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A B S T R A C T

In some experiments, the experimental units are all pairs of individuals who have to undertake
a given task together. The set of such pairs forms a triangular association scheme. Appropriate
randomization then gives two non-trivial strata. The design is said to have commutative
orthogonal block structure (COBS) if the best linear unbiased estimators of treatment contrasts
do not depend on the stratum variances. There are precisely three ways in which such a design
can have COBS. We give a complete description of designs for which all treatment contrasts are
in the same stratum. Then we give a very general construction for designs with COBS which
have some treatment contrasts in each stratum.

. Experiments with half-diallel structure

A diallel experiment generally estimates the variation of quantitative characters in genetic components. For example, they are
sed in plant breeding experiments to assess attributes like plant seed quality, and are also used in animal breeding experiments.
he so-called diallel cross is the most balanced and systematic approach to investigate continuous variations among the genotypes
f the individuals used in the study. In a full diallel experiment, the experimental units are all ordered crosses between 𝑚 parental
ines. Sometimes the self-crosses are excluded: see Yates (1947). Sometimes only a subset of these crosses is used, and the structure
s called a partial diallel cross: see Curnow (1963), Fyfe and Gilbert (1963) and Kempthorne and Curnow (1961). In situations where
he gender of the parent is irrelevant, it is efficient to use half-diallel experiments, in which the experimental units consist of all
nordered crosses between 𝑚 parental lines, excluding self-crosses: see Jones (1965).

The most common use of diallel experiments is to estimate properties of the genotypes. However, the half-diallel structure is
lso useful in some experiments where the experimental units naturally consist of unordered pairs and each treatment of interest
s applied to some of these pairs: see Bailey (1991, 2003). These include experiments in human–computer interaction in which the
omputer is used for some task involving two people whose roles are the same. They may be conducting collaborative research,
r simply having an online conversation: see Howes et al. (2009) and Özkan et al. (2021). This idea extends to any experiment
here pairs of individuals are needed to complete a task, with both playing the same role. For example, the experiment might be

onducted to compare different methods for researchers to collaborate when they are unable to meet face-to-face, such as email,
nline meetings, old-fashioned letters, and telephone calls with or without video.
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Fig. 1. The triangular association scheme 𝑇 (6).

In the half-diallel structure, the set 𝛺 of experimental units consists of all unordered pairs from a set of 𝑚 individuals, labelled
1, . . . , 𝑚. In Section 2 we remind readers that such a set can be described by a triangular association scheme, and give the relevant
linear algebra for the benefit of those who are not very familiar with association schemes. Section 3 gives our assumed linear
model, including how the process of randomization affects assumptions about the variance–covariance matrix. In Section 4 we
remind readers about the property called commutative orthogonal block structure, and deduce what this means for the half-diallel
structure. It turns out that there are three types of design with this property. These three types are fully described in the remainder
of the paper.

2. The triangular association scheme

Association schemes were introduced in the 1950’s to provide constructions for incomplete-block designs of sizes where no
balanced incomplete-block designs are possible: see Bailey (2004), Bannai and Ito (1984), Bose and Mesner (1959), Bose and Nair
(1939) and Bose and Shimamoto (1952). Here we can specialize immediately to association schemes with two associate classes.

Given a finite set 𝛯 of size 𝑁 , let 𝐈 be the 𝑁 ×𝑁 identity matrix whose rows and columns are labelled by the elements of 𝛯, and
let 𝐉 be the 𝑁 ×𝑁 matrix with rows and columns labelled by the elements of 𝛯 with all elements equal to 1. The set of elements
(𝜉1, 𝜉2) of 𝛯 × 𝛯 with 𝜉1 ≠ 𝜉2 is partitioned into two associate classes, in such a way that (𝜉1, 𝜉2) is in the same class as (𝜉2, 𝜉1). The
djacency matrix 𝐀 for the first class is the 𝑁 ×𝑁 matrix whose (𝜉1, 𝜉2)-entry is equal to 1 if (𝜉1, 𝜉2) is in the first class; otherwise
he entry is 0. The adjacency matrix for the second class is 𝐉−𝐀− 𝐈. This partition of 𝛯 ×𝛯 into the diagonal and two non-diagonal
ssociate classes is defined to be an association scheme if and only if

𝐀2 is a linear combination of 𝐈, 𝐀 and 𝐉. (1)

If the coefficient of 𝐉 in Eq. (1) is non-zero then the equation shows that 𝐀 commutes with 𝐉. Hence there is some constant 𝑐
uch that 𝐀 has exactly 𝑐 non-zero entries in each row and each column. Let 𝐯0 be the column vector of length 𝑁 with all entries
qual to 1. Then 𝐀𝐯0 = 𝑐𝐯0. Let 𝑊0 be the 1-dimensional subspace of R𝑁 spanned by 𝐯0. If 𝐯 ∈ R𝑁 ⧵𝑊0 then some entries in 𝐯 are
ifferent and so 𝐀𝐯 cannot be equal to 𝑐𝐯. Hence 𝑊0 is an eigenspace of 𝐀 with dimension 1. The matrix 𝐐0 of orthogonal projection
nto 𝑊0 is given by 𝐐0 = 𝑁−1𝐉.

If we restrict attention to vectors in the orthogonal complement 𝑊 ⟂
0 of 𝑊0, Eq. (1) shows that 𝐀 satisfies a quadratic equation.

herefore 𝐀 has two other eigenvalues 𝜆1 and 𝜆2, with their corresponding eigenspaces 𝑊1 and 𝑊2, and R𝑁 is the orthogonal direct
um of 𝑊0, 𝑊1 and 𝑊2.

For the triangular association scheme 𝑇 (𝑚), which was first described by Bose and Shimamoto (1952), we let 𝛯 be the set 𝛺
iven in Section 1. Thus 𝑁 = 𝑚(𝑚 − 1)∕2. We can picture the elements of 𝛺 as the cells in a 𝑚 × 𝑚 square array with the diagonal
issing and only the cells below the diagonal included. Fig. 1(a) shows this for the case that 𝑚 = 6. Fig. 1(b) shows the vector 𝐯0

n this case.
For 𝑖 = 1, . . . , 𝑚, let 𝐯𝑖 be the vector taking value 1 on each pair that contains individual 𝑖 and the value 0 elsewhere. Fig. 1(c)

hows the vector 𝐯4 when 𝑚 = 6. Also, if 𝑖 ≠ 𝑗, let 𝐯𝑖𝑗 be the vector containing the value 1 on the pair {𝑖, 𝑗}, with all other values 0.
hus

𝑚
∑

𝑖=1
𝐯𝑖 = 2𝐯0 (2)

nd
∑

𝑗≠𝑖
𝐯𝑖𝑗 = 𝐯𝑖. (3)

Two distinct pairs in 𝛺 are first associates if they have an individual in common; otherwise, they are second associates. In order
2

o ensure that each pair has some second associates, we insist that 𝑚 ≥ 4.
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Consider the pair {𝑖, 𝑗}. It has 2(𝑚 − 2) first associates. If 𝑘 ∉ {𝑖, 𝑗} then {𝑖, 𝑗} and {𝑖, 𝑘} have (𝑚 − 2) first associates in common;
ne of these is {𝑗, 𝑘} and the others are {𝑖,𝓁} for 𝓁 ∉ {𝑖, 𝑗, 𝑘}. If 𝑖, 𝑗, 𝑘 and 𝓁 are all different, then the pairs {𝑖, 𝑗} and {𝑘,𝓁} are
econd associates and they have four first associates in common (these are {𝑖, 𝑘}, {𝑖,𝓁}, {𝑗, 𝑘} and {𝑗,𝓁}). Therefore

𝐀2 = 2(𝑚 − 2)𝐈 + (𝑚 − 2)𝐀 + 4(𝐉 − 𝐀 − 𝐈) = (2𝑚 − 8)𝐈 + (𝑚 − 6)𝐀 + 4𝐉. (4)

The coefficient of 𝐉 in Eq. (4) is non-zero, so the previous argument shows that 𝑊0 is an eigenspace of 𝐀 with eigenvalue 2(𝑚−2).
f 𝜆 is an eigenvalue of 𝐀 with eigenvectors in 𝑊 ⟂

0 then Eq. (4) shows that

𝜆2 = (2𝑚 − 8) + (𝑚 − 6)𝜆.

herefore

(𝜆 + 2)(𝜆 − (𝑚 − 4)) = 𝜆2 − (𝑚 − 6)𝜆 − (2𝑚 − 8) = 0,

nd so 𝜆1 = −2 and 𝜆2 = 𝑚 − 4. Let 𝑑1 and 𝑑2 be the dimensions of 𝑊1 and 𝑊2. Then 𝑑1 + 𝑑2 = 𝑁 − 1. Also, Tr(𝐀) = 0, because all
he diagonal elements of 𝐀 are zero, and so

2(𝑚 − 2) + 𝑑1(−2) + (𝑚(𝑚 − 1)∕2 − 1 − 𝑑1)(𝑚 − 4) = 0.

ence 𝑑1 = 𝑚(𝑚 − 3)∕2. It follows that 𝑑2 = 𝑚 − 1.
For any 𝑖 in {1,… , 𝑚}, let us consider 𝐀𝐯𝑖. If 𝑗 ≠ 𝑖 then the pair {𝑖, 𝑗} has exactly 𝑚 − 2 first associates which involve 𝑖. Thus

he coefficient of 𝐯𝑖𝑗 in 𝐀𝐯𝑖 is equal to 𝑚 − 2. If 𝑖, 𝑗 and 𝑘 are all different then the pair {𝑗, 𝑘} has exactly 2 first associates which
nvolve 𝑖. Thus the coefficient of 𝐯𝑗𝑘 in 𝐀𝐯𝑖 is equal to 2. Therefore

𝐀𝐯𝑖 = (𝑚 − 2)𝐯𝑖 + 2(𝐯0 − 𝐯𝑖) = (𝑚 − 4)𝐯𝑖 + 2𝐯0.

herefore, if 𝑗 ≠ 𝑖 then 𝐀(𝐯𝑖 − 𝐯𝑗 ) = (𝑚 − 4)(𝐯𝑖 − 𝐯𝑗 ), and so 𝐯𝑖 − 𝐯𝑗 ∈ 𝑊2. Vectors of the form 𝐯𝑖 − 𝐯𝑗 span a subspace of dimension
− 1, and so this is the whole of 𝑊2. The eigenspace 𝑊1 is the orthogonal complement of 𝑊0 ⊕𝑊2, which is spanned by vectors

f the form 𝐯𝑖𝑗 + 𝐯𝑘𝓁 − 𝐯𝑖𝑘 − 𝐯𝑗𝓁 with 𝑖, 𝑗, 𝑘 and 𝓁 all different.
Let 𝐐1 and 𝐐2 be the matrices of orthogonal projection onto 𝑊1 and 𝑊2 respectively. Then

𝐈 = 𝐐0 +𝐐1 +𝐐2

nd

𝐀 = 2(𝑚 − 2)𝐐0 − 2𝐐1 + (𝑚 − 4)𝐐2. (5)

herefore

𝐀 + 2𝐈 = 2(𝑚 − 1)𝐐0 + (𝑚 − 2)𝐐2.

t follows that

(𝑚 − 2)𝐐2 = 2𝐈 + 𝐀 −
2(𝑚 − 1)

𝑁
𝐉 = 2𝐈 + 𝐀 − 4

𝑚
𝐉,

nd so

𝐐2 =
2

𝑚 − 2
𝐈 + 1

𝑚 − 2
𝐀 − 4

𝑚(𝑚 − 2)
𝐉.

Likewise,

(𝑚 − 4)𝐈 − 𝐀 = −𝑚𝐐0 + (𝑚 − 2)𝐐1,

and so

(𝑚 − 2)𝐐1 = (𝑚 − 4)𝐈 − 𝐀 + 𝑚𝐐0 = (𝑚 − 4)𝐈 − 𝐀 + 2
𝑚 − 1

𝐉.

herefore

𝐐1 =
𝑚 − 4
𝑚 − 2

𝐈 − 1
𝑚 − 2

𝐀 + 2
(𝑚 − 1)(𝑚 − 2)

𝐉.

3. Design, linear model, and randomization

Let  be the set of 𝑡 treatments in the experiment (for example, various methods of remote communication). We always assume
that 𝑡 ≥ 2. The design is a function 𝑓 ∶𝛺 →  allocating treatment 𝑓 (𝜔) to the pair 𝜔 in 𝛺. This can be summarized in the 𝑁×𝑡 design
matrix 𝐗. Its rows are indexed by elements of 𝛺, its columns are indexed by the treatments. In row 𝜔 there is a 1 in column 𝑓 (𝜔),
and all other entries are zero.

Denote by 𝑌𝜔 the response on pair 𝜔. We assume that, for each treatment 𝐴, there is a constant 𝜏𝐴 such that

𝑌 = 𝜏 + 𝜀 ,
3

𝜔 𝑓 (𝜔) 𝜔
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where 𝜀𝜔 is a normally distributed random variable with expectation zero. If we assemble the entries 𝑌𝜔 and 𝜀𝜔 into column vectors
and 𝜺 of length 𝑁 , and the entries 𝜏𝐴 into a column vector 𝝉 of length 𝑡, we can write this as

𝐘 = 𝐗𝝉 + 𝜺. (6)

The expectation E(𝐘) of 𝐘 is equal to 𝐗𝝉.
Eq. (6) is an example of a linear model. Such models have been studied since the time of Gauss (1777–1855), as explained

by Sprott (1978). See Gauss.
The design should be randomized by applying an appropriate permutation to the elements of 𝛺. In our case, where 𝛺 consists

of all unordered pairs from {1,… , 𝑚}, the appropriate group of permutations is the symmetric group 𝑆𝑚 of all permutations of the
𝑚 individuals. One of these permutations should be chosen at random.

Let 𝐕 be the variance–covariance matrix of 𝐘. Following Grundy and Healy (1950), Bailey (1981, 1991) argued that the entries
𝐕(𝜔1, 𝜔2) and 𝐕(𝜔3, 𝜔4) should be the same (albeit not known in advance) if and only if there is at least one of the permutations
that might be chosen for randomization that takes (𝜔1, 𝜔2) to (𝜔3, 𝜔4) or to (𝜔4, 𝜔3).

In our case, this means that 𝐕 is a linear combination of 𝐈, 𝐀 and 𝐉−𝐀− 𝐈. The entries on the diagonal are variances, while the
others are covariances, so we can write this as

𝐕 = 𝜎2𝐈 + 𝜌1𝜎
2𝐀 + 𝜌2𝜎

2(𝐉 − 𝐀 − 𝐈). (7)

Here 𝜎2 is the common variance, 𝜌1 is the correlation between responses on pairs which are first associates, while 𝜌2 is the correlation
between responses on pairs which are second associates.

The results in Section 2 show that Eq. (7) can be rewritten as

𝐕 = 𝛾0𝐐0 + 𝛾1𝐐1 + 𝛾2𝐐2, (8)

where 𝛾0, 𝛾1 and 𝛾2 must all be non-negative but there are no other constraints on the values of 𝛾0, 𝛾1 and 𝛾2.
In fact, Eq. (7) can also be rewritten as

𝐕 = 𝜎2(1 − 𝜌2)𝐈 + 𝜎2(𝜌1 − 𝜌2)𝐀 + 𝜌2𝜎
2𝐉.

Then Eq. (5) gives

𝐕 = 𝜎2(1 − 𝜌2)(𝐐0 +𝐐1 +𝐐2)

+ 𝜎2(𝜌1 − 𝜌2)[2(𝑚 − 2)𝐐0 − 2𝐐1 + (𝑚 − 4)𝐐2]

+𝜎2𝜌2
𝑚(𝑚 − 1)

2
𝐐0.

omparing this with Eq. (8) shows that

𝛾0 = 𝜎2
[

1 + 2(𝑚 − 2)𝜌1 +
(𝑚 − 2)(𝑚 − 3)

2
𝜌2

]

,

𝛾1 = 𝜎2[1 − 2𝜌1 + 𝜌2],

𝛾2 = 𝜎2[1 + (𝑚 − 4)𝜌1 − (𝑚 − 3)𝜌2].

Houtman and Speed (1983) defined an experiment to have orthogonal block structure, OBS, if the variance–covariance matrix 𝐕
f the model has a representation of the form

𝐕 =
𝑛
∑

𝑖=0
𝛾𝑖𝐐𝑖,

here 𝛾0, . . . , 𝛾𝑛 are the eigenvalues of 𝐕, there are no constraints, other than non-negativity, on the values of 𝛾0, . . . , 𝛾𝑛, and 𝐐0,
. . , 𝐐𝑛 are known symmetric, idempotent and pairwise orthogonal matrices, summing to 𝐈.

The eigenspaces of 𝐕 are often called strata. In this case, the matrices 𝐐𝑖 are called stratum projectors.
The definition of OBS was originally given by Nelder (1965a,b) for structures defined by factors. Nelder’s definition is used

n Bailey (1981, 1991). Other definitions of OBS may be found in Bailey (1994), Bailey and Brien (2016), Caliński and Kageyama
2000) and Ferreira et al. (2013). In this paper we use the Houtman–Speed definition.

Thus we have shown that, under the definition of half-diallel structures in Section 1, the linear model (6) and appropriate
andomization, designs for half-diallel structures have OBS in the Houtman–Speed sense.

. Commutative orthogonal block structure

Define the 𝑁 × 𝑁 matrix 𝐓 by 𝐓 = 𝐗
(

𝐗⊤𝐗
)−1 𝐗⊤. This is the matrix of orthogonal projection onto the treatment subspace 𝑉𝑇 ,

which is the subspace of R𝑁 consisting of vectors which have constant entries on each treatment.
If 𝐓 commutes with the stratum projector 𝐐𝑖 then 𝐓𝐐𝑖 is the matrix of orthogonal projection onto the intersection of 𝑉𝑇 and

stratum 𝑊𝑖. In the special case that 𝐓𝐐𝑖 = 𝐐𝑖𝐓 = 𝟎, this intersection is the zero subspace, containing only the zero vector. Thus if 𝐓
commutes with all stratum projectors then 𝑉 is the orthogonal direct sum of all such intersections that are non-zero. In this case
4

𝑇
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the best linear unbiased estimators of treatment contrasts are obtained by the standard method of ordinary least squares, with no
need to know the values of the eigenvalues of 𝐕. This was pointed out by Kruskal (1968).

The consequences of the combination of OBS with the property that 𝐓 commutes with all stratum projectors were investigated
by Isotalo et al. (2008), Markewicz et al. (2010), Puntanen and Styan (1989) and Zmyślony (1980). Fonseca et al. (2008) named
this combination of properties commutative orthogonal block structure. It is now called COBS for short. See also Bailey et al. (2016),
Carvalho et al. (2015), Ferreira et al. (2010, 2013), Fonseca et al. (2010), Nunes et al. (2008) and Santos et al. (2017, 2020). It has
also been called equivalent estimation in Macharia and Goos (2010), Parker et al. (2007) and Vining et al. (2005).

Because 𝐓 commutes with both 𝐈 and 𝐉, a half-diallel design has COBS if and only if 𝐓𝐀 = 𝐀𝐓. Thus there are only three ways
in which a half-diallel design can have COBS. We name the three types as follows.

Type I: the treatment subspace 𝑉𝑇 is contained in 𝑊0 ⊕𝑊1.
Type II: the treatment subspace 𝑉𝑇 is contained in 𝑊0 ⊕𝑊2.

Type III: the treatment subspace 𝑉𝑇 has non-zero intersections with both 𝑊1 and 𝑊2.

To understand these three types, readers may like to compare this situation to an experiment which has 48 experimental units
grouped into 12 blocks of size 4. Given a treatment factor 𝐹 with four levels, one possibility is to allocate each level of 𝐹 to one
experimental unit per block, thus giving a complete-block design. This is analogous to Type I. Given a different treatment factor 𝐺
with four levels which cannot easily be applied to small units, another possibility is to allocate each level of 𝐺 to three whole blocks,
thus giving a design with repeated measures. This is analogous to Type II. The third possibility is to make a factorial design with
treatment factors 𝐹 and 𝐺 allocated as above, thus giving what is often called a split-plot design. This is analogous to Type III.

Not all designs for half-diallel experiments have COBS. Bailey (2003) gives three designs for triangular association schemes; none
of them has COBS. Like the designs in Bailey (2005), they are balanced in the sense that all contrasts between two treatments have
the same variances, irrespective of the values of 𝛾1 and 𝛾2.

In the remainder of this paper, we give a complete description of half-diallel designs which have COBS and Types I or II, and a
very general construction for such designs with Type III.

5. Designs of Type I

For each treatment 𝐴 and each individual 𝑖, denote by 𝑝𝐴𝑖 the number of pairs on which treatment 𝐴 occurs and which include
ndividual 𝑖. For example, in the design in Fig. 2(b) we have 𝑝𝐴𝑖 = 2 for 𝑖 = 1, . . . , 8 and 𝑝𝐷𝑖 = 1 for 𝑖 = 1, . . . , 8.

Let 𝐯(𝐴) be the vector which has entry 1 on each pair where treatment 𝐴 occurs and entry 0 elsewhere. (This notation is a little
ifferent from 𝐯𝑖 because we have some examples where an individual and a treatment may have the same label.) Thus 𝑝𝐴𝑖 = 𝐯(𝐴)⋅𝐯𝑖,
here ⋅ denotes the inner product.

heorem 1. A half-diallel design has Type I if and only if, for every treatment 𝐴 and all pairs of individuals 𝑖 and 𝑗, we have 𝑝𝐴𝑖 = 𝑝𝐴𝑗 .

roof. The design has Type I if and only if 𝑉𝑇 is contained in 𝑊0 ⊕ 𝑊1. Equivalently, a design has Type I if and only if 𝑉𝑇 is
rthogonal to 𝑊2. The subspace 𝑉𝑇 is spanned by the vectors 𝐯(𝐴) for all treatments 𝐴, while 𝑊2 is spanned by the vectors 𝐯𝑖 − 𝐯𝑗
or all pairs of individuals 𝑖 and 𝑗. Since 𝐯(𝐴) ⋅ (𝐯𝑖 − 𝐯𝑗 ) = 𝑝𝐴𝑖 − 𝑝𝐴𝑗 , it follows that the design has Type I if and only if 𝑝𝐴𝑖 = 𝑝𝐴𝑗 for
very treatment 𝐴 and all pairs of individuals 𝑖 and 𝑗. □

Thus, for a Type I design, we can write 𝑝𝐴𝑖 simply as 𝑝𝐴. For half-diallel design, the overall replication 𝑟𝐴 of treatment 𝐴 is equal
o
(
∑𝑚

𝑖=1 𝑝𝐴𝑖
)

∕2. Therefore 𝑟𝐴 = 𝑚𝑝𝐴∕2. Thus we have this immediate corollary.

orollary 1. In a design of Type I, every product 𝑚𝑝𝐴 is even.

Theorem 1 gives us two combinatorial ways of thinking about a design of Type I. In one, the individuals label the vertices of a
omplete graph. The edge between vertices 𝑖 and 𝑗 is labelled by 𝐴 if treatment 𝐴 occurs on {𝑖, 𝑗}. Denote by 𝛤𝐴 the graph whose
dges are labelled by 𝐴. Theorem 1 shows that 𝛤𝐴 is regular with degree 𝑝𝐴 for each 𝐴.

In the other way, create an 𝑚 ×𝑚 square array. For 𝑖 ≠ 𝑗, put treatment 𝑓 ({𝑖, 𝑗}) in cells (𝑖, 𝑗) and (𝑗, 𝑖). Put an unused treatment
in every cell on the diagonal. If 𝑝𝐴 = 1 for every treatment 𝐴, the result is a symmetric Latin square with a constant diagonal. If

ny 𝑝𝐴 > 1, the ratios of treatment occurrences in each row and column are the same, so the square is called a frequency square or
-square. These were introduced by Finney (1945, 1946a,b). See also Freeman (1966), Addelman (1967), and Hedayat and Seiden
1970).

If 𝑝𝐴 = 1 for all treatments 𝐴, Corollary 1 shows that 𝑚 must be even. Moreover, all treatments have replication 𝑚∕2, and so
= 𝑚−1. From the context of graphs, such a design is called a one-factorization of the complete graph. Here we give two constructions
or such designs.

onstruction 1. Identify the treatments with the integers modulo 𝑡. If 𝑖 ≠ 𝑗, allocate treatment 𝑖+ 𝑗 mod 𝑡 to the pair {𝑖, 𝑗}. If 𝑖 ≠ 𝑚, put
reatment 2𝑖 mod 𝑡 on the pair {𝑖, 𝑚}.
5

xample 1. When 𝑡 = 7, Construction 1 gives the design in Fig. 2(a).
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Fig. 2. Designs with 𝑚 = 8 in Examples 1 and 4.

Fig. 3. Designs with 𝑚 = 10 in Examples 2 and 3.

From the point of view of graph theory, Wallis (1973) gave Construction 1. Moreover, he showed that, up to isomorphism, this
is the only possibility if 𝑚 = 4 or 𝑚 = 6, but, for larger even values of 𝑚, there are non-isomorphic possibilities. See also Cameron
(1994).

Construction 2. If 𝑡 ≥ 3 and 𝑡 ≡ 1 mod 6 or 𝑡 ≡ 3 mod 6 then there is a Steiner triple system with 𝑡 points. This is a balanced
incomplete-block design for 𝑡 treatments in 𝑡(𝑡 − 1)∕6 blocks of size 3 in which every pair of treatments concur in exactly one block. Label
the individuals and the treatments by the points of such a Steiner triple system, with one extra individual labelled 𝑚. If 𝑖, 𝑗 and 𝑚 are all
different and {𝑖, 𝑗, 𝑘} is a block of the Steiner triple system then put treatment 𝑘 on the pair {𝑖, 𝑗}. If 𝑖 ≠ 𝑚, put treatment 𝑖 on the pair {𝑖, 𝑚}.

Example 2. When 𝑡 = 9 there is a Steiner triple system with these blocks.

{1, 2, 3} {4, 5, 6} {7, 8, 9} {1, 4, 7} {2, 5, 8} {3, 6, 9}
{1, 5, 9} {2, 6, 7} {3, 4, 8} {1, 6, 8} {2, 4, 9} {3, 5, 7}

Using this in Construction 2 gives the design in Fig. 3(a).

Constructions 1 and 2 produce large numbers (more than exponentially many) of different examples for large even values of 𝑚:
see Cameron (1976).

If some treatment 𝐴 has 𝑝𝐴 > 1 then we can make a design from one of the previous constructions by simply choosing
𝑝𝐴 treatments and replacing them all by 𝐴. The variance of the best linear unbiased estimator of 𝜏𝐴 − 𝜏𝐵 is equal to

(

1
𝑟𝐴

+ 1
𝑟𝐵

)

𝛾1.

The sum of these variances, over all pairs of treatments, is minimized when all replications are as equal as possible. This is equivalent
6

to making the 𝑝𝐴 values as equal as possible.
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Fig. 4. Design with 𝑚 = 13 in Example 5.

If 𝑡 divides 𝑚−1 then we can put 𝑝𝐴 = (𝑚−1)∕𝑡 for every treatment 𝐴. Otherwise, we should ensure that |𝑝𝐴 − 𝑝𝐵| ≤ 1 whenever
𝐴 and 𝐵 are different treatments.

Example 3. Suppose that 𝑡 = 3 and 𝑚 = 10. Then we put 𝑝𝐴 = 3 for every treatment 𝐴. We can start with the design in Fig. 3(a)
and merge the nine original treatments into three lots of three in any way at all. One possibility is shown in Fig. 3(b).

Example 4. Suppose that 𝑡 = 4 and 𝑚 = 8. Then we can put 𝑝𝐴 = 𝑝𝐵 = 𝑝𝐶 = 2 and 𝑝𝐷 = 1. Starting from the design in Fig. 2(a),
one possibility is the design shown in Fig. 2(b).

Now we turn attention to Type I designs with 𝑚 odd. Corollary 1 shows that 𝑝𝐴 is even for all treatments 𝐴. We begin with two
constructions for the case that 𝑝𝐴 = 2 for all treatments, so that 𝑚 = 2𝑡 + 1.

Construction 3. Consider the individuals as the vertices of a polygon, numbered in order. If 𝑖 and 𝑗 are different vertices, then there are
two distances between them using the edges of the polygon. Because 𝑚 is odd, these two distances are not the same. Use the smaller one to
label the treatment applied to the pair {𝑖, 𝑗}. Equivalently, this label is whichever is smaller of the differences 𝑖 − 𝑗 and 𝑗 − 𝑖 mod 𝑚.

Example 5. When 𝑚 = 13, Construction 3 gives the design in Fig. 4.

If Construction 3 is used when 𝑚 is prime, the edges labelled by each treatment give a single 𝑚-gon. Such an 𝑚-gon is called a
Hamiltonian cycle. If 𝑚 is not prime then the edges labelled by any difference which divides 𝑚 do not form a single cycle.

A decomposition of the complete graph 𝐾𝑚 for odd 𝑚 into Hamiltonian cycles is attributed to Walecki by Édouard Lucas in
Volume 2 of Lucas (1882–1894). This is called the answer to the problème de ronde. The construction is as follows.

Construction 4. Put 2𝑞 = 𝑚− 1. Label the individuals by the integers modulo 2𝑞, with another special one labelled 𝑚. The first treatment
is put on the edges of the following Hamiltonian cycle:

(𝑚, 1, 2, 2𝑞, 3, 2𝑞 − 1,… , 𝑞, 𝑞 + 2, 𝑞 + 1).

The cycles for the remaining treatments are obtained by adding 1, 2, . . . , 𝑞 − 1 (mod 2𝑞), with 𝑚 remaining fixed.

Example 6. When 𝑚 = 9, Construction 4 gives the design in Fig. 5(a). It is not possible to obtain this using Construction 3.

If 𝑚 is odd and 𝑚 > 2𝑡 + 1 then there must be some treatment 𝐴 for which 𝑝𝐴 > 2. As in the case for even 𝑚, we should ensure
that, for different treatments 𝐴 and 𝐵, the replications are as equal as possible. Since 𝑝𝐴 and 𝑝𝐵 must both be even, we should have
|𝑝𝐴 − 𝑝𝐵| ≤ 2. Now we can start with a design made from Construction 3 or Construction 4 and then merge treatments in the same
way that we did for even 𝑚.

6. Designs of Type II
7

Theorem 2. A half-diallel design has Type II if and only if, for every treatment 𝐴, the vector 𝐯(𝐴) is a linear combination of 𝐯1, . . . , 𝐯𝑚.
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Fig. 5. Designs with 𝑚 = 9 in Examples 6 and 7.

Proof. The design has Type II if and only if the treatment subspace 𝑉𝑇 is contained in 𝑊0⊕𝑊2. The vectors 𝐯1, . . . , 𝐯𝑚 form a basis
for 𝑊0 ⊕𝑊2. □

heorem 3. Suppose that 𝑡 = 2 in a half-diallel design. If there is some individual 𝑖 such that treatment 𝐴 is applied to all pairs containing 𝑖
nd treatment 𝐵 is applied to all other pairs, then the design has Type II.

roof. Here 𝐯(𝐴) = 𝐯𝑖 and 𝐯(𝐵) = 𝐯0 − 𝐯𝑖. Eq. (2) shows that 𝐯(𝐵) = (𝐯1 +⋯+ 𝐯𝑚)∕2 − 𝐯𝑖, so both 𝐯(𝐴) and 𝐯(𝐵) are in 𝑊0 ⊕𝑊2. □

heorem 4. There are no other half-diallel designs of Type II.

roof. Let 𝐴 be any treatment. Theorem 2 shows that if the design has Type II then there are constants 𝑎1, 𝑎2, . . . , 𝑎𝑚 such that

𝐯(𝐴) = 𝑎1𝐯1 + 𝑎2𝐯2 +⋯ + 𝑎𝑚𝐯𝑚. (9)

ence Eq. (3) shows that

𝐯(𝐴) =
𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1
(𝑎𝑖 + 𝑎𝑗 )𝐯𝑖𝑗 . (10)

ll the coefficients in Eq. (10) must be 1 or 0, and so we have 𝑎𝑖 + 𝑎𝑗 ∈ {0, 1} whenever 𝑖 ≠ 𝑗.
Suppose that 𝑖, 𝑗 and 𝑘 are all different. The only way that all three of 𝑎𝑖+𝑎𝑗 , 𝑎𝑖+𝑎𝑘 and 𝑎𝑗 +𝑎𝑘 can be zero is if 𝑎𝑖 = 𝑎𝑗 = 𝑎𝑘 = 0.

However, the coefficients in Eq. (9) cannot all be zero. Without loss of generality, let us assume that 𝑎𝑖 + 𝑎𝑗 = 1.
If 𝑎𝑖+𝑎𝑘 = 1 then 𝑎𝑗 = 𝑎𝑘 and so either 𝑎𝑗 = 𝑎𝑘 = 0 and 𝑎𝑖 = 1 or 𝑎𝑗 = 𝑎𝑘 = 1∕2 and 𝑎𝑖 = 1∕2. On the other hand, if 𝑎𝑖+𝑎𝑘 = 0 then

𝑎𝑗 = 𝑎𝑘 + 1 and so 𝑎𝑗 + 𝑎𝑘 = 2𝑎𝑘 + 1. Thus either 𝑎𝑘 = 0, in which case 𝑎𝑖 = 0 and 𝑎𝑗 = 1, or 𝑎𝑘 = −1∕2, in which case 𝑎𝑖 = 𝑎𝑗 = 1∕2.
Thus every triple of coefficients in Eq. (9) must be one of the multi-sets {0, 0, 0}, {1, 0, 0}, {1∕2, 1∕2, 1∕2} and {1∕2, 1∕2,−1∕2}.

They cannot all be {0, 0, 0}, as already explained. Moreover, they cannot all be {1∕2, 1∕2, 1∕2}, because that implies that 𝐯(𝐴) = 𝐯0,
in which case there are no other treatments.

Thus at most one of the 𝑎𝑖 is 1, and if this occurs then 𝑎𝑗 = 0 whenever 𝑗 ≠ 𝑖. In this case, 𝐯(𝐴) = 𝐯𝑖. If there is another treatment
𝐵 with 𝐯(𝐵) = 𝐯𝑗 then treatments 𝐴 and 𝐵 both occur on pair {𝑖, 𝑗}. This cannot happen, and so there is at most one treatment
whose triple is {1, 0, 0}.

If none of the coefficients is 1, then the only possibility is that one is equal to −1∕2 and the rest equal to 1∕2. Suppose that
𝑎𝑖 = −1∕2. Then 𝐯(𝐴) = 𝐯0 − 𝐯𝑖. Suppose that there is another treatment 𝐵 with 𝐯(𝐵) = 𝐯0 − 𝐯𝑗 . Because 𝑚 ≥ 4, there are two different
individuals 𝑘 and 𝓁 which are both different from 𝑖 and 𝑗. Thus treatments 𝐴 and 𝐵 both occur on pair {𝑘,𝓁}. This cannot happen,
and so there is at most one treatment whose triple is {−1∕2, 1∕2, 1∕2}.

Thus there are precisely two treatments. One of these occurs on all pairs containing some designated individual 𝑖, and the other
occurs on all other pairs. □

Example 7. Fig. 5(b) shows a design of Type II with 𝑚 = 9 and 𝑡 = 2.

7. Designs of Type III

Theorem 5. If every treatment has replication 1 then the design has Type III.
8
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Proof. If every treatment has replication 1 then 𝐓 = 𝐈 = 𝐐0 + 𝐐1 + 𝐐2 and the treatment subspace 𝑉𝑇 is the whole of R𝑁 , which
ontains 𝑊0, 𝑊1 and 𝑊2. Therefore 𝐓𝐐𝑖 = 𝐐𝑖𝐓 = 𝐐𝑖 for 𝑖 = 0, 1 and 2. □

A design with no replicated treatments is probably of no practical use, but this theorem does at least show that there are designs
f Type III.

We will now give a very general construction for half-diallel designs with COBS. Since those of Types I and II have been identified
y Theorems 1, 2, 3 and 4, all the remaining ones have Type III.

It turns out that there is a strong connection between the COBS property for half-diallel structures and a combinatorial concept
alled equitable partitions of graphs. See Bailey et al. (2019) and Gavrilyuk and Goryainov (2013), for example. Let 𝛤𝑚 be the graph
hose vertices are the pairs in 𝛺, with an edge between two pairs if they have an individual in common. Thus the adjacency matrix
f 𝛤𝑚 (in the graph-theoretical sense) is precisely the adjacency matrix 𝐀 defined in Section 2.

For each treatment 𝐴, let 𝛥𝐴 be the set of pairs 𝜔 for which 𝑓 (𝜔) = 𝐴. The subsets 𝛥𝐴, 𝛥𝐵 , . . . give a partition  of 𝛺, which means
a set of non-empty disjoint subsets whose union is 𝛺. The size of 𝛥𝐴 is the replication 𝑟𝐴 of treatment 𝐴. The treatment subspace 𝑉𝑇
is precisely the subspace of R𝑁 consisting of vectors which are constant on each part of  , and the matrix of orthogonal projection
onto this subspace is 𝐓.

Given any graph 𝛤 and any partition  of its set of vertices into 𝑡 parts, labelled 𝛥𝐴, 𝛥𝐵 , . . . ,  is defined to be equitable with
espect to 𝛤 if there is a 𝑡 × 𝑡 matrix 𝐶 = (𝑐𝐴𝐵) such that, for 𝜔 ∈ 𝛥𝐴, the number of vertices in 𝛥𝐵 joined to 𝜔 is 𝑐𝐴𝐵 , so depending

only on 𝐴 and 𝐵 and not on the choice of 𝜔 in 𝛥𝐴.

Theorem 6. The treatment partition  is equitable with respect to the graph 𝛤𝑚 if and only if 𝐓 commutes with 𝐀.

Proof. First assume that the partition  is equitable. Let {𝑖, 𝑗} be a vertex in 𝛥𝐴, where 𝐴 is any treatment. Then

𝐀𝐯𝑖𝑗 =
∑

𝑘∉{𝑖,𝑗}
𝐯𝑖𝑘 +

∑

𝑘∉{𝑖,𝑗}
𝐯𝑗𝑘.

f the neighbours listed in this sum, precisely 𝑐𝐴𝐵 belong to 𝛥𝐵 for each treatment 𝐵. Then applying 𝐓 averages these vectors over
each part 𝛥𝐵 , which has size 𝑟𝐵 , so that the vector 𝐯(𝐵) has coefficient 𝑐𝐴𝐵∕𝑟𝐵 . Thus

𝐓𝐀𝐯𝑖𝑗 =
𝑡

∑

𝐵=1
𝑐𝐴𝐵𝐯(𝐵)∕𝑟𝐵 .

On the other hand, applying 𝐓 to 𝐯𝑖𝑗 averages it over 𝛥𝐴, so that 𝐓𝐯𝑖𝑗 = 𝐯(𝐴)∕𝑟𝐴. Now, every vertex in 𝛥𝐵 has 𝑐𝐵𝐴 neighbours
in 𝛥𝐴; so

𝐀𝐓𝐯𝑖𝑗 =
1
𝑟𝐴

𝑡
∑

𝐵=1
𝑐𝐵𝐴𝐯(𝐵).

However, double counting edges between 𝛥𝐴 and 𝛥𝐵 shows that

𝑟𝐴𝑐𝐴𝐵 = 𝑟𝐵𝑐𝐵𝐴,

so 𝐓𝐀𝐯𝑖𝑗 = 𝐀𝐓𝐯𝑖𝑗 for all {𝑖, 𝑗} in 𝛺, and hence 𝐓𝐀 = 𝐀𝐓.
Conversely, suppose that 𝐓𝐀 = 𝐀𝐓. Then 𝐀𝐓𝐯 lies in the image of 𝐓 for any vector 𝐯, and so is constant each part of  . If this

constant is 𝑏𝐴𝐵 on 𝛥𝐵 for a vector 𝐯𝑖𝑗 with {𝑖, 𝑗} in 𝛥𝐴, then each vertex in 𝛥𝐵 has 𝑟𝐴𝑏𝐴𝐵 neighbours in 𝛥𝐴. So the partition  is
equitable, with 𝑐𝐵𝐴 = 𝑟𝐴𝑏𝐴𝐵 . □

Previous work on equitable partitions by Bailey et al. (2019), Gavrilyuk and Goryainov (2013) and Gavrilyuk and Metsch (2014)
for graphs whose adjacency matrices have three or four eigenspaces has been quite successful when only one non-trivial eigenspace
intersects the subspace defined by the partition (so, essentially like our Types I and II). However, in the other cases (like our Type III)
it seems much harder to give a complete classification. So we will give one, rather general, method of constructing half-diallel designs
with COBS of Type III, but we cannot guarantee that all designs of Type III can be obtained by this method.

Recall that the set 𝛺 of experimental units consists of all 2-element subsets (called ‘‘pairs’’) of the set {1,… , 𝑚} of individuals.
Section 2 described the triangular association scheme 𝑇 (𝑚) on 𝛺; two pairs are first or second associates according as they intersect
in 1 or 0 individuals. Said otherwise, the pairs of the association scheme are the edges of the complete graph 𝐾𝑚. To avoid confusion
with the graph 𝛤𝑚 introduced at the start of this section, we call the edges of 𝐾𝑚 ‘‘lines’’ and its vertices ‘‘points’’.

We now give a fairly general construction for an equitable partition of 𝛤𝑚. Each part is thus a set of lines of a graph on the
point-set {1,… , 𝑚}, and we describe the sets in the partition as graphs.

Construction 5. Here are the steps.

1. Partition {1,… , 𝑚} into 𝑛 disjoint sets 1, . . . , 𝑛 called sorts. Let 𝑠𝑖 be the size of 𝑖.
2. For each 𝑖, let 𝑖 be a set of regular graphs on the point-set 𝑖 whose line-sets partition the set 𝑖𝑖 of unordered pairs from 𝑖. If 𝑠𝑖 = 1
then 𝑖𝑖 = ∅ and 𝑖 = ∅.

3. For 𝑖 < 𝑗, let 𝑖𝑗 be a set of semiregular bipartite graphs with parts 𝑖 and 𝑗 , whose line-sets partition the set 𝑖𝑗 of pairs with one
element of each of these two sorts. (The valency of a point in each graph should depend only on whether the point is in 𝑖 or 𝑗 .)
(Sometimes it is convenient to write the set  as  .)
9
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Theorem 7. The line-sets of the graphs in the sets 𝑖 (1 ≤ 𝑖 ≤ 𝑛, with 𝑠𝑖 > 1) and 𝑖𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛) form an equitable partition of 𝛤𝑚.

Proof. It is clear from the construction that this really is a partition of the set of all pairs.
We have to show that, given two graphs from the sets constructed above, the number of lines of the second graph meeting a

ine 𝑒 of the first — in other words, the number of lines of the second graph through either point 𝑣 or point 𝑤, where 𝑒 = {𝑣,𝑤}
(but not equal to 𝑒) — does not depend on the choice of 𝑒. This just involves some (rather straightforward) checking.

Consider first the case where the two graphs are the same, say . Then the number of lines of  meeting a given line 𝑒 = {𝑣,𝑤} is
the sum of the valencies of 𝑣 and 𝑤, minus 2; these numbers are independent of 𝑒 (since each graph is either regular or semiregular
bipartite).

So suppose that the first graph is 1 and the second is 2. In the cases where 1 ∈ 𝑖 and 2 ∈ 𝑗 with 𝑖 ≠ 𝑗, or 1 ∈ 𝑖 and
2 ∈ 𝑗𝑘 with 𝑖 ∉ {𝑗, 𝑘} or vice versa, or 1 ∈ 𝑖𝑗 and 2 ∈ 𝑘𝑙 with {𝑖, 𝑗} ∩ {𝑘, 𝑙} = ∅, the number is zero. This leaves a few cases to
heck. Let 𝑒 be a line of 1. The number of lines of 2 meeting 𝑒 is as follows.

• 1,2 ∈ 𝑖: twice the valency of 2.
• 1 ∈ 𝑖, 2 ∈ 𝑖𝑗 : twice the valency of 2 associated with points in 𝑖.
• 1 ∈ 𝑖𝑗 , 2 ∈ 𝑖: the valency of 2.
• 1,2 ∈ 𝑖𝑗 : the sum of the two valencies of 2.
• 1 ∈ 𝑖𝑗 , 2 ∈ 𝑖𝑘: the valency of 2 associated with points in 𝑖.

This covers all cases. □

We remark that, by Theorem 6, this shows that (translating back from lines of 𝐾𝑚 to pairs of the triangular scheme 𝑇 (𝑚)) we
ave a COBS.

Here is another, equivalent, way of describing Construction 5 once the sets 𝑖 have been specified. Recall that 𝑖 is a set of
𝑖 individuals, and that 𝑖𝑖 is the set of pairs of individuals of sort 𝑖. If 𝑠𝑖 > 1, put a design of Type I on pairs of individuals of sort 𝑖,
sing 𝑡𝑖 treatments forming a set 𝑖. If 𝑠𝑖 = 2 then 𝑖 has a single treatment with replication one, so this case should be avoided. If
𝑖 = 3 then the only way to avoid replication one is to have 𝑡𝑖 = 1.

Suppose that 𝑖 < 𝑗. Recall that 𝑖𝑗 is the set of pairs of individuals where one individual is of sort 𝑖 and the other is of sort 𝑗.
ecause our figures use the cells below the main diagonal, we can picture the set 𝑖𝑗 as a rectangle with 𝑠𝑗 rows and 𝑠𝑖 columns.
or example, in Fig. 6(b), 12 is the rectangle formed by rows 4–9 and columns 1–3. Let 𝑡𝑖𝑗 be any common divisor of 𝑠𝑖 and 𝑠𝑗 .
ake a set 𝑖𝑗 of 𝑡𝑖𝑗 treatments and allocate them to pairs of individuals in 𝑖𝑗 in such a way that each treatment occurs 𝑠𝑗∕𝑡𝑖𝑗 times
ith each individual of sort 𝑖 and 𝑠𝑖∕𝑡𝑖𝑗 times with each individual of sort 𝑗. If 𝑠𝑖 = 𝑠𝑗 = 1 then 𝑡𝑖𝑗 = 1 and the single treatment in
𝑖𝑗 has replication one, so this should be avoided.

xample 8. Suppose that 𝑚 = 9. If 𝑛 = 1 then Construction 5 gives a design of Type I. One possibility is shown in Fig. 5(a).
If 𝑛 = 2 and no treatment has replication one then the only possibilities for {𝑠1, 𝑠2} are {1, 8}, {3, 6} and {4, 5}. The first possibility

an give the design of Type II in Fig. 5(b), but we can also put a non-trivial Type I design on 2, as shown in Fig. 6(a), where
reatment 𝐴 occurs throughout 2×1 while the other treatments occur in 22. The second and third are shown in Fig. 6(b) and (c),
ith all treatment sets 𝑖 and 𝑖𝑗 as large as possible. In any of these cases, any treatments within the same treatment set may be
erged without violating the COBS condition.

If 𝑛 = 3 and no treatment has replication one then the only possibilities for {𝑠1, 𝑠2, 𝑠3} (considered as a multiset) are {3, 3, 3},
1, 4, 4} and {1, 3, 5}. These are shown in Fig. 6(d), (e) and (f), again with all treatment sets as large as possible. As above, any
reatments within the same treatment set may be merged.

It is not possible to have 𝑛 ≥ 4 without having some treatment with replication one.

The proof of the following theorem shows that we can be explicit about which treatment contrasts are in 𝑊1 and which are in
𝑊2 when a design is made using Construction 5.

Theorem 8. Suppose that a half-diallel design with 𝑡 treatments is constructed using Construction 5 with the individuals partitioned into
𝑛 sorts. Then dim(𝑉𝑇 ∩𝑊1) = 𝑡 − 𝑛 and dim(𝑉𝑇 ∩𝑊2) = 𝑛 − 1.

Proof. Since the subsets 1, . . . , 𝑛 are considered to give 𝑛 sorts of individual, then the non-empty subsets among 11, . . . , 𝑛𝑛,
12, . . . , 𝑛−1,𝑛 might be called sort-pairs. Let 𝑉1 be the subspace of treatment contrasts whose coefficients sum to zero within each of
1, . . . , 𝑛, 12, . . . , 𝑛−1,𝑛. Then the coefficients sum to zero within each sort-pair, and so the contrasts in 𝑉1 could be called contrasts
ithin sort-pairs. Any treatment contrast that is entirely within one of the sort-pairs is orthogonal to the characteristic vectors of all

ndividuals, and so it is in 𝑊1. Therefore 𝑉1 ≤ 𝑊1.
Let 𝑧 be the number of individuals 𝑖 which have 𝑠𝑖 = 1. Then the number of non-empty sort-pairs is 𝑛(𝑛 + 1)∕2 − 𝑧. Hence

im(𝑉1) = 𝑡 − 𝑛(𝑛 + 1)∕2 + 𝑧.
Let 𝑉2 be the subspace of 𝑉𝑇 consisting of vectors which are constant on each sort-pair and sum to zero on each sort. This is

rthogonal to 𝑉1, and its vectors could be called contrasts between sort-pairs within sorts.
For 𝑖 ≠ 𝑗, let 𝐰𝑖𝑗 be the vector with entry 1∕𝑠𝑖𝑠𝑗 on 𝑖𝑗 and 0 elsewhere. (This is like a scaled version of the vector 𝐯𝑖𝑗 in Section 2:

ts inner product with any vector 𝐯 averages the entries of 𝐯 within 𝑖𝑗 .) If 𝑠𝑖 > 1, let 𝐰𝑖𝑖 be the vector with entry 2∕𝑠𝑖(𝑠𝑖 − 1) on 𝑖𝑖
⟂

10

nd 0 elsewhere. These vectors are all in 𝑉𝑇 ∩ 𝑉1 .
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Fig. 6. Designs with 𝑚 = 9 in Example 8.
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Table 1
Skeleton analysis-of-variance tables for some half-diallel designs with COBS which use nine individuals, showing degrees of
freedom.

Figure 5(a) 5(b) 6(a) 6(b) 6(c) 6(d) 6(e) 6(f)

𝑛 sorts 1 2 2 2 2 3 3 3
𝑠1 + ⋯ + 𝑠𝑛 9 1+8 1+8 3+6 4+5 3+3+3 1+4+4 1+3+5
𝑧 0 1 1 0 0 0 1 1
𝑡 treatments 4 2 8 9 6 12 12 6

𝑊0 1 1 1 1 1 1 1 1

𝑊1 𝑉1 3 – 6 6 3 6 7 1
𝑉2 – – – 1 1 3 2 2

residual 24 27 21 20 23 18 18 24
total 27 27 27 27 27 27 27 27

𝑊2 𝑉3 – 1 1 1 1 2 2 2
residual 8 7 7 7 7 6 6 6

total 8 8 8 8 8 8 8 8

If 𝑖, 𝑗, 𝑘 and 𝓁 are all different then 𝐰𝑖𝑗 +𝐰𝑘𝓁−𝐰𝑖𝑘−𝐰𝑗𝓁 ∈ 𝑊1. The argument is similar to that for 𝐯𝑖𝑗 +𝐯𝑘𝓁−𝐯𝑖𝑘−𝐯𝑗𝓁 in Section 2,
ut slightly more complicated, as follows. If 𝑢 is an individual whose sort is none of 𝑖, 𝑗, 𝑘 or 𝓁 then the coefficient of 𝐯𝑢 throughout
𝑖𝑗 , 𝑘𝓁 , 𝑖𝑘 and 𝑗𝓁 is zero. If 𝑢 is an individual of sort 𝑖 then 𝐯𝑢 ⋅ 𝐰𝑖𝑗 = 𝑠𝑗∕𝑠𝑖𝑠𝑗 , 𝐯𝑢 ⋅ 𝐰𝑖𝑘 = 𝑠𝑘∕𝑠𝑖𝑠𝑘, and 𝐯𝑢 ⋅ 𝐰𝑘𝓁 = 𝐯𝑢 ⋅ 𝐰𝑗𝓁 = 0. The
imension of the subspace of 𝑉2 which is spanned by these vectors is equal to 𝑛(𝑛 − 3)∕2 if 𝑛 ≥ 3 (the calculation is similar to the
alculation of 𝑑1 in Section 2), and zero if 𝑛 = 2.

If 𝑠𝑖 ≥ 2 and 𝑖, 𝑗 and 𝑘 are all different then 𝐰𝑖𝑖 +𝐰𝑗𝑘 −𝐰𝑖𝑗 −𝐰𝑖𝑘 ∈ 𝑊1. The argument is as above if the sort of 𝑢 is not 𝑖. If 𝑢 has
ort 𝑖 then

𝐯𝑢 ⋅ (𝐰𝑖𝑖 + 𝐰𝑗𝑘 − 𝐰𝑖𝑗 − 𝐰𝑖𝑘) = (𝑠𝑖 − 1) 2
𝑠𝑖(𝑠𝑖 − 1)

+ 0 − 𝑠𝑗
1

𝑠𝑖𝑠𝑗
− 𝑠𝑘

1
𝑠𝑖𝑠𝑘

,

hich is zero. These contrasts, for different values of 𝑖 with 𝑠𝑖 ≥ 2, are all linearly independent of each other, and of those given
mmediately before, so, if 𝑛 ≥ 3, then the dimension of 𝑉2 is at least

𝑛(𝑛 − 3)
2

+ (𝑛 − 𝑧) =
𝑛(𝑛 − 1)

2
− 𝑧.

For 𝑖 = 1, . . . , 𝑛, let 𝐰𝑖 be the vector with entry 2 on 𝑖𝑖, entry 1 on 𝑖𝑗 for 𝑗 ≠ 𝑖, and zeros elsewhere. These vectors are linearly
independent of each other, and span the subspace 𝑉𝑇 ∩ (𝑊0 ⊕ 𝑊2), so this subspace has dimension 𝑛. The subspace of treatment
ontrasts within this has dimension 𝑛 − 1. Call this 𝑉3. It could be called the subspace of contrasts between sorts.

We now have

dim(𝑉1 ⊕ 𝑉3 ⊕𝑊0) = 𝑡 −
𝑛(𝑛 + 1)

2
+ 𝑧 + 𝑛 = 𝑡 −

𝑛(𝑛 − 1)
2

+ 𝑧,

and so dim(𝑉2) ≤ 𝑛(𝑛 − 1)∕2 − 𝑧. Combining the two inequalities for dim(𝑉2) shows that dim(𝑉2) = 𝑛(𝑛 − 1)∕2 − 𝑧 and that 𝑉𝑇 is equal
to the orthogonal direct sum 𝑊0 ⊕ 𝑉1 ⊕ 𝑉2 ⊕ 𝑉3. This gives an alternative proof that the design has COBS.

Finally, we deal with the case that 𝑛 = 2. Since 𝑠1 + 𝑠2 = 𝑚 ≥ 4, at most one of 𝑠1 and 𝑠2 is equal to 1. Thus the arguments about
1 and 𝑉3 are still valid, giving dim(𝑉1) = 𝑡−3+𝑧 and dim(𝑉3) = 1. If 𝑧 = 1 then dim(𝑉1) = 𝑡−2 and dim(𝑉3) = 1, so 𝑉1⊕𝑉3 = 𝑉𝑇 ∩𝑊 ⟂

0 ,
ith no need for 𝑉2.

If 𝑧 = 0 then 𝑠1 > 1, 𝑠2 > 1 and 𝐰11 + 𝐰22 − 2𝐰12 ∈ 𝑉2. This vector is also in 𝑊1, because if 𝑢 is an individual of sort 1 then

𝐯𝑢 ⋅ (𝐰11 + 𝐰22 − 2𝐰12) = (𝑠1 − 1) 2
𝑠1(𝑠1 − 1)

+ 0 − 2𝑠2
1

𝑠1𝑠2
= 0.

Hence dim(𝑉1) = 𝑡 − 3 and dim(𝑉2) = dim(𝑉3) = 1. □

. Analysis of variance

The statistical properties of a half-diallel design with COBS can be summarized in a skeleton analysis-of-variance table: see Bailey
2008). Each stratum 𝑊𝑖 gives a subtable, with one row for each relevant treatment subspace in 𝑊𝑖 and another for 𝑊𝑖 ∩𝑉 ⟂

𝑇 , which
s usually called residual. Each row shows the dimension of the relevant subspace, which is equal to the relevant degrees of freedom.
f there is more than one subspace then it is helpful to have another row giving the total degrees of freedom for that stratum. If
𝑖 ∩𝑉 ⟂

𝑇 is non-zero then the mean square for this subspace gives an unbiased estimator for 𝛾𝑖; otherwise, there is no such estimator.
Table 1 shows these skeleton analysis-of-variance tables for the designs with nine treatments in Figs. 5 and 6.

. Use of these designs in practice

In Sections 5–7 we have tried to give very general constructions for half-diallel designs with COBS. In real half-diallel experiments,
ome of these designs may be preferred over others.
12
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The description of the correlations 𝜌1 and 𝜌2 in Section 3 suggests that 𝜌1 > 𝜌2. The derivation of the eigenvalues 𝛾0, 𝛾1 and 𝛾2
later in Section 3 shows that 𝛾2 − 𝛾1 = 𝜎2(𝑚 − 2)(𝜌1 − 𝜌2), which suggests that 𝛾2 > 𝛾1. In this case, designs of Type I are preferred if
they are possible. However, the replications may be larger than is desired.

Designs of Type II permit only two treatments. Moreover, they have very unequal replication when 𝑚 ≥ 6, so they are probably
not a good choice.

Designs of Type III give us a compromise, as it is possible to have smaller replications than in designs of Type I but less unequal
replications than in designs of Type II. In practical experiments, just as the blocks in a block design usually all have the same size, it
would probably be good to have 𝑠1 = 𝑠2 = ⋯ = 𝑠𝑛 = 𝑠; that is, each sort consists of 𝑠 individuals. For example, in the experiment on
methods of remote collaboration described in Section 1, the individuals might be located in 𝑛 different time-zones, with 𝑠 individuals
in each time-zone. The design in Fig. 6(d) is like this, with 𝑛 = 3 and 𝑠 = 3. When 𝑠 = 3 then all treatments have replication 3. In
the design in Fig. 6(d), the treatment contrast between sorts 1 and 2 has the following coefficients

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿
2 0 0 0 −2 1 1 1 −1 −1 −1 0

and the treatment contrast between sorts 1 and 3 has the following coefficients

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿
2 1 1 1 0 0 0 0 −1 −1 −1 −2

.

These contrasts are both in 𝑊2. All treatment contrasts orthogonal to these are in 𝑊1.

10. Historical remark

We note here the influential thesis of Delsarte (1973), which contains an investigation of subsets in arbitrary association schemes
whose characteristic vectors are orthogonal to some strata, or common eigenspaces, of the scheme. In particular, Delsarte defined
the notion of Q-polynomial schemes, in which the strata have a natural order 𝑊0, 𝑊1, 𝑊2, . . . . He obtained a combinatorial
characterization of those sets whose characteristic function is orthogonal to 𝑊1⊕⋯⊕𝑊𝑛 for some 𝑛. Although Delsarte was concerned
with applications to coding theory rather than statistics, his results can be used to derive our analysis for Type I, although our proof
is much more elementary.
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