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TOPOLOGICAL EMBEDDINGS INTO TRANSFORMATION MONOIDS

S. BARDYLA, L. ELLIOTT, J. D. MITCHELL AND Y. PÉRESSE

Abstract. In this paper we consider the questions of which topological semigroups embed topologi-
cally into the full transformation monoid NN or the symmetric inverse monoid IN with their respective
canonical Polish semigroup topologies. We characterise those topological semigroups that embed
topologically into NN and belong to any of the following classes: commutative semigroups; compact
semigroups; groups; and certain Clifford semigroups. We prove analogous characterisations for topo-
logical inverse semigroups and IN. We construct several examples of countable Polish topological
semigroups that do not embed into NN, which answer, in the negative, a recent open problem of
Elliott et al. Additionally, we obtain two sufficient conditions for a topological Clifford semigroup to
be metrizable, and prove that inversion is automatically continuous in every Clifford subsemigroup of
NN. The former complements recent works of Banakh et al.

1. Introduction

As is well-known, Cayley’s Theorem states that every group is isomorphic to a subgroup of a sym-
metric group SX on some set X. Analogous statements hold for semigroups and inverse semigroups.
More specifically, every semigroup is isomorphic to a subsemigroup of the monoid XX consisting of
all transformations of some set X with operation the usual composition of functions; for more details
see [20, Theorem 1.1.2]. Similarly, every inverse semigroup is isomorphic to an inverse subsemigroup
of a symmetric inverse monoid IX , consisting of all partial permutations of the set X with operation
the usual composition of binary relations; see [20, Theorem 5.1.7]. Monoids of transformations and
partial permutations have been extensively studied in the literature; of particular relevance to this
paper are [8, 13, 15, 17, 22, 23, 24, 25, 26, 27, 28, 32, 33, 34, 36].

It seems natural enough to ask if there is an analogue of Cayley’s Theorem for semigroups endowed
with topologies that are compatible with their algebraic structures. The monoids NN, SN, and IN each
possess a canonical topology with respect to which their operations are continuous. As a topological
space, NN with the Tychonoff product topology arising from the discrete topology on N, is the well-
known Baire space. The space NN is Polish, i.e. completely metrizable and separable; for further
details see [21, Section 3]. Multiplication as a function from NN × NN (with the product topology)
to NN is continuous, and as such NN is also a topological semigroup. It was shown in [14, Theorem
5.4(b)] that the unique Polish semigroup topology on NN is the topology of the Baire space. We refer
to this topology as the canonical topology for NN.

Topological groups and inverse semigroups are defined analogously, where both multiplication and
inversion are continuous. Since SN is a Gδ subset of the Baire space N

N, the subspace topology on SN

is Polish. Gaughan [18] showed that this topology is contained in every Hausdorff group topology on
SN. On the other hand, every Borel measurable bijection between Polish groups is a homeomorphism
([14, Propositions 3.2 and 3.3]). Hence if G is a Polish topological group with respect to topologies
T1 and T2 where T1 ⊆ T2, then the identity function from (G,T2) to (G,T1) is continuous, and hence
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Borel measurable, which implies that T1 = T2. It follows that the subspace topology induced by
the canonical topology on NN is the unique Polish group topology on SN. As such we refer to the
subspace topology on SN induced by the canonical topology on NN as the canonical topology for SN.
Although not a subspace of NN, the symmetric inverse monoid IN also possesses a natural unique
Polish inverse semigroup topology [14, Theorem 5.15(ix)]; a subbasis for this topology is given in (2).
The symmetric group SN is a subgroup of both IN and NN and the canonical topologies on these
semigroups both induce the canonical topology on SN. The canonical topologies on SN, N

N and IN
are zero-dimensional, i.e. they each possess a basis consisting of clopen sets (see (1) and (2) for
further details). Since all three spaces are Polish, zero-dimensional, and their compact subsets have
empty interior, the Alexandrov-Urysohn Theorem ([21, Theorem 7.7]) implies that SN, IN and NN are
homeomorphic, although they are clearly not isomorphic monoids.

Throughout the remainder of this paper, unless explicitly stated otherwise, we write SN, N
N, and

IN to mean the corresponding topological group, monoid, and inverse monoid endowed with their
canonical topologies.

In this paper we consider the problems of which topological semigroups can be topologically embed-
ded into NN, and which topological inverse semigroups embed topologically into IN. It is well-known
that a Hausdorff topological group G embeds topologically into the symmetric group SN if and only
if G is second-countable and possesses a neighbourhood basis of the identity consisting of open sub-
groups; see, for example, [8, Theorem 5.1]. This characterisation can be readily applied to an arbitrary
topological group G to determine whether or not G embeds topologically into the symmetric group.
For example, the additive group Q of rational numbers endowed with the subspace topology inherited
from the real line, despite being second-countable and zero-dimensional, cannot be embedded into
SN, because (−1, 1) ∩Q is an open neighborhood of 0 which contains no open subgroup of Q.

There are natural analogues, in the contexts of semigroups and inverse semigroups, of the aforemen-
tioned characterisation for groups, in terms of right congruences; see Propositions 3.1 and 3.2. Right
congruences of topological semigroups are, in general, much more complicated, and harder to work
with than subgroups of topological groups. As such, unlike in the case of groups, Propositions 3.1
and 3.2 do not often simplify the process of determining whether or not a topological semigroup is
topologically isomorphic to a subsemigroup of NN or IN. Every countable Polish group is discrete,
and so the trivial group is a neighbourhood basis of the identity; that is, every countable Polish group
embeds topologically into SN, and hence into NN and IN also. On the other hand, the situation for
countable Polish semigroups that are not groups is unclear; the following question was posed in [14].

Question 1.1 (cf. Question 5.6 in [14]). Does every countable Polish semigroup embed topologically
into NN?

In this paper, we provide several alternate characterisations of particular types of topological
semigroup that embed into NN or IN.

The paper is organised as follows. In Section 2 we state the main results of the paper; in Section 3
we prove the main theorems; and in Section 4 we provide a number of examples demonstrating the
sharpness of our main results and we show that the answer to Question 1.1 is negative.

2. Statement of main results

We start by giving some preliminary material required to state the main results of this paper.
Recall that, a semigroup S is called an inverse semigroup if for each element x ∈ S there exists a
unique inverse element x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. An inverse semigroup S
is called Clifford if xx−1 = x−1x for all x ∈ S; or, equivalently, S is a strong semilattice of groups.
Recall that a semilattice is a commutative semigroup of idempotents. For every inverse semigroup S
the set E(S) =

{

e ∈ S : e2 = e
}

is a semilattice. For a partial function f on X we denote the domain
and image of f by dom(f) and im(f), respectively. Throughout this paper we will write partial
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functions to the right of their arguments and compose from left to right; it will also be convenient to
identify partial functions f : X → X with their graphs {(x, (x)f) : x ∈ dom(f)} ⊆ X ×X. Elements
of IX are referred to as partial permutations of the set X.

A subbases for the canonical topologies on NN consists of the sets:

(1) Ux,y =
{

f ∈ NN : (x, y) ∈ f
}

.

The complement of Ux,y is
⋃

z 6=y Ux,z, which shows that the subbasic open sets are clopen, and

hence NN with its canonical topology is zero-dimensional. The following sets form a subbasis for the
canonical topology on IN:

(2) Ux,y = {h ∈ IN : (x, y) ∈ h} , Wx = {h ∈ IN : x /∈ dom(h)} , W−1
x = {h ∈ IN : x /∈ im(h)} ,

where x, y ∈ N.
An embedding of a semigroup S into a semigroup T is an injective homomorphism from S to T .

For topological semigroups S and T an embedding φ : S → T is called topological if both of the maps
φ and φ−1 : (S)φ → S are continuous. The term topological isomorphism is defined analogously.

In this paper we characterize the commutative topological subsemigroups of NN and IN as follows.

Theorem 2.1. A commutative topological semigroup S embeds topologically into NN if and only if
there exists a countable family {Sn : n ∈ N} of countable discrete semigroups such that S embeds
topologically into the Tychonoff product

∏

n∈N Sn.

A semigroup S with adjoined external zero is denoted by S0.

Theorem 2.2. A commutative topological inverse semigroup S embeds topologically into IN if and
only if there exists a countable family {Gn : n ∈ N} of countable groups such that S embeds topologi-
cally into the Tychonoff product

∏

n∈NG0
n, where each factor is discrete.

A topological spaceX is called totally disconnected if the only connected subsets ofX are singletons.
It is well-known that every Tychonoff zero-dimensional space is totally disconnected, but there exists
a Polish totally disconnected topological group which is not zero-dimensional [12, Proposition 4.3].
However these two notions coincide for subspaces of the real line. It is also well-known, see [21,
Theorem 7.8] for example, that a topological space X is homeomorphic to a subspace of NN if and
only if X is metrizable, zero-dimensional, and second-countable. In this paper we obtain the following
characterization of the compact subsemigroups of NN.

Theorem 2.3. Let S be a compact topological semigroup. Then the following are equivalent:

(i) S is homeomorphic to a subspace of NN (and IN);
(ii) S embeds topologically into NN;
(iii) S is metrizable and totally disconnected.

The compact inverse subsemigroups of IN are characterized as follows.

Theorem 2.4. Let S be a compact inverse topological semigroup. Then the following are equivalent:

(i) S is homeomorphic to a subspace of NN (and IN);
(ii) S embeds topologically into IN;
(iii) S embeds topologically into NN;
(iv) S is metrizable and totally disconnected.

Turning to topological groups, we obtain the following characterisation.

Theorem 2.5. Let G be a Hausdorff topological group. Then the following conditions are equivalent:

(i) G embeds topologically into SN;
(ii) G embeds topologically into IN;
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(iii) G embeds topologically into NN;
(iv) G is second-countable and has a neighbourhood basis of the identity consisting of open sub-

groups.

Perhaps the next most natural objective is to characterize those countable Polish Clifford semi-
groups that topologically embed into NN or IN. The following notion introduced by Banakh and
Pastukhova [6] is crucial for this purpose.

Definition 2.6. An inverse semigroup X endowed with a semigroup topology is called ditopological if
inversion is continuous; and for any point x ∈ X and any neighborhoodO of x there are neighborhoods
U and W of x and xx−1, respectively, such that

{s ∈ S : ∃b ∈ U, ∃e ∈ W ∩ E(S) such that b = es} ∩
{

s ∈ S : ss−1 ∈ W
}

⊆ O.

The countable Polish Clifford subsemigroups of IN are characterised as follows.

Theorem 2.7. A countable Polish Clifford semigroup S embeds topologically into IN if and only if S
is ditopological and the semilattice E(S) embeds topologically into IN.

There exist countable commutative Polish Clifford semigroups with compact semilattice of idem-
potents that are not ditopological; see Proposition 4.6.

Automatic continuity of inversion in paratopological groups, or more general, inverse topological
semigroups was investigated by many authors in [4, 7, 9, 16, 19, 29, 35, 38, 39]. The following theorem
implies that inversion is automatically continuous in every Clifford subsemigroups of NN.

Theorem 2.8. Each Clifford subsemigroup of NN is ditopological.

Also, Theorem 2.8 allows us to characterize countable Polish Clifford subsemigroups of NN.

Theorem 2.9. A countable Polish Clifford semigroup S embeds topologically into NN if and only if
S is ditopological and the semilattice E(S) embeds topologically into NN.

Given Theorem 2.7 and Theorem 2.9 it is natural to ask if the semilattice E(S) embeds into
NN if and only if it embeds into IN when S is any countable Polish Clifford semigroup. We will
show in Proposition 3.9 that every subsemilattice of IN embeds topologically into NN. The converse
implication, however, fails, see Proposition 4.2 for a counter-example. Furthermore, in Proposition 4.7
we give an example of a countable Polish linear semilattice which is not topologically isomorphic to
a subsemigroup of either NN or IN.

For an element x of a semilattice X let ↑x = {y ∈ X : x ≤ y}.

Definition 2.10. A semilattice X endowed with a topology is called a:

(i) U -semilattice, if for every open set U and every x ∈ U there exist y ∈ U and an open
neighborhood V of x such that V ⊆ ↑y;

(ii) U2-semilattice, if for every open set U and every x ∈ U there exist y ∈ U and a clopen ideal
I ⊆ X such that x ∈ X \ I ⊆ ↑y.

Clearly, any U2-semilattice is a U -semilattice, but the converse implication fails (see [6] and [10]
for more details).

Theorems 2.7 and 2.9 are derived from the following more general theorems.

Theorem 2.11. Let S be a Clifford topological semigroup whose set of idempotents E(S) is a U -
semilattice. Then S embeds topologically into IN if and only if S is Hausdorff, ditopological and every
maximal subgroup of S, as well as the semilattice E(S), embed topologically into IN.

Theorem 2.12. Let S be a Clifford topological semigroup whose set of idempotents E(S) is a U2-
semilattice. Then S embeds topologically into NN if and only if S is Hausdorff, ditopological and every
maximal subgroup of S, as well as the semilattice E(S), embed topologically into NN.
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Theorems 2.11 and 2.12 imply the following corollary which complements results of Banakh et al.
about the metrizability of Clifford topological inverse semigroups [1, 3, 5].

Corollary 2.13. A topological Clifford semigroup S is metrizable and zero-dimensional if one of the
following conditions holds:

(i) S is Hausdorff, ditopological, E(S) is a U2-semilattice which embeds topologically into NN and
each maximal subgroup of S embeds topologically into NN;

(ii) S is Hausdorff, ditopological, E(S) is a U -semilattice which embeds topologically into IN and
each maximal subgroup of S embeds topologically into IN.

3. Proofs of the main theorems

In this section we prove the main results of this paper each in its own subsection. We begin by
recording some results that are useful throughout this section.

An equivalence relation ρ on a semigroup S is called a right congruence if for any x, y, z ∈ S,
(x, y) ∈ ρ implies (xz, yz) ∈ ρ. If ρ is a right congruence on a semigroup S and x ∈ S, then the set
{y ∈ S : (x, y) ∈ ρ} is denoted by [x]ρ.

Proposition 3.1 (cf. Theorem 5.5 [14]). A Hausdorff topological semigroup S is topologically isomor-
phic to a subsemigroup of NN if and only if there exists a countable family {ρi : i ∈ N} of right congru-
ences of S, each having countably many equivalence classes, such that the family {[x]ρi : x ∈ S, i ∈ N}
is a basis for the topology on S.

A right congruence ρ on an inverse monoid S is called Vagner-Preston if for every s ∈ S either:
t ∈ [s]ρ implies that 1 ∈ [tt−1]ρ; or [st]ρ = [s]ρ for all t ∈ S. The following analogue of Proposition 3.1
for the symmetric inverse monoid IN was proven in [14, Theorem 5.21].

Proposition 3.2. A Hausdorff topological inverse monoid S is topologically isomorphic to an inverse
subsemigroup of IN if and only if there exists a sequence {ρi : i ∈ N} of Vagner-Preston right congru-
ences, each having countably many equivalence classes, such that the family

{

[s]ρi , [s]
−1
ρi

: s ∈ S, i ∈ N
}

is a subbasis1 of the topology on S.

As we mentioned in the introduction, for any countable semigroup S the diagonal congruence
∆S = {(x, x) : x ∈ S} has countably many equivalence classes and the family {[x]∆S

: x ∈ S} forms
a basis for the discrete topology on S. Combined with Proposition 3.1 this observation yields the
following corollary.

Corollary 3.3. Each countable discrete semigroup embeds topologically into NN.

The following lemma will be useful for detecting semigroups topologically embeddable into NN.

Lemma 3.4. Suppose that Sn is a topological semigroup for every n ∈ N. Then the following hold:

(i) If Sn is topologically isomorphic to a subsemigroup of NN for every n ∈ N, then the Tychonoff
product

∏

n∈N Sn embeds topologically into NN.
(ii) If Sn is topologically isomorphic to a subsemigroup of IN for every n ∈ N, then the Tychonoff

product
∏

n∈N Sn embeds topologically into IN.

Proof. We only prove part (ii), the proof of item (i) is similar. We will show that the Tychonoff power
INN embeds topologically into IN. Fix any partition of N into countably many infinite subsets Ai for
i ∈ N. Consider the subsemigroup Y = {f ∈ IN : (Ai)f ⊆ Ai for all i ∈ N} of IN. For each f ∈ Y
let fn = f↾An

. Then it is straightforward to check that the map φ : Y →
∏

i∈N IAi

∼= INN defined by
(f)φ = (fn)n∈N is the desired topological isomorphism. �

1The term “subbasis” cannot be replaced with “basis” here, unlike in Proposition 3.1.
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A semigroup S is called countably prodiscrete if S can be embedded into the Tychonoff product of
countably many countable discrete semigroups. Corollary 3.3 and Lemma 3.4 imply the following.

Corollary 3.5. Every countably prodiscrete semigroup can be topologically embedded into NN.

3.1. Proof of Theorem 2.1. We need to show that a commutative topological semigroup S embeds
topologically into NN if and only if S is countably prodiscrete.

Proof. (⇐) By Corollary 3.5 each countably prodiscrete semigroup embeds topologically into NN.
(⇒) Fix any commutative subsemigroup S of NN. By Proposition 3.1, the semigroup S possesses

a countable family {ρn : n ∈ N} of right congruences of S, each having countably many classes, such
that the family {[x]ρn : x ∈ S, n ∈ N} is a basis of the subspace topology on S inherited from NN.
Since S is commutative, for each n ∈ N, ρn is a two-sided congruence. Clearly, for every n ∈ N

the quotient semigroup Sn = S/ρn is countable. We will show that S embeds topologically into the
Tychonoff product

∏

n∈N Sn, where each factor is endowed with the discrete topology. For every n ∈ N

let fn : S → Sn be the homomorphism associated with the congruence ρn. Since each equivalence
class [x]ρn is clopen, the homomorphism fn (onto the discrete semigroup Sn) is continuous. It follows
that the diagonal map Φ : S →

∏

n∈N Sn, (x)Φ = ((x)fn)n∈N is continuous as well. Since NN is
Hausdorff, S is Hausdorff and so

⋂

n∈N[x]ρn = {x} for every x ∈ S. Thus, Φ is injective. To show
that Φ is a topological embedding, fix any open basic set [x]ρn of S. The image

([x]ρn)Φ = {(zi)i∈N ∈ (S)Φ : zn = (x)fn}

is open in (S)Φ. Hence the map Φ is open onto its image, which implies that Φ is a topological
embedding. �

Recall that for a semigroup S by S1 and S0 we denote the semigroup S with adjoined external
identity and zero, respectively. If S is a topological semigroup, then, unless otherwise stated explicitly,
we write S1 to mean the topological semigroup obtained from S by extending the topology of S and
where the adjoined identity is isolated. An analogous statement holds for S0. In order to prove
Theorem 2.2 we need the following lemmas.

Lemma 3.6. For a topological semigroup S the following assertions are equivalent:

(i) S embeds topologically into NN;
(ii) S1 embeds topologically into NN;
(iii) S0 embeds topologically into NN.

Proof. The implications (ii) ⇒ (i) and (iii) ⇒ (i) are trivial. Let S be a topological semigroup which
embeds topologically into NN. Put 2N = {2n : n ∈ N}. Since 2N2N is topologically isomorphic to NN

we obtain that S is topologically isomorphic to a subsemigroup T of 2N2N. For each element t ∈ T
let

t′ = t ∪ {(1, 1)} ∪ {(2n+ 1, 3) : n ∈ N \ {0}} .

Clearly, T ′ = {t′ : t ∈ T} is a subsemigroup of NN. It is easy to check that S1 is topologically
isomorphic to a subsemigroup T ′ ∪ {idN} of NN, where by idN we denote the identity permutation of
N. Hence the implication (i) ⇒ (ii) holds. Also, it is easy to check that S0 is topologically isomorphic
to a subsemigroup T ′ ∪ {z} of NN, where z = {(n, 1) : n ∈ N}. Hence the implication (i) ⇒ (iii)
holds. �

Similarly one can prove the following lemma.

Lemma 3.7. For a topological semigroup S the following assertions are equivalent:

(i) S embeds topologically into IN;
(ii) S1 embeds topologically into IN;
(iii) S0 embeds topologically into IN.
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Lemma 3.8. Every quotient of a commutative inverse monoid by a Vagner-Preston congruence is a
group or a group with zero adjoined.

Proof. Let S be a commutative inverse monoid and ρ be a Vagner-Preston congruence on S. Clearly,
S is a Clifford semigroup and so is the quotient semigroup S/ρ. If for each x ∈ S, xx−1 ∈ [1]ρ, then
the Clifford semigroup S/ρ contains the unique idempotent [1]ρ, which implies that S/ρ is a group.
Assume that there exists an element s ∈ S such that ss−1 /∈ [1]ρ. Fix any element t ∈ S such that
tt−1 /∈ [1]ρ. Since ρ is a Vagner-Preston congruence and the semigroup S is commutative, we get that
[s]ρ and [t]ρ are two-sided ideals in S. Then [s]ρ ∩ [t]ρ 6= ∅, which shows that [t]ρ = [s]ρ. Thus, for
each x ∈ S either xx−1 ∈ [1]ρ or x ∈ [s]ρ. At this point it is easy to see that the quotient semigroup
S/ρ contains only two idempotents [1]ρ and [s]ρ. Moreover, [1]ρ is an identity of S/ρ and [s]ρ is zero
of S/ρ. Hence S/ρ is a group with adjoined zero. �

3.2. Proof of Theorem 2.2. We need to show that a commutative topological inverse semigroup S
is topologically isomorphic to a subsemigroup of IN if and only if S embeds into a Tychonoff product
∏

n∈NG0
n, where Gn is a discrete countable group for every n ∈ N.

Proof. (⇐) Clearly, for each group G the diagonal congruence on the monoid G0 is a Vagner-Preston
congruence. Proposition 3.2 implies that for every countable group G the discrete monoid G0 embeds
topologically into IN. Lemma 3.4(ii) implies that for every countable family {Gn : n ∈ N} of countable
discrete groups the Tychonoff product

∏

n∈NG0
n embeds topologically into IN. It follows that each

topological subsemigroup S of
∏

n∈NG0
n embeds topologically into IN.

(⇒) Consider a commutative inverse subsemigroup S of IN and assume that S carries the subspace
topology inherited from IN. By Lemma 3.7, S1 embeds topologically into IN. Proposition 3.2 implies
that the monoid S1 possesses a countable family {ρn : n ∈ N} of Vagner-Preston right congruences,
each having countably many classes, such that the family

{

[x]ρn , [x]
−1
ρn

: x ∈ S1, n ∈ N
}

is a subbasis

of the topology on S1. By the commutativity of S1, each ρn is a congruence on S1. It follows
that [x]−1

ρn = [x−1]ρn for every x ∈ S1 and n ∈ N. Hence the family {[x]ρn : x ∈ S, n ∈ N} is a

subbasis of the topology on S1. For each n ∈ N let µn =
⋂

i≤n ρi. It is straightforward to check that

{[x]µn
: x ∈ S, n ∈ N} is a basis of the topology on S1. By Lemma 3.8, for each n ∈ N the quotient

semigroup S1/µn is isomorphic either to Gn or G0
n for some group Gn. By the definition of µn the

group Gn is countable. For every n ∈ N let fn : S1 → G0
n be the homomorphism associated with the

congruence µn. Since each equivalence class [x]µn
is clopen, we get that the homomorphism fn (into

a discrete monoid G0
n) is continuous. Similarly as in the proof of Theorem 2.1 it can be checked that

the diagonal map Φ : S1 →
∏

n∈NG0
n, (x)Φ = ((x)fn)n∈N is a topological embedding of the monoid

S1 into the Tychonoff product
∏

n∈NG0
n, where each factor is discrete. It follows that the topological

semigroup S is topologically isomorphic to a subsemigroup of
∏

n∈NG0
n. �

3.3. Proof of Theorem 2.3. We will show that for a compact topological semigroup S, the following
conditions are equivalent:

(i) S is homeomorphic to a subspace of NN (and IN);
(ii) S embeds topologically into NN;
(iii) S is metrizable and totally disconnected.

Proof. Let S be a compact topological semigroup. The implications (ii) ⇒ (i) and (i) ⇒ (iii) are
obvious.

(iii) ⇒ (ii). The celebrated result of Numakura [30, Theorem 1] states that each Hausdorff compact
totally disconnected topological semigroup S is profinite, i.e. can be embedded into a Tychonoff
product of finite discrete semigroups. Moreover, from the proof of [30, Theorem 1] follows that
if the diagonal ∆ = {(x, x) : x ∈ S} is a Gδ subset of S×S, then S can be embedded into the
Tychonoff product of countably many finite discrete semigroups. Since the diagonal of any metrizable
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space X is a Gδ subset of X×X, the result of Numakura implies that each compact metrizable
totally disconnected topological semigroup S is countably prodiscrete. By Corollary 3.5, S embeds
topologically into NN. �

3.4. Proof of Theorem 2.4. We need to prove that for any compact topological inverse semigroup
S the following conditions are equivalent:

(i) S is homeomorphic to a subspace of NN (and IN);
(ii) S embeds topologically into IN;
(iii) S embeds topologically into NN;
(iv) S is metrizable and totally disconnected.

Proof. The equivalences (i) ⇔ (iii) and (iii) ⇔ (iv) are established in Theorem 2.3.
The implication (ii) ⇒ (iv) follows from the fact that IN is metrizable and totally disconnected.
(iv) ⇒ (ii). As we already showed in the proof of Theorem 2.3, each totally disconnected compact

metrizable topological semigroup S embeds into a Tychonoff product
∏

n∈N Yn of finite discrete semi-
groups Yn, n ∈ N. For each n ∈ N consider the projection (S)πn ⊆ Yn of S on the n-th coordinate.
Clearly, the semigroup (S)πn is inverse. By the Wagner-Preston Theorem, each countable inverse
semigroup embeds into IN. Since for each n ∈ N the semigroup (S)πn is finite, the discrete semigroup
(S)πn embeds topologically into IN. Taking into account that S ⊆

∏

n∈N(S)πn, Lemma 3.4(ii) implies
that S is topologically isomorphic to a subsemigroup of IN. �

Besides the canonical topology, IN can be endowed with a Polish semigroup topology T which is
generated by the subbasis consisting of the sets Ux,y and Wx (defined in the introduction), where
x, y ∈ N. The topology T was investigated in [14] under the name I2, and is used in the proof of the
next proposition.

Proposition 3.9. If a topological Clifford semigroup S embeds topologically into IN, then S is topo-
logically isomorphic to a subsemigroup of NN.

Proof. Observe that each Clifford subsemigroup S of IN consists of partial permutations of subsets
of N, i.e. for any x ∈ S, dom(x) = im(x). Thus, for any Clifford subsemigroup S of IN the subspace
topology on S inherited from the canonical topology on IN coincides with the subspace topology
inherited from T (as defined above). Hence it remains to check that (IN,T ) embeds topologically
into NN. A routine verification shows that the map φ : IN → NN defined by

(g)φ = {(x+ 1, y + 1) : (x, y) ∈ g} ∪ {(x+ 1, 0) : x ∈ N \ dom(g)} ∪ {(0, 0)}

is a topological embedding of (IN,T ) into NN. �

Lemma 3.10. Let G be a subgroup of NN and eG be the identity of G. Then the following conditions
hold:

(i) (x)eG = x for every x ∈ im(eG);
(ii) im(g) = im(f) for any f, g ∈ G;
(iii) for any g ∈ G the restriction g↾im(g) is a permutation of im(g);

(iv) for any g ∈ G the restriction g−1↾im(g) is equal to the inverse permutation of g↾im(g) in Sim(g);

(v) for any f, g ∈ G, f = g if and only if f↾im(f) = g↾im(g);

(vi) if f ∈ G, x ∈ N and x′ ∈ im(f) be such that (x)f = (x′)f , then for every g ∈ G, (x)f = (x)g
if and only if (x′)f = (x′)g.

Proof. (i) Since eG is the identity of G we obtain that ((x)eG)eG = (x)eG for every x ∈ N. Then
(y)eG = y for each y ∈ im(eG).

(ii) Since f = fg−1g we obtain that im(f) ⊆ im(g). Similarly, the equality g = gf−1f implies that
im(g) ⊆ im(f). Hence im(g) = im(f) for each f, g ∈ G.
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(iii) Fix g ∈ G and x, y ∈ im(g) such that (x)g = (y)g. By item (ii), x, y ∈ im(eG). By item (i),

x = (x)eG = ((x)g)g−1 = ((y)g)g−1 = (y)eG = y,

and so the map g↾im(g) is injective. Item (i) implies that im(gg) = im(g). It follows that g↾im(g) is a
permutation.

(iv) Follows from items (i), (ii) and (iii).
(v) Assume that f↾im(f) = g↾im(g) for some f, g ∈ G. Then (gf−1) ↾im(g) is the identity permutation

of im(g). It is straightforward to check that gf−1 is an idempotent. Since E(NN)∩G = {eG}, we get
that gf−1 = eG, and so f = g.

(vi) First assume that (x′)f = (x)f = (x)g for some f, g ∈ G, x ∈ N and x′ ∈ im(f). Since
x′ ∈ im(g) we obtain the following:

(x′)g = ((x′)eG)g = ((x′)f)f−1g = ((x)ff−1)g = ((x)eG)g = ((x)g)eG = (x)g = (x′)f.

Assume that (x)f = (x′)f = (x′)g for some f, g ∈ G, x ∈ N and x′ ∈ im(f). Then

(x)g = ((x)eG)g = ((x)f)f−1g = ((x′)ff−1)g = ((x′)eG)g = (x′)g = (x)f. �

3.5. Proof of Theorem 2.5. We need to prove that for a topological group G the following condi-
tions are equivalent:

(i) G embeds topologically into SN;
(ii) G embeds topologically into IN;
(iii) G embeds topologically into NN;
(iv) G is second-countable and has a neighbourhood basis of the identity consisting of open sub-

groups.

Proof. The implication (i) ⇒ (ii) is trivial; the implication (ii) ⇒ (iii) follows from Proposition 3.9;
and the equivalence (i) ⇔ (iv) is well-known and follows from [14, Theorem 5.5].

(iii) ⇒ (i). Let G be a subgroup of NN. Let X = im(g) for some g ∈ G. Lemma 3.10(ii) implies that
the set X does not depend on the choice of g. By Lemma 3.10(v), G acts faithfully by permutations
on the set X. This gives a natural algebraic embedding φ : G → SX defined by (g)φ = g↾im(g). It

remains to show that this embedding is topological. A subbasic open set in the topology on (G)φ has
the form

{g ∈ (G)φ : (x, y) ∈ g}

for some x, y ∈ X. By the definition of φ,

({g ∈ (G)φ : (x, y) ∈ g})φ−1 = {g ∈ G : (x, y) ∈ g} ,

which is open in the topology on G. Hence the map φ is continuous. Conversely, a subbasic open set
in the topology on G has the form

{g ∈ G : (x, y) ∈ g}

for some x ∈ N and y ∈ X. By Lemma 3.10(iii), there exists x′ ∈ X such that (x′)g = y.
Lemma 3.10(vi) implies that

({g ∈ G : (x, y) ∈ g})φ =
{

g ∈ (G)φ : (x′, y) ∈ g
}

and hence the map φ is a topological embedding. �

Definition 3.11. A topological inverse semigroup X is called weakly ditopological if for any point
x ∈ X and a neighborhood O of x there are neighborhoods U , V and W of the points x, x−1x and
xx−1, respectively, such that

{s ∈ S : ∃b ∈ U, ∃e ∈ W ∩ E(S) such that b = es} ∩
{

s ∈ S : ss−1 ∈ W
}

∩
{

s ∈ S : s−1s ∈ V
}

⊆ O.

Clearly, each ditopological inverse semigroup is weakly ditopological. However, the converse is not
true (see [31, Example 3.4]). Since xx−1 = x−1x in Clifford semigroups, we get the following.
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Proposition 3.12. A Clifford semigroup S is ditopological if and only if S is weakly ditopological.

Proposition 3.13. The topological inverse semigroup IN is weakly ditopological.

Proof. Fix a partial injection f ∈ IN and a basic open neighborhood O of f . Then there exist finite
subsets A1, A2, A3 of N such that A1 ⊆ dom(f), A2 ∩ dom(f) = ∅, A3 ∩ im(f) = ∅ and

O =
{

g ∈ IN : g↾A1
= f↾A1

, dom(g) ∩A2 = ∅ and im(g) ∩A3 = ∅
}

.

By idA we denote the identity function on a subset A ⊆ N. Consider the open neighborhoods

W =
{

g ∈ IN : g↾A1
= idA1

and dom(g) ∩A2 = ∅
}

and
V =

{

g ∈ IN : g↾(A1)f = id(A1)f and im(g) ∩A3 = ∅
}

of ff−1 and f−1f , respectively. Put U = O and

D = {s ∈ IN : ∃b ∈ U, ∃e ∈ W ∩ E(S) such that b = es}

∩
{

s ∈ IN : ss−1 ∈ W
}

∩
{

s ∈ IN : s−1s ∈ V
}

.

In order to show that D ⊆ O fix any y ∈ D. There exist b ∈ U and e ∈ W such that b = ey.
Consequently, b↾dom(e) = y↾dom(e). Since A1 ⊆ dom(e) and f↾A1

= b↾A1
we deduce that y↾A1

= f↾A1
.

By the definition of W , for each element z ∈
{

s ∈ IN : ss−1 ∈ W
}

we have that dom(z) ∩ A2 =

∅. Consequently, dom(y) ∩ A2 = ∅. Analogously, for each z ∈
{

s ∈ IN : s−1s ∈ V
}

we have that
im(z) ∩ A3 = ∅. It follows that im(y) ∩ A3 = ∅. Hence y ∈ O, and so the semigroup IN is weakly
ditopological. �

By 2N we denote the Cantor set endowed with the semilattice operation of taking coordinate-wise
minimum.

Lemma 3.14. The semilattice of idempotents of IN is topologically isomorphic to 2N.

Proof. Note that any idempotent e of IN is the identity map on the set dom(e). A routine verification
shows that the map φ : E(IN) → 2N which assigns to each element e ∈ E(IN) the characteristic
function of dom(e) is a topological isomorphism. �

For an element x of a semilattice X let

⇑x = {z ∈ X : there exists an open neighborhood V of z such that V ⊆ ↑x} .

A subset A of a topological semilattice X is called U-dense if for each point x ∈ X and a neighborhood
U of x in X there exists a point y ∈ U ∩A such that x ∈ ⇑y. A semilattice X is called U-separable if
it possesses a countable U -dense subset.

The following result was proved in [6, Proposition 2.5]

Proposition 3.15. Each second-countable U -semilattice is U -separable.

Recall that if X is a topological semigroup, then X0 carries the unique topology T such that the
point 0 is isolated in (X0,T ) and the subspace topology on X inherited from (X0,T ) coincides with
the original topology on X. Let X be an inverse semigroup and e ∈ E(X). Then the maximal
subgroup

{

x ∈ X : xx−1 = e = x−1x
}

is denoted by He. The following nontrivial result proved by
Banakh and Pastukhova in [6, Theorem 3.2] is crucial for this paper.

Theorem 3.16. Let S be a Hausdorff ditopological Clifford semigroup whose set of idempotents E(S)
is a U2-semilattice, and A be any U-dense subset of S. Then S can be topologically embedded into the
Tychonoff product

E(S)×
∏

e∈A

(H0
e )

A∩⇑e,

where He is endowed with the subspace topology inherited from S.
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3.6. Proof of Theorem 2.11. We need to show that a topological Clifford semigroup S whose set
of idempotents E(S) is a U -semilattice embeds topologically into IN if and only if S is Hausdorff,
ditopological and every maximal subgroup of S, as well as the semilattice E(S), embed topologically
into IN.

Proof. (⇒) If a Clifford topological semigroup S embeds topologically into IN, then S is Hausdorff.
Also the maximal subgroups of S and the semilattice E(S) embed topologically into IN. According
to [31] each inverse subsemigroup of a weakly ditopological inverse semigroup is weakly ditopological.
Then Proposition 3.13 implies that the Clifford semigroup S is weakly-ditopological. Proposition 3.12
yields that S is ditopological.

(⇐) Let S be a Hausdorff ditopological Clifford semigroup whose set of idempotents E(S) satisfies
the following properties:

(1) E(S) is a U -semilattice which embeds topologically into IN;
(2) for every e ∈ E(S) the maximal subgroup He =

{

x ∈ S : xx−1 = e = x−1x
}

embeds topolog-
ically into IN.

By [6, Proposition 2.4(6)], each U -semilattice which embeds topologically into 2N is a U2-semilattice.
Lemma 3.14 implies that E(S) is a U2-semilattice. Hence S satisfies conditions of Theorem 3.16.
Therefore, for any U-dense subset A ⊆ S, S can be topologically embedded into the Tychonoff
product

E(S)×
∏

e∈A

(H0
e )

A∩⇑e.

Since the space IN is Polish, the semilattice E(S) is second-countable. Proposition 3.15 implies that
we lose no generality assuming that the set A is countable.

By Lemma 3.7, for each idempotent e ∈ S the topological monoid H0
e embeds topologically into

IN. Since the set A is countable, Lemma 3.4(ii) implies that for every e ∈ E(S) the topological
semigroup (H0

e )
A∩⇑e embeds topologically into IN. Using one more time Lemma 3.4(ii) we get that

∏

e∈A(H
0
e )

A∩⇑e embeds topologically into IN.
By the assumption, E(S) is topologically isomorphic to a subsemigroup of E(IN). Lemma 3.4(ii)

ensures that E(S)×
∏

e∈A(H
0
e )

A∩⇑e embeds topologically into IN. Hence S is topologically isomorphic
to a subsemigroup of IN. �

Proposition 3.17. Let S be a Clifford subsemigroup of NN. Then S endowed with the subspace
topology is a topological inverse semigroup.

Proof. Suppose that S is any Clifford subsemigroup of NN. Throughout this proof it will be convenient
to denote s↾im(s) by φs for every s ∈ S. Since every Clifford semigroup is a union of groups, if s ∈ S,

then s belongs to a subgroup of NN. In particular, by Lemma 3.10, for each s ∈ S, φs is a permutation
of im(s) and φ−1

s = φs−1 , where by φ−1
s we mean the inverse permutation of φs. Although φs 6∈ NN

unless s is a permutation itself, if t ∈ NN is any transformation such that im(t) ⊆ im(s), then the
compositions t ◦ φs and t ◦ φ−1

s (as binary relations) belong to NN. For the sake of brevity, we will
denote them as tφs and tφ−1

s , respectively. Taking into account that (x)φs = (x)s for all x ∈ im(s),
Lemma 3.10 implies the following: sφ−1

s s = s and sφ−1
s = ss−1 = s−1s = s−1φs for any s ∈ S.

Clearly, it is enough to show that inversion is continuous in S. For a finite partial function f on
N consider a nonempty basic open set U = {u ∈ S : f ⊆ u}. Fix an arbitrary s ∈ U−1. In order to
show that the set U−1 is open, we need to find an open neighbourhood V of s such that V ⊆ U−1.
Let

T = (dom(f))sφ−1
s = {x ∈ im(s) : (x)s ∈ (dom(f))s} ,

and

Z = dom(f) ∪ T ∪ (T )φ−1
s .
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Observe that the set Z is finite. We define

W ′ =
{

t ∈ S : ∀x ∈ Z, (x)sφ−1
s ∈ im(t) and (x)t = (x)sφ−1

s t
}

and

W = {t ∈ S : im(s) ∩ Z ⊆ im(t)} ∩W ′.

Taking into account that for each finite subset A ⊆ N the set
{

g ∈ NN : A ⊆ im(g)
}

is open in NN,
it is routine to verify that the set W ′ is open and contains s. It follows that the set W is an open
neighborhood of s. We will show that

W ⊆ {t ∈ S : im(t) ∩ Z = im(s) ∩ Z} .

It suffices to check that for every t ∈ W if x ∈ Z \ im(s), then x ∈ Z \ im(t). If x ∈ Z \ im(s),
then x ∈ dom(f) and, consequently, (x)sφ−1

s ∈ T ⊆ im(s) ∩ Z. By the definition of W ′, (x)sφ−1
s ∈

im(t) and (x)t = (x)sφ−1
s t. But x 6∈ im(s) and (x)sφ−1

s ∈ im(s) and so x 6= (x)sφ−1
s . On the

other hand, (x)sφ−1
s ∈ im(t) and t is a permutation of im(t), and so x 6∈ im(t). Thus, W ⊆

{t ∈ S : im(t) ∩ Z = im(s) ∩ Z}.
We define V = W ∩ {t ∈ S : t↾Z = s↾Z}. Clearly, V is an open neighborhood of s. It remains to

check that V ⊆ U−1. Let t ∈ V be arbitrary. We need to show that f ⊆ t−1. As

t ∈ V = W ∩ {k ∈ S : k↾Z = s↾Z} ⊆ {k ∈ S : im(k) ∩ Z = im(s) ∩ Z} ∩ {k ∈ S : k↾Z = s↾Z} ,

we know that t↾Z = s↾Z and im(t) ∩ Z = im(s) ∩ Z.
Let x ∈ dom(f) be arbitrary. We will show that (x)t−1 = (x)f . Since tt−1 = t−1t, Lemma 3.10(iii)

and (iv) imply the following:

(3) (x)t−1 = (x)t−1tt−1 = (x)tt−1t−1 = (x)tφ−1
t φ−1

t .

Since s ∈ U−1 = {u ∈ S : f ⊆ u}−1 =
{

u−1 ∈ S : f ⊆ u
}

=
{

u ∈ S : f ⊆ u−1
}

we get that

(4) (x)f = (x)s−1 = (x)s−1ss−1 = (x)ss−1s−1 = (x)sφ−1
s φ−1

s .

By assumption x ∈ Z and so (x)t = (x)s. Since (x)sφ−1
s ∈ T ⊆ Z and s↾Z = t↾Z , we get that

(5) (x)sφ−1
s t = (x)sφ−1

s s = (x)s.

Clearly, (x)sφ−1
s ∈ im(s) ∩ Z = im(t) ∩ Z, and so (x)sφ−1

s ∈ im(t). Hence

(6) (x)sφ−1
s = (x)sφ−1

s φtφ
−1
t = (x)sφ−1

s tφ−1
t = (x)sφ−1

t

(the last equality holds by (5)). Similarly, (x)sφ−1
s φ−1

s ∈ (T )φ−1
s ⊆ Z ∩ im(s) implies (x)sφ−1

s φ−1
s ∈

im(t). Since s↾Z = t↾Z we have that (x)sφ−1
s φ−1

s t = (x)sφ−1
s φ−1

s s = (x)sφ−1
s . So

(7) (x)sφ−1
s φ−1

s = (x)sφ−1
s φ−1

s tφ−1
t = (x)sφ−1

s φ−1
t .

Hence
(x)t−1 = (x)tφ−1

t φ−1
t by (3)

= (x)sφ−1
t φ−1

t as x ∈ dom(f) ⊆ Z and s↾Z = t↾Z
= (x)sφ−1

s φ−1
t by (6)

= (x)sφ−1
s φ−1

s by (7)
= (x)f by (4).

Since x ∈ dom(f) was arbitrary, we obtain that f ⊆ t−1, and so t ∈ U−1. It follows that V ⊆ U−1.
Thus, the set U−1 is open, implying the continuity of inversion in S. �

By the proof of Proposition 3.9, the inverse topological semigroup (IN,T ) embeds topologically
into NN. However the inversion is not continuous in (IN,T ). Hence Proposition 3.17 doesn’t hold for
an arbitrary inverse subsemigroup of NN.

Proposition 3.18. Each topological inverse subsemigroup of NN is ditopological.
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Proof. Let S be a topological inverse subsemigroup of NN. By T we denote the subspace topology on
S inherited from NN. By Proposition 3.1, there exists a family {ρn : n ∈ N} of right congruences on
S, each having countably many equivalence classes, such that the family {[x]ρn : x ∈ S, n ∈ N} is a
basis of T .

To show that S is ditopological fix any x ∈ S and an open neighborhood O of x. Then there exists
n ∈ N such that [x]ρn ⊆ O. Let U = [x]ρn and W = [xx−1]ρn . It remains to check that

D = {y ∈ S : ∃b ∈ U, ∃e ∈ W ∩E(S) such that b = ey} ∩
{

y ∈ S : yy−1 ∈ W
}

⊆ O.

Fix any y ∈ D. Then there exist b ∈ U and e ∈ W ∩ E(S) such that b = ey. The choice of the sets
U and W implies that (b, x) ∈ ρn and (e, xx−1) ∈ ρn. Since yy−1 ∈ W we get that (xx−1, yy−1) ∈ ρn
and, consequently, (e, yy−1) ∈ ρn. Then

[x]ρn = [b]ρn = [ey]ρn = [yy−1y]ρn = [y]ρn .

Hence y ∈ U , and so S is a ditopological inverse semigroup. �

3.7. Proof of Theorem 2.8. We need to show that each Clifford subsemigroup of NN is ditopolog-
ical.

Proof. By Proposition 3.17, each Clifford subsemigroup of NN is a topological inverse semigroup.
Proposition 3.18 implies that Clifford subsemigroups of NN are ditopological. �

3.8. Proof of Theorem 2.12. We need to show that a Clifford topological semigroup S whose set
of idempotents E(S) is a U2-semilattice embeds topologically into NN if and only if S is Hausdorff,
ditopological and every maximal subgroup of S, as well as the semilattice E(S), embed topologically
into NN.

Proof. (⇒) Let S be a Clifford topological subsemigroup of NN. Then S is Hausdorff and every
maximal subgroup of S, as well as the semilattice E(S), embeds topologically into NN. Theorem 2.8
implies that S is ditopological.

(⇐) Let S be a Hausdorff ditopological Clifford semigroup whose set of idempotents E(S) is a
U2-semilattice which embeds topologically into NN and for every e ∈ E(S) the maximal subgroup
He =

{

x ∈ S : xx−1 = e = x−1x
}

embeds topologically into NN. Then S satisfies conditions of The-
orem 3.16. Therefore, for any U-dense subset A ⊆ S, S can be topologically embedded into the
Tychonoff product

E(S)×
∏

e∈A

(H0
e )

A∩⇑e.

Since the space NN is Polish, the semilattice E(S) is second-countable. By Proposition 3.15 we can
assume that the set A is countable.

By Lemma 3.6, for each idempotent e ∈ S the topological monoid H0
e embeds topologically into

NN. Since the set A is countable, Lemma 3.4(i) implies that for every e ∈ E(S) the topological
semigroup (H0

e )
A∩⇑e embeds topologically into NN. Using one more time Lemma 3.4(i) we get that

∏

e∈A(H
0
e )

A∩⇑e embeds topologically into NN. By the assumption, E(S) is topologically isomorphic

to a subsemigroup of NN. Lemma 3.4(i) ensures that E(S)×
∏

e∈A(H
0
e )

A∩⇑e embeds topologically

into NN. Hence S is topologically isomorphic to a subsemigroup of NN. �

A space X is called scattered if every subset A of X contains an isolated (in the subspace topology)
point. Recall that Cantor-Bendixson derivatives of a scattered space X are defined by transfinite
induction as follows, where X ′ is the set of all accumulation points of X:

(i) X0 = X;

(ii) Xα+1 =
(

Xα
)′
;

(iii) Xα =
⋂

β<αX
β , if α is a limit ordinal.
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The set Xα \ Xα+1 is called the α-th Cantor-Bendixson level of X and is denoted by X(α) (this
notation is used in the proof of Lemma 3.19). The height of a scattered space X is the smallest
ordinal ht(X) such that Xht(X) = ∅.

A semilattice X endowed with a topology T is called:

(i) semitopological if for every a ∈ X the shift la : X → X, (x)la = xa is continuous;
(ii) U2-semilattice at a point x if for every open neighborhood V of x there exist a point y ∈ V

and a clopen ideal I ⊆ E such that x ∈ X \ I ⊆ ↑y.

Lemma 3.19. Each scattered T1 semitopological semilattice is a U2-semilattice.

Proof. It is easy to check that for each open subset U of X the upper set ↑U =
⋃

x∈U ↑x is open.
Since each singleton is closed in X and the semilattice X is semitopological, the set ↑x is closed for
every x ∈ X. Hence for every x ∈ X(0) (the 0-th Cantor-Bendixson level of X) the set ↑x is clopen.

Then for each x ∈ X(0) the clopen ideal I = X \↑x together with the point x implying that X has the
U2 property at x ∈ X(0). Assume that for some ordinal α < ht(X), X has the U2 property at every

x ∈
⋃

ξ∈αX
(ξ). Fix any x ∈ X(α) and open neighborhood U of x. Since the space X is scattered,

we lose no generality assuming that U ⊆
⋃

ξ≤α X
(ξ) and U ∩Xα = {x}. The continuity of shifts in

X yields the existence of an open neighborhood V of x such that xV ⊆ U . There are two cases to
consider:

(1) xz = x for all z ∈ V ;
(2) there exists z ∈ V such that xz = y ∈ U \ {x}.

In case 1 we have that V ⊆ ↑x. Clearly, the set ↑x is closed. Let us show that the upper cone ↑x
is open. Pick any a ∈ ↑x. The continuity of shifts in X yields an open neighborhood W of a such
that Wx ⊆ V ⊆ ↑x, establishing that the element a belongs to the interior of ↑x. Hence the set ↑x is
clopen. Thus, the clopen ideal I = X \ ↑x together with the point x show that X is a U2-semilattice
at x.

Assume that case 2 holds. The choice of U implies that y ∈
⋃

ξ∈αX
(ξ). By the inductive assump-

tion, there exist p ∈ U and a clopen ideal I such that y ∈ X \ I ⊆ ↑p. Note that

xp = x(yp) = (xy)p = xxzp = xzp = yp = p,

implying that x ∈ ↑p. Since xy = xxz = xz = y we get that x /∈ I, because otherwise y = xy ∈ I,
contradicting the choice of I. Thus, the point p ∈ U and the clopen ideal I prove that the semilattice
X has the U2 property at the point x.

Hence X is a U2-semilattice at each point x ∈ X, implying that X is a U2-semilattice. �

3.9. Proof of Theorem 2.7. We need to show that a countable Polish Clifford semigroup S embeds
topologically into IN if and only if S is ditopological and the semilattice E(S) embeds topologically
into IN.

Proof. (⇒) According to [31] each inverse subsemigroup of a weakly ditopological inverse semigroup is
weakly ditopological. Then Proposition 3.13 implies that each Clifford subsemigroup S of IN is weakly
ditopological. Proposition 3.12 yields that S is ditopological. Clearly, since the entire semigroup S
embeds into IN, so too does its semilattice of idempotents.

(⇐) Let S be a ditopological countable Polish Clifford semigroup such that the semilattice E(S)
embeds topologically into IN. The continuity of the inversion in S implies that maximal subgroups
of S are closed and hence Polish. Since non-discrete Polish topological groups are of cardinality
continuum, we deduce that each maximal subgroup of S is discrete and, thus, embeds topologically
into IN by Theorem 2.5. Clearly, every countable Polish space is scattered. By Lemma 3.19, the
semilattice E(S) is a U2-semilattice and, consequently, a U -semilattice. Theorem 2.11 implies that
X embeds topologically into IN. �
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3.10. Proof of Theorem 2.9. We need to show that a countable Polish Clifford semigroup S embeds
topologically into NN if and only if S is ditopological and the semilattice E(S) embeds topologically
into NN.

Proof. (⇒) By Theorem 2.8 each Clifford subsemigroup S of NN is ditopological. Clearly the semi-
lattice of idempotents of S embeds in NN, since S embeds into NN.

(⇐) Let S be a countable Polish ditopological Clifford semigroup such that the semilattice E(S)
embeds topologically into NN. Similarly as in the proof of Theorem 2.7 it can be checked that each
maximal subgroup of S embeds topologically into NN and the semilattice E(S) is a U2-semilattice.
Theorem 2.12 implies that X embeds topologically into NN. �

4. Counterexamples

In this section we collect counterexamples to Question 1.1 as well as other examples which show
the sharpness of the results proved in the previous section.

Given Theorem 2.4 and Proposition 3.9, it might be tempting to think that IN embeds topologically
in NN. The following lemma shows that this is not the case.

Proposition 4.1. The topological inverse semigroup IN cannot be topologically embedded into NN.

Proof. Seeking a contradiction, we suppose that there is such an embedding. It follows from Propo-
sition 3.1, that there is a countable family {ρi : i ∈ N} of right congruences on IN such that the
equivalence classes of these congruences form a basis for the canonical topology on IN.

Clearly, the set U = {f ∈ IN : 0 /∈ im(f)} is an open neighborhood of ∅ in IN. Then there is k ∈ N

such that [∅]ρk ⊆ U . Since the set [∅]ρk is open in IN, there are finite subsets X,Y ⊆ N such that

V = {g ∈ IN : dom(g) ∩X = ∅, im(g) ∩ Y = ∅}

satisfies

∅ ∈ V ⊆ [∅]ρk ⊆ U.

Fix an arbitrary n ∈ N \ (X ∪ Y ). We have that {(n, n)} ∈ V ⊆ [∅]ρk . Since ρk is a right congruence
we get that

{(n, 0)} = {(n, n)} ◦ {(n, 0)} ∈ [∅ ◦ {(n, 0)}]ρk = [∅]ρk ⊆ U = {f ∈ IN : 0 /∈ im(f)} ,

which is a contradiction. �

Each semilattice X carries a natural partial order ≤ defined by e ≤ f if ef = e for any e, f ∈ X. A
semilattice X is called chain-finite if every linearly ordered subset in (X,≤) is finite. The following
proposition shows that Proposition 3.9 cannot be reversed.

Proposition 4.2. Each countable infinite discrete chain-finite semilattice X embeds topologically into
NN, but not into IN.

Proof. Since the semilattice X is countable and discrete, Corollary 3.3 implies that X embeds topo-
logically into NN. Lemma 4.1 from [2] implies that for each topological embedding φ of X into a
zero-dimensional Hausdorff topological semigroup Y the image (X)φ is closed in Y . Consequently,
for each topological embedding φ : X → IN the image (X)φ ⊆ E(IN) is closed. Since the semilattice
X is noncompact, Lemma 3.14 yields that X cannot be embedded topologically into IN. �

Looking at Theorems 2.11 and 2.12 it is natural to ask whether each subsemilattice of IN or NN is
a U -semilattice. The following lemma gives a negative answer to this question.

Proposition 4.3. There exists a topological semilattice X which is not a U -semilattice at any of its
points, but embeds topologically into IN and NN.
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Proof. Let R be the real line endowed with the usual topology and the semilattice operation of taking

the minimum. Consider the discrete subsemilattice Z =
{

1
n+1 : n ∈ N

}

∪
{

2− 1
n+1 : n ∈ N

}

of R.

Note that Z = Z ∪ {0, 2} is a compact zero-dimensional topological semilattice. Let

X =
{

(xn)n∈N ∈ ZN : xn = 1 for all but finitely many n ∈ N

}

be a subsemilattice of the Tychonoff product ZN. It is easy to see that Y = Z
N

is a compact
metrizable zero-dimensional topological semilattice which contains X. By Theorem 2.4, Y embeds
topologically into IN. It follows that X embeds topologically into IN and hence into NN as well, by
Proposition 3.9.

Fix a point (xn)n∈N ∈ X, an open neighborhood U of x and a point (yn)n∈N ∈ U . In order to show
that X is not a U -semilattice at x consider a basic open neighborhood V = {(zn)n∈N ∈ X : zn = xn for
all n ≤ k} of x. Let t ∈ Z be such that t < yk+1. It is clear that (x0, . . . , xn, t, 1, . . . , 1, . . .) ∈ V \ ↑y
implying that x doesn’t belong to the interior of ↑y. Since y was chosen arbitrarily, X is not a
U -semilattice at the point x. �

Let X be a non-empty topological space. The strong Choquet game on X is defined as follows:
Player I chooses a pair (x0, U0) where U0 is an open subset of X and x0 ∈ U0. Player II responds
with an open subset V0 such that x0 ∈ V0 ⊆ U0. At stage n Player I chooses a pair (xn, Un) such that
Un is an open subset of X and xn ∈ Un ⊆ Vn−1. Player II responds with an open set Vn ⊆ Un which
contains xn. If

⋂

n∈ω Un = ∅, then Player I wins. Otherwise, Player II wins. The following result was
proved in [11].

Theorem 4.4. A metrizable space X is completely metrizable if and only if Player II has a winning
strategy in strong Choquet game on X.

The following lemma is helpful in detecting scattered Polish spaces.

Lemma 4.5. A scattered space X is Polish if and only if X is regular and second-countable.

Proof. (⇒) Clearly, each Polish space is regular and second-countable.
(⇐) By the Urysohn Metrization Theorem, each regular second-countable space X is metrizable

and separable. By Theorem 4.4, to prove that X is Polish it suffices to show that Player II has a
winning strategy in the strong Choquet game on X. Assume that we are at stage n of the strong
Choquet game and Player I chose a corresponding pair (Un, xn). Find an ordinal α ∈ ht(X) such that

xn belongs to the Cantor-Bendixson level X(α). Player II can respond with any open neighborhood
Vn ⊆ Un of xn such that Vn ∩ X(α) = Vn ∩ Xα = {xn}. Then, using the fact that ordinals do not
possess infinite decreasing sequences, it is straightforward to check that this is a winning strategy for
Player II. �

In the following four propositions we construct counterexamples to Question 1.1.

Proposition 4.6. There exists a countable commutative (and hence Clifford) Hausdorff topological
inverse semigroup S such that

(i) S is locally compact and Polish;
(ii) the semilattice E(S) is compact;
(iii) S cannot be topologically embedded into NN.

Proof. By T we denote the set {0} ∪ {xn : n ∈ N} endowed with the semilattice operation

ab =

{

a, if a = b;

0, otherwise.
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Let {1,−1} be the two-element multiplicative group. Then the direct product S = T×{1,−1} is a
countable commutative inverse semigroup whose semilattice E(S) coincides with the set T×{1}. We
endow S with the topology T defined as follows:

(1) each element x ∈ S \ {(0, 1)} is isolated;
(2) the sets Un = {(0, 1)} ∪ {(xi, 1) : i ≥ n}, n ∈ N form an open neighborhood basis at (0, 1).

It is easy to check that (S,T ) is a locally compact regular scattered second-countable topological
inverse semigroup and the semilattice E(S) = T×{1} is compact. By Lemma 4.5, the space (S,T )
is Polish. To derive a contradiction, assume that (S,T ) can be embedded topologically into NN. By
Proposition 3.1, there exists a family {ρn : n ∈ N} of right congruences on S such that the collec-
tion {[x]ρn : x ∈ S, n ∈ N} is a base of the topology T . Since S is commutative, ρn is a two-sided
congruence for every n ∈ N. It follows that for any n,m ∈ N, ((xn, 1), (0, 1)) ∈ ρm if and only if
((xn,−1), (0,−1)) ∈ ρm. By the definition of T , for each m ∈ N there exists qm ∈ N such that
((xn, 1), (0, 1)) ∈ ρm for every n ≥ qm. It follows that for each m ∈ N, ((xn,−1), (0,−1)) ∈ ρm for
every n ≥ qm, and so the point (0,−1) is not isolated in (S,T ). The obtained contradiction implies
that (S,T ) cannot be topologically embedded into NN. �

Proposition 4.7. There exists a countable linearly ordered locally compact Polish topological semi-
lattice X which cannot be topologically embedded into NN.

Proof. Let X be the semilattice (
{

1
n+1 : n ∈ N

}

∪ {0},min) endowed with the topology T which

is defined as follows: each non-zero element of X is isolated and an open neighborhood basis at 0

consists of the sets Um =
{

1
2n+1 : n ≥ m

}

∪ {0}, m ∈ N. One can easily check that X is a locally

compact regular scattered second-countable linearly ordered topological semilattice. By Lemma 4.5,
the space (X,T ) is Polish. To derive a contradiction, assume that X is topologically isomorphic
to a subsemigroup of NN. Taking into account the commutativity of X, Proposition 3.1 yields the
existence of a family {ρn : n ∈ N} of congruences on X such that the collection {[x]ρn : x ∈ X,n ∈ N}

is a basis of the topology T . Then there exists n ∈ N such that [0]ρn ⊆ U1 =
{

1
2n+1 : n ≥ 1

}

∪ {0}.

Observe that if there exists m ∈ N such that 1
2m+1 ∈ [0]ρn , then

1
2m+2 ∈ [0]ρn \U1, which contradicts

our assumption. Otherwise, [0]ρn = {0}, and so 0 is an isolated point in (X,T ), which contradicts
the definition of T . The obtained contradictions imply that X is not topologically isomorphic to a
subsemigroup of NN. �

Proposition 4.8. Let S be a right simple semigroup. Then there exists no topology T on S0 such
that 0 is not isolated and (S0,T ) embeds topologically into NN.

Proof. Let S be a right simple semigroup. Fix a right congruence ρ on S0 such that [0]ρ is not
singleton. Then there exists a ∈ X such that (0, a) ∈ ρ. By the right simplicity of S, aS = S. It
follows that for every b ∈ S there exists c ∈ S such that b = ac. Then [b]ρ = [ac]ρ = [0c]ρ = [0]ρ.
Hence for each right congruence ρ on S0 the equivalence class [0]ρ is either singleton or coincides with
S0. By Proposition 3.1, if 0 is not isolated in (S0,T ), then (S0,T ) doesn’t embed topologically into
NN. �

A semigroup S is called congruence-free if S admits only trivial (diagonal and universal) two-sided
congruences.

Proposition 4.9. There exists a countable congruence-free Hausdorff locally compact Polish topo-
logical inverse semigroup S with a compact semilattice of idempotents which cannot be topologically
embedded into NN.

Proof. Let S be the subsemigroup of IN which consists of all partial bijections of cardinality ≤ 1, and
T be the topology on S which satisfies the following conditions:



18 S. BARDYLA, L. ELLIOTT, J. D. MITCHELL AND Y. PÉRESSE

(1) each nonempty partial bijection is isolated in (S,T );
(2) the sets Uk = {∅} ∪ {{(n, n)} : n ≥ k}, k ∈ N form an open neighborhood basis at ∅.

Clearly the semigroup S is isomorphic to the countable Brandt semigroup over the trivial group.
By [37, Theorem 2], S is congruence free. One can check that (S,T ) is a regular locally compact
second-countable topological inverse semigroup, and the semilattice E(S) = {(n, n) : n ∈ ω} ∪ {∅} is
compact. Lemma 4.5 implies that the space (S,T ) is Polish.

Assume that ({(n, n)}, ∅) ∈ ρ for some right congruence ρ on S. Then for any m ∈ N we have that

({(n,m)}, ∅) = ({(n, n)} ◦ {(n,m)}, ∅ ◦ {(n,m)}) ∈ ρ.

Consequently, {{(n,m)} : m ∈ N} ⊆ [0]ρ. Hence for each right congruence ρ on S the inclusion
[∅]ρ ⊆ {{(n, n)} : n ∈ N} ∪ {∅} implies that [∅]ρ = {∅}. Proposition 3.1 yields that the topological

inverse semigroup (S,T ) cannot be topologically embedded into NN. �
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