
Tomography of Materials and Structures 4 (2024) 100019

Available online 24 November 2023
2949-673X/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Conditional generative adversarial networks for stripe artefact removal in
high-resolution X-ray tomography

Daniil Kazantsev a,*, Lucas Beveridge a,b, Vigneshwar Shanmugasundar a, Oxana Magdysyuk c

a Diamond Light Source Ltd. Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
b The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
c University of St. Andrews, KY16 9ST, UK

A R T I C L E I N F O

Keywords:
Image reconstruction
Ring removal
Sinogram inpainting
Data extrapolation
Deep learning
GAN
Material science
Synchrotron
X-ray tomography

A B S T R A C T

Tomographic imaging supports a great number of medical and material science applications. The collected
projection data usually has different types of imaging artefacts and noise. Various image pre-processing and
reconstruction methods are used to obtain volumetric datasets of high quality for further analysis. In order to
minimise reconstruction artefacts, one can apply either filtering and/or data completion/inpainting techniques
which can recover the data. Deep learning (DL) methods to remove artefacts and noise have been successfully
applied in the past. In this paper, we present a novel approach based on conditional generative adversarial
networks (cGANs) to remove stripe artefacts. The novelty of the presented technique is in how the training data
for DL is extracted from the same tomographic dataset that needs recovery. We also provide new deterministic
stripe detection and inpainting algorithms to support the development. The presented methods are compared
with other stripe removal algorithms and applied to 3D and 4D high-resolution X-ray data collected at Diamond
Light Source synchrotron, UK. The proposed DL method delivers reconstructed images with minimised ring
artefacts while being a parameter-free approach. A similar DL strategy can also be applied to remove other types
of artefacts in images.

1. Introduction

X-ray computed tomography (XCT) is a versatile non-invasive im-
aging technique which supports many medical and material science
applications [1,2]. The main physical principle of XCT is to collect
2-dimensional (2D) radiographic projections by rotating the gantry of a
scanner while keeping the scanned object fixed. Alternatively, one can
rotate the object itself while keeping the detectors fixed, which is a
set-up for synchrotron X-ray imaging.

After a series of image radiographs/projections are collected, the
three dimensional (3D) inner structure of an object can be resolved by
using a reconstruction algorithm. Commonly used direct reconstruction
methods include the Filtered Back Projection (FBP) algorithm for par-
allel and fan-beam geometries, and the Feldkamp-Davis-Kress algorithm
for cone-beam geometry [2].

Unfortunately, direct reconstruction techniques are not flexible
enough to compensate for the variety of imaging artefacts and noise,
which are a part of the collected data. This frequently results in various
distortions in the reconstructed images due to unrealistic assumptions of

the inversion model used for reconstruction [3].
There are two main strategies to deal with the problem of tomo-

graphic data being inaccurate. The first approach is the pre-processing of
the projection data before applying the direct reconstruction. The sec-
ond is to use a more realistic mathematical model as a part of an iterative
reconstruction method. Both approaches have their own advantages and
disadvantages as it is shown in Table 1.

Although iterative methods usually produce better quality recon-
struction results as they rely on more rigorous mathematical models,
they can be impractical for big data applications.

In this paper, we focus on a series of data pre-processing strategies to
eliminate certain artefacts that are routinely present in synchrotron X-
ray data [4]. Stripe artefacts in projection data (in sinogram space) could
be a result of different physical phenomena that affect the acquisition
hardware. The list of possible factors is extensive, but the major
contributor is usually scintillator defects [5]. Stripe artefacts contribute
to the inconsistency of the collected data, and direct reconstruction will
result in ring artefacts of different prominence in the reconstructed
images. Iterative methods can minimise the ring artefacts by

* Corresponding author.
E-mail address: daniil.kazantsev@diamond.ac.uk (D. Kazantsev).

Contents lists available at ScienceDirect

Tomography of Materials and Structures

journal homepage: www.journals.elsevier.com/tomography-of-materials-and-structures

https://doi.org/10.1016/j.tmater.2023.100019
Received 1 September 2023; Received in revised form 9 November 2023; Accepted 16 November 2023

mailto:daniil.kazantsev@diamond.ac.uk
www.sciencedirect.com/science/journal/2949673X
https://www.journals.elsevier.com/tomography-of-materials-and-structures
https://doi.org/10.1016/j.tmater.2023.100019
https://doi.org/10.1016/j.tmater.2023.100019
https://doi.org/10.1016/j.tmater.2023.100019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tmater.2023.100019&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Tomography of Materials and Structures 4 (2024) 100019

2

incorporating a more complex model into the objective, but this usually
results in a more complicated algorithm which is difficult to optimise
and tune [6–8].

Recently, generative adversarial networks (GANs) have been suc-
cessfully used for the more general problem of sinogram inpainting/data
completion in tomography [9–12,13]. In our study, we mainly focus on a
type of stripe artefact (‘unresponsive’ or ‘dead’ [5]) that suppresses all
information about the underlying data, therefore the data needs to be
recovered by data completion algorithms. Here we use a DL method
based on a conditional generative adversarial network (cGAN) [14] to
perform inpainting of the missing data in the stripe regions only. The
conditioning of GANs is performed by knowing the exact location of an
artefact in the image. This is implemented by using a novel stripe
detection algorithm which is also presented.

Since cGANs are a supervised DL technique, they require labelled
training data. Having representative and generic training data can be a
major hurdle in applying a DL method effectively. Here, we present a
novel approach for extracting training data from the acquired raw data.
This ensures a close proximity of the feature space of the trained model
to the test data. To avoid over-fitting, we dilute the training data with
data from different samples and demonstrate that the model can
generalise well when applied to unseen data.

We compare the presented DL technique and another novel
inpainting method with two popular stripe removal filters. Notably, the
majority of filters act on the whole image globally to remove an artefact,
while we target only local areas where artefacts may be present. This
minimises raw data changes which can lead to various distortions in the
reconstructed images.

The methods were applied to 3D and 4D (dynamic) real data
collected at Diamond Light Source.

2. Methods

In this section, we present novel deterministic algorithms for stripe
detection and data inpainting, as well as the neural network method-
ology to perform data completion for missing data in stripes.

2.1. Stripes detection approach

In order to acquire the training dataset for the neural network, we
need to establish where stripes are located in the data. This is needed to:
a) identify stripe-free regions in the raw data; b) use stripe-free regions
to simulate synthetic stripes and obtain targets and inputs for the
training dataset; c) remove true stripes which were detected in the data.

There are stripe-removal algorithms that use detection before
applying a filter to minimise the artefacts [5,15]. Frequently, the
detection problem is not decoupled from the filtering process and
therefore it is hard to evaluate how well the detection algorithm per-
formed. It is also critical to reduce the level of false alarms and therefore
modifications of the raw data in areas where no artefacts are present.
The detection methods which rely on averaging intensity along the
angular axis in sinograms and detecting peaks in 1D signals [5] are too
sensitive to various stripe-like features and frequently cannot differen-
tiate between partial and full stripes.

In order to establish a more robust and controlled stripe detection

process, we have developed a novel stripe-detection algorithm. It is a
non-local 3D method which helps to reduce the level of false alarms
during the stripe detection process. The method can differentiate be-
tween different types of stripes as well as features that belong to data
and should be excluded. It is a versatile and parametrised algorithm
which gives control over the sensitivity of a detection process to a user.

The proposed method consists of two main parts: .

1. Calculation of weights in the gradient space of the sinogram.
2. Weights thresholding subject to morphological constraints to estab-

lish a binary mask.

In step 1, we calculate an image gradient using forward differences in x-
direction as ∇xg(θ, x, y) = g(θ, x + h, y) − g(θ, x, y) of normalised 3D
projection data g(θ, x, y). Here (x, y) coordinates are the horizontal and
vertical coordinates of the 2D detector plane, respectively. In sinogram
space, chosen x-direction aligns with the horizontal detector axis and
orthogonal to the angular θ-axis.

For every element of the gradient ∇xg(x), x = (θ, x, y), we apply a
specially designed 3D stencil centred around voxel x, depicted in Fig. 1.
We define a mean μ(∇xg)ΩA,B,C

for A, B and C stencil regions respectively
and calculate the following weights:

ω1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⃒
⃒μ(∇xg)ΩA

⃒
⃒

⃒
⃒μ(∇xg)ΩB

⃒
⃒
, if ∣μ(∇xg)ΩA

∣ ≤ ∣μ(∇xg)ΩB
∣

⃒
⃒μ(∇xg)ΩB

⃒
⃒

⃒
⃒μ(∇xg)ΩA

⃒
⃒
, otherwise.

(1)

ω2(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⃒
⃒μ(∇xg)ΩA

⃒
⃒

⃒
⃒
⃒μ(∇xg)ΩC

⃒
⃒
⃒
, if ∣μ(∇xg)ΩA

∣ ≤ ∣μ(∇xg)ΩC
∣

⃒
⃒
⃒μ(∇xg)ΩC

⃒
⃒
⃒

⃒
⃒μ(∇xg)ΩA

⃒
⃒
, otherwise.

(2)

and the final weight is calculated as ω(x) = min(ω1(x),ω2(x)), and the
obtained weights are in the range ω ∈ (0, 1], where smaller weights
represent more prominent stripes in the data.

In order to minimise the amount of false alarms detected, we further
apply a 1D median filter to ω in θ-direction, with a kernel size that de-
pends on the length of stripes we expect to have in the data.

The general idea for this method is to exploit the fact that the
gradient jump in x-direction should be significantly larger than in

Table 1
Cons and pros of the data pre-processing and direct reconstruction compared to
iterative reconstruction.

Pre-processing/Direct recon. Iterative reconstruction

Pros: Computationally efficient Practical
for big data More controllable Less
parameters involved

Mathematically accurate A higher
quality solution Versatile

Cons: Heuristic Raw data modification Computationally challenging More
parameters involved Fine tuning is
problematic

Fig. 1. 3D detection stencil which consists of a 2D 3 × 3 kernel A, which is
parallel to θ-direction and two 1D 1 × 3 kernels B and C, which are parallel to
detector’s x-direction. The stencil is centred around a voxel x at the centre of
the stencil A (hidden).

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

3

θ-direction when the stripe is present. The non-local nature of the pre-
sented stencil (see Fig. 1) ensures a robustness to noise for more accurate
edge detection. The result of applying this method can be seen in Fig. 2
(middle). See that the detected stripes have weights around 0.5 while
the rest of the data is more than 0.6.

In the step 2 of the detection method, in order to obtain a binary
mask M (x), we process the estimated weights ω(x) by applying a
thresholding process with additional morphological constraints. In
Fig. 2 (middle) one can see that there are vertical features that belong to
stripes but also to sample data (e.g. two features at the bottom right
section of the image). The aim is to build a mask that would only have
stripe artefacts and useful data features are excluded, meaning that we
cannot accept any prominent vertical boundary to be a stripe.

The method in step 2 checks the consistency of weights ω(x) in three
dimensions in order to generate a mask M (x). We parametrise stripes by
having geometrical constraints for length, width and depth (L, W, D). We
assume that stripes do not usually extend deep (D constraint) compared
to sample features and also can be reasonably lengthy (L constraint). The
stripes are also usually not very thick (W constraint).

First we test every weight element ω(x) that it is bellow a given
threshold T. Then we test if the geometrical constraints above hold for
the weight candidate and reject it if they are not met (3). The L, W, D
parameters can be roughly estimated from the dimensions of the input
data and the type of stripes present. Once they are established, they
usually remain fixed for other datasets with the same dimensions and
similar stripe features. For our experiments with data dimensions
1801 × 2160 × 2560 voxels, we fixed them as L = 600; W = 22; D = 33
in pixel units. While accepting insignificant deviations from the L, W, D
values (sensitivity), we reject features that are shorter than L, thicker
than W and deeper than D based on the obtained weights ω(x) (3).

M (x) =
{

1, if ω(x) ≤ T s.t. geometrical constraints : L,W,D
0, otherwise. (3)

Here T is a user defined threshold which controls the sensitivity of the
detection. Usually the values between 0.5 and 0.7 provide good results;
we used T = 0.63 in all our experiments.

Fig. 2 (right) shows the resulting binary mask where one full and one
partial stripe artefacts detected. Notably all other features, even those
with the weights bellow the threshold T, have been excluded as they did
not satisfy the imposed geometrical constraints.

We tested this method extensively on different samples when
generating training data for the DL inpainting approach (see Sec. 3.2).
The method is proven to be reliable to detect different types of stripes in
the data with a low level of false alarms.

The presented method for stripes detection and mask generation is
implemented in C language and integrated into open source TomoPy
package with Python interface [16].

2.2. Data inpainting method

Many inpainting techniques are based on various diffusion models, i.
e. a subject to a solution of a partial differential equation (PDE) [17,18].
The PDE-based methods, however, frequently blur the inpainted region
and also require implementing non-trivial iterative numerical schemes
to ensure convergence stability. The expensive iterative PDE evolution
can be also time-consuming and impractical for large data sizes in ma-
terial science. Some inpainting methods try to predict the direction of
smoothing [19,20], but for complex samples this is rarely possible.

The proposed inpainting method was designed with several targets in
mind: effectiveness, stability, minimum of free parameters and compu-
tational feasibility for big data. It is a morphological approach, similar to
methods in [21,22].

Let Ω be the region to be inpainted in the sinogram g(θ, x, y) and ∂Ω
defines a one-voxel thick boundary between the missing data and the
available data (see Fig. 3). For stripe artefacts, the ∂Ω boundaries are
located on the opposite sides of the inpainted region Ω. In iterations, the
boundary ∂Ω gets updated with new values and the front propagates
until it merges with another boundary.

We define a 3D non-local searching window N(x) for each boundary
voxel such that x ∈ ∂Ω as (2N s(x) + 1)3, where N s is the half-width of
the window. The inpainting algorithm propagates a random element
N(x′) ∕∈ Ω into the point x ∈ ∂Ω. It is also possible to propagate mean or
median of values in the neighbourhood N(x) (implemented in the

Fig. 2. The results of applying stripe detection algorithm to sinogram data. Left image shows a sinogram with two stripes present, one full (around 1100 on the
horizontal x-axis) and one partial and weaker (around 1650); Middle image shows the result of applying step 1 to calculate weights; Right image demonstrates the
binary mask obtained from the weights. Note that this detection method was able to detect artefacts of different length and intensity and reject false alarms (features
that belong to the sample) at the same time.

Fig. 3. The image shows the process of inpainting the missing data in the Ω
stripe region. The boundaries ∂Ω are located on the opposite sides of Ω and they
contract in iterations while getting inpainted. Non-local window N(x) ∈ ∂Ω
defines the area where a random element N(x′) ∕∈ Ω is selected for inpainting.

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

4

method), however, for this study we used only the random assignment
method.

The proposed approach has only two free parameters N s - the half-
size of the searching window and the number of iterations to raster
through the already inpainted area (relates to the smoothing effect). For
our experiments we used N s = 5 and the number of iterations equals to
5. The window N s should be relatively small to avoid N(x) containing
neighbours that are too distant (see Sec. 5).

To minimise the presence of outliers that can be generated by
random selection, we apply a Gaussian filter after every iteration of the
algorithm.

Overall the proposed technique is simple and fast, yet generally
effective, as we show in Sec. 4. The main idea of the method is to sample
values from the neighbourhood of usable data. This method reduces the
amount of blurring and regions overspilling compared to inpainting
methods based on PDEs (e.g. linear or non-linear diffusion) or averaging
(see Fig. 4).

In Fig. 4, the morphological inpainting based on the mean value
results in a blurred area with a significant level of intensity overspilling
(see the diagonal edge area where brighter intensities merged into
darker ones). The median-based inpainting reduces the overspilling, but
introduces the vertical artefact where contracting boundaries meet
during inpainting process. This can be minimised by using larger kernels
N s ≥ 7, but the computational speed will decrease substantially. The
proposed method based on the random value shows more naturally
looking inpainted region with less overspill. The inpainting with cGAN
shows an accurate recovery with the direction of features preserved and
without intensity spill. It is also the most natural looking inpainted area
without smoothing.

2.3. Conditional generative adversarial networks

2.3.1. Objective function
GANs were first proposed in [23] as a minimax game consisting of

two players; a Generator G and a Discriminator D. The goal of the
Discriminator is to classify images as either real or generated. The goal
of the Generator is to fool the Discrminator into classifying its generated
data as real. Formally, this can be written as:

min
G

max
D

J GAN(G,D) = Ey[logD(y)] + Ez[log(1 − D(G(z)))] (4)

where z is a vector of random noise and y is a sample from the real data
distribution.

Conditional GANs [24] are a variant of GANs that involve condi-
tioning the Generator and Discriminator on some extra information x:

min
G

max
D

J GAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z)))] (5)

Following the approach of [14], we do not provide G with the
random noise vector z, instead providing G solely with the conditional
information x. This is because for the problem of ring artefact removal, a
machine learning method should be as deterministic as possible. Any
randomness in the Generator’s input could lead to randomness in the
inpainted stripes, which in turn could cause artefacts in the re-
constructions. Removing z decreases the stochasticity of the network. So
we re-write Eq. (5) as:

min
G

max
D

J GAN(G,D) = Ex,y[logD(x, y)] + Ex[log(1 − D(x,G(x)))] (6)

In our case, x is a sinogram with stripe artefacts, and y is the same
sinogram but without stripes (a target). In theory, given x, G will learn to
generate sinograms that look as close to y as possible. Practically,
however, this is not always true. GANs are notoriously difficult to train,
and often lead to problems such as mode collapse or early convergence
[25], affecting the quality of generated images.

Following the approach of [14], we include an L1 loss term in the
objective of G to stabilise training and to encourage generated images to
look similar to real images in an absolute sense:

J L1 (G) = Ex,y[‖ y − G(x)‖1] (7)

The objective of the GAN now becomes:

min
G

max
D

J GAN(G,D) + λL1 min
G

L L1 (G) (8)

where λL1 is a weighting hyperparameter.
Preliminary testing showed that networks struggled to generate

sinogram images with the resolution required for a high quality recon-
struction. To avoid this problem, a binary mask M (3) is used to indicate
the locations of stripe artefacts, where 1 = stripe and 0 = no stripe.

Rather than conditioning the GAN on the sinogram with stripes x, we
condition it on the mask M x. Additionally, as the non-stripe areas of the
sinogram have no artefacts and do not need changing, we add a final
post-processing step to G so that only stripe areas of the input are
changed. The final objective with these changes is as follows:

min
Ĝ

max
D

J GAN(Ĝ,D) + λL1 min
Ĝ

J L1 (Ĝ) (9)

where

Ĝ(x,M x) = (1 − M x) ⊙ x + M x ⊙ G((1 − M x) ⊙ x), (10)

and ⊙ is the component-wise multiplication.
The process of conditioning generator G on a binary mask M x is

shown in the Fig. 5 and the training process in Fig. 6.
We also re-formulate the L1 loss term so that it is only calculated on

stripe regions of the generated image. As shown in Fig. 5 and formulated
in Eq. (10), non-stripe regions in the generated image get replaced by the
corresponding non-stripe regions in the input image. As the input is
identical to the target apart from the stripes, the absolute error on non-
stripe regions will be 0. This will skew the L1 loss when averaged across
every pixel, and so the Generator will suffer from vanishing gradients.
Therefore, in the backward pass, G’s weights should only be updated
with respect to their contribution to stripe regions.

The mask-conditioned L1 loss can be expressed as:

J L1 (G,M x) = Ex,y[‖ (M x ⊙ y) − (M x ⊙ G(x))‖1] (11)

2.3.2. Network architecture
We apply our models to patches of sinograms of size 1801 × 256,

rather than whole sinograms. This splitting ensures that the angular
dimension where the stripe lies is full and not cropped. Notably, this is
different to the PatchGAN approach of [14], where they use the

Fig. 4. Applying different types of morphological inpainting and the proposed
cGAN inpainting to a missing data region in the sinogram. Notice the natural
looking inpainted region while using cGAN compared to other methods.

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

5

receptive field of the discriminator to virtually split an input image into
patches. We split every image in the dataset into patches as a
pre-processing step, and design our network architecture around this.

We used a U-Net generator [26] with eight encoding layers and eight
decoding layers (see the top image in Fig. 7). Each encoding layer
consists of a 2D convolution with kernel size 4, stride 2 and padding 1,
followed by batch normalisation with ϵ = 0.001, and finally a leaky
ReLU with slope 0.2. The first and final decoding layers don’t include
batch normalisation, and the final layer has a normal (non-leaky) ReLU

activation. The first encoding layer has 64 convolutional filters, which
doubles every layer down to layer 4, where it remains at 512 until the
final encoding layer. Each decoding layer consists of a 2D transposed
convolution with kernel size 4, stride 2 and padding 1, followed by batch
normalisation with ϵ = 0.001, and finally a ReLU activation. The final
decoding layer doesn’t include batch normalisation, and uses a tanh
activation. Additionally, the first three decoding layers include dropout
with p = 0.5. Skip connections concatenate the output of an encoding
layer with a decoding layer, which is then input to the next decoding

Fig. 5. Diagram showing how the Generator is conditioned on a binary mask (Ĝ as described in Eq. (10)). Here Stripe is a sinogram with stripes, Mask is a binary
mask indicating the locations of those stripes, and Inverse Mask is the negation of Mask. The symbol ⊙ represents element-wise multiplication, and + represents
element-wise addition.

Fig. 6. The training procedure for objective function optimisation. Here Clean is the same sinogram as Stripe without stripes. Joint Loss represents the weighted
summation of adversarial and L1 loss in Eq. (9). Solid lines indicate the forward pass, dotted lines indicate the backward pass.

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

6

layer. The first four decoding layers have 1024 convolutional filters,
after which the number of filters halves up to layer 7 with 128 filters,
followed by the final decoding layer which has 1 filter, outputting a
single-channel greyscale image.

Our discriminator architecture mirrors that of the generator’s

encoder (see the bottom image in Fig. 7). It has eight layers, each con-
sisting of a 2D convolution with kernel size 4, stride 2 and padding 1,
followed by batch normalisation with ϵ = 0.001, and finally a leaky
ReLU activation with slope 0.2. The first and final layers don’t include
batch normalisation, and the final layer’s activation is a sigmoid

Generator
Conv+LeakyReLU

Legend:

Conv+BatchNorm+LeakyReLU

Conv+ReLU

ConvTranspose+BatchNorm+ReLU

ConvTranspose+Tanh

256

1801

128 64 32 16 8 4

1

Input

64

128

256

512

512

512

512

512

Output 128 256 512

900

450

225

112 56 28 14

7

2

102410241024 1024

256

1801

128

64

32

16

8

4

900

450

225

112

56

28

14

2

Concatenation

256

1801 128
64

32
16

8
4

1

Input
64

128
256

512
512

512
512

Output

900

450

225

112

56

28

14

7

2

Conv+Sigmoid

Discriminator

Fig. 7. The architecture of the Generator (top) and the Discriminator (bottom).

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

7

function. The number of convolutional filters for the discriminator be-
gins at 64, and doubles every layer up to layer 4 with 512 filters. Layers
5, 6, and 7 have 512 filters, and the final layer has 1 filter, outputting a 7-
dimensional vector. The final output probability of D is calculated as the
mean of the components of this vector.

We optimise our models using Adam optimisation algorithm [27]
with learning rate α = 0.0002, β1 = 0.5, β2 = 0.999 and ϵ = 10− 8, and
we set the weighting parameter λL1 = 100.

3. Data generation

3.1. Data collection

Measurements were collected at the Beamline I12-JEEP [28] at
Diamond Light Source Ltd. A high-resolution pco.edge camera (Photon
Lines Ltd.) with optical module 2 (pixel size 7.91 × 7.91 µm) was used
for data collection with LuAG:Ce scintillator. The monochromatic X-ray
radiation with energy E = 55 keV was selected. The detector resolution
in pixels is 2160 × 2560.

The dynamic process of liquid flow (colloidal solution of CaCO3 in
water) through highly porous sandstones (with random pore sizes from
micron size up to approx. 2 mm in diameter) was used as a model
experiment. Calcium carbonate was used as a contrast agent due to
relatively high X-ray absorption. High-resolution tomographic scans of
pure sandstones in transparent vials were performed before each dy-
namic experiment at different heights with vertical step 0.1 mm over a
vertical translation of 2 mm. This means data can be recorded for mul-
tiple overlapping volumes with scintillator defects covering different
features of the sandstone at different vertical translations.

A large amount of flats (200 frames) and darks (200 frames) were
collected before each dynamic experiment, and during each dynamic
experiment only projections were acquired. The tomography stage was
continuously rotated at a fixed vertical translation for the duration of the
dynamic experiment, allowing continuous acquisition of tomography
data (1801 projections per tomography) with gaps. The calcium car-
bonate solution was slowly injected into the transparent vial with
sandstones via a remotely controlled syringe pump (Harvard Apparatus)
with 20 ml syringes. After the injection of the solution, the slow diffu-
sion process of the contrast agent CaCO3 into the pores of sandstones
was observed in reconstructed tomography data. The total length of each

dynamic experiment exceeded 20 min, allowing the completion of the
diffusion process.

In order to improve model generalisation, the datatset must include
broader, more diverse samples. Two external datasets [36,37] were
used: one was included in the training set [36], and another was used to
analyse the model’s performance on unseen data [37]. Two samples of
the sandstone data that was used for training were uploaded to Zenodo
[38].

3.2. Data generation

The training and testing datasets were created from five tomographic
scans (see Sec. 3.1). To ensure successful training, pairs of artefact-free
target images (‘clean’) and input images containing stripe artifacts
(‘stripe’) were obtained (see Fig. 8). Each patch in a target-input pair
must be identical apart from the simulated stripes, therefore the patches
that contained stripes were excluded.

We generated our training dataset as follows: .

1. Applied the stripe detection algorithm (see Sec. 2.1) to the full vol-
ume of 1801 × 2160 × 2560 voxels to get a binary mask with the
detected stripes.

2. Split each 1801 × 2560 sinogram into ten 1801 × 256 rectangular
patches. Note that we preserved the full angular dimension (1801) in
order to ensure the completeness of a stripe.

3. For each patch, retrieved the corresponding mask from the full mask
volume. If the sum of the mask was > = 1, then the patch contained a
stripe and was discarded.

4. Using only ‘clean’ patches, added simulated stripes of various width
to the data using TomoPhantom software [29].

We also cropped out patches that did not contain any structural in-
formation or solely contained noise, as these are not useful for training
and could affect the model’s performance. Ultimately, we ended up with
75,487 target/input pairs, which were split into train, validate and test
sets with ratio 3: 1: 1. This meant we had 45,293 training images, 15,097
validation images, and 15,097 testing images. We used a batch size of
16, giving 2831 training batches, 944 validation batches, and 944
testing batches.

Fig. 8. This diagram shows the process of generating training data from real tomographic measurements for the subsequent use in the deep learning training. The
stripe detection algorithm (see Sec. 2.1) helps to identify the ‘clean’ and ‘stripe’ data patches. Using the ‘clean’ data patches (no stripes present), the stripes are
simulated and the pairs of targets and inputs are generated.

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

8

4. Results

4.1. Software

NoStripesNet1 is a software package containing the Python code
which reproduces results presented in the paper. It is written using the
machine learning framework PyTorch [30] and consists of modules for
data generation, pre-processing, model training and visualisation.

The model was trained for 100 epochs on 16 NVIDIA P100 GPUs,
split across 4 nodes of a computer cluster. This parallelism was accom-
plished using PyTorch’s DistributedDataParallel module, which in turn
uses the NVIDIA Collective Communications Library. Training in this
manner allowed us to achieve a speed of 4.9 times that of single-node,
single-GPU training. The total training time was 18 h.

A graph of Generator and Discriminator losses can be seen in Fig. 9.
The graph shows expected behaviour from the two networks; whenever
Discriminator loss drops, Generator loss rises, reflecting the adversarial
nature of GANs. Interestingly, the Discriminator was quite stable for the
first 10 epochs as its loss did not vary much. This could be because, in the
early epochs of training, the Discriminator had not yet learnt how to
distinguish between real and fake images and mostly outputted a
probability of 0.5. This would result in a binary cross entropy loss of
0.693, which is similar to that which is shown in Fig. 9. The model was
then evaluated on the testing dataset, achieving a peak-signal-to-noise
ratio (PSNR) of 45.114 for the whole region of interest (ROI). See
more detailed analysis for separate ROIs in Tables 2 and 3. We also
calculated the structural similarity metric [31], which resulted in values:
0.9851 for the whole ROI, 0.85 for the ROI with simulated stripes only
and 0.91 for the ROI when stripes were inpainted using GANs.

We also trained our model for 100 more epochs, totalling 200, to
assess whether more training would lead to better results. Fig. 10 shows
the losses for the full 200 epochs.

One can see that training for more than 100 epochs led to worse
model performance. Generator loss increases and Discriminator loss
decreases rapidly, meaning the Discriminator is better able to tell the
difference between real and fake images, which in turn means the
Generator produces worse outputs. Therefore, we opted to use the model
trained for 100 epochs when calculating any further results.

4.2. Stripes removal for real data

We measured the performance of the model in two ways. First, we
applied the model to synthetic stripes on real-life data. This means we
have a ground-truth ‘clean’ image with no stripes which can be used as a
reference to perform a quantitative analysis. Second, we applied the
model to real-life stripes. As there is no usable reference image in this
case, only a qualitative analysis can be performed.

We also compared the model’s performance to the algorithmic
inpainting method described in Sec. 2, as well as two popular ring
removal methods: Fourier Wavelet (FW) filtering [32], and algorithm
no. 3 from [5] (Sorting).

4.2.1. Removing synthetic stripes
We used the simulated synthetic stripes from Sec. 3.2 to evaluate the

ring removal methods. We created two volumes from this data; one that
contains no artefacts (‘clean’) and another that contains synthetic stripes
(‘stripe’). We applied all methods to the ‘stripe’ volume, and then
calculated the root mean squared error (RMSE) between the clean vol-
ume and the method’s output. We calculated RMSE (see Table 2) in
three different ways: on the whole sinogram, just stripe regions, and just
non-stripe regions. Parameters for each method were optimised in a way
to produce the lowest RMSE for the whole and the stripe region
respectively.

As shown in Table 2, the algorithmic inpainting had the lowest RMSE
and cGAN inpainting very close to it, meaning it was able to most
accurately restore the artefact areas to their original values. Both
inpainting methods had an RMSE of 0 in non-stripe regions, as they only
change data in stripe regions. This reflects one of the main differences
with ring removal filters where the whole data is modified. Generally the
latter should be avoided or minimised, but with filters this is rarely
possible (see more on this in Sec. 5).

The FW filtering method had the highest RMSE of all for whole
sinograms and non-stripe ROIs. However, the sorting method had the
highest RMSE for stripe ROIs. The FW method applies filtering in the
Fourier space, after the Wavelet transform. It is possible that useful data
components can be suppressed (filtered out) with the damping of ver-
tical artefacts. The sorting method relies on the size of the median filter
kernel for smoothing, which is related to the thickness of stripes present
in the data. As the kernel of the filter is shift invariant, it is difficult to
accommodate stripes of variable thickness with this algorithm (there is a
separate algorithm for larger stripes in [5]).

We also performed a qualitative analysis of stripe removal perfor-
mance for synthetic stripes, the results of which can be seen in Fig. 11.
We show the output of each method for a particular stripe sinogram, as
well as the residual between each output and the equivalent clean
sinogram. As expected, the two filtering methods (FW and sorting)
change both stripe and non-stripe ROIs, whereas the inpainting methods
only change stripe ROIs. Interestingly, FW filtering appears to make lots
of medium intensity changes to the image as a whole, as shown by the
mostly uniform purple residual. This explains why its RMSE for stripe
and non-stripe ROIs are within the same order of magnitude, unlike the
other methods. The sorting method is able to smooth out and remove
small, high frequency stripes, which none of the other methods are able
to do. However, it also makes changes to non-stripe regions, as shown by
the high intensity areas around the centre of the image.

In Table 3 we present a quantitative analysis of the reconstructed
images with the simulated stripes using GridRec [33] reconstruction
method from the TomoPy package [16]. Interestingly, in the recon-
structed images applying the sorting algorithm resulted in the highest
RMSE with the FW method close to it. Then the lowest value achieved
using the algorithmic inpaiting and the cGAN method is slightly behind
it. Although metric-wise the cGAN method is slightly underperforms
compared to algorithmic inpainting, visually it is difficult to assess with
certainty which one is better as we demonstrate it in the following
section.

4.2.2. Removing real stripes
We use the normalised tomographic scan volume to analyse the

performance of each method on real-life stripes. In order to know which
sinograms contain real stripes, and so that the inpainting methods have
masks to use, we use the 3D mask volume created using the stripe
detection algorithm in Sec. 2.1.

Similar to synthetic stripes, in Fig. 12 we show the output of each
method and its residual. There is no clean image to use as a reference, so
the residual is instead calculated between the stripe image and the
output of each method. This means that the residuals in this section
represent how much each image was changed, rather than how close
each image was to being artefact-free.

In Fig. 13, we also demonstrate the GridRec reconstruction applied to
filtered and inpainted data from Fig. 12.

Similar to synthetic data, FW filtering seems to uniformly effect
almost the entire image, and the reconstruction residual is also very
high. This filtering causes additional artefacts, as the centre of the image
is darker than the outer section. The sorting method effectively removes
the stripes, as can be seen by the two bright vertical lines in the centre of
the residual. However, it also has an effect on non-stripe data, as residue
of the sinogram can be seen in the residual. In the reconstruction space,
the sorting method has a more local effect, however there is still some
non-stripe information being changed in the centre of the residual. The 1 https://github.com/dkazanc/NoStripesNet

D. Kazantsev et al.

https://github.com/dkazanc/NoStripesNet

Tomography of Materials and Structures 4 (2024) 100019

9

thicker rings are not fully removed with this method (see the magnified
reconstructed images in Fig. 14).

The two inpainting methods successfully restore the data only within
stripe regions, as can be seen in the reconstructions. Both of the methods
suppress the rings effectively, but the algorthmic inpainting introduces
some streaks into the reconstruction (more obvious in Fig. 14), whereas
the cGAN inpainting does not. The cGAN reconstruction residual,
however, does seem to have slightly larger residue values than algo-
rithmic inpainting.

4.3. Model generalisation

We performed two tests to analyse how well the cGAN model is able

to generalise to data unseen during its training.
One possible application of the proposed DL stripe removal method is

in-situ dynamic tomographic imaging experiments [1]. Specifically, the
studies of fluid dynamics processes in porous media [34,35]. The ‘dry’
tomographic scan for DL training can be initiated in the beginning of the
experiment and the obtained model can then be used to process dynamic
scans. In this case, the changes in the sample structure are not significant
and we would expect the model to perform well.

Another test for model generalisation capabilities involved a totally
new sample, with structure dissimilar to anything in the model’s
training dataset. In this case, it is unclear if the model will perform well.

4.3.1. Generalisation to dynamic data
In this case study, we applied the proposed method to a dynamic

tomographic scan of a sandstone rock which had a solution of calcium
carbonate dripped through it during the scan (see Sec. 3.1). Notably, the
‘dry’ scan of the same sample was included in the training data; we did
not train on any of ‘wet’ data. The results are presented in Figs. 15 and
16.

Similar to Sec. 4.2, the two filtering methods change sample infor-
mation in addition to artefact information. The sorting method is
somewhat successful, suppressing, but not removing, the artefact
entirely. The inpainting methods are both quite effective, and the
algorithmic inpainting does not seem to introduce streaks here. In
general, both inpainting methods seem to work quite well and the cGAN
inpainting generalises well in this case of applying the model to unseen
dynamic data.

4.3.2. Generalisation to unseen data
Here, we applied the cGAN model to unseen data sourced from [37],

which is a totally different sample from those which are used in the
training set. The scan was pre-processed using the dataset creation
routine detailed in section 3.2. The other stripe removal methods used
for comparison in section 4.2 were also applied to this dataset, and the
results are shown in Figs. 17 and 18.

Fig. 9. Generator and Discriminator losses during training for 100 epochs. Generator loss is in blue with values on the left side of the graph, and Discriminator loss is
in orange with values given on the right side of the graph. Generator peaks correspond to Discriminator troughs, and vice versa, which is expected due to the
adversarial nature of GANs.

Table 2
Root mean squared Error (RMSE) on synthetic stripes of Fourier Wavelet (FW)
filtering [32], algorithm no. 3 from [5] (Sorting), the algorithmic inpainting
method described in Sec. 2.2, and the cGAN model. RMSE was calculated on the
whole image (whole), just stripe regions (stripe) and just non-stripe regions
(non-stripe). Notably the algorithmic inpainting provides the best result and the
cGAN model inpainting is close to it in terms of RMSE. Both methods rely on the
detection algorithm and therefore do not change the data outside the mask,
hence RMSE in non-stripe ROI is zero for both.

Method RMSE (whole) RMSE (stripe) RMSE (non-stripe)

Fourier Wavelet 2066.95 3013.01 2017.49
Sorting 677.88 3220.45 206.98
Alg. inpainting 161.54 804.29 0
cGAN Model 204.40 1017.64 0

Table 3
Root mean squared Error (RMSE) of the reconstructed volumes.

Method: None FW Sorting Alg. inpaint. cGAN Model

RMSE 0.024 0.012 0.014 0.0064 0.0088

Fig. 10. Generator and Discriminator losses during training for 200 epochs. Generator loss is in blue with values on the left side of the graph, and Discriminator loss
is in orange with values given on the right side of the graph. Notably, the performance worsens after 100 epochs, hence we used the model from the 100th epoch.

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

10

Fig. 11. Results of various methods on synthetic stripes. Top row shows sinograms, bottom row shows residuals between the output of each method and the ground
truth clean sinogram.

Fig. 12. Results of various methods on real stripes. Top row shows sinograms, bottom row shows residuals between the output of each method and the
stripe sinogram.

Fig. 13. Results of various methods on real stripes. Top row shows reconstructions, bottom row shows residuals between the output of each method and the stripe
reconstruction.

Fig. 14. Enlargement of ring artifact region in Fig. 13.

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

11

The model is quite successful at removing both stripes, however
some residue of the larger stripe on the bottom can still be seen in
Fig. 18. This residue is also present in the algorithmic inpainting, while
both filtering methods fail to entirely remove the stripe. FW changes the
whole image, which is shown especially well in the residual of the
reconstruction. These residuals also show that the cGAN inpainting
produces less streaks in reconstruction space than the algorithmic
inpainting, even on data the model has not been trained on.

These tests show that the cGAN model is able to generalise quite well.
It is able to successfully remove most artefacts and replace them with
accurate, realistic data consistent with the rest of the sample, even when
no similar samples exist in the training dataset. However, sometimes the
model struggles to remove some artefacts, but the other methods can
also be prone to errors (see Sec. 5).

5. Discussion and conclusions

In this paper, we presented three novel algorithms that were used to

detect and suppress vertical stripe artefacts in sinograms. We used a
novel stripe detection algorithm to locate the stripes in the data, which is
a crucial step in identifying stripe-free regions which were used for deep
learning training to inpaint the data. This approach makes it possible to
re-use the collected raw data for training and apply the model to the
same or similar unseen data. We demonstrated cases of successfully
applying the network to dynamic in-situ data as well as to unseen data.

Arguably, data inpainting approach is not a generic solution for
stripe or ring removal problems. There are cases when useful data in
stripe regions can be restored almost exactly, without the need for new
data generation. There are, however, situations when stripes in the data
are severe (‘unresponsive’ or ‘dead’ stripes) and there is no any useful
underlying information that can be used for a more gentle restoration. In
this case, the presented data completion/inpainting methods would be
the best choice. Furthermore, the detection of severe stripes could be a
simple thresholding problem without the need of a sophisticated stripe
detection algorithm.

Unfortunately, it is still problematic to come up with a generic stripe

Fig. 15. Results of various stripe removal methods on a dynamic tomographic scan. The top row shows sinograms, and the bottom row shows the residual between
each sinogram and the sinogram with stripes (top left).

Fig. 16. Results of various stripe removal methods on a dynamic tomographic scan. The top row shows reconstructions, and the bottom row shows the residual
between each reconstruction and the reconstruction with stripes (top left).

Fig. 17. Results of various stripe removal methods on tomographic data unseen by the cGAN model during training. The top row shows sinograms, and the bottom
row shows the residual between each sinogram and the sinogram with stripes (top left).

D. Kazantsev et al.

Tomography of Materials and Structures 4 (2024) 100019

12

removal method that would work equally well for all types of stripe
artefacts. We are interested to explore the possibility of detecting and
classifying different artefact types so that a particular stripe removal
method can be applied. It is questionable if the whole process of stripes
detection and restoration should be a part of one neural network. In this
study, to make the problem less complex, we intentionally decoupled the
general detection-removal problem so to specifically investigate the
capabilities of the network to inpaint the data competitively.

In addition to the conditional generative adversarial network for
inpainting, we presented a new algorithmic inpainting method, which
delivers competitive results. Although the development of such algo-
rithm was not the main goal of this paper, we demonstrated the superior
performance of the method in terms of quantitative metrics compared to
the deep learning method. Qualitatively, however, it is arguable which
method performs better. The reconstruction using the algorithmically
inpainted data, produces more streak artefacts than the deep learning
method.

Possible improvements of the algorithmic inpainting could be more
intelligent, rather than random, sampling. For example using Markov
random field ideas of contextual connections in the images. This might
have a better restorative effect on the existing boundaries in the data.
Another interesting development will be to make the searching neigh-
bourhood window in the method to be shift variant based on the dis-
tance from the region of usable data.

We would also like to add that the presented approach of collecting
the training data using the available raw data and then applying the
neural network, can be extended to other tomographic problems:
removing metal artefacts or highly absorbing inclusions, removing
outliers or clusters of outliers, and potentially other erroneous features
in the data that can be detected and simulated.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

The authors acknowledge facilities and the support provided by
Diamond Light Source. The authors acknowledge the Year in Industry
scheme at Diamond Light Source that helped authors work on this
project. The authors thank I12 beamline of DLS for the in-house beam-
time provided (visit nt33730-1 in 2022) supporting this development.

References

[1] P.J. Withers, C. Bouman, S. Carmignato, V. Cnudde, D. Grimaldi, C.K. Hagen,
E. Maire, M. Manley, A. DuPlessis, S.R. Stock, X-ray computed tomography, Nat.
Rev. Methods Prim. 1 (1) (2021) 18, https://doi.org/10.1038/s43586-021-00015-.

[2] T.M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam
CT, Springer, 2008, https://doi.org/10.1007/978-3-540-39408-2.

[3] M. Bertero, P. Boccacci, C. De Mol, Introduction to Inverse Problems in Imaging,
CRC Press, 2021, https://doi.org/10.1201/9781003032755.

[4] F.P. Vidal, J.M. Létang, G. Peix, P. Cloetens, Investigation ofartefact sources in
synchrotron microtomography via virtual X-ray imaging, Nucl. Instrum. Methods
Phys. Res. Sect. B Beam Interact. Mater. At. 234 (3) (2005) 333–348, https://doi.
org/10.1016/j.nimb.2005.02.003.

[5] N.T. Vo, R.C. Atwood, M. Drakopoulos, Superior techniques foreliminating ring
artifacts in X-ray micro-tomography, Opt. Express 26 (22) (2018) 28396–28412,
https://doi.org/10.1364/OE.26.028396.

[6] K.A. Mohan, S.V. Venkatakrishnan, J.W. Gibbs, E.B. Gulsoy, X. Xiao, M. De Graef,
P.W. Voorhees, C.A. Bouman, TIMBIR: a method for time-space reconstruction
from interlaced views, IEEE Trans. Comput. Imaging 1 (2) (2015) 96–111, https://
doi.org/10.1109/TCI.2015.2431913.

[7] H.O. Aggrawal, M.S. Andersen, S.D. Rose, E.Y. Sidky, A convexreconstruction
model for X-ray tomographic imaging with uncertain flat-fields, IEEE Trans.
Comput. Imaging 4 (1) (2017) 17–31, https://doi.org/10.1109/
TCI.2017.2723246.

[8] D. Kazantsev, F. Bleichrodt, T. van Leeuwen, A. Kaestner, P.J. Withers, K.
J. Batenburg, P.D. Lee, A novel tomographic reconstruction method based on the
robust Studentas t function for suppressing data outliers, IEEE Trans. Comput.
Imaging 3 (4) (2017) 682–693, https://doi.org/10.1109/TCI.2017.2694607.

[9] Yoo, S., Yang, X., Wolfman, M., Gursoy, D., Katsaggelos, A.K. Sinogram image
completion for limited angle tomography with generative adversarial networks, in:
Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP),
2019, 1252–1256.10.1109/ICIP.2019.8804416.

[10] Li, Z., Zhang, W., Wang, L., Cai, A., Liang, N., Yan, B., Li, L. A sinogram inpainting
method based on generative adversarial network for limited-angle computed
tomography. In: Proceedings of the Fifteenth International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 11072,
2019, 345–349.10.1117/12.2533757.

[11] Z. Wang, J. Li, M. Enoh, Removing ring artifacts in CBCT images viagenerative
adversarial networks with unidirectional relative total variation loss, Neural
Comput. Appl. 31 (2019) 5147–5158, https://doi.org/10.1007/s00521-018-
04007-6.

[12] M.U. Ghani, W.C. Karl, Fast enhanced CT metal artifact reduction using data
domain deep learning, IEEE Trans. Comput. Imaging 27 (6) (2019) 181–193,
https://doi.org/10.1109/TCI.2019.2937221.

[13] E. Valat, K. Farrahi, T. Blumensath, Sinogram inpainting withgenerative
adversarial networks and shape priors, Tomography 9 (3) (2023) 1137–1152,
https://doi.org/10.3390/tomography9030094.

[14] P. Isola, J.Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional
adversarial networks, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2017)
1125–1134, https://doi.org/10.1109/CVPR.2017.632.

[15] E.M. Anas, S.Y. Lee, M.K. Hasan, Removal of ring artifacts in CTimaging through
detection and correction of stripes in the sinogram, Phys. Med. Biol. 55 (22) (2010)
6911, https://doi.org/10.1088/0031-9155/55/22/020.

[16] D. Gürsoy, F. De Carlo, X. Xiao, C. Jacobsen, TomoPy: a framework for the analysis
of synchrotron tomographic data, J. Synchrotron Radiat. 21 (5) (2014) 1188–1193,
https://doi.org/10.1107/S1600577514013939.

[17] Bertalmio, M., Bertozzi, A.L., Sapiro, G. Navier-stokes, fluid dynamics, and image
and video inpainting, in: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR, 2001, 1, I-I. IEEE.
10.1109/CVPR.2001.990497.

Fig. 18. Results of various stripe removal methods on tomographic data unseen by the cGAN model during training. The top row shows image reconstructions, and
the bottom row shows the residual between each reconstruction and the reconstruction with stripes (top left).

D. Kazantsev et al.

https://doi.org/10.1038/s43586-021-00015-
https://doi.org/10.1007/978-3-540-39408-2
https://doi.org/10.1201/9781003032755
https://doi.org/10.1016/j.nimb.2005.02.003
https://doi.org/10.1016/j.nimb.2005.02.003
https://doi.org/10.1364/OE.26.028396
https://doi.org/10.1109/TCI.2015.2431913
https://doi.org/10.1109/TCI.2015.2431913
https://doi.org/10.1109/TCI.2017.2723246
https://doi.org/10.1109/TCI.2017.2723246
https://doi.org/10.1109/TCI.2017.2694607
https://doi.org/10.1007/s00521-018-04007-6
https://doi.org/10.1007/s00521-018-04007-6
https://doi.org/10.1109/TCI.2019.2937221
https://doi.org/10.3390/tomography9030094
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1088/0031-9155/55/22/020
https://doi.org/10.1107/S1600577514013939

Tomography of Materials and Structures 4 (2024) 100019

13

[18] C. Peng, B. Qiu, M. Li, Y. Guan, C. Zhang, Z. Wu, J. Zheng, Gaussian diffusion
sinogram inpainting for X-ray CT metal artifact reduction, Biomed. Eng. Online 16
(1) (2017) 1–7, https://doi.org/10.1186/s12938-016-0292-9.

[19] H. Zhang, J.J. Sonke, Directional sinogram interpolation for sparseangular
acquisition in cone-beam computed tomography, J. X Ray Sci. Technol. 21 (4)
(2013) 481–496, https://doi.org/10.3233/xst-130401.

[20] Y. Li, Y. Chen, Y. Hu, A. Oukili, L. Luo, W. Chen, C. Toumoulin, Strategy of
computed tomography sinogram inpainting based on sinusoid-like curve
decomposition and eigenvector-guided interpolation, JOSA A 29 (1) (2012)
153–163, https://doi.org/10.1364/josaa.29.000153.

[21] A. Telea, An image inpainting technique based on the fast marching method,
J. Graph. Tools 9 (1) (2004) 23–34, https://doi.org/10.1080/
10867651.2004.10487596.

[22] Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C. Image inpainting. In:
Proceedings of the Twenty Seventh Annual Conference on Computer Graphics and
Interactive Techniques, 2000, 417–424.10.1145/344779.344972.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, Adv. Neural Inf. Process. Syst.
(2014) 27, https://doi.org/10.1145/3422622.

[24] Mirza, M., Osindero, S. , Conditional generative adversarial nets. arXiv Preprint
arXiv:1411.1784.2014.10.48550/arXiv.1411.1784.

[25] Goodfellow, I. NIPS 2016 tutorial: Generative adversarial networks, arXiv preprint
arXiv:1701.00160.2016.10.48550/arXiv.1701.00160.

[26] O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networksfor biomedical
image segmentation, Med. Image Comput. Comput. -Assist. Interv. (2015)
234–241, https://doi.org/10.1007/978-3-319-24574-4_28.

[27] Kingma, D.P., Ba, J. Adam: a method for stochastic optimization, in: Proceedings of
the Third International Conference on Learning Representations, 2015.10.48550/
arXiv.1412.6980.

[28] M. Drakopoulos, T. Connolley, C. Reinhard, R. Atwood, O. Magdysyuk, N. Vo,
M. Hart, L. Connor, B. Humphreys, G. Howell, S. Davies, I12: The joint engineering,
environment and processing (JEEP) beamline at diamond light source,
J. Synchrotron Radiat. 22 (3) (2015) 828–838, https://doi.org/10.1107/
s1600577515003513.

[29] D. Kazantsev, V. Pickalov, S. Nagella, E. Pasca, P.J. Withers, TomoPhantom, a
software package to generate 2D–4D analytical phantoms for CT image
reconstruction algorithm benchmarks, SoftwareX 7 (2018) 150–155, https://doi.
org/10.1016/j.softx.2018.05.003.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, Pytorch: an imperative style, high-
performance deep learning library, Adv. Neural Inf. Process. Syst. (2019) 32.

[31] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from
error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004)
600–612, https://doi.org/10.1109/TIP.2003.819861.

[32] B. Münch, P. Trtik, F. Marone, M. Stampanoni, Stripe and ringartifact removal with
combined wavelet—Fourier filtering, Opt. Express 17 (10) (2009) 8567–8591,
https://doi.org/10.1364/oe.17.008567.

[33] F. Marone, M. Stampanoni, Regridding reconstruction algorithm forreal-time
tomographic imaging, J. Synchrotron Radiat. 19 (6) (2012) 1029–1037, https://
doi.org/10.1107/s0909049512032864.

[34] K.J. Dobson, S.B. Coban, S.A. McDonald, J.N. Walsh, R.C. Atwood, P.J. Withers, 4-
D imaging of sub-second dynamics in pore-scale processes using real-time
synchrotron X-ray tomography, Solid Earth 7 (4) (2016) 1059–1073, https://doi.
org/10.5194/se-7-1059-2016.

[35] A.P. Kaestner, P. Trtik, M. Zarebanadkouki, D. Kazantsev, M. Snehota, K.J. Dobson,
E.H. Lehmann, Recent developments in neutron imaging with applications for
porous media research, Solid Earth 7 (5) (2016) 1281–1292, https://doi.org/
10.5194/se-7-1281-2016.

[36] [dataset] Vo, N.T., Atwood, R.C., Drakopoulos, M. Tomographic data for testing,
demonstrating, and developing methods of removing ring artifacts, Zenodo,
2018.10.5281/zenodo.1443568.

[37] [dataset] Vo, N.T., Atwood, R.C., Drakopoulos, M. Tomographic data or
demonstrating distortion correction methods, Zenodo, 2019.10.5281/
zenodo.3339629.

[38] [dataset] Kazantsev, D., Magdysyuk, O., Beveridge, L. Sandstone rock tomographic
data, i12 beamline, DLS synchrotron, Zenodo, 2023.10.5281/zenodo.10033401.

D. Kazantsev et al.

https://doi.org/10.1186/s12938-016-0292-9
https://doi.org/10.3233/xst-130401
https://doi.org/10.1364/josaa.29.000153
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1145/3422622
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1107/s1600577515003513
https://doi.org/10.1107/s1600577515003513
https://doi.org/10.1016/j.softx.2018.05.003
https://doi.org/10.1016/j.softx.2018.05.003
http://refhub.elsevier.com/S2949-673X(23)00017-7/sbref23
http://refhub.elsevier.com/S2949-673X(23)00017-7/sbref23
http://refhub.elsevier.com/S2949-673X(23)00017-7/sbref23
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1364/oe.17.008567
https://doi.org/10.1107/s0909049512032864
https://doi.org/10.1107/s0909049512032864
https://doi.org/10.5194/se-7-1059-2016
https://doi.org/10.5194/se-7-1059-2016
https://doi.org/10.5194/se-7-1281-2016
https://doi.org/10.5194/se-7-1281-2016

	Conditional generative adversarial networks for stripe artefact removal in high-resolution X-ray tomography
	1 Introduction
	2 Methods
	2.1 Stripes detection approach
	2.2 Data inpainting method
	2.3 Conditional generative adversarial networks
	2.3.1 Objective function
	2.3.2 Network architecture

	3 Data generation
	3.1 Data collection
	3.2 Data generation

	4 Results
	4.1 Software
	4.2 Stripes removal for real data
	4.2.1 Removing synthetic stripes
	4.2.2 Removing real stripes

	4.3 Model generalisation
	4.3.1 Generalisation to dynamic data
	4.3.2 Generalisation to unseen data

	5 Discussion and conclusions
	Declaration of Competing Interest
	Acknowledgement
	References

