Insights into the response of coral biomineralisation to environmental change from aragonite precipitations in vitro

Cristina Castillo Alvarez a,b, Kirsty Penkman c, Roland Kröger d, Adrian A. Finch a, Matthieu Clog e, Alex Brasier f, John Still g, Nicola Allison a,b,*

a School of Earth and Environmental Sciences, University of St. Andrews, St Andrews KY16 9TS, UK
b Department of Earth Science, University of St. Andrews, St Andrews KY16 9TS, UK
c Scottish Oceans Institute, University of St. Andrews, St Andrews KY16 9TS, UK
d Department of Chemistry, University of York, York YO10 5DD, UK
e School of Chemistry, University of York, York YO10 5DD, UK
f SUERC, University of Glasgow, UK
g School of Earth and Environmental Sciences, University of St. Andrews, St Andrews KY16 9TS, UK

Keywords: Biomolecule Aragonite precipitation Biomineralisation Coral CaCO₃

ARTICLE INFO
Associate editor: Daniel Sinclair

ABSTRACT
Precipitation of marine biogenic CaCO₃ minerals occurs at specialist sites, typically with elevated pH and dissolved inorganic carbon, and in the presence of biomolecules which control the nucleation, growth, and morphology of the calcium carbonate structure. Here we explore aragonite precipitation in vitro under conditions inferred to occur in tropical coral calcification media under present and future atmospheric CO₂ scenarios. We vary pH, Ω, and pCO₂ between experiments to explore how both HCO₃⁻ and CO₃²⁻ influence precipitation rate and we identify the effects of the three most common amino acids in coral skeletons (aspartic acid, glutamic acid and glycine) on precipitation rate and aragonite morphology. We find that fluid Ωₐ or [CO₃²⁻] is the main control on precipitation rate at 25 °C, with no significant contribution from HCO₃⁻ or pH. All amino acids inhibit aragonite precipitation at 0.2–5 mM and the degree of inhibition is inversely correlated with Ωₐ and, in the case of aspartic acid, also inversely correlated with seawater temperature. Aspartic acid inhibits precipitation the most, of the tested amino acids (and generates changes in aragonite morphology) and glycine inhibits precipitation the least. Previous work shows that ocean acidification increases the amino acid content of coral skeletons and probably reduces calcification media Ωₐ, both of which can inhibit aragonite precipitation. This study and previous work shows aragonite precipitation rate is exponentially related to temperature from 10 to 30 °C and small anthropogenic increases in seawater temperature will likely offset the inhibition in precipitation rate predicted to occur due to increased skeletal aspartic acid and reduced calcification media Ωₐ under ocean acidification.

1. Introduction
Biocalcification is the production of calcium carbonate (CaCO₃) structures (e.g. shells, plates and skeletons) by a range of organisms. In the marine environment the CaCO₃ mineral aragonite is produced by warm and cold-water corals as well as by pteropods and some foraminifera, molluscs and serpulid worms. Biogenic aragonites, including coral skeletons, contain organic molecules, including proteins, glyco-proteins and polysaccharides, (Borelli et al., 2003; Cuif et al., 2004; Dauphin 2006; Cuif et al., 2008). These skeletal biomolecules allow calcifying organisms a sophisticated control of mineral crystal nucleation, growth, morphology and physical properties (Addadi and Weiner, 1985; Gilbert et al., 2018). For example, amino acids influence CaCO₃ nucleation, growth, morphology and polymorph (Wolf et al., 2007; Picker et al., 2012; Montanari et al., 2016; Stepić et al., 2020; Fang et al., 2023).

The main physico-chemical parameters controlling the precipitation rates of CaCO₃ minerals are the degree of supersaturation of fluid, the temperature and the presence of additives (Berner, 1975; Mucci and Morse, 1984; Burton and Walter, 1987; de Yoreo and Vekilov, 2003; Morse et al., 2007; Nielsen et al., 2013). The CaCO₃ saturation state of seawater (Ω) is a function of the [Ca²⁺], [CO₃²⁻] and Ksp, which is the
solubility product at a given temperature, salinity and pressure and is mineral specific (Mucci, 1983). However, it is unclear if HCO$_3^-$ also plays a role in CaCO$_3$ precipitation (Wolthers et al., 2012; van der Weijden and van der Weijden, 2014; Andersson et al., 2016; Sand et al., 2016; De Carlo et al., 2018).

Coral aragonite is deposited at an extracellular calcification site at the base of the coral and is either precipitated from ions in the extracellular calcification media or sourced from amorphous CaCO$_3$ formed intracellularly in vesicles in the calciblastic cells overlying the extracellular site (Sun et al., 2020). The coral calcification media are at least semi-isolated from seawater and have elevated pH, favouring the speciation of CO$_3^{2-}$ (Al Horani et al., 2003, Venn et al., 2019). Ocean acidification can reduce the pH of both the calciblastic cell intracellular fluid and the extracellular calcification media (Venn et al., 2013), influencing fluid/media DIC speciation and the relative proportions of aqueous HCO$_3^-$ and CO$_3^{2-}$. In addition, the biomolecule concentrations of tropical coral skeletons are increased by ocean acidification (Tambutte et al., 2015; Kellock et al., 2020). Understanding how these changes influence aragonite precipitation rate is crucial to predicting the future of coral reef accretion.

In this research we explore aragonite precipitation in vivo under conditions reflective of the coral calcification media over a range of Ω$_{Ar}$ values. We precipitate aragonite onto a seed using a specialist apparatus designed to maintain pH, Ω$_{Ar}$, and [Ca$^{2+}$] within narrow limits (Kellock et al., 2020). We vary pH, Ω$_{Ar}$, and pCO$_2$ between experiments to explore how both HCO$_3^-$ and CO$_3^{2-}$ influence precipitation rate, and we test the impact of the three most abundant amino acids in coral skeletons (aspartic acid, glutamic acid and glycine, Kellock et al., 2020) on aragonite precipitation. These amino acids are common in the skeletal organic matrix of other calcareous organisms (Weiner, 1979; Weiner and Addadi, 1991; Takeuchi et al., 2008; Suzuki et al., 2009; Rahman et al., 2013). We also explore the role of temperature in precipitation rate, both in the presence and absence of aspartic acid. We use these experiments to hypothesise how future environmental change may affect aragonite precipitation in vivo.

2. Methods

2.1. Aragonite precipitations

We precipitated aragonite from artificial seawater at 25 °C unless otherwise stated. To decouple the effect of pH and Ω$_{Ar}$ on aragonite precipitation rate, experiments were conducted at constant Ω$_{Ar}$ (of 4.7, 10, 13 or 18) and with variable pH$_{NBS}$ (8.337, 8.545 or 8.727). Repeat precipitations were conducted 3 to 4 times under each set of conditions. The NBS (National Bureau of Standards) pH scale is used for pH measurements calibrated with pH buffer solutions. The pH$_{NBS}$ and Ω$_{Ar}$ of the extracellular calcification media of corals cultured at present day pCO$_2$ are ~8.5 and ~11 based on microsensor and fluorescent dye measurements (Sevignen et al., 2019). This is in good agreement with calcification media pH$_{NBS}$ estimates from 13B analyses of coral skeletons cultured at 400 µatm seawater pCO$_2$ (pH = 8.5-8.6; Allison et al., 2018, 2021). Fluorescent dye and 13B measurements suggest that decreasing seawater pH from 8.0 to 7.8 (consistent with an increase of seawater pCO$_2$ from ~400 to 750 µatm) can reduce calcification media pH by up to ~0.2 pH units in some (Venn et al., 2013, 2022; Holcomb et al., 2014; Allison et al., 2021) but not all coral individuals (Allison et al., 2018, 2021).

To explore the effects of amino acids on aragonite precipitation, multiple experiments were conducted at Ω$_{Ar}$ = 13, pH$_{NBS}$ = 8.474 and pCO$_2$ = ~410 µatm with the addition of 0.2, 1.0, 2.0, 3.0 or 5.0 mM of amino acid (aspartic acid, glycine or glutamic acid). These experiments were not duplicated. Comparing the aspartic acid contents of synthetic aragonites precipitated at known seawater [aspartic acid] with coral skeletons suggests that the [aspartic acid] of the coral calcification media is ~0.1–0.4 mM (Kellock et al., 2020). To test how the effect of amino acids on aragonite precipitation is influenced by pH and Ω$_{Ar}$ we precipitated aragonite at variable Ω$_{Ar}$ and pH as before, but this time in the presence of 2 mM aspartic acid, glycine or glutamic acid. Repeat precipitations were conducted 3 to 4 times under each set of conditions as before. Finally, to study how temperature and biomolecules interact, precipitations were performed between 10 and 30 °C at 5 °C increments at Ω = 14 and pCO$_2$ = 410 µatm in the absence and presence of 1 mM aspartic acid. Experiments were completed 1 to 3 times under each set of conditions.

2.1.1. Precipitation apparatus

Aragonites were precipitated from artificial seawater using the constant composition method (Beck et al., 2013) and described in detail in Kellock et al., (2020, 2022). In short, the dissolved inorganic carbon (DIC) and pH of the seawater were adjusted to predefined values in a precipitation apparatus and an aragonite seed was added to provide a surface for aragonite growth (Kellock et al., 2022). The pH of the solution was constantly monitored using a high precision pH/temperature sensor (Metrohm Aquatron P1000). CaCO$_3$ precipitation reduces seawater pH and this decrease triggers the addition of equal volumes of 2 titrants (0.45 M Na$_2$CO$_3$ and 0.45 M CaCl$_2$ and SrCl$_2$ in a 99:1 ratio) from an adapted Metrohm Titirado 902 titrator to replace the ions consumed in precipitation. The second titrant contains a mixture of Ca and Sr to reflect the substitution of Sr for Ca into the aragonite (Finch et al., 2003).

Experimental beakers were immersed in a water bath (Grant Instruments 120 TC) set at the desired temperature. All experiments, aside from the temperature dependent subset, were conducted at T = 25 °C. For experiments below 25 °C, a cooler (Grant Instruments CG1) was inserted into the water bath to maintain the set temperature. Beakers were capped with an ethylene tetrafluoroethylene lid with ports through which the pH/temperature sensor, a propeller stirrer, a gas tube and the 2 titrant dosing tubes were inserted.

The pCO$_2$ of the experimental seawater was maintained by bubbling it with an airstream (at ~10 mL min$^{-1}$) with the CO$_2$ adjusted to be in equilibrium with the seawater. For ambient pCO$_2$ experiments (CO$_2$ = ~410 ppm), air was sourced from outside the building and warmed before use. Above ambient CO$_2$ airstreams were produced by combining ambient air with high purity CO$_2$ using high precision mass flow controllers (SmartTrak 50 Series, Sierra USA). Below ambient CO$_2$ airstreams were produced by flowing ambient air through NaOH pellets to remove CO$_2$ and then combining this with high purity CO$_2$ as before. Airstream [CO$_2$] was determined using an infrared CO$_2$ analyser (WMA04, PP systems, USA).

2.1.2. Experimental procedure

Artificial seawater for the experiments was prepared following the composition described in Millero (2013) and had a salinity of 35. It was stored in a blacked-out 100L container and filtered through a 0.2 µm polyether sulfone filter before use. The aragonite seed was obtained by grinding a coral skeleton in an agate ball mill and had a surface area of 4.27 ± 0.11 m2 g$^{-1}$ (1σ, n = 3) as analysed by the Brunauer–Emmett–Teller technique (Brunauer et al., 1938).

For each precipitation, 340 mL of artificial seawater previously equilibrated with ambient air was placed in a HDPE plastic beaker. Seawater DIC was elevated by the addition of 0.6 M Na$_2$CO$_3$ and pH was adjusted by addition of 2 M HCl and sometimes NaOH. A few minutes were allowed for the solution pH to stabilize and then the software controlling the titration was initiated and 200 mg of seed was introduced into the vessel. In all experiments 300 mg of aragonite was precipitated (i.e. 6.7mLs of each titrant were dosed). A sample titration is illustrated in Fig. 1, showing the typical pH control during experiments. Synthetic amino acids, when used, were sourced from Sigma-Aldrich (purity ≥ 99%) and were dissolved in 1.5 mL of seawater and added to the titration vessel before the addition of Na$_2$CO$_3$. At the end of each titration, solids were recovered by passing the solution through a 0.2 µm polycarbonate...
2.1.3. DIC chemistry characterisation

The pH sensor was calibrated with fresh NIST (National Institute of Standards and Technology) buffers weekly and pH is reported on the NBS scale. The maximum change in buffer pH between one week and the next was 0.004 pH units. The total alkalinity of artificial seawater standards and technology) buffers weekly and pH is reported on the NBS scale. The maximum change in buffer between one week and the next was 0.004 pH units. The total alkalinity of artificial seawater batches was characterised by automated Gran titration (Metrohm, 888 Titrando) with a typical precision of ± 2 µeq kg⁻¹ [1 s, Cole et al., 2016] and varied from 2192 to 2280 µmol kg⁻¹ between seawater batches. Seawater [DIC] was measured at the start and end of each experiment using a CO₂ differential, non-dispersive, infrared gas analyser (Apollo SciTech; AS-C3) with the exception of the temperature experiments where one replicate was measured for each set of conditions. The DIC analyser was maintained in a temperature-controlled room at 20 °C and calibrated weekly using a natural seawater certified reference material (CRM 171, Scripps Institution of Oceanography) as in Cole et al., 2016. Changes in the DIC calibration between adjacent weeks were assessed by processing the standard data from the first week using the calibration of the second week and equated to < 7 µmol kg⁻¹ on a sample of 4000 µmol kg⁻¹. We consider drift in the DIC analyser over the course of a week to be insignificant.

The pHNBS and mean DIC of the solutions were used to calculate ΩAr using CO₂ SyS v2.1 (Pierrot et al., 2006) with the equilibrium constants for carbonic acid and KHSO₄ from Lueker et al. (2000) and Dickson (1990) respectively and seawater [B] from Lee et al. (2010). Temperature was set to the measured value and salinity to 35 (assuming a [Ca²⁺] of 10.27 mM). DIC typically varied by < 5 % over a precipitation, equivalent to a change in Ω of ~ 0.5 at Ω = 7 and ~ 1.0 at Ω = 18.

2.2. Precipitate characterisation

The precipitation rate (Rp) of the aragonite overgrowths was obtained by calculating the rate of titrant addition (from a linear fit between time and volume of titrant dosed as in Fig. 1) and normalising to the surface area of the starting seed (Kellock et al., 2022).

We used Raman spectroscopy to confirm the CaCO₃ polymorph of all the precipitates. Raman spectra of the precipitates and the original seed were collected between 100 and 1311 wave numbers with a Renishaw In-Via Qontor Raman Microscope using a NIR 300 mW 785 nm solid state laser set at 5 % full power and with a 1200 cm⁻¹ grating. The laser spot was focused onto the edges of the aragonite particles and data were collected for 2 s. 10 to 12 particles were tested for each aragonite. These conditions were selected after testing a range of laser powers and times and optimised the signal/noise of the samples (Supplementary Fig. 1). All the Raman spectra had lattice mode peaks at ~153 and 206 cm⁻¹ (De Carlo 2018) and a doublet v₁ peak (Urmos et al., 1991), indicative of aragonite. Repeating analyses on the same spot > 100 times did not affect the presence of these peaks and we consider that no transformation of the mineral occurred during analysis. We did not analyse the full width half maxima of the v₁ peak of the Raman spectra which has been reported previously to relate to precipitating fluid ΩAr (De Carlo et al., 2017).

Scanning electron micrograph (SEM) images were collected of select precipitates. Precipitates were mounted on aluminium pin stubs (25 mm diameter) using double-sided carbon adhesive discs and carbon-coated twice under vacuum (Quorum K950 carbon coater), rotating the samples 90° between coats to ensure full coverage. Samples were viewed using a CarlZeiss GeminiSEM 300 (ACEMAC Facility, University of Aberdeen) using an accelerating voltage of 2.5 keV and an InLens secondary electron detector.

3. Results

3.1. Effects of CO₃²⁻ and HCO₃⁻ on aragonite precipitation without biomolecules

Precipitation rate shows strong linear positive correlations with both ΩAr and [CO₃²⁻] (Fig. 2a) but relationships with [HCO₃⁻] and pH are more complicated (Fig. 2b and c). Multiple linear regression analysis of precipitation rate versus [CO₃²⁻], [HCO₃⁻] and pH indicates that aragonite precipitation rate is significantly positively correlated with [CO₃²⁻] but not with [HCO₃⁻] or pH (Table 1, p values = 2.7 × 10⁻²⁶, 0.75, 0.58 respectively).

3.2. Effects of amino acids on aragonite precipitation

All the amino acids suppressed aragonite precipitation at all the concentrations tested compared to the experiments with no biomolecule (Fig. 3). The % inhibition was calculated from the precipitation rate with biomolecule compared to the aragonite precipitation rate at the same pH and ΩAr with no biomolecule. Aspartic acid had the greatest inhibitory effect, followed by glutamic acid and then glycine. The degree of inhibition plateaued above ~ 2 mM with glutamic acid and above ~ 1 mM with glycine but no plateau is observed in our experiments with aspartic

Fig. 1. Typical titration curve showing volume of titrant dosed over time and the pH of seawater throughout the experiment.
Fig. 2. Aragonite precipitation rates without biomolecules (Rₚ) at 25 °C plotted as a function of a) Ωₜ and [CO₃²⁻], b) [HCO₃⁻], and c) pH. Typical errors in pHₐs and Ω and [HCO₃⁻] are superimposed on each graph. pH uncertainty is estimated from the maximum drift in sensor pH observed over a week (0.004 units) and Ω and [HCO₃⁻] uncertainties are estimated by compound the typical change in DIC over the course of a titration (%5%) with the maximum pH drift observed (0.004 pH units) to yield Ω and [HCO₃⁻] uncertainties of 0.5 and 125 μmol kg⁻¹ at Ω = 7 and 1.1 and 205 μmol kg⁻¹ at Ω = 18. Error bars show the largest uncertainties and are smaller than the symbols used. We do not calculate uncertainty on precipitation rate within a titration as we repeat multiple titrations for each condition and the range of points shows the variations between experiments. Precipitation rates from duplicate experiments typically agree within 5 %. Inorganic aragonite precipitation rates at 25 °C in natural seawater from Burton and Walter, 1987 and Kellock et al., 2020 are superimposed onto a). Linear relationships between precipitation rate and Ω and [HCO₃⁻] are shown by single lines in a) and b) with coefficients of determination (r²). Relationships between precipitation rate and pH are shown for each Ω in c).

Table 1
Summary of p values generated in statistical tests in this study. We use multiple linear regression analyses to determine if [CO₃²⁻], [HCO₃⁻] and pH influence aragonite precipitation rate and if Ωₜ and pH influence the % inhibition of aragonite precipitation rate by amino acids. We use one-way ANCOVA tests to compare linear relationships between aragonite precipitation rates as a function of Ωₜ or temperature between treatments. p values ≤ 0.05 are highlighted in bold.

<table>
<thead>
<tr>
<th>Multiple linear regression tests</th>
<th>CO₃²⁻</th>
<th>HCO₃⁻</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of Ω and pH on % inhibition of aragonite precipitation (Fig. 6)</td>
<td>9.3 x 10⁻¹²</td>
<td>1.8</td>
<td>0.18</td>
</tr>
<tr>
<td>2 mM aspartic acid, 25 °C</td>
<td>4.0 x 10⁻⁶</td>
<td>0.42</td>
<td>0.010</td>
</tr>
<tr>
<td>2 mM glutamic acid, 25 °C</td>
<td>2.1 x 10⁻¹²</td>
<td>0.76</td>
<td></td>
</tr>
</tbody>
</table>

ANOVA tests

<table>
<thead>
<tr>
<th>Ω vs aragonite precipitation rate, 25 °C (Fig. 4)</th>
<th>p (equal means)</th>
<th>p (equal slopes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mM aspartic acid compared to no amino acid</td>
<td>4.2 x 10⁻²⁶</td>
<td>1.7 x 10⁻²⁰</td>
</tr>
<tr>
<td>2 mM glycine compared to no amino acid</td>
<td>2.3 x 10⁻¹⁹</td>
<td>0.20</td>
</tr>
<tr>
<td>2 mM glutamic acid compared to no amino acid</td>
<td>3.1 x 10⁻²⁶</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Temperature and aragonite precipitation rates are positively related by exponential functions both in the absence and presence of 1 mM aspartic acid (Fig. 7a). After converting precipitation rates to a log scale to produce linear relationships between temperature and aragonite precipitation rates (Fig. 7b), ANCOVA analysis indicates that aragonite precipitation rates were significantly lower with the aspartic acid, although the slope of the 2 relationships was not significantly different (Table 1). The degree of aragonite precipitation inhibition was higher at low temperatures (Fig. 7c).

3.4. Characterisation of precipitates

We identify all precipitates as aragonite based on the observation of lattice mode peaks at ~153 and 206 cm⁻¹ (De Carlo 2018) and on the
dual peak (v_4) between 700 and 710 cm$^{-1}$ in the Raman spectra (Urmos et al., 1991). We explore the morphology of select precipitates by SEM (Fig. 8). A pyramidal crystal morphology is observed in all the aragonite overgrowths examined (Fig. 8b–e). Multiple pyramidal crystals are observed, often radiating in different directions from a common point. The crystals exhibit roughened surfaces suggesting that they are composed of nano-particles typically 100–200 nm in dimensions. The crystal surfaces can be studded with further small crystallites (yellow arrows in Fig. 8). Aragonites produced in the presence of aspartic acid (Fig. 8d) have pointier pyramids than aragonite produced with glycine, glutamic acid and no biomolecule.

4. Discussion

4.1. Roles of HCO$_3^-$ and CO$_3^{2-}$ in aragonite precipitation

Aragonite precipitation rate without biomolecules is linearly related to [CO$_3^{2-}$] and Ω_{Ar} (a measure of seawater [CO$_3^{2-}$]) and [HCO$_3^-$] has no significant effect on precipitation rate over the range of Ω tested (Table 1). Research on the roles of CO$_3^{2-}$ and HCO$_3^-$ in CaCO$_3$ precipitation has focused predominantly on calcite. HCO$_3^-$ was inferred to attach to growing calcite crystal surfaces (Wolthers et al., 2012), thereby contributing to calcite growth (Christoffersen and Christoffersen, 1990; van der Weijden et al., 1997; van der Weijden and van der Weijden, 2014). However, density theory function modelling indicates that HCO$_3^-$ is relatively unstable when adsorbed to calcite faces and is likely to deprotonate (Andersson et al., 2016). A complete understanding of calcite growth kinetics remains elusive (Sand et al., 2016) but these latter findings suggested that HCO$_3^-$ plays little role in calcite precipitation. Although [HCO$_3^-$] does not influence aragonite precipitation rate in the present study, the HCO$_3^-$ species has been detected in both coral skeletons and synthetic aragonite (Von Euw et al., 2017). Our data show that large changes in [HCO$_3^-$] (e.g. x3; Fig. 2) are not associated with changes in aragonite precipitation rate, suggesting that any role in
Aragonite precipitation rates in seawater are exponentially related to \(\Omega \) over a broader \(\Omega \) range than explored in the present study (Burton and Walter, 1987; Kellock et al., 2020). Precipitation rates with no biomolecules in the present study (in artificial seawater) are in good agreement with previous reports in natural seawater at low \(\Omega \) but are slower than previous reports at higher \(\Omega \) (Fig. 2a, Burton and Walter, 1987; Kellock et al., 2022). Similarly, precipitation rates at \(\Omega = 14 \) over a range of temperature in the present study are lower than estimated from precipitation in natural seawater (Fig. 7b, Burton and Walter, 1987). Aragonite precipitation rates were significantly slower in artificial seawater compared to natural seawater suggesting that the dissolved organic matter in natural seawater may promote \(\text{CaCO}_3 \) precipitation (Kellock et al., 2020). We do not include the aragonite precipitation rates observed in \(\text{NaCl} \) solutions (Mavromatis et al., 2015) as [\(\text{Mg}^{2+} \)] (a known inhibitor of \(\text{CaCO}_3 \) precipitation, Pan et al., 2021) is presumably much lower in these solutions than in seawater.

De Carlo et al., (2015) and Holcomb et al., (2016) also precipitated aragonites from seawater over a broad range of DIC conditions. Precipitation rates are difficult to characterise in these studies as the [\(\text{Ca}^{2+} \)] consumed during precipitation was not replaced in the experiments, resulting in large changes in solution [\(\text{Ca}^{2+} \)] (4 to 47 % in De Carlo et al., 2015 and 17 to 71 % in Holcomb et al., 2016). These changes affect \(\Omega_{\text{Ar}} \) and are likely to influence \(\text{CaCO}_3 \) precipitation rate within each precipitation. In addition, seeds were not typically used in these 2 previous studies. Unseeded aragonite precipitations in seawater can be highly variable in duration and do not provide reproducible estimates of precipitation rate in repeat experiments, suggesting that the aragonite surface area nucleated at the start of precipitation is inconsistent between experiments (Kellock et al., 2022). Precipitation rates become

![Fig. 5. Inhibition of aragonite precipitation rates by amino acids (2 mM) as a function of \(\Omega_{\text{Ar}} \). We include the data from Kellock et al., (2020) which also measured inhibition of aragonite precipitation by 2 mM aspartic acid. Uncertainty in \(\Omega \) is smaller than the symbols used (see legend to Fig. 2) and multiple precipitations are shown under each set of conditions to indicate uncertainty in inhibition of precipitation rate.](image)

![Fig. 6. Inhibition of aragonite precipitation by the addition of 2 mM a) aspartic acid, b) glutamic acid, and c) glycine as a function of pH and \(\Omega_{\text{Ar}} \). Uncertainty in pH is <0.004 pH units (smaller than the symbols used). Multiple precipitations are shown under each set of conditions to indicate uncertainty in inhibition of precipitation rate.](image)
can influence CaCO$_3$ aragonite formation in a previous study (Kellock et al., 2022). Additives precipitate from seawater while concentrations of 1 mM or higher inhibited aragonite precipitation from experiments conducted at 5, 25 and 37 ºC in natural seawater (Burton and Walter, 1987) and are superimposed onto b). The percentage reduction in precipitation rate after addition of 1 mM aspartic acid as a function of temperature in this study. In c) the floating error bar reflects the uncertainty calculated by compounding the variability in precipitation rates with and without aspartic acid to calculate uncertainty on the % inhibition of precipitation rate. Different symbols are used in c) as this data reflects a combination of data from precipitations with and without aspartic acid.

reproducible when sufficient seed of known surface area is provided and used to normalise aragonite precipitation rate (Kellock et al., 2022).

4.2. The effects of amino acids on aragonite precipitation rate

All the amino acids suppressed aragonite precipitation at 0.2–5 mM. Aspartic acid concentrations of 1 mM or higher inhibited aragonite precipitation from seawater while concentrations of 1–10 µM promoted aragonite formation in a previous study (Kellock et al., 2022). Additives can influence CaCO$_3$ formation by either binding the aqueous ions involved in mineralisation (Ca$^{2+}$ or CO$_3^{2-}$) or by interacting directly during CaCO$_3$ nucleation or growth (i.e. by influencing the formation of soluble pre nucleation clusters, inhibiting nucleation or by adsorbing to nucleated particles, Gebauer et al., 2009). Organic additives, including amino acids, may slow mineral growth by adsorbing to the crystal surface and blocking the attachment of other ions (Sikirić and Füredi-Milhobo, 2006) or promote growth by decreasing the energy barrier to ion attachment (Elhadj et al., 2006). Organic additives have also been found to stabilize calcium (bi)carbonate networks and hinder their transformation into solid CaCO$_3$ (Finney et al., 2020). Aspartic and glutamic acid are the only amino acids that have negatively charged side chains (caused by the deprotonation of the COOH groups to the left of each image in Fig. 9). These amino acids are capable of cation binding and form metal complexes in seawater (de Stefano et al., 1995). Glycine does not have a side chain (Fig. 9) but is also reported to bind Ca$^{2+}$ and Mg$^{2+}$ (de Stefano et al., 1995). Aspartic acid speciation in artificial seawater is dominated by Na$^+$, Mg$^{2+}$ and Ca$^{2+}$ complexes and over the pH range 8 to 9, Ca(Asp)H$^+$ and Ca(Asp)$^{2+}$ bind ~10% of the aspartic acid (de Stefano et al., 1995). If similar binding occurs in our experiments, then the addition of 2 mM aspartic acid results in ~0.2 mM of Ca$^{2+}$ forming complexes with the aspartic acid and reduces Ω by ~0.2 at Ω = 11 and ~0.4 at Ω = 19. The precipitation rate of aragonite at Ω = 11 in the presence of 2 mM aspartic acid is ~56% of the rate observed with no amino acid (Fig. 5), i.e. equivalent to that observed at Ω = 7 with no amino acid (Fig. 4). This is a much higher reduction that anticipated from the binding of Ca by the amino acid alone and indicates that the mechanism by which aspartic acid influences aragonite precipitation is more complex that simply binding Ca$^{2+}$. Amino acids may influence CaCO$_3$ formation in several further ways. All the amino acids tested here are reported to retard CaCO$_3$ nucleation, aspartic and glutamic acids can stabilise CaCO$_3$ prenucleation clusters and both aspartic acid and glycine can increase the solubility of the initially precipitated CaCO$_3$ phase (Picker et al., 2012).

Although aspartic and glutamic acids are structurally very similar, we find pronounced differences in the ways they influence precipitation. In the present study aspartic acid caused the highest degree of inhibition of aragonite precipitation but glutamic acid displayed the largest variation in degree of inhibition over varying Ω (Fig. 5). Poly-peptides of aspartic acid have a greater influence on the morphology of calcium oxalate crystals compared to polyglutamates (Guo et al., 2002, Jung et al., 2005). Molecular dynamics simulations of the behaviour of penta-aspartic and penta-glutamic acids suggest that Ca$^{2+}$ associates more closely with the penta-aspartic acid, promoting mineralisation (Lemke et al., 2021). The shorter aspartic acid side chains could increase the density of binding sites in the molecule (the binding site spacing hypothesis) or could facilitate the binding of divalent cations by multiple COO$^-$ groups on the peptide surface (Lemke et al., 2021). Single residue aspartic and glutamic acids also behave differently in some early stages of CaCO$_3$ crystallisation (Picker et al., 2012) but the reason for this is less clear. Acidic amino acids adsorb onto aragonite (Kawano and Tokonami, 2014) and the sidechain length may affect how adsorbed amino acids interact with ions involved in precipitation. Alternatively, amino acids themselves can form prenucleation clusters in solution (Kellermeier et al., 2012) and the length of the acidic side chain may influence the interaction of such clusters with mineralisation ions.

Inhibition of aragonite precipitation rate by amino acid was higher at low Ω (all amino acids) but was also affected by pH for glutamic acid (less inhibition at high pH). Inhibition of aragonite precipitation rate by aspartic acid was also higher at low temperatures. In all cases higher inhibition was observed in the experiments with the lowest aragonite precipitation rates. This observation could be explained if amino acid adsorption to the aragonites is reduced at high precipitation rates (see Kellock et al. 2020 for a discussion of this).

4.3. Aragonite morphologies

All the aragonite overgrowths exhibit pyramidal crystals which typically extend in different directions from a common point (the site of nucleation) and reach ~1 µm in length (Fig. 8b–e). The pyramidal crystals exhibit roughened surfaces suggesting that they are composed of
Fig. 8. Scanning electron microscopy images of a) the aragonite seed, and of precipitates formed b) without amino acids, c) with glutamic acid, d) with aspartic acid and e) with glycine. f) The surface of a skeleton from a coral cultured at ~400 µatm seawater pCO$_2$ and 25 °C (Cole et al. 2018) is shown for comparison. All experiments were performed at $\Omega_{ar} = 13$ and pH$_{NBS} = 8.474$ and with 2 mM of amino acid, where used. Yellow arrows indicate studs on the pyramidal crystals.

Fig. 9. Chemical structures of the amino acids used in this study.
nano-particles typically 100–200 nm in dimensions. The radiating pyramidal morphology suggests that aragonite nucleates on the surface of the seed, extends to form pyramids but is ultimately obscured by fresh aragonite nucleating onto these existing pyramids. Fresh nucleation appears as small studs on the surfaces of the pyramid crystals (yellow arrows in Fig. 8).

We observe changes in the surface morphology of aragonite precipitated in the presence of aspartic acid with the pyramid crystals becoming pointier with the addition of this amino acid (as reported by Kellock et al., 2022). This provides evidence that aspartic acid causes a shift in the precipitation mechanism, rather than slowing or hindering a single process, as may be the case with the glutamic and glycine additives which create precipitates with similar morphology to the control. Additives can influence crystal morphology by adsorbing to the crystal surface and blocking mineral growth, or by being incorporated into the crystal, creating defects which influence crystal habit (Thompson et al., 2004; Shtukenberg et al., 2017). This suggests that the biomolecule is stabilising (or hindering growth on) particular crystal faces and forcing crystal propagation to move to other, less favoured surfaces.

The surface crystal morphologies observed here are markedly different from the elongate needle or fibre-like aragonites reported in many other synthetic aragonite studies (e.g. Holcomb et al., 2009; Mavromatis et al., 2015). Seawater Ω_{Ar} was not controlled during the Holcomb et al. (2009) study and Ω_{Ar} reduced from 12 to 44 at the start of each precipitation to 2 to 4 at the end (Holcomb et al., 2009). Mavromatis et al. (2015) precipitated aragonites in NaCl solutions with low Ω_{Ar} (1.3 to 4.5). In both these studies the aragonite surfaces viewed by SEM must have been deposited at low Ω_{Ar}. Fibre morphologies were also observed when aragonite was formed during diffusion of ammonium carbonate into Ca-bearing solutions (Sun et al., 2017). Ω_{Ar} was not constrained in this last study but is likely to have been low. Aragonites precipitated by mixing Na$_2$CO$_3$ and CaCl$_2$ solutions changed from exhibiting needle morphology to flake morphology as reactant molarity increased (Chakrabarty and Mahapatra, 1999). Collectively these studies suggest that aragonite needle morphology is observed at low Ω_{Ar}. Morphology may change at higher Ω (Chakrabarty and Mahapatra, 1999) or due to the addition of additives (e.g. Willinger et al., 2015). In addition, confinement may alter crystal morphology if space for crystal growth is limited to one direction (Willinger et al., 2015). Further microscopy of precipitates produced at constant Ω_{Ar} (within each titration) and spanning a range of Ω (between titrations) is required to fully identify relationships between crystal habit and Ω and to identify how the presence of other ions and organic additives influences crystal morphology (Palini et al., 2009).

The morphologies of the synthetic aragonite crystals precipitated in the present study at $\Omega_{\text{Ar}} = 13$ (close to the saturation state of the extracellular coral calcification media, Sevilgen et al., 2019) are also markedly different from the crystal habits typically observed in coral skeletons (Wells 1956; Holcomb et al., 2009; Drake et al., 2020). The bulk of coral skeletons are composed of elongate crystal fibres which appear similar to some synthetic aragonites (Holcomb et al., 2009). Coral skeleton surfaces typically exhibit approximately circular (potentially pseudo-hexagonal) nano particles up to ~200 nm in diameter (Fig. 8f and von Euw et al., 2017). The freshly nucleated studs observed in the synthetic aragonites in the present study are not observed on the coral skeleton surface. Rather aragonite growth occurs by extension of the existing crystals into space in a direction perpendicular to the skeletal surface i.e. out of the page in Fig. 8f. Similar morphology is observed in some mollusc nacre (Gao et al., 2019). Further research is required to explore why the aragonites produced in the present study do not resemble coral skeletal crystals despite the similarity in precipitating fluid Ω. Although fibrous synthetic aragonites duplicate the crystal morphology of coral skeletal fibres, the full width half maxima of the Raman aragonite v_1 peak, an indicator of rotational disorder in the aragonite structure, is higher in fibrous synthetic aragonites compared to shallow and deep-water corals (Farfan et al., 2022). This indicates that variations in crystallography can still exist even when synthetic and biogenic aragonites appear morphologically similar.

4.4. Implications for biomineralization

Our study shows that [HCO$_3$] has no significant effect on aragonite precipitation rate in seawater over a broad range of Ω_{Ar}, relevant to biomineralizing organisms. This clarifies one route whereby ocean acidification reduces calcification rates in aragonitic marine organisms including corals (Williamson and Turley, 2012). Calcareous organisms usually produce their CaCO$_3$ minerals at specialist calcification sites and increase the pH of the calcification media to promote mineral formation (Al Horani et al., 2003; Liu et al., 2020). This pH increase shifts the dissolved inorganic carbon (DIC) equilibria to favour the speciation of CO$_3^{2-}$ at the expense of HCO$_3$ (and CO$_2$) and also creates a concentration gradient promoting the diffusion of CO$_2$ into the media (Erez, 1978). This acts as a DIC concentration mechanism (Erez, 1978) and increases the concentrations of both HCO$_3$ and CO$_3^{2-}$ at the calcification site. To date it has been unclear if ocean acidification reduces calcification because 1) both CO$_3^{2-}$ and HCO$_3$ are involved in CaCO$_3$ precipitation and are reduced in concentration due to suppression of the DIC concentration mechanism at lower pH or 2) only CO$_3^{2-}$ is involved in CaCO$_3$ formation and is reduced in concentration due to both suppression of the DIC concentration mechanism and the influence of pH on the relative proportion of CO$_3^{2-}$ in the calcification media. The present study suggests that only CO$_3^{2-}$ is involved in aragonite precipitation and that the latter scenario contributes to reduced calcification under ocean acidification.

Under future climate scenarios both seawater temperatures and pCO$_2$ are predicted to increase (Pörtner et al., 2019). In addition, corals cultured under ocean acidification scenarios have higher concentrations of skeletal organics (Tambutt et al., 2015; Coronado et al., 2019) and amino acids (Kellock et al., 2020). All amino acids in this study inhibit aragonite precipitation, and increasing amino acid concentration either results in greater or similar inhibition (Fig. 3). Decreasing seawater Ω_{Ar} (as likely occurs under decreased calcification media pH) also increases amino acid inhibition of aragonite precipitation (Fig. 5) but increasing seawater temperature decreases inhibition by aspartic acid and mitigates this effect.

We estimate the potential effects of each of these factors on aragonite precipitation. The extracellular coral calcification media has a Ω_{Ar} of \sim11 (Sevilgen et al., 2019) and decreasing this to 8 (consistent with a decrease in calcification media of 0.08 pH units at constant media pCO$_2$) will inhibit aragonite precipitation by \sim10 % of the rate observed at $\Omega_{\text{Ar}} = 11$ (assuming an aspartic acid concentration of 2 mM, Fig. 5). Increasing seawater pCO$_2$ from 400 to 750 µatm raised the aspartic acid concentrations of Porites spp. coral skeleton by 35 %, on average (Kellock et al., 2020). The aspartic acid concentration at the calcification site is unknown but an increase in the amino acid concentration of this magnitude is typically associated with a drop in aragonite precipitation rate of $<$10 % (Fig. 3). Increasing seawater temperature from 25 to 27 °C accelerates aragonite precipitation rates both with and without 1 mM aspartic acid by about 30 %. This estimation suggests that the acceleration of aragonite precipitation by increasing seawater temperatures will more than offset the predicted decreases in precipitation due to inhibition of aragonite precipitation by increased skeletal aspartic acid and reduced calcification media Ω_{Ar}. This calculation is based on abiotic observations and does not take into effect the deleterious impact of temperature rise above the coral temperature stress threshold. Our experiments provide valuable information on the interaction of amino acids with aragonite precipitation over a range of biologically relevant Ω_{Ar} and temperatures, and yield insights into how biomolecules may influence skeletal formation in a changing climate.
5. Conclusions

We explored controls on aragonite precipitation rates over a broad range of Ω_{AC} conditions including those likely to occur in tropical coral calcification media. We find that fluid Ω_{AC} or $[CO_3]^{-}$ is the main control on aragonite precipitation rate from seawater at 25 °C, with no significant contributions from HCO_3^- or pH. Aspartic acid, glutamic acid and glycine at 0.2 to 5 mM all decrease aragonite precipitation rates at 25 °C. Aspartic acid (2 mM), the only amino acid tested over a temperature range, inhibited aragonite precipitation from 10 to 30 °C and also altered the morphology of the aragonite overgrowths. In all cases higher inhibition was observed in the experiments with the lowest aragonite precipitation rates i.e. at low Ω in experiments with all the amino acids at 25 °C and at low temperatures with aspartic acid. This may reflect enhanced incorporation of the amino acids in aragonite at low aragonite precipitation rates. Reduced coral calcification site Ω_{AC} and increased aspartic acid (as likely occurs in corals in response to ocean acidification) decrease aragonite precipitation rates but this may be offset by increases in seawater temperature.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the UK Natural Environment Research Council (NE/S001417/1) to NA, KP, RK, MC and AF. We thank Gavin Peters, University of St Andrews, for assistance with BET analyses. Electron microscopy was carried out in the Aberdeen Centre for Electron Microscopy, Analysis and Characterisation (ACEMAC).

Research Data

Data are available through Mendeley Data at https://data.mendeley.com/datasets/b5bpfw97gc/1.

Appendix A. Supplementary material

Supplementary material to this article can be found online at http://doi.org/10.1016/j.gca.2023.10.032.

References
