
1. Introduction
Magmatic systems dominated by crystalline material, so-called crystal mushes, are commonly suggested to grow 
by the stacking of sills fed by vertical dikes (Cashman et al., 2017; Jackson et al., 2018). In relation to magmatic 
mush systems, granitic magma bodies are considered to represent the short-lived, peripheral, or ephemeral parts 
of the mush where melt accumulates before potential volcanic eruptions (Glazner, 2021; Hildebrand et al., 2010). 
Granitic plutonic magma bodies can be emplaced by a variety of mechanisms, such as, but not limited to, lacco-
lith type-doming, trap-door deflection of the roof, wall deflection, roof uplift or floor subsidence accommodated 
by faults, floor sagging, cantilever floor subsidence and magma sheeting (Burchardt et al., 2012; Cruden, 1998; 
Cruden & McCaffrey,  2001; Gilbert,  1877; Hawkes & Hawkes,  1933; Hutton,  1988; Mattsson et  al.,  2020; 
McCarthy, Petronis, et al., 2015; Miller & Paterson, 2001; Paterson & Fowler, 1993; Pollard & Johnson, 1973; 
Richey, 1928). In addition, the mode of granitic magma emplacement is often linked to the contemporary regional 
tectonic stress field and deformation (Hutton, 1988; Jacques & Reavy, 1994; McCarthy, Reavy, et al., 2015; Miller 
& Paterson, 2001; Olivier et al., 2016; Petronis et al., 2012; Reichardt & Weinberg, 2012; Vigneresse, 1995; 
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pluton-scale magma transport pathways. The 1.45 Ga shallow-crustal Götemar pluton is a 4.5 km diameter 
circular pluton that consists of three granite units: a coarse-grained red granite, a medium-grained pale to red 
granite, and fine-grained pale microgranite sheets. We employed geological mapping supported by Anisotropy 
of Magnetic Susceptibility (AMS) to examine the magmatic and regional tectonic controls on late-stage magma 
transport in the Götemar granitic magma mush system. Multiple parallel arcuate subhorizontal microgranite 
and medium-grained granite sheets (from 0.1 to 10s of meters thick) were mapped within the pluton. The 
arcuate sheets pinch out from the northern part of the pluton toward the SE inferring magma propagation 
direction. A dominant set of vertical granitic sheets within the granite body strikes NW-SE. The AMS fabrics 
are contact-parallel in the main medium-grained granite body and indicate inflation. Within the microgranite 
sheets, the AMS fabrics are parallel to the sheet strike and support a sheet propagation direction to the SE. The 
Götemar pluton displays a clear link between arcuate (concentric) magma-transporting sheets and concentric 
strain-partitioning related to the intrusion of medium-grained granite magma. The vertical magma sheet 
orientations are consistent with an NE-SW extensional stress field that is associated with the extensional back-
arc stress regime of the contemporary Hallandian Orogen.

Plain Language Summary The eruptive products of volcanoes are thought to be stored in 
pockets of melt in crystal-dominated magmatic systems called crystal mushes prior to volcanic eruptions. 
An understanding of where magma is stored and how it is transported in mush systems is important in order 
to predict the eruptive behavior of the volcanic system. This contribution investigates the magma transport 
pathways in the Götemar granite in Sweden and its relationship to local magmatic deformation and regional 
deformation related to the Hallandian mountain building event. We show that magma is transported in vertical 
sheets parallel to the front of the Hallandian Orogen and laterally in sub-horizontal arcuate sheets that reflect 
the circular shape of the granite pluton. Our study highlights the importance of understanding the shape and the 
formation of the magmatic granite body for deciphering the melt transport in the magma mush system under 
volcanoes.
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Weinberg et al., 2004). However, it is unclear if melt is transported and accumulated in tabular stacked sills in 
mushy granite magma bodies irrespective of tectonic setting and pluton emplacement mechanism. This study 
investigates if the factors controlling magma body emplacement, including the ambient tectonic stress field, also 
affect magma transport within a granitic plutonic magma body in a mushy state. We employ geological mapping 
supported by Anisotropy of Magnetic Susceptibility (AMS) on the Götemar granite pluton to provide insights into 
factors controlling magma transport within a crystal mush. When we use the term magma or crystal mush in the 
text we refer to a solid where melt occurs in the interstices of the crystal framework (see Weinberg et al., 2021).

2. Geological Setting
The 1.45 Ga Götemar pluton is a circular (4.5 km in diameter) granitic pluton located in southeastern Sweden 
that intruded steeply foliated 1.84 to 1.77 Ga granites and granodiorites of the Transscandinavian Igneous Belt 
(Åhäll, 2001; Cruden, 2008; Kresten & Chyssler, 1976; Ripa & Stephens, 2020; Wik et al., 2005). The mapped 
exposure of the Götemar pluton has an area of 18.2 km 2. Gravimetric measurements suggest that the Götemar 
pluton has a vertical extent of 4 km and a maximum horizontal extent of 10 km below the current exposure level 
and its emplacement depth has been estimated to be between 4 and 8 km (Cruden, 2008). The Götemar pluton 
forms part of an NNE-SSW trending line of Mesoproterozoic plutons and circular aeromagnetic anomalies in the 
Baltic Sea that have been proposed to mark a back-arc rift zone to the contemporary Hallandian/Danopolonian 
orogenic event (Bogdanova et al., 2001; Brander & Söderlund, 2009; Cruden, 2008; Ripa & Stephens, 2020; 
Söderlund et al., 2008; Ulmius et al., 2015; Wik et al., 2005) (Figure 1a).

The Götemar pluton consists of three major granite units: (a) a coarse-grained red granite that surrounds an 
(b) medium-grained pale to red granite, and subhorizontal to steeply dipping (c) pale, aphyric to porphyritic 
microgranite sheets (Figures 2 and 3a–3c) (Friese et al., 2012; Kresten & Chyssler, 1976). Sheets of granite also 
occur in the host rock within 100–300 m of the Götemar pluton (Kresten & Chyssler, 1976). All granite units are 
most readily distinguished based on texture and are composed of quartz, alkali feldspar, plagioclase, muscovite, 
and minor biotite, fluorite and zircon (Friese et al., 2012). The coarse-grained granite records high-temperature 
healed crystal deformation, multiple generations of quartz crystals, and metasomatic quartz replacement of feld-
spar and mica, which are proposed to be related to the intrusion of magma pulses into a granitic mush (Friese 
et  al.,  2012). The intrusion of the Götemar pluton was also associated with host rock greisen formation and 
hydrothermal veining (Tillberg et al., 2019).

The Götemar pluton is cut by multiple regional faults with up to 500 m of estimated vertical displacement and 
minimal lateral offset (Kresten & Chyssler, 1976) (Figure 1b). Several curved deformation zones occur within the 
pluton, which are defined by topographical troughs and wetlands that are parallel to the pluton-host rock contact 
(Figure 1b). Three cores were previously drilled in the Götemar granite pluton to assess rock quality at potential 
sites for radioactive waste disposal (Scherman, 1978) (see Figure 2 for core locations). Cores C1 and C2 were 
drilled vertically, whereas C3 was drilled at an inclination of 50° to the North. In the first 506 m long core (C1), 
4 microgranite sheets ranging from 0.5 to 6.3 m in thickness were intersected. In the second (C2) 602 m long 
core, 25 microgranite sheets were intersected with sheet thicknesses ranging from 0.3 to 23 m with an average 
thickness of 3.1 m. In the third (C3) 760 m inclined core, two microgranite sheets were intersected, and a total 
of 6.7 m of the core was mapped as microgranite. No orientation data were collected for the sheets in the cores 
implying that sheet thicknesses are not corrected for intersection bias. All drill holes intersected intermittent 
subvertical to subhorizontal brecciated and heavily altered zones. A prominent approximately 10 m wide subver-
tical alteration and deformation zone (corrected for drill hole inclination) was noted in Core 3 about 500 m North 
of C3 in Figure 2 at a depth of approximately 400 m. The altered part of the core coincides with a topographical 
trough (Figures 1b and 2).

3. Methods
In total 54, oriented block samples were collected from across the Götemar pluton in 2020 and 2021 for aniso-
tropy of magnetic susceptibility analysis. The sample distribution targeted the coarse granite, medium-grained 
granite, and microgranite sheets to evaluate the strain record in a granitic magma mush. One oriented sample 
(GM-27) was collected from the granodioritic host rock to the pluton. Between six and 27 (avg. 15 per sample), 
25 mm × 22 mm core (sub)specimens were extracted from each of the oriented block samples for rock magnetic 
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analysis undertaken at the M 3Ore lab at the University of St. Andrews. The 
shape of the exposure of granite sheets wider than 1 m was traced with a 
hand-held Dual frequency GPS, and contact orientations were measured with 
the FieldMove Clino app using an iPhone. The inclination and orientation 
of microgranite and pegmatite sheets <1 m wide were measured using the 
FieldMove Clino app.

3.1. Anisotropy of Magnetic Susceptibility

Low-field in-phase AMS was measured on each sub-specimen with a KLY-5 
Kappabridge using a 3D automatic spinning holder in a field of 400 A/m 
and with a frequency of 1440 Hz. Sub-specimen data were used to calcu-
late a mean symmetric second-rank magnetic susceptibility tensor using the 
least square inversion method of Jelínek (1978). The magnetic susceptibility 
tensor defines the length and orientation of the three orthogonal principal 
axes of susceptibility k1 ≥ k2 ≥ k3 (Khan, 1962). Fabric parameters used to 
describe the magnetic fabric are summarized in Tarling and Hrouda (1993). 
The mean magnetic susceptibility (Km) is given by

𝐾𝐾𝑚𝑚 =
𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3

3
 

The corrected degree of anisotropy is given by the anisotropy parameter 
Pj, and the shape of the anisotropy is given by the T parameter, as origi-
nally defined by Jelínek (1981), and calculated using the software Anisoft5 
(Chadima et al., 2019). The corrected degree of anisotropy is defined as

𝑃𝑃𝑗𝑗 = exp

√

2
(

(𝜂𝜂1 − 𝜂𝜂𝑚𝑚)
2 + (𝜂𝜂2 − 𝜂𝜂𝑚𝑚)

2 + (𝜂𝜂3 − 𝜂𝜂𝑚𝑚)
2
)

 

where ηx  =  ln(kx),x  =  1,2,3 and 𝐴𝐴 𝐴𝐴𝑚𝑚 =
𝐴𝐴1+𝐴𝐴2+𝐴𝐴3

3
 . The shape (T) parameter is 

given by

𝑇𝑇 =
2𝜂𝜂2 − 𝜂𝜂1 − 𝜂𝜂3

𝜂𝜂1 − 𝜂𝜂3
 

The magnetic susceptibility ellipsoid shape can range from rotational oblate 
(T  =  1) to rotational prolate (T  =  −1) or present a triaxial neutral fabric 
(T ≈ 0). A Pj value larger than 1 defines an anisotropic fabric.

3.2. Anisotropy of Anhysteretic Remanence Magnetization

The anisotropy of anhysteretic remanence magnetization (AARM) was 
measured on seven to 12 sub-specimens from selected samples (see section 
below) to identify carriers of AMS and reveal magnetically inverse fabrics or 
magnetic sub-fabrics (Ferré, 2002). The following AARM analytical proce-

dure was used; (a) Sub-specimens were individually demagnetized with an Agico LDA5 using a 2-axis tumbler 
and a peak alternating demagnetization field (AF) of 200 mT, (b) an ARM was imparted along a single axis of 
each sub-specimen using a peak AF of 180 mT and DC field of 500 μT using a PAM1 Agico magnetizer, (c) the 
magnetization acquired by the sub-specimen was measured in an Agico JR6-a Magnetometer, (d) steps 1 to 4 
were repeated in 6-positions following the B-mode measurement scheme (Hext, 1963; Jelínek, 1977). ARM field 
strengths were determined based on ARM acquisition and demagnetization experiments (Figure S2 in Support-
ing Information S1). The AARM data were processed and the principal axes of remanence (R1 ≥ R2 ≥ R3) were 
calculated using a mean symmetric second-rank tensor and reoriented to a geographical coordinate system in the 
REMA6 software (Chadima et al., 2018).

Figure 1. (a) 1:250000 scale geological map of the Götemar pluton and 
its surroundings. Note the nearby Mesoproterozoic Uthammar and Blå 
Jungfrun plutons. Modified from the Swedish Geological Survey map 
©Sveriges Geologiska Undersökning (SGU, 2021). The location of the 
Hallandian Orogen is shaded on the inset map of Sweden based on data 
in Ulmius et al. (2015). (b) Satellite image draped over a digital elevation 
model of the Götemar pluton and the surrounding area (Orthophoto RGB 
0.25 m ©Lantmäteriet 2021, höjddata grid 2+ ©Lantmäteriet 2021, License: 
Forskning, utbildning och kulturverksamhet). Regional faults with documented 
vertical displacement are indicated on the map. Along the westernmost fault, 
displacement has been estimated to be 500 m (Kresten & Chyssler, 1976). 
Coordinate system: UTM 33N, WGS 84.



Geochemistry, Geophysics, Geosystems

MATTSSON ET AL.

10.1029/2023GC011061

4 of 16

3.3. Characterization of Magnetic Carriers

To identify the magnetic carriers in the sub-specimens, we performed several magnetic characterization exper-
iments. Representative high (Km between 1.3  ×  10 −2 and 2.7  ×  10 −3 SI; GM-16, GM-19, GM-25, GM-28 
and GM-31) and low mean susceptibility sub-specimens (Km between 3.0 × 10 −4 and 3.4 × 10 −5 SI; GM-01, 
GM-03, GM-04, GM-10, GM-20 and GM-22) were selected for the characterization experiments. Samples 
GM-04, GM-10, and GM-20 represent microgranite and medium-grained granite, whereas all other selected 
sub-specimens are from coarse-grained granite.

The temperature dependence of the bulk magnetic susceptibility of each sample was determined using a KLY-5 
Kappabridge and CS-4 attachment. Each sample was pulped with a ceramic pestle and mortar, and a ∼0.35 g pulp 
sample was cooled to −194°C using liquid Nitrogen in an Agico CSL cryostat; the bulk magnetic susceptibility of 
the sample was then measured as the sample heated up to 0°C. The pulp sample was subsequently saturated in an 
Argon atmosphere in an Agico CS4 furnace and the bulk magnetic susceptibility was measured as the sample was 
heated from 20°C to 700°C and cooled back to room temperature at a rate of 12°C/min. The pulped sample was 
then cooled to −194°C and bulk magnetic susceptibility was measured until the sample temperature reached 0°C.

Magnetic coercivity and temperature unblocking experiments were also carried out on the selected sub-specimen 
set with a view to identifying the coercivity properties of each sub-specimen and aiding the interpretation of 

Figure 2. Mapped medium-grained granite and microgranite sheets overlaid on a satellite image of the Götemar pluton. The core locations of Scherman (1978) are 
marked on the map. The black arrows mark sharp bends in sheet exposures that indicate a change from a vertical to a horizontal sheet attitude along the sheet strike. 
Host-rock contact measurements are displayed as poles in the equal-area lower hemisphere stereonet and show an essentially vertical contact (coarse-grained granite, 
black circles, and microgranite and medium-grained granite, hollow diamonds). The locations for observations of quartz bands (QB), mafic banding (MB), and crystal 
alignment (CA) in microgranite sheets and biotite (mafic) segregations (MS) in coarse-grained granite are indicated on the map. Coordinate system: UTM 33N, WGS 
84. See Figure S1 in Supporting Information S1 for raw GPS data collected during this study used to create the geological map. All structural measurements and sheet 
GPS data are provided by Mattsson et al. (2023).
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the AMS data. These experiments included acquisition and demagnetization 
of Anhysteretic Remanent Magnetization (ARM) and Isothermal Remanent 
Magnetization (IRM,  up to 3  T), demagnetization of Natural Remanence 
Magnetization (NRM), and backfield IRM experiments based on Lowrie 
and Fuller  (1971) and Dunlop and Özdemir  (1997). All experiments were 
completed using a JR6-a magnetometer, LDA5 AF demagnetizer, PAM1 
magnetizer, and a MMPM 10 pulse magnetizer. A modified three-component 
demagnetization experiment based on Lowrie  (1990) was the last experi-
ment performed on the sub-specimens. Three-component demagnetization 
is used to measure the relative contribution made by magnetic remanence 
carrying grains to a sample's bulk magnetic remanence modulus based on 
the user-selected coercivity values and unblocking temperature. IRMs of 
different strengths were imparted along the Z+ (3 T), Y+ (0.3 T), and X+ 
(0.03 T) axes of the specimens using the MMPM 10 pulse magnetizer. The 
samples were then thermally demagnetized with an MMTD demagnetizer 
from Magnetic Instruments in steps of 50 to 20°C from 100 to 700°C using 
a temperature linger time of 25 min. The bulk magnetic susceptibility of the 
sub-specimens was measured with the KLY-5 between each demagnetization 
step to identify alteration during heating. Expanded analytical details of the 
magnetic characterization experiments are given in the associated data publi-
cation (Mattsson et al., 2023).

4. Results
4.1. Field Relationships

Visible exposures of the contact between the Götemar granite and its host 
rock are sharp and dominantly steeply dipping (Figures 2 and 3a). The gran-
odioritic host rock close to the northeastern and eastern contact of the pluton 
is intruded by a few subhorizontal medium-grained granite and microgran-
ite sheets of Götemar granite (Figure 2). A host/wall rock raft is observed 
enveloped by the Götemar granite in the northeastern part of the pluton. The 
observed contacts between the coarse-grained and medium-grained granite 
are sharp.  In addition to the large body of medium-grained granite in the 
northern part of the pluton, several contact-parallel medium-grained gran-
ite  sheets occur in the eastern and northeastern parts of the pluton (Figure 2). 
Vertical medium-grained granite sheets have observed thicknesses of up to 
5  m. The thicknesses of subhorizontal medium-grained granite sheets, on 
the other hand, are difficult to determine but are assumed to range from 
a couple of meters to tens of meters as inferred by the borehole data of 
Scherman (1978). Exposure widths of subhorizontal sheets in the northeast-
ern part of the pluton are sometimes >100 m. Contact parallel (arcuate) sheets 
of microgranite occur throughout the pluton (Figure 2). The microgranitic 
sheets within the pluton are both porphyritic and aphyric (equigranular), 
and sometimes range from medium-grained granite to microgranite textured 

(Figures 2 and 3g). The contacts between the microgranite sheets and the coarse-grained granite vary from sharp, 
undulating, lobate to gradational (Figures  3d and  3h). Many sheets are internally heterogeneous in terms of 
the number of phenocrysts. Subvertical exposures of contacts between the phenocryst-rich and phenocryst-poor 
parts of sheets are U-shaped (Figure 3i). The thickness of individual microgranite sheets ranges from a couple 
of centimeters up to tens of meters and their attitudes range from horizontal or gently inclined to subvertical 
(Figure 4). A change in the sheet attitude along strike from subvertical to subhorizontal can be observed at two 
localities; this is shown on  the map as relatively sharp bends in the sheet strike (Figure 2). In the northeastern 
part of the pluton, the apparent thickness of sheet exposures becomes wider along strike toward the South as the 
dips of the sheet changes from subvertical to subhorizontal (Figure 2). Subhorizontal quartz or mica composi-
tional bands that are parallel to the sheet contacts are observed at the margins of some thicker microgranite sheets 

Figure 3. (a) Sharp contact between a granodioritic host-rock raft and 
the Götemar granite in the northeastern part of the pluton (see Figure 2 
for location). The contact is traced by the white dashed line. Lens cap 
for scale. (b) Coarse-grained granite intruded by a microgranite dike. (c) 
Close-up of pale medium-grained granite. (d) Coarse-grained granite with 
microgranite groundmass displaying the gradational contact relationship that 
exists between some microgranite sheets and the coarse-grained granite. (e) 
Subhorizontal sheet of microgranite with bands of large quartz crystals. (f) 
Subhorizontal mica banding in a microgranite sheet. Inset of a diapiric melt 
protrusion disturbing the compositional banding. (g) Close-up of porphyritic 
microgranite. (h) Subhorizontal contact between coarse-grained granite and a 
microgranite sheet. The contact is highlighted by the white dashed line. Note 
the discordant light microgranite sheet protruding from the subhorizontal sheet 
in the upper right-hand side of the image. (i) U-shaped internal contact in a 
microgranite sheet.
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(Figures 2 and 3e, f). Within equigranular fine-grained microgranite sheets, 
pegmatitic alkali feldspar megacrysts occasionally occur at the sheet margin. 
Weak alkali feldspar phenocryst alignment is observed in one of the major 
sheets in the southwestern part of the pluton (Figure 3g). No distinct mineral 
alignment has been observed elsewhere in the Götemar pluton.

Four sets of thin microgranite sheets (<1 m wide) are identified based on their 
orientation relative to the pluton's contacts, (a) shallow to moderately dipping 
sheets that dip away from the main body of medium-grained granite, and 
(b) steeply dipping sheets that strike parallel to the concentric deformation 
zones within the pluton (see Figure 1b), (c) steeply dipping NW-SE striking 
sheets and (d) ENE-WSW striking steeply dipping sheets (Figure 4b). Larger 
microgranite sheet contacts are not always well exposed; however, where 
orientation measurements are possible, steeply and shallow dipping contacts 
are observed (Figure 4a). In several locations, the thin sheets are separated 
into parallel anastomosing branches that are up to 1 m wide. Angular-shaped 
exposures of microgranite have been observed at two localities within the 
coarse-grained granite, which could indicate the stoping of coarse-grained 
granite into intruding microgranite magma sheets.

4.2. Magnetic Carrier Characterization

Temperature versus susceptibility (T-χ) specimen data depict definite trends 
that help characterize their magnetic mineralogy. Samples with a relatively 
high magnetic susceptibility (Km between 1.3 × 10 −2 and 2.7 × 10 −3; GM-16, 
GM-19, GM-25, GM-28, and GM-31) show a distinct Verwey transition at 
−160°C before and after the heating cycle (Figure S2 in Supporting Infor-
mation  S1). These features indicate the dominance of near stoichiometric 
magnetite (Dunlop & Özdemir, 1997). During heating the samples' suscepti-
bility increases from 450°C to about 550–570°C when a large drop in suscep-
tibility is recorded, which shows that low-Ti magnetite is the main carrier of 
the magnetic susceptibility (Akimoto, 1962; Lattard et al., 2006).

Samples with low susceptibility (Km between 3.0 × 10 −4 and 3.4 × 10 −5; 
GM-01, GM-03, GM-04, GM-10, GM-20, and GM-22) show a fairly flat 
susceptibility curve up to 400°C after which the susceptibility increases 
before dropping again between 550 and 600°C (Figure S2 in Supporting 
Information S1). All low-susceptibility specimens display increases of >50% 
in susceptibility between heating and cooling, which points to the destruc-
tion of low-susceptibility phases such as maghemite or Ti-maghemite and 
the growth of a high-susceptibility phase during the measurement (Dunlop & 
Özdemir, 1997). The occurrence of a prominent ∼580°C Curie temperature 
after heating to 700°C and an enhanced Verwey transition during step 3 is 
consistent with the growth of near stoichiometric magnetite during the heat-
ing cycle (Dunlop & Özdemir, 1997; Özdemir et al., 1993).

4.2.1. IRM Acquisition

IRM acquisition profiles identify three general groups: (a) Specimens that are 
not fully saturated in a field of 3 T (GM-01, 03, 10, 20, and 22), which we call 

high coercivity samples. (b) Specimens that reach 90% saturation in fields between 0.16 and 0.5 T (GM-16, 19, 28, 
and 31), which we call low coercivity samples. (c) Specimens with an intermediate coercivity between group (a) 
and (b) (GM-04 and 25) (Figure 5a and Figure S2 in Supporting Information S1). The specimens with the highest 
coercivity have the lowest mean magnetic susceptibility and vice versa.

Figure 4. (a) Shallow (<45°) and (b) steeply dipping sheets (>45°). Both 
thin sheets (<1 m wide) and large granite sheets (>1 m wide) are displayed 
on the map. Some sheet measurements are not shown to limit cluttering. Poles 
to the sheet planes are plotted in equal-area lower hemisphere stereonets. 
The stereonets were created with the software Stereonet 11 (Allmendinger 
et al., 2012). Coordinate system: UTM 33N, WGS 84. All measurement data 
are provided in the associated data set (Mattsson et al., 2023).
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4.2.2. ARM and IRM Demagnetization

The ARM AF demagnetization on the sub-specimens with high coercivity displays Median Destructive Fields 
(MDFs) when half of the imparted magnetization has been removed between an AF of 15–30 mT. Low coercivity 
samples reach the MDF with an AF below 10 mT (Figure S2 in Supporting Information S1). Sub-specimens with 
intermediate coercivity (GM-04 and GM-25) display ARM MDFs of approximately 25 and 8 mT, respectively. 
Most samples reach MARM/Mmax = 0.1 at fields above 100 mT.

The AF demagnetization of the imparted IRM in most of the high coercivity sub-specimens approaches the 
MDF at an AF of 200 mT. GM-22, which belongs to the high coercivity group of samples, records an MDF of 
approximately 150 mT. The low coercivity samples reach the MDF at an AF between 5 and 15 mT. Intermedi-
ate coercivity sub-specimens GM-04 and GM-25 reach the MDF at around 70 and 20 mT, respectively (Figure 
S2 in Supporting Information S1). All sub-specimen retained at least 10% of the imparted magnetization (M/
MIRM3000 = 0.1) at a field of 200 mT.

4.2.3. Three Component Demagnetization

All results of the modified three-component demagnetization experiment after Lowrie (1990) are presented in 
Figures 5b–5d and Figure S2 in Supporting Information S1. Magnetic remanence in all high coercivity specimens 
(i.e., GM-01, 03, 10, 20, and 22) is dominated by the 3 T Z-axis and shows that approximately 40%–70% of the 
magnetic remanence is controlled by minerals that saturate in fields above 3 T. The 3 T Z-axis from these samples 
also displays nearly linear demagnetization with about 80% of the imparted remanence magnetization removed 
between 20°C and ∼650°C with an abrupt decrease between ∼650°C and 700°, resulting in 95%–100% removal 
of the imparted magnetization. This profile is consistent with the presence of hematite (Lowrie, 1990) (Figure 5). 
The 0.03 T X-axis demagnetization data from the same high coercivity specimens demagnetize nearly linearly 
until 580°C when the imparted field is completely removed, indicating the presence of low coercivity magnetite 
in these samples (Figure 5b; Figure S2 in Supporting Information S1).

Figure 5. (a) IRM acquisition and BIRM imparted along the Z+ and Z− axes of the selected specimens, respectively. 
Examples of three-component demagnetization of sub-specimens with (b) high-, (c) intermediate- and (d) low-coercivity 
according to the IRM acquisition (a). Magnetization strength is given in ampere per meter (A/M). All magnetic 
characterization data are plotted in Figure S2 in Supporting Information S1.
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In contrast, magnetic remanence in all low coercivity specimens (i.e., 
GM-16, 19, 28, and 31) is dominated by the 0.03 T X-axis, with approxi-
mately 40%–60% of the magnetic remanence being controlled by minerals 
that saturate in fields below 0.03 T. The data also show that a substantial 
contribution (∼20–40%) is also derived from the 0.3 T Y-axis and that the 
3 T Z-axis generally contributes >20% of the remanent magnetization. About 
half of the IRM imparted along the X-axis (0.03 T) and Y-axis (0.3 T) is lost 
in the first heating step, and the magnetization later decreases until 450°C 
when the bulk of the imparted IRM is gone. This indicates that low coer-
civity grains such as multi-domain magnetite dominate the X-axis 0.03  T 
contribution. The 3 T Z-axis hard component in the low coercivity specimens 
shows a steady decrease in magnetization until the imparted magnetization 
is removed at around 680°C, signifying the occurrence of relatively small 
amounts of maghemite and/or hematite (Figure 5d).

The intermediate coercivity specimen GM-25 shows linear decay of all 
components until 580°C, where the magnetization drops to ∼10% of 
the initial magnetization (Figure  5c). The magnetization is subsequently 
completely removed at 700°C, indicating that both magnetite and hematite 
are present in the sample. In GM-04, the magnetization of all components 
drops slightly at 580°C and is removed between 650 and 680°C; this is also 
consistent with the presence of magnetite and Ti-maghemite, respectively. 
The presence of maghemite in the samples is revealed by rapid decay of the 
magnetization of the intermediate component (Z-axis) until 300–350°C and 
loss of magnetization between 600 and 650°C (Dunlop & Özdemir, 1997; 
Lowrie, 1990). Additionally, maghemite is indicated by the bump in the T-χ 
heating curve in GM-04, 19, 22, and 31 between 250 and 350°C (Figure S2 
in Supporting Information S1) (Bilardello, 2020; Dunlop & Özdemir, 1997; 
Petronis et al., 2011).

Changes in the specimens' bulk magnetic susceptibility during thermal 
demagnetization show that alteration occurred during the 3-component 
experiment (Figure S2 in Supporting Information S1). Large changes in bulk 
susceptibility are recorded in all specimens between 300 and 500°C (Figure 

S2 in Supporting Information S1) and could be caused by the alteration of (Ti-)maghemite to hematite, which 
usually occurs between 250 and 400°C (Bilardello, 2020; Dunlop & Özdemir, 1997; Tauxe et al., 2018). An 
increase in magnetic susceptibility during heating as observed in GM-04 may be linked to the formation of 
magnetite (Figure S2 in Supporting Information S1) (Liu et al., 2005; Petronis et al., 2011). The three-component 
demagnetization experiments reveal a magnetic mineralogy consisting of magnetite, maghemite, and hematite in 
most of the specimens, but with different relative abundances.

4.3. Magnetic Fabrics

The orientation of the mean AMS principal axes records a broad range of orientations between sample sites 
(Figures  S3a and S3b in Supporting Information  S1). The samples' mean susceptibility (Km) ranges from 
1.04 × 10 −5 to 2.72 × 10 −2 SI with an average of 2.78 × 10 −3 (1σ, 5.72 × 10 −3, n = 54) (Figure 6a). The average 
corrected degree of anisotropy (Pj) of all the analyzed samples is 1.06 (1σ, 0.04) (n = 54). The coarse-grained 
granite samples have an average Km of 4.61 × 10 −3 SI (1σ, 6.96 × 10 −3, n = 30) and an average Pj of 1.08 (1σ, 
0.03). The average Km of the medium-grained granite samples is 7.68 × 10 −5 SI (1σ, 7.19 × 10 −5, n = 12) with an 
average Pj of 1.04 (1σ, 0.01). The microgranite samples have an average Km of 5.68 × 10 −5 SI (1σ, 3.81 × 10 −5, 
n = 10) and an average Pj of 1.04 (1σ, 0.02). The highest Km values can be found close to the eastern, western and 
northern contact to the pluton and in areas rich in mafic mineral segregations, whereas the center of the Götemar 
pluton has relatively low Km (Figure 6a). The fabric shape parameter T in coarse- and medium-grained granite and 
microgranite vary between sub-specimens and consequently results in an averaged triaxial fabric in most samples 
(Figure 6b). However, the AMS fabric shape in the western and northern marginal zones is dominantly oblate 

Figure 6. Contour maps of AMS fabric parameters calculated using 
Inverse-Distance Weighting. The outlines of medium-grained granite and 
microgranite sheets are shown on the map. (a) Sample average mean magnetic 
susceptibility, Km. (b) Sample average shape factor, T. Note that the contour 
scale has been bracketed between 0.6 and −0.6 to better highlight differences 
in the AMS fabric shape.
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both in coarse-grained and medium-grained granite units, whereas the fabric 
is triaxial to prolate in the central and eastern parts of the pluton. A domi-
nantly prolate to transitional prolate fabric is recorded in samples collected 
in proximity to the northeastern contact of the main medium-grained granite 
body (Figure 6b). Individual sub-specimen axes delineate well-defined 95% 
confidence ellipses in the majority of the samples indicating that whereas 
the orientation of individual sub-specimen principal axes varies, the fabric 
detected at sample scale is reliable (Figure S3 in Supporting Information S1).

The AMS foliations and lineations of the medium-grained and microgranite 
sheets strike and trend largely parallel to both the internal granite-granite 
contacts and the granite-host rock contact (Figure 7). In the coarse-grained 
granite, both host rock-granite contact parallel and perpendicular AMS folia-
tions occur. Oblique (i.e., not contact parallel) AMS foliations in the center of 
the pluton are steeply dipping and strike NNW-SSE, whereas oblique AMS 
foliations close to the margins of the pluton strike ENE-WSW. AMS linea-
tions in the coarse-grained granite are either moderate to shallowly plunging 
and contact parallel, or steep to moderately plunging and trending highly 
oblique to the concentric pluton structure (Figure 7b).

4.3.1. AARM

Nine samples were selected for AARM analysis (Figure S4 in Supporting 
Information S1). The AARM fabric of GM-01 and GM-03 were not analyzed 
due to the disperse orientations of the AMS principal axes (see Figure S3 
in Supporting Information S1). The Krem (mean remanence) of the samples 
ranges from 8.5 × 10 −5 to 2 × 10 −3. The average corrected degree of aniso-
tropy (Pj) of the analyzed sample set is 1.15 (1σ, 0.07). The average AARM 
shape factor T of all analyzed samples ranges from 0.24 to −0.18, represent-
ing transitional to triaxial fabric shapes.

5. Discussion
5.1. Deciphering the AMS Fabric in the Götemar Pluton

AMS in igneous rocks is often controlled by the shape and/or distribu-
tion of ferrimagnetic grains owing to their susceptibility values which are 

an order of magnitudes higher than silicate paramagnetic phases such as micas, pyroxenes, and amphiboles 
(Biedermann, 2018; Borradaile & Jackson, 2010; Gaillot et al., 2006; Grégoire et al., 1998; Hargraves et al., 1991; 
Mattsson et al., 2021; Rochette et al., 1999; Stephenson, 1994). The magnetic mineralogy of a sample greatly 
impacts the relationship between the shape and orientation of the AMS tensor and the true petrographic rock 
fabric (Borradaile & Jackson, 2010; Tarling & Hrouda, 1993). Here, we evaluate our magnetic characterization 
data to validate our AMS data set.

A correlation between the corrected degree of anisotropy (Pj) values and mean susceptibility (Km) values is 
generally observed within the Götemar pluton (Figure S5 in Supporting Information S1). Such a relationship is 
a common feature in rocks with AMS Pj values < 1.15 whose mean susceptibility is controlled by the relative 
abundance of ferrimagnetic minerals, such as magnetite (Borradaile & Jackson, 2010; Hrouda, 1982; Tarling & 
Hrouda, 1993). Rock magnetic data from GM-16, 19, 28, and 31 represent coarse-grained granite and consistently 
show that low coercivity magnetite (likely multi-domain), best illustrated by a magnetically saturated IRM acqui-
sition curve and a Curie temperature of ∼580°C, is the dominant magnetic mineral in these samples (Figure S2 in 
Supporting Information S1; Figure 5a). The high coercivity specimens GM-01, 03, 10, 20, and 22 (representing 
all the rock units of the pluton) have a markedly different magnetic mineralogy that is characterized by concave 
IRM acquisition curves, higher MDFs of IRM and ARM demagnetization and very low mean susceptibility values 
in the order of ∼1 × 10 −4 SI (Figure S2 in Supporting Information S1; Figure 5a). These results point toward 
the dominance of higher coercivity mineral phases such as Ti-maghemite. Data arising from T-χ experiments 
on high coercivity samples show irreversible heating-cooling curves and indicate that magnetite grew during 

Figure 7. Mean in-phase AMS foliations (a) and lineations (b) of the Götemar 
granite samples. Samples with a large dispersion of sub-specimen principal 
axes (i.e., indistinguishable fabric) are semi-transparent. The poles to the AMS 
foliations and the AMS lineations (k1) are plotted in the inset equal-area lower 
hemisphere stereonets. Foliation poles for coarse-grained granite are given 
as black circles and medium-grained granite and microgranite sheet foliation 
poles are plotted as hollow diamonds. Lineations for coarse-grained granite are 
given as black triangles and medium-grained granite and microgranite sheet 
lineations are plotted as crosses. Sub-specimen principal axes of susceptibility 
are shown in stereonets in Figures S3a and S3b in Supporting Information S1.
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the experiment, possibly at the expense of Iron-sulfide minerals, such as pyrite, that were oxidized and replaced 
by magnetite. Three-component demagnetization results concur with these observations and suggest that low 
coercivity magnetite, represented by the 0.03 T X-axis, is present in small quantities in analyzed sub-specimens, 
while magnetic remanence is dominantly carried by high coercivity phases such as hematite (Figure 5b). The 
very low Km values observed in GM-01, 03, 10, 20, and 22 indicate that ferrimagnetic minerals constitute only a 
small proportion of these sub-specimens and it is therefore possible that paramagnetic minerals control the AMS 
signal. A comparison between AARM and AMS results efficiently tests this possibility because AARM should 
reflect the fabric of low coercivity magnetic grains (most likely magnetite) and hence elucidate the relationship 
between AMS and the magnetite shape or distribution fabric in our sample set (Borradaile & Jackson, 2010; 
Jackson, 1991; McCabe et al., 1985).

The AARM principal axes (Rx) are coaxial to the AMS principal axes (kx) in GM-04, GM-22, and GM-25 (Figure 
S4 in Supporting Information S1). In GM-31, R1 axes are steeply plunging but with disperse trends, and R2 and 
R3 axes are plotting on a subhorizontal girdle. However, the mean principal AARM axes of GM-31 plot close to 
the AMS principal axes. The AARM of some of the samples reveals magnetically intermediate magnetic fabrics 
where k1 = R2 or k3 = R2 (cf. Ferré, 2002). For example, in GM-19 AARM R2 and AMS k3 axes plot close to 
each other (Figure S4 in Supporting Information S1). However, magnetically inverse AMS (k1 = R3) have not 
been observed in the selected samples. GM-10, GM-16, GM-20, and GM-28 show dispersed R1 orientations and 
display AARM foliations that are slightly oblique relative to the AMS foliations, which point to the presence 
of a magnetic sub-fabric that affects the remnant magnetization tensor. The intermediate AMS-AARM (e.g., 
k1 = R2) fabric relationship seen in some of the coarse-grained granite samples indicates that the AMS foliations 
are a more reliable indicator for the petrofabric in the coarse-grained granite than the magnetic lineations (k1). 
Low mean susceptibility medium-grained granite samples (GM-04 and 20) have a coaxial and magnetically 
inter mediate AMS-AARM relationship, which infers that the AMS fabric of these samples most likely reflects 
the petrofabric of low coercivity remanence carrying grains and not paramagnetic minerals.

The cause of the large spatial differences in mean susceptibility (Km) within the Götemar pluton could be related 
to the hydrothermal to metasomatic alteration previously noted in and around the pluton (Figure  6a) (Drake 
et al., 2009; Friese et al., 2012; Tillberg et al., 2019). The low mean susceptibility may therefore correspond to 
areas with a magnetic fabric created by secondary alteration processes. However, the comparatively low mean 
susceptibility values of medium-grained granite and microgranite could also indicate that the primary magma 
composition of those units was relatively magnetite-poor compared to the coarse-grained granite magma. This 
notion is supported by the medium-grained granite AMS foliations and lineations, which correlate with the unit 
contact orientation, and therefore suggest a primary origin of the magnetic fabric related to magma emplacement 
(Figure 7).

5.2. Emplacement of Magmatic Sheets in the Götemar Pluton

This section summarizes and discusses the structures and magma transport features of the Götemar pluton. The 
concentric internal structure of the Götemar pluton is emphasized by the curved contact-parallel topographical 
troughs seen in satellite images of the pluton (Figure 1b). One of these curved features can be correlated with a 
10 m wide brecciated and altered zone in Core 3 (Scherman, 1978). The saw-tooth shape of the eastern contact 
with the major microgranite sheet (in the southwestern part of the pluton) coincides with the topographical 
troughs, which suggests that these features are associated with displacement and can be classified as shear zones 
or faults (Figure 2). However, the sense of displacement and state of deformation (brittle or ductile) across these 
structures are difficult to determine due to the vegetation cover in the area; therefore, we prefer the generic term 
deformation zone to describe the features. Large medium-grained granite and microgranite sheets that domi-
nantly strike parallel to the pluton-host rock contact and the internal deformation zones occur throughout the 
pluton (Figure 2). In the northern and southwestern parts of the pluton, sheet exposures are continuous for up to 
a kilometer along strike. A change from vertical to subhorizontal sheet attitude can also be observed by following 
sheets from the North toward the southeastern and central part of the pluton (Figure 2). In the central part of the 
pluton, sheets wider than 1 m are interpreted to be dominantly subhorizontally inclined with undulating contacts, 
since their exposures are not continuous along strike and some sheets display subhorizontal compositional band-
ing (Figures 2 and 3e, f). We interpret that the feeder to the concentric sheets was located in the northwestern 
part of the pluton based on two main lines of evidence: (a) The position of the major medium-grained body in the 
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northwest and (b) that the microgranite sheets pinch out from the western and 
northern margin toward the southeastern part of the pluton, which indicates 
the magma propagation direction (Figures 2 and 8). The AMS fabric of the 
microgranite sheets supports the field observations of the sheet propagation 
direction and attitude. The AMS lineation indicates the stretching direction 
of the magma in sheets and has been shown to give a good approximation of 
the magma flow direction (e.g., Cañón-Tapia, 2004; Chadima et al., 2009; 
Geoffroy et al., 2002; Knight & Walker, 1988; Schmiedel et al., 2021). The 
AMS lineations in the Götemar microgranite sheet samples are shallow 
plunging and trending parallel to the sheet strike, except in the major micro-
granite sheet in the southwestern part of the pluton (Figure 7b). The linea-
tions in the major microgranite sheet are moderately plunging and associated 
with sheet contact-parallel AMS foliations, which could indicate an overall 
up to the southeast migration of magma.

Quartz and mica bands occur in proximity to some sheet contacts in the south-
western and central parts of the Götemar pluton (Figures 3e and 3f). Compo-
sitional and textural banding features in silicic magma bodies could be related 
to crystallization fronts (e.g., comb layering and pegmatitic), mafic segrega-
tions (schlieren) or flow banding (Burchardt et al., 2019; Clemens et al., 2020; 
London, 2009; Mattsson et al., 2018; McCarthy & Müntener, 2016). Pegma-
tite crystallization fronts are associated with the formation of mafic banding 
in aplites (London, 2009). Pegmatite occurs within microgranite sheets in the 
Götemar pluton, but no pegmatites could be identified in close association 
with the mica bands, which is consistent with banding formation in a setting 
related to magma flow that inhibited the formation of pegmatite crystalliza-
tion fronts. Mafic schlieren has been interpreted to form as flow segregations 
of mafic minerals in granitic magma accompanied by magmatic reactions 
(Clemens et al., 2020), whereas flow bands are compositional and/or textural 
differences in magma linked to flow partitioning, which promotes vesicula-
tion and crystallization (Castro et al., 2005; Gonnermann & Manga, 2005; 
Tuffen et al., 2003). Since the Götemar granite magma was fluid-rich (Drake 
et  al.,  2009; Friese et  al.,  2012; Tillberg et  al.,  2019), volatile exsolution 
caused by strain-localization during magma flow could have promoted crys-
tallization/segregation of quartz or mica in bands. Importantly, irrespective 
of how the banding formed, the existence of magma-derived banding shows 
that some of the Götemar microgranite sheets were melt-rich with limited 
crystal cargo (Figures 3e and 3f).

The AMS fabric shape distribution within the whole pluton shows a compar-
atively larger pure shear (oblate) component in the western and northern 

parts of the pluton, whereas the fabric is triaxial in the eastern and central parts (Figure 6b). The contact-parallel 
AMS foliations and lineations in the main medium-grained granite body largely reflect its shape and are consist-
ent with the compaction of magma combined with subhorizontal contact parallel shear as the medium-grained 
granite body inflated and interacted with the coarse-grained magma mush (Figure 7). Notably, the sheets within 
the coarse-grained granite are dipping away from the main medium-grained granite body (Figure 4a). The dips 
of the subhorizontal sheets together with the contact-parallel medium-grained granite AMS fabric strongly 
suggest  that the emplacement of the main medium-grained granite body deflected the coarse-grained crystal 
mush. The AMS foliations in the coarse-grained granite are contact-parallel in the northern and southern parts 
of the pluton (Figure  7a). However, in other areas of the pluton, the coarse-grained granite AMS foliations 
are oblique to the contact, either oriented NW to NNW-SE to SSE or ENE-WSW, parallel to the two groups 
of steeply-dipping sheets (c and d) in the pluton. The cause of the oblique fabrics in the center of the pluton 
is uncertain, but they could reflect the compaction of the mush as magma sheets intruded laterally into  the 
mush and/or that the fabrics are secondary relating to post-emplacement alteration (see Figures 2, 6a, and 7). 
The contact-parallel deformation zones in the pluton supported by the triaxial AMS fabric in the central and 

Figure 8. Conceptual model for the emplacement of medium-grained granite 
and microgranite sheets in the Götemar pluton. (a) Map view of the magma 
body, (b) perspective 3D view of the magma body. Magma was fed from the 
northwestern part of the magma body. To accommodate space for the magma 
intruding in the NW, the already emplaced highly viscous crystal mush 
was deflected vertically and laterally toward the East-southeast, facilitated 
by contact-parallel shear zones within the magma body. These shear zones 
were exploited by magma intruding into the magma mush, resulting in 
concentrically flowing subhorizontal sheets. Magma was also transported 
in vertical dikes dominantly striking NW-SE. The dike orientations are 
likely controlled by a back-arc extensional stress field related to the nearby 
Hallandian Orogen (see Figure 1a for location).
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eastern parts of the pluton suggest that subhorizontal contact-parallel shear combined with some degrees of 
mush compaction accommodated the intrusion of magma into the granite magma body (Figures 1b, 6b, and 7). 
Considering that the host rock shows no evidence of deflection by the Götemar granite body (see Cruden, 2008), 
and the AMS fabric in the northern and western parts of the pluton are dominantly oblate, the prevailing expan-
sion/growth direction of the magma body is assumed to be up accompanied by minor East-southeast lateral 
expansion.

5.3. Controls on Magma Transport Within Mushy Magma

It is widely established that large magma bodies are constructed in increments by pulses of magma (Bartley 
et al., 2006; Chan et al., 2017; Harry & Richey, 1963; Michel et al., 2008; Miller et al., 2018; Richey, 1928), 
and that within mid to upper-crustal granitic systems magma is transported in sheets (Hutton, 1988; McNulty 
et al., 1996; Miller & Paterson, 2001; Pignotta et al., 2010; Rocher et al., 2021; Weinberg & Searle, 1998). The 
Götemar pluton shows that magma sheet emplacement within mushy magma bodies is strongly influenced by 
the local magmatic and the regional stress field. The dominant NW-SE orientation of the steeply dipping thin 
sheets (>1 m wide) cannot be purely attributed to inflation-related stresses in the magma body (Figure 4b). These 
sheets (group c) are oriented parallel to the proposed orogenic front of the contemporaneous (1.47–1.38 Ga) 
nearby Hallandian Orogen (Figures 1a and 4b) (Bogdanova et al., 2014; Ulmius et al., 2015). Rocks deformed 
by the Hallandian Orogen are exposed South of the Götemar pluton in county Blekinge (Figure 1a). They reveal 
an NW-striking penetrative fabric likely created by NE-SW shortening (Wahlgren & Stephens, 2020). The AMS 
fabric of plutons commonly reflects the direction of regional shortening if emplaced in a compressional stress 
field (Burton-Johnson et al., 2019; McCarthy, Reavy, et al., 2015). The Götemar pluton AMS foliations do not 
show a dominant NW-SE alignment, which suggests that the pluton was not emplaced within a compressional 
stress field (see Figure 7a). A corresponding back-arc extensional stress field related to the Hallandian Orogen 
may therefore have controlled the attitude of the NW-SE striking dikes within the Götemar pluton.

The concentric subhorizontal sheet attitudes in the Götemar pluton, on the other hand, suggest a link to the 
local magmatic stress field. Curved magmatic sheets such as ring-dikes and inclined sheets are common 
features in the host rock to shallow magmatic systems (Anderson, 1937; Burchardt et al., 2013; Burchardt & 
Gudmundsson,  2009; Klausen,  2004; Magee et  al.,  2012; Schirnick et  al.,  1999). The classic model of ring-
dike formation involves the subsidence of a block overlying magma leading to the formation of steeply dipping 
bell-jar-shaped dikes (Anderson, 1937; Clough et al., 1909). Inclined sheets, on the other hand, dip toward the 
magmatic source (Anderson, 1937; Jackson et al., 2013; Le Bas, 1971; Phillips, 1974; Planke et al., 2005; Polteau 
et al., 2008; Schmiedel et al., 2017). The dominantly outward dipping to subhorizontal sheets in the Götemar 
pluton can neither be described as inclined sheets nor ring dikes (Figure 4a). The viscosities of a magma mush 
are orders of magnitude higher than the viscosities of a melt-dominated magma and therefore behave as a rigid 
crystal network when it is deformed (Bergantz et al., 2017; Costa et al., 2009; Marsh, 1996; Petford, 2009; Picard 
et al., 2013). During the late-stage growth of sub-volcanic laccoliths, deformation of viscous already emplaced 
magma produces contact parallel strain partitioning features such as banded/layered breccias (Burchardt 
et al., 2019; Mattsson et al., 2018). The concentric internal features of the Götemar pluton, including the sheet 
orientations, the medium-grained granite AMS foliations and lineations, and the late-stage deformation zones 
(Figures 1b, 2, and 7), indicate that new magma intruding the Götemar magma body was accommodated by 
displacements along localized concentric magmatic shear zones in the viscously stalled mush. Shear zones have 
been shown to act as magma pumps and drivers of magma migration in orogenic settings (Weinberg et al., 2006). 
We therefore propose that magma intruding into the mush exploited magma emplacement-related concentric 
shear zones within the Götemar magma mush to flow laterally in concentrically striking sheets (see Section 5.2 
above). Since our mapping identifies several concentrically flowing sheets that are separated by coarse-grained 
granite and U-shaped internal sheet contacts, we suggest that magma flowed in lobe-like fingers within the 
magma mush, similar to magma transport in sills (Figures 3i and 8) (cf. Magee et al., 2016; Pollard et al., 1975; 
Schofield et al., 2012). The change in magma sheet attitude from vertical to subhorizontal along strike shows that 
the magmatic stress field in the magma body changed from the North to the East away from the feeder to favor 
subhorizontal magma transport (Figures 2 and 8). Although speculative, the differences in the internal stress field 
could be related to a trapdoor - style deflection of the magma body roof that opened toward the East-southeast. In 
this case, trap-door roof deflection prompted the sheets to propagate horizontally in the eastern part of the pluton 
perpendicular to the easy axes of pluton growth.
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The Götemar pluton highlights that (a) the interplay between the magmatic and the regional tectonic stress field 
is controlling magma transport in magma mush systems and (b) that the magma transport mechanisms in mush 
systems are similar to transport mechanisms in non-magmatic host rock. Notably, horizontal magmatic sheet 
propagation is controlled by the emplacement-related structures and stresses within the magma body. There-
fore, the magma sheet distribution associated with dominant floor subsidence type pluton emplacement can be 
expected to yield different magma transport architecture compared to magma bodies that were predominantly 
emplaced by inflation and roof and wall deflection, such as the Götemar pluton.

6. Conclusions
•  The parallel concentrically flowing microgranite and medium-grained granite sheets exposed throughout the 

circular Götemar pluton show that magma transport is linked to its concentric emplacement-related structure.
•  Flow of magma within the magmatic sheets transitioned from vertical in the NW to lateral/horizontal along 

strike toward the center of the magma body and migrated to the crystal mush in the form of melt fingers.
•  NW-SE striking subvertical magmatic sheets indicate an influence of the regional Hallandian orogenic stress 

field on vertical sheet orientations within the pluton.
•  The magmatic sheet architecture of the Götemar pluton shows that it is important to establish the pluton 

emplacement mechanism to understand the magma transport within magma mush systems.
•  The Götemar pluton shows that magma sheet emplacement within mushy magma bodies is strongly influ-

enced by both the local magmatic and the regional stress fields.
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