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Abstract

Algorithms that classify hyper-scale multi-modal datasets, comprising of millions of images,

into constituent modality types can help researchers quickly retrieve and classify diagnostic

imaging data, accelerating clinical outcomes. This research aims to demonstrate that a

deep neural network that is trained on a hyper-scale dataset (4.5 million images) composed

of heterogeneous multi-modal data can be used to obtain significant modality classification

accuracy (96%). By combining 102 medical imaging datasets, a dataset of 4.5 million

images was created. A ResNet-50, ResNet-18, and VGG16 were trained to classify these

images by the imaging modality used to capture them (Computed Tomography (CT), Mag-

netic Resonance Imaging (MRI), Positron Emission Tomography (PET), and X-ray) across

many body locations. The classification accuracy of the models was then tested on unseen

data. The best performing model achieved classification accuracy of 96% on unseen data,

which is on-par, or exceeds the accuracy of more complex implementations using Efficient-

Nets or Vision Transformers (ViTs). The model achieved a balanced accuracy of 86%. This

research shows it is possible to train Deep Learning (DL) Convolutional Neural Networks

(CNNs) with hyper-scale multimodal datasets, composed of millions of images. Such mod-

els can find use in real-world applications with volumes of image data in the hyper-scale

range, such as medical imaging repositories, or national healthcare institutions. Further

research can expand this classification capability to include 3D-scans.

Author summary

We are seeing an explosion in the volumes of diagnostic imaging data being acquired and

stored digitally. Initial diagnoses of multiple diseases, including cancer, are often made on

the basis of multiple modality scans of the same anatomical area, contributing to this pro-

liferation of imaging data. When mixed modalities are stored in a large repository/data

lake, classification of images into constituent modalities is a challenge, especially when

involving millions of images. ML researchers collaborating with clinicians to build AI-

based decision support systems could benefit from automatic modality classification, to

help with image retrieval, archival, data balancing, and as a diagnosis-aid. Further, a classi-

fier that operates based on a visual classification model, as opposed to label-based classifi-

cation, can offset the time, cost, and errors involved in manual labelling and identification
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processes. In our paper, we identify a Deep Neural Network algorithm that can accurately

perform classification on a mixed-modality hyperscale dataset (4.5 million images), with

significant accuracy—the best of our models achieves 96% accuracy in classifying CT,

MR, and PET modalities. These performance figures demonstrate classification capabili-

ties that exceed those of more complex classifier implementations, especially at hyperscale

imaging data volumes.

1. Introduction

With the proliferation of deep neural networks trained on heterogenous multimodal data to

detect and predict diseases, there has been an explosion in the volume of diagnostic medical

imaging data [1]. Clinicians often order multiple scans of the same patient in different modali-

ties to gather evidence to make an improved diagnosis/prognosis [2]. Algorithms that can

accurately classify a large heterogeneous dataset into its constituent modalities can be benefi-

cial to researchers and clinicians, allowing them to automatically segment a particular type of

modality for retrieval, archival, data balancing, and diagnostic purposes. Manual methods for

classifying medical images are typically error-prone unless done by costly domain experts [3].

This paper outlines a deep neural network that accurately classifies a hyper-scale (4.5 mil-

lion images), mixed-modality dataset into constituent modalities. The developed approach has

significant benefit potential for researchers, clinicians, and imaging archives by helping effec-

tively and efficiently classify diagnostic imaging data, in the magnitude of real-world volumes.

While classification of hyperscale datasets have been attempted in other areas, such as Earth-

science [4], including studies of plankton and marine snow [5], the proposed approach is

novel in the field of classification of medical imaging modalities. This study aims to stimulate

other hyper-scale projects in this area.

Multiple open-access data sets were used to build the hyper-scale multimodal dataset of 4.5

million images from sources such as The Cancer Imaging Archive [16], Stanford ML Group

[17] the largest of which contains 262,000 chest X-ray images, and Kaggle [18] host labelled

datasets.

The models trained on this hyper-scale multimodal dataset were a ResNet-18, ResNet-50

and a VGG16. When these models were tested for classification accuracy, the results are in the

high 90%’s across the train, validate and test sets which shows that the models are able to clas-

sify with significant accuracy. The best performing model in this study, a ResNet18, achieves

significant classification performance (96%+) on classifying CT, MR and PET modalities.

1.1. Previous literature

A number of research articles focus on deep learning systems to classify modalities in diagnos-

tic imaging data. However, to the best of our knowledge, there have not been any examples of

a system that combines medical imaging datasets at the hyper-scale (millions of images) level

to perform modality classification.

Approaches to classifying medical imaging data by modality primarily take two forms (1)

hand-crafted features, and (2) Deep Learning.

The early approaches were based on hand-crafted features, such as picking a specific texture

and colour [19], SIFT descriptors [20], bag-of-colours [21] and then using SVM [22], KNN

[23] as the classifier [24]. These approaches were limited by the choice of features, and limited

accuracy [3]. Further, typically high computational costs inherently limit the size of the data-

sets used.
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Chiang et al. use a dataset of 2,878 images to train a CNN classifier on 4 modalities [25],

Abdominal CT, Brain CT, Lumbar Spine MRI, and Brain MRI, achieving an average validation

accuracy of> 99.5%. Cheng et al. use a cascaded CNN to classify a bimodal dataset, comprised

of MRI and PET images [26]. Using a dataset in the order of 102 images, they achieved a classi-

fication accuracy of 89.6%. Yu et al. use a DNN, and a dataset from the ImageCLEF database,

comprising of 2,901 training and 2,582 test images to demonstrate a best classification accu-

racy of 70% [27]. Sevakula et al. use transfer learning to compare performance of seven

DCNNs [28]. Using a curated dataset of 5,500 images from the Open-i Biomedical Image

Search Engine, they achieve a best classification accuracy of 99.45% on the Inception-V3 net-

work. Finally, Trenta et al. use a dataset comprised of 8,500 slices and a test set of 1,320 slices

(split across 5 classes), and transfer learning techniques to achieve an overall accuracy of up to

100% on specific modalities, on their pre-trained VGGNet implementation [24].

EfficientNets use a set of heuristics, for constructing larger networks given an initial starting

point, over a series of iterations [29]. A number of approaches using EfficientNets [30] for

image classification were studied. In Nayak et al., the authors propose a CNN-based dense Effi-

cientNet that uses min-max normalization to classify 3,260 T1-weighted contrast-enhanced

brain magnetic resonance images into four categories (glioma, meningioma, pituitary, and no

tumor). The model achieved a performance of 99.97% accuracy during training and 98.78%

accuracy during testing [31]. Ali et al. use a dataset comprised of 10,015 images from the

HAM10000 dataset to train a EfficientNet that achieves a Top-1 Accuracy of 87.91% [32]. On a

smaller dataset size of about 3,500 images, Wang et al., use a Multi-Label Classification on

Fundus Images to achieve an F1 score of 0.88 [33]. A relatively larger dataset of 33K images

was used by Ha et al. In this implementation, diagnosis data and metadata were added to

achieve an accuracy of 0.960AUC on cross validation [34]. This review of EfficientNet imple-

mentations seems to indicate that they are able to achieve fairly high classification accuracies.

However, EfficientNet performance on larger dataset sizes seems relatively under-researched,

and no data could be found on large (106) dataset sizes.

Vision Transformers (ViT) use a transformer on sequences of image patches to classify the

full image, achieving significant accuracy on a number of vision tasks [35]. A number of ViT

implementations for classification were studied. Gheflati and Rivaz, use Vision Transformers

for Classification of Breast Ultrasound Images, with weighted cross-entropy loss function to

offset imbalances inherent in breast ultrasound datasets. They achieve an accuracy of 86% on a

dataset size of 943 images [36]. Using a slightly larger dataset of 1,265 carcinoma clinical pho-

tographs, Flugge et al. [37], achieve classification accuracy of 0.986. In ViT implementations

too, it is seen that research on large training datasets are sparse, with the largest dataset we

were able to find being in the region of 104 images [38], see Table 1.

In a brief study of ResNet3D networks for classification, it is seen that datasets are the

region of 103 images. He et al. [39] use a dataset of 4,860 Optical Coherence Tomography

(OCT) images to get a best model F1-score of 96%.

A number of approaches using deep learning classifiers are seen in literature. However, all

approaches reviewed are seen to be utilising limited dataset volumes, with sizes in the (102–

104) magnitude, typically hundreds to tens of thousands of images. Therefore, real-world clas-

sification performance of these algorithms, when operated on typical image-repository scales

of millions of images seems unestablished.

To summarise, two findings emerge, (1) deep learning models present several advantages

over handcrafted, feature driven models, and (2) it is seen that the largest of the datasets in the

literature reviewed is in the order of 104 images. Given that image repositories are now typi-

cally in the hyper-scale order, and growing rapidly, a suitably trained CNN capable of handling

hyper-scale datasets is required.
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2. Materials & methods

2.1. Data

In total, 102 datasets were downloaded and combined to form a hyper-scale image dataset of

4.5 million images. The full list of datasets with citations is provided in S1 Appendix. Four

modalities were selected as targets for the classification task: CT, MRI, X-ray and PET (Fig 1).

Other modalities (e.g. ultrasound) were excluded from this study because of a lack of apprecia-

ble volumes of data. The main source of this data was the Cancer Imaging Archive (TCIA)

[16]. The Cancer Imaging Archive provides a REST API that allows for programmatic retrieval

of images which allowed data to be downloaded and combined easily, and in a reproducible

Table 1. Dataset sizes vs Performance in previous literature.

Classifier Study Dataset Magnitude Classifier Accuracy

CNN Chiang et al. [25] 10^3 >99.5%

CNN Cheng et al. [26] 10^2 >89.6%

DNN Yu et al. [27] 10^3 70%

DCNN Sevakula et al. [28] 10^3 99.45%

Transfer Learning Trenta et al. [24] 10^3 100%

EfficientNets Nayak et al. [31] 10^3 98.78%

EfficientNets Ali et al. [32] 10^4 87.91%

EfficientNets Wang et al. [33] 10^3 0.88 (F1 Score)

EfficientNets Ha et al. [34] 10^4 0.96 (AUC)

ViT Gheflati and Rivaz [36] 10^2 0.86 (AUC)

ViT Flugge et al. [37] 10^3 0.986

ViT Aldhadh et al. [38] 10^4

ResNet3D He et al. [39] 10^3 96% (F1 Score)

https://doi.org/10.1371/journal.pdig.0000191.t001

Fig 1. Visualisation of a spread of images from different locations in different modalities. Different modalities use

different kinds of radiation, and these are absorbed to varying degrees by tissue in the human body. This leads to the

same tissue looking different in each modality. Examples of modalities showing variation of the same tissue (left to

right, top to bottom): [6–14,15].

https://doi.org/10.1371/journal.pdig.0000191.g001
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way. However, because the Cancer Imaging Archive’s main purpose is to host datasets relating

to cancer research it was important to seek out some extra datasets to augment the data TCIA

provides. The full list of datasets can be found in S1 Appendix.

This project was approved by the University of St Andrews University Teaching and

Research Ethics Committee (UTREC), approval code CS15171.

2.2. Train-validate-test split

The downloaded data was split into three separate parts—train, validate and test. The train set

was used to train the model, the validate set was used to evaluate the models between training

runs, and the test set was used once to evaluate the final trained models. It was important to

create the splits at the dataset level to prevent data-leakage. That is, all the images from a data-

set were placed in the same split. Scans of the same patient in the same modality are likely to

be similar, so if there is an image of the same patient in the train and test set then the test set

does not contain completely unseen data. Putting each dataset into one of train, validate or test

prevents this data leakage. Splitting the datasets like this also helps achieve the goal of demon-

strating generalisation across datasets, because no dataset in the train set is represented in the

test set.

The train-validate-test split was created manually to ensure as even a spread as possible of

images for each modality and location in each split. The manual split ensured that there are at

least two locations for each modality in each of the train, validate and test split. The main diffi-

culty for this was X-rays, because in the TCIA datasets most X-rays are mammograms (Fig 2).

This meant the non-TCIA datasets had to be carefully split. Again, the table in S1 Appendix

shows the split each dataset was placed in. Fig 3 shows the number of images in the train, vali-

date and test set. TCIA hosts many CT and MR datasets and some of these datasets are very

large. For example, the CT Colonography dataset [40] has more than 900,000 CT images,

which is more than the total number of X-ray images across all datasets used in this study. To

ensure the other modalities were not completely dwarfed by these datasets, a maximum of

50,000 CT images and 100,000 MR images was taken from each individual dataset. The images

were selected in the order given by TCIA. This selection method was not applied to the images

from sources other than TCIA. After imbalance correction, the total number of images in the

Fig 2. Distribution of Image Modalities.

https://doi.org/10.1371/journal.pdig.0000191.g002
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dataset were 6,433,838 (6.4 million images), with a spilt of 4,104,184 in training, 936,347 in

test, and 1,393,307 in validate datasets.

2.3. Preprocessing

In order for 2D and 3D scans to be used in the same study, the 3D scans (CT, MR and PT)

were treated as a collection of 2D images. These images are sometimes referred to as slices.

The images were resized to 224×224 and rescaled between 0 and 1. Each image was rescaled

using min-max normalisation with the maximum and minimum values being the highest and

lowest pixel values present within the image.

2.4. Network architecture and training

The models trained on this dataset were a ResNet-18 [41], ResNet-50 and a VGG16 [42]. The

code used was adapted from PyTorch’s hosted versions of these models [43]. Changes were

made to the channel depth of the input layer, from three channels to one channel (grayscale).

These three models were chosen because they have all been shown to perform well when

trained with large quantities of data on the ImageNet dataset [41,42]. The code created as part

of this research is open-source and hosted online at GitHub [44].

All models were trained for 10 epochs with a batch size of 128. The training set contained

2,954,097 (2.9×106) samples and the validate set contained 704,685 samples. The models

were optimised using stochastic gradient descent, with a learning rate of 0.1 that was

divided by 10 every time the loss plateaued, a momentum of 0.9 and an L2 weight decay

penalty of 0.005. The models were trained on a machine with an Intel(R) Xeon(R) CPU E5-

1650 v4 @3.60GHz with 6 physical cores (12 threads), 250GB of RAM and two Nvidia

GeForce GTX 1080Tis.

2.5. Transfer learning

As this model was trained on 4 million images, the model’s ability to perform feature extrac-

tion on unseen medical images of the human body was tested, i.e. validate performance of the

saved weights for transfer learning on a different medical imaging task.

The MURA (MUsculoskeletal RAdiographs) dataset [45] was chosen as it was the only

labelled X-Ray dataset in the test set. To test this hypothesis, the MURA dataset [45] was used

for the transfer learning task. The MURA dataset contains 40,561 X-Ray images labelled as

“normal” or “abnormal” in the opinion of multiple board-certified radiologists.

With the aim of testing our model as a foundation model, we took the saved weights

of the ResNet50 from our original task and added a new binary classification head. This

model was compared to a model with the same architecture but with randomly initialised

weights.

The pretrained model was first trained with only the dense classification layers being train-

able for 40 epochs with a learning rate of 1×10−1 to 1×10−4, then the remaining layers were set

to trainable and trained at a learning rate of 1×10−4 decaying to 1×10−8 for 100 epochs. The

model trained from scratch was trained for 100 epochs with a learning rate starting at 1×10−2

and decaying to 1×10−6.

Fig 3. Figures showing the number of images for each modality in the created splits: A) train, B) validate and C) test.

Note that each graph has a different scale, the purpose is to show the ratios of each class are similar. There are 73

datasets in the train set, 13 in the validate set and 16 in the test set.

https://doi.org/10.1371/journal.pdig.0000191.g003
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3. Results & discussion

3.1. Training and validation accuracy

Fig 4 shows the training and validation accuracy curves for the ResNet50, ResNet18 and

VGG16 models. The small gap between the training and validation accuracies suggests that the

models are not overfitting. Fig 5 shows the time it took to train the models over the 10 epochs.

3.2. Test set accuracy

Fig 6 shows the accuracy of the three models. These results are in the high 90%’s across the

train, validate and test sets which shows that the models have all learned the problem well.

Table 2 shows the accuracy and balanced accuracy of each of the models on the test set. Tables

3, 4, and 5 show the per-class precision, recall, F1 Score and AUROC for the ResNet50,

Fig 4. Training and validation accuracy each of the three networks, found at the end of each epoch. The small gap between the training and validation

accuracies suggests that the models are not overfitting. Note the scale starts at 90%.

https://doi.org/10.1371/journal.pdig.0000191.g004
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ResNet18 and VGG16 respectively. Fig 7 shows the confusion matrix for the ResNet18 model.

The confusion matrix shows that the model performs very well on CT, MR and PET. Accuracy

for X-rays can be improved by adding additional X-ray images across a larger spread of

locations.

Fig 5. Time in hours to train the models for 10 epochs. The training and validation accuracy both level-off around

epochs 5–6 which shows that the models are able to fit the data.

https://doi.org/10.1371/journal.pdig.0000191.g005

Fig 6. Accuracy of 3 models on the test set.

https://doi.org/10.1371/journal.pdig.0000191.g006
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3.3. Dataset level results

Table 6 shows the accuracy of the model on each dataset in the test set for the ResNet18 model,

chosen because this model demonstrated superior classification performance over others

tested in this study. It is interesting to note that in both tables the X-ray performance is in the

80–90% range for the Cancer Imaging Archive X-ray datasets, then drops for the MURA and

Osteoarthritis Initiative datasets. This is likely because these datasets are bone X-rays, and

most of the datasets only contain chest X-rays. Therefore, a better spread of X-ray datasets is

needed for the performance of these models to be improved.

3.4. Transfer learning results

The developed model’s ability to perform feature extraction on unseen medical images of the

human body was tested, i.e. validate performance of the saved weights for transfer learning on

a different medical imaging task.

To test this hypothesis, the MURA dataset (MUsculoskeletal RAdiographs) [45] was used

for the transfer learning task. The MURA dataset contains 40,561 X-Ray images labelled as

“normal” or “abnormal” in the opinion of multiple board-certified Stanford radiologists.

The results shown in Table 7 indicate that the model trained from scratch on disease detec-

tion tasks demonstrated 77.7% accuracy in detecting abnormal X-ray images, while the model

with transfer learning weights showed marginal improvements, with 78% accuracy, in detect-

ing abnormal X-ray images. Tables 8 and 9, indicate the precision, recall, F1 Score and

AUROC for the ResNet50 model trained from scratch and pretrained model respectively.

These results are hypothesised to be due to the following factors:

Table 2. Table containing the accuracy and balanced accuracy of various models on the test set. Each model was

trained for 10 epochs.

Model Accuracy Balanced Accuracy

ResNet18 96.00% 86.17%

ResNet50 95.60% 85.65%

VGG16 94.58% 81.08%

https://doi.org/10.1371/journal.pdig.0000191.t002

Table 3. ResNet 50 Metrics, Average AUC = 0.9971405583309333.

Class Precision Recall F1 One vs Rest AUROC

CT 0.95197 0.97861 0.96511 0.99697802

MR 0.86901 0.98843 0.92488 0.99818678

PT 0.9885 0.99899 0.99372 0.9999379

XR 0.99944 0.45998 0.63001 0.99345952

https://doi.org/10.1371/journal.pdig.0000191.t003

Table 4. ResNet 18 Metrics, Average AUC = 0.9976741643022355.

Class Precision Recall F1 One vs Rest AUROC

CT 0.95712 0.98623 0.97146 0.99791051

MR 0.874 0.99 0.92839 0.99840761

PT 0.99138 0.99959 0.99547 0.99997337

XR 0.99965 0.47098 0.64029 0.99440516

https://doi.org/10.1371/journal.pdig.0000191.t004
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1. limited X-ray images in the modality distribution, i.e. the pre-trained model is fitted to

modalities that are abundant in the training dataset, such as MRI, CT, and PT.

2. Transferred weights and parameters might need further tweaking [46] to generalise better

to work with sparse modalities, such as X-Rays, as tested in this case.

4. Conclusion

In this work, we proposed a hyper-scale classifier, capable of classifying diagnostic imaging

data in the scale of millions of medical images, with significant classification accuracy. We

used a dataset comprised of 4.5 million images to train a ResNet-50, ResNet-18, and VGG16

CNN. The trained classifiers were then tested for their classification accuracy on 4 modalities

(Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission

Tomography (PET), and X-ray). The best performing model demonstrated a classification

Table 5. VGG16 Metrics, Average AUC = 0.9987707721217087.

Class Precision Recall F1 One vs Rest AUROC

CT 0.91695 0.98165 0.94819 0.99782978

MR 0.88167 0.99672 0.93567 0.99908888

PT 0.99526 0.99814 0.9967 0.99992527

XR 0.99924 0.26675 0.42109 0.99823916

https://doi.org/10.1371/journal.pdig.0000191.t005

Fig 7. The confusion matrix for the ResNet18 on the test set. The model gains very high accuracy on the CT, MRI

and PET. The ResNet18 results were chosen for this plot as this model achieved the highest accuracy and highest

balanced accuracy.

https://doi.org/10.1371/journal.pdig.0000191.g007
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accuracy of 96%. Our results show that CNN-based hyper-scale classifiers are capable of accu-

rately classifying volumes of image data encountered in real-word applications, such as those

contained in image repositories or diagnostic imaging data collected by national healthcare

institutions.

The classification accuracy of this proposed hyper-scale classifier is comparable to or

exceeds the accuracy of more complex classifier implementations that use EfficientNet or

Vision Transformers (ViT).

Future work on this topic will include extending the scope of the hyper-scale modality clas-

sifier to work on 3D scan modalities, such as CT, MR, and PET.

Table 6. Table containing the accuracy of the ResNet18 model on every dataset in the test set. Some datasets

appear more than once in this table because they contain multiple image modalities.

Dataset (Location) Modality Accuracy (%)

CPTAC-LUAD (Chest) CT 99

Pelvic-Reference-Data(Pelvis) CT 81

C4KC-KiTS (Kidney) CT 100

Anti-PD-1 Lung (Chest) CT 97

CPTAC-PDA (Pancreas) CT 100

NaF PROSTATE (Prostate) CT 100

TCGA-READ (Kidney) CT 100

QIN-HEADNECK (Head) CT 100

CPTAC-LSCC (Chest) CT 100

CPTAC-CCRCC (Kidney) CT 100

CPTAC-LUAD (Chest) MR 100

ISPY1 (Breast) MR 99

Brain-Tumor-Progression (Head) MR 92

REMBRANDT (Head) MR 100

BraTS20 (Head) MR 97

CPTAC-PDA (Pancreas) MR 99

TCGA-READ (Kidney) MR 98

CPTAC-CCRCC (Kidney) MR 99

CPTAC-LUAD (Chest) PT 100

Anti-PD-1 Lung (Chest) PT 100

QIN-HEADNECK (Head) PT 100

CPTAC-PDA (Pancreas) PT 100

NaF PROSTATE (Prostate) PT 100

CPTAC-LSCC (Chest) PT 100

CPTAC-LUAD (Chest) XR 100

CPTAC-PDA (Pancreas) XR 96

CPTAC-LSCC (Chest) XR 92

CPTAC-CCRCC (Kidney) XR 100

MURA (Bone) XR 28

Osteo-Arthritis Initiative (Bone) XR 62

https://doi.org/10.1371/journal.pdig.0000191.t006

Table 7. Transfer Learning Results on X-Ray Image Classification.

Model Accuracy

Our Pretrained ResNet50 78.04

ResNet50 Trained from Scratch 77.73

https://doi.org/10.1371/journal.pdig.0000191.t007
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