2] 370 379 1005 2133 3521 1884 2568 1748 6886 2303 2465 7045 
Barren mean patch size [m2] 0.43 0.91 0.68 1.55 1.52 2.48 2.2 1.5 2.72 3.68 2.38 3.14 
Ms-Shrub max patch size [m2] 18,864 1742 824 2014 7619 6057 3538 3730 14,650 1480 6063 2867 
Ms-Shrub mean patch size [m2] 1.79 1.02 0.6 1.17 1.93 1.43 1.68 1.32 1.83 1.09 1.89 1.13  

Fig. 7. Probability density function for patch sizes. Dashed lines show the 
spatial resolution for 0.5 m pixel, PlanetScope (PS), Sentinel-2 (S2) and Land
sat (LS). 
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4.3. Variations in NDVI across sensor scales 

The mean NDVI values are similar for UAV, PS, S2 and L8 platforms 
to a certain extent (Table 3). However, PS showed consistently higher 
values between 0.3 and 0.9 NDVI compared to UAV. S2 mostly matched 
or slightly exceeded the UAV values of 0.2–0.3 NDVI. L8 data exhibited 
higher values of 0.5–1.0 NDVI, with the exception of site As, which can 
be explained by the scene acquisition earlier in the growing season 
(Table A1 in Appendix). 

Mean NDVI values of each site do not always correlate well with 
proportions of land cover. This can be seen by comparing Sval1 (0.64 
NDVI, Barren 6%, Ms-Shrub 25%), Gs2 (0.64 NDVI, Barren 16%, Ms- 
Shrub 31%) and Sval7 (0.66 NDVI, Barren 19%, Ms-Shrub 34%). For 
these three sites, mean NDVI value was essentially the same, whilst the 
relative proportion of barren and shrub cover varied. However, shrub 
cover didn’t always correlate exactly with NDVI as seen on Sval3 (0.66 
NDVI, Barren 18%, Ms-Shrub 24%) and Sval7 (0.66 NDVI, Barren 19%, 
Ms-Shrub 34%). This might be attributed to the proportion of plants 
with high NDVI values in the Ls-Veg class. 

The NDVI map comparison illustrates how different remote sensing 
(RS) products resolve a fragmented and eroded landscape (Fig. 8a). The 
patchiness and distribution of the barren areas are clearly visible in the 
UAV image. With increasing scale, the smaller patches become less 
apparent, although they are still visible to a certain extent at PS reso
lution, which shows low contrast between barren and vegetated areas. 
Larger patches are still visible in the S2 scene, although the edges of the 
barren patches are blended with the vegetation cover. In the L8 scene, 
only large barren patches are evident in the lower part. The rest of the 
barren patches in the centre of the area are not visible. 

The UAV NDVI histogram exhibited a wide range of 0.92 and a 
bimodal distribution, which is not reflected in the satellite data (Fig. 8b). 
NDVI values from S2 showed the highest dynamic range - 0.58 - 
compared to PS and L8 that had a similar narrow range of approximately 
0.4, despite the large difference in spatial resolution. While PS and L8 
showed similar maximum NDVI values to S2, the NDVI lower values 
were not represented (Fig. 8b). 

4.4. Correspondence between land cover and NDVI 

All RS products displayed a similar pattern of correspondence of 
NDVI values to percentage of land cover (PLC), although they differed 
significantly in their dispersion (Figs. 9; A2, A3 in Appendix). 

The NDVI to land cover distribution is explained in more detail for 
S2, as it correlated best between PLC and NDVI, had the highest dynamic 
range and a sufficient number of pixels (Fig. 9). NDVI values of fully 
barren pixels ranged from 0.15 to 0.38, LS-Veg ranged from 0.6 to 0.72, 
and Ms-Shrub ranged from 0.8 to 0.86 (Fig. 9a, b, c). As the barren cover 
decreased, the NDVI gradually increased until it reached 0.6, repre
senting the absence of barren cover (Fig. 9a). The plot for the Ls-Veg 
class showed a peak at the centre of the NDVI spectrum (Fig. 9b). 
Before and beyond this range, there was a sharp drop in vegetated 
coverage, suggesting an increase in PLC of Barren cover and Ms-Shrub. 
No Ms-Shrub cover was observed up to an NDVI of 0.4, after which there 
was a slight increase in PLC up to 0.68 (Fig. 9c). Thereafter, the PLC 
increased sharply until it reached its maximum extent. 

It is noteworthy, that due to the wide vertical dispersion, a value of 
0.6 NDVI could represent 0% or up to 62% barren cover. In Fig. 9d, three 
sample pixels are shown that have the same NDVI with very different 
land cover compositions. Vertical dispersion is highest for the Ls-Veg 
class at 0.66 and Ms-Shrub at 0.76. Large variability at this range for 
the Ls-Veg is influenced by varying degrees of Barren and Ms-Shrub 
cover. The large dispersion of Ms-Shrub could be related to plants that 
were misclassified from the Ls-Veg class with different NDVI values. 

Horizontal dispersion varied across the classes and was highest for 
the Ls-Veg class at 50% PLC ranging from 0.4 to 0.8 NDVI. This was 
expected as various plants with different spectral reflectance 

characteristics were included in the class. The dispersion for the Barren 
class at 50% PLC was 0.4–0.63 NDVI, while for the Ms-Shrub class, was 
the lowest, ranging between 0.7 and 0.8 NDVI. 

L8 plot showed very similar pattern to S2, but they did not include 
NDVI values < 0.3. This is likely influenced by the insufficient amount of 
pure Barren cover pixels. The PS also didn’t show any NDVI values <
0.35 and had large vertical dispersion at 0.6 NDVI for Barren and Ls-Veg 
class and at 0.75 for Ls-Veg and Ms-Shrub class (Figs. A2, A3 in 
Appendix). 

4.5. Correspondence between sensor grain-size and land cover 

The mean SHEI landscape metric showed a rapid increase up to 3 m 
and a slow increase at larger spatial resolutions (dashed line in Fig. 10). 
The mean reached the vertical asymptote at 0.5 m, with the lowest mean 
SHEI score 0.34. Sites with low and high amounts of barren cover 
differed in their pattern. 

The moderately to highly barren sites from Gs1 onwards followed a 
similar pattern with SHEI continuously increasing with spatial resolu
tion. At a scale up to 3 m, the SHEI increased sharply to 0.6 and then rose 
moderately up to 50 m with values > 0.8. Subsequently the SHEI is 
increased slowly, reaching a horizontal asymptote at 100 m. 

The values for sites with low barren cover rose sharply from 0.5 m, 
eventually peaking at 3 m with 0.65–0.7 SHEI for Gs1, Sval1 and Gs3. 
Values for site As continued to increase up to 20 m reaching 0.8. 
Thereafter, the sites levelled off at 50 m at 0.7 SHEI (Table A6 in 
Appendix). 

5. Discussion 

We set out to 1) explore the biases occurring from satellite moni
toring in degraded Arctic landscapes and 2) determine which spatial 
resolution is most useful in evaluating vegetation cover and landscape 
health in fragmented tundra landscapes. We found that shrubification 
can lead to spectral confusion, which can obscure soil erosion processes, 
and confirmed the importance of considering multiple spatial scales 
when monitoring land condition in Iceland. GróLind, Iceland’s first long- 
term vegetation and soil monitoring program, was initiated in 2017 and 
uses satellite imagery, UAVs, and on-site analyses to estimate land 
condition and predict areas at risk (Marteinsdóttir et al., 2017; Arnalds, 
2015). Our findings should give confidence that the use of 10 m reso
lution S2 data will result in a sufficient accurate indication of land 
condition (although ≤ 3 m resolution would be better), but suggests that 
the use of coarser resolution products may be problematic due to the 
difficulties of mixed spectral signatures and the potential for masking 
increases in barren cover. 

5.1. NDVI time series 

The mean NDVI has increased on our study sites over the last four 
decades (Fig. 4). This greening trend could indicate an amelioration of 
the environment, an increase in vegetation cover and a decrease in 
barren land. There has been an overall greening of tundra vegetation 
across the circumpolar Arctic in the last four decades and a direct link 
between warming air temperatures and vegetation greening has been 
reported (Meredith et al., 2019; Raynolds et al., 2013; Myers-Smith 
et al., 2011; Bhatt et al., 2010). However, the comparison of aerial im
ages from 1980 and a recent UAV image (Fig. 5) shows that soil erosion 
continued on our study sites, which was evident on all study plots when 
comparing aerial photographs, i.e. vegetation cover was lost across the 
region in that time period. 

If the increase in NDVI we observed was not due to increased vege
tated area, it must have been caused by changes in vegetation structure 
and composition. Studies have demonstrated correlations among 
greenness in the Arctic with air temperature and aboveground biomass 
(Bhatt et al., 2017; Ju and Masek, 2016; Xu et al., 2013), and prolonged 
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Fig. 8. a) NDVI landscape and b) histogram comparison between different remote sensing datasets from site Sval3. The red dashed vertical line indicates the mean 
NDVI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Representation of Sentinel-2 (S2) NDVI pixels and corresponding percentage of land cover (PLC) classified from UAV. Each datapoint represents a S2 pixel 
plotted from all sites. The lines above show the NDVI range for fully covered pixels per land cover. a) For Barren, b) Ls-Veg and c) Ms-Shrub cover. d) Upper panel 
RGB image, lower panel land cover classification, for three selected pixels of edge length 10 m with NDVI value of 0.61. The sample pixels illustrate a large variability 
in land cover composition for a specific NDVI value. The pixels are highlighted in the Barren graph Fig. 9a. 

Fig. 10. Graph showing SHEI for different sites and spatial scales. The sites in the legend are sorted by decreasing barren cover. The black dashed line is the mean of 
all sites. 
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growing seasons that are shifting plant phenology (Post et al., 2018; 
Oberbauer et al., 2013). 

On our sites, the NDVI values of the shrub class were found to be 
higher than those of the surrounding vegetation (Fig. 9). Combined with 
our observations indicating shrub growth (Fig. 5), with other studies 
demonstrating that shrub growth in the Arctic tundra was closely linked 
to spectral greening (Pattison et al., 2015; Fraser et al., 2014; Forbes 
et al., 2010), leads us to conclude that the increasing NDVI trend at our 
sites was mainly driven by the expansion of shrub patches. 

This time series has a low spatial resolution (size of study sites, 300 
× 300 m), encompassing various erosion patches and vegetation cover 
across the entire study site. It underscores the significance of pixel res
olution relative to the patch size, revealing that when pixel resolution 
exceeds the studied patch dimensions, the spectral confusion of distinct 
land covers, as erosion and shrub patches, hinders the detection of land 
cover changes. This confusion arises as multiple concurrent trends either 
counteract one another, or a dominant trend (shrubification) obscures a 
weaker signal (soil erosion). 

5.2. Land cover and NDVI correspondence 

Overall, L8, S2, and PS returned similar figures for Barren, Ls-Veg 
and Ms-Shrub cover, but differed significantly in their dispersion of 
PLC vs NDVI, as dynamic range (Figs. 8, 9, Table 3) and minor changes 
in the mean NDVI. 

Surprisingly, the percentage of land cover classified as barren 
exhibited a higher degree of dispersion (Fig. 9a) than expected, 
considering the distinct spectral differences in NDVI between vegetated 
and non-vegetated surfaces. This could be related to the broader defi
nition of barren land, which could have included biocrust and different 
stages of soil deflation in barren land types, leading to some variability 
in that class (Fig. 2e, f). 

The satellite platforms returned a very wide range of values for the 
Ls-Veg class (Fig. 9b). This is because this class encompasses many 
different plant types - including low-growing, deciduous and evergreen 
shrubs, graminoids, forbs and mosses - each with their own distinct 
spectral characteristics. Sub-dividing this class might help to reduce 
variance in future analyses. However, this would be challenging in 
Iceland because the vegetation cover displays high alpha (plot-level) 
diversity but low beta (between-plot) diversity. In other words, a di
versity of plant species at a fine spatial scale combines to form homo
geneous vegetation at a landscape scale. 

The dynamic range provides an indication of how much information 
is retained and differs significantly among the RS products. PS and L8 
had a low dynamic range, mainly missing the lower NDVI values 
(Fig. 8b) compared to S2, leading to lower contrasting imagery which 
limits its use for accurate classification of land cover and deriving bio
physical parameters. No satellite image was able to detect the bimodal 
distribution visible in the UAV histogram (Fig. 8b). 

We observed high dispersion of NDVI vs PLC, which was strongest for 
PS. For regional scale (10s km2) studies this dispersion can average out, 
however for landscape scale (100 s m2) studies with coarser resolutions 
this dispersion could skew interpretation of the data. This is notable for 
L8 data (Fig. A2a in Appendix), that displayed a 60% difference in 
Barren cover among pixels with a narrow range of NDVI values 
(0.54–0.55). 

The mean NDVI values varied slightly across the RS datasets, with S2 
resembling the UAV values most closely (Table 3). Various factors, such 
as band-pass differences among sensors (Ke et al., 2015), bidirectional 
reflectance influenced by viewing angles (Song and Woodcock, 2003), 
and differences in acquisition dates, could contribute to the observed 
variations in NDVI values. Slight differences in acquisition dates can 
have a significant impact in Arctic locations due to the short growing 
season (Myers-Smith et al., 2020). This explains the consistently higher 
NDVI values in the L8 data, which are 2–3 weeks earlier and closer to the 
peak growing season compared to the UAV acquisition, except for site As 

(2 days difference to UAV acquisition) which had the same value as the 
UAV. The variability in PS data can be either related to the sensor 
quality, affected by the varying viewing angles of PS platforms, which 
varied between 1 and 5◦, or differences in NIR and R spectral ranges 
(Table 1). Frazier and Hemingway (2021) demonstrated that the 
radiometric and geometric quality of PS imagery doesn’t match that of 
traditional systems such as Landsat and Sentinel-2, and it is not always 
“analysis ready,” often requiring additional correction and post
processing. Hence, Sentinel-2 data can be the better choice even though 
the spatial resolution is lower. 

5.3. Mixed pixel and spatial resolution 

The second aim of the study was to identify the most appropriate 
spatial resolution to study a degraded Icelandic tundra environment. In 
doing so, we assessed the effectiveness of commonly used remote 
sensing datasets in detecting geomorphologically relevant land cover 
categories. 

We chose to categorise three functional land cover types and these 
categories proved effective in our study environment. It’s important to 
note that one of our categories - eroded terrain - has limited extent across 
the Arctic. While our land cover classification may need adaptation to 
areas that lack eroded terrain, the analytical approach using SHEI to 
assess spatial resolution remains the same. The importance of spatial 
resolution can be illustrated by comparing the mean SHEI metrics 
calculated for lower eroded areas (barren cover ≤ 6%) and higher 
eroded areas (barren cover > 10% of total). Both types of terrain exhibit 
sharp rises in SHEI as spatial resolution increased, up to a size of ~ 3 m 
(Fig. 10). At larger spatial resolutions, mean SHEI diverged. On lower 
eroded areas, mean SHEI peaked at spatial resolutions of 3–5 m, 
declined slightly, then levelled-out; on lower eroded terrain, mean SHEI 
kept increasing to an asymptote at 100 m spatial resolution. 

SHEI is a metric of the diversity of cover within a grid cell. Low SHEI 
values indicate low diversity, i.e., overwhelming dominance of a single 
cover type. High SHEI values indicate a variety of cover types with 
approximately equal proportional coverage. Thus, we expect low SHEI 
values with small grid cells (the cells can only encompass a single cover 
type) and increases in SHEI as spatial resolution decreases and 
increasingly large grid cells encompass multiple, contrasting patches. 

On our sites, SHEI increased predictably with spatial resolution for 
the higher eroded areas. Finer spatial resolutions only detected one land 
cover type and mean SHEI is low; mean SHEI increased as larger grid 
cells encompassed both barren and vegetated cover, until the resolution 
approximated the size of the largest patches and increasing the grid 
dimension did not capture any further diversity. 

On the less eroded sites, variation within the vegetation cover - 
particularly the presence of small patches of shrubs - led to a different 
pattern. Small spatial resolution still resulted in low mean SHEI. But a 
spatial resolution around 3 m was able to encompass small patches of 
shrubs and barren terrain, leading to a peak in mean SHEI at these scales. 
As spatial resolution decreased, the cells became dominated by non- 
shrubby vegetation and mean SHEI decreased. 

Our study demonstrates the limitations of coarse resolution datasets 
for studying complex ecological-geomorphology processes such as soil 
erosion at a landscape scale. The Landsat data (30 m resolution) proved 
inadequate for detecting small-scale vegetation changes (shrub expan
sion) and the emergence of small erosion patches, as these features were 
merged in a single mixed pixel (Fig. 8a). Furthermore, our research in
dicates that SHEI based on high-resolution imagery could be a valuable 
tool for understanding land cover change. 

5.4. Remote sensing recommendations for soil erosion monitoring 

Monitoring the extent of barren cover from coarse resolution satellite 
products is challenging, especially in a fragmented Arctic landscape. Our 
study demonstrated the importance of considering spatial resolution 
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when assessing soil erosion and vegetation change. Landsat spatial res
olution is not sufficient to capture important ecological and geomor
phological changes. Using inappropriate datasets with coarse spatial 
resolution may result in underestimation of the extent of soil erosion and 
crucial threshold-crossing events being missed. 

High-resolution information on sub-pixel heterogeneity is essential 
for accurate interpretations. Integration of UAV imagery with field 
knowledge provides a valuable solution by capturing data at a scale 
comparable to ground based observations. This approach enhances the 
comprehension of spectral variations at coarse spatial resolutions, by 
validating satellite datasets and facilitating the development of scaling 
functions. Ultimately, this enables more precise and reliable long-term 
monitoring of land cover change. This is in line with Sotille et al. 
(2020), where the authors compared S2, L8 and UAV-derived data in a 
study of Antarctic vegetation cover. In their study, the use of UAV data 
improved the accuracy of vegetation cover estimation, due to higher 
spatial resolution and greater discrimination of areas that appeared to be 
homogeneous in lower resolution imagery. 

Newer satellite platforms will assist with efforts to monitor soil 
erosion and vegetation change in a warming Arctic, due to higher spatial 
resolutions, availability of multiple spectral bands and spatial coverage. 
Studies have shown that S2 and PS are more effective in detecting the 
extent of vegetation cover compared to L8 (Andreatta et al., 2022). The 
use red-edge bands – available in S2 and PS – permits the accurate 
separation of barren and vegetation cover, allowing for more accurate 
mapping capabilities (Andreatta et al., 2022; Fernández et al., 2022). 
Caution should be taken in the selection of PS products due to variations 
in radiometric and geometric quality (Frazier and Hemingway, 2021) 
and lower dynamic range. 

However, even platforms such as S2 or PS might not be sufficient to 
monitor the development of small shrub/erosion patches, which are 
critical for environmental assessment in Iceland (Cutler et al., 2023; 
Streeter and Cutler, 2020). The dynamic behavior of small patches can 
be an indicator of important ecological/geomorphological processes, 
revealing potential tipping points in the landscape development that 
may not be apparent in widely used RS products due to their limited 
spatial resolution. Very-high-resolution imagery, like that from the 
Pléiades Neo mission and WorldView 3/4, offers the potential to pan- 
sharpen multispectral imagery from 1.2 to 0.3 m spatial resolution 
and to study small-scale land cover changes more accurately on a local 
scale. 

Clearly, each RS platform has its advantages and disadvantages. The 
future of remote sensing will lie in the combination of various systems. 
PS is useful in resolving small-scale features on a local scale, but 
shortcomings in consistent image quality limit its use for spectrally 
complex land cover discrimination and time series analysis. Landsat will 
continue to be an important dataset for long-term time series analysis 
along with Visible Infrared Imager-Radiometer Suite (VIIRS), Sentinel-3 
OLCI and Moderate Resolution Imaging Spectroradiometer (MODIS) for 
monitoring large areas. Caution should be taken when interpreting 
large-scale monitoring studies in locations where small-scale ecological 
and geomorphological processes scale-up to landscape-level features. In 
the long-term, the S2 mission is likely to prove the best platform for 
tundra environmental monitoring, as it offers frequent image acquisi
tion, excellent sensors, and variety of spectral bands at suitable spatial 
resolutions. To enhance reliability of coarse satellite datasets in highly 
fragmented environments, we recommend complementing it with UAV 
imagery for validation. 

6. Conclusion 

Soil erosion poses a significant threat to affected regions in the Arctic 
tundra and should be closely monitored to prevent landscapes crossing 
irreversible tipping points. However, risks are involved when using 

unsuitable satellite platforms. In this study, we were able to show that 
inappropriate spatial resolutions can indicate an improvement in land
scape condition despite ongoing vegetation cover loss. In Landsat data, 
most of the erosion patches are masked within a mixed pixel, which 
doesn’t allow accurate monitoring. PlanetScope has more suitable 
spatial resolution, but low spectral dynamic range and variability in data 
acquisition quality limit its use, despite being a valuable additional 
dataset. Sentinel-2 performed best, showing good agreement of NDVI 
values to the UAV data, good spectral dynamic range and a sufficient 
spatial resolution to resolve larger barren patches. 

To the best of our knowledge, we used for the first time the Shannon 
evenness index to evaluate pixel mixture. This method could provide 
useful information in assessing what spatial resolutions are appropriate 
when monitoring different environments. Further testing of this metric 
with different landscape configurations could increase its applicability. 
In our environment, the amount of information captured increased 
significantly below 3 m spatial resolution. We therefore emphasize the 
importance of using UAVs in highly fragmented environments such as 
the Arctic tundra. The fine-scale variability makes it a difficult terrain to 
monitor and necessary to validate satellite datasets. 

Funding 

This research was supported by the St Andrews World Leading 
Scholarship. 

Author contributions 

Conceptualization: GK, RS, TB designed the research project. Meth
odology: GK, RS formulated the methodology. Investigation: GK, RS 
conducted the UAV surveys. Formal analysis: GK conducted the image 
processing and data analysis. Visualisation: GK created the graphics. 
Writing (original draft): GK produced the original draft of the manu
script. Writing (review & editing): all authors contributed to the final 
version of the manuscript. 

Declaration of Competing Interest 

The authors have no conflicts of interest to declare. All co-authors 
have seen and agree with the contents of the manuscript. We certify 
that the submission is original work and is not under review at any other 
publication. 

Data availability 

The data and R code that support the findings of this study are openly 
available on GitHub at https://github.com/georg-kodl/erosion-scale. 
UAV-derived orthomosaics and land cover maps underpinning this 
publication can be accessed at https://doi. 
org/10.17630/f1e25320-7c79-4876-9719-4c1131cd8ed4 (Kodl and 
Streeter, 2023). Other remote sensing datasets are publicly available 
including: Landsat-8 (https://earthexplorer.usgs.gov/), Sentinel-2 
(https://dataspace.copernicus.eu/). A specific quota of PlanetScope 
datasets are freely available for researcher purposed at (https://planet. 
com). Landsat datasets for NDVI time series are freely accessible through 
(https://earthengine.google.com/). 

Acknowledgements 

We would like to thank Hildur Stefánsdóttir and Sigurður Þór 
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Appendix

Fig. A1. Temperature change in N-Iceland Raufarhöfn (elevation at sea level) for the period 1980–2008. LOESS curve fitted to mean annual temperature with 95% 
confidence interval.  

Table A1 
Name, centroid location of the surveyed sites and date of acquisition for utilised remote sensing imagery. The elevation ranges from the lowest 30 m to the highest 160 
m.  

Platform UAV PlanetScope Sentinel-2 Landsat-8 

Site Lat Lon Date 

Gs1 66.140 − 15.495 23/08/21 01/09/21 01/09/21 08/08/21 
Gs2 66.141 − 15.502 23/08/21 01/09/21 01/09/21 08/08/21 
Gs3 66.137 − 15.498 23/08/21 01/09/21 01/09/21 08/08/21 
Gs4 66.138 − 15.504 25/08/21 01/09/21 01/09/21 08/08/21 
Reveg 66.175 − 15.512 30/08/21 01/09/21 01/09/21 08/08/21 
Sval1 66.215 − 15.631 30/08/21 01/09/21 01/09/21 08/08/21 
Sval3 66.173 − 15.727 31/08/21 01/09/21 01/09/21 08/08/21 
Sval6 66.154 − 15.758 31/08/21 01/09/21 01/09/21 08/08/21 
Sval7 66.144 − 15.780 01/09/21 01/09/21 01/09/21 08/08/21 
Sval8 66.137 − 15.781 01/09/21 01/09/21 01/09/21 08/08/21 
Sval9 66.113 − 15.768 25/08/21 01/09/21 01/09/21 08/08/21 
As 66.030 − 16.393 02/09/21 01/09/21 01/09/21 31/08/21   

Table A2 
Satellite datasets downloaded from respective platforms.  

Satellite Product ID Type Source 

PlanetScope 20210901_123636_17_2407_3B_AnalyticMS Level 3B planet.com 
20210901_123638_47_2407_3B_AnalyticMS Level 3B 
20210901_114920_66_2440_3B_AnalyticMS Level 3B 

Sentinel-2 S2A_MSIL2A_20210901T130301_N0301_R038_T28WDU_20210901T154212 Level 2a dataspace.copernicus.eu 
Landsat-8 LC08_L2SP_217014_20210808_20210819_02_T1 Collection 2, Level 2, Tier 1 earthexplorer.usgs.gov 

LC08_L2SP_218014_20210831_20210909_02_T1 Collection 2, Level 2, Tier 1   

Table A3 
Accessed GEE databases for time series analysis.  

GEE database 

USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance 
USGS Landsat 7 Collection 2 Tier 1 TOA Reflectance 
USGS Landsat 5 TM Collection 2 Tier 1 TOA Reflectance   
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UAV survey details 

The P4m camera we used, had six imaging 1/2.9” CMOS sensors, five recording monochrome bands (blue (B) at 450 ± 16 nm; green (G) at 560 ±
16 nm; red edge (RE) at 730 ± 16 nm and near-infra red (NIR) at 840 ± 26 nm) and one RGB sensor, all with a global shutter and 2.08 MP (1600 ×
1300) resolution. The camera has a field of view of 62.7◦, a focal length of 5.74 mm; autofocus was set to ∞ and the aperture to f/2.2. The P4m camera 
generated results comparable to the widely applied Parrot Sequoia + camera. GCPs were used to georeference the orthomosaic of each site. The mean 
geolocation error for each GCP in horizontal and vertical directions was about HMRS/VMRS = ~0.5 m. The Mapir reflectance target was imaged 
before, during and after each survey. The image that best represented the average light conditions during the survey, was used for radiometric 
correction when generating orthomosaics in Pix4D. 

Land cover survey 

Georg Kodl carried out a land cover survey in June 2022 to collect point coordinates of land cover types. The survey was conducted at the sites Gs1 
and Gs3, for their representativeness and accessibility using a Spectra Precision ProMark 120 GPS system. A judgmental sampling method was applied, 
wherein land cover were selected based on expertise and judgment, aiming for a representative sampling and spatially equal distribution. Following 
land cover classes were collected: barren cover, mixed low-stature vegetation (bog bilberry and crowberry), graminoids, forbs, moss, lichen, and 
medium-stature shrub (dwarf birch). 73 Ls-Veg, 51 Ms-Shrub and 36 Barren data points were collected (160 in total).  

Table A4 
Flight protocol.  

Flight-ID Altitude [m] Start End GCP Cloud conditions 

Gs1,2 70 12:19 13:51 6 Scattered stratus & cumulus cover - sun partly obscured 
Gs3 70 13:53 14:36 8 Stratus - sun obscured 
Gs4 70 08:23 09:06 8 Clear sky to haze 
Sval9 70 14:20 15:05 6 Haze 
Sval1 70 11:03 11:52 6 Cumulus - sun obscured 
Reveg 70 14:11 15:26 7 Cumulus - over most sky (alternating with sun) 
Sval3 70 10:55 11:55 6 Thin cirrus - sun not obscured 
Sval6 70 14:37 15:12 8 Thin cirrus - sun obscured (alternating with sun) 
Sval8 70 11:35 12:18 7 Haze 
Sval7 70 14:30 15:15 6 Haze 
As 70 11:26 12:25 7 Thin cirrus - sun obscured, later half stratus cover   

Table A5 
Aerial photos used from LMI.  

Flight location and path Photo number Date 

91 - Balafell-Melrakkanes F-8070 01/07/1980  

Fig. A2. Representation of L8 NDVI pixel and corresponding PLC classified from UAV. Each datapoint represents a L8 pixel plotted from all sites. a) For Barren, b) Ls- 
Veg and c) Ms-shrub cover.  
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Fig. A3. Representation of PS NDVI pixel and corresponding PLC classified from UAV. Each datapoint represents a PS pixel plotted from site Sval7 a) For Barren, b) 
Ls-Veg and c) Ms-shrub cover.  

Table A6 
Mean SHEI values for surveyed sites and different spatial resolutions (from Fig. 10).  

Site Spatial resolution [m]  

0.5 1 3 5 10 20 30 50 100 150 

As 0.36 0.49 0.63 0.69 0.75 0.80 0.77 0.72 0.69 0.66 
Gs3 0.40 0.56 0.69 0.70 0.68 0.64 0.65 0.68 0.69 0.70 
Sval1 0.41 0.57 0.65 0.64 0.62 0.61 0.62 0.65 0.66 0.65 
Gs1 0.42 0.59 0.70 0.71 0.70 0.70 0.73 0.78 0.84 0.83 
Reveg 0.32 0.43 0.52 0.55 0.58 0.65 0.72 0.81 0.88 0.82 
Gs4 0.35 0.50 0.63 0.66 0.68 0.71 0.75 0.80 0.85 0.83 
Gs2 0.36 0.50 0.63 0.66 0.69 0.74 0.80 0.85 0.89 0.83 
Sval9 0.31 0.43 0.56 0.60 0.63 0.69 0.75 0.84 0.90 0.94 
Sval8 0.24 0.33 0.43 0.47 0.53 0.61 0.66 0.78 0.88 0.99 
Sval3 0.28 0.39 0.53 0.57 0.62 0.66 0.73 0.81 0.86 0.91 
Sval7 0.29 0.41 0.56 0.61 0.68 0.76 0.80 0.85 0.88 0.87 
Sval6 0.32 0.42 0.54 0.58 0.63 0.70 0.78 0.86 0.94 0.99 
Mean 0.34 0.47 0.59 0.62 0.65 0.69 0.73 0.78 0.82 0.82  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2023.113935. 
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Elvebakk, Arve, Gould, William A., et al., 2005. The circumpolar Arctic vegetation 
map. J. Veg. Sci. 16 (3), 267–282. https://doi.org/10.1111/j.1654-1103.2005. 
tb02365.x. 
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