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Association schemes with given stratum
dimensions: on a paper of

Peter M. Neumann

Marina Anagnostopoulou-Merkouri & Peter J. Cameron

In memory of Peter Neumann: teacher, colleague, friend

Abstract In January 1969, Peter M. Neumann wrote a paper entitled “Primitive permutation
groups of degree 3p”. The main theorem placed restrictions on the parameters of a primitive
but not 2-transitive permutation group of degree three times a prime. The paper was never
published, and the results have been superseded by stronger theorems depending on the clas-
sification of the finite simple groups, for example a classification of primitive groups of odd
degree.

However, there are further reasons for being interested in this paper. First, it was writ-
ten at a time when combinatorial techniques were being introduced into the theory of finite
permutation groups, and the paper gives a very good summary and application of these tech-
niques. Second, like its predecessor by Helmut Wielandt on primitive groups of degree 2p, it
can be re-interpreted as a combinatorial result concerning association schemes whose common
eigenspaces have dimensions of a rather limited form. This result uses neither the primality of p
nor the existence of a permutation group related to the combinatorial structure. We extract
these results and give details of the related combinatorics.

1. Introduction
In 1956, Helmut Wielandt [18] proved the following result:

Theorem 1.1. Let G be a primitive permutation group of degree 2p, where p is prime.
If G is not 2-transitive, then n = 2a2 + 2a + 1 for some positive integer a, and G has
rank 3 and subdegrees a(2a + 1) and (a + 1)(2a + 1).

The proof of this theorem is also given in Chapter 5 of his book [19]. It illustrates
an extension of the methods of Schur rings using representation theory. He mentioned
that, for a = 1, we have two examples: the groups S5 and A5, acting on the set of
2-element subsets of {1, . . . , 5}.

Now it is possible to show that there are no others. For example, using the Clas-
sification of Finite Simple Groups, all the finite primitive rank 3 permutation groups
have been determined [8, 10, 12], and the observation can be verified by checking the
list.
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However, there is more to be said. Wielandt’s proof falls into two parts. The first
involves showing that the permutation character of G decomposes as 1G + χ1 + χ2,
where 1G is the principal character of G and χ1, χ2 are irreducibles with degrees p−1
and p. It follows from this that G has rank 3 and is contained in the automorphism
group of a strongly regular graph, having the property that the eigenvalues of its ad-
jacency matrix have multiplicities 1, p−1, and p. Now the argument shows something
much more general. Neither the existence of a rank 3 group of automorpisms nor the
primality of p are needed.

First, a definition: a graph Γ is strongly regular with parameters (n, k, λ, µ) if it
has n vertices, every vertex has k neighbours, and two vertices have λ or µ common
neighbours according as they are joined by an edge or not. Every rank 3 group of
even order is an automorphism group of a strongly regular graph, but not conversely;
many strongly regular graphs have no non-trivial automorphisms. Any regular graph
has the all-1 vector as an eigenvector; a regular graph is strongly regular if and only
if its adjacency matrix, acting on the space orthogonal to the all-1 vector, has just
two eigenvalues.

Theorem 1.2. Let Γ be a strongly regular graph on 2n vertices, with the property that
the eigenvalues of the adjacency matrix, on the space of vectors orthogonal to the all-1
vector, have multiplicities n − 1 and n. Then either

(a) Γ is a disjoint union of n complete graphs of size 2, or the complement of this;
or

(b) for some positive integer a, we have n = 2a2 + 2a + 1, and up to complemen-
tation the parameters of the graph Γ are given by

2n = (2a + 1)2 + 1, k = a(2a + 1), λ = a2 − 1, µ = a2.

We are not aware of who first pointed this out. The result is given, for example,
as [1, Theorem 2.20].

In the case a = 1, the complementary strongly regular graphs are the line graph of
the complete graph K5 and the Petersen graph. But, unlike in Wielandt’s case, there
are many others. For example, suppose that there exists a Steiner system S(2, a +
1, 2a2 + 2a + 1). Then the strongly regular graph whose vertices are the blocks, two
vertices adjacent if the corresponding blocks intersect, has the parameters given in the
theorem. For example, when a = 2, the two Steiner triple systems on 13 points give
non-isomorphic strongly regular graphs on 26 vertices. (We discuss examples further
in the last section.)

Now to the subject of this paper. In 1969, Peter Neumann wrote a long paper [13]
extending Wielandt’s result from 2p to 3p, where p is prime. His conclusion is that, if
such a group is not 2-transitive, then p is given by one of three quadratic expressions
in a positive integer a, or one of three sporadic values; the rank is at most 4, and the
subdegrees are given in each case.

Like Wielandt’s, Neumann’s proof falls into two parts: first find the decomposition
of the permutation character, and then in each case find the combinatorial implications
for the structure acted on by the group. In contrast to Wielandt, the first part is much
easier, since in the intervening time, Feit [3] had given a characterisation of groups
with order divisible by p having a faithful irreducible representation of degree less
than p − 1. On the other hand, the second part is much harder; rather than just
one possible decomposition of the permutation character, he finds eight potential
decompositions, some of which require many pages of argument.

Again like Wielandt’s, Neumann’s conclusions have been superseded by results
obtained using the classification of finite simple groups. For example, all the primitive
permutation groups of odd degree have been classified [7, 11].
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The paper was never published. It happened that both Leonard Scott and Olaf
Tamaschke had produced similar results. There was a plan for Neumann and Scott
to collaborate on a joint paper, but for unknown reasons this never happened. The
authors are grateful to Leonard Scott [17] for providing a scan of Peter Neumann’s
original typescript together with some historical material about the proposed collab-
oration. The second author has re-typed the paper and posted it on the arXiv [14].

Our task is to produce a combinatorial version of this, as we have seen for
Wielandt’s theorem. We give some historical background to the theorem with some
comments on the place of Neumann’s paper in the introduction of combinatorial
methods into the study of permutation groups, and to check in detail that his
arguments give combinatorial results which do not depend on either the existence of
a primitive group or the primality of p. Indeed we find some families of parameters
which do not occur in Neumann’s case since the number of vertices is even.

2. History
The 1960s saw a unification of combinatorial ideas which had been developed inde-
pendently in three different areas of mathematics. In statistics, R C. Bose and his
colleagues and students developed the concept of an association scheme. Extract-
ing information from experimental results requires inversion of a large matrix, and
Bose realised that the task would be much simpler if the matrix belonged to a low-
dimensional subalgebra of the matrix algebra; requiring entries to be constant on the
classes of an association scheme achieves this. In the former Soviet Union, Boris We-
isfeiler and his colleagues were studying the graph isomorphism problem, and devel-
oped the concept of a cellular algebra, an isomorphism invariant of graphs, to simplify
the problem, and an algorithm, the Weisfeiler–Leman algorithm, to construct it. In
Germany, Helmut Wielandt was extending the method of Schur rings to study permu-
tation groups with a regular subgroup; by using methods from representation theory
he was able to dispense with the need for the regular subgroup. These techniques
were further developed by Donald Higman in the USA, under the name coherent
configuration.

The three concepts are very closely related. We begin with Higman’s definition.
A coherent configuration consists of a set Ω together with a set {R1, R2, . . . , Rr} of
binary relations on Ω with the properties

(a) {R1, . . . , Rr} form a partition of Ω × Ω;
(b) some subset of R1, . . . , Rr is a partition of the diagonal {(ω, ω) : ω ∈ Ω} of Ω2;
(c) the converse of each relation Ri is another relation in the set;
(d) for any triple (i, j, k) of indices, and any (α, β) ∈ Rk, the number pk

ij of γ ∈ Ω
such that (α, γ) ∈ Ri and (γ, β) ∈ Rj depends only on (i, j, k) and not on the
choice of (α, β) ∈ Rk.

The number r is the rank of the configuration. Combinatorially, a coherent configu-
ration is a partition of the edge set of the complete directed graph with loops.

If G is a permutation group on Ω, and we take the relations Ri to be the orbits of G
on Ω2, we obtain a coherent configuration. This was Higman’s motivating example,
which he called the group case. Not every coherent configuration falls into the group
case; indeed, our task is to extend Neumann’s results from the group case to the
general case.

A coherent configuration is homogeneous if the diagonal is a single relation. In the
group case, this means that the group is transitive. All the configurations in this paper
will be homogeneous.
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The notion of a cellular algebra is the same apart from an inessential small dif-
ference (the diagonal is replaced by some equivalence relation). Association schemes
form a special case, where all the relations Ri are symmetric. It follows that, in an as-
sociation scheme, the diagonal is a single relation. (Statisticians deal with symmetric
matrices, for example covariance matrices.)

A coherent configuration with rank 2 is trivial: one relation is the diagonal, the
other is everything else. For rank 3, we can suppose without loss that R1 is the
diagonal. There are then two possibilities:

• R3 is the converse of R2. Then R2 is a tournament (an orientation of the edges
of the complete graph on Ω); condition (d) shows that it is a doubly regular
tournament [16].

• R2 and R3 are symmetric. Then each is the edge set of a graph, and these
graphs are strongly regular [1, Chapter 2].

The definition of coherent configuration has an algebraic interpretation. Let Ai

be the adjacency matrix of the relation Ri, the Ω × Ω matrix with (α, β) entry 1 if
(α, β) ∈ Ri. Then A1, . . . , Ar are zero-one matrices satisfying the following conditions:

(a) A1 + · · · + Ar = J , the all-1 matrix;
(b) there is a subset of these matrices whose sum is the identity I;
(c) for any i there is a j such that A⊤

i = Aj ;

(d) AiAj =
r∑

k=1
pk

ijAk.

Condition (d) says that the linear span over C of A1, . . . , Ar is an algebra (closed
under multiplication), and condition (c) implies that this algebra is semi-simple. In
the group case, it is the centraliser algebra of the permutation group, consisting of
matrices which commute with every permutation matrix in the group. In the case of
association schemes, it is known as the Bose–Mesner algebra of the scheme. In this
case, all the matrices are symmetric, the algebra is commutative, and we can work
over R. In the group case, the centraliser algebra is commutative if and only if the
permutation character is multiplicity-free.

If the algebra is commutative, then the matrices are simultaneously diagonalisable;
the common eigenspaces are called the strata of the configuration. In the rank 3 case
where we have a strongly regular graph and its complement, the stratum dimensions
are simply the multiplicities of the eigenvalues. We occasionally extend the use of the
word “stratum” to the non-commutative case, where it means a submodule for the
algebra spanned by the matrices which is maximal with respect to being a sum of
isomorphic submodules.

In all cases which arise in Peter Neumann’s paper, the algebra turns out to be
commutative, although there are two potential cases where the permutation character
is not multiplicity-free; both of these are eliminated.

It seems clear to the authors that, had the paper been published in 1969, it would
have been very influential: it provides both a clear account of the theory and how
it can be used to study permutation groups, and also a non-trivial example of such
an application. The second author of the present paper read it at the start of his
DPhil studies in Oxford under Peter Neumann’s supervision, and considers himself
fortunate to have been given such a good grounding in this area; he has worked on
the interface of group theory and combinatorics ever since.

3. The results
The main theorems in this paper are the following. They are numbered to correspond
to the eight cases in Neumann’s paper.
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Theorem 3.1. Let A = {In, A1, A2} be a coherent configuration of n × n matrices.
If the eigenvalues of A1 have multiplicities 1, n−1

2 , n−1
2 then one of the two following

cases must hold:
• n ≡ 1 (mod 4) and A1 and A2 are the adjacency matrices of conference

graphs;
• n ≡ 3 (mod 4) and A1 and A2 are the adjacency matrices of doubly regular

tournaments.
Theorem 3.2. Let G be a strongly regular graph on 3n vertices. If the multiplicities
of the eigenvalues of G are 1, n, 2n − 1 then G or its complement have the following
parameters in terms of a non-negative integer a:

• 3n = 144a2 + 54a + 6, k1 = 48a2 + 14a + 1, λ = 16a2 + 6a, µ = 16a2 + 2a;
• 3n = 144a2+90a+15, k1 = 48a2+34a+6, λ = 16a2+10a+1, µ = 16a2+14a+3;
• 3n = 144a2 + 198a + 69, k1 = 48a2 + 62a + 20, λ = 16a2 + 22a + 7, µ =

16a2 + 18a + 5;
• 3n = 144a2 + 234a + 96, k1 = 48a2 + 82a + 35, λ = 16a2 + 26a + 10, µ =

16a2 + 30a + 14.
Theorem 3.3. Let G be a strongly regular graph on 3n vertices. If the multiplicities
of the eigenvalues of G are 1, 2n, n − 1 then either G or its complement is a disjoint
union of n copies of K3 or G or its complement have the following parameters for
some non-negative integer a:

• 3n = 9a2 + 9a + 3, k1 = 3a2 + 5a + 2, λ = a2 + 3a + 1, µ = (a + 1)2;
• 3n = 9a2 + 9a + 3, k1 = 3a2 + a, λ = a2 − a − 1, µ = a2.

Theorem 3.4. Let A = {I3n, A1, A2, A3} be a coherent configuration of 3n × 3n ma-
trices. If the multiplicities of the eigenvalues of A1, A2, A3 are 1, n, n, n − 1 then one
of the following hold:

• A2 = AT
3 and the row sums of A1, A2,, and A3 are n−2a−1, n+a, and n+a

respectively for some even integer a;
• A2 = AT

3 and the row sums of A1, A2, and A3 are n + 2a + 1, n − a − 1, and
n − a − 1 respectively for some odd integer a;

• All matrices are symmetric and the row sums of A1, A2, A3 are n+2a+1, n−
a − 1, and n − a − 1 respectively for some non-negative integer a;

• all matrices are symmetric and the row sums of A2, A3 and A4 are 2, n − 1
and 2(n − 1);

• A3 = A⊤
2 and the row sums of A2, A3 and A4 are 1, 1 and 3(n − 1).

Theorem 3.5. There exists no coherent configuration A = {I3n, A1, A2, A3, A4, A5}
of 3n × 3n matrices such that the multiplicities of the eigenvalues of A1, . . . , A5
are 1, n, n, n − 1.
Theorem 3.6. There is no strongly regular graph on 3n vertices with eigenvalue mul-
tiplicities 1, n + 1, 2(n − 1).
Theorem 3.7. Let A = {I3n, A1, A2, A3} be a coherent configuration of 3n × 3n ma-
trices. If the eigenvalues of A1, . . . , A3 have multiplicities 1, n + 1, n − 1, n − 1, then A
is an association scheme and one of the following hold:

• n = 7 and the row sums of A1, A2, A3 are 4, 8, and 8;
• n = 19 and the row sums of A1, A2, A3 are 6, 20, and 30;
• n = 31 and the row sums of A1, A2, A3 are 32, 40, and 20.

Theorem 3.8. There exists no coherent configuration A = {I3n, A1, A2, A3, A4, A5}
of 3n × 3n matrices, where the multiplicities of the eigenvalues of A1, . . . , A5 are
1, n + 1, n − 1, n − 1.
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4. The proofs
4.1. A lemma. We start with a lemma that will be used throughout the paper.

Lemma 4.1. Let A be a homogeneous coherent configuration on n points. Suppose
that the dimension of a non-trivial stratum for A is at least n/3 − 1. Then one of the
following happens:

(a) One of the relations in A has at least n/3 connected components.
(b) Any matrix in A has the property that any eigenvalue λ apart from the row

sum r satisfies |λ| < r.

Proof. We use the Perron–Frobenius Theorem, see [4]. For any non-negative matrix A,
one of the following holds:

• Under simultaneous row and column permutations, A is equivalent to a matrix

of the form
(

B O
O C

)
. In our case the constancy of the row sum r means that r

has multiplicity equal to the number of connected components; so there are
at least n/3 connected components, and (a) holds.

• A is decomposable, that is, under simultaneous row and column permutations

it is equivalent to a matrix of the form
(

B X
O C

)
, where X ̸= O. But this

contradicts the fact that the row sum is constant.
• A is imprimitive, that is, equivalent under simultaneous row and column per-

mutations to a matrix of the form
O B1 . . . . . . 0
O O B2 . . . O
. . . . . . . . . . . . . . .
Bt O O . . . O

 .

But then re2πik/t is a simple eigenvalue for k = 0, 1, . . . , t − 1, contrary to
assumption.

• A is primitive. Then the Perron–Frobenius Theorem asserts that there is a
single eigenvalue with largest absolute value, as required.

□

4.2. Proof of Theorem 3.1. We first prove a lemma about strongly regular graphs
that will be used in the proof of Theorem 3.1.

Firstly we define a special type of strongly regular graphs. A conference graph is a
strongly regular graph on v vertices with parameters (v, v−1

2 , v−5
4 , v−1

4 ).

Lemma 4.2. Let G be a strongly regular graph with parameters (n, k, λ, µ) and let k, r, s
be the eigenvalues of the adjacency matrix of G. If r and s have equal multiplicities
then G is a conference graph.

Proof. It is known for a strongly regular graphs that the multiplicities of r and s are

f, g = 1
2(n − 1 ± (n − 1)(µ − λ) − 2k√

(µ − λ)2 − 4(k − µ)
)

respectively. Hence, if f = g then it follows that

(n − 1)(µ − λ) − 2k = −(n − 1)(µ − λ) + 2k ⇒ 2k = (n − 1)(µ − λ)
and thus G is a conference graph, as required. Moreover, f = g = n−1

2 . □
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Proof of Theorem 3.1. Since A is a coherent configuration, A0 + A1 + A2 = Jn and
moreover AT

i = Aj for i, j ∈ {1, 2}. Hence, there are two possibilities. Either Ai = AT
i

for i ∈ {1, 2} or Ai = AT
j for i, j ∈ {1, 2} and i ̸= j.

In the first case, the graphs with adjacency matrices A1 and A2 are undirected.
Moreover, since A1 and A2 are symmetric, A is an association scheme and hence
those graphs are strongly regular and one is the complement of the other. It follows
by Lemma 4.2 that A1 and A2 are the adjacency matrices of conference graphs and
in fact two copies of the same conference graph. Moreover, for a conference graph to
exist, it is known that n ≡ 1 (mod 4).

In the second case, since A is a coherent configuration, it follows that A1 and
A2 must have constant row and column sums and hence their digraphs are regular.
Let G1, G2 be the digraphs with adjacency matrices A1 and A2 respectively and V
be the vertex set of those digraphs. For u, v ∈ V , we write u →G1 v if v is an out-
neighbour of u in G1 and similarly u →G2 v if v is an out-neighbour of u in G2. Since
A1 + A2 = J − I, it follows that u →G1 v ⇐⇒ u ̸→G2 v and vice versa and also
that either (Ak)ij = 1 or (Ak)ji = 1 for k ∈ {1, 2}. Hence, G1 and G2 are regular
tournaments. Also, notice that since A is a coherent configuration, it follows that for
m, n ∈ {1, 2}, m ̸= n, there exists a constant pm

mn such that for any i, j ∈ V , such that
(Am)ij = 1, |{k | (Am)ik = 1, (An)kj = 1}| = |{k | (Am)ik = 1, (An)jk = 1}| = pm

mn.
Hence, both G1 and G2 are doubly regular, and it is known that n ≡ 3 (mod 4) for
doubly regular tournaments. □

4.3. Proof of Theorem 3.2.

Proof. Let A1 be the adjacency matrix of G and A2 be the adjacency matrix of
its complement. Since G is strongly regular, the eigenvalues of A1 and A2 have the
same multiplicities. Moreover, if A1 has eigenvalues k1, r1, s1 then A2 has eigenvalues
k2 = 3n − k1 − 1, r2 = −1 − r1, s2 = −1 − s1. We know that for i ∈ {1, 2}

Tr(Ai) = ki + nri + (2n − 1)si = 0
Reducing modulo n gives that ki ≡ si (mod n). Therefore, since ki > si by
Lemma 4.1, it follows that ki − si = ϵin for ϵi ∈ {1, 2}. Therefore,

k1 + k2 − s1 − s2 = (ϵ1 + ϵ2)n ⇒ 3n − 1 − s1 + 1 + s1 = (ϵ1 + ϵ2)n ⇒ ϵ1 + ϵ2 = 3.

Assume without loss of generality that ϵ1 = 1 and ϵ2 = 2. Then, k1 = n + s1 and also
n + s1 + nr1 + (2n − 1)s1 = 0 ⇒ r1 = −1 − 2s1.

Also, we have that
Tr(A2

1) = k2
1 + nr2

1 + (2n − 1)s2
1 = 3nk1.

Appropriate substitution gives
(n + s1)2 + n(1 + 2s1)2 + (2n − 1)s2

1 = 3n(n + s1)
which simplifies to

6s2
1 + 3s1 + 1 − 2n = 0.

Therefore,

s1 = 1
4

(
−1 ±

√
16n − 5

3

)
.

Since G is strongly regular and its eigenvalues have different multiplicities, it is not
a conference graph, and hence its eigenvalues are integers. Hence, 16n − 5 = 3b2 for
some non-negative integer b. This gives us that 3b2 + 5 ≡ 0 (mod 16). It follows that
b = 3, 5, 11 or 13 (mod 16). We therefore need to examine the following four cases:
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Case 1: b = 16a + 3.
In this case we get:

16n = 3(16a + 3)2 + 5 ⇒ n = 48a2 + 18a + 2.

and s1 = −4a − 1. Notice that only the negative solution works, since 16a + 2 is not
divisible by 4. Consequently k1 = 48a2 + 14a + 1. We also get r1 = 8a + 1

Now, using the formulae for the eigenvalues of strongly regular graphs, namely

r1, s1 = 1
2

(
(λ − µ) ±

√
(λ − µ)2 + 4(k1 − µ)

)
we get

λ − µ = r1 + s1

4µ = (λ − µ)2 − (r1 − s1)2 + 4k1.

Solving this system we obtain λ = 16a2 + 6a and µ = 16a2 + 2a.
Case 2: b = 16a + 5.

In this case we get:
16n = 3(16a + 5)2 + 5 ⇒ n = 48a2 + 30a + 5.

and s1 = 4a + 1. Hence, k1 = 48a2 + 34a + 6. We also get r1 = −8a − 3
As above, knowing r1, s1 we can obtain λ and µ which in this case are equal to
16a2 + 10a + 1 and 16a2 + 14a + 3 respectively.
Case 3: b = 16a + 11.

In this case we get:
16n = 3(16a + 11)2 + 5 ⇒ n = 48a2 + 66a + 23.

and s1 = −4a − 3. Hence, k1 = 48a2 + 62a + 20. Also, r1 = 8a + 5 and routine
calculation as above gives λ = 16a2 + 22a + 7, µ = 16a2 + 18a + 5.
Case 4: b = 16a + 13.

In this case we get:
16n = 3(16a + 13)2 + 5 ⇒ n = 48a2 + 78a + 32.

and s1 = 4a + 3. Hence, k1 = 48a2 + 82a + 35, r1 = −8a − 7, λ = 16a2 + 26a + 10, µ =
16a2 + 30a + 14. □

4.4. Proof of Theorem 3.3.

Proof. Let A1 be the adjacency matrix of G and A2 be the adjacency matrix of its
complement. Since G is strongly regular we know that the eigenvalues of A1 and
A2 have the same multiplicities. Also, if A1 has eigenvalues k1, r1, s1, then A2 has
eigenvalues k2 = 3n − k1 − 1, r2 = −1 − r1, s2 = −1 − s1. We know that for i ∈ {1, 2}

Tr(Ai) = ki + 2nri + (n − 1)si = 0.

Reducing modulo n gives that ki ≡ si (mod n), and since by Lemma 4.1 either one
of A1, A2 is the disjoint union of n copies of K3 or ki > |si|. In the second case, it
follows that ki − si = ϵin for ϵi ∈ {1, 2}. Also, as before, ϵ1 + ϵ2 = 3 and hence we
may suppose without loss of generality that ϵ1 = 1 and ϵ2 = 2. Then, k1 = n + s1 and
r1 = −s1−1

2 . We therefore get

Tr(A2
1) = (n + s1)2 + 2n

(
s1 + 1

2

)2
+ (n − 1)s2

1 = 3n(n + s1).
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and simplifying gives 3s2
1 = 4n − 1. Therefore,

s2
1 = 4n − 1

3 .

We can thus write s2
1 as (2a + 1)2 for some a ⩾ 0 and we get

(2a + 1)2 = 4n − 1
3 ⇒ n = 3a2 + 3a + 1

and s1 = ±(2a + 1). We therefore get the following cases:
Case 1: s1 = 2a + 1.

In this case we get k1 = 3a2 + 5a + 2 and r1 = −a − 1, and computing λ and µ as
in the proof of Theorem 3.2 we obtain λ = a2 + 3a + 1 and µ = (a + 1)2.
Case 2: s1 = −2a − 1.

Here, routine calculation gives k1 = 3a2 + a, r1 = a, λ = a2 − a − 1, µ = a2. □

4.5. Proof of Theorem 3.6.

Proof. Suppose for a contradiction that there exists such a strongly regular graph,
and let A1 be its adjacency matrix and A2 be the adjacency matrix of its complement
and suppose that k1, r1, s1 and k2, r2, s2 are the eigenvalues of A1 and A2 respectively.
Then, for i ∈ {1, 2} we get

Tr(Ai) = ki + (n + 1)ri + 2(n − 1)si = 0
and

Tr(A2
i ) = k2

i + (n + 1)r2
i + 2(n − 1)s2

i = 3nki.

Reducing modulo n gives

ki ≡ 2si − ri (mod n)
k2

i ≡ 2s2
i − r2

i (mod n).

Hence, (2si − ri)2 ≡ 2s2
i − r2

i (mod n). By routine calculation, it follows that si ≡ ri

(mod n) and consequently ki ≡ ri (mod n). Therefore, ki = ϵin+ri and si = ηin+ri

for some ϵi, ηi ∈ {1, 2}.
Substituting into the trace equations and reducing modulo n2 gives

ϵin + ri + (n + 1)ri + 2(n − 1)ri − 2ηin ≡ 0 (mod n2)
2ϵinri + r2

i + (n + 1)r2
i + 2(n − 1)r2

i − 4riηin ≡ 3nri (mod n2).
We now collect terms and divide by n and we get

ϵi + 3ri − 2ηi ≡ 0 (mod n)
3r2

i + ri(2ϵi − 4ηi − 3) ≡ 0 (mod n).
Since 1 + r1 + r2 = 0 it cannot be the case that both r1 and r2 are divisible by n.
Hence, interchanging A1 and A2 if necessary we may assume that r1 ̸≡ 0 (mod n).
Then,

3r1 ≡ 2η1 − ϵ1 (mod n)
3r1 ≡ 4η1 − 2ϵ1 + 3 (mod n).

Eliminating 2η1 −ϵ1 gives r1 ≡ −1 (mod n). Therefore, since k1 ≡ r1 (mod n), either
k1 = n − 1 or k1 = 2n − 1. If k1 = n − 1, then since r1 ≡ s1 ≡ −1 (mod n) and by
Lemma 4.1 |r1| < k1 and |s1| < k1, it follows that r1 = s1 = −1. However, by looking
at the formulae for r1 and s1 for a strongly regular graph, we deduce that r1 ̸= s1,
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a contradiction. Similarly, if k1 = 2n − 1, then k2 = n which forces r2 = s2 = 0,
again a contradiction. Hence, there is no strongly regular graph with those eigenvalue
multiplicities. □

4.6. Proof of Theorem 3.4.

Proof. Suppose first that at least some Ai corresponds to a disconnected graph. There
are two possibilities: either A2 (say) is an undirected graph which consists of n disjoint
triangles; or A3 = A⊤

2 , corresponding to a converse pair of directed triangles. In
the second case, I, A2 + A3, A4 satisfy the hypotheses of Theorem 3.3, and the last
statement holds. So suppose that the first possibility occurs.

Let T1, . . . , Tn be the connected components of A2 (each a triangle), and let Ti =
{vi1, vi2, vi3}. Now the common eigenspaces of I and A2 have dimensions n and 2n.
The first of these has the form V0 ⊕ V1, where V0 is the space of constant vectors and

V1 =
n∑

i=1
ci(vi1 + vi2 + vi3)

where
∑n

1 ci = 0. Then V1 is an eigenspace for A2 as well; suppose that the eigenvalue
is λ. Take a vector of the above form with ci = 1, cj = −1, and ck = 0 for k ̸= i, j.
The fact that it is an eigenvector of A2 shows that vi1 is joined to −λ of the vertices
of Tj . So this number is independent of the choice of i and j and the particular
vertex vi1 ∈ Ti chosen; that is, in the graph A2, each vertex of Ti is joined to −λ
vertices of Tj for j ̸= i. We can suppose that λ = −1, so each vertex of Ti is joined to
one vertex of Tj by an A2 edge, and to two by A3 edges. Hence A2 has valency n − 1
and eigenvalue −1 on W ; for A3 these numbers are 2(n − 1) and −2. Thus we have
the penultimate case in the Theorem. So we may suppose that all the orbital graphs
are connected.

Let ki, ri, si, ti be the eigenvalues of Ai, i ∈ {1, 2, 3}, with multiplicities 1, n, n, n−1
respectively. Firstly notice that ti must be a rational integer and ri and si must either
both be rational integers or algebraically conjugate algebraic integers. Then, we get

Tr(Ai) = ki + nri + nsi + (n − 1)ti = 0.

Hence, n must divide ki −ti, and since by Lemma 4.1 and the connectivity assumption
ki > ti, it follows that ki = ϵin+ ti for some ϵi > 0. Moreover, by [13, Equation (6.9)],
ϵ1 + ϵ1 + ϵ3 = 3 and hence ϵi = 1 for all i ∈ {1, 2, 3}. Thus, ki = n + ti.

There are now two cases to consider. Either all matrices are symmetric or two of
them, say A2 and A3 without loss of generality are such that AT

2 = A3. We first
consider the second case. In this case the eigenvalues of A2 and A3 are the same.
Hence, t2 = t3 and either r2 = r3 and s2 = s3 or r2 = s3 and r3 = s2. Notice that the
algebra spanned by the matrices of this coherent configuration is commutative and
therefore A2 and A3 can be simultaneously diagonalised. Let U be the matrix that
simultaneously reduces A2 and A3. If r2 = r3 and s2 = s3 then U−1A2U = U−1A3U ,
which implies that A2 = A3, a contradiction. Hence, r2 = s3 and r3 = s2.

Now adding A2 and A3 together produces an association scheme of the type arising
in Theorem 3.3. Hence, n = 3a2 +3a+1 and either k1 = n−2a−1 and k2 = k3 = n+a
or k1 = n + 2a + 1 and k2 = k3 = n − a − 1.

We now show that if k1 = n − 2a − 1 then a is even and if k1 = n + 2a + 1 then
a is odd. In the first case, the remaining eigenvalues of A1, A2, and A3 are as shown
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below:
r1 = a, s1 = a, t1 = −2a − 1

r2 = r, s2 = s, t2 = a

r3 = s, s3 = r, t3 = a

where r + s = −a − 1. Now [13, Equation (6.7)] gives

rs = 1
2(2n − a − a2) = 1

2(5a + 2)(a + 1)

and [13, Equation (6.8)] gives
3n(n + a)p3

22 = (n + a)3 + nrs(r + s) + (n − 1)a3.

where p3
22 is as defined on page 3. Eliminating rs and simplifying gives p3

22 = a3 + 3a
2

and since p3
22 ∈ Z, a must be even.

In the second case, the eigenvalues of A1, A2, and A3 are the ones given below:
r1 = −a − 1, s1 = −a − 1, t1 = 2a + 1

r2 = r, s2 = s, t2 = −a − 1
r3 = s, s3 = r, t3 = −a − 1

where r+s = 1 by [13, Equation (6.6)]. And [13, Equation (6.7)] gives rs = 1
2 a(5a+3)

and from [13, Equation (6.8)] we get
3n(n − a − 1)p3

22 = (n − a − 1)3 + nrs(r + s) − (n − 1)(a + 1)3.

Simplifying gives p3
22 = a2 + a−1

2 , and since p3
22 ∈ Z, it follows that a is odd, as

claimed.
We now consider the symmetric case. We get the following equations

si + ri = −1 − ti

Tr(A2
i ) = k2

i + nr2
i + ns2

i + (n − 1)t2
i = 3nki

(ti + n)2 + nr2
i + ns2

i + nt2
i − t2

i = 3n(n + ti)
r2

i + s2
i = −t2

i + ti + 2n.

From this we get 2risi = 1+ ti +2t2
i −2n and hence we deduce that ti is odd. Also, we

can calculate ri and si and we find that ri, si = 1
2 (−1 − ti ±

√
4n − 1 − 3t2

i ). Without
loss of generality we set

ri = 1
2

(
−1 − ti +

√
4n − 1 − 3t2

i

)
si = 1

2

(
−1 − ti −

√
4n − 1 − 3t2

i

)
.

Since Ai is symmetric for all i ∈ {1, 2, 3}, it has real eigenvalues, and therefore
(1) 3t2

i ⩽ 4n − 1.

Now, from [13, Equation (6.9)] we get

(2)
{

t1 + t2 + t3 = −1√
4n − 1 − 3t2

1 +
√

4n − 1 − 3t2
2 +

√
4n − 1 − 3t2

3 = 0.

Now eliminating t3 and rationalising gives us
t2
1(3t2 + 2n + 1) + t1(3t2

2 + 2nt2 + 4t2 + 2n + 1)
+(2n + 1)(t2

2 + t2) − 2n(n − 1) = 0.
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Notice that
3t2

2 + 2nt2 + 4t2 + 2n + 1 = (3t2 + 2n + 1)(t2 + 1).
Therefore, 3t2 +2n+1 divides (2n+1)(t2

2 +t2)−2n(n−1). Now consider the equation

2(2n + 1)(t2
2 + t2) − 4n(n − 1) ≡ 0 (mod 3t2 + 2n + 1).

If we eliminate n from the equation, we deduce that 3t2 + 2n + 1 must divide 3(t2 +
1)2(2t2 + 1).

Notice that there is complete symmetry between t1, t2, and t3. Hence, we deduce
that

(3) 3(ti + 1)2(2ti + 1) ≡ 0 (mod 3ti + 2n + 1)

for all i ∈ {1, 2, 3}.
Using the equation for Tr(A3

i ) we deduce that 3nki must divide k3
i + n(r3

i + s3
i ) +

(n − 1)t3
i . Substitution for ki, ri, si in terms of ti and algebraic manipulation gives

2n2 − 6n + 6t2
i + 2t3

i + (1 + ti)(4t2
i − ti + 1) ≡ 0 (mod 6(n + ti)).

Reducing modulo 2(n + ti), we have 2n2 − 6n ≡ 2ti(ti + 3), and after simplifying we
deduce that

(4) (ti + 1)(2ti + 1)(3ti + 1) ≡ 0 (mod 2(n + ti)).

Since t1 + t2 + t3 = −1 and ti ∈ Z for all i ∈ {1, 2, 3}, not all of them can be
negative. Let b be one of them such that b ⩾ 0. Then, it follows by (3) and (4) that

(b + 1)(2b + 1)(3b + 1) = u.(2n + b)
(b + 1)(2b + 1)(3b + 3) = v.(2n + 3b + 1)

for some u, v ∈ Z. Now subtracting gives

2(b + 1)(2b + 1) = 2(v − u)(n + b) + v(b + 1) + bu.

Now set w = v − u. We want to show that w = 0. Firstly notice that

w = (b + 1)(2b + 1)
(

3b + 3
2n + 3b + 1 − 3b + 1

2(n + b)

)
(5)

= (b + 1)(2b + 1)(4n − 1 − 3b2)
2(2n + 3b + 1)(n + b)

and hence, by Equation (1), w ⩾ 0. Rearranging gives

3(b + 1)3(2b + 1) = (2n + 3b + 1) (2(b + 1)(2b + 1) − 2w(n + b)) .

Setting n + b = x and refactorising we get the following quadratic in terms of x:

4wx2 − 2(n + 1)(4b + 2 − w)x + (b + 1)2(2b + 1)(3b + 1) = 0.

By definition x is real and hence, the discriminant of this quadratic must be non-
negative. Therefore,

4(b + 1)2(4b + 2 − w)2 − 16w(b + 1)2(2b + 1)(3b + 1) ⩾ 0

and hence

(4b + 2 − w)2 ⩾ 4w(2b + 1)(3b + 1)(6)
= w(4b + 2)(6b + 2).

By (5) we have that w < 2b+1. Now since w ⩾ 0 it follows that 2b+1 < 4b+2−w ⩽
4b+2. Now, by (6), we get that w ⩽ 0 and hence w = 0, as claimed. Therefore, by (5),
4n − 1 = 3b2 and hence b must be odd. We therefore set b = 2a + 1 for a ⩾ 0 and it
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follows that n = 3a2 + 3a + 1. Now suppose without loss of generality that t1 was b.
Then from (2)

t2
2 = t2

3

and therefore
t2 = ±t3.

But we know that t2 + t3 = −1 − t1 ̸= 0 and hence

t2 = t3 = −1 − t1

2 .

Hence, t1 = 2a + 1, t2 = t3 = −a − 1.
Moreover, since we have shown that ti is odd, a must be even and

k1 = n + 2a + 1
k2 = k3 = n − a − 1

as required. □

4.7. Proof of Theorem 3.5.

Proof. As in 3.4, assume first that at least one of the graphs Ai is disconnected,
say A2. if A⊤

2 = A3, then symmetrising as before gives an example with multiplicities
1, n − 1, 2n, as in Theorem 3.4; but before this symmetrisation there are six linearly
independent matrices, which cannot have just four eigenspaces. So suppose that A2
is symmetric, and corresponds to n disjoint triangles as in the case of Theorem 3.4.
Then again the space V1 of that proof is an eigenspace for all the matrices, and so
for i ̸= j a vertex in Ti is joined to a constant number of vertices in Tj . Then there
can be at most three such matrices, or five altogether in the configuration (including I
and A2), contrary to assumption.

Let ki, ri, si, ti be the eigenvalues of Ai for i ∈ {1, . . . , 5} with multiplicities
1, n, n, n − 1 respectively. If the matrices Θi,1 are as in [13], then they must be
2 × 2 matrices with eigenvalues ri, si, where ri and si are the eigenvalues of Ai with
multiplicity n. We know that ri, si must necessarily be rational integers. Now from
the linear trace equation

Tr(Ai) = ki + n(ri + si) + (n − 1)ti

we deduce that n must divide ki − ti and since by Lemma 4.1 |ti| < ki, it follows that
ki = ϵin + ti for ϵi ⩾ 1 for all i. Therefore,

∑5
i=1 ϵi ⩾ 5. On the other hand,

3n − 1 =
5∑

i=1
ki = (

5∑
i=1

ϵi)n +
5∑

i=1
ti = (

5∑
i=1

ϵi)n − 1

and hence
∑5

i=1 ϵi = 3, a contradiction. Therefore, this type of coherent configuration
cannot exist. □

4.8. Proof of Theorems 3.7 and 3.8. In this section we deal with the cases arising
in Theorems 3.7 and 3.8 together. We prove both statements through a series of
lemmas that eliminate the case arising in Theorem 3.8 and force the parameters
stated in Theorem 3.7.

Lemma 4.3. If A = {A1, A2, A3, A4} is a homogeneous coherent configuration of
rank 4, where its matrices have eigenvalue multiplicities 1, n + 1, n − 1, and n − 1,
then all matrices are symmetric.
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Proof. Suppose for a contradiction that this is not the case. Then, since A is a homo-
geneous coherent configuration, one of the matrices say A1 must be symmetric and
A2, A3 are such that AT

2 = A3. Then, A2 and A3 would have the same eigenvalues.
Let ki, ri, si, ti for i ∈ {1, 2, 3} be the eigenvalues of A1, A2, A3 respectively with mul-
tiplicities 1, n + 1, n − 1, n − 1 respectively. Then, since A2 = AT

3 , A2 and A3 have
the same eigenvalues with the same multiplicities. Hence, s2 + t2 = s3 + t3. But then,
since by [13, Equation (6.9)]

s1 + s2 + s3 = −1
t1 + t2 + t3 = −1

it follows that s1 = t1 and thus A1 has three eigenvalues with multiplicities 1, n + 1,
and 2(n − 1). However, Theorem 3.6 such a matrix cannot exist, a contradiction.
Therefore, all matrices of A must be symmetric. □

For the remainder of the section, given a coherent configuration B we consider the
association scheme A arising by adding every non-symmetric matrix and its transpose
together to make a symmetric matrix. In this case notice that if Bi has eigenvalues
ni, λi, µi, νi then Ai = Bi + BT

i has eigenvalues ki = 2ni, ri = 2λi, si = 2µi, ti = 2νi

again with eigenvalue multiplicities 1, n + 1, n − 1, n − 1 respectively.

Lemma 4.4. If A is as defined above, then ki = ϵi(n − 1) − 2ri for some ϵi ⩾ 0 for
all i. Moreover,

∑
ϵi = 3.

Proof. By the linear trace relation for Ai we get
Tr(Ai) = ki + (n + 1)ri + (n − 1)(si + ti).

Hence, ki ≡ −2ri (mod n − 1) and we can write
ki = ϵi(n − 1) − 2ri

as claimed.
Also, notice that

3n − 1 =
∑

i

ki = (n − 1)
∑

i

ϵi − 2
∑

i

ri.

Since by [13, Equation (6.9)]
∑

i ri = −1, it follows that
∑

i ϵi = 3.
Now suppose for a contradiction that ϵi < 0. Since ki ⩾ 0 it follows that ri < 0.

In particular, since by Lemma 4.1 |ri| < ki we have that −ri < (n − 1)ϵi − 2ri and
hence |ri| > n − 1 and thus |ri| ⩾ n. By the quadratic trace relation we get

k2
i + (n + 1)r2

i ⩽ Tr(A2
i ) = 3nki.

Hence, (n+1)r2
i ⩽ ki(3n−ki), and basic calculus shows that ki(3n−ki) is maximised

at ki = 3n
2 . Hence,

nr2
i < (n + 1)r2

i ⩽

(
3n

2

)2
.

Dividing through by n and applying sqare roots gives us |ri| < 3
√

n
2 < n, a contra-

diction. Hence ϵi ⩾ 0 for all i. At this point, notice also that this bound on ri holds
independently of the assumption on ϵi and this claim will also be used later. □

Now considering the quadratic trace equation again and reducing modulo n − 1 we
get

Tr(A2
i ) = k2

i + (n + 1)r2
i + (n − 1)(λ2

i + µ2
i ) = 3nki

(−2ri)2 + 2r2
i ≡ −6ri

6ri(ri + 1) ≡ 0 (mod n − 1).
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We now show that in fact n − 1 divides 3ri(ri + 1).

Lemma 4.5. If ri is as defined above, then n − 1 divides 3ri(ri + 1).

Proof. The trace equations give
si + ti = −ϵi − ri

(n − 1)(s2
i + t2

i ) = 3n(ϵi(n − 1) − 2ri) − (ϵi(n − 1) − 2ri)2 − (n + 1)r2
i

Now siti is a rational integer by assumption and also 2siti = (si + ti)2 − (s2
i + t2

i ).
Calculating modulo 2(n − 1) we get

0 ≡ (n − 1)(ϵi + ri)2 − 3n(ϵi(n − 1) − 2ri) + (ϵi(n − 1) − 2ri)2 + (n + 1)r2
i

≡ (n − 1)(ϵ2
i + r2

i ) − ϵin(n − 1) + 6nri + (n − 1)2ϵ2
i + 4r2

i + (n − 1)r2
i + 2r2

i

≡ n(n − 1)(ϵ2
i − ϵi) + (6n − 6)ri + 6ri + 6r2

i

≡ n(n − 1)(ϵ2
i − ϵi) + 6ri + 6r2

i .

Since ϵ2
i − ϵi is a product of consecutive integers it is even and hence 2(n − 1) must

divide 6ri(ri + 1) and hence n − 1 divides 3ri(ri + 1), as claimed. □

We now prove another inequality that we will use later.

Lemma 4.6. ϵi(n − 1)(6n − 2ϵin + ϵi) − 6ri(2n − ϵin + ϵi) − (3n + 9)r2
i ⩾ 0

Proof. Consider the quadratic equation whose roots are si and ti. Since si and ti

are real, it follows that the discriminant of this equation, namely (si + ti)2 − 4siti =
(si − ti)2 is non-negative. Notice that (si − ti)2 = 2(s2

i + t2
i ) − (si + ti)2 and hence

using the trace equations we get
6n(ϵi(n − 1) − 2ri) − 2(ϵi(n − 1) − 2ri)2 − 2(n + 1)r2

i − (n − 1)(ϵi + ri)2 ⩾ 0.

This can be rearranged to give the required statement. □

From Lemma 4.4 we know that either one of the ϵi’s is zero say ϵ1 without loss
of generality, or there are just three non-identity matrices and ϵ1 = ϵ2 = ϵ3 = 1. We
first consider the former case.

Proposition 4.7. If ϵ1 = 0, then n = 7 or 19 and the coherent configurations are
symmetric.

Proof. If ϵ1 = 0, then k1 = −2r1 and since k1 > 0, it follows that r1 < 0. Using
Lemma 4.6 we get

−12nr1 − (3n + 9)r2
1 ⩾ 0

and hence r1 ⩾ −4n
n+3 > −3.

Therefore, r1 = −3 or r1 = −2, or r1 = −1 and k1 = 6, 4, or 2. Consider the case
where k1 = 2 and r1 = −1. The trace equations give us

s1 + t1 = 1
(n − 1)(s2

1 + t2
1) = 5n − 5

s2
1 + t2

1 = 5.

Therefore, s1 and t1 are equal to 2 and −1 respectively. However, r1 = −1 and k1 = 2
but by Lemma 4.1 |s1| < k1, a contradiction. Hence, k1 = 2 cannot hold.

It now follows by Lemma 4.5 that n − 1 divides 18 or n − 1 divides 6. Using the
inequality from Lemma 4.6 we deduce that either r1 = −3 and n = 10 or n = 19, or
r1 = −2 and n = 3, 4, or 7.

Now define A =
∑

{Ai | ϵi = 0}. Then, A must be a symmetric matrix of row
sum k =

∑
ki and eigenvalue r =

∑
ri. What we have said above for matrices Ai

Algebraic Combinatorics, Vol. 6 #5 (2023) 1203



Marina Anagnostopoulou-Merkouri & Peter J. Cameron

with ϵi = 0 applies to A as well and therefore A must consist of only one summand,
A1 without loss of generality. Now since by Lemma 4.4

∑
ϵi = 3 there are two

possibilities. There are either 5 matrices and ϵ2 = ϵ3 = ϵ4 = 1 or there are 4 matrices
and ϵ2 = 2 and ϵ3 = 1.

Now we check this case individually to see which of those can hold.
Case 1: r1 = −2, n = 3.

In the case that ϵ2 = ϵ3 = ϵ4 = 1 the inequality from Lemma 4.6 gives us
13 − 12ri − 9r2

i ⩾ 0
for i ∈ {2, 3, 4} and since ri is integer, −2 ⩽ ri ⩽ 0. Since by [13, Equation (6.9)]
r1, r2, r3, r4 must sum up to −1, it follows that r2, r3, r4 must sum up to 1, but this
cannot hold since none of them can be positive.

Now we examine the case where we have four matrices and ϵ2 = 1 and ϵ3 = 2. In
this case Lemma 4.6 gives us

−2 ⩽ r2 ⩽ 0
−1 ⩽ r3 ⩽ 1.

The only way r2 and r3 could sum up to 1 is r2 = 0 and r3 = 1. In this case we
get k1 = 4, k2 = 2, k3 = 2 and checking for such coherent configurations in [6] we
find that there is a unique coherent configuration with such row and column sums,
but checking the rational eigenvalues using GAP [5] shows that the ri’s are not equal
to −2, 0, 1 as we wish and hence there is no such association scheme.
Case 2: r1 = −2, n = 4.

First we look at the case where ϵ2 = ϵ3 = ϵ4 = 1. By Lemma 4.6 we get
−7r2

i − 10ri + 17 ⩾ 0
Since ri is integer for i ∈ {2, 3, 4} this gives

−2 ⩽ ri ⩽ 1
Again in this case we want the ri’s for i ∈ {2, 3, 4} to sum up to 1 but none of them
is positive, so this case cannot hold.

Now let ϵ2 = 1 and ϵ3 = 2. In this case Lemma 4.6 gives
−2 ⩽ r2 ⩽ 0
−2 ⩽ r3 ⩽ 1.

The only combination that could work is r2 = 0 and r3 = 1. In this case we would
get k1 = 4, k2 = 3, k3 = 4. Checking in [6] we do not find any coherent configurations
with such row and column sums and appropriate eigenvalues and hence n = 4 cannot
hold either.
Case 3: r1 = −2, n = 7.

In the case that ϵ2 = ϵ3 = ϵ4 = 1 Lemma 4.6 gives us
−15r2

i − 24ri + 87 ⩾ 0
and hence, since ri ∈ Z for i ∈ {2, 3, 4},

−3 ⩽ ri ⩽ 1.

The only combinations (up to permutation) that would give us r1 + r2 + r3 + r4 = −1
are r2 = 1, r3 = 0, r4 = 0 and r2 = −1, r3 = 1, r4 = 1. We then get k1 = 4, k2 =
4, k3 = 6, k4 = 6 or k1 = 4, k2 = 4, k3 = 4, k4 = 8 respectively. Looking at [6],
we deduce that there are not any coherent configurations with such matrix row and
column sums.
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For ϵ2 = 1, ϵ3 = 2, as shown in [13] we need k1 = 4, k2 = 8, k3 = 8 and looking
at [6] we deduce that there is a unique coherent configuration with such matrix row
and column sums and hence, it is the one arising in [13]. The corresponding si’s and
ti’s can be calculated to be

s1 = 1 +
√

2, t1 = 1 −
√

2

s2 = −2
√

2, t2 = 2
√

2

s3 = −2 +
√

2, t3 = −2 −
√

2.

Case 4: r1 = −3, n = 10.
In this case it suffices to check the subcase ϵ2 = 1, ϵ3 = 2, since r1 is odd and hence

it cannot be the case that A1 is the sum of a matrix and its transpose. Therefore,
all the matrices in the initial coherent configuration must be symmetric and we must
have four of them. In this case by Lemma 4.6 we get

−13r2
2 − 22r2 + 123 ⩾ 0

−39r2
3 − 12r3 + 396 ⩾ 0

which gives
−4 ⩽ r2 ⩽ 2,

−3 ⩽ r3 ⩽ 3.

The (r2, r3) pairs consistent with [13, Equation (6.9)] are (2, 0), (1, 1), (0, 2), (−1, 3)
and all of those give row and column sums for which an association scheme does not
exist.
Case 5: r1 = −3, n = 19.

In this case, as shown in [13] k1 = 6, k2 = 20, k3 = 30 and the corresponding si’s
and ti’s are

s1 = 3 +
√

5
2 , t1 = 3 −

√
5

2
s2 = −2

√
5, t2 = 2

√
5

s3 = −5 + 3
√

5
2 , t3 = −5 − 3

√
5

2 .

□

We now deal with the case where ϵ1 = ϵ2 = ϵ3 = 1. Notice that in this case, since
the ϵi’s are all odd, B = A and by Lemma 4.3 all matrices are symmetric.

Lemma 4.8. If ϵ1 = ϵ2 = ϵ3 = 1 then r1, r2, r3 are all different.

Proof. Suppose for a contradiction that this is not the case and without loss of gen-
erality, let r1 = r2. Then, since ϵ1 = ϵ2, it follows that k1 = k2. Thus, either s1 = t1
and s2 = t2 or s1 = t2 and s2 = t1, and since our coherent configuration has rank 4,
the matrices are simultaneously diagonalisable and it follows that

s1 + s2 + s3 = −1,

t1 + t2 + t3 = −1.

But this means that s3 = t3 and thus A3 is a matrix of the kind that Theorem 3.6
forbids, a contradiction. □

Lemma 4.9. Let ai = 3ri(ri+1)
n−1 . Then, ai ⩽ 4 and if ri ⩾ 0, then ai ⩽ 3.
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Proof. Firstly notice that by Lemma 4.5, ai ∈ Z. By Lemma 4.6 we get

(n − 1)(4n + 1) − 6(n + 1)ri − (3n + 9)r2
i ⩾ 0.

Therefore,
(3n + 9)(r2

i + ri) ⩽ (n − 1)(4n + 1) − (3n − 3)ri

and hence

ai = 3ri(ri + 1)
n − 1

⩽
4n + 1
n + 3 − 3ri

n + 3

= 4 − 11
n + 3 − 3ri

n + 3 .

Now, if ri ⩾ 0, we get ai < 4, and hence ai ⩽ 3. If ri < 0 and n ⩾ 19, using the
inequality from Lemma 4.4 stating that ri < 3

√
n

2 , we deduce that −3ri

n+3 ⩽ 1 and hence
ai < 5 and so ai ⩽ 4. Now, if n < 19 and ri ⩽ 0 checking gives that ai ⩽ 3. □

Lemma 4.10. If none of a1, a2, a3 are zero, then a1, a2, a3 are all different.

Proof. Suppose for a contradiction that without loss of generality, a1 = a2. Then,
both r1 and r2 are roots of the equation

3r(r + 1) − a1(n − 1) = 0.

Since by Lemma 4.8 r1 ̸= r2, we must have r1+r2 = −1. But from [13, Equation (6.9)],
r1 + r2 + r3 = −1 and hence r3 = 0. But then, a3 = 0, a contradiction. □

Lemma 4.11. If a > 0 and r is a root of the equation

x2 + x − a = 0

then r = − 1
2 ±

√
a + η, where |η| < 1

8
√

a
.

Proof. Notice that
(
r + 1

2
)2 = r2 + r + 1

4 = a + 1
4 .

Now, by squaring both
√

a + 1
4 and

√
a+ 1

8
√

a
we see that |η| < 1

8
√

a
, as claimed. □

Lemma 4.12. One of a1, a2, a3 must be zero.

Proof. Suppose that this is not the case. Then, by Lemma 4.10, a1, a2, a3 are all
different. Since ai = 3ri(ri+1)

n−1 , it follows that ri is a root of the equation

x2 + x − ai(n − 1)
3 = 0.

By Lemma 4.11 we get that

ri = −1
2 ±

√
ai(n − 1)

3 + ηi

where |ηi| < 1
8

√
3

ai(n−1) < 1
8 .

Now, it follows by [13, Equation (6.9)] that

r1 + r2 + r3 = −1

and hence

−3
2 +

√
n − 1

3 (±
√

a1 ±
√

a2 ±
√

a3) + η1 + η2 + η3 = −1.
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Rearranging and taking absolute values gives∣∣∣∣∣
√

n − 1
3 (±

√
a1 ±

√
a2 ±

√
a3)

∣∣∣∣∣ <
7
8 .

Since ai ̸= 0, by Lemmas 4.9 and 4.10 we get that a1, a2, a3 must be among the
numbers 1, 2, 3, 4 and all different. Hence, crude approximations to

√
2 and

√
3 give

the estimate
| ±

√
a1 ±

√
a2 ±

√
a3| >

4
10

and hence
4
10

√
n − 1

3 <
7
8 .

This gives n < 15, but checking all cases shows that no integer less than 15 has three
different representations in the form 1 + 3ri(ri+1)

ai
with ri, ai integral, all different for

every i, and 1 ⩽ ai ⩽ 4, a contradiction. Hence, one of a1, a2, a3 must be zero, as
claimed. □

We now choose notation such that a1 = 0.

Lemma 4.13. If r1 is as defined above, then r1 = −1.

Proof. Since a1 = 0, r1 = 0 or r1 = −1. Assume now that r1 = 0. One of a2, a3 must
be non-zero, for otherwise, all ri’s would be solutions of the equation x2 + x = 0 and
hence they would not all be different, as Lemma 4.8 states. Suppose without loss of
generality that a2 ̸= 0. Then,

n = 3r2(r2 + 1)
a2

+ 1.

If 3 does not divide a2 then n ≡ 1 (mod 3). If 3 divides a2 then by Lemma 4.9, it
follows that a2 = 3 and n = r2

2 + r2 + 1. Hence n ≡ 1 (mod 3) or n ≡ 0 (mod 3).
From the linear and quadratic trace equations for A1 we get

s1 + t1 = −1
s2

1 + t2
1 = 3n − (n − 1) = 2n + 1.

Now p1
11 = |{j ∈ {1, . . . , 3n} | (A1)ij = 1, (A1)jk = 1}| is an integer constant for any

i, k ∈ {1, . . . , 3n} such that (A1)ik = 1. Moreover, the cubic trace equation for A1
gives

3np1
11 = (n − 1)2 + 3

2(s1 + t1)(s2
1 + t2

1) − 1
2(s1 + t1)3

= (n − 1)2 − 3
2(2n + 1) + 1

2
= n2 − 5n.

Thus, 3p1
11 = n − 5 and since p1

11 ∈ Z, it follows that n ≡ 5 (mod 3), a contradiction.
Hence r1 ̸= 0 and therefore r1 = −1. □

Lemma 4.14. n = 31.

Proof. Since r1 = −1 and r1 + r2 + r3 = −1 by [13, Equation (6.9)], it follows that
r2 = −r3 = r ∈ Z. Then, since a2, a3 are integers,

n − 1 divides 3r(r + 1)
n − 1 divides 3(−r)(−r + 1).

Hence, n − 1 divides 3r(r + 1) − 3(−r)(−r + 1) = 6r.
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By interchanging A2 and A3 if necessary we may assume that r ⩾ 0. Then since by
Lemma 4.8, r1, r2, r3 are all different, it follows that r ̸= 0 and r ̸= 1. Hence, r ⩾ 2.
Moreover, from Lemma 4.9 we know that

6r

n − 1 · r + 1
2 ⩽ 3.

It follows that r + 1 ⩽ 6 and if 6r ̸= n − 1 then since n − 1 divides 6r, r + 1 ⩽ 3. Now
considering that 6r

n−1 · r+1
2 must be integer and that the above inequality must hold

for our choices of n and r we can check all cases and find that the only possibilities
are:

6r = n − 1, r = 5, n = 31
6r = n − 1, r = 3, n = 19
3r = n − 1, r = 2, n = 7.

For n = 7 we see that k1, k2, k3 are equal to 8, 2, 10 respectively and checking in [6],
we see that there is no association scheme with such row and column sums.

If n = 19, then the trace equations give

s1, t1 are ± 2
√

5

s2, t2 are ± −2 ±
√

6
s3, t3 are ± 5, −3

Now, no possible tuple (s1, s2, s3) satisfies s1 + s2 + s3 = −1 and hence this case
cannot arise.

Finally, for n = 31 for suitable choices of roots we get

s1 = 4
√

2, t1 = −4
√

2

s2 = −3 −
√

2, t2 = −3 +
√

2

s3 = 2 − 3
√

2, t3 = 2 + 3
√

2.

□

Proof of Theorem 3.7. Follows directly by Proposition 4.7 and Lemma 4.14. □

Proof of Theorem 3.8. Follows directly by proposition 4.7. □

5. Examples
In this section we provide examples with the parameters found in Theorems 3.1 to 3.8,
in cases where they are known to exist.

5.1. Theorem 3.1. The classic examples of symmetric conference graphs are the
Paley graphs. The vertex set of such a graph is the set of elements of a finite field
whose order is congruent to 1 (mod 4), and two vertices are connected by an edge if
and only if their difference is a square in the field.

Similarly, the classic examples of doubly regular tournaments are the Paley tour-
naments; the vertex set is the set of elements of a finite field of order congruent
to 3 (mod 4), with an arc from a to b if b − a is a square.

5.2. Theorem 3.2. For the second set of parameters arising in Theorem 3.2, a known
example (with a = 0) is the triangular graph T (6) and its complement; no further
examples are known. For the other sets of parameters, no known example with fewer
than 512 vertices is known. Moreover, due to the large number of vertices that the
given parameters force, it would be very hard to construct one.
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5.3. Theorem 3.3. For the first set of parameters arising in Theorem 3.3 and
for a ⩾ 2, the graphs arising from Steiner systems of the type S(2, a + 1, n)
with a ∈ {1, 2, 3} are known examples. The number of non-isomorphic Steiner
systems (2, 3, 19) is 11, 084, 874, 829 (see [9]); these give pairwise non-isomorphic
graphs. There is no known example of graphs with the second set of parameters, and
the nonexistence in the case a = 2 has been shown by Wilbrink and Brouwer [20].

5.4. Theorem 3.4. We do not have any examples for the first three cases of this
theorem. For the last two (imprimitive) cases, there are examples. Neumann gives
examples for the fourth case based on the group PSL(2, p − 1) where p is a Fermat
prime. For the fifth case, the wreath product of the cyclic group of order 3 with any
2-transitive group of degree n gives an example.

5.5. Theorem 3.7. The cases n = 21 and n = 57 are realised by the groups PGL(2, 7)
and PSL(2, 19) respectively. These can be found in the GAP [5] database of primitive
permutation groups as PrimitiveGroup(21,1) and PrimitiveGroup(57,1) respec-
tively.

The database [6] gives the basis matrices for the first of these, and certifies its
uniqueness. In the second case, the association scheme is also known to be unique [2];
the graph of valency 6 is the distance-transitive Perkel graph [15]. Existence in the
final case with 93 points is undecided, as far as we know.

Acknowledgement. We are grateful to two reviewers for their careful reading of the
paper and helpful comments, which in particular have rectified a gap in our original
argument for Theorem 3.4.
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