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The evolution of correlation singularities in partially coherent polarization singular beams (PC-PSBs) is investi-
gated. Since PSBs are the superposition of two orthogonally polarized vortex beams, the occurrence of coherence
singularities in PC-PSBs is strongly governed by the topological charge of the component vortex beams and the
spatial coherence length. Coherence singularities appear in the form of ring dislocations in the modulus of the
spectral degree of coherence (SDoC) profile, and the number of ring dislocations is equal to the higher value of the
topological charge of the superposing vortex beam. Furthermore, the SDoC phase profile can be used to determine
the polarity of a PC-PSB. The findings of the study could be valuable in various applications that rely on the spatial
coherence of beams, such as free-space communication and imaging.
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1. INTRODUCTION

Singular optics deals with the effects that occur near a singular
point where some parameter of the optical field is not defined.
Exploring singularities in an electromagnetic wave field has
remained a mainstay in the past few decades [1–3]. The most
commonly discussed singularity in electromagnetic fields is
the phase singularity. Also known as a vortex beam, it carries
orbital angular momentum (OAM). The orthogonally polar-
ized vortex beams with distinct OAM content combine to
yield yet another form of electromagnetic singularity called
a “polarization singularity.” Point polarization singularities
are classified into two types, namely, vector field (V-point)
and ellipse field (C-point) singularities [1,2]. The beams that
carry a polarization singularity at the core are referred to as
polarization singular beams (PSBs). PSBs can be identified
as polarization azimuth vortices found within the Stokes
phase distribution 812 = Arg{S1 + i S2} (where S1 and S2

represent the Stokes parameters). In analogy with the topologi-
cal charge (m = 1

2π

∮
∇χ · dl ), which depicts the strength of

the phase gradient (∇χ ) of the vortex beams, the Stokes index
(σ12 =

1
π

∮
∇γ · dl ) is used to determine the strength of the

azimuth gradient (∇γ ) around the singularity for the PSBs.
Furthermore, the Stokes index is connected to the C-point
index Ic and the V-point index η as 2Ic = σ12 and 2η= σ12,
respectively. In recent years, PSBs have attracted a great deal of
interest due to their potential applications in optical trapping

and manipulation [4], propagation through atmospheric tur-
bulence [5], edge enhancement [2], high-dimensional quantum
key distribution [6], weak field measurement [7], etc.

The above-discussed phase singularities and polarization
singularities occur in coherent vortex wave fields with deter-
ministic two-point correlation. It is demonstrated that the
phase singularity of the vortex beam disappears when the spatial
coherence is reduced as the dark core is filled with diffused light
[3]. In such partially coherent systems, these disappeared phase
singularities emerge as another type of electromagnetic singu-
larity called the “coherence singularity” [3,8–10]. Coherence
singularities occur at a pair of points where the modulus of the
spectral degree of coherence (SDoC) becomes zero and its phase
is undetermined. The robustness of the coherence singularities
makes them a useful candidate for free-space communication.
Moreover, coherence singularities prove to be beneficial in deter-
mining both the magnitude and polarity of vortex beams under
extremely low-coherence conditions, when the beam loses its
distinctive features of intensity and phase distribution [3,11].
The investigation of correlation singularities is also extended to
the partially coherent beams with a multi-Gaussian correlation
function. A straightforward relationship has been identified,
indicating that the number of ring dislocations is M-1, where M
is the beam index of multi-Gaussian Schell model beams [12].
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Partially coherent (PC) beams are advantageous in many
applications such as imaging [13], free-space optical com-
munication [14], particle trapping [15], optical encryption
[16], beam shaping [17], and optical image transmission [18].
Substantial overlap between the applications of PC beams and
PSBs initiated the investigation of the statistical properties
of partially coherent PSBs (PC-PSBs) [19–22] to harness the
two-fold benefit of spatial correlation and inhomogeneous
polarization.

Recently, the three different ways of characterizing the sin-
gularities of a partially coherent electromagnetic wavefield have
been discussed [23]. Although our previous study briefly men-
tioned the presence of coherence singularities in V-point beams
[21], a comprehensive exploration of coherence singularities
in PC-PSBs has not been conducted to date. This manuscript
presents the first-ever investigation of the complete evolution
of coherence singularities in PC-PSBs. Coherence singularities
in PC-PSBs are strongly governed by the OAM content of the
superposing beams and the spatial coherence length. These sin-
gularities appear in the form of ring dislocations in the modulus
of the SDoC profile. The finding indicates that as the spatial
coherence decreases, the phase singularities (point dislocations)
present in the superposing vortex beams transform into coher-
ence singularities (ring dislocations). However, the polarization
singularity remains intact.

2. EVOLUTION OF COHERENCE
SINGULARITIES IN PC-PSBs

A. Theoretical Background

We consider that the PC-PSBs are generated from a quasi-
monochromatic Gaussian Schell-model type input beam of
beam waist w and coherence length δ. The statistical behavior
of the fluctuating fields is described by a cross-spectral density
matrix (CSD). The elements of the CSD matrix of a PC-PSB at
the source are given by [20]

W0x x/0y y (r1; r2)=[±r1
|m1|e im1φ1 + r1

|m2|e−i(m2φ1+θ0)]

[±r2
|m1|e−im1φ2 + r2

|m2|e i(m2φ2+θ0)]µ(r1, r2),

(1a)

W0x y/0y x (r1; r2)=∓ i[±r1
|m1|e im1φ1 + r1

|m2|e−i(m2φ1+θ0)]

[∓r2
|m1|e−im1φ2 + r2

|m2|e i(m2φ2+θ0)]µ(r1, r2),

(1b)

where µ(r1, r2)= exp(−
r 2
1+r 2

2
w2 ) exp(−

r 2
1+r 2

2−2r1r2 cos(φ1−φ2)

2δ2 ),
and r1(r1, φ1) and r2(r2, φ2) correspond to two points in the
source plane. The frequency dependence is omitted for a quasi-
monochromatic field. Here, (m1; m2) and (φ1; φ2) represent
topological charges and azimuthal phases of the superposing
vortex beams, respectively. The elements of the CSD matrix
for a pair of inhomogeneously polarized orthogonal beams
can be obtained by substituting θ0 = 0 (positive polarity) and
π (negative polarity) [21]. The beam exhibits a V-point sin-
gularity when |m1| = |m2| and a C-point singularity when
|m1| 6= |m2|(as shown in Fig. 1). If either m1 or m2 equals
zero, the resulting beam takes the form of a bright C-point
beam (indicated by a blue outline in Fig. 1), while otherwise, it
becomes a dark C-point beam (outlined in yellow in Fig. 1) [2].
It is worth mentioning that the plotting of the SoP distribution
does not take into account the weighted intensity dependence.
We have considered PC-PSBs with Ic =±

1
2 ,±1,±2 and

η=±1,±2 for our study.
The CSD matrix (W(ρ1, ρ2, z)) elements at the observation

plane can be calculated using the generalized Collins formula
[24]

Wαβ(ρ1, ρ2, z)=
k2

4π 2 B2

∫ 2π

0

∫ 2π

0

∫
∞

0

∫
∞

0
r1r2dr1dr2dφ1dφ2

×W0αβ(r1, r2) exp

[
ik D
2B

(ρ2
2 − ρ

2
1 )−

ik A
2B

(r 2
1 − r 2

2 )

]

× exp

[
ik
B
(r1ρ1 cos(θ1 − φ1)− r2ρ2 cos(θ2 − φ2))

]
,

(2)

Fig. 1. Schematic showing a general classification of polarization singular beams. (top) Spectral density profiles and (bottom) SoP distributions
with embedded Stokes phase profiles.. Here, δ = 4 mm. The intensity profile is degenerate for both positive and negative index PC-PSBs; however,
the Stokes phases and SOPs differentiate them. The SoP distribution plot does not take into account the weighted intensity dependence.



Research Article Vol. 63, No. 1 / 1 January 2024 / Applied Optics 51

Fig. 2. Evolution of coherence singularities in the modulus of the SDoCs for various PC-PSBs (δ = 0.5 mm). The singularity evolves in the form
of ring dislocations, and the number of ring dislocations is equal to the higher value of the topological charge of the superposing beam. Different scale
bars are used for these distributions, each of which is indicated alongside its corresponding SDoC pattern.

where (α; β)= (x , y ); k is a propagation constant, and
ρ1(ρ1, θ1) and ρ2(ρ2, θ2) are two transverse points in the
observation plane. A 2 f lens system is considered to study the
propagation properties, and the lens plane is assumed to be
the z= 0 plane. Therefore, the transfer matrix elements are
A= (1− z/ f ), B = f , C =−1/ f , and D= 0.

The spectral density of a PC-PSB can be evaluated as [25]

S(ρ)=Tr[W(ρ, ρ, z)]. (3)

Figure 1 depicts the presence of bright C-point, dark C-point,
and V-point singularities in the state of polarization (SoP) dis-
tribution of PC-PSBs at the focal plane. The beam parameters
areλ= 632.8 nm,w= 2.5 mm, δ = 4 mm, and f = 300 mm.
The spectral density profiles of V-point and dark C-point PC-
PSBs exhibit doughnut-shaped profiles, while bright C-point
PC-PSBs have flat-top/Gaussian profiles. For a specific com-
bination of superposing vortex beams (m1,m2), the spectral
density profile of the resulting PSBs (type-I, II, III, IV) is indis-
tinguishable for both positive (θ = 0) and negative (θ = π )

polarities. However, the SoP distribution distinguishes its
type [21]. It is demonstrated that for the low value of spatial
coherence, different index PC-PSBs exhibit similar Gaussian
intensity profiles due to the coherence-induced depolarization
effect [21,26]. However, the polarization vortices (SoP distribu-
tion) remain intact. At this point, it would be interesting to see
how source spatial coherence affects the coherence properties of
the PC-PSBs at the observation plane.

For a spatially partially coherent beam, the extent of correla-
tion between two spatial points is characterized by the spectral
degree of coherence as [25]

µ(ρ1, ρ2, z)=
TrW(ρ1, ρ2, z)√
S(ρ1, z)S(ρ2, z)

. (4)

Here, S(ρ j , z); ( j = 1, 2) represents the spectral density.
SDoC is a complex quantity with 0≤ |µ(ρ1, ρ2, z)| ≤ 1. The
extreme values of zero and one represent the complete absence
and presence of correlation of the fields at a pair of points (ρ1,
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ρ2), respectively. It is well established that the coherence sin-
gularities occur when the phase of the SDoC is undefined,
i.e., |µ(ρ1, ρ2, z)| = 0 [8]. The simultaneous occurrence of the
zeroes of the real and imaginary parts of the numerator of Eq. (4)
(Tr[W(ρ1, ρ2, z)]) determines the locations of the coherence
singularities

Re[Tr(W)(ρ1, ρ2, z)] = 0, and Im[Tr(W)(ρ1, ρ2, z)] = 0.
(5)

It is evident from Eqs. (1), (2), and (4) that the SDoC distri-
bution depends upon the source parameters (m1,m2, δ) and

the propagation distance (z). In order to understand how the
coherence singularities in the PC-PSBs come into existence,
we first study the propagation properties of SDoC. To achieve
this, we numerically solved the integration, and the numerical
outcomes illustrating the evolution of coherence singularities
in SDoC distributions for different PC-PSBs are depicted in
Fig. 2 (with δ set at 0.5 mm). Here, one of the spatial points in
the observation plane is kept fixed at the origin (ρ1 = 0). At
the source plane, various PC-PSBs exhibit similar Gaussian
distribution in the modulus of SDoC [Eq. (1)], which under-
goes a transformation into a non-Gaussian profile as the beam

Fig. 3. SDoC phase profile along with the real (white contour line) and imaginary (black contour line) parts of TrW(ρ, z) for various PC-PSBs
at different propagation distances for δ = 0.5 mm. Coherence singularities are located at the point of intersections of real and imaginary parts of the
Tr[W(ρ1, ρ2, z)]. The positive and negative singularities are shown with blue and red spheres, respectively. Distinct window sizes are used for the
evolving observation plane and the focal plane.
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propagates. When z= 260 mm, the coherence singularity starts
appearing in V-point beams in the form of ring dislocations, and
its strength increases gradually as the beam approaches the focal
plane.

B. Results and Discussion

It is observed that the number of ring dislocations (n) in the
SDoC distribution of the PC-PSB is governed by the topo-
logical charges of the superposing beams (m1, m2). Since
bright C-point PSBs are the combination of a Gaussian beam
(m1 = 0) and a vortex beam (m2), the number of ring disloca-
tions is equivalent to the topological charge of the vortex beam
(n = |m2|). This aspect can be readily used to determine the
polarization singularity index of the PC bright C-point beams
(|Ic | = n/2). The evolution of coherence singularities on propa-
gation is the result of the conversion of phase singularities into
coherence singularities [3]. Partially coherent V-point beams
are composed of two orthogonally polarized vortex beams hav-
ing equal and opposite topological charges (|m1| =−|m2|),
and the number of ring dislocations is equal to the topological
charge of the vortex beams (n = |m1| = |m2|). In these cases, the

coherence singularity of the superposing states always coexists
in the SDoC distributions such that |η| = n. Interestingly, for
PC dark C-point beams the number of ring dislocations is equal
to the higher value of the topological charge of the superpos-
ing beam irrespective of their |Ic | index. For example, dark
C-point beams having |Ic | = 1 (m1 = 1,m2 = 3) and |Ic | = 2
(m1 =−1,m2 = 3) possess three ring dislocations in the SDoC
distributions. The ring dislocations are the consequence of
the coexistence of the coherence singularities of the superpos-
ing vortex beams. In contrast to the intensity profile, which
shows an expanding dark core radius (high δ), the SDoC profile
demonstrates an increasing number of rings (low δ) with the
increase in charge of the superimposed beams (m1 or m2 6= 0).
Consequently, PC-PSBs comprising states with higher charges
exhibit inner rings with smaller radii.

To analyze the occurrence of coherence singularities in PC-
PSBs, we have plotted the real (white) and imaginary (black)
parts of the cross-spectral density in Fig. 3. The phase of the
SDoC distribution was determined using an off-axis reference
point, ρ1(ρ1x = 0.1 mm, ρ1y = 0) while other parameters
remained consistent with Fig. 2. The coherence singularity
appears at the locations where the contour lines of real and

Fig. 4. Modulus and phase of SDoC for various PC-PSBs at z= f for different values δ. The SDoC profile is degenerate for a particular PC-PSB
while the SDoC phase distinguishes the polarity/type. The computation window for higher coherence lengths (δ = 6 mm) is 0.4 mm× 0.4 mm, and
for lower coherence lengths (δ = 1.5 mm and 0.5 mm) is 0.2 mm× 0.2 mm.
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imaginary parts of the CSD intersect each other. When the
propagation distance is z< 260 mm there are no correlation
singularities around the center. It can be seen that the coherence
singularities in the phase distribution of the SDoC appear as
point dislocations for z> 260 mm. Positive and negative coher-
ence singularities correspond to the SDoC-phase rotating in the
anticlockwise (−π to π ) and clockwise (π to −π ) directions,
respectively. It is observed that the coherence singularities always
appear as a pair that contains positive (blue spheres) and negative
(red spheres) polarity coherence singularities. These paired sin-
gularities undergo rotation during propagation and eventually
align along a line in the focal plane. In our case, the coherence
singularities move along a horizontal line due to the choice of
the reference point (ρ1 = 0). The number of point singularities
in the SDoC phase distribution is two times the number of ring
dislocations due to the off-axis displacement of the reference
point. Like the partially coherent vortex beam [10], the coher-
ence singularities in PC-PSBs evolve in a van-Cittert Zernike
manner on propagation, devoid of any coherence singularity
at the source plane. Interestingly, in the far field, the point dis-
locations convert into edge dislocations, as depicted with the
steplike jump in the SDoC phase distribution.

It is clear from the previous discussion that the complete evo-
lution of coherence singularity takes place in the far field. Next,
we study the behavior of coherence singularities by varying the
source spatial coherence length at the focal plane as depicted
in Fig. 4. Coherence singularities are prominently seen for
low spatial coherence length (1.5 mm and 0.5 mm) compared
to higher values (6 mm). The changes observed in the SDoC
(modulus and phase) on reducing spatial coherence are similar
to the effects observed during the propagation, i.e., conversion
of phase singularity into coherence singularity. Analogous to the
spectral density of positive and negative polarity of a particular
PC-PSB, the modulus of the SDoC is also degenerate. However,
one can predict the polarity of a particular index of the PC-PSBs
from the SDoC phase profile.

3. CONCLUSION

The evolution of the coherence singularities in PC-PSBs is
investigated. It is observed that the coherence singularities
strongly depend on the coherence length and topological
charges of the component vortex beams. Coherence singular-
ities in PC-PSBs appear as ring dislocations in the modulus
of the SDoC profile (at z= f ). The dark rings of the super-
posing states coexist in the SDoC profile. The number of ring
dislocations of the PC-PSBs is equal to the higher value of
the topological charge of the component vortex beam. These
ring dislocations can be used to predict the magnitude of the
polarization singularity index of the V-point (|η| = n) and
bright C-point (|Ic | = n/2) PC-PSBs. Since the Ic -index of
the dark C-point beam is shared by infinitely many combi-
nations of superposing OAM states (Ic = (m2 −m1)/2), the
number of ring dislocations is not sufficient to determine the
|Ic |-index. The SDoC phase distribution can be used to deter-
mine the polarity/type of PC-PSBs. On reducing the spatial
coherence the phase singularities (point dislocations) present
in the superposing vortex beams convert into coherence sin-
gularities (ring dislocations) while the polarization singularity

in PC-PSBs remains intact. Recent studies have indicated the
potential of PSBs in free-space optical communication and
high-dimensional quantum key distribution. Consequently,
gaining a deeper understanding of the coherence properties
of PC-PSBs becomes valuable, as it may facilitate the future
incorporation of partial coherence in these applications.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

REFERENCES
1. M. Dennis, “Polarization singularities in paraxial vector fields:

morphology and statistics,” Opt. Commun. 213, 201–221 (2002).
2. P. Senthilkumaran, Singularities in Physics and Engineering (IOP

Publishing, 2018).
3. X. Liu, J. Zeng, and Y. Cai, “Review on vortex beams with low spatial

coherence,” Adv. Phys. X 4, 1626766 (2019).
4. Q. Zhan, “Trappingmetallic Rayleigh particles with radial polarization:

reply to comment,” Opt. Express 20, 6058–6059 (2012).
5. K. Khare, P. Lochab, and P. Senthilkumaran, Orbital Angular

Momentum States of Light (IOP Publishing, 2020), pp. 2053–2563.
6. A. Forbes and I. Nape, “Quantum mechanics with patterns of light:

progress in high dimensional and multidimensional entanglement
with structured light,” AVSQuantum Sci. 1, 011701 (2019).

7. M. R. Dennis and J. B. Götte, “Topological aberration of optical vortex
beams: determining dielectric interfaces by optical singularity shifts,”
Phys. Rev. Lett. 109, 183903 (2012).

8. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent
beams,” Opt. Commun. 222, 117–125 (2003).

9. C. Stahl and G. Gbur, “Partially coherent vortex beams of arbitrary
order,” J. Opt. Soc. Am. A 34, 1793–1799 (2017).

10. Y. Zhang, Y. Cai, and G. Gbur, “Partially coherent vortex beams of
arbitrary radial order and a van Cittert-Zernike theorem for vortices,”
Phys. Rev. A 101, 043812 (2020).

11. X. Lu, C. Zhao, Y. Shao, et al., “Phase detection of coherence sin-
gularities and determination of the topological charge of a partially
coherent vortex beam,” Appl. Phys. Lett. 114, 201106 (2019).

12. Y. Zhang, H. Wang, C. Ding, et al., “Correlation singularities of par-
tially coherent beams with multi-Gaussian correlation function,”
Phys. Lett. A 381, 2550–2553 (2017).

13. J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3d
tomographic imaging for partially coherent light microscopy,” Opt.
Express 25, 15699–15712 (2017).

14. O. Korotkova, “Scintillation index of a stochastic electromag-
netic beam propagating in random media,” Opt. Commun. 281,
2342–2348 (2008).

15. M. Dong, D. Jiang, N. Luo, et al., “Trapping two types of Rayleigh
particles using a focused partially coherent anomalous vortex beam,”
Appl. Phys. B 125, 55 (2019).

16. D. Peng, Z. Huang, Y. Liu, et al., “Optical coherence encryption with
structured random light,” PhotoniX 2, 1–15 (2021).

17. Y. Chen, F. Wang, and Y. Cai, “Partially coherent light beam shaping
via complex spatial coherence structure engineering,” Adv. Phys. X 7,
2009742 (2022).

18. Y. Liu, X. Zhang, Z. Dong, et al., “Robust far-field optical image trans-
mission with structured random light beams,” Phys. Rev. Appl. 17,
024043 (2022).

19. J. Zeng, C. Liang, H. Wang, et al., “Partially coherent radially
polarized fractional vortex beam,” Opt. Express 28, 11493–11513
(2020).

20. S. N. Khan, S. Joshi, and P. Senthilkumaran, “Coherence-induced
depolarization effects in polarization singular beams,” Opt. Lett. 47,
6448–6451 (2022).

21. S. Joshi, S. N. Khan, P. Senthilkumaran, et al., “Statistical properties
of partially coherent polarization singular vector beams,” Phys. Rev. A
103, 053502 (2021).

https://doi.org/10.1016/S0030-4018(02)02088-6
https://doi.org/10.1080/23746149.2019.1626766
https://doi.org/10.1364/OE.20.006058
https://doi.org/10.1116/1.5112027
https://doi.org/10.1103/PhysRevLett.109.183903
https://doi.org/10.1016/S0030-4018(03)01606-7
https://doi.org/10.1364/JOSAA.34.001793
https://doi.org/10.1103/PhysRevA.101.043812
https://doi.org/10.1063/1.5095713
https://doi.org/10.1016/j.physleta.2017.05.059
https://doi.org/10.1364/OE.25.015699
https://doi.org/10.1364/OE.25.015699
https://doi.org/10.1016/j.optcom.2007.12.047
https://doi.org/10.1007/s00340-019-7165-4
https://doi.org/10.1186/s43074-020-00023-9
https://doi.org/10.1080/23746149.2021.2009742
https://doi.org/10.1103/PhysRevApplied.17.024043
https://doi.org/10.1364/OE.390922
https://doi.org/10.1364/OL.477229
https://doi.org/10.1103/PhysRevA.103.053502


Research Article Vol. 63, No. 1 / 1 January 2024 / Applied Optics 55

22. Y. Zhang, Y. Cui, F. Wang, et al., “Correlation singularities in a partially
coherent electromagnetic beamwith initially radial polarization,” Opt.
Express 23, 11483–11492 (2015).

23. W. S. Raburn and G. Gbur, “Singularities of partially polarized vortex
beams,” Front. Phys. 8, 168 (2020).

24. Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted
anisotropic Gaussian–Schell model beams,” Opt. Lett. 27, 216–218
(2002).

25. E. Wolf, Introduction to the Theory of Coherence and Polarization of
Light (Cambridge University, 2007).

26. S. Joshi, S. N. Khan, Manisha, et al., “Coherence-induced polariza-
tion effects in vector vortex beams,” Opt. Lett. 45, 4815–4818 (2020).

https://doi.org/10.1364/OE.23.011483
https://doi.org/10.1364/OE.23.011483
https://doi.org/10.3389/fphy.2020.00168
https://doi.org/10.1364/OL.27.000216
https://doi.org/10.1364/OL.401972

