Heavy Atom Effect in Halogenated mCP and Its Influence on the Efficiency of the Thermally Activated Delayed Fluorescence of Dopant Molecules

Alexandre Malinge, Shiv Kumar, Dongyang Chen, Eli Zysman-Colman,* and Stéphane Kéna-Cohen*

Cite This: https://doi.org/10.1021/acs.jpcc.3c05567

ABSTRACT: In this study, we explore the impact of halogen functionalization on the photophysical properties of the commonly used organic light-emitting diode (OLED) host material, 1,3-bis(N-carbazolyl)benzene (mCP). Derivatives with different numbers and types of halogen substituents on mCP were synthesized. By measuring steady-state and transient photoluminescence at 6 K, we study the impact of the type, number, and position of the halogens on the intersystem crossing and phosphorescence rates of the compounds. In particular, the functionalization of mCP with 5 bromine atoms results in a significant increase of the intersystem crossing rate by a factor of 300 to a value of $(1.5 \pm 0.1) \times 10^{10}$ s$^{-1}$, and the phosphorescence rate increases by 2 orders of magnitude. We find that the singlet radiative decay rate is not significantly modified in any of the studied compounds. In the second part of the paper, we describe the influence of these compounds on the reverse intersystem crossing of the $7,10$-bis-(4-(diphenylamino)phenyl)-2,3-dicyanopyrazino-phenanthrene (TPA-DCPP), a TADF guest, via the external heavy atom effect. Their use results in an increase of the reverse intersystem crossing (RISC) rate from $(8.1 \pm 0.8) \times 10^{6}$ s$^{-1}$ for mCP to $(2.7 \pm 0.1) \times 10^{6}$ s$^{-1}$ for mCP with 5 bromine atoms. The effect is even more pronounced for the mCP analogue containing a single iodine atom, which gives a RISC rate of $(3.3 \pm 0.1) \times 10^{6}$ s$^{-1}$. Time-dependent DFT calculations reveal the importance of the use of long-range corrected functionals to predict the effect of halogenation on the optical properties of the mCP, and the relativistic approximation (ZORA) is used to provide insight into the strength of the spin–orbit coupling matrix element between the lowest-lying excited singlet and triplet states in the different mCP compounds.

INTRODUCTION

The ability to harness triplet excited states, for which radiative decay is typically spin-forbidden, is essential to realizing efficient organic luminescent devices such as in phosphorescent or thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs). These OLEDs can achieve internal quantum efficiencies (IQEs) of up to 100%, as compared to a maximum IQE of only 25% for conventional fluorescent OLEDs, which are limited by the 1:3 singlet:triplet transitions between singlet and triplet excited states—forward and reverse intersystem crossing (ISC and RISC)—and efficient phosphorescence due to the mixing of states of different spin multiplicity.

Spin–orbit coupling is a relativistic effect resulting from the interaction between the magnetic moment \vec{S} of an electron and its orbital angular momentum \vec{l}. The spin–orbit interaction Hamiltonian for a system with n electrons and N nuclei is given by

$$H_{SO} = \sum_{a} \sum_{i} \frac{Z_{a} e^{2}}{8\pi\varepsilon_{0} m_{e} c r_{ii}} \vec{r}_{ii} \cdot \vec{s}_{i}$$

where Z_{a} is the charge of the nucleus a; m_{e} is the mass of the electron; c is the speed of light in vacuum; ε_{0} is the electron charge; ε_{0} is the vacuum permittivity; and r_{ii} is the distance between the electron and the nucleus.

For a hydrogenic atom with quantum numbers n and l, the spin–orbit coupling energy can be estimated using hydrogenic wave function as

$$E_{SO} = \langle nllH_{SO}nl \rangle = \frac{Z^{2} \alpha^{-2} R_{so}}{n^{3}l(l+1/2)(l+1/2)} \hbar$$

where α is the fine structure constant; R_{so} is the Rydberg constant; and \hbar is the reduced Planck constant.

Received: August 17, 2023
Revised: December 14, 2023
Accepted: December 15, 2023

© XXXX The Authors. Published by American Chemical Society
Given that spin–orbit interaction energy is proportional to the fourth power of the nuclear charge, the vast majority of phosphorescent materials used in luminescent devices have been complexes based on transition metals such as platinum, iridium, or europium. The use of relatively heavy halogen atoms can be a promising alternative to transition metals to increase spin–orbit coupling. As further motivation, transition metal complexes tend to have poorer solubility in low-polarity media as compared to purely organic materials, which can be problematic for solution processing.

The heavy atom effect (HAE) in nonmetallic compounds has previously been reported in naphthalimide and fluorene derivatives by using halogens or halocarbon atoms to promote phosphorescence. Moreover, highly efficient and persistent room-temperature phosphorescence (RTP) can be obtained by combining the HAE and halogen bonding. For example, functionalization of 9-(4-(phenylsulfonyl)-benzyl)-9H-carbazole with bromine (CzS2Br) leads to a phosphorescence quantum yield (ΦP) of 52% and a long photoluminescence lifetime of 152 ms because of intramolecular halogen bonding that restrains the molecular motion and reduces nonradiative decay. In dioxygenophthiazone derivatives, phosphorescence is promoted through intramolecular halogen bonding, and the ΦP increases significantly from 0.5% to 11.1%, with a phosphorescence lifetime of 391 ms.

The enhancement of SOC through the HAE can also be useful for increasing the reverse intersystem crossing (RISC) rate in TADF compounds. For example, functionalization of 2,4,6-tetras(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) with iodine has been reported to result in a decrease of the delayed fluorescence lifetime and an increase of the RISC rate from 0.77 × 10^6 s^-1 to 1.5 × 10^7 s^-1.17 Baldo et al. also reported the proximity (external) HAE from halogenated derivatives of the 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host doped with 4CzIPN guest molecules.18

To better understand the impact of halogenation on the photophysical properties of a commonly used organic semiconductor host material, 1,3-bis(N-carbazolyl)benzene (mCP), we investigated the effect of the type and number of halogens on the ISC rate. In the first part of the paper, the kinetic rate constants are obtained through a combination of steady-state and time-resolved photoluminescence (PL) experiments, and the results are compared with those obtained from density functional theory (DFT) calculations. A better understanding of the relationship between the presence of halogen atoms and the photophysical properties of the resulting molecules is important for the design of novel compounds with enhanced phosphorescence and delayed fluorescence. Similarly to ref 21, in the second part of the paper, the use of these molecules as hosts for dopant molecules showing TADF is explored, by doping with the emitter 7,10-bis(4-(diethylamino)phenyl)-2,3-dicyano-pyrazino-phenanthrene (TPA-DCPP). A combination of transient PL and PL quantum yield measurements allows us to obtain the RISC rate, which is modulated via the external HAE. We find a 4-fold increase in RISC rate for the iodine-containing derivative. The use of the external HAE can be an attractive route for reducing the steady-state triplet population in known TADF emitters, which is problematic for both roll-off and stability at high current density.

EXPERIMENTAL METHODS

Materials and General Experimental Information.

All commercially available chemicals and reagent grade solvents were used as received. Air-sensitive reactions were performed using standard Schlenk techniques under a nitrogen atmosphere. Flash column chromatography was carried out using silica gel (60 Å, 40–63 µm). Analytical thin-layer chromatography (TLC) was performed using silica plates with aluminum backings (250 µm with F-254 indicator) and visualized using a 254/365 nm UV lamp. Solution 1H and 13C NMR spectra were recorded in CDCl3 on an NMR spectrometer (400 MHz for 1H and 101 MHz for 13C). The NMR signal is described as follows: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of triplets, and m = multiplets. Melting points were measured using open-ended capillaries on an Electrothermal Mel-Temp melting point apparatus and are uncorrected. High-resolution mass spectrometry (HRMS) analyses were performed at the BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, using a ThermoScientific LCQ Fleet Ion Trap Mass Spectrometer equipped with Ultimate 3000 LC and National Mass Spectrometry Facility at Swansea using a Waters Xevo G2-S QToF mass spectrometer. HPLC traces were obtained using an ACE Excell 2 C18 analytical (3 x 150 mm) column.

Sample Preparation.

The mCP derivatives were purified by thermal gradient sublimation. Thermogravimetric analysis (TGA 8000, PerkinElmer) was performed to avoid exceeding the decomposition temperature. The powder was placed in a crucible in a quartz tube under high vacuum (~10^-6 Torr) and positioned in a gradient temperature furnace (Zhengzhou Protech Technology Co., Ltd. PT-1200T). The powder, located in the hottest zone of the furnace, evaporated and condensed in the tube at a lower temperature.

Thin-film fabrication was performed by spin coating under N2 on 1 cm² silicon substrates (Wafer Pro) using a concentration of 1 wt % mCP (Luminescence Technology Corp.) in PMMA (Sigma-Aldrich, 120000 g·mol^-1) or 10 wt % TPA-DCPP in halogen mCP hosts. The solution was diluted to a concentration of 5 wt % in anhydrous toluene (Sigma-Aldrich), stirred overnight, and then filtered using PTFE filters (Cole-Parmer Essentials 0.2 µm Pore). The spin-coating speed was set at 2500 rpm for 45 s. The samples were then dried at 30 °C for 20 min.

Steady-State and Transient PL and Absorption.

The samples were cooled to 6 K using the Advanced Research Systems DE-204S cryostat, and the temperature was controlled using the Cryo-Con 22C temperature controller. The mCP was excited at 325 nm using a femtosecond Yb:KGW laser (Light Conversion PHAROS Femtosecond Laser) coupled with an optical parametric amplifier (ORPHEUS-F) and second-harmonic generator (LYRA-SH). The output of the second-harmonic generator was filtered using a 420 nm short-pass filter. Photoluminescence spectra were collected using a CCD camera (Pixis 400BExcelon) coupled to a monochromator with a 15 µm slit opening. Nanosecond transient photoluminescence spectra were acquired using a streak camera (Hamamatsu Photonics High Dynamic Range Streak Camera C7700), and the delay was adjusted using a delay generator (Stanford Research Systems DG645). Transient photoluminescence spectra at a longer time range were acquired using a GoPro Hero11 camera at 240 fps. Absorption...
Spectra were obtained by diluting the compounds in anhydrous toluene under N\textsubscript{2} at a concentration of 10-5 mol\textperiodcentered L-1 using a spectrophotometer (PerkinElmer Lambda 25 UV/vis) and quartz cuvettes (Hellma X2) with a 1 cm optical path.

Computational Studies. The computations were performed using the Compute Canada resources and facilities. Molecular structures were visualized using GaussView software. Calculations were performed using Gaussian 16. Relativistic calculations and SOCME were carried out using ORCA 5.0.1 software27. The basis sets used were obtained from the Basis Set Exchange platform28. The solvation effect was modeled using the polarizable continuum model (PCM)29. The 6-31+g(d,p) basis set was chosen following a convergence calculation of electronic energy and molecular geometry. Twenty conformers were generated as initial structures for geometry optimization, and a frequency analysis was performed and revealed no imaginary frequencies, indicating convergence to an energy minimum.

RESULTS

Five halogen-substituted mCP derivatives were synthesized to study the impact of halogenation on the photophysical properties (Figure 1). The mCP derivatives with different halogens (mCP-Br and mCP-I) placed on the central phenyl ring were used to investigate the influence of the halogen type. To study the impact of the number and position of the halogens, additional bromine atoms were attached to the carbazole units of mCP-Br\textsubscript{2}, mCP-Br\textsubscript{3}, and mCP-Br\textsubscript{5}. The synthesis procedure and NMR are provided in the Supporting Information (Figures S1\textendash{}S20).

Thin films of mCP and of its derivatives doped in a poly(methyl methacrylate) (PMMA) matrix were prepared by spin-coating at a concentration of 1 wt % to minimize intermolecular interactions and energy transfer between dopant molecules. All of the data presented in the main text were taken at 6 K to minimize nonradiative decay and allow for efficient phosphorescence. Temperature-dependent PL can be found in the Supporting Information (Figure S21).

The effect of halogenation on the 6 K PL is shown in Figure 2. We found that the addition of the halogens increases phosphorescence efficiency as compared to mCP, which occurs in the 400\textendash{}600 nm spectral range, while simultaneously decreasing the fluorescence intensity, which occurs below 400 nm. The effect is more pronounced for mCP-I than mCP-Br and gradually increases with increasing number of bromine atoms. The relative fluorescence and phosphorescence quantum yields were calculated from the PL spectra by integrating under the curve to obtain the number of photons emitted within each spectral region. From mCP to mCP-Br\textsubscript{5}, we found a significant decrease of the fluorescence quantum yield (Φ_f) from 73% to 0.8%, along with an increase of the low-temperature phosphorescence quantum yield (Φ_p) from 27% to 99.2%.

As can be seen in Figure 2, the position and number of halogens affect the vibronic features in the phosphorescence spectra, but the fluorescence shape remains relatively unchanged. The introduction of halogens on the carbazole in mCP-Br\textsubscript{2}, mCP-Br\textsubscript{3}, and mCP-Br\textsubscript{5} results in a redshift of 5 nm of the emission and an increase of the intensity of vibronic peaks at 423, 431, 454, and 463 nm as compared to mCP, while the presence of the halogen on the central phenyl moiety in mCP-Br and mCP-I did not change the shape of the phosphorescence spectra in these two compounds. The relative intensity of the two vibronic peaks at 410 and 441 nm in mCP is unaffected by the halogenation. The change in the vibronic structure of the triplet emission when bromine is bonded to the carbazole suggests a modification of the vibrational wave functions of the triplet state, which subsequently impacts the Franck\textendash{}Condon factors and the intensity of the vibronic transitions.

Figure 1. Molecular structure of the different mCP derivatives.

Figure 2. Photoluminescence at 6 K, which shows fluorescence (330\textendash{}400 nm) and phosphorescence (400\textendash{}600 nm) emission of mCP and its derivatives, excited at 320 nm. The spectra are normalized with respect to the total number of emitted photons.
Figure 3 shows the time-resolved fluorescence (Figure 3a) and phosphorescence (Figure 3b) traces of the family of mCP derivatives. Figure 3a shows that the fluorescence lifetime is dramatically reduced by the presence of halogens in the mCP derivatives, down to values <100 ps. Solid lines show fits to a biexponential decay model with weighted average lifetimes (τ_f) summarized in Table S1. This biexponential decay is attributed to a combination of aggregation and Förster resonance energy transfer (FRET). We have verified that monoexponential decay is recovered in drop cast films of 0.1 wt % in PMMA (Figure S22) at the cost of a significant reduction in signal. This interpretation was also provided in a previous work comparing transient absorption measurements of mCP in solution and in PMMA thin films. We have further verified that the trends in fluorescence and phosphorescence intensities across different mCP derivatives are not predominantly due to aggregation (Figure S23). In our 1 wt % films, we find that τ_f decreases from 5.7 ± 0.1 ns in mCP to 67 ± 0.5 ps in mCP-Br5. This reduction is notably more pronounced for mCP-I than for mCP-Br, with respective values of 1.04 ± 0.07 ns and 1.88 ± 0.05 ns. From Figure 3b, we found a similar trend for the weighted phosphorescence lifetime (τ_{ph}) obtained from monoexponential fitting. The value of τ_{ph} decreases by 2 orders of magnitude from 3.1 ± 0.1 s for mCP to 28 ± 0.1 ms for mCP-Br5.

Figure 4 shows the absorption spectra of the compounds in toluene. We found very similar molar extinction coefficients (ε) for the $S_0 \rightarrow S_1$ transition across all of the compounds. However, the presence of the halogens shifts the absorption onset from 330 to 360 nm. The same effect can also be observed in the emission spectra, and the origin of this shift is explored below.

Based on these results, we can calculate the different decay rates at 6 K. Assuming that the nonradiative decay rate (k_{nr}) is significantly smaller than the radiative decay rate (k_r) and the ISC rate (k_{ISC}) at 6 K, the decay rates are given by $k_S = \Phi_s \tau_s^{-1}$, $k_{ISC} = \Phi_{ISC} \tau_{ISC}^{-1}$, and $k_{T} = \tau_T^{-1}$. These assumptions are supported by the temperature-dependent PL behavior, which shows that both fluorescence and phosphorescence intensities increase with decreasing temperature until they reach a plateau at 40 K (Figure S21). We ascribe this plateau to a near suppression of nonradiative decay rates due to the low thermal energy available in the environment to drive nuclear motion. Moreover, no delayed fluorescence is observed at 6 K indicating that RISC does not contribute to the singlet population at this temperature. The results are consistent with the study of Wu et al. Importantly, the analysis also leads to only modest changes in k_r across the molecules, which is consistent with the small changes observed in the absorption spectra. Table 1 summarizes the calculated rate constants. Importantly, we found that an increase in the number of halogens enhances k_{ISC} by more than a factor of 300. The ISC rate ranges from (5.3 ± 0.4) × 10^7 s^{-1} for mCP to (1.5 ± 0.1) × 10^{10} s^{-1} for mCP-Br5. The increase in k_{ISC} is three times greater for mCP-I than for the mCP-Br, which is consistent with a stronger SOC induced by the heavier iodine atom. The radiative decay rate from the triplet state also increases by a factor of 100, reaching a value of (36 ± 1) s^{-1} for mCP-Br5. In contrast, the radiative decay rate of the singlet remains relatively unchanged across all of the compounds.

To gain insight into the basis of the relationship between halogen content of mCP and the optical properties of these compounds, we can calculate the third-order polarizability (α) and the dipole moment (μ) of the molecules. These are related to the absorption coefficient (ε) through the Kramers-Kronig relationship. The third-order polarizability is given by $\alpha = \alpha_0 + \alpha_1 + \alpha_2$, where α_0 is the linear term, α_1 is the quadratic term, and α_2 is the cubic term. The dipole moment is given by $\mu = \mu_0 + \mu_1 + \mu_2$, where μ_0 is the linear term, μ_1 is the quadratic term, and μ_2 is the cubic term. The linear terms are related to the molecular structure, while the quadratic and cubic terms are related to the electronic structure. The quadratic terms are related to the dihedral angles between the molecular orbitals, while the cubic terms are related to the quartic terms of the molecular orbitals. The linear terms are related to the molecular geometry, while the quadratic and cubic terms are related to the electronic structure. The quadratic and cubic terms are related to the molecular orbital interactions, while the cubic terms are related to the molecular orbital interactions. The linear terms are related to the molecular geometry, while the quadratic and cubic terms are related to the electronic structure. The quadratic and cubic terms are related to the molecular orbital interactions, while the cubic terms are related to the molecular orbital interactions.
using each of the B3LYP, CAM-B3LYP, and LC-wPBE derivatives, DFT and TD-DFT calculations were performed using each of the B3LYP, CAM-B3LYP, and LC-wPBE functionals. Compared to B3LYP, the use of CAM-B3LYP and LC-wPBE add a long-range correction term, essential to model charge transfer states and noncovalent interactions such as halogen bonds. The LANL2DZ effective core potential was used to model the heavy halogen atoms in the molecule, while the 6-31+g(d,p) basis set was used for the other atoms in the molecules.31,32 The optimized S\textsubscript{0} geometry is expectedly similar for all of the compounds. The dihedral angles between the carbazole moieties and the central phenyl vary by only 3°, and the bond lengths between the carbazole and the phenyl are similar (Table S3). The addition of halogen atoms has therefore only a very minor impact on the molecular geometry at S\textsubscript{0}. These results are consistent with previous DFT calculations conducted on molecules that contain carbazole moieties bonded to a phenyl ring.34,35 Furthermore, the choice of the functional showed no notable differences on the final geometry.

Using the optimized S\textsubscript{0} geometry, TD-DFT calculations were performed to calculate the energy and the oscillator strength of the S\textsubscript{0} \rightarrow S\textsubscript{1} transition. The results are shown in Table 2. The calculations reveal that the oscillator strengths of the S\textsubscript{0} \rightarrow S\textsubscript{1} transition. The results are shown in Table 2. The calculations reveal that the oscillator strengths and absorption wavelengths strongly depend on the choice of functional. The dependence of the excited state energies on the choice of functional has already been reported for halogen analogues of 1,4-di(9H-carbazol-9-yl)benzene, but the most appropriate functional to use remained undetermined due to a lack of experimental data.36 The use of the B3LYP functional predicts a significant decrease of the oscillator strength for mCP-Br\textsubscript{2} and mCP-Br\textsubscript{3} compared to the other compounds, while the 6-31+g(d,p) basis set was used for the other atoms in the molecules.

Table 1. Summary of the Photophysical Properties of the mCP Derivatives at 6 K46

<table>
<thead>
<tr>
<th></th>
<th>(\tau) (ns)</th>
<th>(r_{ph}) (s)</th>
<th>(\Phi_r) (%)</th>
<th>(\Phi_{ph}) (%)</th>
<th>(k_{50}) (10(^8) s(^{-1}))</th>
<th>(k_{70}) (s(^{-1}))</th>
<th>(k_{ISC}) (10(^8) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>mCP</td>
<td>5.7 ± 0.1</td>
<td>3.1 ± 0.1</td>
<td>70 ± 2</td>
<td>30 ± 2</td>
<td>1.25 ± 0.04</td>
<td>0.32 ± 0.01</td>
<td>0.53 ± 0.04</td>
</tr>
<tr>
<td>mCP-Br</td>
<td>1.88 ± 0.05</td>
<td>2.7 ± 0.1</td>
<td>19 ± 1</td>
<td>81 ± 1</td>
<td>1.01 ± 0.06</td>
<td>0.37 ± 0.01</td>
<td>4.3 ± 0.1</td>
</tr>
<tr>
<td>mCP-I</td>
<td>1.04 ± 0.07</td>
<td>1.96 ± 0.04</td>
<td>8.5 ± 0.4</td>
<td>91.5 ± 0.4</td>
<td>0.82 ± 0.07</td>
<td>0.51 ± 0.01</td>
<td>8.8 ± 0.6</td>
</tr>
<tr>
<td>mCP-Br\textsubscript{2}</td>
<td>0.222 ± 0.007</td>
<td>0.056 ± 0.003</td>
<td>1.8 ± 0.1</td>
<td>98.2 ± 0.1</td>
<td>0.81 ± 0.05</td>
<td>18 ± 1</td>
<td>44 ± 1</td>
</tr>
<tr>
<td>mCP-Br\textsubscript{3}</td>
<td>0.128 ± 0.01</td>
<td>0.030 ± 0.002</td>
<td>1.5 ± 0.1</td>
<td>98.5 ± 0.1</td>
<td>1.2 ± 0.2</td>
<td>31 ± 2</td>
<td>76 ± 6</td>
</tr>
<tr>
<td>mCP-Br\textsubscript{5}</td>
<td>0.067 ± 0.005</td>
<td>0.028 ± 0.001</td>
<td>0.8 ± 0.1</td>
<td>99.2 ± 0.1</td>
<td>1.2 ± 0.2</td>
<td>36 ± 1</td>
<td>150 ± 10</td>
</tr>
</tbody>
</table>

\(\tau\) and \(r_{ph}\) are the fluorescence and phosphorescence lifetimes; \(\Phi_r\) and \(\Phi_{ph}\) are the fluorescence and phosphorescence quantum yields; and \(k_{50}\), \(k_{70}\), and \(k_{ISC}\) are the singlet, triplet, and intersystem crossing decay rate constants.

Table 2. Influence of the Functional for TD-DFT Calculation on the Absorption Wavelength and the Oscillator Strength (\(f\)) of the S\textsubscript{0} \rightarrow S\textsubscript{1} Transition for the mCP Derivatives46

<table>
<thead>
<tr>
<th></th>
<th>(\lambda_{abs}) (nm)</th>
<th>(\lambda_{f}) (nm)</th>
<th>(\Phi_r) (%)</th>
<th>(\Phi_{ph}) (%)</th>
<th>(k_{50}) (10(^8) s(^{-1}))</th>
<th>(k_{70}) (s(^{-1}))</th>
<th>(k_{ISC}) (10(^8) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31+g(d,p)</td>
<td>317</td>
<td>329</td>
<td>324</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>327</td>
</tr>
<tr>
<td>LC-wPBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>0.005</td>
<td>0.1704</td>
<td>0.072</td>
<td>0.159</td>
<td>0.0057</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>CAM-B3LYP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>0.159</td>
<td>0.175</td>
<td>0.155</td>
<td>0.144</td>
<td>0.148</td>
<td>0.172</td>
<td></td>
</tr>
<tr>
<td>Tuned CAM-B3LYP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>0.140</td>
<td>0.167</td>
<td>0.137</td>
<td>0.129</td>
<td>0.132</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\lambda_{abs}) (nm)</td>
<td>338</td>
<td>336</td>
<td>347</td>
<td>346</td>
<td>354</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>(\epsilon) (M(^{-1}) cm(^{-1}))</td>
<td>12230</td>
<td>13251</td>
<td>12680</td>
<td>10443</td>
<td>10797</td>
<td>12079</td>
<td></td>
</tr>
</tbody>
</table>

\(\lambda_{abs}\) and extinction molar coefficient (\(\epsilon\)) values are included for comparison.

Figure 5. Natural transition orbitals (NTOs) of S\textsubscript{0} \rightarrow S\textsubscript{1} at the tuned CAM-B3LYP/6-31+g(d,p) level (ISO = 0.02).
which is clearly inconsistent with experiment. Additionally, the variation of the calculated absorption wavelength for this functional does not follow the observed spectral shift (Table 2). In contrast, using the CAM-B3LYP and LC-wPBE functionals, the evolution of absorption wavelength and the variation of the calculated absorption wavelength for this molecule is well established that the proper tuning parameters in long-range separated functionals also fails to accurately model the shift in the calculated and observed absorption spectrum. The long-range correction is essential to correctly model the shift in excitation energy and to obtain the correct oscillator strengths for these halogenated derivatives. However, the use of the long-range separated functionals also fails to accurately calculate the energy splitting between the singlet and the triplet states (ΔE_{ST}) of mCP. The ΔE_{ST} is highly overestimated with CAM-B3LYP and is 1.25 eV for mCP. The use of the B3LYP functional leads to a more accurate value of 0.74 eV compared to the experimental one of 0.62 eV (Figure 2). It is well established that the proper tuning parameters in long-range corrected (LC) or Coulomb attenuated method (CAM) functionals is crucial to accurately obtain the energy levels of singlet and triplet states.\(^{37-39}\) For example, the tuned CAM-B3LYP (α = 0.10, β = 0.90, α = 0.15) functional predicts a ΔE_{ST} of 0.70 eV, an absorption wavelength of 307 nm, and an accurate description of the spectral shift induced by halogen substitution. The evolution of the excitation energy and the ΔE_{ST} with tuning parameters is reported in the Supporting Information (Figure S24).

To understand the spectral shifts, we examined the natural transition orbitals (NTOs) obtained from TD-DFT calculations. Figure 5 shows that the electron NTO is delocalized only on the carbazole units, while the hole NTO has some additional delocalization on the central phenyl ring. We find that functionalization with halogens on the carbazole contributes to the delocalization of the hole NTO. The lone pairs of electrons of bromine atoms contribute to the resonance system and act as an electron-donating group. This effect increases the electronic density in the hole NTO and raises the overall energy of the orbital. It results in a reduction in the energy gap between the transition orbitals and a red-shift in the absorption and emission spectra. This is consistent with the observed trends in the absorption and emission spectra, where the addition of halogens to the phenyl results in a very small difference in each of the absorption and emission wavelengths, whereas their addition on the carbazole leads to a more pronounced red-shift.

To understand the influence of the type and number of halogen on the SOC, relativistic calculations were performed using the Zero-Order Regular Approximation (ZORA) method.\(^{40}\) The spin–orbit coupling matrix elements (SOCMEs) are highly dependent on the energy level splitting between the triplet and singlet states. For this reason, they were carried out at the B3LYP/ZORA-TZVP level. Table 3 collates the results of the calculation of the SOCME between the S₃ state and the lower energy triplet states T₃ (n = 1–8) at the S₃ optimized geometry. The results show an increase in the SOCME for all halogenated compounds as compared to mCP.

The increase is particularly significant for coupling between S₃ and each of T₃, T₇, T₉, and T₇ states. The SOCME between S₃ and T₅ changes by an order of magnitude from 0.59 cm⁻¹ for mCP to 4.49 cm⁻¹ for mCP-Br.\(^{3}\) The effect is increased with the heavier iodine atom with a SOCME of 5.76 cm⁻¹ between S₃ and T₅, 9.84 cm⁻¹ between S₃ and T₇ which is consistent with the faster ISC rates that we observe experimentally for mCP-Br.\(^{3}\) We also find that both the position and number of the halogen have a significant effect on the SOCME with the different triplet states. The calculations reveal that the increase in SOCME is smaller when bromination functionalization is only present on the carbazole units (e.g., mCP-Br₅) as compared to the phenyl (e.g., mCP-Br) despite the presence of two bromines on the molecule. Relativistic calculations conducted on similar molecules (PDCz) have already shown that the position of bromine on carbazole units can have a significant effect on the SOCME.\(^{30}\) One can link the SOCME to kISC by recalling that ISC can be expressed as a sum of the SOCMEs weighted by the vibrational overlaps between S₃ and the different triplet states.\(^{3}\) Given that we find a large experimental increase in the kISC when going from mCP-Br to mCP-Br₅, it is likely that the change in vibrational overlap plays an important role in dictating the kISC in these compounds in addition to the SOCMEs. Indeed, this would be consistent with the stark change in the intensity of the phosphorescence vibronic peaks observed between mCP/ mCP-Br and mCP-Br₂-₃,₅ where for the latter bromine is present on the carbazole unit.

To study the external heavy atom effect induced by the halogenation of the mCP, we prepared thin films of 10 wt % TPA-DCPP, a red TADF molecule,\(^{41}\) doped in the different mCP analogues. A combination of transient PL and PL quantum yield measurements was used to measure the RISC rate of the dopant molecule. Figure 6 shows the delayed fluorescence traces for TPA-DCPP in the different host molecules. The decay is multexponential, which is consistent with a disorder-broadened distribution of RISC activation energies. The reported delayed fluorescence lifetimes, τᵣ, were obtained from a biexponential fit (Table S2). We found that τᵣ was shorter in the halogenated hosts and decreases from 40 ± 3 μs for mCP to 30.8 ± 0.5 μs for mCP-Br.\(^{3}\) The nature of the halogen also has a significant effect. We found a τᵣ of 41 ± 1 μs
for mCP-Br, which is similar to mCP, whereas we find 33.7 ± 0.3 μs for mCP-I (Table 4).

The host matrix plays a crucial role in the photophysics of TADF emitters by affecting different excited states through dipole–dipole interactions. The properties of TPA-DCPP are known to be highly dependent on the host and the doping concentration because of aggregation concentration quenching, rigidity, and polarity effects. Halogenation of the hosts induces a relatively small variation of the PL quantum yield, Φ, from 59 ± 3% to 46 ± 2%, which does not compromise its use as a red TADF emitter or sensitizer. Moreover, the absorption and emission spectra of TPA-DCPP remain nearly unchanged when halogenated hosts are used instead of mCP (Figure S25). The delayed (Φ_d) and prompt (Φ_p) fluorescence quantum yield were estimated from the proportion of prompt and delayed fluorescence in the transient PL. By fitting the areas under the curve, we found that Φ_d of TPA-DCPP increases from 8.1 ± 0.5%, when doped in mCP, to 21 ± 1% for mCP-I and 19 ± 1% for mCP-Br.

The RISC rate was estimated from delayed fluorescence lifetime and prompt and delayed quantum yield using $k_{\text{RISC}} = \frac{\Phi_d}{\tau_d(1 - \Phi_p)\Phi_p}$.

This commonly used expression assumes that singlet non-radiative decay is solely due to ISC. While this has not been explicitly confirmed, we can rule out nonradiative decay from concentration quenching given that the PLQY of TPA-DCPP has been shown to remain unchanged at doping concentrations ranging from 3 to 10 wt %.

The presence of heavy atoms on the hosts resulted in an increase of the TADF dopant RISC rate. The RISC rate using mCP as host is $(8.1 ± 0.8) \times 10^4$ s$^{-1}$, and the increase is particularly significant for mCP-Br and mCP-I with respective values of $(3.2 ± 0.1) \times 10^5$ s$^{-1}$ and $(5.5 ± 0.1) \times 10^5$ s$^{-1}$. This highlights that both the number and type of halogens on the host have an influence on the dopant RISC rate. A similar experiment was performed with 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) (Figure S26), and the results are reported in Table S4. The RISC rate of 4CzIPN of this TADF molecule is a hundred times greater than TPA-DCPP in mCP, but it showed a similar 4-fold increase of the RISC rate from $(1.18 ± 0.09) \times 10^5$ s$^{-1}$ in mCP to $(4.0 ± 0.3) \times 10^5$ s$^{-1}$ in mCP-Br (Table S5). The increase is similar to that previously observed for 4CzIPN in brominated CBP.

This underlines the versatility of this approach to enhance the RISC rate of various TADF dopants.

CONCLUSION

In summary, we have shown the significant influence of halogenation on the intersystem crossing and phosphorescence rates of a family of halogenated mCP derivatives. The addition of halogens leads to an enhancement of k_{RISC} for all derivatives ranging from $(5.3 ± 0.4) \times 10^5$ s$^{-1}$ for mCP to $(1.5 ± 0.1) \times 10^6$ s$^{-1}$ for the mCP-Br. In contrast, the absorption spectra and singlet radiative decay rates remain relatively unchanged. These observations are in agreement with TD-DFT calculations, but only when a long-range corrected functional is used such as CAM-B3LYP. However, the use of CAM-B3LYP with default parameters ($\mu = 0.33$, $\alpha = 0.19$, and $\beta = 0.46$) leads to a large overestimation of the energy difference between S_1 and T_1 and a large systematic shift between calculated and experimental absorption wavelengths. The use of the empirically tuned CAM-B3LYP ($\mu = 0.15$, $\alpha = 0.10$, and $\beta = 0.90$) functional reproduces well the spectral shift induced by the halogens, the trend in oscillator strengths, and the ΔE_{ST} while also minimizing the spectral shift in the absorption. The calculation of the SOCMEs combined with the phosphorescence spectra and measured rates also shows that the position of the halogen can have a large impact on both the magnitude of the SOC and the vibrational wave functions of the excited triplet states. Both need to be considered to accurately reproduce trends in ISC. We have also shown that the use of the halogen-functionalized mCP as a host molecule for the TADF dopant TPA-DCPP results in an increase of the RISC rate through the proximity heavy atom effect. The highest increase is obtained when mCP is functionalized with

Table 4. Summary of Photophysical Properties and Calculated RISC Rate of Doped Thin Films of 10 wt % of TPA-DCPP in Different mCP Analogues

<table>
<thead>
<tr>
<th>Host</th>
<th>τ_d (μs)</th>
<th>Φ (%)</th>
<th>Φ_p (%)</th>
<th>Φ_d (%)</th>
<th>k_{RISC} (105 s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mCP</td>
<td>40 ± 3</td>
<td>59 ± 3</td>
<td>51 ± 3</td>
<td>8.1 ± 0.5</td>
<td>8.1 ± 0.8</td>
</tr>
<tr>
<td>mCP-Br</td>
<td>41 ± 1</td>
<td>51 ± 3</td>
<td>40 ± 3</td>
<td>11.4 ± 0.7</td>
<td>11.7 ± 0.6</td>
</tr>
<tr>
<td>mCP-I</td>
<td>33.7 ± 0.3</td>
<td>46 ± 2</td>
<td>25 ± 2</td>
<td>21 ± 1</td>
<td>33 ± 1</td>
</tr>
<tr>
<td>mCP-Br$_2$</td>
<td>34.2 ± 0.4</td>
<td>48 ± 2</td>
<td>35 ± 2</td>
<td>13.5 ± 0.7</td>
<td>17.4 ± 0.8</td>
</tr>
<tr>
<td>mCP-Br$_3$</td>
<td>31.3 ± 0.4</td>
<td>51 ± 3</td>
<td>36 ± 3</td>
<td>15 ± 1</td>
<td>20 ± 1</td>
</tr>
<tr>
<td>mCP-Br$_4$</td>
<td>30.8 ± 0.5</td>
<td>53 ± 3</td>
<td>34 ± 3</td>
<td>19 ± 1</td>
<td>27 ± 1</td>
</tr>
</tbody>
</table>

* τ_d is the delayed fluorescence lifetime; Φ, Φ_p, and Φ_d are the total, prompt, and delayed fluorescence quantum yields; and k_{RISC} is the reverse intersystem crossing decay rate.
the heavier iodine atom or with five bromines, resulting in an approximately 4-fold increase in rate. In summary, we have shown how halogen functionalization of a commonly used OLED host material can be used to tune SOC and dramatically modify the photophysical behavior of the host molecule and increase the RISC rate of TADF dopant molecules through external SOC. This approach can be used to increase intersystem crossing and phosphorescent yields in organic compounds, without the need for metal atoms, and to improve the stability and performance of OLEDs using existing TADF dopants.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.3c05567.

Synthesis, spectra, temperature dependence PL, fit parameters, ground state geometry optimized by DFT, and 4CzIPN RISC rate calculation (PDF)

AUTHOR INFORMATION

Corresponding Authors
- **Eli Zysman-Colman** – Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom; orcid.org/0000-0001-7183-6022; Email: eli.zysman-colman@st-andrews.ac.uk
- **Stéphane Kéna-Cohen** – Department of Engineering Physics, École Polytechnique de Montréal, Montreal QC H3C 3A7, Canada; orcid.org/0000-0001-5065-2750; Email: s.kena-cohen@polymtl.ca

Authors
- **Alexandre Malinge** – Department of Engineering Physics, École Polytechnique de Montréal, Montreal QC H3C 3A7, Canada; orcid.org/0009-0009-3237-0261
- **Shiv Kumar** – Organic Semiconductor Centre, EaSTCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom; orcid.org/0000-0003-2275-1959
- **Dongyang Chen** – Organic Semiconductor Centre, EaSTCHEM, School of Chemistry, University of St Andrews, Fife KY16 9ST, United Kingdom

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.3c05567

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.K.C. acknowledges financial support from the Fonds de Recherche du Québec Nature et Technologies (286499). E.Z.C. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC; EP/R035164/1, EP/P010482/1). S.K.C. acknowledges the financial support from European Union’s Horizon 2020 research and innovation programme under a Marie-Sklodowska-Curie Individual Fellowship (THF-OLED; Grant Agreement ID 748430).

REFERENCES

(35) Mentado-Morales, J.; Ximello-Hernández, A.; Salinas-Luna, J.; Freitas, V. L. S.; Ribeiro da Silva, M. D. M. C. A Promising Thermodynamic Study of Hole Transport Materials to Develop Solar Cells: 1,3-Bis(N-Carbazolyl)Benzene and 1,4-Bis(Diphenylamino)-Benzene. Molecules 2022, 27 (2), 381.