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Abstract
Let p be a configuration of n points in R

d for some n and some d ≥ 2. Each pair of
points defines an edge, which has a Euclidean length in the configuration. A path is an
ordered sequence of the points, and a loop is a path that begins and ends at the same
point. A path or loop, as a sequence of edges, also has a Euclidean length, which is
simply the sum of its Euclidean edge lengths. We are interested in reconstructing p
given a set of edge, path and loop lengths. In particular, we consider the unlabeled
setting where the lengths are given simply as a set of real numbers, and are not labeled
with the combinatorial data describing which paths or loops gave rise to these lengths.
In this paper, we study the question of when p will be uniquely determined (up to
an unknowable Euclidean transform) from some given set of path or loop lengths
through an exhaustive trilateration process. Such a process has already been used for
the simpler problem of reconstruction using unlabeled edge lengths. This paper also
provides a complete proof that this process must work in that edge-setting when given
a sufficiently rich set of edge measurements and assuming that p is generic.

Keywords Distance geometry · Rigidity theory · Global rigidity

1 Introduction

We are motivated by the following signal processing scenario. Suppose there is a
“configuration” p = (p1, . . . ,pn) of n points in, say, R2 or R

3. Let a “path” be a finite
sequence of these points, and a “loop” be a path that begins and ends at the same point.
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Fig. 1 An emitter-receiver at point p1 emits an omnidirectional pulse that bounces among points pi . The
same emitter-receiver records the arrival times of pulse fronts that eventually return. These arrival times
measure the Euclidean lengths of loops that begin and end at p1

(We will use these terms to refer to the formal graph-theoretic notions of a “walk” and
a “closed walk”.) Each such path or loop in p has a Euclidean length.

Let p1 be a distinguished point. In our scenario, it may represent the location of an
omnidirectional emitter and receiver of sound or radiation. Let the other points in p
represent the positions of small objects that behave as omnidirectional scatterers.

An omnidirectional pulse is emitted from p1 and travels outward at, say, unit speed.
Whenever the pulse front encounters an object pi , an additional omnidirectional pulse
is created there through scattering. Pulses continue to bounce around in this manner,
and the receiver at p1 records the arrival times of the pulse fronts that return. We allow
for the possibility that some pulse fronts might vanish or not be measurable back at
p1.

By recording the times of flight between emission and reception, we effectively
measure the lengths of loops traveled. In the case of light, these are travel times of
photons that leave p1 and return after one or more bounces. In the case of sound, these
are delays of direct or indirect echoes.

Each recorded length measurement is a single real number v. Importantly, we do
not obtain any labeling information about which points were visited or how many
bounces occurred during the loop. We also do not obtain any information about the
direction from which energy arrives.

We wish to understand if we can recover the point configuration (up to Euclidean
congruence) from a sufficiently rich sequence of unlabeled loop measurements. Once
the loop measurements are labeled, the reconstruction problem is closely related to
the well-studied graph realization (or “distance geometry”) problem [21]. Various
techniques work well in practice for sufficiently rich inputs. The primary difficulty in
our settings arises from the lack of labeling.

Having no combinatorial information appears, at first sight, to be a very daunting
problem. Our first insight is to apply the notion of trilateration, which has been pro-
posed as a method to recover a molecular shape from unlabeled inter-atomic distances
[12]. As a side contribution of this paper, we provide a complete proof that “unlabeled
trilateration” must work given a sufficiently rich set of such distances as well as a
genericity assumption on p.

In our scenario, trilateration lets us decompose our labeling problem into a sequence
of smaller ones, but in applying this technique to our problemwe find a crucial distinc-
tion from the molecular one. In molecular applications, one relies on the assumption
that eachmeasurement arises due to some atomic pair in the configuration (represented
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as an edge between two points). The story changes if we additionally allow for the
possibility of path-length measurements to be mixed in with edge-length measure-
ments, because path-length measurements could perhaps be incorrectly interpreted
as edge-lengths and thus confuse such a method. Our second insight is that we can
characterize the effect of such additional path-length data by studying a novel alge-
braic variety that we call the “unsquared measurement variety”. Briefly, path-data that
we could confuse for edge-data must arise from a linear automorphism of this variety.
Since we have classified such linear automorphisms [14], we can understand the effect
that extra path-length data has on our ability to recover a configuration.

Using these insights, we will prove in this paper that if p is a “generic” point
configuration in R

d for d ≥ 2, and we measure the lengths of a sufficiently rich set
of loops, namely one that “allows for trilateration” (formally defined later), then the
configuration p is uniquely determined from these measurements up to congruence.
Moreover, this leads to an algorithm, under a real computation model [4], to calculate
p from such data. The assumption of genericity (defined later) roughly means that
while there are some special p where these conclusions do not hold, these special
cases are very rare. In deriving our results, we will not concern ourselves with noise
or numerical issues. We plan to address some of these issues in future work.

2 Idea Overview

2.1 EdgeMeasurements

To put this work in the context of previous mathematical results, let us begin with the
simpler setting, where we are given an unlabeled set of edge-lengths.

2.1.1 First Case: Complete Graphs Kn

Boutin and Kemper [7] (Theorem 5.1 below) have shown that if p is a generic n-
point configuration in R

d with n ≥ d + 2, and we are given the complete set of
all N := (n

2

)
edge lengths as an unlabeled set, then p is uniquely determined up to

Euclidean congruence and point relabeling from this data. Since, in this case, we have
all possible N edge measurements, we can associate these measurements with the
edges of the complete graph Kn .

The main idea behind the Boutin–Kemper result is to study the linear automor-
phisms of the squared measurement variety Md,n ⊆ C

N , defined below, of n points
in d dimensions. The variety Md,n represents all of the possible N -sets of squared
edge-length measurements over all possible configurations of n points in d dimen-
sions. (For technical reasons, such varieties are most easily studied in the complex
setting.) Boutin and Kemper show (Theorem 5.7 below) that if an “edge permutation”
(permutation of the coordinate axes ofC

N ) gives rise to a linear automorphism ofMd,n

(maps the variety to itself), then this edge permutation must arise due to a relabeling
of the n vertices.

Theorem 5.1 then follows from Theorem 5.7 and the following general principle
(see Appendix A for a proof).
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Theorem 2.1 Let V ⊆ C
N be an irreducible algebraic variety and l a generic point

of V . Let A be a bijective linear map on C
N that maps l to a point in V . Let all the

above be defined over Q. Then A(V ) = V , that is, A acts as a linear automorphism
of V .

In the intended application, l ∈ C
N is the correctly ordered set of edge lengths. Since

it represents a consistent set of edge lengths from Kn , it is a point in V := Md,n . The
linear map A represents some potential edge permutation. If the permuted squared
lengths still fit together consistently as an n-point configuration, then A(l) is also in
Md,n and from Theorem 2.1 A must act as a linear automorphism of Md,n . Then
from Theorem 5.7, we can conclude that this permutation can only arise from a vertex
relabeling. Any other type of permutation must place A(l), with l generic, outside of
Md,n .

We can turn Boutin–Kemper’s theorem into an algorithm for reconstructing a
generic p from its unordered edge lengthmeasurements. To check whether an ordering
l = (li j ) of the edge measurements is in the complex variety, Md,n , we compute the
rank of the (n − 1) × (n − 1) Gram matrix:

⎛

⎜⎜⎜⎜
⎝

2l21n · · · · · · l21n + l2(n−1)n − l21(n−1)
...

. . .
...

...
. . .

...

l21n + l2(n−1)n − l21(n−1) · · · · · · 2l2(n−1)n

⎞

⎟⎟⎟⎟
⎠

If this rank is at most d, then l ∈ Md,n . Due to the genericity assumption, if l is not
correctly ordered, then l will not be in Md,n and the matrix will have a larger rank. As
such, no explicit positive semidefiniteness test is needed for this step; see Remark 5.9.
Algorithmically, we can simply try different orderings for l until we find one that is in
Md,n . Such an ordering will exist due to the assumption that this data arose from an
actual configuration p. From the assumed genericity, this ordering will be unique (up
to vertex relabeling). So this ordering must correspond to the ordered complete graph
that was used to measure p. Next, since p was real, the Gram matrix must be positive
semidefinite (PSD). Thus, it can be factored to find the real-valued configuration [24,
28].

This algorithm is only applicable in practice for very small n, but a more efficient
approach is based on applying it iteratively to smaller subsets of the data, as described
below. The overall approach of generating candidate combinatorial types and testing
them with polynomial predicates will appear throughout what follows.

2.1.2 Second Case: Kd+2 Subconfigurations

Next, suppose that p is a generic n-point configuration in R
d with n ≥ d + 2, and we

are given a set of D := (d+2
2

)
edge lengths as an unlabeled sequence. Suppose that

these D lengths are consistent with the measured edge set over one small complete
graph, Kd+2. We can show (Proposition 5.16 below) that these lengths must actually
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have arisen through the edges of a Kd+2. To do this we will invoke the following
general result (see Appendix A for a proof) which generalizes Theorem 2.1:

Theorem 2.2 Let V be an irreducible algebraic variety and l a generic point of V .
Let E be a linear map that maps l to a point in some variety W. Let all the above be
defined over Q. Then E(V ) ⊆ W.

In our application, E will be the linear map that projects Md,n onto a specific set of
coordinates corresponding to D edges, and W will be Md,d+2. A rigidity-theoretic
argument tells us that if the D edges do not form a Kd+2 subgraph of Kn , the image
E(Md,n) will be D-dimensional. On the other hand, Md,d+2 has dimension D − 1.
From Theorem 2.2, we then see that if l is generic and E(l) is in Md,d+2, then E must
correspond to a Kd+2, since this is the only way for E(Md,n) to have dimension less
than D.

As in the previous section, we can test whether D ordered measurements are in
Md,d+2 by a matrix rank computation. (No PSD test is needed here, as described in
Remark 5.17.) If they are in Md,d+2, we can then apply Boutin and Kemper’s result
to this subset, and uniquely reconstruct the associated subconfiguration of these d + 2
points, up to congruence.

2.1.3 Trilateration

This idea can now be used (when d ≥ 2) to reconstruct all n of the points under the
assumption that our unlabeled data includes the measurements of an edge subset that
is rich enough to allow for trilateration [12]. Loosely speaking, this means that the
measured edge set contains one complete graph Kd+2, and then includes more edges
that allow us to inductively glue all of the vertices, one by one, onto the currently
reconstructed point set. Each such inductive step involves one new vertex v with d+1
edge measurements connecting v to the already reconstructed set. This essentially
allows us to find another Kd+2 graph that overlaps sufficiently with the already recon-
structed point set so that they can be glued together in a unique manner. (See Fig. 2,
top.) As argued above, the geometry of each such Kd+2 is completely determined by
its unlabeled edge lengths.

Assuming our full data set allows for trilateration, then there is a unique n-point
configuration consistent with the data, up to congruence. Finding these Kd+2 sub-
graphs requires a somewhat exhaustive search over the data set, giving us a running
time that is exponential in d (which we think of as fixed) but only polynomial in n.

In this context, we prove two statements of slightly different flavors: Theorem 5.21
is a “global rigidity statement”. It says that if v is the measurements of a generic
configuration p of n points by a set of edges G allowing for trilateration, then there is
no other set of edges H (maybe not allowing for trilateration) and n-point configuration
q (maybe not generic) such that measuring q by H produces v.

Of course, in an algorithmic setting, we may have no way to know in advance
either the number of points n in the configuration that was measured or whether the
graph G describing the combinatorics of the measurements allowed for trilateration.
Our second “certificate” statement, Theorem 5.22, says the following: Let p be an
(unknown) generic configuration andG an (unknown) edge set producing the (known)
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measurements v. Let H be a (reconstructed) edge set that allows for trilateration and let
q be a (reconstructed) configuration. Suppose that themeasurements v− resulting from
q throughH agreeswith a subset ofv. Then, in fact,q is congruent to a subconfiguration
of p. We interpret Theorem 5.22 as saying that a trilateration-based algorithm can
correctly reconstruct (part of) p, without any assumptions beyond p being generic.
The algorithm does not even need to figure out how to explain all of v, but rather only
needs to find a trilaterizable subset. For edgemeasurements, our unlabeled trilateration
algorithm coincides with the TRIBOND algorithm described in proposed in [12].
However, the analysis of its correctness is new, and the statements we formulate reveal
some subtleties that have not appeared before.

These two theorems, while complementary, are incomparable, because of the differ-
ent types of assumptions. Since each has a natural application, wewill prove analogues
of both for path and loop ensembles below.

2.2 PathMeasurements Included

Suppose next that wewant to look at data sets that may include path lengths in addition
to edge lengths. In this case can trilateration still work? This is a much harder problem.
In particular, suppose we find a subset of D measurements that are consistent with the
edges of a Kd+2 subgraph. It is conceivable that there is some adversarial, oddball set
of D paths among the n points that, for all configurations, can be misinterpreted as a
consistent collection of D measurements from the edges of a Kd+2. Theorem 5.7 and
Proposition 5.15 are no longer sufficient, as now we are not guaranteed that we are
just looking at a subset of edge measurements.

To answer these questions, we need a better understanding of the behaviour of
more general linear maps applied to edge lengths over Kn . (Recall, a path length is
just some sum of edge lengths.) We do this by introducing a new variety, Ld,n , called
the unsquared measurement variety. We study its group of linear automorphisms (so
we can apply Theorem 2.1) and study which linear maps have images with deficient
dimension images (so we can apply Theorem 2.2). We have relegated this technical
study of these linear automorphism groups to its own dedicated paper [14]. With this
in hand, we then argue in this paper that trilateration can still work!

2.3 Loops Instead of Paths

Finally, we now can move to the case where all of our measurements are loops, and
there are no simple edge measurements at all. In reality, most of the hard work though
has already been done by the reasoning of Sect. 2.2.

To reconstruct a configuration of d + 2 points, we can no longer use the D edges
of a Kd+2. We instead assume that we have a specific canonical collection of D loop
measurements that we can use to reconstruct d+2 points. In fact, wewill use two types
of canonical loop sets: one to reconstruct an isolated Kd+2, and another to reconstruct a
single new point during trilateration.When describing these, it helps to have dedicated
terms for two particular types of loops. So we use ping for a loop that contains only
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Fig. 2 Comparison between path measurements (top row) and loop measurements (bottom row). Top row:
A K4 contained within a path measurement ensemble consists of six edges (blue lines) (left). During
trilateration using path measurement data, three points p1, p2, p3 are known, and a fourth point p4 is
reconstructed from three edge length measurements (right). Bottom row: A K4 contained within a loop
measurement ensemble consists of three pings (double black lines) and three triangles (red lines) (left).
During trilateration using loop measurement data, three points p1, p2, p3 are known, and a fourth point p4
is reconstructed from one ping and two triangle length measurements (right)

two points (and so has length equal to twice an edge length) and triangle for a loop
that contains three points (and so has length equal to the sum of three edge lengths).

To reconstruct an isolated Kd+2, our hope is to find the measurements of lengths
comprising d + 1 pings with one common point, and the

(d+1
2

)
triangles that include

the pinged d + 1 points (see Fig. 2, bottom left). To add an additional point v during
trilateration, our hope is to use all of the edge lengths amongst d + 1 previously
reconstructed points, and to find the measurements of lengths comprising one ping
and d triangles that include v (see Fig. 2, bottom right). Thus, in the loop setting, we
change our definition of allowing for trilateration to mean that our loop data includes
sufficient canonical data of this type to inductively include all of the points. In the
application described in the introduction, all of the pings and triangles will contain
the common point p1, but we will not require that assumption in what follows.

With these altered definitions, we can again apply the reasoning of Sect. 2.2 and
argue that loop-based trilateration will work as well.

3 Definitions andMain Results

We start by establishing our basic terminology.

Definition 3.1 Fix positive integers d (dimension) and n (number of points). Through-
out the paper, we will set N := (n

2

)
, C := (d+1

2

)
, and D := (d+2

2

)
. These constants

appear often because they are, respectively, the number of pairwise distances between
n points, the dimension of the group of congruences in R

d , and the number of edges
in a complete Kd+2 graph.
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Definition 3.2 A configuration, p = (p1, . . . ,pn) is a sequence of n points in R
d . (If

we want to talk about sequences of points in C
d , we will explicitly call this a complex

configuration.)
We think of each integer in {1, . . . , n} as a vertex of an abstract complete graph

Kn . An edge, {i, j}, is an unordered distinct pair of vertices. The complete edge set
of Kn has cardinality N .

A path α := (i1, . . . , iz) is a finite sequence of z ≥ 2 vertices, with no vertex
immediately repeated. (The simplest kind of path, (i, j), is comprised by a single
edge.) A loop is a path with z ≥ 3 vertices where i1 = iz . (The simplest kind of loop
(i, j, i) is called a ping. Another important kind of loop (i, j, k, i) is a triangle.)

Fixing a configuration p in R
d , we define the length of an edge {i, j} to be the

Euclidean distance between the points pi and p j , a real number.
We define the length v of a path or loop α to be the sum of the lengths of its

comprising edges.

Definition 3.3 An edge multiset is simply a multiset of edges. A path or loop naturally
gives rise to the edge multiset which contains each of the edges traversed, with repeti-
tion. We will also denote an edge multiset as α. The length v of an edge multiset α is
the sum of the lengths of its comprising edges. We denote this measurement process
as v = 〈α,p〉.

The motivation for the notation 〈α,p〉 will become evident in Definition 6.6, where
we describe the measurement process in terms of a linear functional.

Definition 3.4 An edge measurement ensembleααα := (α1, . . . , αk) is a finite sequence
of edges. (This is the same as an “ordered graph” on the vertex set {1, . . . , n}.) A path
measurement ensemble ααα := (α1, . . . , αk) is a finite sequence of paths. We define a
loop measurement ensemble similarly. We also define an edge multiset measurement
ensemble in the same way.

A configuration p and a measurement ensemble ααα give rise to a data set v that is
the finite sequence of real numbers made up of the lengths of its paths or loops or
edge multisets. We denote this as v = 〈ααα,p〉. We say that this data set arises from
this measurement ensemble. Notably, a data set v itself does not include any labeling
information about the measurement ensemble it arose from.

We denote by |v| the number of elements in v.

Definition 3.5 We say that a path or loop α is b-bounded, for some positive integer b,
if no edge appears more than b times in α. We say that a path or loop measurement
ensemble ααα is b-bounded if it comprises only b-bounded loops or paths.

Remark 3.6 In a practical setting, we may not know the actual bound b of a b-bounded
ensemble, but instead know that it must exist for other reasons. In particular, suppose
we have some bound on themaximal distance between any pair of points in p. Thenwe
can safely assume that any sufficiently huge length value v arises from a sufficiently
complicated path or loop thatwewill not use in our trilateration, and discard it. Suppose
then that we also have some bound on the minimal distance between any pair of points
in p. Then we know that any non-discarded value must arise from a b-bounded loop
or path with some appropriate b.
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The process of trilateration will involve gluing together smaller pieces of the con-
figuration. Thus we introduce the following notation.

Definition 3.7 We use pI to refer to a subconfiguration of a configuration p indexed
by an index sequence I , that is a (possibly reordered) subsequence of {1, . . . , n}.
In particular, we use pT to refer to a (d + 2)-point subconfiguration in p, indexed
by a sequence T = (i1, . . . , id+2) of {1, . . . , n}. Similarly, we use pR to refer to a
(d + 1)-point subconfiguration of p.

We use vJ to refer to a sub data set, a (possibly reordered) subsequence of the data
set v indexed by an index sequence J , and similarly for a subensemble ααα J .

We will be interested in measurement ensembles that are sufficient to uniquely
determine the configuration in a greedy manner using trilateration. Trilateration starts
by finding enough data to reconstruct the location of d + 2 points. In the path setting,
this is done by looking for the edges of a Kd+2 graph. In the loop setting, this is done
by looking for a different canonical data set over d + 2 points.

Definition 3.8 In the edge or path setting, we say that a Kd+2 subgraph of Kn is con-
tained within a path measurement ensembleααα if the ensemble includes a subensemble
of size D comprising the edges of this subgraph. For the 2-dimensional case, see Fig. 2
(upper left).

In the loop setting, we say that a Kd+2 subgraph of Kn with vertices {i1, . . . , id+2} is
containedwithin a loopmeasurement ensembleααα if the ensemble includes a subensem-
ble of size D comprising: the d + 1 pings (i1, i j , i1) for j spanning {2, . . . , d + 2};
and also the triangles (i1, i j , ik, i1) for j < k spanning {2, . . . , d + 2}. That is, the
ensemble includes all pings and triangles in this Kd+2 with endpoints at vertex i1. For
the 2-dimensional case, see Fig. 2 (bottom left).

Trilateration proceeds by iteratively adding one more vertex onto an already recon-
structed subset of point locations. This is done by looking for a canonical, sufficient
set of data. Such data sets differ between the path and the loop setting.

Definition 3.9 We say that an edge or a path measurement ensemble allows for tri-
lateration1 if, after reordering the vertices: (i) it contains an initial base Kd+2 over
{1, . . . , d + 2}; and (ii) for all subsequent (d + 2) < j ≤ n, it includes as a subse-
quence a trilateration sequence comprising the edges {i1, j}, . . . , {id+1, j} where all
ik < j . For the 2-dimensional case, see Fig. 2 (top right).

We say that a loop measurement ensemble allows for trilateration if, after reorder-
ing the vertices: (i) it contains an initial base Kd+2 over {1, . . . , d + 2}; and (ii) for all
subsequent (d+2) < j ≤ n, it includes as a subsequence a trilateration sequence com-
prising the triangles (i1, i2, j, i1), . . . , (i1, id+1, j, i1), and also the ping (i1, j, i1),
where all ik < j . That is, it includes one ping from j back to one previous i1, and d
triangles back to the previous vertices and including i1. (See Fig. 2 (bottom right) for
the 2-dimensional case.)

1 In this definition, and in the rest of the paper, trilaterations have a single “base” Kd+2. One could consider
a more general notion that allows for multiple bases. With small modifications, our results carry over to
that setting.
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Definition 3.10 Trilateration refers to the greedy reconstruction process whereby one
starts by reconstructing a base configuration and then inductively adds new vertices to
the already reconstructed configuration. We call each such step trilaterizing a vertex.

As the process runs, it maintains a set of already reconstructed points, and, at each
step, reconstructs a single new point. To find the new point, the algorithm searches for
an ordered d + 1-tuple of reconstructed points and d + 1 ordered measurement values
in the data set so that: the d + 1 measurements, along with the C = D − (d + 1)
imputed edge lengths among the reconstructed points satisfy a certain polynomial
predicate. The predicate is based on a Cayley–Menger determinant and proves that
these D values arose from d + 2 points in dimensions d. The C imputed lengths may
or may not be in the data set.

Since d + 1 of the points are already reconstructed, it is then possible to solve
uniquely for the last one.

Note that a path (resp. loop) measurement ensemble that allows for trilateration
may include any other additional paths (resp. loops) beyond those specified in Defi-
nition 3.9. There may also be more than one trilateration sequence in the ensemble.

Unlabeled reconstruction from paths or loops can have difficulties distinguishing
between two points with some length between them, and two points that are half as
far from each other but where the edge between them is measured twice (as in a ping).
Thus we introduce the following scaling notation.

Definition 3.11 For s a real number, the s-scaled configuration s ·p is the configuration
obtained by scaling each of the coordinates of each point in p by s. The subconfigu-
ration s · pI is defined similarly. For s a positive integer and an edge multiset α, the
s-scaled edge multiset s · α is the edge multiset obtained by scaling the multiplicity
of each edge by s. For s a positive integer, the s-scaled edge multiset measurement
ensemble s · ααα is defined by scaling each element of the ensemble.

We can then define, for a positive integer s, the s-scaling of a path or loop mea-
surement ensemble by considering the elements as edge multisets.

The main results in this paper do not hold unconditionally. There can be special
inputs that will fool us or are even inherently ambiguous. We explicitly rule out such
special inputs in what follows.

Definition 3.12 We say that a real point in R
dn is generic if its coordinates do not

satisfy any non-trivial polynomial equation with coefficients in Q. The set of generic
real points have full measure and are standard-topology dense in R

dn .
We say that a configuration p of n points in R

d is generic if it is generic when
thought of as a single point in R

dn .

Various theorems in this paper will be shown to hold, for each n, for all generic
configurations of the configuration space, R

dn . For example, Boutin and Kemper [7,
8] study the question of when an n-point configuration in R

d with n ≥ d + 2 will
be uniquely determined from the complete set of all N := (n

2

)
edge lengths as an

unlabeled set. Their results show that the configuration will be determined unless the
coordinates of the configuration satisfy a polynomial equation with rational coeffi-
cients (see Remark 5.8). This means that such a non-determined configuration must
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be non-generic. Contrapositively, genericity rules out such non-determined configu-
rations.

We note that the set of generic points is not open in R
dn . However, if one imposes

any notion of finiteness on the combinatorial objects in question, such as only consid-
ering measurement ensembles that are b-bounded, for some chosen b, then the same
statements will, in fact, hold over some open and dense subset of R

dn . (This set will
be Zariski open; i.e., the complement of a proper algebraic set.)

Remark 3.13 Without some kind of genericity hypothesis, theorems like the ones pre-
sented in this paper are false: there do exist rare “bad” inputs for which uniqueness will
fail. Whether it is safe to make a genericity assumption depends on the application. In
settings where the inputs are unconstrained, such as the sensing ones described in the
introduction, genericity is a reasonable assumption. Other applications may impose
additional symmetries on the input; for example, all the distances might be drawn from
a small set, or the structures in question may be invariant to some Euclidean group.
For those applications, whether we typically observe the generic behaviour becomes
an experimental question.

3.1 Results

The first central conclusion of this paper will be the following “global rigidity” state-
ment:

Theorem 3.14 Let the dimension be d ≥ 2. Let p be a generic configuration of n ≥
d + 2 points. Let v = 〈ααα,p〉 where ααα is a path (resp. loop) measurement ensemble
that allows for trilateration.

Suppose there is a configuration q, also of n points, along with an edge multiset
measurement ensemble βββ such that v = 〈βββ,q〉.

Then there is a vertex relabeling of q such that, up to congruence, s · q = p, with
s an integer ≥ 1. Moreover, under this vertex relabeling, βββ = s · ααα.

When 〈ααα,p〉 agrees with 〈βββ,q〉 after some permutation, then the theorem can be
applied after appropriately permuting βββ.

Note that if one lets q be non-generic and puts no restrictions on the number of
points, then one can obtain any target v by lettingβββ be a tree of edges and then placing
q appropriately.

For algorithmic purposes we are better served by the following variant of Theo-
rem 3.14.

Definition 3.15 Given a finite sequence of k complex numbers wi , we say that they
are rationally linearly dependent if there is a sequence of rational coefficients ci , not
all zero, such that 0 = ∑

i c
iwi . Otherwise we say that they are rationally linearly

independent. We define the rational rank of wi to be the size of the maximal subset
that is rationally linearly independent.

Definition 3.16 Suppose that q is a configuration and βββ an ensemble that allows for
trilateration. We say that a vertex trilateration step is nice if the D trilaterating length
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p1 p3p2

q2 q3q1

− λ 0 λ

Fig. 3 Counterexample in 1 dimension. The configuration p with the shown (upper) three edge mea-
surements gives rise to the same length values as the configuration q with the shown (lower) three path
measurements. This behavior is stable; as p is perturbed, q can be appropriately perturbed to maintain this
ambiguity, and vice-versa for q perturbations

values (d+1 of these are in the data and C are imputed from previously reconstructed
vertices) used as inputs to the the polynomial predicate have rational rank D. We say
that βββ trilaterates q nicely if it has a trilateration sequence such that each step is nice.

Theorem 3.17 Let the dimension be d ≥ 2. Let p be a generic configuration of n ≥
d + 2 points. Let v = 〈ααα,p〉 where ααα is an edge multiset measurement ensemble.

Suppose there is a configuration q, of n′ points, along with a path or loop measure-
ment ensemble βββ and let v− = 〈βββ,q〉. Assume that βββ allows for trilateration and that
βββ trilaterates q nicely. We also suppose that no two points in q are coincident.

Suppose that v− is contained in v as a subsequence of values. Let ααα− be the
subsequence of edgemultisets inααα corresponding tov−. LetpS be the subconfiguration
of p indexed by the vertices that are endpoints of edges in the support of ααα−.

Then there is a vertex relabeling of pS such that, up to congruence, s ·pS = q, with
s an integer ≥ 1. Moreover, under this vertex relabeling, s · βββ = ααα−.

In this theorem, we make no prior assumptions onααα and the number of vertices that
are endpoints of edges in its support. The existence of q and βββ with the appropriate
properties is itself a certificate of correctness (we still need to assume that p is generic).
Thus if we are able, in any way, to find a way to interpret a portion, which is called v−
in the statement of the theorem, of v using a nice trilaterating ensemble βββ we know
that we have correctly realized a corresponding part pS of p (up to similarity).

Theorem 3.17 provides the basis for a computational attack on this reconstruction
process. In particular, we will establish the following.

Let the dimension be d ≥ 2. Let p be a generic configuration of n points, and let ααα
be a b-bounded path (resp. loop) measurement ensemble that allows for trilateration.
Suppose v = 〈ααα,p〉. Then, given v, there is a trilateration-based algorithm, over a real
computation model, that reconstructs p up to congruence and vertex labeling.

For fixed d, this algorithm (over a real computationmodel)will haveworst case time
complexity that is polynomial in (|v|, b), though with a moderately large exponent.

Theorem 3.14 fails for d = 1. A simple counterexample to the theorem for the
path case is shown in Fig. 3: Let p1 < p2 < p3 be three generic points on the
line. Let α1 measure the edge {1, 2}, α2 measure the edge {2, 3} and α3 measure
the edge {1, 3}. This ensemble clearly allows for trilateration. In this case we will
have v = 〈ααα,p〉 = [p2 − p1,p3 − p2,p3 − p1]. Now let q1 be arbitrary, and set
q2 := q1 + (p2 − p1) − 1/2(p3 − p1) and q3 := q1 + 1/2(p3 − p1). This will
give us q3 − q2 = (p3 − p1) − (p2 − p1) = p3 − p2. Let us also assume that
p3 − p2 < p2 − p1, then this will give us the ordering: q1 < q2 < q3. Now, let
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p1 p3p2

q2 q3q1

p4

q4

Fig. 4 2-Flips ambiguity in 1 dimension

β1 measure the path (2, 1, 3), β2 measure the edge {2, 3}, and β3 measure the path
(1, 3, 1). Then in this case, we will also get v = 〈βββ,q〉. But the two (edge multiset)
measurement ensembles ααα and βββ are not related by a scale.

Likewise, regarding Theorem 3.17, let q be the underlying unknown generic con-
figuration measured with the unknown βi . Looking at these measurement values, we
might incorrectly assume that it comes from the reconstructed triangular, and thus
trilaterizable, measurements described by the αi on the reconstructed configuration
p. Since we cannot uniquely reconstruct a triangle on the line, this will kill off any
attempts at using trilateration for reconstruction in 1 dimension.

In the language we develop later, the failure described in this example essentially
happens because the variety L1,3 is reducible, and thus Theorem 2.1 does not apply.
The relationship between these ααα and βββ is not described by a linear automorphism of
L1,3. Instead, the relationship is described by only a linear automorphism of one of
its (planar) components.

There is a second way in which our theorems fail in 1 dimension, as demonstrated
in Fig. 4: Let p consist of 4 points on a line and ααα consist of 5 of the 6 possible edges.
In this case, there is a vertex, say p4, with only two measured edges, say {2, 4} and
{3, 4}. Ifβββ is obtained fromααα by simply swapping the order of these two edges, we can
maintain v by appropriately re-locating the fourth point. Essentially, in the unlabeled
setting, there are two ways we can glue p4 and its two edges on the triangle of the first
three points. We return to this issue in Remark 5.24.

We close out this section by remarking that our proofs establish slightly stronger
statements than Theorem 3.14 and Theorem 3.17. In particular, the edge multiset
measurement ensembles βββ in Theorem 3.14 and ααα in Theorem 3.17 can, in fact, be
any length functional measurement ensembles (see Definintion 6.6 below), which are
a generalization of edge multiset measurement ensembles.

4 Measurement Varieties

In this section,wewill study the basic properties of two related families of varieties, the
squared and unsquared measurement varieties. The structure of these varieties will be
critical to understanding the problem of reconstruction from unlabeled measurements.
The squared variety is very well studied in the literature, where it is often called
the Cayley–Menger variety, but the unsquared variety is much less so. Since we are
interested in integer sums of unsquared edge lengths, we will need to understand the
structure of this unsquared variety. Althoughwe are ultimately interested inmeasuring
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real lengths inEuclidean space,wewill pass to the complex settingwherewe canutilize
some tools from algebraic geometry.

Definition 4.1 Let us index the coordinates of C
N as i j , with i < j and both between

1 and n. We also fix an ordering on the i j pairs to index the coordinates of C
N using

a single coordinate index with values between 1 and N .2

Let us begin with a complex configuration p of n points in C
d with d ≥ 1. There

are N vertex pairs (edges), along which we can measure the complex squared length
as

mi j (p) :=
d∑

k=1

(pki − pkj )
2

where k indexes over the d dimension-coordinates. Here, wemeasure complex squared
length using the complex squaring operation with no conjugation. We consider the
vector [mi j (p)] over all of the vertex pairs, with i < j , as a single point in C

N , which
we denote as m(p).

Definition 4.2 Let Md,n ⊆ C
N be of m(·) over all n-point complex configurations in

C
d . This is called the Cayley–Menger variety of n points in d dimensions. We also

call this the squared measurement variety of n points in d dimensions.

When n ≤ (d + 1), then Md,n = C
N . (See also Proposition 5.12 below.)

The next definition, though not needed in what follows, is given for context.

Definition 4.3 If we restrict the domain to real configurations, then we call underm(·)
the Euclidean squared measurement set denoted as ME

d,n ⊆ R
N . This set has real

dimension dn − C .

The following theorem, save for the last statement, reviews some basic facts. For
more details, see [6] or [14]. SeeAppendixA for our definitions of terms fromalgebraic
geometry.

Theorem 4.4 Let n ≥ d + 2. The set Md,n is linearly isomorphic to Sn−1
d , the variety

of complex, symmetric (n − 1) × (n − 1) matrices of rank d or less. Thus, Md,n is a
variety, and also defined over Q. It is irreducible. Its dimension is dn−C. Its singular
set Sing(Md,n) consists of squared measurements of configurations with affine spans
of dimension strictly less than d. If p is a generic complex configuration in C

d or a
generic configuration in R

d , then m(p) is generic in Md,n.

The last statement follows from Lemma A.5.

Remark 4.5 We note, but will not need, the following: For d ≥ 1, the smallest complex
variety containing ME

d,n is Md,n .

2 This ordering choice does not matter as long as we are consistent. It is there to let us switch between
coordinates indexed by edges of Kn and indexed using flat vector notation. For n = 4, N = 6 we will use
the order: 12, 13, 23, 14, 24, 34.
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As an example, the smallest interesting instance, M1,3 ⊆ C
3, is defined by the

vanishing of the Cayley–Menger determinant, that is, the determinant of the following
matrix:

(
2m13 (m13 + m23 − m12)

(m13 + m23 − m12) 2m23

)

where we use (m12,m13,m23) to represent the coordinates of C
3 [14].

In the real setting, the square root of the Cayley–Menger determinant of d+2 points
in R

N is (d + 1)!2d+1 times the unsigned (d + 1)-volume of the simplex formed by
the points. In this paper, we are interested in the case where N = d, so this volume
must be zero. Hence, the vanishing of the Cayley–Menger determinant is a predicate
showing that the input measurements arose from a configuration in dimension d.

Next we move on to unsquared lengths.

Definition 4.6 We define the squaring map s(·) as the map from C
N onto C

N that
acts by squaring each of the N coordinates of a point. Let Ld,n be the preimage of
Md,n under the squaring map. (Each point in Md,n has 2N preimages in Ld,n , arising
through coordinate negations.) We call this the unsquared measurement variety of n
points in d dimensions.

Definition 4.7 We can define the Euclidean length map of a real configuration p as

li j (p) :=
√√√√

d∑

k=1

(pki − pkj )
2

where we use the positive square root. We denote by l(p) the vector [li j (p)] over all
vertex pairs.

The next definition, though not needed in what follows, is given for context.

Definition 4.8 We call of p under l the Euclidean unsquared measurement set denoted
as LE

d,n ⊆ R
N . Under the squaring map, we get ME

d,n . We may consider l(p) either as

a point in the real valued LE

d,n or as a point in the complex variety Ld,n .

Indeed, LE

d,n is the set we are truly interested in, but it will be easier to work with
the whole variety Ld,n . For example, Theorem 2.1 requires us to work with varieties,
and not, say, with real “semi-algebraic sets”.

Remark 4.9 The locus of L2,4 where the edge lengths of a triangle, (l12, l13, l23), are
held fixed is studied in beautiful detail in [9], where it is shown to be a Kummer
surface.

The following theorem, save for the last statement, is a result from our companion
paper [14].
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Fig. 5 Amodel of the real locus of L1,3, a subset of R
3. It comprises 4 planes. Coordinate axes are in white

Theorem 4.10 Let n ≥ d+2. Ld,n is a variety, defined over Q. It is pure dimensional,
with dimension dn − C. Now additionally assume that d ≥ 2. Ld,n is irreducible. If
m is generic in Md,n, then each point in s−1(m) is generic in Ld,n. If p is a generic
configuration in R

d , then l(p) is generic in Ld,n.

The last statement of this theorem follows from Lemma A.6 and Theorem 4.4.
In 1 dimension, the variety L1,3 is reducible and thus has no generic points. We

elaborate on this below.

Remark 4.11 Wenote, butwill not need the following: For d ≥ 2, the smallest complex
variety containing LE

d,n is Ld,n .

Returning to our minimal example: The variety L1,3 ⊆ C
3 is defined by the van-

ishing of the determinant of the following matrix

(
2l213 (l213 + l223 − l212)

(l213 + l223 − l212) 2l223

)

where we use (l12, l13, l23) to represent the coordinates of C
3.

Remark 4.12 It turns out that L1,3 is reducible and consists of the four hyperspaces
defined, respectively, by the vanishing of one of the following equations:

l12 + l23 − l13
l12 − l23 + l13

−l12 + l23 + l13
l12 + l23 + l13

This reducibility can make the 1-dimensional case quite different from dimensions 2
and 3, as already discussed in Sect. 3.1. See also Fig. 5.
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Notice that the first octant of the real locus of 3 of these hyperspaces arises as
the Euclidean lengths of a triangle in R

1 (that is, these make up LE

1,3). The specific
hyperplane is determined by the order of the 3 points on the line.

5 The Case of EdgeMeasurement Ensembles

We will first look at the case when our measurement ensemble consists only of edge
measurements. Within this, we will start with the case where the measurement ensem-
ble consists of the complete edge set of cardinality N , which was studied carefully in
[7]. The results from [7] have been cleverly applied in [11] to determine the shape of
a room from acoustic echo data (this connection is made explicit in [10]). Then we
will consider the case of a trilateration ensemble of edges, and prove the correctness
of the TRIBOND algorithm described in [12].

5.1 First Case: Complete Graphs Kn

In this section, we will consider an edge measurement ensemble G := (E1, . . . , Ek),
a finite sequence of distinct edges of Kn . This is the same thing as a graph on n vertices
with some ordering on its edges. For an edge measurement ensemble G, we will write
〈G,p〉2 to denote the sequence of squared edge lengths.

We start with a central result of Boutin and Kemper [7], stated in our terminology.

Theorem 5.1 Let the dimension be d, and n ≥ d +2. Let p be a generic configuration
of n points in d dimensions. Let v = 〈G,p〉2, where G is an edge measurement
ensemble made up of exactly the N edges of Kn in some order.

Suppose there is a configurationq, also of n points, alongwith an edgemeasurement
ensemble H, where H is an edge measurement ensemble made up of exactly the N
edges of Kn, in some other order such that v = 〈H ,q〉2.

Then there is a vertex relabeling of q such that, up to congruence, q = p. Moreover,
under this vertex relabeling, G = H.

By way of comparison, the labeled setting is classical. Recall that configurations p
and q of n points in dimension d are congruent if there is a Euclidean isometry T of
R
d so that qi = T (pi ) for all 1 ≤ i ≤ n.

Lemma 5.2 ([28]) Suppose that p and q are configurations of n points and that for
all N edges i j of Kn, we have |pi − p j | = |qi − q j |. Then p and q are congruent.

Boutin and Kemper prove Theorem 5.1 using a characterization of permutation
automorphisms of Md,n .

Definition 5.3 A linear automorphism of a variety V in C
N is map that bijectively

takes V to itself that arises as the restriction of a non-singular linear transformation
acting on C

N .

In our setting, V will always have a full linear span in C
N . So a linear automorphism

on V will uniquely correspond to a linear map acting on C
N . Thus, we may identify

123



Discrete & Computational Geometry

a linear automorphism with a linear map on C
N . In our setting, the embedding space

C
N is equipped with a fixed set of coordinate axes that are associated with the edges

of Kn . Thus, we may identify a linear transformation with the complex N × N matrix
representing it in the standard basis ofCN .Wewill freely use the symbolA to represent
a linear automorphism, a linear transformation acting onC

N , or its representingmatrix
as needed.

Definition 5.4 An N × N matrix P is a permutation matrix if each row and column
has a single non-zero entry, and this entry is 1.

Definition 5.5 A permutation π of the coordinate axes of C
N is induced by a vertex

relabeling if, under the association between the edges of the complete graph Kn and
the coordinate axes of C

N from Definition 4.1, there is a permutation σ of the vertices
of Kn so that, for all edges i j , π(i j) = σ(i)σ ( j).

Definition 5.6 An N × N permutation matrix P is induced by a vertex relabeling if
it corresponds to a permutation, π , of the edges of Kn , that is induced by a vertex
relabeling.

The key result of [7] is the following:

Theorem 5.7 ([7, Lem. 2.4]) Suppose that A is a permutation matrix that gives rise
to a linear automorphism of Md,n. Then A is induced by a vertex relabeling.

Indeed, Theorem 5.7 together with Theorem 2.1 directly provide a proof for The-
orem 5.1.

Remark 5.8 Suppose for some specific (G,p), there is also an (H ,q) with the same
edge measurements v, where G and H are comprised of different orderings of the
edges of Kn , but H is not related to G via a vertex relabeling. Then v lies in both
Md,n and in PHG(Md,n), where PHG is a permutation matrix that does not give rise
to a linear automorphism of Md,n . So this v, by virtue of it also being in PHG(Md,n),
is not generic in Md,n and thus p is not a generic configuration (Lemma A.5).

Remark 5.9 Theorems 5.7 and 2.1 tell us that, for a generic p, there will be only one
ordering (up to vertex labeling) of the N squared lengths that will give us a point in
Md,n . Testing for membership in Md,n is just a rank test, and does not require any
PSD testing. Since, by assumption, p exists and is real, its correctly ordered squared
lengths must then automatically satisfy any relevant PSD conditions.

5.2 Small Images

We next wish to show that if our point configuration is generic, and we have an ordered
subsequence of D edge lengths that are consistent with Kd+2, then indeed, it must arise
due to exactly this subgraph. Using Theorem 5.1, we can then uniquely reconstruct
these d + 2 points.

To this end, our first step is to establish that if the D edges do not form a Kd+2
graph, then as we vary over p, we should be able to vary each of these D numbers
independently.
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Definition 5.10 Let d be some fixed dimension. Let E := (E1, . . . , Ek) be an edge
measurement ensemble over n vertices. The ordering on the edges of E fixes an
association between each edge in E and a coordinate axis ofC

k . LetmE (p) := 〈E,p〉2
be the map from d-dimensional configuration space to C

k measuring the squared
lengths of the edges of E .

We denote by πE the linear map from C
N to C

k that forgets the edges not in E , and
is consistent with the ordering of E . Specifically, we have an association between each
edge of Kn and an index in {1, . . . , N }, and thus we can think of each Ei as simply its
index in {1, . . . , N }. Then, πE is defined by the conditions: πE (e j ) = 0 when j ∈ Ē
and πE (e j ) = e′

i when Ei = j , where {e1, . . . , eN } denotes the coordinate basis for
C

N and {e′
1, . . . , e

′
k} denotes the coordinate basis for C

k . We call πE an edge map.
The map mE (·) is simply the composition of the complex measurement map m(·)

and πE .
Finally, we denote by Md,E the Zariski closure of of mE (·) over all d-dimensional

configurations.

Definition 5.11 We say an edge set E is infinitesimally independent in d dimensions
if, starting from a generic complex configuration p in C

d , we can differentially vary
each of the |E | squared lengths independently by appropriately differentially varying
our configuration p. Formally, this means that the image of the differential ofmE (·) at
a generic p is |E |-dimensional. This exactly coincides with the notion of infinitesimal
independence from graph rigidity theory [20].

Anedge set that is not infinitesimally independent ind dimensions is called infinites-
imally dependent in d dimensions. Note that in this case the rank of the differential,
dmE , can never rise to |E |.

The following is implicit in the rigidity theory literature.

Proposition 5.12 An edge measurement ensemble E is infinitesimally independent in
d dimensions iff of mE (·) over all complex configurations of n points has dimension
|E |.
Proof sketch The basic principle is that the generic rank of the differential tells us the
dimension of. In particular we consider the map mE (·). First remove the non-smooth
points of, and then remove the preimages of these non-smooth points from the domain
(all non-generic). Sard’s Theorem (e.g., [17, Thm. 14.4]) then tells us that the inverse
image of every generic point in this image consists entirely of configurations p where
the differential has rank equal to the dimension of of mE (·). 	

Remark 5.13 These notions are usually studied in the real setting, but the tools used in
the proof sketch above work the same way in the complex setting. Complexification
is used to study rigidity problems in, e.g., [6, 15, 23, 25].

The following is a standard result from rigidity theory.

Proposition 5.14 Let E be an edge measurement ensemble (with all its edges distinct).
Suppose |E | ≤ (d+2

2

)
and E is infinitesimally dependent in d dimensions. Then |E | =

(d+2
2

)
and E consists of the edges of a Kd+2 subgraph (in some order).
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Proof Sketch Assume, without loss of generality, that E is infinitesimally dependent
and inclusion-wise minimal with this property. If E does not consist of the edges of
a Kd+2 subgraph, then it has a vertex v of degree at most d. Suppose that p is a
configuration in affine general position. A geometric argument then shows that the
coordinate subspaces spanned by the edges incident to v must be in of dmE at p.
Since of dmE at p is not |E |-dimensional, removing the edges incident to v yields a
smaller set of edges E ′ ⊆ E that is still infinitesimally dependent. This contradicts
the assumed minimality of E . 	


Combining Propositions 5.12 and 5.14 we arrive at the following:

Proposition 5.15 Let E be an edge measurement ensemble (with all its edges distinct).
Suppose |E | ≤ (d+2

2

)
and of mE (·) over all complex configurations of n points has

dimension less than |E |. Then |E | = (d+2
2

)
and E consists of the edges of a Kd+2

subgraph (in some order).

5.3 Consistent with Kd+2

We can now complete the argument that when our data looks consistent with a single
Kd+2, then we can be certain that this must be how this data arose. The key idea is that
unless we were measuring a Kd+2, then for a generic p, and using Proposition 5.15,
we should not expect to find a measurement that satisfies any extra algebraic condition
defined using rational coefficients.

Proposition 5.16 Let the dimension be d ≥ 1. Let p be an n-point configuration
in R

d such that m(p) is generic in Md,n. Suppose there is a sequence of D, not-
necessarily distinct, edges E = (E1, . . . , ED), such that wi := 〈Ei ,p〉2 form a
vector w := (w1, . . . , wD) that is in Md,d+2.

Then there must be a subconfiguration pT of p with d + 2 points such that w =
m(pT ).

The condition that m(p) is generic in Md,n allows for the possibility that p itself is
non-generic. Here, we are essentially only requiring that p is congruent to a generic
configuration. Since the proof requires several lemmas, we defer it for now.

Remark 5.17 This proposition only requires that w ∈ Md,d+2 which is a zero-
determinant test; no PSD test is required. The conclusion tells us that these squared
lengths come from a real configuration, and so must automatically satisfy the relevant
PSD conditions.

In the statement, we do not assume, a priori, that the D edges in E are distinct. So
wewill prove first that under our genericity assumption on p, this will be automatically
guaranteed.

Lemma 5.18 Let d ≥ 1. Let I = {I1, . . . , Ir }, for r < D, be a partition of {1, . . . , D}
into r subsets. Let X I ⊆ C

D be the linear span of the vectors v j = ∑
i∈I j ei , for

1 ≤ j ≤ r and elementary vectors ei ; i.e., these are vectors with only r distinct
values.

Then Md,d+2 does not contain the space X I .
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Proof Observe that, for any partition I of the coordinates, the all ones vector is a linear
combination of the vectors v j . Hence any XI contains the all ones vector.

On the other hand, it is well-known that the (d + 2)-simplex with all edge lengths
equal to one has non-zero (d +1)-volume. Hence the all ones vector is not in Md,d+2.

	

Lemma 5.19 Let the dimension be d ≥ 1. Let p be a n-point configuration in R

d such
thatm(p) is generic in Md,n. Suppose there is a sequence of D, not-necessarily distinct,
edges E = (E1, . . . , ED), such thatwi := 〈Ei ,p〉2 form a vectorw := (w1, . . . , wD)

that is in Md,d+2.
Then the D edges must be distinct.

Proof Let E be the D by N matrix with i j-th entry set to 1 if Ei is the j th edge of Kn ,
and 0 otherwise. We identify E with the linear map it induces from C

N to C
D . Then

E(m(p)) gives us the D measurements wi = 〈Ei ,p〉2.
From Theorem 2.2, sincem(p) is generic in Md,n , we see that E(Md,n) ⊆ Md,d+2.
Suppose that the D edges comprising E are not all distinct. Then E ′, the collection

of r < D distinct edges, is infinitesimally independent (Proposition 5.14). From
Proposition 5.12, E(Md,n) must be an r -dimensional constructible subset S of one
of the r -dimensional linear (and irreducible) spaces XI described in Lemma 5.18. Its
Zariski closure, S̄, would then be equal to this XI . Since Md,d+2 contains S and is
Zariski closed, Md,d+2 must contain XI .

But fromLemma5.18, XI is not contained inMd,d+2. This contradiction establishes
the lemma. 	

Proof of Proposition 5.16 From Lemma 5.19 we know that the edges in E are all dis-
tinct. Our measurement sequencew arises from D distinct coordinates ofm(p), giving
us w = πE (m(p)). Since p is generic, m(p) is generic in Md,n . Recall also that, from
Theorem 4.4, Md,n is irreducible.

From Theorem 2.2, we see that πE (Md,n) ⊆ Md,d+2, since πE (m(p)) ∈ Md,d+2.
Since dimension ofπE (Md,n) is less than D, from Proposition 5.15 (which required

us to know that the edges were distinct), we see that E must consist of the edges of a
Kd+2.

Let πK be the edge map where K comprises the edges of this Kd+2, and where K
is ordered such that πK (Md,n) = Md,d+2. Let K be the matrix representing πK , and
let E be the matrix representing πE .

Then we must have E = PK where P is some D × D permutation matrix. We
identify P with the linear map that it induces on C

D . And we have P(Md,d+2) =
P(πK (Md,n)) = πE (Md,n) ⊆ Md,d+2.

Thus, from Theorem 2.1, P must induce a linear automorphism on Md,d+2. Then
from Theorem 5.7, P must be induced from a vertex relabeling. As E = PK for
such a P, there must be an ordered (d + 2)-point subconfiguration pT of p such that
w = m(pT ). 	

Remark 5.20 Because of the way Proposition 5.15 is used in the above proof, Kd+2
cannot simply be replaced by some other generically globally rigid graph to obtain a
similar result.
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5.4 Trilateration

Now we wish to extend this result to the case where our edge measurement ensemble
is not complete, but does allow for trilateration in the sense of Definition 3.9. Due to
the gluing ambiguity we saw in Fig. 4, we will restrict our discussion here to d ≥ 2.
The key idea is to use Proposition 5.16 iteratively, applied to Kd+2 subsets of Kn . This
will lead to the following global rigidity theorem.

Theorem 5.21 Let the dimension be d ≥ 2. Let p be a generic configuration of n ≥
d + 2 points. Let v = 〈G,p〉2 where G is an edge measurement ensemble that allows
for trilateration.

Suppose there is a configurationq, also of n points, alongwith an edgemeasurement
ensemble H, such that v = 〈H ,q〉2.

Then there is a vertex relabeling of q such that, up to congruence, q = p. Moreover,
under this vertex relabeling, G = H.

We note that this result has recently been greatly strengthened to apply to a much
larger class of graphs than just the complete graphs or trilateration graphs [16]. The
proof we give here, for trilateration graphs, is much more direct, as it is based on
greedily constructing the relabeling of q, one point at a time.

The following variant describes a certificate for correct reconstruction.

Theorem 5.22 Let the dimension be d ≥ 2. Let p be a generic configuration of n ≥
d + 2 points. Let v = 〈G,p〉2 where G is an edge measurement ensemble.

Suppose there is a configuration q, of n′ points, along with an edge measurement
ensemble H that allows for trilateration such that v− = 〈H ,q〉2. We also suppose
that no two points in q are coincident.

Suppose that v− is contained in v as a subsequence of values. Let G− be the
subsequence of edges in G corresponding to v−. Let pS be the subconfiguration of p
indexed by the vertices that are endpoints of edges in the support of G−.

Then there is a vertex relabeling of pS such that, up to congruence, q = pS.
Moreover, under this vertex relabeling, G− = H.

The assumption that no two points in q are coincident is required. Otherwise one
could create a q that is identical to p except that one high valence vertex in (G,p) is
split in (H ,q) into two distinct vertices with coincident locations, each with enough
edges to the rest of q so that both new vertices can be trilaterated.

In this theorem, wemake no prior assumptions onG and its number of vertices. Nor
do we assume, a priori, that q is generic. The existence of q and H with the appropriate
properties is itself a certificate of correctness, though we still need to assume that p is
generic. Thus if we are able to interpret some portion of v, corresponding to v− in the
statement of the theorem, using a trilateration H , then we know that we have correctly
realized a corresponding part pS of p.

Finally, suppose we assume that p is a generic configuration of n points and that
G allows for trilateration with v = 〈G,p〉2. Thus we must be able to take the data v,
and find (using brute force) some H and q of n points such that H trilaterates q, and
such that v = 〈H ,q〉2. From Theorem 5.22, we then know that q = p. This gives us
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a formal justification for TRIBOND, the brute force unlabeled trilateration algorithm
of [12].
Theorems 5.21 and 5.22, sketch Informally, Theorems 5.21 and 5.22 say that, gener-
ically, we do not need to know the edge labels for the trilateration reconstruction to
succeed.

The intuitive reasoning is as follows. The trilateration process starts from a known
Kd+2 and then locates each additional point by “gluing” a new Kd+2 (with one new
point) onto a Kd+1 inside the already visited Kv over the v previously reconstructed
vertices. The idea, then, is to find the labels as we locate points by using Proposi-
tion 5.16 iteratively: initially to find a “base” Kd+2 to start the trilateration process,
and then, after measuring all the edges between the visited points, to find subsequent
Kd+2 subconfigurations that, each, add one more point. When d ≥ 2, there is only
one way to do the gluing, because generic (d + 1)-simplices do not have any “self-
congruences”.

Even though the steps above are conceptually very simple, the details require some
care. We now fill in the sketch above.

Lemma 5.23 Suppose that p is a configuration of n points in dimension d so that either
l(p) is generic in Ld,n or m(p) is generic in Md,n. Then no two subconfigurations of
at least three points in p are similar to each other, unless the two subconfigurations
consist of the same points, in the same order.

Only the case of congruence is needed now, but similarities will be needed later in
Sect. 6.5.

Proof Two ordered configurations q and r of k points are related by a similarity if and
only if their vectors of

(k
2

)
(un)squared edges lengths are proportional (in the squared

case, if the scaling in the similarity is λ, the effect on m(q) is to multiply it by λ2).
That is, if and only if both of the

(k
2

) × 2 matrices

(
m(q) m(r)

)
and

(
l(q) l(r)

)

have rank at most one, which is a polynomial condition defined over Q that is non-
trivial when k ≥ 3 (so that

(k
2

)
> 1).

If q and r are similar subconfigurations of p with k ≥ 3 points, then, by the
argument above l(p) and m(p) satisify a non-trivial polynomial condition that does
not hold over all of Ld,n and Md,n respectively (there are configurations where q and
r are not similar). Hence, l(p) and m(p) are non-generic when p contains similar
subconfigurations. 	

Remark 5.24 The statement ofLemma5.23 is not truewith only twopoints because any
pair of two-point configurations are similar. Even worse for our intended application,
any subconfiguration (pi ,p j ) is congruent to the subconfiguration (p j ,pi ). Because
of this, unlabeled trilateration over an edge measurement ensemble will not directly
work for d = 1. (See Fig. 4.) In order to use trilateration over an unlabeled edge
measurement ensemble in 1 dimension, we would need to have an edge ensemble that
not only allows for trilateration in 1 dimension but also has enough edges to allow for
trilateration in 2 dimensions.
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The next lemma describes our main inductive step.

Lemma 5.25 Let d ≥ 2 and let p and q be configurations of n and n′ points
respectively, with m(p) generic in Md,n. We also suppose that no two points in
q are coincident. Let G and H be two edge measurement ensembles such that
〈G,p〉2 = 〈H ,q〉2.

Suppose that we have two “already visited” subconfigurations qV ′ and pV with
qV ′ = pV .

Suppose we can find a set F of d + 1 edges in H connecting some unvisited vertex
qi ′ ∈ qV̄ ′ to some visited subconfiguration qR′ of qV ′ with d + 1 vertices.

Then we can find an unvisited pi ∈ pV̄ such that the two subconfigurations qV ′∪{i ′}
and pV∪{i} are equal.

Proof Let qT ′ be a subconfiguration consisting of, in some order, all the points of qR′
along with qi ′ . Let w := m(qT ′).

The d + 1 points of qR′ give rise to C edge length measurements in w. Because
pV = qV ′ the corresponding d + 1 points pR induce the same measurements. By
assumption, there must be D − C = d + 1 edges E0 ⊆ G, corresponding to the the
d + 1 edges F ⊆ H connecting the points of qR′ to qi ′ , so that 〈E0,p〉2 = 〈F,q〉2.
Adding the C imputed edges from pV to E0 we get a set of D edges E ⊆ G (not
necessarily distinct), so that w = 〈E,p〉2.

Sincem(p) is generic, we can now apply Proposition 5.16 using the existence of E
to conclude that there must be a subconfiguration pT of p with w = m(pT ). Now, we
use Lemma 5.2 to conclude that qT ′ and pT are related by a congruence. (Now that
we have pT , we don’t need E any more.)

Since qR′ is a subconfiguration of qT ′ , qR′ must be congruent to its associated
subconfiguration of pT , which we may call pR0 . Thus from Lemma 5.23, we know
that qR′ is congruent to no other subconfiguration of p. Meanwhile, qR′ is a subcon-
figuration of qV ′ and thus also equal to some subconfiguration pR of pV . Thus qR′ ,
pR0 and pR must all be equal. Since the congruence σ that maps qT ′ to pT fixes the
d + 1 points of qR′ , σ must be the identity and we must have qT ′ = pT .

Let pi be the “new” point in pT \ pR , which also must equal qi ′ . If pi was already
visited in pV , then the same position would have already been visited by some point
in qV ′ . This together with the fact that no points are coincident in q would contradict
the assumption that qi ′ ∈ qV̄ ′ . Thus qV ′∪{i ′} = pV∪{i}. 	


We can now apply the above lemma iteratively.

Lemma 5.26 Let the dimension d ≥ 2. Let p be a configuration of n points such that
m(p) is generic in Md,n. Let G be a measurement ensemble. Let v := 〈G,p〉2.

Suppose that q is a configuration of n′ points with no two points in q being
coincident. And suppose that H is an edge measurement ensemble that allows for
trilateration and such that 〈H ,q〉2 also equals v.

Then, there is a sequence of indices S = (s1, . . . , sn′) so that, up to congruence,
pS = q. Moreover, the vertices appearing in S are exactly those that are endpoints of
edges in the support of G. After renaming each edge {i, j} in H as {si , s j }, we have
H = G.
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Proof For the base case, the trilateration assumed in H guarantees a Kd+2 contained
in H , over a (d + 2)-point subconfiguration qT ′ of q. Define w := m(qT ′). We have
q ∈ Md,d+2.

Using the fact that 〈G,p〉2 = 〈H ,q〉2 we can apply Proposition 5.16 to this w, p
and appropriate sequence of edges E taken from G. From this, we conclude that there
is a d + 2 point subconfiguration pT of p such that w = m(pT ). From Lemma 5.2, up
to congruence, we have qT ′ = pT .

Going forward, assume that this congruence has been factored into p. Then, to
proceed inductively, assume that we have two “visited” subconfigurations such that
qV ′ = pV . Initially V = T and V ′ = T ′. With this setup, we may now follow the
trilateration of q, iteratively applying Lemma 5.25 until we have visited all of q. At
the end of the process, qV ′ = pV with qV ′ a reordering of q. Inverting this ordering,
we have q = pS , where S is an ordering of the visited points in p.

Since p is generic, then no two distinct edges can have the same squared length.
Since q is a subconfiguration of our generic p then no two distinct edges among points
in q can have the same squared length. This means there is a unique way for v to arise
from q and a unique way for v to arise from p. Hence, after vertex relabeling from S,
we have H = G. Since the vertices that are endpoints of edges in the support of H
correspond exactly to the points of q, then the vertices that are endpoints of edges in
the support of G correspond to the points of pS , as in the statement. 	


And we can now finish the proof of one of the main theorems of this section:

Proof of Theorem 5.22 First we remove from v the measurements which do not appear
in v−. We also remove the associated edges from G, to obtain G−. Since p is generic,
then m(p) is generic in Md,n from Theorem 4.4. Then we simply apply Lemma 5.26.

	

With some other added assumptions, we can use an assumption of genericity on

p to automatically obtain genericity for m(q) in Md,n . To see this, we first use the
following definition.

Definition 5.27 Let d be a fixed dimension. Let E be an edge measurement ensemble
with n ≥ d + 1. We say E is infinitesimally rigid in d dimensions, if, starting at some
generic (real or complex) configuration p, there are no differential motions of p in d
dimensions that preserve all of the squared lengths among the edges of E , except for
differential congruences.

When an edge measurement ensemble is infinitesimally rigid, then the lack of
differential motions holds over a Zariski open subset of configurations that includes
all generic configurations.

Letting mE (p) be the map from configuration space to C
|E | measuring the squared

lengths of the edges of E , infinitesimal rigidity means that of the differential ofmE (·)
at p is (dn − C)-dimensional.

The following proposition follows exactly as Proposition 5.12.

Proposition 5.28 If E is infinitesimally rigid, then ofmE (·)acting onall configurations
is (dn − C)-dimensional. Otherwise, the dimension of is smaller.
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Lemma 5.29 In dimension d ≥ 1, let p and q be two configurations with the same
number of points n ≥ d + 1. Suppose that G and H are two edge measurement
ensembles, each with the same number k of edges, and with G infinitesimally rigid in
d dimensions. And suppose that v := 〈G,p〉2 = 〈H ,q〉2.

If p is a generic configuration, then m(q) is generic in Md,n.

Proof Recall the notation introduced inDefinition 5.10. The varietiesMd,G andMd,H ,
both subsets of C

k , are defined over Q. They are irreducible since they arise from
closing images of Md,n , which is irreducible, under polynomial (in fact linear) maps.
BecauseG is infinitesimally rigid,Md,G is of dimension dn−C fromProposition 5.28.
Likewise, Md,H is of dimension at most dn − C .

Our assumptions give us v ∈ Md,G and v ∈ Md,H .
We claim Md,G = Md,H . If not, then Md,G ∩ Md,H is an algebraic variety, defined

over Q, of dimension strictly less than dn − C (due to irreducibility), and thus could
contain no generic points ofMd,G . But we have assumed that v is in both, and thus also
in this intersection set. But since p is generic, then v is generic in Md,G (Lemma A.5).
This contradiction thus establishes our claim.

Since Md,G = Md,H , then v is also a generic point of of Md,H .
Finally, since Md,H is the Zariski closure of the image of Md,n under the linear map

πH (·), and since they have the same dimension, then from Lemma A.6 the preimage
of v under πH (·), which is m(q), must be a generic point in Md,n . 	


And we can now finish the proof of the other main theorem of this section:

Proof of Theorem 5.21 An edge measurement ensemble that allows for trilateration is
always infinitesimally rigid.We apply Lemma 5.29 to conclude thatm(q) is generic in
Md,n . By assumption G allows for trilateration. Thus we can now apply Lemma 5.26,
but with the roles of p and q reversed, as well as the roles of G and H . 	


6 Paths and Loops

Now we are ready to tackle the setting of paths and loops. Our reasoning will parallel
that of Sect. 5, but we will need to upgrade most of the ingredients.

6.1 First Case: Complete Graphs Kn

Our first step is to upgrade Theorem 5.7. Dealing with the possibility of paths will
make us look at Ld,n instead of Md,n . Moreover this will require us to understand
the full group of linear automorphisms, instead of the simpler setting of coordinate
permutations. This is a non-trivial algebraic geometry study, which we have relegated
to a companion paper [14]. Here we summarize those results.

Any coordinate permutation that is induced by a vertex relabeling must give rise
to a linear automorphism of Ld,n . Also due to the squaring construction, the negation
of any coordinate will give rise to a linear automorphism. We call the linear auto-
morphisms arising from vertex relabelings and coordinate negations the signed vertex
relabelings. Any uniform scale on C

N will also give rise to a linear automorphism of
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Ld,n because uniformly scaling a configuration p in R
d by a positive factor produces

another configuration with edge lengths scaled by the same amount. Let us refer to the
linear automorphism set generated by the above as the expected linear automorphisms
of Ld,n .

In our application,we are concerned that themeasurement data of some complicated
set of paths could yield a generic point in Ld,n . If this were to happen, there would
necessarily be a linear automorphism of Ld,n that is not one of the expected ones. The
following theorem rules this out, except when {d, n} = {2, 4}.
Theorem 6.1 ([14]) Let d ≥ 1 and let n ≥ d + 2. Assume that {d, n} = {2, 4}. Then
any linear automorphism A of Ld,n is a scalar multiple of a signed vertex relabeling.

Interestingly, for L2,4, there is, up to scale, a discrete set of unexpected linear auto-
morphisms,whichwe can fully characterize. Luckily for us,when an unexpected linear
automorphism is representable by amatrixwith real elements, thismatrixmust include
some negative coefficients. Such negative numbers cannot occur in any measurement
ensemble based on paths or loops.

A linear automorphism A of Ld,n is real if its matrix has only real entries and
non-negative if its matrix contains only real and non-negative entries.

Theorem 6.2 ([14]) The group of real linear automorphisms of L2,4, up to positive
scale, is of order23040 and is isomorphic to theWeyl group D6. The subset of this group
that are represented by matrices consisting of non-negative elements is a subgroup of
order 24 and acts by relabeling the vertices of K4.

6.2 Small Images

Proposition 5.15 above is a theorem about edge measurement ensembles where over
all configurations is low dimensional. Here we need a similar proposition that applies
to linear maps acting on Ld,n . This will also require some non-trivial analysis of linear
maps acting on Ld,n which we relegate to the companion paper [14].

Let d ≥ 1. Recall that D := (d+2
2

)
. In this section, E will be a D × N matrix of

rank r where r is some number at most D. We will also identify the symbol E with
the linear map from C

N to C
D that it induces. We will restrict this map to its action

on Ld,n . Our goal is to study these restricted linear maps where the dimension of is
strictly less than r . In particular, this will occur when E(Ld,n) = Ld,d+2.

Definition 6.3 We say that E has Kd+2 support if it depends only on measurements
supported over the D edges corresponding to a Kd+2 subgraph of Kn . Specifically, all
the columns of the matrixE are zero, except for at most D of them, and these non-zero
columns index edges contained within a single Kd+2.

The following is proven in [14].

Theorem 6.4 Let d ≥ 1 and n ≥ d+2. Let E be a D×N matrix with rank r . Suppose
that E(Ld,n), a constructible set, is not of dimension r. Then r = D and E has Kd+2
support.
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Remark 6.5 Theorem 6.4 does not hold when Ld,n is replaced by Md,n . The linear
automorphism group of Sn−1

d arises from all the maps of the form

S �→ AtSA

with A an invertible (n − 1) × (n − 1) matrix.
Correspondingly, there are linear automorphisms of Md,n arising from matrices A

that have dense support. Thus, even if some E has Kd+2 support the matrix EAwould
not, and it could still have a small-dimensional image.

If, in our motivating application, we observed sums of squared edge lengths, we
would have no hope to recover p without some combinatorial information.

6.3 Consistent Kd+2

Now we can use these ingredients to upgrade Proposition 5.16. We want to show that:
If we take D values from our data set of path measurements, and they are consistent
with the D edge lengths of a Kd+2 in R

d , then in fact they do arise, up to scale, in this
way. Likewise, in the loop setting, if they “look like” an appropriate canonical set of
D loops, then in fact they do arise, up to scale, in this way.

First we generalize our notion of measurement ensembles from Definition 3.4.

Definition 6.6 A length functional α is a linear mapping from Ld,n to C. We write
its application to l ∈ Ld,n as 〈α, l〉. In coordinates, it has the form

∑
i j α

i j li j , with

αi j ∈ C. When p is a real configuration, and thus l(p) is well defined, then we
also define 〈α,p〉 := 〈α, l(p)〉. Similarly, we can define a functional measurement
ensemble γγγ . Then we define 〈γγγ , l〉 and 〈γγγ ,p〉 to be the sequence that arises from the
application of the measurement ensemble γγγ to l and l(p) respectively.

We can apply to a length functional the adjectives: rational, non-negative, integer
or whole (non-negative integer) if all of its coordinates have these properties. We say
that an integer or whole length functional is b-bounded if all of its coordinates have
magnitudes no greater than b.

An edge multiset naturally gives rise to a unique whole length functional. Analo-
gously, an edge multiset measurement ensemble gives rise to a unique whole length
ensemble matrix.

Theorem 6.7 Let d ≥ 2. Letp be a n-point configuration inR
d such that l(p) is generic

in Ld,n. Suppose there is a sequence of D non-negative rational functionals γi such
that wi = 〈γi ,p〉 form a (necessarily non-negative) vector w := (w1, . . . , wD) that
has rational rank D and is in Ld,d+2.

Then there must be a (d + 2)-point subconfiguration pT of p such that 〈γγγ ,p〉 =
w = s · l(pT ), where s is a positive scale factor.

Proof We can use the D functionals, γi , as the rows of a matrix E. We identify this
matrix with the linear map from C

N to C
D that it induces. This matrix E maps l(p)

to w, which we have assumed to be in Ld,d+2. Since d ≥ 2, then from Theorem 4.10,
Ld,n is irreducible.
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From Theorem 2.2 we see that E(Ld,n) ⊆ Ld,d+2.
From Lemma B.3 and the assumed rational rank of w, the rank of E must be D.

Since of E(Ld,n) is not D-dimensional, then from Theorem 6.4, E is Kd+2 supported.
Let πK be the edge map where K comprises the edges of this Kd+2, and where K

is ordered such that πK (Ld,n) = Ld,d+2. Let K be the matrix representing πK . Then
E can be written in the form AK where A is a D × D non-singular and non-negative
rational matrix.

We have A(Ld,d+2) = A(πK (Ld,n)) = E(Ld,n) ⊆ Ld,d+2. Thus, from Theo-
rem 2.1, A must be the matrix of a real non-negative linear automorphism of Ld,d+2.
From Theorems 6.1 (for d ≥ 3) and 6.2 (for d = 2) A arises from a permutation on
d + 2 vertices and a positive global scale. As E = AK for such an A, there must exist
an (ordered) (d+2)-point subconfiguration pT of p, such that 〈γγγ ,p〉 = w = s · l(pT ).

	

Theorem 6.7′, in Sect. 6.4 below, is the generalization to the case of loop ensembles.

Remark 6.8 If the γi are whole valued, then s must be an integer, greater than or equal
to 1 for any such pT . This is because, in the proof above, the matrices E and A will
be integer valued.

Remark 6.9 The rational rank D hypothesis is essential as the following example
in dimension 2 shows. Let γi be any functional, and measure using the ensemble
(3γi , 4γi , 5γi , 5γi , 4γi , 3γi ). These measurement values (with rational rank 1) cor-
respond to a K4 made by gluing “345 triangles” together, no matter what p is. In
fact, using an arithmetic construction from [1], we can even make infinitely many
non-congruent rational rank 1 measurement sets that have no repeated measurement
values or 3 collinear points.

When we are proving “global rigidity” results in Sect. 6.5, the assumed trilateration
sequence automatically gives rational rank D. On the other hand, a reconstruction
algorithm (see Sect. 7) based onTheorem6.7will have to find the trilateration sequence
as it goes. The examples here show that such an algorithm has to test rational rank.

6.4 Loop Setting

We also wish to alter Theorem 6.7 so that it can be applied to the loop setting. In
particular, instead of looking for measurements of D edges of a Kd+2 we will look
for D canonical measurements over a Kd+2. Indeed, we consider two such canonical
measurements: one to identify a Kd+2 ex-nihilo, and one to identify a Kd+2 using a
known (d + 1)-point subconfiguration along with d + 1 additional measurements.

Definition 6.10 Given a single Kd+2, with ordered vertices and edges, we can describe
the D measurements described in Definition 3.8 using a fixed canonical D × D
matrix Nd

1 . Each row represents the edge multiplicities of one measurement loop. For
notational convenience, we order the rows of this matrix so that each of the first C
rows is supported only over the C edges of the first d + 1 points.

In 2 dimensions, we associate the columns of this matrix with the following edge
ordering: {1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}. This then gives us the following
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tetrahedral measurement matrix that measures three pings and three triangles

N2
1 :=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

2 0 0 0 0 0
0 2 0 0 0 0
1 1 1 0 0 0
0 0 0 2 0 0
1 0 0 1 1 0
0 1 0 1 0 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

See Fig. 2 (bottom left) for the 2-dimensional case.
Given an initial Kd+1, with ordered vertices and edges, we can describe an ordered

D measurements describing the trilateration of an additional vertex off of the first
d+1 vertices, as defined in Definition 3.9, using fixed a D×D matrixNd

2 . The firstC
rows measure the edges of the initial Kd+1 subconfiguration, and the remaining d + 1
rows measure the appropriate pings and triangles.

In 2 dimensions, this gives us the following trilateration measurement matrix that
measures three edges, one ping, and two triangles

N2
2 :=

⎛

⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
1 0 0 1 1 0
0 1 0 1 0 1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

.

See Fig. 2 (bottom right) for the 2-dimensional case.

Theorem 6.7′ With these definitions in place, we can alter the condition in The-
orem 6.7 that w describes a point of Ld,d+2, to the condition that w describes a of
point of Nd

i (Ld,d+2). And we can generalize the conclusion to read: 〈γγγ ,p〉 = w =
s · Nd

i (l(pT )).

Proof We follow the structure of the proof of Theorem 6.7. From Lemma A.7,
Nd
i (Ld,d+2) is an irreducible variety. Our loop assumptions give us w = E(l) ∈

Nd
i (Ld,d+2) and thus from genericity of l, E(Ld,n) ⊆ Nd

i (Ld,d+2).
As above, E has Kd+2 support. Let πK be the edge map where K comprises the

edges of this Kd+2, and where K is ordered such that πK (Ld,n) = Ld,d+2. Let K be
the matrix representing πK . The matrix E can be written in the form BK where B is
a D × D non-singular and non-negative rational matrix.

We have B(Ld,d+2) = B(πK (Ld,n)) = E(Ld,n) ⊆ Nd
i (Ld,d+2). It follows from

Theorem 2.1 that A := (Nd
i )

−1B is the matrix of a linear automorphism of Ld,d+2.
Thus we are left with determining the linear automorphisms with matricesA such that
Nd
i A = B is non-negative.
For d ≥ 3, from Theorem 6.1, we see that this only occurs when A is a positive

scale of a vertex relabeling. For d = 2, we need to explicitly do a non-negativity
check on our N2

i A over all linear automorphism matrices A of L2,4, as characterized
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in Theorem 6.2 and described in detail in [14]. This only requires checking 23040
matrices, for both N2

1 and N2
2 and has been done in the Magma computer algebra

system [14]. In both cases, non-negativity only arises for A that are positive scales of
a vertex relabeling.

Thus E is of the form Nd
i AK for such an A, and the result follows. 	


6.5 Trilateration

Now we can upgrade our results in Sect. 5.4 to prove our main theorems.

Lemma 6.11 Let d ≥ 2 and let p and q be configurations of n and n′ points respec-
tively, so that l(p) is generic in Ld,n. We also suppose that no two points in q are
coincident. Let ααα be an edge multiset measurement ensemble and βββ be a path or loop
ensemble such that 〈ααα,p〉 = 〈βββ,q〉.

Suppose that we have two “already visited” subconfigurations pV and qV ′ with
pV = qV ′ .

Suppose we can find δδδ, a subset of d +1 paths or loops inβββ, that can used to nicely
trilaterate some unvisited vertex qi ′ ∈ qV̄ ′ over some visited d + 1 point subconfigu-
ration qR′ of qV ′ .

Then we can find an unvisited pi ∈ pV̄ such that the two subconfigurations pV∪{i}
and qV ′∪{i ′} are equal.

Proof Let qT ′ be a subconfiguration consisting of, in some order, all the points of qR′
along with qi ′ . Let w := N(l(qT ′)), with N = I in the path setting and N = Nd

2 in the
loop setting. We have w ∈ Ld,d+2. By assumption, w has rational rank D.

We have 〈ααα,p〉 = 〈βββ,q〉 and pV = qV ′ . Thus, the assumption that δδδ ⊆ βββ nicely
trilaterates an unvisited vertex in q implies that we can use ααα to find a measurement
ensemble γγγ of D measurements so that 〈γγγ ,p〉 = w. The ensemble γγγ plays the role
of E in the proof of Lemma 5.25, and it is constructed in a similar way: from d + 1
measurements in ααα and C distances imputed from a set of d + 1 points in pV .

Theorem 6.7 in the path setting (or Theorem 6.7′ in the loop setting) can be applied
using p together with this γγγ and w. This guarantees a (d + 2)-point subconfiguration
pT of p such that w = t ·N(l(pT )), with N = I in the path setting and N = Nd

2 in the
loop setting. From Lemma 5.2, we conclude that pT and qT ′ are related by a similarity.

Since qR′ is a subconfiguration of qT ′ , qR′ must be similar to the associated sub-
configuration of pT , which we may call pR0 . From genericity of l(p) in Ld,n and
Lemma 5.23, qR′ is similar to no other subconfiguration of p. Meanwhile, qR′ is a
subconfiguration of qV ′ and thus also equal to some subconfiguration pR of pV . Thus
pR , pR0 and qR′ must all be equal. Since the similarity σ that maps qT ′ to pT fixes the
d + 1 points of qR′ , σ must be the identity and pT = qT ′ .

Let pi be the “new” point in pT \ pR , which must be equal to qi ′ . If pi was already
visited in pV , then the same position would have already been visited by some point
in qV ′ . This together with the fact that no points are coincident in q would contradict
the assumption that qi ′ ∈ qV̄ ′ . Thus pV∪{i} = qV ′∪{i ′}. 	


Applying the above iteratively yields the following:
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Lemma 6.12 Let d ≥ 2. Let p be a configuration of n points such that l(p) is generic
in Ld,n. Let ααα be an edge multiset measurement ensemble. Let v := 〈ααα,p〉.

Suppose that there is a configuration q of n′ ≥ d + 2 points with no two points in
q coincident. And suppose that βββ is a path (resp. loop) measurement ensemble that
allows for trilateration, and such thatβββ trilaterates q nicely, and such that 〈βββ,q〉 also
equals v.

Then, there is a sequence of indices S so that, up to congruence, s · pS = q, with
s an integer ≥ 1. Moreover, the vertices appearing in S are exactly those that are
endpoints of edges in the support of ααα. Under the vertex relabeling implicit in S, we
have ααα = s · βββ.
Proof For the base case, the nice trilateration assumed in βββ guarantees a Kd+2 con-
tained in βββ over a (d + 2)-point subconfiguration qT ′ of q. Define w := N(l(qT ′))
with N = I in the path setting and N = Nd

1 in the loop setting. From the niceness
assumption, we can find such a Kd+1 so that these wi have rational rank D. We have
w ∈ N(Ld,d+2).

Using the fact that 〈ααα,p〉 = 〈βββ,q〉 we can apply Theorem 6.7 in the path setting,
or Theorem 6.7′ in the loop setting, to this w and p and an appropriate subensemble
γγγ of ααα. We conclude that there is a (d + 2)-point subconfiguration pT of p such that
w = s · N(l(pT )), with N = I in the path setting and N = Nd

1 in the loop setting.
Here s ≥ 1 is an integer scale factor (see Remark 6.8). Also, from Lemma 5.2, up to
a similarity, we have pT = qT ′ .

In order to use the simpler terminology of equality instead of similarity going
forward, wewill apply the similarity to p and replace each functional α inααα by (1/s)α.
Then, to proceed inductively, assume that we have two “visited” subconfigurations
such that pV = qV ′ . Initially V = T and V ′ = T ′. With this setup, we may now
follow the trilateration of q, iteratively applying Lemma 6.11 until we have visited all
of q. At the end of the process, pV = qV ′ with qV ′ a reordering of q. Inverting this
ordering, we have q = pS , where S is an ordering of the visited points in p.

Since l(p) is generic in Ld,n , from Theorem B.1, no two distinct functionals can
give the same measurement. Since q is a subconfiguration of our generic p, then no
two distinct functionals can give the same measurement. This means there is a unique
way for v to arise from p and a unique way for v to arise from q. Hence, after vertex
relabeling from S, we have ααα = βββ. Since the vertices with endpoints in the support
of βββ correspond exactly to the points of q, then the vertices that are endpoints of the
edges in the support of ααα are exactly S, as in the statement. 	


Now we can prove one of our main theorems.

Proof of Theorem 3.17 First we remove from v the measurements which do not appear
in v−. We also remove the associated edge multisets from ααα. Since p is generic, then
l(p) is generic in Ld,n from Theorem 4.10. Then we simply apply Lemma 6.12. 	


Next wewant to use a genericity assumption on p to automatically obtain genericity
for l(q) in Ld,n under the assumption that n′ = n.

Definition 6.13 Let n ≥ d+1.A path or loopmeasurement ensemble is infinitesimally
rigid in d dimensions if, starting at some (equiv. any) generic real configurationp, there
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are no differential motions of p that preserve all of the measurement values, except
for differential congruences.

Remark 6.14 We defined infinitesimal rigidity of an edge measurement ensemble in
terms of a generic real of complex configuration p. For paths and loops, since we are
using unsquared measurements, we restrict our attention to real configurations, so that
the measurement map can be defined.

Lemma 6.15 In dimension d ≥ 2, let p and q be two configurations with the same
number of points n ≥ d + 1. Suppose that ααα is a path or loop measurement ensem-
ble that is infinitesimally rigid in d dimensions. Suppose that βββ is an edge multiset
measurement ensemble. And suppose that v := 〈ααα,p〉 = 〈βββ,q〉.

If p is a generic configuration, then l(q) is generic in Ld,n.

Proof Since d ≥ 2, we know that Ld,n is irreducible (Theorem 4.10), and so too is
any linear image of it (see Definition A.3). We define Ld,ααα and Ld,βββ to be the Zariski
closures of s of Ld,n under the linear maps corresponding to ααα and βββ, respectively.
They are both defined over Q. We define the measurement map lααα(p) acting on (real)
configuration space to be the map that takes p to 〈ααα, l(p)〉.

If ααα is infinitesimally rigid then, as in the proof of Proposition 5.12, we see that the
real dimension of the image s of lααα(p) over all real configurations is dn−C (constant
rank theorem). The set s is semi-algebraic (using quantifier elimination). Let V be
the (complex) Zariski closure of s. From Lemma A.12, the complex dimension of V
equals the real dimension of s. Since we have s ⊆ Ld,ααα and Ld,ααα is Zariski closed,
we have V ⊆ Ld,ααα . Using this containment and the fact that Ld,ααα a linear image of
Ld,n we obtain

dn − C ≤ dim Ld,ααα ≤ dim Ld,n = dn − C,

which shows that equality holds throughout. Using the fact that Ld,βββ a linear image
of Ld,n we obtain dim Ld,βββ ≤ dn − C .

The proof then follows like that of Lemma 5.29. 	

And now we can prove our other main theorem.

Proof of Theorem 3.14 By assumption, ααα allows for trilateration. A path or loop mea-
surement ensemble that allows for trilateration is always infinitesimally rigid. (The
ability to trilaterate makes a generic real p uniquely determined (globally rigid) from
its labelled measurements. Thus, one cannot continuously change p while keeping
the measurements fixed (local rigidity). If the ensemble was not infinitesimally rigid
at a generic p, then using the proof from [2], it could not be locally rigid.) So from
Lemma 6.15 we know that l(q) is generic in Ld,n . We next argue that this trilateration
must be nice: During a trilateration step, the D functionals are linearly independent.
So from Lemma B.4 and the genericity of p, the D measurement values must have
rational rank D.

So we can now apply Lemma 6.12 with the roles of p and q reversed as well as the
roles of ααα and βββ. 	
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7 Reconstruction Algorithm

A straightforward iterative application of Theorem 3.17 leads to a real-computation
algorithm for reconstructing an unknown generic configuration p from an unlabeled
path or loop measurement ensemble that allows for trilateration. The algorithm per-
forms a brute force combinatorial search for a trilateration sequence, testing validity
along the way using rational rank tests and Cayley–Menger determinants. This gener-
alizes the TRIBOND algorithm from [12]. The TRIBOND algorithm only works on
edge-length ensembles, while ours works in the path and loop setting.

Theorem 3.17 tells us that, assuming genericity of p, we can apply trilateration
greedily without backtracking. At each step, if we can interpret some of our mea-
surement data as being consistent with a nicely trilaterated point set q, then this is
a certificate of correctness for that step, up to scale. Meanwhile, if we also assume
that our data arose from an ensemble that allows for trilateration (which must be nice
by Lemma B.4), then this means that by searching, we will be able to find such a
certifiably nicely trilaterated configuration q, and with the same number of points as
p. Moreover (see below), we can also determine the correct scale.

For the path (resp. loop) algorithm we have the following specification.
Input: dimension, bounce bound, and real-valued data set, (d, b, v).
Assumption: Data set v arises from some generic configuration p of n points (for
some n) in R

d , under some b-bounded path (resp. loop) ensemble that allows for
trilateration.
Output: A configuration q, where q is related to p through a vertex relabeling and a
Euclidean congruence.

Theorem 7.1 There is an algorithm in a real computational model that solves the
generic path or loop reconstruction problem. Its running time is polynomial in |v| and
b, and exponential in d.

The algorithm first exhaustively searches for all ordered D-tuples of v that describe
Kd+2 subconfigurations of p. Each of these is treated as a “candidate base”: We do
not know at first which of these candidates will ultimately form the base of a complete
trilateration sequence. Each candidate base is then grown into an expanding sequence
of “candidate subconfigurations" by finding new points that connect to an existing
candidate subconfiguration through a trilaterating set of d + 1 edges or loops.

To expand a candidate subconfiguration by one point, we search exhaustively over
all subsets of d + 1 points in the configuration and subsets of d + 1-tuples of values
in v to find a valid trilateration step. Besides the Cayley–Menger determinant test, a
valid step is also required to have the appropriate rational rank. If the values of w are
not rationally independent, Lemma B.4 implies that there is a rational relation on its
underlying functionals. In the b-bounded setting, Lemma B.3 then implies that the
coefficients describing this relation are bounded integers. This bound is polynomial in
b. Thus, we can simply do an exhaustive search for possible integer relations satisfying
this bound.

If a new point is found, we extend the candidate subconfiguration and we continue
searching exhaustively over the extended configuration. If an already-localized point
is found, we ignore it and continue to search for a trilateration step that produces a
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new point. If, after trying all the possibilities, we do not find a new point, the can-
didate subconfiguration is maximal, and we stop searching for this subconfiguration.
The whole algorithm stops when no candidate subconfiguration can be expanded any
further.

Theorem 6.7 only gives us a Kd+2 configuration up to a scale. Fortunately, as we
grow a candidate base, as in the proof of Lemma 6.12, we will only be able to do so
using the same shared scale. Still, since our algorithmuses a number of candidate bases,
it may be the case that we reconstruct various subsets of p at various scales. In more
detail, there may be a subensemble of ααα that is actually of the form of a trilateration
sequence, but with each path (resp. loop) measured s times per measurement. During
the trilateration, we treat these as if they were unscaled, which is effectively equivalent
to scaling the length of each underlying edge by s. This results in the reconstruction
of a candidate configuration s · p that is a scaled up version of the true configuration.

The existence of at least one correctly scaled reconstruction is guaranteed by the
trilateration assumption on the underlying ααα. Thus, at the end of the trilateration pro-
cess, we identify the true configuration as the reconstructed subset with the smallest
scale among all configurations with the same maximal number of points. This con-
figuration, q, will be equal (up to vertex relabeling and congruence) to the one true
configuration p.

7.1 Ideas for Efficiency

There are a few interesting ideas for reducing the cost of the the rational rank test.
First of all, testing for rational rank canbedonemuchmore efficiently using the basis

reduction algorithm for integer relation testing [13, 18]. This algorithm works under
a real computational model that includes a constant-time floor operation. Roughly
speaking, given a vector w of D real numbers and an integer bound B, the integer
relation testing algorithm will either report that there is no “small” integer linear
relation on w having integer coefficients with vector norm less than B, or it will
provide a “medium-sized” integer relation with vector norm smaller than 2D/2B. If
the algorithm reports that no small relation exists, then we can conclude that ourw has
the necessary rational rank. If the algorithm returns a medium sized relation we know
that we do not have the necessary rational rank. (In fact, we know from Lemma B.3,
that there must also be a small integer relation.) For fixed d, this algorithm has running
time O(log(B)), which for us is O(log(b)).

Secondly, in the two dimensional setting, we have shown in [14] that the only linear
subspaces of dimension 3 or higher that are contained in L2,4 are those making up its
singular locus. When a linear map has rank less than 6, then, from Theorem 6.4, of
L2,n will be a Zariski open subset of a linear subspace of C

6. Under the genericity
assumption on p, that space will be contained in L2,4. Thus, if we know or can verify
that a non-singular pointw of L2,4 has rational rank at least 3, then it must have rational
rank 6. This condition can be verified on any three values of w.

Finally, the rational rank test can be completely omitted under certain assumptions
about the measurement process of the generic configuration p. For example, in the
loop setting with dimension 3, suppose we assume that ααα consists only of pings and
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triangles, with each passing through p1. This is not an unreasonable assumption for
our signal processing scenario described in Sect. 1. Under this assumption, it can be
shown that if w consists of 10 distinct values, then it has rational rank 10, and thus no
explicit test is needed.

7.2 Practical Application

As is often the case in computational geometry, if we implement an algorithm that
relies on exact real computation with a digital computer, we obtain an approximation
that does not come with the same guarantees. We are currently experimenting with
such methods in ongoing research, and there are recent experiments by others [22] in
the loop setting with dimension 3 and with ααα comprising pings and triangles through
p1. But to date, it remains unclear to us what conditions are required for a numerical
implementation to succeed with approximate loop lengths.

In the unlabelled edge-only setting, the greedy TRIBOND algorithm has been
extended to the more robust (but expensive) LIGA algorithm [12, 19]. LIGA ranks its
reconstruction candidates to minimize error. Moreover, LIGA allows for backtracking
during the reconstruction process. For non-generic or approximate input, incorrect
early decisions can often be detected as erroneous using subsequent data; they can
then be undone. Such ideas could prove useful in the path or loop setting as well.
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Appendix A: Algebraic Geometry Preliminaries

We summarize the needed definitions and facts about complex algebraic varieties. For
more see [17].

In this section, N and D will represent arbitrary numbers.

Definition A.1 A (complex embedded affine) variety (or algebraic set), V , is a (not
necessarily strict) subset of C

N , for some N , that is defined by the simultaneous
vanishing of a finite set of polynomial equations with coefficients in C in the variables
x1, x2, . . . , xN which are associated with the coordinate axes of C

N . We say that V is
defined over Q if it can be defined by polynomials with coefficients in Q.

A finite union of varieties is a variety. An arbitrary intersection of varieties is a
variety.
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A variety V is reducible if it is the proper union of two varieties V1 and V2. (Proper
means that V1 is not contained in V2 and vice-versa.) Otherwise (assuming it is non-
empty) it is called irreducible. A non-empty variety has a unique decomposition as a
finite proper union of its maximal irreducible subvarieties called components. (Maxi-
mal means that a component cannot be contained in a larger irreducible subvariety of
V ).

A variety V has a well-defined (maximal) dimension Dim(V ), which will agree
with the largest D for which there is an open subset of V , in the standard topology,
that is a D-dimensional complex submanifold of C

N .
Any strict subvarietyW of an irreducible variety V must be of strictly lower dimen-

sion.
The local dimension Diml(V ) at a point l in a variety V is the dimension of the

highest-dimensional irreducible component of V that contains l. A point l is called
smooth in a variety V if the dimension of the Zariski tangent space (see [17]) equals
Diml(V ). Otherwise l is called singular in V . The locus of singular points of V is
denoted Sing(V ). A smooth point has an open neighborhood in V , in the standard
topology, that is a Diml(V )-dimensional complex submanifold of C

N .

Remark A.2 Wewill say that an ideal in L[X1, . . . , XN ] is defined over a field K ⊂ L
if it can be generated by polynomials with coefficients in K .

In the present setting, there is no difference between set-theoretic and ideal-theoretic
notions of the field of definition of a variety. Suppose that V is cut out as V (J ′) for
some ideal J ′ ofC[X1, . . . , XN ] that is defined overQ. SinceC is algebraically closed,
we know that J := I (V ) = √

J ′ (Nullstellensatz). Meanwhile, since Q is a perfect
field, the radical ideal

√
J ′ is also defined over Q (see [26, tag 030V]).

Definition A.3 A constructible set S is a set that can be defined using a finite number
of Boolean set operations over a finite number of varieties. We say that S is defined
over Q if the varieties can be defined by polynomials with coefficients in Q.

The Zariski closure of S is the smallest variety V containing it. The set S has the
same dimension as its Zariski closure V . If S is defined over Q, then so too is V (see
Theorem A.8 below).

of a variety V of dimension D under a polynomial mapm is a constructible set S of
dimension at most D. If V is irreducible, then so too is the Zariski closure of S. (We
say that S is irreducible.) If V and m are defined over Q, then so too is S [3, Theorem
1.22].

Next we define the notion of generic points in a variety. The motivation is that
nothing algebraically special (and which is expressible with rational coefficients) is
allowed to happen at such points. Thus, any such algebraic property holding at one
generic point must hold at all generic points.

Definition A.4 Apoint in an irreducible variety or constructible set V defined overQ is
called generic if its coordinates do not satisfy any algebraic equation with coefficients
in Q besides those that are satisfied by every point in V .

A generic real point in R
N as in Definition 3.12 is also a generic point in C

N ,
considered as a variety, as in the current definition.
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Lemma A.5 Let C and M be irreducible affine varieties, and m be a polynomial map,
all defined overQ, such that the Zariski closure of m(C) is equal to M. If there exists a
polynomial φ, defined over Q, that does not vanish identically over M but does vanish
at m(p) for some p ∈ C, then there is a polynomial ψ , defined over Q, that does not
vanish identically over C but does vanish at p.

Thus, if p ∈ C is generic in C, then m(p) is generic in M.

Proof The polynomial is simply ψ(x) = φ(m(x)). This ψ is clearly defined over Q.
The subset of X ⊆ M for which φ vanishes is proper, by assumption, and a subvariety,
by construction. Thus, m(C), cannot be contained in X : Indeed, if it were, then the
Zariski closure of m(C) would be a subset of X , and then not all of M . Hence, there
is an x ∈ C so that φ(m(x)) = 0. Thus ψ is not identically zero over C . 	

Lemma A.6 Let L and M be irreducible affine varieties of the same dimension, and s
be a polynomial map, all defined over Q, such that the Zariski closure of s(L) equals
M. If there exists a polynomial ψ , defined over Q, that does not vanish identically
over L but does vanish at some l ∈ L, then there is a polynomial φ, defined over Q,
that does not vanish identically over M but does vanish at s(l).

Thus, if l ∈ L is not generic in L, then s(l) is not generic in M.

Proof Sketch Since L is irreducible, the vanishing locus ofψ must be of lower dimen-
sion. This subvariety must map under s into to a lower-dimensional subvariety of M
(defined over Q). This guarantees the existence of an appropriate φ. 	


With our notion of generic fixed, we can prove the two principles of Sect. 1.

Lemma A.7 If A is a bijective linear map on C
N , then under A of a variety V is a

variety of the same dimension. If V is irreducible, then so too is this image.

Proof Let S := A(V ). Since A is bijective, then there is also a map A−1 acting on
C

N , and S must be the inverse image of V under this map. Thus, by pulling back the
defining equations of V through this map, we see that S must be a variety.

The dimension follows from the fact that maps cannot raise dimension, and our
map is invertible. 	

Proof of Theorem 2.2 Suppose E(V ) does not lie in W . Then the preimage E−1(W ),
which is a variety defined over Q, does not contain V , and the inclusion of l in this
preimage would render l a non-generic point of V . 	

Proof of Theorem 2.1 From Theorem 2.2, A(V ) ⊆ V . From Lemma A.7, A(V ) is an
algebraic subvariety of V of the same dimension, which from the assumed irreducibil-
ity must be V itself. 	


For completeness, we next prove the following theorem. Its proof was suggested
by Brian Osserman.

Theorem A.8 Let S be a constructible set defined over Q. Then its Zariski closure is
also defined over Q.

The following material is a bit more technical.
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Lemma A.9 Let S be a constructible set in C
N which is defined over Q. Let V be the

Zariski closure of S. Let J be the ideal of V . Let s be the Q points of S. Let v be the

Zariski closure of s inQ
N
. Let j be the ideal of v. Then J = j∗, the complex extension

of j .

Proof As a constructible set, S = ⋃
i (Ui ∩ Zi ) where Ui is Zariski open and Zi is

Zariski closed. After splitting into irreducible components, each Zi can be assumed to
be irreducible. From [26, Tag 038I], each Zi is still defined overQ.We can also assume
that Zi � Ui (otherwise, we can just remove this term from the union). Thus we can
write S = ⋃

i (Zi − Xi ) where Zi and Xi are both Zariski closed, Zi is irreducible
and Zi � Xi . A finite union operation will commute with complex extensions and so
henceforth, we can just look at the single component case where S = Z − X .

Let I (Z) and I (X) be the associated ideals in C[X1, . . . , XN ], both defined over
Q. I (Z) is prime and I (X) is radical. Moreover, by assumption, I (X) � I (Z). Under
these assumptions, S is a non-empty, Zariski open subset of an irreducible Z , so it is
dense in Z ; the Zariski closure V of S will just be Z , with ideal J = I (Z).

Now we restrict S, Z , and X to Q
N
, where we switch to lower case and write

s = z−x . Associatedwith z and x , we have the ideals I (z) and I (x) inQ[X1, . . . , XN ].
Next we show that I (Z) is the complex extension of I (z) (and likewise for I (X)):

Since I (Z) is defined over Q, we can pick a set of polynomials with coefficients in Q

that generate the complex ideal I (Z). These same polynomials define an ideal, m in
Q[X1, . . . , XN ]. The ideal m is still prime (as we are making the field smaller). Since
they share the same generating polynomials, the complex extension of m is I (Z). We
nowhave z = V (m), and sinceQ is closed, from theNullstellensatzwe have I (z) = m,
which proves our claim. Moreover z must be irreducible. A similar argument shows
that under complex extension, I (x) (which is likewise radical) becomes I (X).

Meanwhile, since for the extensions we have I (X) � I (Z), we must also have
I (x) � I (z). This gives us z � x . Thus s is a non-empty, open subset of an irreducible
z, and so it is dense in z; as above, the Zariski closure v of s will just be z, with ideal
j = I (z). Since I (Z) is the complex extension of I (z), we see that J is the complex
extension of j . 	

Lemma A.10 Let s be a set of points in Q

N
which is invariant under the Galois group

Aut(Q/Q). Then the Zariski closure v of s in Q
N
is defined over Q.

Proof Suppose that f1, . . . , fn cut out v. For each i , consider all the Galois conjugates
of fi . Each fi has finitely many coefficients, and each of them lies in a finite-degree
extension of Q. Hence each of the fi has a finite Galois orbit. The union of these
conjugates is a finite collection of polynomials g1, . . . , gm .

Each gi vanishes on s, by the assumed Galois invariance of s. Thus each gi is in
I (s). By the definition of Zariski closure, we have I (s) = I (v). And so we have each
gi vanishing on v.

Now, for each 1 ≤ i ≤ m, we define hi = ei (g1, . . . , gm), where ei is the i th
elementary symmetric polynomial. Each hi is Galois invariant, since applying aGalois
automorphism to hi will permute the g j , and ei is symmetric. As Galois invariant
polynomials, the hi are defined over Q.

123



Discrete & Computational Geometry

Since all gi vanish over v, we know that v ⊆ V ({hi }). For the other direction, let
p /∈ v. Then one of our fi does not vanish at p. So there is some specific i0 so that
gi0(p) = 0.

Recall that Vieta’s formula says that, for a univariate polynomial P(x), if

P(x) = (x − r1) · · · (x − rm) = xm + am−1x
m−1 + · · · + a0

then

ei (r1, . . . , rm) = (−1)i am−i

Getting back to our setting, for each 1 ≤ k ≤ m, let us fix the numbers rk := gk(p).
Suppose that for all i , we had ei (r1, . . . , rn) = 0, then in Vieta’s formula, we would
have P(x) = xm , which would mean that all of the roots (r1, . . . , rn) of P(x) were
0. But we have at least one ri0 = 0, a contradiction. So there must be some i1 so that
ei1(r1, . . . , rm) = 0. But this means that hi1(p) = ei1(g1(p), . . . , gm(p)) = 0. Thus
v ⊇ V ({hi }) and so v = V ({hi }). Since the hi are defined over Q, this establishes the
lemma. 	

Remark A.11 The lemma can also be proven in a related but more abstract fashion
by first establishing that the Zariski closure, v, is Galois invariant and then directly
appealing to [26, Tag 038B].

Proof of TheoremA.8 Let us consider s, the Q
N
restriction of S, along with its Zariski

closure v. Since s is defined using the vanishing and non-vanishing of polynomials
defined over Q, the set s must be invariant to Aut(Q/Q). From Lemma A.10, its

Zariski closure v in Q
N
must be cut out (set theoretically) as V ( j ′) for some ideal

j ′ of Q[X1, . . . , XN ] that is defined over Q. As in Remark A.2, since Q is closed,
j := I (v) is equal to

√
j ′, its radical ideal in Q[X1, . . . , XN ], which is also defined

over Q. Meanwhile from Lemma A.9, the ideal J of the (complex) Zariski closure of
S is just the complex extension of j . Thus J too must be defined over Q. 	

Lemma A.12 Let s be a real semi-algebraic set. Let V := V (s) be its complex Zariski
closure. Then the complex dimension of V equals the real dimension of s.

Proof We say that s is irreducible if its real Zariski closure is irreducible. If s is not
irreducible, we can write it is as a finite proper union of irreducible semi-algebraic
sets sk . We have Dim(s) = maxk(Dim(sk)), and so we can work over each component
separately. Thus, in what follows, we will assume that s is irreducible.

Let i := i(s) be the ideal of real polynomials vanishing on s, and v := v(i(s)) be
the real Zariski closure. (We use lower case v and i to make it clear that this is all done
in the real setting.) Let I := I (s) be the ideal of complex polynomials vanishing on
s, and V := V (I (s)) be the complex Zariski closure. As described in [5, Section 2.8],
the real dimension of s equals the real dimension of v. Meanwhile, from [27, Proof
of Lemma 6], the ideal I equals i∗, the complex extension of i . From [27, Proof of
Lemma 9], for any radical real ideal j , the maximal Jacobian rank of V ( j∗)must equal
the maximal Jacobian rank of of v( j). Since v is irreducible, then from [27, Lemma

123



Discrete & Computational Geometry

7], so too is V . Since v and V are both irreducible, this maximal Jacobian rank gives
us the real (resp. complex) codimensions of v and V . 	


Appendix B: Rational Functionals and Relations

In this section, we prove some generally useful facts about rational functionals and
relations acting on generic point configurations p.

Theorem B.1 Let l be a generic point in Ld,n with d ≥ 2, and let α be a rational
length functional. Suppose 〈α, l〉 = 0, then α = 0. Likewise (due to linearity), if
〈α, l〉 = 〈α′, l〉, then α = α′.

Similarly, let p be a generic configuration in R
d with d ≥ 2. Suppose 〈α,p〉 = 0,

then α = 0. Likewise, if 〈α,p〉 = 〈α′,p〉, then α = α′.

Recall from Theorem 4.10 that, assuming d ≥ 2, Ld,n is irreducible, hence it has
generic points. Additionally, when p is a generic configuration, then l(p) is generic in
Ld,n .

Proof The equation 〈α, l〉 = 0 describes an algebraic equation over Ld,n with coeffi-
cients in Q and that vanishes at l. Genericity of l implies that α vanishes over all of
Ld,n .

Suppose, for a contradiction, that α = 0. First observe that there are points x in Ld,n

that have all real and non-zero coordinates. Because Ld,n is symmetric under sign-
negation, given α, we can construct from x a point x′ in Ld,n so that the coefficient
αi j and x′

i j have the same sign for all i j with αi j = 0. But then 〈α, x′〉 > 0, which is
a contradiction. Hence α = 0. 	

Remark B.2 When d = 1, there can be generic configurations p such that 〈α,p〉 = 0
with α = 0. For example, suppose n = 3, and let α12 = 1, α23 = 1, α13 = −1.
Then, 〈α,p〉 = 0, whenever we have the order p1 ≤ p2 ≤ p3, or the reverse order
p1 ≥ p2 ≥ p3, and 〈α,p〉 = 0 otherwise. In this case, L1,3 is reducible, and we have
an equation that vanishes identically on one component of the variety but not on the
others.

The following is useful to tellwhen a set of rational functionals is linearly dependent.

Lemma B.3 Let p be a configuration, αi a sequence of k rational functionals, and
vi := 〈αi ,p〉. Suppose that the functionals αi are linearly dependent. Then, there is a
linear dependence that can be expressed as

∑
i c

iαi = 0, where the coefficients ci are
rational, not all vanishing. Moreover, this gives us the relation

∑
i c

ivi = 0 with the
same coefficients. If the functionals αi are integer and b-bounded, then we can find
such coefficients ci that are integers, bounded in magnitude by (k′)k′/2bk

′
.

Proof Let k′ < k be the dimension of the span of the αi .
i) Let us look at the case k′ < N .
Pick a subset of the αi that is minimally linearly dependent with size k′ + 1. Let us

use these as the k′ + 1 rows of a matrixM with N columns. Each of its minors of size
k′ + 1 must vanish.
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Pick k′ columns that are linearly independent. Append to these, one column made
up of k′ + 1 variables. The condition that the determinant of this (k′ + 1) × (k′ + 1)
matrix vanishes gives us a non-trivial linear homogeneous equation in the variables. In
the b-bounded setting, Hadamard’s bound implies that the coefficients of this equation
have magnitude at most (k′)k′/2bk

′
. As every column ofM is in the span of our chosen

k′ columns, the entries in each column ofM must satisfy this equation. Thus we have
found a rational relation on the k′ + 1 rows of M, giving us a rational relation on the
αi .

ii) Let us look at the case k′ = N .
Pick a subset of the αi of size N that is linearly independent. Let us use these as

the rows of a square non-singular matrixM. Pick one more functional β from the αi .
Let us think of β as a row vector of length N . Since β is in the span of our selected
rows, we have [β adj(M)]M = β[det(M)]. Here “adj” denotes the adjugate matrix.
This gives us a rational relation between the rows of M and β, with the coefficients
in brackets above. Again in the b-bounded setting, the coefficients are bounded in
magnitude by (k′)k′/2bk

′
.

In both cases i) and ii), the relation on the vi follows immediately. 	

Lemma B.4 Let p be a generic configuration in two or more dimensions. Let αi be a
sequence of k rational functionals. Let vi := 〈αi ,p〉. Suppose there is a sequence of
k rational coefficients ci , not all zero, such that

∑
i c

ivi = 0. Then, there is a linear
dependence in the functionals αi .

Proof

0 =
∑

i

civi

=
∑

i

ci 〈αi ,p〉

= 〈
∑

i

ciαi ,p〉

Then, from Theorem B.1,
∑

i c
iαi must be the zero functional. 	
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