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ABSTRACT

Context. Oscillations are observed to be pervasive throughout the solar corona, but it remains challenging to positively identify dif-
ferent wave modes. Improving this identification would provide a powerful tool for investigating coronal wave heating and improving
seismological inversions.
Aims. We aim to establish whether theoretical methods used to identify magnetohydrodynamical wave modes in numerical simula-
tions can be employed on observational datasets.
Methods. We applied wave identifiers based on fundamental wave characteristics such as compressibility and direction of propagation
to a fully 3D numerical simulation of a transversely oscillating coronal loop. The same wave identifiers were applied to the line-of-
sight integrated synthetic emission derived from the numerical simulation data to investigate whether this method could feasibly be
useful for observational studies.
Results. We established that for particular line(s) of sight and assumptions about the magnetic field, we can correctly identify the
properties of the Alfvén mode in synthetic observations of a transversely oscillating loop. Under suitable conditions, there is a strong
agreement between the simulation and synthetic emission results.
Conclusions. For the first time, we have provided a proof of concept that this theoretically derived classification of magnetohydrody-
namic wave modes can be applied to observational data.
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1. Introduction

Although it has long been known that the solar corona is orders
of magnitude hotter than the photosphere, the full details of
coronal heating remain unresolved. The proposed heating mech-
anisms are often divided into AC and DC heating, depend-
ing on the timescales at which energy is transported. DC heat-
ing corresponds to timescales longer than the Alfvén travel
time and is typically associated with magnetic reconnection
(e.g. see review by Wilmot-Smith 2015). AC (or wave) heat-
ing, on the other hand, is associated with timescales shorter
than the Alfvén travel time. In this paradigm, photospheric con-
vective motions excite waves that propagate upwards through
the atmosphere before dissipating their energy as heat. Despite
extensive research, it remains unclear whether magnetohy-
drodynamic (MHD) waves contribute significantly to coronal
heating (see e.g. Parnell & De Moortel 2012; Arregui 2015;
Van Doorsselaere et al. 2020; Banerjee et al. 2021; Howson
2022).

In a uniform plasma, there are three distinct MHD wave
modes: Alfvén, and slow and fast magnetoacoustic waves. In
a non-uniform fully 3D plasma (e.g. the corona), wave modes
often have mixed characteristics (e.g. Nakariakov & Verwichte
2005), and it is not trivial to correctly identify wave modes. Dif-
ferent wave modes are associated with different phase speeds,
energy fluxes, damping mechanisms, and dissipation rates. The
difficulties associated with correctly identifying these oscilla-

tions, alongside observational uncertainties, ensure that mea-
surements of coronal wave energy flux remain poorly con-
strained. For example, Tomczyk et al. (2007) inferred an energy
flux from Doppler perturbations (interpreted as Alfvénic waves)
of 0.01 W m−2. On the other hand, McIntosh et al. (2011) esti-
mated a value of 100 W m−2 from AIA observations, a flux
that is sufficient to heat the quiet Sun and accelerate the
solar wind. For further discussion, we refer to the review by
Van Doorsselaere et al. (2020).

Many solar atmospheric wave models assume a simplified
setup that could lead to an overestimate of the energy flux
(Goossens et al. 2013). Identifying which wave modes that are
observed in complex systems could therefore lead to more accu-
rate energy flux estimates, which would improve our understand-
ing of the role waves play in coronal heating. Furthermore, this
would also have powerful implications for coronal seismology,
where the observed oscillation parameters are used to deduce
plasma properties such as the magnetic field strength, the den-
sity, and the temperature (e.g. Nakariakov & Kolotkov 2020;
Srivastava et al. 2021).

Previously, several authors have classified MHD waves in
complex media using a variety of approaches, such as velocity
decomposition (Khomenko & Cally 2011, 2012; Leenaarts et al.
2015; Shelyag et al. 2016; Yadav et al. 2022). However, it is
not straightforward to associate each component with one wave
mode. Instead, this study uses identifiers based on fundamen-
tal wave mode characteristics such as compressibility and the
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direction of propagation (see also Raboonik 2022). By consid-
ering a numerical simulation of a transversely oscillating loop
(De Moortel & Howson 2022), we investigate how robustly the
wave identifiers track the oscillatory dynamics. By using syn-
thetic emission derived from the simulations, we then establish
how the identifiers could be used to extract information from
coronal observations.

This Letter is structured as follows: In Sect. 2 we outline our
method, and we also define the wave identifiers and provide con-
text for the numerical data and the synthetic emission. In Sect. 3
we show the result of using the wave identifiers on the numer-
ical data and synthetic emission, and in Sect. 4 we discuss our
findings.

2. Method

2.1. Wave identifiers

In a uniform plasma, Alfvén waves are incompressible trans-
verse perturbations that propagate along the magnetic field. Fast
and slow magnetoacoustic waves are compressible waves. For
a low-β plasma (e.g. the corona), slow waves are longitudi-
nal sound-like waves predominantly travelling parallel to the
magnetic field. Fast waves, on the other hand, propagate fastest
across the magnetic field. These properties are represented in the
three wave identifiers used in this study (see Raboonik 2022; for
a detailed derivation):

νA = (∇ × u) · e‖, (1)
ν‖ = ∇ · (v‖e‖), (2)
ν⊥ = ∇ · u − ν‖, (3)

where e‖ = B/B is the unit vector parallel to the magnetic field,
B, u is the velocity, and v‖ is the velocity component parallel
to the field. These identifiers provide an incompressible paral-
lel component (νA), a compressible parallel component (ν‖), and
a compressible perpendicular component (ν⊥). Although these
identifiers do not coincide with the rigorous definitions of the
three basic MHD wave modes, they are associated with impor-
tant distinguishing characteristics of the different modes. For
brevity, we refer to them as the Alfvén (νA) and the fast (ν⊥)
and slow (ν‖) identifiers.

2.2. Numerical model

To demonstrate the potential of these identifiers, we used a numer-
ical simulation first presented by De Moortel & Howson (2022).
The authors modelled a coronal loop as a 3D flux tube where
the magnetic field is aligned with the z-axis. The initial den-
sity has a smooth transverse profile, with the external and inter-
nal density being ρe = 1.67 × 10−13 kg m−3 and ρi = 3ρe,
respectively (see Fig. 1). The initial temperature was 1 MK every-
where. At the lower z-boundary, a transverse wave driver was
imposed with an amplitude of approximately 8 km s−1 and a fre-
quency set to the natural kink frequency of the loop (see e.g.
Edwin & Roberts 1983; Nakariakov & Verwichte 2005). Further
details of the numerical model are presented in Appendix A.
As time progresses, the smooth density profile allows for reso-
nant absorption (or mode coupling; Ionson 1978), resulting in the
transfer of wave energy from the global transverse mode to small-
scale azimuthal Alfvén waves confined to the loop boundary,
where they are subject to phase-mixing and the Kelvin-Helmholtz
instability (KHI; see e.g. Howson 2022 for a summary of this pro-
cess). We aim to track the transfer of energy between these differ-
ent wave modes using the wave identifiers.

Fig. 1. Vertical cut (top) and horizontal cross section (bottom) of the
initial density (i.e. at t = 0 s) both at y = 0 Mm.

Figure 2 shows time-distance plots of the density and tem-
perature at the loop apex. The density plot shows that the loop
boundary broadens over time as a result of the onset of the
KHI. The small length scales associated with the instability
lead to enhanced dissipation rates and plasma heating. The tem-
perature plot confirms that heating is concentrated in the loop
boundary where phase-mixing and the KHI occur. The core
of the loop cools as the simulation progresses because of the
higher densities (i.e. stronger radiative losses) and because the
wave heating is greatest in the loop boundary (and not in the
core).
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Fig. 2. Time-distance plot of the density (left) and temperature (right) at the apex of the loop (z = 100 Mm and x = 0 Mm).

2.3. MUSE synthetic emission

The Multi-Slit Solar Explorer (MUSE) mission, due to launch
in 2027, aims to deliver the high spatial resolution and tempo-
ral cadence necessary to understand the physical mechanisms
of coronal heating (De Pontieu et al. 2020, 2022; Cheung et al.
2022). MUSE will consist of a multi-slit extreme-ultraviolet
(EUV) spectrograph and context imager. By obtaining spectra
from four EUV lines (Fe IX 171 Å, Fe XV 284 Å, Fe XIX 108 Å,
and Fe XXI 108 Å) along 37 slits, MUSE will simultaneously
capture spectroscopic snapshots of coronal and transition region
plasma.

To investigate the accuracy and robustness of the wave iden-
tifiers when applied to observational data, we generated MUSE
Fe IX synthetic spectra from the numerical data. The Fe IX
passband captures temperatures of about 0.6 to 1.5 MK (e.g.
Krucker et al. 2011). In the numerical simulation, the tempera-
ture was initially 1 MK, and the plasma was heated to a mean of
1.1 MK with a maximum temperature of just below 1.8 MK in
the loop boundary. Therefore, most of the simulation is captured
by this passband. As illustrated in Fig. 3, we generated synthetic
emission data for three different lines of sight (LOS) integrated
along the x-, y-, and z-axis of the numerical simulation and cor-
responding to the direction perpendicular to the oscillation, par-
allel with the oscillation and along the loop, respectively.

2.4. Observational data

In the optically thin corona, spectroscopic data provide LOS-
integrated intensities, Doppler velocities, and line widths. This
presents a challenge because the wave identifiers νA, ν‖ and ν⊥
require the curl and divergence of the velocity and the direction
of the magnetic field (about which we have limited information).

In our setup, the transverse wave in the y-direction will be
apparent as a displacement of the loop in the plane-of-the-sky
intensity in the x- and z-LOS, but not in the y-LOS. In the x- and
z-LOS, for any displacement ∆y observed over a time step ∆t, we
can estimate vy = ∆y/∆t. Assuming the magnetic field is frozen-
in to the plasma and is tangential to the loop, we can deduce By
in a similar way. In Table 1 we list the velocity components that
we either observed directly or can estimate from each LOS. For
each LOS, we always have the Doppler velocity as a function of
the perpendicular plane coordinate system.

Even if all three LOS were available, it would not be possi-
ble to calculate all nine velocity derivatives needed to estimate
the fast and slow identifiers (ν⊥ and ν‖). However, the Alfvén

Fig. 3. Illustration of the three LOS considered in this paper. The trans-
verse oscillations will be visible as actual loop displacements in the x-
and z-LOS.

identifier (νA) only requires the components off the main diag-
onal in Table 1. In this study, we present two ways to estimate
νA. Firstly, in Sect. 3.2, we assume that the observational data
are along the LOS parallel to the oscillation (the y-LOS). Here,
we can deduce νA accurately from this single LOS. Secondly,
in Sect. 3.3, we assume that we have the two LOS that are not
parallel to the oscillation, and we demonstrate how νA can be
estimated using loop tracking.

3. Results

3.1. Wave identifiers in numerical data

Before we applied the wave identifiers to the synthetic emission,
we applied them directly to the original numerical simulation
data. Figures 4 and 5 show time-distance plots of the Alfvén,
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Table 1. Derivatives that can be obtained from each LOS.

vx vy vz

∂
∂x ∨∨̂ ∨

∂
∂y ∨ ∨̂∨̂ ∨

∂
∂z ∨ ∨̂∨

Notes. Blue shows the x-LOS, green shows the y-LOS, and red shows
the z-LOS. The hatted variables can be estimated using loop tracking,
whereas the variables without hats can be calculated directly from the
Doppler velocity.

Fig. 4. Time-distance plot of the numerical simulation ν⊥ along y =
0 Mm, z = 100 Mm for x ∈ [−2, 2] Mm.

Fig. 5. Time-distance plot of the numerical simulation νA along y =
0 Mm, z = 100 Mm for x ∈ [−2, 2] Mm.

νA, and fast, ν⊥, identifier at the loop apex (y = 0 Mm and
z = 100 Mm) in the range x ∈ [−2, 2] Mm. For the fast identifier
(Fig. 4), the magnitude is greatest at the centre of the loop, but it
decreases with time. The reason is that the global kink mode
decays as a result of the energy transfer to azimuthal Alfvén
waves in the loop boundary (Ionson 1978). This is reflected in
the time-distance plot of the Alfvén identifier in Fig. 5, where
the magnitude of the Alfvén identifier gradually increases with
time in the loop boundary (x ≈ ±1 Mm). The non-zero regions
of the Alfvén identifier also broaden into the interior of the loop
as a result of the disruption of the loop cross section at later
times (e.g. middle row of Fig. 7 in De Moortel & Howson 2022).
The signatures of the Alfvén waves are clearly visible in verti-
cal and horizontal cross sections of νA (left panels of Figs. 6
and 8, respectively) as distinct positive or negative bands at
x = ±1 Mm.

3.2. Synthetic emission data. Single line of sight

When we assume that one can observe the loop from the direc-
tion parallel to the oscillation (y-LOS), the observed Doppler

Fig. 6. Alfvén identifier νA for numerical data (left) and the MUSE
synthetic emission (right) at t = 193 s. For the synthetic emission,
ν∗A = ∂vy/∂x, where vy is the Doppler velocity observed from the
direction parallel to the loop (y-LOS). For the numerical simulation,
νA = (∇ × u) · B/B (i.e. it includes derivatives and magnetic field in all
directions) at y = 0 Mm.

velocity, vy(x, z), coincides with the oscillation. Along this LOS,
we do not observe any oscillation in the intensity, and because
the field is approximately frozen into the plasma, we assumed
Bx = 0 G. Because the wave amplitude is relatively small,
the component of the field induced by the oscillation will be
small in comparison to the background field. Thus, we assumed
that the field is parallel to the initial loop axis (z-direction)
throughout the simulation. Lastly, we assumed vx = 0 and
∂vx/∂y = 0 because we do not observe any velocity perturbation
in the x-direction. Hence, the synthetic emission Alfvén identi-
fier reduces to νA = ∂vy/∂x.

In Fig. 6, we compare the Alfvén identifier for the numerical
simulation (left panel) and the synthetic emission (right panel).
For the numerical simulation, we show the y = 0 Mm plane,
while the synthetic emission is integrated over the y-LOS. It is
clear that νA calculated from the synthetic emission captures the
nature of the numerical data well. In both panels, we see vertical
bands with the same signs and roughly the same magnitude in
the loop boundaries (around x = ±1 Mm), where the azimuthal
Alfvén waves develop due to resonant absorption.

Moreover, the synthetic emission captures the numerical
behaviour in the time-distance plot in Fig. 7, which shows the
cross section at z = 100 Mm over time. There are clear oscilla-
tions in the boundary that expand into the loop interior, matching
the corresponding numerical simulation νA plot in Fig. 5.

So far, we considered the particular case in which the LOS
coincides with the dominant direction of the oscillation. Along
the x-LOS, the oscillation would be visible as a periodic loop dis-
placement. However, for the x-LOS, we do not have vy(x), which
provides the dominant derivative in νA. If, as we did above, we
assume that the velocity derivative we do not observe is zero,
that is, ∂vy/∂x = 0, then we obtain a synthetic emission νA with
little correspondence to the numerical simulation νA.
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Fig. 7. Time-distance plot of the synthetic emission ν∗A = ∂vy/∂x at
z = 100 Mm (and integrated over y) for x ∈ [−2, 2] Mm.

Fig. 8. Horizontal cut of νA at z = 100 Mm for the numerical simula-
tion (left) and synthetic emission (right). The labelled contours high-
light areas of predominantly negative or positive νA values.

3.3. Synthetic emission data. Multiple lines of sight

As stated above, we can estimate νA from the y-LOS emission
(i.e. the LOS parallel to the oscillation), but not from any other
single LOS. However, when we have both the x- and z-LOS, we
can use loop tracking (see Appendix B) to deduce vy(y, z) vy(x, y)
and By = Bz∆y/∆z. Our expression for the Alfvén identifier
now becomes νA = (∂vx/∂z − ∂vz/∂x)By + (∂vy/∂x − ∂vx/∂y)Bz.
The loop-tracking algorithm works best before the loop becomes
significantly deformed by the KHI, that is, the first 400 sec-
onds. In Fig. 8 we show the Alfvén identifier in the xy-plane
for the numerical simulation (left) and synthetic emission (right)
at t = 203 s. The numerical data νA are taken at a horizontal cut
at z = 100 Mm (loop apex). The synthetic emission νA is derived
using the x- and z-LOS simultaneously.

Although it is more complex, the synthetic emission νA dis-
plays the same large-scale features (outlined by the black con-
tours) as the numerical simulation. For example, regions A and
B are predominantly positive and negative, as are the corre-
sponding regions A∗ and B∗ in the synthetic emission results
(right panel). Although they are approximately cospatial, we
note that the areas are not identical between the two panels. This
is due to the compression of the loop and associated errors from
the loop-tracking algorithm (see the discussion below). The A
(A∗) and B (B∗) regions correspond to the azimuthal Alfvén
waves in the boundary of the loop, which are clearly visible
in the vertical cuts discussed earlier (Fig. 5 and left panel of
Fig. 6).

Clearly, the agreement between the numerical measurements
and the synthetic estimates of νA is not perfect. There are several
reasons for this, including integration over the entire loop length
(due to the optically thin plasma) for the synthetic emission case.

Fig. 9. Time-distance plot of the synthetic emission νA based on two
LOS at y = 0 Mm. The numerical simulation νA at y = 0 Mm and z =
100 Mm is overplotted (black contours), where the solid lines enclose
negative values and the dotted lines enclose positive values of νA.

Further, inherent to the loop-tracking method (see Appendix B)
is the assumption that the displacement evolves linearly between
the two time steps (i.e. the velocity is constant). However, as the
cadence (∼19 s) is relatively long (but comparable to existing
instruments), the velocity is not constant over the interval, and
this can lead to differences in the estimated velocities compared
to the numerical values.

Figure 9 shows a time-distance plot of the synthetic emis-
sion νA at y = 0 Mm. We overplot the outlines of the simula-
tion νA (at y = 0 Mm and z = 100 Mm), where the solid and
dotted lines enclose negative and positive values, respectively.
Although there is some additional fine-scale structuring, clear
oscillations between positive and negative values are visible in
the loop boundary for the synthetic emission νA. These oscilla-
tions, including the broadening into the loop, correspond to the
location of the same oscillations as in the numerical simulation
νA.

4. Discussion and conclusion

We have focused on the wave identifiers νA and ν⊥ from Eqs. (1)
and (3) in a numerical simulation of a transversely oscillating
coronal loop. We have shown that in a numerical simulation, the
fast identifier, ν⊥, isolates the global transverse oscillation of the
loop and the decay of the kink-mode due to resonant absorp-
tion. We also showed that the Alfvén identifier, νA, picks up the
simultaneous excitation of azimuthal Alfvén waves in the loop
boundary.

The synthetic emission data allowed us to provide a proof
of concept of the applicability of the Alfvén identifier for obser-
vational data. In the particular case when the LOS is parallel to
the direction of oscillation, the oscillation would not be observed
as a physical displacement of the loop axis, but only as a peri-
odic variation in the Doppler shift. However, because ∂vy/∂x is
the dominant term in νA (for this model), the agreement between
the Alfvén identifier calculated from the simulation and that esti-
mated from the synthetic emission is good.

In the more general case when the LOS does not align with
the direction of the oscillation, a single LOS is not sufficient
to calculate any of the wave identifiers. However, as we have
demonstrated, the Alfvén identifier could still be estimated if
a second LOS were available to observe the loop at a differ-
ent angle. We considered the case of two LOS, one perpendicu-
lar to both the loop axis and the polarisation of the kink wave,
and the other along the loop. This allowed us to estimate νA
by tracking the loop displacement from intensity data alone (no
spectroscopic requirement). Observations like this would require
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coordination between different telescopes, for example, a com-
bination of an Earth-orbiting telescope, such as MUSE, Hinode,
or Interface Region Imaging Spectrograph (IRIS), and a sec-
ond spacecraft orbiting the Sun, such as Solar Orbiter. In reality,
simultaneous imaging is unlikely to be available from two per-
pendicular LOS, and a combination of spectroscopic data and
imaging may be required. We will investigate the feasibility of
this approach in future studies.

The loop-tracking algorithm we used requires the loop pro-
file to remain coherent, which for this specific simulation worked
well for the first 400 seconds, when the loop profile was sub-
stantially disrupted by the KHI. However, even at early times,
we find some inaccuracies in the velocity estimates. These are
due to compression and rarefaction at the leading and trailing
edges of the loop and (as discussed in Appendix B) because
of the relatively poor cadence in comparison to the oscilla-
tion period (chosen to be comparable to the cadence of modern
telescopes).

As this current study is intended as a proof of concept, we
only considered one set of model parameters. Hence, further
investigation into the performance of the wave identifiers with
different values for, for instance, the wave driver amplitude, the
magnetic field, and the density profile is required to understand
their robustness. Lastly, the synthesised emission contained only
a single structure along any LOS, and no noise was added to the
data. Real observations will inevitably contain multiple (other)
structures along the LOS and noise from instrumental effects,
for example, which will likely impact the estimates of the deriva-
tives. Therefore, it would be useful in a future study to quantify
how much useful information can be extracted for differ-
ent signal-to-noise ratios. However, in our relatively simplistic
setup, we showed two instances for which it would be possible
to ascertain the Alfvén identifier. Therefore, we conclude that
under suitable conditions, it may be possible to use this method

to classify different wave modes in observations of the solar
corona.
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Appendix A: Setup of the numerical model

The numerical simulation discussed in this Letter was first pre-
sented by De Moortel & Howson (2022). The authors modelled
a coronal loop as a 3D flux tube with parameters representa-
tive of the quiet-Sun corona. For simplicity, the flux tube was
straightened, where the z-axis in the simulation is aligned with
the loop axis (see Fig. 1). The numerical grid consisted of
512 × 512 × 100 grid points, where −4 ≤ x, y ≤ 4 Mm and
0 ≤ z ≤ 200 Mm. The initial density profile was given by

ρ = ρe +
ρi − ρe

2
(1 + tanh(ar − b)) , (A.1)

where r =
√

x2 + y2. The values ρe and ρi are the exterior and
interior densities of the loop, respectively. The constants a and b
define the radius of the flux tube and the width of the boundary
layer, respectively, and were selected such that the loop had a
radius of 1 Mm and the boundary layer was approximately 0.4
Mm thick. Initially, the exterior density was ρe = 1.67 × 10−13

kg/m3 and ρi = 3ρe (see Fig. 1), and the temperature was initially
1 MK everywhere. The background magnetic field was aligned
with the z-axis and had a field strength of 30 G, with a small
reduction ( 0.7%) in the loop interior to maintain total pressure
balance.

The simulation was performed using Lare3D (Arber 2021),
which advances the fully 3D resistive MHD equations in nor-
malised form. The equations are given by

Dρ
Dt

= −ρ∇ · u, (A.2)

ρ
Du
Dt

= j × B − ∇P − ρg + Fvisc, (A.3)

ρ
Dε
Dt

= −P(∇ · u) − ρ2Λ(T ) + η j2 + Qvisc + Qbg, (A.4)

DB
Dt

= (B · ∇)u − (∇ · u)B − ∇ × (η∇ × B), (A.5)

P = 2kBnT, (A.6)

where ρ is the plasma pressure, u is the velocity, j is the nor-
malised current density, B is the magnetic field, P is the gas
pressure, and ε is the specific internal energy. The viscosity was
included in the momentum equation in the form of a viscous
force, Fvisc. The energy equation contains terms for the optically
thin radiation (Λ(T )), uniform background heating (Qbg), and
viscous heating (Qvisc). The background heating term was cho-
sen to balance the radiative losses in the exterior environment,
that is, to maintain the temperature of 1 MK in the low-density
part of the loop. Radiative losses will be stronger in the higher-
density interior of the loop, and hence, the background heating
is not enough to balance the radiative losses inside the flux tube.
Therefore, without any additional heating (e.g. from the dissipa-
tion of wave energy), the loop is expected to cool.

The x and y boundaries were set to be periodic. At the
lower-z boundary, a transverse wave driver of the form vy =
v0 sin(ωt) was imposed. Here, v0 is the amplitude, and it was
set to approximately 8 km/s, and ω is the wave frequency, set
to the natural kink frequency (see e.g. Edwin & Roberts 1983;
Nakariakov & Verwichte 2005), with the resonant period being
86.3 s. A reflecting upper boundary ensured that the fixed-
frequency wave driver excited the fundamental kink mode in the
system.

Appendix B: Loop tracking and magnetic field
approximation

Fig. B.1. Loop tracking to derive the displacements. For clarity, we only
show a selection of the ∆y’s.

In this appendix, we outline the process we used to estimate the
velocity vy and the magnetic field By based on tracking the dis-
placement (∆y) of the loop in the y direction. For the velocity,
we used the displacement in time, while the magnetic field esti-
mate was based on the displacement in space (i.e. how the loop
changes with z). We describe the algorithm for deducing vy from
the x-LOS, but the same method was used to calculate vy from
the z-LOS and By from the x-LOS.

From the x-LOS, everything is projected onto the yz-plane,
and through this, the intensity Ix(t, y, z) is known. For this initial
study, we assumed that the intensity is a smooth function with
only one clear maximum (i.e. Gaussian-like). For our simulation,
this assumption holds for relatively early times (t < 400 s) before
the loop cross section is substantially deformed by the KHI. To
track the loop displacement at each height z, we used the relative
values of the intensity at this height at different time steps. For
example, we matched 10% of the maximum intensity at time step
t1 to 10% of the maximum intensity at time step t2, and so on. We
repeated this on either side of the loop to ensure that we tracked
the full loop profile. This process gives the ∆yi as illustrated in
Figure B.1. The loop tracking in this study was based on n =
100 intensity intervals and was repeated for each value of z. The
estimate of the velocity vy(y, z) at time t = (t1 + t2)/2 was based
on these displacements ∆yi.

An artefact of this loop-tracking algorithm are the distinct
outer edges that are evident in Fig 8 (right panel). They can be
ignored when the synthetic νA is compared with the numerical
data. This artefact arises when the velocity is estimated only for
the loop (where the displacement is evident) and not for the rest
of the domain, where we set vy = 0 m/s. This causes an abrupt
change in the loop boundary between vy = 0 and vy , 0, which
in turn means that the derivatives of vy will be artificially large
at this location.

To estimate the magnetic field, we assumed that it was
frozen-in to the oscillating loop and that the background field
was uniform and aligned with the z direction. Because there is
no visible motion in the x direction, we assumed Bx = 0. To
estimate By, we employed a method similar to what we used
to find vy, but instead of calculating the displacement in time,
we tracked the position of the loop as a function of z. Because
we assumed that the field is tangential to the loop, we obtained
By = Bz∆y/∆z.
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