
1.  Introduction
Changes in the hydrological cycle under global warming are commonly separated into two major contributions: 
(a) those resulting from changes in humidity (hereafter “thermodynamic”), and (b) those involving changes 
in the winds (hereafter “dynamic”; e.g., Emori & Brown,  2005; Ma et  al.,  2018; Seager et  al.,  2010; Wills 
et al., 2016). Over oceans, the thermodynamic changes are generally robust across models and well-captured by 
the “wet-get-wetter/dry-get-drier” scaling (WGW hereafter), which states that changes in precipitation minus 
evaporation (P − E) under global warming are proportional to P − E in the present climate (Allan et al., 2020; 
Byrne & O’Gorman, 2015; Chou & Neelin, 2004; Held & Soden, 2006). Given the strong dependence of simu-
lated thermodynamic changes on the representation of the present hydroclimate, the aim of this work is to assess 
the sensitivity of projected changes in the tropical hydrological cycle over ocean to systematic biases in P and E 
in modern climate models.

Figure 1 shows the tropical ensemble-mean biases and projected changes per 1 K of tropical warming in P and E 
by models participating in the fifth and sixth phases of the Coupled Model Intercomparison Project (CMIP5/6, 
see Section 2 for details; Eyring et al., 2016; K. E. Taylor et al., 2012). Large and robust changes and biases in P 
and E are seen in the tropics and are the focus of this study. Moreover, the tropical changes and biases overlap for 
both P and E, in particular in the vicinity of the intertropical convergence zone (ITCZ), emphasizing the concern 
that biases in the present climate affect the projections.

The systematic tropical P biases in the Pacific and Atlantic are generally known as the “double ITCZ bias”, where 
modern climate models tend to overestimate P south of the equator and underestimate P along the equator (Adam 
et al., 2018; Fiedler et al., 2020; Lin, 2007; Mechoso et al., 1995). Along the equatorial Pacific, the underestimated 
P is associated with a cold-tongue bias, which also inhibits E there (e.g., Li et al., 2016). The underestimated 
evaporative cooling, in turn, may contribute to the warming seen along the equator in global warming projections 
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(Figure 1e), in contrast to the observed strengthening of equatorial zonal sea surface temperature (SST) gradients 
in the Pacific (Coats & Karnauskas, 2017; Samanta et al., 2019; Seager et al., 2019). In the Asian and African 
sectors, P and E biases severely limit the reliability of monsoon-related predictions by CMIP5/6 models (e.g., 
M. A. Bollasina & Ming, 2013; M. Bollasina & Nigam, 2009; Prodhomme et al., 2014; Sperber et al., 2013). 
More generally, since deep convection occurs where surface temperatures exceed the tropical mean, tropical 
evaporation-related SST biases can strongly affect the projected P (also known as the “warmer-gets-wetter” 
mechanism; Chadwick et al., 2013; Huang et al., 2013; Johnson & Xie, 2010; Xie et al., 2010; Z.-Q. Zhou & 
Xie, 2015).

The complex nature of the climate system limits our ability to accurately quantify the direct effect of mean-state 
biases on projections. Moreover, while both the thermodynamic and dynamic components contribute to 
projected changes, the dynamic component dominates the uncertainty across models (Elbaum et al., 2022) and 
tends to counter thermodynamic changes over tropical oceans (Seager et al., 2010). This, in turn, makes it diffi-
cult to disentangle the effects of mean-state biases on thermodynamic and dynamic contributions. Nevertheless, 
previous works have found a strong influence of SST and P biases on projections of the tropical hydrological 
cycle, which can be largely traced to WGW (Dutheil et al., 2022; Lee et al., 2022; Li & Xie, 2014; Samanta 
et al., 2019; Z.-Q. Zhou & Xie, 2015; S. Zhou et al., 2020). The goal of the present analysis is to provide a 
simple framework for estimating the influence of P and E biases on projections of P and E. Specifically, we use 
known thermodynamic constraints on evaporation to separate the influences of P and E biases. The methods 
and theoretical framework are presented in Section 2, followed by our results and a discussion in Sections 3 
and 4.

Figure 1.  CMIP5/6 ensemble-mean sensitivity per 1 K tropical warming (change in mean surface air temperature equatorward of 30°) of (a) precipitation, (c) 
evaporation, (e) surface air temperature, and (f) surface relative humidity, and ensemble-mean biases in (b) precipitation, and (d) evaporation. The sensitivities to 
tropical warming are calculated using the difference between high-emission scenarios (RCP85/SSP585, 2080–2099) and historical simulations (1980–1999). The biases 
are calculated as the difference between historical simulations (1980–1999) and the European Center for Medium-Range Weather Forecasts ERA5 data set (1980–2020; 
Hersbach et al., 2020). Stippling indicates at least 80% of models agree on the sign of the bias or change. See Section 2 for details on the data and calculations.
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2.  Data and Methods
2.1.  Data

We analyze 40 climate models from phase 5 (K. E. Taylor et al., 2012) and 20 models from phase 6 (Eyring 
et al., 2016) of the Coupled Model Intercomparison Project (CMIP5/6). Calculations involving surface relative 
humidity and specific humidity at saturation were performed using subsets of 41 and 59 models, respectively, 
due to data availability (see Tables S1 and S2 in Supporting Information S1). For each model we use monthly 
data from the first realization (ensemble members “r1i1p1” and “r1i1p1f1” for CMIP5 and CMIP6, respec-
tively), linearly interpolated to a common 1°  ×  1° horizontal grid. The CMIP5 and CMIP6 ensemble-mean 
climatologies analyzed here are nearly indistinguishable and are therefore presented jointly (hereafter CMIP5/6; 
Adam et al., 2022; Fiedler et al., 2020; Samuels et al., 2021; Tian & Dong, 2020). We focus our analysis on the 
annual mean, which, for the case of systematic tropical P biases, is dominated by the January–June half year 
(Adam et al., 2018; Bellucci et al., 2010; Li & Xie, 2014). Seasonal plots of Figure 1 are provided in Figure S1 
in Supporting Information S1. To account for the dependence of changes in P and E on the amplitude of tropi-
cal warming (Kent et al., 2015) we analyze their sensitivity per 1 K of tropical warming (changes in surface air 
temperature averaged equatorward of 30°), calculated as the difference between the end of century in high CO2 
emission scenarios (2080–2099 in the RCP85 and SSP585 scenarios of phases 5 and 6, respectively) and histori-
cal simulations (1980–1999), normalized by the change in tropical mean temperature for each model.

As reference data we use the European Center for Medium-Range Weather Forecasts (ECMWF) ERA5 reanaly-
sis (0.25° × 0.25° resolution; Hersbach et al., 2020) during 1980–2020. Due to the scarcity of E observations, a 
direct assessment of E biases in the ERA5 reanalysis is not available. However, indirect estimates of combinations 
of P and E in ERA5 match direct observations as well as other reanalyzes, and also suggest ERA5 has a more 
physically consistent relation between E and surface temperature than other modern reanalyzes (Vargas Godoy & 
Markonis, 2023). ERA5 generally tends to underestimate P near the ITCZ and has an overall mean bias relative 
to in situ observations of about 0.2 mm day −1. The CMIP5/6 P bias relative to ERA5 exceeds 2 mm day −1 in 
the regions of largest bias (Figure 1b) and is therefore not qualitatively sensitive to our choice of reference data 
(Hassler & Lauer, 2021; Samuels et al., 2021). We nevertheless repeat the analyses using P from the Global 
Precipitation Climatology Project data set (GPCP, version 2.3; Adler et al., 2003) and E from the Objectively 
Analyzed air-sea Fluxes data set (OAflux; Jin & Weller, 2008), but find no qualitative differences compared to 
the ERA5 results, with the exception that E biases are significantly larger when the OAflux data set is used as 
reference.

2.2.  WGW Bias Adjustment

The well-known WGW scaling (Held & Soden, 2006) is given by

𝛿𝛿(𝑃𝑃 − 𝐸𝐸) = 𝛼𝛼(𝑃𝑃 − 𝐸𝐸),� (1)

where the operator δ denotes the difference between the ends of the 21st and 20th centuries divided by the change 
in tropical mean temperature (ΔT)

𝛿𝛿 ≡

( ⋅ )21 − ( ⋅ )20

Δ𝑇𝑇
� (2)

and α = L/(RvT 2) is the Clausius-Clapeyron (CC) parameter, where L = 2.51 × 10 6 J kg −1 is the latent heat of 
vaporization, Rv = 461 J kg −1 K −1 is the gas constant for water vapor, and T is surface air temperature. The CC 
parameter is generally uniform in the tropics (Figure S2a in Supporting Information S1), and its CMIP5/6 tropical 
mean is α = 0.0615 ± 0.5% for fractional uncertainty of 1 standard deviation across models.

The assumptions of the WGW scaling are that:

1.	 �Column-integrated water vapor scales with surface temperature at invariant relative humidity, and obeys the 
well-known CC scaling,

𝛿𝛿𝛿𝛿
∗ = 𝛼𝛼𝛼𝛼

∗� (3)

�where here q* denotes surface specific humidity at saturation;
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2.	 �Changes in surface temperature gradients are negligible; and
3.	 �There are no changes in the winds.

�As shown by Siler et al. (2019), mean thermodynamic changes in E are given by

𝛿𝛿𝛿𝛿 = 𝛼𝛼
∗
𝐸𝐸� (4a)

�where

𝛼𝛼
∗
≡

(

1 +
𝛼𝛼𝛼𝛼𝛼𝛼∗

𝑐𝑐𝑝𝑝

)−1
(

𝛼𝛼 −
2

𝑇𝑇

)

� (4b)

and where cp is the specific heat capacity of air at constant pressure (for convenience, the derivation of α* is 
repeated in Supporting Information S1). Like α, the parameter α* is generally uniform in the tropics (Figure S2b 
in Supporting Information S1), with a tropical mean of α = 0.0140 ± 3% in CMIP5/6 models and negligible bias 
when compared with its ERA5 value (Figure S2c in Supporting Information S1).

Thermodynamic changes in E are therefore smaller by a factor of about 4 than the changes expected from CC 
scaling, which is roughly the ratio of the amplitudes of tropical changes in P and E (Figures 1a and 1c). Combin-
ing Equations 1 and 4a yields for thermodynamic P changes

𝛿𝛿𝛿𝛿 = 𝛼𝛼𝛼𝛼 − (𝛼𝛼 − 𝛼𝛼
∗)𝐸𝐸𝐸� (5)

Equations 4a and 5 therefore provide a “specific WGW scaling,” which can be applied to P and E separately. 
Interestingly, in regions where E greatly exceeds P, such as the subtropics, this scaling predicts a negative precip-
itation response (Held & Soden, 2006; Siler et al., 2018), consistent with the changes seen in Figure 1a.

A key implication of the general and specific WGW scalings is that mean-state biases in P and E can lead to spuri-
ous projected changes. Given that these biases are known a priori, WGW scaling also offers a simple corrective 
adjustment for projections,

𝛿𝛿(𝑃𝑃 − 𝐸𝐸)𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛿𝛿(𝑃𝑃 − 𝐸𝐸) − 𝛼𝛼(𝑃𝑃 − 𝐸𝐸)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� (6a)

for the general scaling, and

𝛿𝛿𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛿𝛿𝛿𝛿 − 𝛼𝛼𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + (𝛼𝛼 − 𝛼𝛼
∗)𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� (6b)

𝛿𝛿𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛿𝛿𝛿𝛿 − 𝛼𝛼
∗
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� (6c)

for the specific scaling, where the subscripts (⋅)adj and (⋅)bias denote the adjusted projection and present-day bias, 
respectively.

Thus, it may be possible to adjust for P and E biases that are directly translated to projected changes via WGW 
scaling.

2.3.  Relation of the WGW Scaling to Thermodynamic and Dynamic Changes

Before analyzing the WGW bias adjustments we wish to provide context for the thermodynamic changes and 
clarify their relation to dynamic changes. We adopt the methodology described in Seager et al. (2010), which 
also includes a comprehensive derivation and analysis of the various components described below. Specifically, 
to first order, the sensitivity of P − E to tropical warming can be decomposed into terms referred to here as ther-
modynamic (TH), dynamic (DYN), covariant (COV), and transient eddy,

𝛿𝛿(𝑃𝑃 − 𝐸𝐸) ≈ 𝛿𝛿TH + 𝛿𝛿DYN + 𝛿𝛿COV + 𝛿𝛿TE� (7a)

�TH ≡ − 1
��� ∫

��

0

[ Advective
⏞⏞⏞⏞⏞
(�̄ ⋅ ∇��) +

Divergent
⏞⏞⏞⏞⏞
��(∇ ⋅ �̄)

]

d�� (7b)
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𝛿𝛿DYN ≡ −
1

𝑔𝑔𝑔𝑔𝑤𝑤 ∫

𝑝𝑝𝑠𝑠

0

∇ ⋅ (𝑞𝑞𝑞𝑞𝐮𝐮)d𝑝𝑝� (7c)

𝛿𝛿COV ≡ −
1

𝑔𝑔𝑔𝑔𝑤𝑤 ∫

𝑝𝑝𝑠𝑠

0

∇ ⋅ (𝛿𝛿𝐮𝐮𝛿𝛿𝛿𝛿)d𝑝𝑝� (7d)

𝛿𝛿TE ≡ −
1

𝑔𝑔𝑔𝑔𝑤𝑤 ∫

𝑝𝑝𝑠𝑠

0

𝛿𝛿
(

∇ ⋅ 𝐮𝐮
′
𝑞𝑞
′
)

d𝑝𝑝� (7e)

where 𝐴𝐴 ( ⋅ ) and (⋅)′ denote mean over the end of the 20th century and deviation thereof, and where g = 9.81 m s −2 
is the gravitational constant, ρw = 10 3 kg m −3 is the density of water, p is pressure, u is the horizontal wind field, 
and q is specific humidity.

As demonstrated in Figure 2, the general WGW scaling is most closely linked to the divergent thermodynamic 
component (δTHdiv; Boos, 2012; Seager et al., 2010, 2014). Specifically, since the WGW scaling assumes weak 
surface gradients and fixed winds, the advective thermodynamic component (δTHadv) and the dynamic compo-
nent (δDYN) vanish under these assumptions. However, even for fixed winds, δTE does not vanish due to humid-
ity changes that scale with CC. The WGW scaling therefore implicitly includes some of the contribution of 
transient eddies to moisture convergence (Held & Soden, 2006; Siler et al., 2023).

The key discrepancies between the WGW scaling and δTHdiv are that P − E peaks are lower by about 20% and 
subtropical P − E minima are weaker by up to 50%, especially in regions characterized by low level clouds 
(Zhang et al., 2023). Nevertheless, the ensemble-mean THdiv and WGW scaling agree spatially very well (see 
Figure S3a in Supporting Information S1 for spatial correlations across models). Extensions of the WGW scaling 
that account for the effects of changes in surface temperature gradients (Boos, 2012) and relative humidity (Byrne 
& O’Gorman, 2015) provide second-order corrections (especially over ocean) which are therefore not considered 
here.

The dynamic component (δDYN Figure 2c) is generally larger than the thermodynamic component (or WGW, 
Figures 2a and 2b), but also generally negatively correlated with thermodynamic changes in the tropics (Figure 
S3b in Supporting Information S1), indicating competing contributions (Seager et al., 2010). Thus, counter to 
intuition, since the total change in P − E is dominated by δDYN, the WGW scaling and total projected changes 
in P − E are generally negatively correlated in the tropics (Figure S3c in Supporting Information S1). The P and 
E biases therefore introduce errors not only to projected P and E values, but also to the balance between dynamic 
and thermodynamic processes.

3.  Results
We use the WGW bias adjustment (Equation 6) to assess the extent of the translated biases in projections of P and 
E, and to subsequently provide an improved projection. To account for spatial variations in surface temperature, 
we use spatially varying α and α* in Equation 6. The results however do not qualitatively differ if tropical mean 
values of these parameters are used.

3.1.  Precipitation Bias Adjustment

The annually averaged adjusted projected δP (δPadj) and its WGW bias adjustment (Equation 6b) in the tropics 
are shown in Figures 3a and 3b (see Figure S4 in Supporting Information S1 for seasonal results). We highlight 
regions in the Western Equatorial Pacific, in the North Western tropical Pacific, and in the Southern tropical 
Pacific and Atlantic (rectangles in panels a and b) where P biases are significant and large and where the WGW 
underlying assumptions are most valid (Figure 1b and Figure S3a in Supporting Information S1).

A negative P bias is seen in the Western Equatorial Pacific region, associated with the equatorial Pacific 
cold-tongue bias (Note that disagreement across observational data sets is relatively high around the Pacific 
warm pool (Fiedler et al., 2020; Tian & Dong, 2020), increasing the uncertainty of our results in this region.) 
(Fiedler et al., 2020; Li & Xie, 2014; Tian & Dong, 2020). In the Eastern Pacific and Atlantic, excessive south-
ward migration of the ITCZ during the southern hemisphere rainy season leads to overestimated P south of the 
equator (Figures 1 and 3b; Adam et al., 2018; Li & Xie, 2014), which are reinforced by WGW in the projected 
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climate. Indeed, the WGW adjustment increases the projected P by about 20% in the Western Equatorial Pacific 
(Figure 3c) and is of comparable amplitude to δP in the northern and southern regions (Figures 3d and 3e). 
In the Southern tropical Pacific and Atlantic, the adjusted P shows significantly enhanced drying. Further-
more, Figure 3b suggests that the projected WGW biases lead to a spurious northward shift of the ITCZ in the 
Indian Ocean and a spurious southward shift of the Pacific ITCZ. These spurious meridional regional shifts are 
qualitatively similar to CMIP6 ensemble-mean projected shifts (Mamalakis et al., 2021), but do not exceed 1 
degree at any longitude, and therefore only weakly affect the ensemble-mean shifts (Figure S5 in Supporting 
Information S1).

Given that Pbias greatly exceeds Ebias throughout most of the tropics, neglecting the contribution of E biases yields 
nearly identical results to those presented in Figure 3 (Figure S6a in Supporting Information S1). These results do 
not qualitatively differ when the GPCP data set is used as reference (Figure S6b in Supporting Information S1). 
Similarly, the adjusted changes in P are nearly indistinguishable from those of P − E, which are shown in Figure 
S7 in Supporting Information S1.

Figure 2.  CMIP5/6 ensemble-mean annual-mean change per 1 K tropical warming in (a) the divergent thermodynamic 
component of changes in precipitation minus evaporation (P − E), (b) the wet-get-wetter (WGW) scaling, and (c) the dynamic 
component of changes in P − E.
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Mean estimates of the hemispherically symmetric and anti-symmetric components of tropical systematic P biases 
are commonly calculated using the equatorial precipitation index (EPI, Adam et al., 2016) and the precipitation 
asymmetry index (PAI, Hwang & Frierson, 2013), respectively,

EPI =
𝑃𝑃[2◦S−2◦N]

𝑃𝑃[20◦S−20◦N]

− 1� (8a)

PAI =
𝑃𝑃[0−20◦N] − 𝑃𝑃[20◦S−0]

𝑃𝑃[20◦S−20◦N]

� (8b)

where 𝐴𝐴 𝐴𝐴[𝜙𝜙1−𝜙𝜙2] denotes the area-weighted zonal-mean P between the latitudes 
ϕ1 and ϕ2.

The ERA5 EPI and PAI values are summarized in Table 1 and are 0.11 and 
0.19, respectively, for the ERA5 data set (cf. Adam et  al.,  2016; Popp & 
Lutsko, 2017). The corresponding CMIP5/6 EPI values are within observed 
values in historical simulations and in the projections. PAI values however 
are significantly lower than observed in historical simulations; they increase 
in the projections, and increase further in the adjusted projections. Thus, the 
WGW adjustment has a weak effect on EPI but a strong effect on PAI (where 
the bias is more pronounced), bringing it closer to observed values.

Figure 3.  (a) Adjusted CMIP5/6 ensemble-mean projected change in precipitation per 1 K tropical warming. (b) CMIP5/6 ensemble-mean wet-get-wetter (WGW) 
bias adjustment per 1 K tropical warming. Mean values of the adjusted projection (green bars) and of the WGW adjustment (orange bars) in the (c) Western Equatorial 
Pacific (145°E–180°E, 7°S–7°N), (d) North Western tropical Pacific (150°E–210°E, 7°N–15°N), and (e) Southern tropical Pacific and Atlantic (180°E–360°E, 
15°S–7°S), sorted by increasing regional bias (decreasing bias adjustment). Side bars in panels (c)–(e) show the ensemble-mean adjustment (orange), adjusted (green), 
and unadjusted (gray) projections. Error bars indicate uncertainty calculated as ±1 standard deviation across models.

ERA5 GPCP Historical High-CO2 High-CO2,adj

EPI 0.11 0.14 0.08 ± 0.11 0.18 ± 0.15 0.19 ± 0.12

PAI 0.19 0.20 0.04 ± 0.10 0.08 ± 0.09 0.11 ± 0.08

Note. Uncertainty is calculated as ±1 standard deviation across models.

Table 1 
Equatorial Precipitation Index (EPI) and Precipitation Asymmetry 
Index (PAI) Values for the ERA5 and GPCP Observational Data Sets, 
and for CMIP5/6 Historical Simulations, High-CO2 Emission Scenarios 
(High-CO2), and Adjusted Precipitation in High-CO2 Emission Scenarios 
(High-CO2,adj)
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3.2.  Evaporation Bias Adjustment

The adjusted E and the WGW bias adjustment for E are shown in Figures 4a and 4b. First, we note that unlike 
the systematic P biases, E biases are positive throughout most of the tropics, and persist year round (Figures S1 
and S8 in Supporting Information S1). The WGW adjustment therefore generally reduces E in the tropics (i.e., it 
warms the tropics), except near the equatorial and southeastern tropical Pacific (Figure 4b).

We highlight regions in the Indian Ocean and in the northern and equatorial Pacific where E changes and biases 
are significant (rectangles in Figures 4a and 4b). In the Indian Ocean and north Pacific regions (Figures 4c and 4d) 
the WGW adjustment reduces E by about 10% (more so when the OAflux data is used as reference,  as shown in 
Figure S9 in Supporting Information S1). In the equatorial Pacific, the mean WGW adjustment (Figure 4b) acts 
to increase E in the Eastern Pacific relative to the Western Pacific, and therefore to increase the zonal SST gradi-
ent, but not consistently across models (Figure 4e). Overall, the WGW adjustment increases E in the equatorial 
Pacific by 5% (10% when the OAflux data is used as reference). This weak effect suggests that thermodynamic 
effects alone cannot account for the spurious equatorial warming seen in CMIP5/6 projections, which has been 
associated with reduced evaporative cooling due to the Pacific cold-tongue bias (Samanta et al., 2019; Seager 
et al., 2019).

3.3.  Adjusted Projection Uncertainty

The side panels of Figures 3c–3e and 4c–4e show the ensemble mean and uncertainty (±1 standard deviation 
across models) of the WGW adjustment (orange), adjusted projection (green), and unadjusted projection (gray). 
In the case where the projected change and the adjustment represent independent contributions to the total 

Figure 4.  (a) Adjusted CMIP5/6 ensemble-mean projected change in evaporation per 1 K tropical warming. (b) CMIP5/6 ensemble mean wet-get-wetter (WGW) 
bias adjustment per 1 K tropical warming. Mean values of the adjusted projection (green bars) and of the WGW adjustment (orange bars) in the (c) Indian Ocean 
(50°E–90°E, 12°S–2°N), (d) North tropical Pacific (130°E–250°E, 5°N–15°N), and (e) Equatorial Pacific (180°E–270°E, 5°S–5°N), sorted by increasing regional bias 
(decreasing bias adjustment). Side bars in panels (c)–(e) show the ensemble-mean adjustment (orange), adjusted (green), and unadjusted (gray) projections. Error bars 
indicate uncertainty calculated as ±1 standard deviation across models.
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uncertainty (i.e., the bias is independent of the projection), these uncertainties should be added in quadrature, that 
is, 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜎𝜎

√

1 + 𝜎𝜎2

𝑎𝑎𝑎𝑎𝑎𝑎
∕𝜎𝜎2 where σtotal, σ, and σadj denote the total uncertainty, uncertainty in projections, and 

uncertainty due to WGW biases (J. Taylor, 1997), representing a lower limit of the enhanced total uncertainty. 
However, where the bias adjustment is not independent of the change, uncertainty resulting from the WGW biases 
adds linearly to the total uncertainty, representing an upper limit of the total uncertainty, enhanced by mean-state 
biases.

The correlation between mean-state biases and projected change in P and E is generally weak but varies consid-
erably throughout the tropics (Figure S10 in Supporting Information S1), suggesting that actual contribution by 
mean-state biases to the total uncertainty varies locally between the upper and lower limits. Specifically, averaged 
over tropical oceans, the uncertainty in the WGW adjustment is about 30% for P and 15% for E of the uncertainty 
in the unadjusted projected values, which agrees with the upper limit of uncertainty increase in specific regions. 
In the prescribed regions in Figure 3, uncertainty in the adjusted P increases relative to projected values by 15%, 
27%, and 20% in the Western Equatorial Pacific, North Western tropical Pacific, and Southern tropical Pacific 
and Atlantic, respectively. In the prescribed regions in Figure 4 the uncertainty in the adjusted E increases relative 
to projected values by about 1% in all three regions but can reach 15% in parts of the subtropics (see Figure S11 
in Supporting Information S1, showing the spatially varying increase in uncertainty in adjusted P and E relative 
to projected values).

Finally, the P and E biases influence the relative contribution of thermodynamic changes to the total projected 
changes. Specifically, the correlation of δ(P − E) with 𝐴𝐴 𝑃𝑃 − 𝐸̄𝐸 is negative throughout most of the tropics, and more 
so for δ(P − E)adj (tropical mean correlations of −0.27 and −0.35, respectively, in Figure S3c and S3d in Support-
ing Information S1). Since WGW implies a positive correlation (as in Figure S3a in Supporting Information S1), 
this in turn suggests enhanced contrast between the dynamic and thermodynamic contributions, when mean-state 
biases are accounted for.

4.  Summary and Discussion
The well known wet-get-wetter/dry-get-drier (WGW) scaling states that the thermodynamic response of precip-
itation minus evaporation (P  −  E) to global warming is proportional to the present hydroclimate (Held & 
Soden, 2006). Here we show that due to known thermodynamic constraints on E (Siler et al., 2019), the WGW 
scaling can be applied to P and E separately (specific WGW scaling, Equations 5 and 4a). A key implication of 
the WGW scaling is that biases in the representation of P and E in the present climate are passed on to projected 
changes under global warming. Given that these biases are known a priori, we offer a correction based on the 
general and specific WGW scalings (Equation 6), which we assess in projections of the hydrological cycle over 
tropical oceans by 60 models participating in phases 5 and 6 of CMIP.

The spurious projected changes in P, caused by mean biases in historical simulations, lead to a 20% underestimate 
of the projected change in the Western Equatorial Pacific, a 50% overestimate in the North Western subtrop-
ical Pacific, and fail to capture an overall drying in the southern subtropical Pacific and Atlantic (Figure 3). 
Moreover, the projected biases introduce weak spurious regional shifts of the ITCZ (Figure S5 in Supporting 
Information S1).

The WGW scaling parameter for changes in E is smaller by a factor of about 4 than the Clausius-Clapeyron scal-
ing parameter (Siler et al., 2019), and therefore the spurious projected changes in E are much smaller (generally 
less than 10%) than the projected changes (Figure 4). In particular, a weak negative bias adjustment in the equa-
torial Pacific suggests that thermodynamic evaporation biases alone cannot account for the spurious warming 
seen in the equatorial Pacific under global warming (Coats & Karnauskas, 2017; Samanta et al., 2019; Seager 
et al., 2019). However, given that E biases are generally positive throughout the tropics, the WGW bias adjust-
ment suggests excessive overall tropical cooling in CMIP5/6 projections.

While the WGW scaling and correction can be used to improve future projections, the improvement is limited by 
the assumptions that underlie WGW, and by the competing and interactive contributions of thermodynamic and 
dynamic processes to changes in P − E (Seager et al., 2010). Specifically, the deviations of the projected P − E 
from WGW are associated primarily with reduced P along the margins of the P climatology due to enhanced 
lateral moisture advection associated with δTHdiv (the “upped ante” mechanism; Chou & Neelin, 2004; Chou 
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et al., 2009; Neelin et al., 2003), spatial changes in tropical SST, especially on seasonal time scales (the “warmer 
gets wetter” mechanism; Huang et al., 2013; Z.-Q. Zhou & Xie, 2015), as well as changes in land-ocean temper-
ature contrast and large-scale dynamics which affect surface winds (He & Soden, 2017). We therefore consider 
the adjusted projected P and E as a measure for estimating the potential influence of biases in P and E in lieu of 
a more accurate projection. Such corrections nevertheless may be applicable to specific regions where the WGW 
adjustment can be validated (cf. S. Zhou et al., 2020), and were shown in this paper to be potentially large.

Overall, we find that biases in the representation of the present hydroclimate can lead to notable spurious projected 
changes under tropical warming, which, due to the robustness of thermodynamic processes across models, influ-
ence the multi-model ensemble mean. Locally, mean-state biases may increase the projected uncertainty by up to 
∼30% and ∼15% for P and E, respectively.

Data Availability Statement
All of the data used in the analyses presented here is publicly available. We thank the climate modeling groups 
for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiv-
ing the data and providing access, and the multiple funding agencies who support CMIP and ESGF. All CMIP 
data analyzed here are available from the ESGF at https://esgf-node.llnl.gov/projects/esgf-llnl. The CMIP5 and 
CMIP6 models used here are listed in Tables S1 and S2 Supporting Information S1.
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