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ABSTRACT: Given the current interest in materials containing 1,4-azaborine
units, the development of new routes to these structures is important.
Carbonyl directed electrophilic borylation using BBr3 is a facile method for the
ortho-borylation of N,N-diaryl-amide derivatives. Subsequent addition of
Et3SiH results in carbonyl reduction and then formation of 1,4-azaborines that
can be protected in situ using a Grignard reagent. Overall, borylation−reduction−borylation is a one-pot methodology to access 1,4-
azaborines from simple precursors.

Aryl-fused 1,4-azaborines are polycyclic aromatic hydro-
carbons (PAHs) that contain ortho boron and nitrogen

centers (e.g., Figure 1).1−4 Materials containing these units are

of considerable current interest principally due to their
attractive photophysical properties, which has led to their use
as emitters in OLEDs.5−7 However, they are utilized in other
areas, e.g. as components of novel ligands in catalysis8 and as
bioisosteres.9 Therefore, the efficient synthesis of 1,4-
azaborines is of significant importance.10−12 The classic route
to these compounds builds on the pioneering work of the
groups of Maitlis, Clark and Kawashima.13−15 This uses an
ortho-halogenated diarylamine in a lithium/halogen exchange,
with a boron electrophile then added to form the 1,4-azaborine

(Figure 1A). While widely used,16 the requirement for
halogenated precursors adds complexity to this approach.
This is particularly true if the halogenated-diarylamine is
formed via a Hartwig-Buchwald (HB) coupling reaction, as
this necessitates making multihalogenated precursors that
undergo a selective HB-coupling.17,18 A more efficient route
involves the double C−H borylation (one inter- and one
intramolecular) of a diarylamine using a boron electrophile.
However, the primary product from intermolecular electro-
philic borylation of (di)arylamines is the para (to N) borylated
isomer.19 Nevertheless, seminal work by Hatakeyama and co-
workers demonstrated that 1,4-azaborines can be accessed by
sequential electrophilic C−H borylations using BX3 (X = Br or
I). First, they achieved this by blocking the para position,
forcing the electrophilic borylation to the ortho site (Figure
1B).20 Subsequently, they demonstrated that in certain cases
under forcing conditions it is possible to form 1,4-azaborines
using arylamine precursors that do not contain blocking groups
at the para position (Figure 1C).21 These two approaches,
termed “one-shot borylations”, are powerful and efficient
routes to form these important materials. The absence of para-
borylation in the last approach is notable and is presumably
due to a combination of (a) the extended PAH structures
having a HOMO localized on the ortho sites;22,23 and (b)
reversible para C−H borylation under the high temperatures
used (generally 170−220 °C). While these developments are
impressive, alternative routes to transform diarylamine
derivatives into 1,4-azaborines are of interest particularly if
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Figure 1. Previous work forming 1,4-azaborines by lithiation/
borylation (A) or one-shot borylations (B,C).
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they: (i) expand the accessible compound space; (ii) proceed
under milder conditions.
One key challenge to form 1,4-azaborines under mild

conditions is achieving intermolecular electrophilic borylation
with the desired (ortho) regiochemistry. One way to affect
facile ortho electrophilic borylation of aniline derivatives is to
install a directing group (DG) at nitrogen and then add
BBr3.

24−27 After enabling the ortho-borylation, the DG needs
to be removed to access an ortho-BBr2-diarylamine that can
then be used for the intramolecular electrophilic borylation to
form the 1,4-azaborine. However, the removal of the DGs used
to date in directed electrophilic borylation of diaryl amines
requires conditions that are not compatible with Aryl-BBr2
units.28 An alternative approach exploits recent reports of
carbonyl directed ortho-borylation using BBr3.

29 Post bor-
ylation the carbonyl moiety can be reduced using silanes
(Figure 2, top).29b This leads to an ArylBBr2 unit, as confirmed

by isolation of the Lewis adduct with the newly formed amine,
which produced a boracycle (e.g., compound A). We
hypothesized that applying this approach to diarylamine
derivatives would lead to a product that does not contain a
N → B dative bond (e.g., Figure 2. bottom right). Lewis
adduct formation in this case will be disfavored due to the
lower Lewis basicity of the diarylamine (relative to the amine
in A)30 coupled with the strained nature of the four-membered
boracycle that would be produced on B−N formation. Thus,
the ArylBBr2 unit will be available to perform the second C−H
borylation and form the 1,4-azaborine. Herein we report a
borylation−reduction−borylation strategy that forms 1,4-
azaborines from simple diarylamine precursors at temperatures
<60 °C.
Based on our previous work,31 initial studies used N,N,2-

triphenylacetamide, 1a, which contains two inequivalent sites
for directed ortho C−H borylation, on the PhCH2 and on the
N−Ph unit. Monitoring the reaction of 1a with BBr3 by in situ
NMR spectroscopy revealed selective borylation to form 2a-
Br2 which was in equilibrium with [2a-Br][BBr4], (based on
comparable NMR spectra to that reported for related
systems).31 The mixture of 2a-Br2 and [2a-Br][BBr4] reacted
with ≥2 equiv of Et3SiH to ultimately give one major new

boron containing product with the 11B (δ11B = 50.1) and 1H
NMR spectra consistent with the formation of 3a-Br. Addition
of water to this compound led to a new 11B resonance (δ11B =
38),32 consistent with the 1,4-azaborinic acid, 3a−OH (Figure
3, bottom right). Definitive confirmation of 1,4-azaborine

formation was forthcoming from the conversion of 3a-Br into
4a by the addition of MesMgBr. Compound 4a is bench stable
and was isolated by column chromatography, enabling its full
characterization.
With the confirmation of 1,4-azaborine formation by this

approach in hand, an optimization study was performed to
identify borylation−reduction−borylation conditions applica-
ble to multiple substrates. This revealed that 2.5 equiv of
Et3SiH was sufficient for full carbonyl reduction, with this step
giving optimal outcomes when performed in DCM with
heating. Higher yields also were obtained using ≥4 equiv of
MesMgBr (as some MesMgBr is consumed by reaction with
the Et3SiBr byproduct from the reduction). Using these
conditions, a number of nitrogen-substituted DGs were
explored, including pivaloyl (1b), hexanoyl (1c) and benzoyl
(1d), forming 4b−4d (Figure 4) containing N-neopentyl, N-
hexyl, and N-benzyl units. respectively (note: homobenzyl in
4a, and neopentyl in 4b, have not been used as a N substituent
in any previously reported 1,4-azaborines to our knowledge).
Analogous to the reaction starting from 1a, monitoring the
borylation−reduction−borylation of 1c by in situ NMR
spectroscopy revealed that the B-Br-1,4-azaborine (3c-Br) is
the only major boron-containing product formed (by multi-
nuclear NMR spectroscopy; see Figures S1, S2). However, for
1d, although the initial C−H borylation occurs cleanly, the
subsequent reduction-borylation steps are not clean. Instead,
products from N−C cleavage are observed (see Figures S3, S4.
This is consistent with the lower isolated yield observed for 4d
relative to 4a−4c. Nevertheless, accessing 4d with a N-benzyl
group is important as it can be deprotected to form the N-H-
1,4-azaborine for use in subsequent reactions as a number of us
previously have reported.33

Looking at electronic effects in this reaction, electron-
withdrawing bromines meta to the borylation position (Br σmeta
= 0.37) were tolerated with 4e isolated in a yield similar to that
of 4f, which contains electron-donating methyl groups (Me
σmeta = −0.06). An unsymmetric monobrominated derivative
also was amenable to this process with 4g isolated in good
yield. Next, we looked at the selectivity in the two C−H

Figure 2. Top, previous borylation-reduction. Bottom, this work.

Figure 3. Initial studies into the synthesis of 1,4-azaborines by
borylation−reduction−borylation.
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borylation steps by using diarylamine-substituted meta to N
(1h and 1i). This substitution pattern results in the two ortho
positions being inequivalent. In both cases, the two C−H
borylation steps proceeded with high selectivity for the less
sterically hindered position leading to formation of 4h and 4i.
These contain an electron-donating group (4h, Me σpara =
−0.14) and an electron-withdrawing group (4i, F σpara = 0.15),
respectively. While the functional group tolerance of this
process is limited, given the use of strong electrophiles (BBr3)
and reducing conditions, we note that halides are the
functional group most widely used in organic materials for
further transformations.
The potential to access 1,4-azaborines other than

dibenzofused systems by using the same conditions was
explored next. Attempts to form a B,N-naphthalene (4j, Figure
5) using N-vinyl-acetanilide led to no 1,4-azaborine product
being isolated and instead produced a complex, intractable
mixture. Using naphthyl-containing precursor 1k led to the
isolation of two 1,4-azaborine products (4k-α,β) from
unselective borylation of the alpha and beta positions of
naphthalene. In contrast, the use of pivaloyl led to the
formation of the α product as the major isomer, which could
be isolated in 30% yield, with minimal (<5%) β-isomer (41-β)
isolated. Replacing the naphthalene moiety with benzothio-
phene led to 1m being converted into two 1,4-azaborine
isomers, 4m-α and 4m-β, even when pivaloyl was used as the
directing group. Note, these isomeric mixtures can be
separated by column chromatography. In contrast to 1k and
1m, the N-phenyl carbazole derivative, 1n, produced only a
single azaborine isomer, 4n, from borylation para to N.
Presumably, the N-Ph unit provides sufficient steric shielding

of its ortho C−H position to prevent any observable borylation
at that site. Carbazole-fused 1,4-azaborines are of interest as
compounds related to 4n have been reported previously to
have superior photophysical properties and electrochemical
stability relative to dibenzofused-1,4-azaborines.34 The ex-
tended heterocyclic cores of 4m and 4n are novel structures to
the best of our knowledge;35 furthermore, they are accessible
in one pot from 1m/1n, with 1m and 1n themselves accessible
in two simple steps from commercial precursors (a HB
coupling and then an acylation). In contrast, the previously
reported route to carbazole-fused 1,4-azaborines required the
initial synthesis of a dibrominated dibenzo-fused 1,4-azaborine
(related to 4e), which was used in a HB-coupling reaction with
ortho-chloro-aniline, followed by a palladium catalyzed C−C
bond forming reaction to make the carbazole fused 1,4-
azaborine.34

Next, the construction of multiple 1,4-azaborine units in one
PAH via this methodology was explored. However, multiple
attempts to form the B2N2 pentacene 4o via this methodology
proved unsuccessful (with <5% of the desired product
isolated), this included using more forcing conditions. In
contrast these type of materials can be accessed using lithium/
halogen exchange based synthetic routes (as per Figure 1A).15

The lack of significant B2N2 product being formed using this
borylation−reduction−borylation method is tentatively attrib-
uted to the first C−H borylation on the central phenyl (shown
in red in 4o) electronically deactivating it (due to the π
electron withdrawing effect of the boron unit)36 towards
further C−H borylation (see section S2 for more discussion).
This hypothesis also is supported by the successful formation

Figure 4. Substrate scope for dibenzofused-1,4-azaborines. Reactions
were performed in sealed tubes. 4x: Isolated yields.

Figure 5. Other fused 1,4-azaborines made through borylation−
reduction−borylation. Reactions in sealed tubes; yields are for
isolated materials
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of B2N2 compound 4p in 25% isolated yield, with the
borylation sites in 1p more electronically isolated than those
on the central phenyl in 1o.
The functionalization of two of the 1,4-azaborines made

through this borylation−reduction−borylation method also
was explored. Compound 4g was found to be compatible with
standard HB coupling conditions to form 5 (Figure 6 left).

Second, the oxidation of sulfur in 4m-β was attempted as this is
a well-established method to fine-tune optoelectronic proper-
ties.37 This led to the formation of the sulfone containing
azaborine 6. This enabled comparison of the optoelectronic
properties of isomers 4m-α,β and 6. This revealed that the two
isomers possess very similar optoelectronic properties (e.g.,
λmax for the lowest energy absorption band = 416 and 409 nm,
see Figure S98) with the peak reduction potentials being −2.13
and −2.10 V, respectively (versus Fc/Fc+). This was in
agreement with DFT calculations (on model compounds
containing N-Me groups instead of N−CH2

tBu, Figure S95)
that confirmed closely comparable HOMO, LUMO and S1
energies for Me4m-α and Me4m-β. Finally, as expected36 sulfone
containing 6 has a significantly stabilized LUMO energy
(relative to 4m), with the peak reduction potential observed at
−1.67 V (versus Fc/Fc+).
In summary, borylation−reduction−borylation is a one-pot

approach to produce a range of aryl fused 1,4-azaborines using
a single set of reaction conditions. This methodology proceeds
at a relatively low (≤60 °C) temperature for an inter/
intramolecular electrophilic borylation based route to form 1,4-
azaborines and enables formation of 1,4-azaborines that would
be challenging to access by established methodologies.
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