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Alien species are widely linked to biodiversity change, but the extent to which
they are associated with the reshaping of ecological communities is not well
understood. One possible mechanism is that assemblages where alien species
are found exhibit elevated temporal turnover. To test this, we identified
assemblages of vascular plants in the BioTIME database for those assem-
blages in which alien species are either present or absent and used the
Jaccard measure to compute compositional dissimilarity between consecutive
censuses. We found that, although alien species are typically rare in invaded
assemblages, their presence is associated with an increase in the average rate
of compositional change. These differences in compositional change between
invaded and uninvaded assemblages are not linked to differences in species
richness but rather to species replacement (turnover). Rapid compositional
restructuring of assemblages is a major contributor to biodiversity change,
and as such, our results suggest a role for alien species in bringing this about.
1. Background
Rapid compositional reorganization (temporal beta diversity) is a major contribu-
tor to the unprecedented rates of biodiversity change that characterize the
Anthropocene (e.g. [1–5]). Alien species, considered one of the main five drivers
of biodiversity change [6], are thought to be an important player in the process
of biodiversity change via their effects on compositional reorganization [7–9].
There is support for the notion that alien species contribute to accelerating compo-
sitional change (e.g. [10,11]). However, the extent to which the presence of alien
species is associated with short-term compositional change remains unclear.

Alien species have the potential to mediate biodiversity change through a
number of different mechanisms, including the breakdown of biogeographical bar-
riers [12], impact on native species richness and abundance as well as alteration of
habitat structure, [7,8,13–17]. Alien species, especially when they become invasive,
can impact native species in several complex ways, such as by shifting native
species richness and abundance [7,8,18,19], reducing their fitness and behavioural
activity [20] and changing plant-flower visitor networks [21]. Alien species have
been identified as the second most important threat leading to extinction (e.g.
[22–25]). Invasions can also change ecosystem functioning and thus jeopardize
human livelihoods [26]. These influences can be subtle, can occur at different spatial
scales [27,28] and may arise through interaction with different drivers. Ecological
assemblages are not static entities. Indeed, as MacArthur and Wilson observed
[29], the composition of all assemblages will vary through time as a consequence
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Figure 1. Vascular plant assemblages in the BioTIME database analysed in this study. Assemblages with alien species are denoted with a triangle symbol and those
without alien species with a circle.
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of the balance between immigration and local extinction. A first
step, therefore, is documenting the characteristics of temporal
compositional change in assemblages with and without aliens.

Recent research suggests that temporal beta diversity is
much stronger for aliens than native arthropod species [30].
A recent global meta-analysis has further revealed that alien
species drive biotic homogenization, but that this is dependent
on the realm, being stronger in marine and freshwater systems
than in terrestrial ones [31]. Thus, although the importance of
invasions in contributing to compositional reorganization has
been recognized [9,11,16,32–34], it is challenging to quantify
the extent to which it is elevated relative to background rates.

Here we address this challenge by examining the vascular
plant assemblages available in BioTIME [35], which is the largest
public biodiversity time series database in theworld. BioTIME is
not specifically designed for alien species, but because it contains
information on all species recorded in each site, it is possible to
match the species with relevant databases on alien species to
identify which sites contain alien species. We used the Global
Naturalized Alien Flora database (GloNAF) [36], the most up
to date global database on the distribution of naturalized alien
plants in the world, to identify alien plant species in each
region (i.e. country or state), and divided local assemblages
into those in which alien species have been recorded (at any
point during the time series) (with aliens) and those where
alien species have never been detected (no aliens). Due to the
effects of alien species on compositional reorganization, our
expectation is that assemblages that contain aliens will exhibit
higher levels of temporal beta diversity than uninvaded ones
but this increase will not necessarily be reflected in higher
levels of temporal alpha diversity. Analyses of time series data
may provide more direct estimates of biodiversity change, in
terms of temporal alpha diversity (number of species and rank
abundance curve) as well as temporal beta diversity (compo-
sitional change or dissimilarity indices). For instance, changes
in rank are related to switching of species abundances within
the assemblages [37]—which is particularly important in the con-
text of biological invasions, inwhich alien species themselves can
increase their abundances over time. Specifically, components of
temporal beta diversity allow us to pinpoint whether invasions
cause a decrease in richness, changes in composition or both.
Given the rapidity with which compositional reorganiz-
ation can occur [38], we quantified compositional change
between successive census dates. We further partitioned this
compositional reorganization into change resulting from a
shift in richness (nestedness) and change due to species
replacement (turnover) [39,40]. Since the turnover component
predominates in most partitions of temporal compositional
change [38], we expect it to account for the largest fraction of
dissimilarity in these assemblages. To place our temporal
beta diversity analysis in context, we additionally examine
temporal alpha diversity and rank shifts. Our focus on plants
recognizes their importance in contributing to the diversity
and function of terrestrial ecosystems (e.g. [41–43]).
2. Methods
Here we investigated the vascular plants time series that are
available in the BioTIME database [35,44]. BioTIME collates
assemblage-level abundance data collected in a consistent way
through time.

We selected individual studies that have been sampled in at
least 3 (not necessarily consecutive) years and focused on the
studies with numerical abundance data (thus studies that have
only biomass data availablewere not included). In total, these rep-
resent 184 875 records of vascular plants encompassing 3224
species, in 52 individual studies (referred to as assemblages)
sampled in 11 countries with a temporal span from 3 to 41 years;
these comprise data collected from 1910 up to 2016 (figure 1).

First, to make it possible to compare species names mentioned
in BioTIME with species names in GloNAF, all original species
names in our dataset were standardized using The Plant List
[45] alongside the taxonstand package from R [46,47]. Second, to
identify which species are alien in a specified region (state or
country where the sampling occurred), we used GloNAF [36].
GloNAF is the largest and most up-to-date database of the
global distribution of naturalized alien species.

For each assemblage, we noted the sampling effort per year
(e.g. number of sampled plots). To ensure that computed diver-
sity metrics were comparable over time, for the assemblages in
which sampling effort differed among years, we employed
sample-based rarefaction [3,48]. To do this, we randomly selected
the same number of samples in each year in the time series, with
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Figure 2. (a) Jaccard dissimilarity between time steps in assemblages with
alien species (triangles) and without aliens (circles) for both all evaluated
periods and for a subset of assemblages sampled between 2000 and
2016. Total Jaccard dissimilarity is partitioned into (b) turnover and (c) nest-
edness. Both total Jaccard and turnover are higher in areas with than without
aliens for the entire period (see electronic supplementary material, table S4
for full summaries of the models).
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this number matching the minimum number of samples found in
any year. Thus, the data extracted from BioTIME were first
curated considering species names and taxonomic harmoniza-
tion, and sampling effort, and the origin of each species in
the sampled region was then confirmed (native versus alien).
Relevant environmental variables for each assemblage are
summarized in the electronic supplementary material, table S1.

To quantify compositional change (beta diversity), we calcu-
lated Jaccard dissimilarity and then partitioned it into turnover
and nestedness using the R betapart package [39,49]. We focused
on the compositional change between each sequential time step
(i.e. we computed dissimilarity between pairs of consecutive
years). Next, we computed the median value of these metrics
(to produce one summary value of each metric per assemblage).
In this analysis, turnover quantifies species replacement, whereas
nestedness captures changes in dissimilarity due to species rich-
ness (i.e. where the year with the lowest richness represents a
subset of the richest year). Jaccard dissimilarity uses information
on the presence and absence of species.

In each case, we compared metrics for sites with aliens versus
sites without aliens. To account for geographical distance
between assemblages in these tests, we ran GLM models
adding latitude and longitude as random effects using the glm
function from R [50].

To provide additional insights into any relationship between
compositional changemetrics and geographical distance, we exam-
ined distance decay plots. We also asked if we could reject the null
hypothesis of no spatial autocorrelation in the compositional change
responses of invaded and uninvaded assemblages using the
‘Moran.I’ function from the ape package in R [51].

Exploratory analyses revealed no significant trends in annual
rates of the metrics we considered (observed species richness,
differences in species richness, differences in species rank, total
Jaccard, turnover and nestedness). This supported our approach
of calculating and reporting the median value of these metrics
(see electronic supplementary material, figures S3–S14 in the
electronic supplementary material and electronic supplementary
material, table S2 for more details). To understand if there were
differences in species richness between sites with and without
aliens, we computed the median number of species per assem-
blage across all time steps in each assemblage (thus reporting
one value per assemblage). We also calculated the species rich-
ness difference between pairs of consecutive time steps within
each assemblage, both for sites with, and sites without aliens.
To do this, we used the RAC_difference function in the codyn
package from R [52,53]. This RAC_difference metric computes
the total number of species at time A minus the total number
of species at time B divided by the total number of species
shared between both sites. As such, species richness difference
is bounded between −1 and 1 with 0 representing no change.
Finally, we computed differences in species rank reordering
using the RAC_difference function in codyn. As before, we
report the median value of the results for the pairs of consecutive
timesteps only. Finally, to test whether change between consecu-
tive time steps accelerated over time, we performed Spearman
tests (using the R ggpubr package [54]). Here we only considered
assemblages with at least four time points.
3. Results
Our analysis found that for both Jaccard dissimilarity
and turnover, there was a significantly positive effect of an
assemblage having aliens (JD p= 0.005; figure 2a; turnover p =
0.005; figure 2b). In neither case were the latitude and longitude
effects significant. With nestedness, the effect of alien versus
non-alien was also positive but non-significant (p= 0.48;
figure 2c). However, in this case, there was a negative effect of
longitude (p = 0.015; see electronic supplementary material,
table S4 for full summaries).

Distance decay plots uncovered no significant relationship
between site pairwise comparisons and geographical distance
for all three metrics (electronic supplementary material,
figure S1). Moran’s I detected no spatial autocorrelation of
Jaccard, turnover and nestedness in invaded and uninvaded
assemblages (Moran’s I output in electronic supplementary
material, table S3). We did, however, find evidence of spatial
autocorrelation in the full set of studies (invaded + uninvaded)
for Jaccard and turnover (electronic supplementary material,
table S2). In other words, when considering all assemblages
together Jaccard and turnover values were more different
in sites that were further apart. Despite this, there was no
overall geographical bias between invaded and uninvaded
assemblages (electronic supplementary material, figure S2).

Most assemblages did not show a trend in consecutive year
change (electronic supplementary material, table S2 and
figures S3–S14). We detected, however, that some assemblages
show faster rates of year-to-year compositional change (e.g.
assemblages 356 and 465 in the electronic supplementary
material, figure S10). However, there was broad consistency
in the assemblage sizes, expressed as the numbers of species
(figure 3). In other words, we found no significant differences
in median species richness between invaded and uninvaded
assemblages (figure 3a; p = 0.63; see electronic supplementary
material, table S5 for full summaries of the models). Similarly,
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Figure 3. (a) Number of species sampled in each assemblage (median value
among all sampled time steps in each assemblage, thus only a single value for
each assemblage), in both areas with aliens and areas without aliens (note the
y-axis is in log scale). In the entire period, median species richness was 13.5 in
sites without aliens and 33 in sites with aliens; in the period between 2000 and
2016, median species richness was 55 in sites without aliens and 35.5 in site
with aliens. (b) Differences in species richness and (c) differences in species
rank (median value considering each consecutive time step, thus only one
value per assemblage), both calculated using the RAC_difference function of
the codyn package from R. In (b,c), only pairs of consecutive years are con-
sidered. There were differences in species rank in invaded compared to
uninvaded assemblages (in both periods) (see electronic supplementary
material, table S5 for full summaries of the models).
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the difference in species richness between invaded and unin-
vaded assemblages was indistinguishable for the entire
period (figure 3b; p = 0.22; electronic supplementary material,
table S5). At the same time, invaded sites had higher rates of
change in species rank—shuffling of species abundances
(figure 3c; electronic supplementary material, table S5), for
both the entire time ( p = 0.002; electronic supplementary
material, table S5), and for the 2000–2016 period ( p = 0.00511;
electronic supplementary material, table S5).
4. Discussion
Our results show that vascular plant assemblages that
contain alien species are experiencing elevated rates of com-
positional rearrangement, most of which is explained by
species replacement (i.e. turnover), compared to sites without
aliens (figure 2; electronic supplementary material, table S4).
Assemblages where aliens are present also exhibit higher
levels of rank shift (figure 3). Rank shift is known to be an
informative metric of biodiversity change [37]. Remarkably,
these changes occur even though alien species are typically
rare in invaded assemblages (electronic supplementary
material, figure S15). Although there are marked differences
in temporal beta diversity in assemblages with and without
alien species, these assemblages are comparable in terms of
alpha diversity (figure 3). Both types of assemblage in our
analysis have equivalent rates of temporal change in species
richness (figure 2b). Put another way, we find no evidence
of changes in nestedness between areas with and without
aliens, but higher rates of beta diversity change in areas
with aliens compared to areas without aliens. As such,
aliens are associated with greater levels of compositional
reorganization, as well as exhibiting elevated temporal beta
diversity at the species level thus driving local extinction as
well as changes in relative abundance [30]. However, we
stress that this is a correlational study, and the structure of
the data does not allow us to rule out the alternative hypoth-
esis that communities that are invaded or not are not random
sub-samples of all communities.

Our study contributes to advancing our knowledge on
the impacts of aliens by highlighting the potential role of
alien species in leading to accelerated compositional change.
Targeted studies, including experimental plots, will help
uncover the mechanisms involved. Indeed, previous work
has shown that invasive pines (Pinus elliottii) in the Cerrado
biodiversity hotspot can contribute to biotic homogenization
[11], with the impacts manifested through shifts in the species
abundance distribution occurring at different spatial scales
[28]. In most of the assemblages evaluated here, alien species
are rare (electronic supplementary material, figure S15),
which likely corresponds to earlier stages of invasion. Despite
this, we were able to detect higher rates of compositional
change in areas where these species are present. We could
expect that as invasions proceed and aliens become established
and increase their abundances in the assemblages, more pro-
found changes in species composition would emerge. For
example, the Cerrado biodiversity hotspot has been invaded
by Urochloa decumbens andMelinis minutiflora, two key aggres-
sive invasive grasses [11,55,56]. These species are the most
dominant ones in parts of the Cerrado (encompassing 30% or
more of the total assemblage abundance) and therefore also
potentially more capable of impacting the native vegetation.

Elevated rates of turnover are being seen in natural assem-
blages across the world [1,3]. Previous studies, including those
using BioTIME data, have found that although there is no sys-
tematic net change in alpha diversity, there is a marked signal
of compositional change over time [1,3]. One potential driver
contributing to this pattern of biodiversity change is the pres-
ence of introduced (and invasive) species [1,3,33,34]. By
separating sites with and without aliens, we have highlighted
a pervasive effect linked with invasion: namely faster turnover
rates in invaded sites. From a conservation perspective, this
means that aliens may drive local extinctions. From an ecologi-
cal perspective, there might be some environmental limits to
alpha diversity, e.g. related to resource partitioning, which
means that incoming alien species either lose out, or, if they
establish, drive others to extinction.

Turnover is a natural component of community structure.
Natural assemblages are not fixed entities but rather dynamic
[57] systems. A key question in ecology and conservation
science that remains to be answered is what an optimal (and
desirable) level of turnover in natural assemblages would be.
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A recent study evaluated the trajectories of greater than 1800
plant species across various habitat types in Europe and
showed that communities are increasingly comprised larger
range species to the detriment of smaller range species [58].
The authors of the study [58] argue that the characteristics of
the winner species are in line with characteristics of aliens
(large-range and nutrient-demanding species). These trends
could contribute to a reduction in assemblage distinctiveness.

Like other recent meta-analyses using BioTIME [1,3,59],
our study has a spatial bias (figure 1). For instance, only 16
out of the 52 sampled assemblages are located in tropical
(or subtropical) areas. Similarly, another data limitation,
which is not exclusive to BioTIME, is that one of the most vul-
nerable areas to climate change—areas with high endemism
(e.g. oceanic islands and mountain ecosystems), as well as
ecosystems expected to expand due to climate change (e.g.
drylands), are underrepresented in databases. There is also
variation in study duration, which we have attempted to con-
trol by focusing on biodiversity change in a subset of the
most recent years (2000–2016). Furthermore, we must bear
in mind that the studies available in BioTIME were not
designed to specifically test the effect or presence of alien
species, and as such, there is no paired design of invaded
versus uninvaded sites for the same assemblage available.
As we could not control for the presence of other potential
drivers leading to biodiversity change, we cannot rule out
the hypothesis that invaded sites might have pre-existing
conditions which allow for the presence of aliens.

Future work could explore other aspects of biodiversity
change specifically testing the impacts of alien species, such
as shifts in the phylogenetic and functional diversity of
invaded assemblages. For instance, alien species have been
found to reduce taxonomic and phylogenetic beta diversity,
but not functional beta diversity [31].
Nonetheless, despite these caveats, we could detect a tangi-
ble signal of alien species on biodiversity change linked to alien
species in these assemblages even though these species are
mostly rare. This result emphasizes the importance of prevent-
ing further invasions and managing existing invasions. Our
study also underlines the necessity of evaluating compositional
change in the context of invasions and reinforces the finding
that metrics of species richness (alpha diversity) alone provide
only a very partial indication of biodiversity change [60].
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