
1.  Introduction
The resonant excitation of standing Alfvén waves by the magnetosonic fast mode is a key processes in magneto-
spheric physics that has been used to interpret magnetic pulsations for half a century (Chen & Hasegawa, 1974; 
Samson et  al.,  1971; Southwood,  1974). The same resonant coupling process occurs in the solar corona in 
magnetic loops and arcades. (See the reviews by Goossens et al. (2011) and Van Doorsselaere et al. (2020) and 
references therein.) Theory for both solar and magnetospheric applications was reduced to 1D (Allan et al., 1986; 
Goossens et al., 1995; Mann et al., 1995; Poedts et al., 1989). Later this was extended to describe wave coupling 
in 2D equilibria (Thompson & Wright, 1993; Tirry & Goossens, 1995; Wright & Thompson, 1994). Related 
theory has also been developed in a laboratory plasma context for 2D equilibria (Goedbloed, 1975; Pao, 1975). 
More recently, the theory of this process has been developed in realistic 3D equilibria (Cheng, 2003; Degeling 
et al., 2010, 2018; Terradas et al., 2016; Wright & Elsden, 2016). A review of this area has been published by 
Elsden et al. (2022).

The above studies have adopted a number of approaches. Some have considered normal modes (∝exp(iωt)) 
of the governing (linear) equations. Each such mode remains decoupled from other normal modes and, by 
itself, does not represent a causal solution. However, a suitable sum of these modes can be used to construct a 
time-dependent physical solution which does obey causality. Moreover, this is even true for ideal normal modes 
that may contain resonant singularities. If dissipation is included (or complex ω considered) the normal modes 
become non-singular and have a more direct relation to time dependent solutions, as they can represent the large 
time limit of a suitable steadily driven time-dependent simulation. Such modes may contain perturbations that 
have the character of fast waves near a driven boundary, and the character of Alfvén wave on the resonant field 
lines. Hence, it is possible to interpret this solution physically in terms of the coupling of a fast wave to an Alfvén 
wave, even though it is a single normal mode of the governing equations.

The theory of wave coupling in 3D contains features that are not present in 1D and 2D modeling. In particular, 
there are several locations and polarizations that the resonant Alfvén waves could adopt. In a particular situa-
tion, it appears that one or two of the possibilities are favored. Wright and Elsden (2016) show how boundary 
conditions can determine the solution. However, if the resonant Alfvén waves do not encounter the simulation 
boundaries an alternative criterion has been proposed—termed the “tangential alignment condition” (Wright 
et al., 2022).

In this article we consolidate the formulation leading to the tangential alignment condition and show that it is 
equivalent to a minimization problem. Minimization problems have a rich history in mathematical physics. For 
example, in 1662 Fermat proposed the principle of least time: when light travels between two points in space, 
it follows a path that minimizes the travel time. In 1744 Maupertuis proposed the principle of least action (also 
known as Hamilton's principle): the path taken by a physical system between two points in space and time is the 
one that minimizes the action (i.e., the time integral of the Lagrangian). In 1774 Lagrange suggested the principle 
of least area: soap films adopt a configuration that minimizes their area. More recently, the principle of least 
resistance was realized: in an electrical circuit current flows to minimize ohmic heating.

Abstract  The resonant coupling of the fast magnetosonic wave to the Alfvén wave is considered in the ideal 
magnetohydrodynamic limit in a 3D equilibrium. It has previously been shown that the most efficient coupling 
occurs on particular paths that satisfy the “tangential alignment condition” (Wright et al., 2022, https://doi.
org/10.1029/2022ja030294). In this article we show how this criterion is equivalent to a minimization principle 
which may lead to a deeper understanding of the physics of the wave coupling process.

WRIGHT

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Efficient Resonant Fast-Alfvén Wave Coupling as a 
Minimization Principle
Andrew N. Wright1 

1School of Mathematics and Statistics, University of St Andrews, St Andrews, UK

Key Points:
•	 �The Resonance Map formulation 

of resonant fast and Alfvén wave 
coupling is consolidated

•	 �It is shown that the locations where 
the strongest coupling occurs can 
be identified using a minimization 
principle

Correspondence to:
A. N. Wright,
anw@st-and.ac.uk

Citation:
Wright, A. N. (2023). Efficient 
resonant fast-Alfvén wave coupling as 
a minimization principle. Journal of 
Geophysical Research: Space Physics, 
128, e2023JA031779. https://doi.
org/10.1029/2023JA031779

Received 13 JUN 2023
Accepted 15 NOV 2023

10.1029/2023JA031779
RESEARCH ARTICLE

1 of 13

https://doi.org/10.1029/2022ja030294
https://doi.org/10.1029/2022ja030294
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9877-1457
https://doi.org/10.1029/2023JA031779
https://doi.org/10.1029/2023JA031779
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023JA031779&domain=pdf&date_stamp=2023-12-22


Journal of Geophysical Research: Space Physics

WRIGHT

10.1029/2023JA031779

2 of 13

The existence of minimization principles has proven to be extremely valuable as they often point to some deeper 
truth about the nature of the system in question. For example, Fermat's principle of least time points to light 
having a wave-like nature. The principle of least action points to matter, at a deeper level, being quantum mechan-
ical (Feynman, 1964). The principle of least area points to a soap film not really being a liquid, but a collection 
of molecules adopting the lowest energy configuration. Hence it is intriguing to see a minimization principle 
operating in a resonant wave coupling problem.

The paper is structured as follows: Section 2 establishes a formalism for discussing Alfvén wave frequency and 
polarization, along with the related concepts of the Resonant Zone and Resonant Paths; Section 3 considers the 
analytical form of Resonant Paths and provides an approximation for them along with examples; Section 4 shows 
how the tangential alignment condition can be recast as a minimization principle and gives a worked example to 
verify this assertion; Section 5 gives some concluding remarks.

2.  Alfvén Frequency and Polarization
Dungey  (1954) considered standing Alfvén waves in an axisymmetric equilibrium poloidal field. Two wave 
equations were derived: one for axisymmetric Alfvén waves with a plasma displacement in the toroidal direction, 
and another for highly asymmetric Alfvén waves with a poloidal plasma displacement. It was noted that the 
frequencies of these two waves (the toroidal and poloidal Alfvén frequencies) are different. For example, in a 
3D dipole field the toroidal can exceed the poloidal frequency by over 30%, while in a 2D (line dipole) field the 
difference can be as much as 300% (Elsden, 2016). Note that we use the term “3D dipole” to refer to the far field 
axisymmetric poloidal field lines formed by a ring of current flowing in the azimuthal direction around the origin. 
A “2D dipole” refers to the field produced by a pair of equal and opposite closely spaced line currents (so is also 
referred to as a “line dipole”). If the line currents are aligned with, say, the Cartesian ey direction, the equilib-
rium will be independent y, and the field lines confined to planes of y = const. Although the 2D and 3D dipoles 
are independent of a coordinate (y and azimuth, respectively), they can still be used to study wave coupling in 
three-dimensional equilibria by allowing the plasma density (and Alfvén speed) to vary in three dimensions.

The toroidal and poloidal wave equations can be cast in terms of field-aligned coordinates (Singer et al., 1981). 
Typically coordinates (α, β, γ) are used, where α and β are two transverse coordinates that are constant on a given 
field line, and so their values can be used as labels to identify a particular field line. The coordinate γ is used 
to parameterize position along the field line. Thus, we can think of the Alfvén frequency as being a property of 
the field line and the wave's polarization angle. Alternatively, we can imagine the intersection of the field lines 
with a reference plane, such as the equatorial plane, and use the values (x, y) where the field line intersects that 
plane to identify the field line. The Alfvén wave polarization angle can be defined as the angle between the 
Alfvén wave plasma displacement (ξx, ξy) and a reference direction, for example, the toroidal direction (Wright 
& Elsden, 2016). In this convention θ = 0 corresponds to the toroidal polarization, and θ = π/2 to the poloidal.

Wright and Elsden (2016) generalized the field aligned coordinate formulation to include Alfvén waves whose 
polarization lies between the limits of toroidal and poloidal. In general we have ωA(x, y, θ), that is, the Alfvén 
frequency (ωA) depends upon which field line we are considering (x and y) and the wave's polarization (θ). 
Figure 1a shows the typical variation of ωA with θ for a 2D or 3D dipole field for a given field line. The curve is 
periodic with period of π. The axisymmetry of the equilibrium poloidal field means ωA(θ) = ωA(−θ), so the maxi-
mum and minimum ωA will occur for either θ = 0 (toroidal) or θ = π/2 (poloidal). For dipole fields the toroidal 
frequency exceeds the poloidal frequency, and the red dots in Figure 1a indicate the values of θ where ωA has its 
maximum and minimum values, namely at θmax and θmin.

For the case of a non-axisymmetric field the ωA(θ) curve has a generic form like that in Figure  1b. Wright 
et al.  (2022) considered the case of a compressed dipole, and they found that the vast majority of field lines 
retained one maximum and one minimum. Formally, we can identify the values of θmax and θmin as the roots of 
the equation

𝜕𝜕𝜕𝜕𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕

|
|
|
|𝑥𝑥𝑥𝑥𝑥

= 0 ⇒ 𝜃𝜃max(𝑥𝑥𝑥 𝑥𝑥) and 𝜃𝜃min(𝑥𝑥𝑥 𝑥𝑥),� (1)

and so can identify the maximum and minimum Alfvén frequencies for all field lines, expressed as functions of 
the labels x and y

 21699402, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JA

031779 by T
est, W

iley O
nline L

ibrary on [03/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Space Physics

WRIGHT

10.1029/2023JA031779

3 of 13

𝜔𝜔𝐴𝐴max(𝑥𝑥𝑥 𝑥𝑥) = 𝜔𝜔𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥max(𝑥𝑥𝑥 𝑥𝑥)), 𝜔𝜔𝐴𝐴min(𝑥𝑥𝑥 𝑥𝑥) = 𝜔𝜔𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥min(𝑥𝑥𝑥 𝑥𝑥)).� (2)

In terms of functional relations we can express the dependence of ωA on x, y, and θ through a function f0, which 
can, in principle, be inverted to give θ in terms of x, y, and ωA through a new function f1,

𝜔𝜔𝐴𝐴 = 𝑓𝑓0(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) ⇒ 𝜃𝜃 = 𝑓𝑓1(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝐴𝐴).� (3)

For a given field line (x and y), and chosen ωA, the latter relation tells us the required polarization, θ, for that 
particular field line to have our chosen frequency. From the curves in Figures 1a and 1b it is evident that there 
will be no solutions for θ if we choose ωA to be greater than ωAmax(x, y) or less than ωAmin(x, y). If ωAmin(x, 
y) < ωA < ωAmax(x, y) there will be two distinct single root solutions for θ, while if ωA = ωAmin(x, y) or ωA = ωAmax(x, 
y) there will be one double root solution at θmin(x, y) or θmax(x, y).

2.1.  Resonant Polarization and Boundaries

In the case of resonantly driven Alfvén waves, the fast mode acts as a driver. We denote the driving frequency 
of this mode by ωd. This is represented by the horizontal dashed line in Figure 1c. We can now ask whether it 
is possible for a particular field line to support a resonant Alfvén wave at the driving frequency, ωd, and, if so, 
what polarization will it have? For the field line corresponding to the curve labeled 2, we see that the resonant 
condition ωA = ωd has two single roots at angles 𝐴𝐴 𝐴𝐴+𝑟𝑟  and 𝐴𝐴 𝐴𝐴−𝑟𝑟  (see the blue dots in Figure 1c). On a different field line 
(corresponding to curve labeled 1) there is only one resonant polarization given by θr = θmax. (We use the notation 
of the subscript “r” to denote that the polarization angle satisfies the resonant condition.)

Figure 1d shows the locations (in the (x, y) plane) of the two field lines labeled 1 and 2 and shown as green dots. 
The black arrows are inclined to the y direction (the dotted line) by θr. Field line 1 is special in that the resonant 
condition is satisfied for the maximum ωA on that field line, so there is only one value of θr. The same will be true 
of a different field line where the minimum ωA matches ωd. The locations of these field lines can be considered 
further by defining the functions

Figure 1.  (a) The variation of ωA with polarization angle, θ. The polarization angle is measured relative to a reference 
direction, such as the toroidal direction. The variation shown is typical of a potential field that has an invariant coordinate, 
such as 2D line dipole or a 3D axisymmetric dipole. In these cases the minimum and maximum ωA occur for polarization 
angles θmin and θmax corresponding to the poloidal and toroidal directions. (b) Typical variation of ωA(θ) for a field without 
an invariant coordinate. (c) The variation of ωA(θ) for two field lines along with the driving frequency, ωd (dashed line). The 
blue dots indicate the resonant polarization angles. (d) Part of the Resonance Map in the (x, y) plane. The green dots indicate 
the intersection of field lines 1 and 2 (from panel (c)) with the plane. Polarization angles are measured relative to the y 
direction, and the black arrows indicate the direction of the resonant Alfvén wave displacement (ξx, ξy). The red line denotes 
the Resonant Zone boundary.
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Γmax(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑) = 𝜔𝜔𝐴𝐴max
(𝑥𝑥𝑥 𝑥𝑥) − 𝜔𝜔𝑑𝑑, Γmin(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑) = 𝜔𝜔𝐴𝐴min

(𝑥𝑥𝑥 𝑥𝑥) − 𝜔𝜔𝑑𝑑.� (4)

Evidently, the double roots of the resonant condition (where there is a unique θr) are found in the (x, y) plane by 
setting Γmax(x, y, ωd) and Γmin(x, y, ωd) to zero. This will give an implicit equation for a curve in the (x, y) plane, 
and we denote the corresponding values as (xmax, ymax) and (xmin, ymin).

Γmax(𝑥𝑥max, 𝑦𝑦max, 𝜔𝜔𝑑𝑑) = 0 ⇒ 𝑦𝑦max(𝑥𝑥max) or 𝑥𝑥max(𝑦𝑦max),� (5)

Γmin(𝑥𝑥min, 𝑦𝑦min, 𝜔𝜔𝑑𝑑) = 0 ⇒ 𝑦𝑦min(𝑥𝑥min) or 𝑥𝑥min(𝑦𝑦min).� (6)

The red line in Figure 1d represents the set of points (xmax, ymax). Field lines to the left of this line (locally) can 
satisfy the resonant condition with two solutions for θr (that we call 𝐴𝐴 𝐴𝐴+𝑟𝑟  and 𝐴𝐴 𝐴𝐴−𝑟𝑟  ), so this region is termed the Reso-
nant Zone. Field lines to the right of the red line cannot match the resonant condition, so this region is known as 
the Non-Resonant Zone, and the red line itself is called the Resonant Zone Boundary. Depending on the details 
of the equilibrium there can be a further boundaries elsewhere, and some of these could correspond to where 
Γmin = 0. (See Wright and Elsden (2016) and Wright et al. (2022) for some examples.)

2.2.  Resonant Paths and the Resonant Zone

When an Alfvén resonance exists, it does not occur on an isolated field line, but on a set of field lines that form 
a surface in 3D space (see Figure 3c of Wright and Elsden (2016), and Figure 4a of Wright and Elsden (2023)). 
We now consider the intersection of this surface with the (x, y) plane. Suppose that the field line labeled 2 
in Figure 1d supports a resonant Alfvén wave with 𝐴𝐴 𝐴𝐴𝑟𝑟 = 𝜃𝜃−𝑟𝑟  . Wright and Elsden  (2016) show that the plasma 
displacement (ξx, ξy) is aligned with this direction and stepping a small distance parallel to this gets us to a new 
field line with a slightly different value of θr. Continuing this process by stepping in the new direction repeatedly 
allows us to generate the curve in the (x, y) plane corresponding to the intersection with the resonant surface of 
field lines. We shall refer to this curve as a Resonant Path.

Describing this process mathematically, we begin by identifying the resonant polarization, θr, by setting ωA = ωd 
in Equation 3,

𝜃𝜃𝑟𝑟 = 𝑓𝑓1(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝐴𝐴 = 𝜔𝜔𝑑𝑑).� (7)

In the remainder of this section ωd plays the role of a parameter, rather than a variable. The ODE for the resonant 
path is

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= tan(𝜃𝜃𝑟𝑟(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝐴𝐴 = 𝜔𝜔𝑑𝑑)) = 𝑓𝑓2(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑)� (8)

This can be integrated to give F(x, y, ωd) = const. The constancy of F along a Resonant Path can be interpreted in 
terms of characteristics: Suppose we parameterize the path by s, so that a particular path is specified by x(s) and 
y(s). The rate of change of F with s along the path is

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

|
|
|
|𝑦𝑦

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

|
|
|
|𝑥𝑥

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
.� (9)

If F is constant (dF/ds = 0) Equations 8 and 9 give

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −

𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕|𝑥𝑥

𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕|𝑦𝑦
≡

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

|
|
|
|𝐹𝐹

= 𝑓𝑓
2
(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑).� (10)

The equivalence of the second and third terms above follows from an identity and confirms that the function f2 
in Equation 8 corresponds to how x changes with y when F is constant. As F is constant on a Resonant Path, its 
value can be used to label these paths.

Solving Equation 8 to get F is rarely analytical and is normally done numerically (Wright & Elsden, 2016; Wright 
et al., 2022). However, Equation 10 opens up the possibility of facilitating further analytical progress: we can start 
by making an explicit choice for F(x, y, ωd), from which the permissible Resonant Paths immediately follow from 
the contours of F in the (x, y) plane. The second and fourth terms in Equation 10 then allow the calculation of f2 
for our choice of F. Moreover, we are guaranteed that this f2 will allow Equation 8 to be integrable analytically.
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Figure 2 shows some examples of Resonance Maps depicting the Resonant Zone boundaries in red and the Resonant 
Paths in black. These examples all use an equilibrium field that is invariant in y, so the toroidal direction here corre-
sponds to y, and equilibrium field lines are confined to planes y = const. The maximum ωA on any field line occurs 
for a toroidal polarization, that is, θr = 0 and the plasma displacement is aligned with the unit vector ey. The mini-
mum ωA on any field line has a poloidal polarization, that is, θr = π/2 and the plasma displacement is aligned with 
the unit vector ex. The 2D (line) dipole used by Wright and Elsden (2016) is an example of such an equilibrium field.

The variation of ωA with θ for any field line is qualitatively similar to that in Figure 1a, although the actual values 
of the frequencies can change from one field line to another. For example, consider two field lines that have the 
same boundary conditions and magnetic field variation, but the density on one is exactly four times that of the 
other. The two ωA(θ) curves would have similar form, except the values of the frequencies on one field line would 
be exactly double those of the other.

In Figure 2a the density is also independent of y but varies with x and z such that ∂ωA/∂x is negative (i.e., the 
Alfvén frequency decreases with x) in the (x, y) plane. The green dots represent the intersection of two field lines 
with the (x, y) plane, and the black arrows show the corresponding Alfvén wave plasma displacement. The left 
hand boundary corresponds to Γmin = 0 and the paths emerge from it aligned with ex. As we move along the path 
the resonant polarization angle changes and reaches the toroidal orientation (aligned with ey) when it reaches the 
Γmax = 0 boundary on the right.

Figure 2b uses the same magnetic field as in (a), but has a more complicated density distribution. There is only 
one boundary curve, and it is evidently the Γmax = 0 curve as the paths align with ey when they reach the boundary. 
(Recall that on this boundary ωAmax(x, y) = ωd and for this field ωAmax(x, y) = ωA(x, y, θ = 0).) As the paths move 
away from the boundary they start to rotate toward the poloidal direction, but only partially get there. Indeed, at 
the center of  the Resonant Zone the most inclined paths have θr ≈ ±π/4. In Figure 2c the density change is more 
extreme than in (b) and the paths now rotate fully to the polarization corresponding to the Γmin = 0 boundary, which 
is depicted as the inner loop. On this boundary the paths align with ex, which is to be expected as ωAmin(x, y) = ωA(x, 
y, θ = π/2).

Figure 2.  Resonance Maps in the (x, y) plane for an equilibrium field that is independent of y: (a) an example where 
the density is also independent of y. The left (right) red lines correspond to the ωAmin = ωd (ωAmax = ωd) boundaries. The 
green dots indicate the intersection of resonant field lines with the (x, y) plane. The direction of the plasma displacement is 
indicated by the black arrows and is tangential to the black lines; (b) the density varies in 3D, but there is only one Resonant 
Zone boundary; (c) an example where the density varies in 3D and there are two boundaries.
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3.  Resonant Path Approximation
It is interesting to investigate the form of the resonant paths in the vicinity of the boundaries. A general resonant 
field line will satisfy the condition ωA(x, y, θr) = ωd. Now consider the subset of field lines that sit on a particu-
lar resonant path. The path is defined by the value of the F on the contour F(x, y, ωd) = const. We can now use 
s as a parameter along this path, and also for the corresponding value of θr on it. Hence, the resonant condition 
for this particular path becomes ωA(x(s), y(s), θr(s)) = ωd. Taking d/ds of this equation and rearranging for dθr/
ds gives

���
��

= −
(

���

��
��
��

+ ���

��
��
��

)/

���

��
.� (11)

This shows that θr changes very rapidly with path length s near the boundary as ∂ωA/∂θ will be very small. (Indeed 
it goes to zero on the boundary.)

This can also be appreciated by considering the ωA(θ) curves like those depicted in Figure 1c: on the boundary 
θr = θmax (curve 1). On moving a small increment ds along the path the ωA(θ) curve will shift slightly, perhaps 
taking a step toward adopting form of curve 2. The parabolic nature of the curve can relate the change in 
ωAmax, δωAmax, and the change in θr, δθr, for this step approximately by 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴max

∼ 𝛿𝛿𝛿𝛿2𝑟𝑟  . Hence a small incre-
ment δθr corresponds to an even smaller increment δωAmax. This is equivalent to saying that a small change 
in δωAmax on stepping along the path will have a corresponding much larger change in θr, so the path turns 
relatively quickly.

To explore the form of the Resonant Paths in the vicinity of a Resonant Zone boundary, we consider the boundary 
given by Γm(x, y) = 0. (Here the boundary is the set of points (x, y) = (xm, ym), and m can be either max or min.) 
The leading terms in a Taylor series expansion of ωA(x, y, θ) about the values of x, y, and θ on the boundary (i.e., 
xm, ym, and θm) has the form

𝜔𝜔𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝜔𝜔𝐴𝐴(𝑥𝑥m
,𝑦𝑦

m
,𝜃𝜃

m
) + 𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥

m
) + 𝑎𝑎𝑦𝑦(𝑦𝑦 − 𝑦𝑦

m
) + 𝑏𝑏(𝜃𝜃 − 𝜃𝜃

m
(𝑥𝑥

m
,𝑦𝑦

m
))

2� (12)

with coefficients

𝑎𝑎𝑥𝑥 =
𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕

|
|
|
|𝑦𝑦𝑦𝑦𝑦

, 𝑎𝑎𝑦𝑦 =
𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕

|
|
|
|𝑥𝑥𝑥𝑥𝑥

, 𝑏𝑏 =
1

2

𝜕𝜕2𝜔𝜔𝐴𝐴

𝜕𝜕𝜕𝜕2

|
|
|
|𝑥𝑥𝑥𝑥𝑥

.� (13)

Once the partial derivatives have been taken, they are evaluated at the expansion point (xm, ym, θm) for use in 
Equation 12.

Recall that on a Resonant Path ωA(x, y, θ) = ωd, and where this path intersects the Resonant Zone boundary (i.e., 
x = xm, y = ym) the resonant polarization angle is θm. Evaluating the series expansion (Equation 12) at this point 
gives the leading term to be ωA(xm, ym, θm) = ωd.

As the path moves inside the Resonant Zone (but remains near the boundary) the resonant condition (ωA(x, y, 
θr) = ωd) can be used with Equation 12 to evaluate θr(x, y) as

𝜃𝜃𝑟𝑟(𝑥𝑥𝑥 𝑥𝑥) = 𝜃𝜃
m
(𝑥𝑥

m
,𝑦𝑦

m
) ±

√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥
m
) + 𝑎𝑎𝑦𝑦(𝑦𝑦 − 𝑦𝑦

m
)

𝑏𝑏
.� (14)

Substitution of Equation 14 into Equation 8 gives the differential equation for the Resonant Path that is valid in 
the vicinity of the boundary,

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= tan

(

𝜃𝜃
m
(𝑥𝑥

m
, 𝑦𝑦

m
) ±

√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥
m
) + 𝑎𝑎𝑦𝑦(𝑦𝑦 − 𝑦𝑦

m
)

𝑏𝑏
.

)

� (15)

To illustrate the use of this approximation further we consider a Resonance Map like that in Figure 2a where the 
boundaries correspond to the poloidal and toroidal polarizations and are independent of y. We also compare the 
approximate paths with the exact solution determined using a numerical solution.
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3.1.  Poloidal Boundary Example

Let the poloidal boundary be located at x = xmin. In Equation 12 we let m represent min and set θmin = π/2 and 
note ay = 0 to get

𝜔𝜔𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝜔𝜔𝑑𝑑 + 𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥min) + 𝑏𝑏(𝜃𝜃 − 𝜋𝜋∕2)
2

.� (16)

As this is for the poloidal boundary (ωAmin(xmin, θmin) = ωd) we require b(xmin) > 0. If ax < 0 the Resonant Zone 
will lie in the region x > xmin.

The two resonant polarization angles are,

𝜃𝜃+𝑟𝑟 = 𝜋𝜋∕2 +

√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥min)

𝑏𝑏
, 𝜃𝜃−𝑟𝑟 = 𝜋𝜋∕2 −

√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥min)

𝑏𝑏
,� (17)

and the differential equations of the two paths are

𝑑𝑑𝑑𝑑+

𝑑𝑑𝑑𝑑
= cot

(

𝜃𝜃+𝑟𝑟
)

= − tan

(√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥min)

𝑏𝑏

)

,
𝑑𝑑𝑑𝑑−

𝑑𝑑𝑑𝑑
= cot(𝜃𝜃−𝑟𝑟 ) = + tan

(√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥min)

𝑏𝑏

)

.� (18)

When near the boundary the arguments of the tangent functions are small, and to leading order tan(δ)  ≈  δ, 
(δ ≪ 1). These assumptions give the approximate analytical solutions

𝑦𝑦+ ≈ 𝑦𝑦min −

2

3

√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥min)
3

𝑏𝑏
, 𝑦𝑦− ≈ 𝑦𝑦min +

2

3

√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥min)
3

𝑏𝑏
� (19)

Figure 3a shows the approximate and exact solutions for the two paths at the poloidal boundary. The agreement 
may be improved further by taking more terms in the expansion (Equation 16) and the tangent power series, 
although this will eventually lead to equations that to not have an analytical solution.

3.2.  Toroidal Boundary Example

Let the toroidal boundary be located at x = xmax. In Equation 12 we let m represent max and set θmax = 0 and note 
ay = 0 to get

𝜔𝜔𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝜔𝜔𝑑𝑑 + 𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥max) + 𝑏𝑏𝑏𝑏2.� (20)

Figure 3.  Resonant paths near the Resonant Zone boundaries. The exact solution is plotted in black, and the approximation 
in blue. The Resonant Zone boundaries are shown in red. The Resonant Paths are qualitatively similar to those in Figure 2a: 
(a) Resonant paths near the poloidal boundary for xmin = 0, ax = −1, and b = 1. (b) Resonant paths near the toroidal boundary 
for xmax = 1, ax = −1, and b = −1.
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As ωA is a maximum at this boundary we require b < 0. For consistency with Figure 2a and Section 3.1 we need 
xmax > xmin and the Resonant Zone lies to the left of xmax, which requires ax < 0. Rearranging Equation 20 the 
resonant polarization angles are

𝜃𝜃+𝑟𝑟 = +

√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥max)

𝑏𝑏
, 𝜃𝜃−𝑟𝑟 = −

√

−

𝑎𝑎𝑥𝑥(𝑥𝑥 − 𝑥𝑥max)

𝑏𝑏
.� (21)

As dy/dx → ∞ as x → xmax it is easier to work with the equation for dx/dy.

��+

��
= tan

(

�+�
)

= tan

(
√

−
��(�+ − �max)

�

)

, ��−

��
= − tan(�−� ) = − tan

(
√

−
��(�− − �max)

�

)

.� (22)

Again, near the boundary we can use the leading term in the tangent series to get the analytical approximations

𝑦𝑦+ ≈ 𝑦𝑦max − 2

√

−

𝑏𝑏(𝑥𝑥 − 𝑥𝑥max)

𝑎𝑎𝑥𝑥
, 𝑦𝑦− ≈ 𝑦𝑦max + 2

√

−

𝑏𝑏(𝑥𝑥 − 𝑥𝑥max)

𝑎𝑎𝑥𝑥
.� (23)

Figure 3b shows good agreement near the toroidal boundary between the approximation in Equation 23 and the 
exact numerical solution.

4.  Efficient Coupling as a Minimization Principle
It has been demonstrated that there are an infinite number of Resonant Paths within the Resonant Zone (Elsden 
et al., 2022; Wright & Elsden, 2016). Normally one or two of these paths are needed to identify the location of the 
resonant Alfvén waves excited by the fast mode in a particular simulation. Wright et al. (2022) showed how the 
“tangential alignment condition” could be used to identify locations where efficient Alfvén wave excitation takes 
place, and hence the relevant paths emerging from these points on which the largest Alfvén waves are excited. 
This is illustrated in Figure 4, which could describe either the Γmax = 0 or Γmin = 0 boundary, so we denote it, 
again, by Γm = 0 and the red line. Note that as Γm(x, y, ωd) is constant along this line, ∇Γm will be perpendicular 
to it, as indicated by the red arrows.

In Section 2.2 it was shown that the Resonant Paths correspond to contours of the function F(x, y, ωd). Moreover, 
at any point inside the Resonant Zone there will be two possible paths corresponding to the two values of θr. 

Figure 4.  A close up view of the Resonant Zone boundary (red) and Resonant Paths (black). Resonant paths are given by 
contours of F ±, for example, F ± = 𝐴𝐴 𝐴𝐴±

3

 , where the c's are constants. The directions of ∇F and ∇Γm are indicated by the black 
and red arrows, respectively.
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Figure 4 distinguishes between these two families of paths through the functions F + and F −. The black lines show 
Resonant Paths corresponding to the contours F + = 𝐴𝐴 𝐴𝐴+

1
 , 𝐴𝐴 𝐴𝐴+

2
 , …, 𝐴𝐴 𝐴𝐴+

5
 , and F − = 𝐴𝐴 𝐴𝐴−

1

 , 𝐴𝐴 𝐴𝐴−
2

 , …, 𝐴𝐴 𝐴𝐴−
5

 . For points (x, y) inside 
the Resonant Zone there are two paths through it given by F + = c + and F − = c −. Evidently, ∇F + and ∇F − are 
perpendicular to their contours, and the direction is shown by the black arrows.

As the Resonant Paths approach the boundary the two single root polarization angles 𝐴𝐴 𝐴𝐴+𝑟𝑟  and 𝐴𝐴 𝐴𝐴−𝑟𝑟  converge to a 
single double root. Hence, the directions ∇F + and ∇F − become the same on the boundary, so we denote it by 
∇F there and indicate its direction by black arrows. In Figure 4 we can see that the contours with values 𝐴𝐴 𝐴𝐴+

1
 and 

𝐴𝐴 𝐴𝐴−
1

 intersect the boundary at a nonzero angle given by the angle between the red and black arrows. The situation 
is different for the 𝐴𝐴 𝐴𝐴+

2
 and 𝐴𝐴 𝐴𝐴−

2

 contours which meet the boundary at the blue dot where ∇F and ∇Γm are aligned as 
shown by the red and black arrows.

The alignment of ∇F and ∇Γm is equivalent to stating that the Resonant Paths are tangential to the Resonant 
Zone boundary. Indeed this is the “tangential alignment condition” proposed by Wright et al. (2022) for iden-
tifying where efficient resonant excitation occurs. The fact that this is equivalent to requiring ∇F and ∇Γm 
to align on the boundary is significant, as this can now be recognised as a Lagrange Multiplier minimization 
problem.

Consider the Lagrangian function, G, defined as

𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑, 𝜆𝜆) = 𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑) − 𝜆𝜆Γ
m
(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑),� (24)

where λ is a Lagrange Multiplier. F can be either F + or F − in Equation 24. Taking partial derivatives w.r.t x, y, 
and λ and equating to zero gives the stationary points of G.

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜆𝜆

𝜕𝜕Γ
m

𝜕𝜕𝜕𝜕
� (25)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜆𝜆

𝜕𝜕Γ
m

𝜕𝜕𝜕𝜕
� (26)

Γ𝑚𝑚 = 0.� (27)

These are three equations for the unknowns x, y, and λ. Equation 27 means we are only considering points on the 
Resonant Zone boundary Γm = 0. Equations 25 and 26 are equivalent to the components of

∇𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑) = 𝜆𝜆∇Γ
m
(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑)� (28)

so the direction of ∇F and ∇Γm are parallel or anti-parallel. As already mentioned, Resonant Paths are contours of 
F, so ∇F is oriented perpendicular to these paths. The Resonant Zone boundary is the zero contour of Γm, so ∇Γm 
is normal to it on the boundary. Hence, Equations 25–27 are identifying the points on the Resonant Zone bound-
ary (Γm= 0) where the normal to the boundary (∇Γm) and the normal to the Resonant Paths (∇F) are aligned. 
This will correspond to the point on the boundary where the Resonant Path is tangential to the Resonant Zone 
boundary, that is, the tangential alignment condition is satisfied.

In terms of the Lagrange multiplier formulation, the tangential alignment condition corresponds to finding the 
minimum (or maximum) value of F on the boundary. This is interesting as such minimization constraints often 
point to some deeper truth of the nature of the system considered. To help explore this matter further we give a 
worked analytical example in the next section.

4.1.  Minimization of F Example

In this section we assume the equilibrium magnetic field is a 2D line dipole aligned with y, as used in Wright 
and Elsden (2016). If the density is also independent of y the equilibrium would be entirely 2D, and a monotonic 
variation of ωA with x would produce a Resonance Map like that in Figure 2a. In this example we make the 
equilibrium 3D by allowing the density to vary periodically with y such that the ωAmax = ωd boundary is given 
by Γmax = 0, where

Γmax = 𝑥𝑥 − 𝑦𝑦
0
sin(𝑘𝑘𝑘𝑘).� (29)
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Here k is a constant determining the periodicity in y, and y0 controls the degree of deviation from the 2D case. 
Figure 5 shows the Resonant Zone boundary as the red line corresponding to the points (x, y) = (xmax, ymax) where 
xmax(ymax) = y0 sin(kymax).

To keep the analysis analytical we assume the density variation in x and z is tailored to give

tan(𝜃𝜃𝑟𝑟(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑)) = 𝑓𝑓
2
(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑑𝑑) = ±(𝑥𝑥 − 𝑦𝑦

0
sin(𝑘𝑘𝑘𝑘))∕𝐿𝐿𝐿� (30)

This choice gives θr = 0 on Γmax = 0, so corresponds to the toroidal boundary. The Resonant Zone lies to the left 
of this boundary. L is the length scale that tan(θr) changes with in x.

The equations for the two resonant paths are (see Equation 8)

𝑑𝑑𝑑𝑑+

𝑑𝑑𝑑𝑑
=

𝑥𝑥 − 𝑦𝑦
0
sin (𝑘𝑘𝑘𝑘)

𝐿𝐿
� (31)

𝑑𝑑𝑑𝑑−

𝑑𝑑𝑑𝑑
= −

𝑥𝑥 − 𝑦𝑦
0
sin (𝑘𝑘𝑘𝑘)

𝐿𝐿
� (32)

Integration gives a relation between x and y and an integration function F ± that is constant on a characteristic. 
Rearranging for F gives.

𝐹𝐹 +

(

𝑥𝑥+, 𝑦𝑦
)

=

(

1 + 𝑘𝑘2𝐿𝐿2

)

𝑥𝑥+

− (𝑘𝑘𝑘𝑘 cos(𝑘𝑘𝑘𝑘) + sin(𝑘𝑘𝑘𝑘))𝑦𝑦
0

1 + 𝑘𝑘2𝐿𝐿2

exp(−𝑦𝑦∕𝐿𝐿)� (33)

𝐹𝐹 −

(𝑥𝑥−, 𝑦𝑦) =

(

1 + 𝑘𝑘2𝐿𝐿2

)

𝑥𝑥−

+ (𝑘𝑘𝑘𝑘 cos(𝑘𝑘𝑘𝑘) − sin(𝑘𝑘𝑘𝑘))𝑦𝑦
0

1 + 𝑘𝑘2𝐿𝐿2

exp(𝑦𝑦∕𝐿𝐿)� (34)

Figure 5.  A plot of the Resonant Zone boundary (red) and Resonant Paths (black) for y0 = 2, k = 1, and L = 1. The blue dots 
indicate where the tangential alignment condition is satisfied. These locations are also where maxima or minima of F ± occur 
on the boundary.
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It is straightforward to show that differentiating Equations 33 and 34, to find ∂F ±/∂x ± and ∂F ±/∂y, together with 
the first half of Equation 10 recovers Equations 31 and 32.

The value of F ± on the boundary can be found by substituting x ± = xmax(ymax) = y0 sin(kymax) and y = ymax to give 
F ±(xmax(ymax), ymax). Hence the value of F ± on the boundary is parameterized in terms of ymax, and we denote this 
by 𝐴𝐴 𝐴𝐴 ±

B

(𝑦𝑦max) . Substitution in Equations 33 and 34 gives.

𝐹𝐹 +

B

(𝑦𝑦max) = (𝑘𝑘𝑘𝑘 sin(𝑘𝑘𝑘𝑘max) − cos(𝑘𝑘𝑘𝑘max))

𝑦𝑦
0
𝑘𝑘𝑘𝑘

𝑘𝑘2𝐿𝐿2

+ 1

exp(−𝑦𝑦max∕𝐿𝐿)� (35)

𝐹𝐹 −

B

(𝑦𝑦max) = (𝑘𝑘𝑘𝑘 sin(𝑘𝑘𝑘𝑘max) + cos(𝑘𝑘𝑘𝑘max))

𝑦𝑦
0
𝑘𝑘𝑘𝑘

𝑘𝑘2𝐿𝐿2

+ 1

exp(𝑦𝑦max∕𝐿𝐿).� (36)

The form of the paths leaving the boundary at (x, y) = (xmax(ymax), ymax) can be traced into the resonant zone by 
recalling that F is constant along these paths. Hence equating 𝐴𝐴 𝐴𝐴 +(𝑥𝑥+, 𝑦𝑦) = 𝐹𝐹 +

B
(𝑦𝑦max) and 𝐴𝐴 𝐴𝐴 −

(𝑥𝑥−, 𝑦𝑦) = 𝐹𝐹 −

B

(𝑦𝑦max) 
will give two equations for x +(y) and x −(y) that originate from the boundary point (xmax(ymax), ymax). The explicit 
forms are

𝑥𝑥+

(𝑦𝑦) =
𝑦𝑦
0

𝑘𝑘2𝐿𝐿2

+ 1

(

sin (𝑘𝑘𝑘𝑘) + 𝑘𝑘𝑘𝑘 cos (𝑘𝑘𝑘𝑘) + 𝑘𝑘𝑘𝑘[𝑘𝑘𝑘𝑘 sin (𝑘𝑘𝑘𝑘max) − cos (𝑘𝑘𝑘𝑘max)]exp

(
𝑦𝑦 − 𝑦𝑦max

𝐿𝐿

))

� (37)

𝑥𝑥−

(𝑦𝑦) =
𝑦𝑦
0

𝑘𝑘2𝐿𝐿2

+ 1

(

sin (𝑘𝑘𝑘𝑘) − 𝑘𝑘𝑘𝑘 cos (𝑘𝑘𝑘𝑘) + 𝑘𝑘𝑘𝑘[𝑘𝑘𝑘𝑘 sin (𝑘𝑘𝑘𝑘max) + cos (𝑘𝑘𝑘𝑘max)]exp

(
𝑦𝑦max − 𝑦𝑦

𝐿𝐿

))

� (38)

and they are plotted as the black lines in Figure 5. Evidently, the Resonant Paths are tangential to the Resonant 
Zone boundary at 𝐴𝐴 𝐴𝐴 =

(

𝑛𝑛 +
1

2

)

𝜋𝜋 , and are highlighted with the blue dots in the figure. We can check the claim 
that F ± max/minimizes on the boundary at these points by differentiating Equations 35 and 36 to find where 𝐴𝐴 𝐴𝐴 ±

𝐵𝐵
 

have their maxima and minima.

𝑑𝑑𝑑𝑑 +

B

𝑑𝑑𝑑𝑑max

= 𝑦𝑦
0
𝑘𝑘 cos (𝑘𝑘𝑘𝑘max)exp(−𝑦𝑦max∕𝐿𝐿), = 0 ⇒ 𝑘𝑘𝑘𝑘max =

(

𝑛𝑛 +
1

2

)

𝜋𝜋𝜋� (39)

𝑑𝑑𝑑𝑑 −

B

𝑑𝑑𝑑𝑑max

= 𝑦𝑦
0
𝑘𝑘 cos (𝑘𝑘𝑘𝑘max)exp(+𝑦𝑦max∕𝐿𝐿), = 0 ⇒ 𝑘𝑘𝑘𝑘max =

(

𝑛𝑛 +
1

2

)

𝜋𝜋𝜋� (40)

Recalling that Figure 5 was constructed by adopting k = 1, we see the blue dots do indeed correspond to the 
locations where 𝐴𝐴 𝐴𝐴 ±

𝐵𝐵
 have their extrema.

5.  Concluding Remarks
Use of the tangential alignment condition to identify locations of strong wave coupling has been demonstrated in 
numerical simulations reported by Wright et al. (2022). The tangential alignment condition means that strongly 
excited resonant Alfvén waves exist on Resonant Paths that meet the Resonant Zone boundary tangentially. As 
the plasma displacement is along these paths, it means the Alfvén wave plasma displacement (as well as velocity 
and magnetic field perturbations) will also be tangential to the Resonant Zone boundary. So long as there is some 
component of the fast mode magnetic pressure gradient along this Resonant Path, we can expect a large amplitude 
resonant Alfvén wave to be excited on it.

The situation is different on paths that do not satisfy the tangential alignment condition. Consider the Resonant 
Paths emerging from the Resonant Zone boundary at (x, y) = (0,0) in Figure 5 that approach the boundary at an 
angle of about 60°. If field lines on these paths just inside the Resonant Zone have a large amplitude resonant 
Alfvén wave established on them, it raises the question of how ∇ ⋅ b = 0 is maintained: the normal component of 
b across the Resonant Zone boundary must be continuous and suggests that there must be a correspondingly large 
Alfvén wave just outside the Resonant Zone. This is unlikely as the field lines here are responding non-resonantly, 
so will be of smaller amplitude. This is not a problem for the tangential alignment point at y = −2 in Figure 5 as 
the corresponding paths remain in the Resonant Zone.

It is interesting to consider what happens when a Resonant Path satisfies the tangential alignment condition at one 
point (e.g., (x, y) = (−2, 4.7), so has a large amplitude resonant Alfvén wave excited on it), but the path goes on to 
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meet the zone boundary elsewhere ((x, y) = (1.4, 0.7)) where it is not tangential. Wright and Elsden (2016) show 
how the system resolves the issue by having resonant Alfvén waves present on both paths at (1.4, 0.7), that is, the 
one traced to left and the one traced to the right. Presumably, the normal Alfvén wave magnetic field from one 
path largely cancels that from the other at the boundary. Any remaining normal magnetic field could be balanced 
outside of the Resonant Zone by a non-resonant Alfvén wave. Figure 7 of Wright and Elsden  (2016) clearly 
shows how the combination of Alfvén waves on two such paths reduces the total Alfvén wave energy, and hence 
wave fields, where the two overlap as they approach the boundary. The paths from tangential alignment point in 
Figure 5 at x = 2 find themselves in the situation of encountering the boundary immediately. Numerical solutions 
show that the resonant Alfvén waves lie on paths forming a criss-cross pattern bouncing between successive 
encounters with the boundary (Wright & Elsden, 2016; Wright et al., 2022). The behavior of the wave fields at 
such a boundary intersection warrants further theoretical development.

A complete analytical theory of resonant Alfvén wave excitation in 3D equilibria is still to be developed. The 
existence of the Resonant Zone (which is absent in 1D and 2D equilibria) and the multiplicity of permissi-
ble Resonant Paths are the main new features that need to be incorporated. The recent advances in this area 
have come from simulations that reveal the key properties any analytical theory will need to accommodate. The 
tangential-alignment condition is one such property. In this paper, we have shown that it is equivalent to a mini-
mization principle. Such principles can provide an alternative formulation which may be useful for making future 
progress or consolidating our current understanding.

A remaining open question is what the significance of the efficient resonant wave coupling criterion being deriv-
able from a minimization principle is. A useful step to answering this may be to consider what the quantity FB 
could correspond to physically. Of course, if FB is minimized, then a function of FB is also likely to be minimized 
(or maximized). Further worked examples like the one in Section 4 may facilitate progress and reveal a physical 
meaning of the minimization problem, which could be of value.

Data Availability Statement
No data was used in this research.
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