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Abstract: Environmentally acceptable and renewably sourced flame retardants are in demand. Recent
studies have shown that the incorporation of the biopolymer lignin into a polymer can improve
its ability to form a char layer upon heating to a high temperature. Char layer formation is a
central component of flame-retardant activity. The covalent modification of lignin is an established
technique that is being applied to the development of potential flame retardants. In this study,
four novel modified lignins were prepared, and their char-forming abilities were assessed using
thermogravimetric analysis. The lignin was obtained from date palm wood using a butanosolv
pretreatment. The removal of the majority of the ester groups from this heavily acylated lignin was
achieved via alkaline hydrolysis. The subsequent modification of the lignin involved the incorporation
of an azide functional group and copper-catalysed azide–alkyne cycloaddition reactions. These
reactions enabled novel organophosphorus heterocycles to be linked to the lignin. Our preliminary
results suggest that the modified lignins had improved char-forming activity compared to the controls.
31P and HSQC NMR and small-molecule X-ray crystallography were used to analyse the prepared
compounds and lignins.

Keywords: organophosphorus; heterocycles; lignin; biomass pretreatment; deacylation; click reaction;
flame retardants; X-ray crystallography; NMR analysis

1. Introduction

Historically, flame-retardant compounds have been toxic and persistent in the environ-
ment, with polyhalogenated/polybrominated flame retardants being a well-documented
issue [1]. These compounds are now largely banned or heavily restricted; therefore, re-
placements are required. Organophosphorus flame retardants (OPFRs) [2–5] are being
developed as less toxic and less harmful alternatives, although this class of compounds is
not concern-free [6,7]. The main effect of OPFRs likely occurs in the condensed phase via
the degradation of the phosphorus motif and polymerisation of resulting free phosphoric
acid-containing units to form a char layer. This layer insulates the flammable substrate from
the required oxygen, disrupting the fire triangle. The incorporation of a nitrogen-containing
functional group to form a P-N bond can provide additional gas-phase flame-retardant
character. The nitrogen-containing gases, formed upon decomposition at elevated tem-
peratures, dilute the oxygen content in the vicinity of the fire and therefore inhibit flame
growth [8,9]. Many OPFRs are physically blended as small molecules into polymers to
produce flame-retardant materials (for example, the extensive use of DOPO [10]). More
recently, rather than just blending, the chemical attachment of a OPFR to the polymer has
been demonstrated, either by covalent [11] or reversible dynamic bonds [12].
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Lignin is a renewable biopolymer isolated from biomass alongside cellulose and
hemicellulose. A wide range of different pretreatments are used to obtain lignin, including
organosolv methods [13,14]. We, and others, have focused on the use of butanol as a
sustainably sourced organic solvent that delivers high-quality lignin via a butanosolv
pretreatment [15–21]. Recently, we have extended the butanosolv methodology to enable
the use of more unusual biomasses, including cocoa pod husks, a by-product from chocolate
manufacturing (Figure 1A) [22].

Importantly, in the context of this work, the simple addition of unmodified lignin
to a polymer is known to enhance the flame-retardant properties of the polymer. This
is proposed to result from the degradation of the lignin, leading to improved char layer
formation [23]. Studies have shown that modification by covalently linking OPFRs to the
lignin can lead to materials with flame-retardant properties (Figure 1A and others) [22,24,25].
Butanosolv lignin is highly suited to selective covalent modification as it is soluble in most
organic solvents enabling the use of standard reaction sequences. For example, butanosolv
(and other) lignins have been used as substrates for grafting on small molecules using
click chemistry [22,26,27]. Increasingly, researchers are interested in enhancing the inherent
flame-retardant properties of lignin through its covalent modification with OPFRs.
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Figure 1. Combining potential organophosphorus flame-retardants (OPFRs) and lignin. (A) Previous
work in which the known OPFR O-DOPO 1 (Scheme 1) was attached to a cocoa pod husk lignin using
the alkyne analogue 2 [22]. (B) This work in which a novel application of the known DOPO analogue
3 is provided and a novel potential OPFR 6 with a lignin prepared from date palm waste is described.
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h; (f) propargylamine, NEt3, THF, 0 °C to rt, 16 h; (g) benzyl azide, sodium ascorbate, CuSO4.5H2O, 
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include the synthesis of phosphorus-, selenium-, or tellerium-containing heterocycles [28–
30]. Here, we present the synthesis of novel P-heterocycles and the structural analysis of 
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Scheme 1. OPFR and model compound synthesis. Conditions: (a) N-chlorosuccinimide, DCM, 0 ◦C
to rt, 16 h; (b) propargylamine, NEt3, DCM, 0 ◦C to rt, 16 h; (c) 8, sodium ascorbate, CuSO4·5H2O,
MeOH, rt, 16 h; (d) POCl3, NEt3, THF, 0 ◦C to rt, 2 h; (e) propargyl alcohol, NEt3, THF, 0 ◦C to rt,
16 h; (f) propargylamine, NEt3, THF, 0 ◦C to rt, 16 h; (g) benzyl azide, sodium ascorbate, CuSO4·5H2O,
MeOH, rt, 16 h.

The work presented here is dedicated to our excellent colleague at the University of St
Andrews, Professor Derek Woollins. Derek’s interests continue to be wide-ranging and include
the synthesis of phosphorus-, selenium-, or tellerium-containing heterocycles [28–30]. Here,
we present the synthesis of novel P-heterocycles and the structural analysis of three of
these through the use of small-molecule X-ray crystallography. In addition, as a direct
result of a collaboration with Derek, we gained access to a relatively understudied biomass
source, date palm wood (Figure 1B). We show that an interesting lignin can be obtained
by subjecting date palm wood to butanosolv pretreatment, complementing previous work
on this lignin type [31]. Through the use of 31P NMR spectroscopy methods, a technique
frequently used by Professor Woollins [32,33], this lignin was characterised before and
after modification with the novel P-heterocycles. Our preliminary assessment of the flame-
retardant potential of the novel lignin–OPFR conjugates will guide future work in this
developing research area. We would like to thank Professor Woollins for his scientific
inspiration and leadership skills.
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2. Results and Discussion
2.1. Phosphorus-Containing Heterocycle Synthesis

The flame-retardant properties of the DOPO motif 1 (Scheme 1) are well known [34–36],
and we have previously reported that after the attachment of O-propargyl DOPO 2 to lignin,
the resulting product demonstrates potential flame-retardant properties (Figure 1A) [22].
Based on previous reports [8], the use of N-propargyl DOPO analogue 3 may enable
additional gas-phase cooperative flame-retardant activity in this system.

The synthesis and/or use of 3 has been reported in the context of electrode addi-
tives [37] and bioactive compound synthesis [38]; however, a slightly modified approach
to 3 was used here to convert DOPO 1 to 3 via 4 (Scheme 1). A small-molecule X-ray
crystallographic analysis of 3 was carried out (Figure 2).
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Figure 2. Thermal ellipsoid plots (50% probability ellipsoids) of the structures of: (a) 3, selected bond
lengths (Å), angles (◦), and torsions (◦): P1-O1 1.478(3), P1-O2 1.600(3), P1-N1 1.616(3), P1-C8 1.780(4),
C21-C22 1.456(6), C22-C23 1.182(6), O2-P1-C8 101.90(17), O1-P1-N1 111.46(17), C21-C22-C23 176.4(5),
P1-N1-C21-C22 -122.6(4). (b) 5, selected bond lengths (Å), angles (◦), and torsions (◦): P1-O1 1.457(4),
P1-O2 1.585(4), P1-O3 1.575(4), P1-O4 1.569(4), C21-C22 1.501(15), C22-C23 1.156(15), P2-O21 1.453(4),
P2-O22 1.590(4), P2-O23 1.580(4), P2-O24 1.567(3), C51-C52 1.429(15), C52-C53 1.200(17), O2-P1-O3
104.75(19). O1-P1-O4 116.7(2), O22-P2-O23 104.46(19), O21-P2-O24 116.5(2), C21-C22-C23 176.5(9),
C51-C52-C53 177.9(8), P1-O4-C21-C22 73.7(5), P2-O24-C51-C52 75.8(5). (c) 6, selected bond lengths
(Å), angles (◦), and torsions (◦): P1-O1 1.4666(8), P1-O2 1.5975(8), P1-O3 1.5898(8), P1-N2 1.6109(10),
C21-C22 1.4637(18), C22-C23 1.1834(19), O2-P1-O3 102.49(4). O1-P1-N2 113.25(5), C21-C22-C23
178.95(15), P1-N2-C21-C22 -110.21(10).

It has been proposed that dibenzo[d,f][1,3,2]-dioxaphosphepine 6-oxide (BPPO)-derived
phosphorus heterocycles should also demonstrate flame-retardant properties [39,40]. Novel
compounds O- and N-propargyl BPPO 5 and 6, respectively, were therefore prepared via 7
(Scheme 1). The preliminary testing of the use of O-propargyl BPPO 5 in copper-catalysed
alkyne–azide click reactions (CuAAC) identified several issues on both models and lignin
(see SI for more detail, Figure S1); therefore, the main focus of this study became the
modification of lignin by N-propargyl DOPO 3 and N-propargyl BPPO 6.

2.2. X-ray Crystallography

Crystals of 3, 5, and 6 suitable for X-ray analysis were grown from ethanol,
dichloromethane, or isopropanol solutions of the respective compounds. The compounds
crystallised in the monoclinic P21/c, orthorhombic Pca21, and triclinic P1 space groups,
respectively, and contain either one (3 and 6) or two (5) molecules in the asymmetric units
(Figure 2). The two aryl groups in 3 are nearly co-planar with a slight twist of 9.77(14)◦, with
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the six membered oxophosphinine ring forming a slightly distorted hexagon (O2-P1-C8
101.90(17)◦). In contrast, the two aryl groups in both 5 and 6 show moderate twists of
46.2(2)◦, 44.1(2)◦, and 42.61(4)◦, respectively, and have slightly puckered dioxophosphepine
rings (endo-cyclic O-P-O 104.75(19)◦, 104.46(19)◦, and 102.49(4)◦).

Compounds 3 and 6 form hydrogen bonded chains down [1 0 0] and [0 1 0], respec-
tively, through C(7)

[
R2

2(8)R2
4(14)

]
motifs composed of both moderate strength NH···O

(H···O 1.88(2) and 2.017(14) Å, N···O 2.846(4) and 2.9101(13) Å) and non-classical CspH···O
(H···O 2.278(3) and 2.2846(8) Å, C···O 3.208(6) and 3.2049(16) Å) hydrogen bonds (Figure 3
for 3). When viewed down [1 0 0], the hydrogen bonded chains of 3 form a herringbone ar-
rangement. A combination of weaker CH···O (H···O 2.557(3) and 2.707(3) Å, C···O 3.409(5)
and 3.617(6) Å) and π-stacking (C···centroid 3.708(4) Å) interactions leads to the formation
of sheets in the (1 0 0) plane. The chains of 6 do not adopt a herringbone arrangement and
form sheets in the (0 1 0) plane through weak CH···O interactions (H···O 2.5870(8) Å and
2.8830(8) Å, C···O 3.5218(14) and 3.6209(14) Å).
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In the structure of 5, each molecule forms C(7)
[
R3

3(14)
]

chains down [1 0 0] through
non-classical CspH···O (H···O 2.577(4) and 2.544(4) Å, C···O 3.446(13) and 3.437(12) Å) and
weaker CH···O (H···O 2.376(4) and 2.378(4) Å, C···O 3.362(10) and 3.353(10) Å) hydrogen
bonds, supported by CH···π interactions (H···centroid 3.001(3) Å, C···centroid 3.821(9)
Å) (Figure 4). These chains form sheets in the (1 0 0) plane through weak CH···O (H···O
2.588(4)–2.678(4) Å, C···O 3.216(8)–3.489(7) Å), CH···π (H···centroid 2.888(3) Å, C···centroid
3.712(8) Å), and π···π (centroid···centroid 3.723(2) Å) interactions.
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2.3. Model Compound Synthesis

Due to the complex heterogeneous structure of lignin [41], the assignment of structural
features via NMR analysis is aided by the preparation and NMR analysis of simplified
model compounds [42]. We have previously prepared models of the butoxylated β-O-4 link-
age modified with various functional groups at the γ-position, including 8, which contains
an azide functionality that can be utilised in copper-catalysed azide–alkyne cycloaddition
(CuAAC) click reactions (Scheme 1) [43]. Novel model compounds 9, 10, and 11 were
prepared from 8 and characterised for comparison with the modified lignins (Scheme 1).

2.4. Lignin Substrate Preparation

Using a procedure previously described in the literature (optimised for unusual
biomasses [22]), a sample of date palm wood (DPW) was processed using a butanol
pretreatment to prepare a date palm wood lignin (DPW Lignin) in good yield (Figure S2).
This butanosolv lignin was initially characterised by 2D HSQC NMR and quantitative 31P
NMR after phosphitylation using a procedure previously described in the literature [44,45]
(Figures 5A–C and S3A and Tables S1 and S2). Whilst the aliphatic OH content of this
lignin was reasonably high (6.8 mmol/g, Figure 5A,B), it was observed that many of the
potentially modifiable β-O-4 sites were acylated (Figure 5C).

These acyl groups were expected based on previous reports that have shown that
date palm lignins contain a range of ester pendant groups at the γ-position of the β-O-4
units, including abundant benzoate and p-hydroxybenzoate esters, as well as minor com-
ponents such as vanillic and syringic esters [31]. Inspired by well-established methods
of hydrolysing ester units in lignin [31,46,47], aqueous sodium hydroxide solution was
used with a sample of DPW lignin to produce a deacylated lignin (DeAcyl Lignin). Fol-
lowing this reaction, there was a nearly 40% increase in aliphatic OH content (from 6.8 to
9.4 mmol/g, Figure 5B), with the acylated β-O-4 linkage content (labelled p-BH in Figure 5)
having decreased. Detailed HSQC and HMBC NMR analyses of the aqueous component af-
ter hydrolysis allowed for identification of the free benzoic, p-hydroxybenzoic, and syringic
acids that were cleaved from the lignin (Figure S4). The identification of the free acids
facilitated the assignment of the corresponding ester moieties in the aromatic region of the
HSQC NMR spectra of the lignin (Figure S3). Whilst each of these ester moieties have been
identified in palm lignins before, the expected relative abundance differed compared to
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previous reports [22]. No p-coumarate or ferulate esters were detected in the HSQC NMR
analysis, possibly suggesting that these esters were more facile to hydrolyse and may have
been removed earlier in the processing of the biomass, as observed with acetyl groups in a
previous work [22].
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Figure 5. (A) Quantitative 31P NMR analysis after the phosphitylation [44,45] of the starting date 
palm wood lignin (DPW Lignin, top) and the deacylated lignin (DeAcyl Lignin, bottom) obtained 
after aqueous hydroxide treatment with integrals corresponding to relevant structural features; (B) 
calculated hydroxyl content of DPW Lignin and DeAcyl Lignin; HSQC NMR (700 MHz, DMSO-
d6) analysis of the linkage region of (C) DPW lignin and (D) DeAcyl lignin, with the region corre-
sponding to the CH2OAcyl in the γ-position of acylated β-O-4 units highlighted in the red circle (see 
structure of Acylated β-O-4 unit in Figure 5 right hand side). Colour-coded structures that 

Figure 5. (A) Quantitative 31P NMR analysis after the phosphitylation [44,45] of the starting date
palm wood lignin (DPW Lignin, top) and the deacylated lignin (DeAcyl Lignin, bottom) obtained
after aqueous hydroxide treatment with integrals corresponding to relevant structural features;
(B) calculated hydroxyl content of DPW Lignin and DeAcyl Lignin; HSQC NMR (700 MHz, DMSO-
d6) analysis of the linkage region of (C) DPW lignin and (D) DeAcyl lignin, with the region corre-
sponding to the CH2OAcyl in the γ-position of acylated β-O-4 units highlighted in the red circle
(see structure of Acylated β-O-4 unit in Figure 5 right hand side). Colour-coded structures that
correspond to regions in the HSQC NMR spectra are shown. The corresponding aromatic regions are
shown in Figure S3.

2.5. Lignin Modification

Having obtained the required date palm lignins in sufficient quantities, subsequent
modification to incorporate azide functional groups was carried out (Scheme 2) based on
previously established methods [43]. This culminated in the synthesis of DPW Lignin N3
and DeAcyl Lignin N3, which were characterised by HSQC NMR and IR at each stage to
confirm successful modification (see SI for further details; Figures S5 and S6).

The modified lignins containing an azide functional handle at the γ-position were
then reacted with OPFRs 3 or 6 under CuAAC click conditions to prepare grafted lignins.
These modified lignin samples were precipitated and then further purified via column
chromatography on silica gel to give final lignins DPW-3 (118 wt% yield), DPW-6 (137 wt%),
DeAcyl-3 (130 wt%), and DeAcyl-6 (137 wt%). Some challenges were encountered at this
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stage due to the polar nature of both the OPFRs and the final modified lignin (see below
and SI for a more detailed discussion).
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2.6. OPFR-Grafted Lignin Characterisation

The 31P NMR and HSQC NMR analyses of model compound 9 (structure in Scheme 1)
were compared with the NMR spectra of the OPFR grafted lignins obtained from reaction
with 3 to determine if the click reaction had been successful. The broad signal in the 31P
NMR spectrum corresponding to the final DPW lignin (DPW-3) obtained upon the CuAAC
reaction of DPW lignin N3 with 3 showed good alignment with the signals for model
compound 9 (diastereomeric mixture, Figure 6A). However, a sharp signal corresponding to
free 3 that was contaminating DPW-3 was also observed. In addition, overlay of the HSQC
NMR analysis of 9 with the final deacylated lignin (DeAcyl-3) obtained upon the CuAAC
reaction of DeAcyl lignin N3 with 3 also supported a successful reaction (Figure 6B). For
example, a signal at 1H 4.30-3.85/13C 37.2-34.1 corresponded to the methylene hydrogens
adjacent to the newly formed triazole ring (Figure 6B). This shows perfect overlay with
the analogous signal in 9. However, the presence of unreacted OPFR 3 was also observed
in the HSQC NMR spectra (Figure S7). Analogous results were obtained for the other
possible combinations of the lignin azides with the OPFRs (for DeAcyl lignin N3 and 6,
see Figure 6C, and for all other combinations, see Figure S7). Whilst it was gratifying
that the CuAAC reaction was successful for all combinations tested, it was disappointing
that, despite purifying the final lignins via column chromatography, it was not possible
to remove all of the starting small-molecule OPFRs. This observation was in contrast to a
previous report on how one can successfully purify OPFR-grafted lignins when using OPFR
2 (Figure 1A and Scheme 1) and cocoa pod husk lignin [22]. Presumably, the incorporation
of the NHR motif into the OPFR structures (in 3 and 6 compared to 2) meant that the OPFRs
co-eluted with the lignin during purification. Attempts to solve this problem will be the
subject of future work.
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analysis (TGA) of the four final lignins (DPW-3, DPW-6, DeAcyl-3, and DeAcyl-6). It was 
proposed that a control TGA experiment would also be carried out, in which a physical mix-
ture (blend) of non-modified DPW Lignin and the model compound 12 (Scheme 1) would be 
used. Small molecule 12 represents a compound in which the triazole ring formed in a CuAAc 
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mixture is referred to as the Control Mixture below. It was decided that a 5:1 w/w ratio of 

Figure 6. (A) 31P NMR spectra of OPFR 3 (top), grafted DWP Lignin (DPW-3, middle), and model
compound 9 (bottom) emphasising the successful modification of the DWP lignin N3 on reaction
with 3 under CuAAC conditions. The final lignin sample was contaminated with unreacted 3
(Figure S7); (B) HSQC NMR (700 MHz, DMSO-d6) analysis of the linkage region of DeAcyl Lignin
grafted with 3 (overlaid with the analysis of 9, black); (C) HSQC NMR (700 MHz, DMSO-d6) analysis
of the linkage region of DeAcyl Lignin grafted with 6 (overlaid with the analysis of 11, black). See
Scheme 1 for the structures of 9 and 11.

2.7. Thermogravimetric Analysis of OPFR-Grafted Lignins

Despite the presence of small molecular impurities in the final samples of the OPFR-
grafted lignins, it was decided to complete this study by carrying out a thermogravimetric
analysis (TGA) of the four final lignins (DPW-3, DPW-6, DeAcyl-3, and DeAcyl-6). It was
proposed that a control TGA experiment would also be carried out, in which a physical
mixture (blend) of non-modified DPW Lignin and the model compound 12 (Scheme 1)
would be used. Small molecule 12 represents a compound in which the triazole ring
formed in a CuAAc reaction is present, hence enabling the impact of the triazole ring to
also be controlled for. This mixture is referred to as the Control Mixture below. It was
decided that a 5:1 w/w ratio of DPW Lignin/12 should be used as it was felt that this
corresponded to a higher level of small molecule contaminant 12 compared to the amounts
of small-molecule OPFRs likely present in the final lignin samples. Any difference in the
TGA results (Figure 7) of the final lignins from this Control Mixture must be due to the
presence of the grafted OPFRs.
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Figure 7. TGA curves of the original (DPW and DeAcyl lignin) and modified lignins (DPW-3,
DPW-6, DeAcyl-3, DeAcyl-6) and of the Control Mixture. Curves were normalised to set 100 wt% at
110 ◦C after the drying isotherm.



Molecules 2023, 28, 7885 10 of 15

A key factor in assessing the potential of a material for use in flame-retardant applica-
tions is char formation. This is determined by comparing the mass of sample remaining (as
char) after heating the sample to temperatures nearing 1000 ◦C against suitable controls.
Here, three control samples were used: (i) the starting date palm wood lignin (DPW lignin),
(ii) the starting deacylated DPW lignin (DeAcyl lignin), and (iii) the Control Mixture dis-
cussed above. These controls were compared to the four test lignins: DPW-3, DPW-6,
DeAcyl-3, and DeAcyl-6. In brief, the two starting lignins (DPW and DeAcyl lignins) did
lead to some char formation, as expected, but this was lower than the amount of char
formed by the test lignins. Interestingly, the two best performing lignins were DeAcyl-3
and DeAcyl-6, which are believed to contain a greater amount of OPFRs covalently bonded
to the lignin compared to DPW-3 and DPW-6. In addition, both DeAcyl-3 and DeAcyl-6
formed an increased amount of char compared to the Control Mixture, suggesting that the
covalent attachment of the OPFRs to the lignin may provide an advantage over just simply
physically mixing OPFRs with lignin. While further work is clearly required to assess the
full potential of these materials, one possible explanation for the observed differences is
that by holding the OPFR motif closer to the lignin through the use of a covalent bond,
the initial degradation reaction is more likely to lead to the intertwining of the lignin- and
OPFR-derived chars. This may provide additional structure to the forming char, ultimately
improving its formation and therefore the overall char-forming ability of the bulk material.

3. Materials and Methods

For a detailed discussion of the lignin experimental procedures, lignin model compounds
synthesis, and general experimental considerations, see the Supplementary Materials.

3.1. 6-(prop-2-yn-1-ylamino)dibenzo[c,e][1,2]oxaphosphinine 6-oxide 3
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DOPO 1 (2.02 g, 9.33 mmol, 1.00 eq.) was dissolved in DCM (25 mL) and cooled
to 0 ◦C under a N2 atmosphere. N-chlorosuccinimide (1.37 g, 10.3 mmol, 1.10 eq.) was
added slowly portionwise over 10 min, and the resulting mixture was warmed to rt and
stirred under N2 for 16 h. The resulting suspension was filtered, and the solvent was
removed under reduced pressure to afford intermediate 4, which was used immediately
in the next step. Crude 4 was dissolved in fresh DCM (25 mL) and cooled to 0 ◦C under
N2, and propargylamine (1.56 mL, 11.2 mmol, 1.20 eq.) and NEt3 (0.72 mL, 11.2 mmol,
1.20 eq.) were added slowly dropwise over 10 min then warmed to rt and stirred for
16 h under N2. The resulting suspension was filtered, and the filtrate diluted with aq.
sat. NaHCO3 (20 mL) and extracted with DCM (3 × 15 mL). The combined organic
extracts were washed with brine (20 mL) and dried over anhydrous MgSO4, and the
solvent was removed under reduced pressure. The crude product was purified via column
chromatography on silica gel eluting with EtOAc/hexane (0–95%) to afford 6-(prop-2-yn-
1-ylamino)dibenzo[c,e][1,2]oxaphosphinine 6-oxide 3 (1.82 g, 72%) as a yellow solid. 1H
NMR (500 MHz, DMSO-d6) δ 3.18 (1H, t, J = 2.5 Hz, H16), 3.67–3.74 (2H, m, H14), 6.24
(1H, dt, J = 13.3, 6.8 Hz, H13), 7.27 (1H, dd, J = 8.1, 1.3 Hz, H4), 7.29–7.34 (1H, m, H2),
7.42–7.48 (1H, m, H3), 7.56–7.62 (1H, m, H10), 7.74–7.80 (1H, m, H11), 7.82–7.88 (1H, m,
H9), 8.16–8.23 (2H, m, H1/12). 13C NMR (126 MHz, DMSO-d6) δ 29.59 (C14), 73.55 (C16),
82.30 (d, J = 5.4 Hz, C15), 120.23 (d, J = 5.9 Hz, C4), 121.97 (d, J = 11.5 Hz, C6), 124.12 (d,
J = 10.7 Hz, C12), 124.42 (C2), 125.42 (d, J = 162.6 Hz, C8), 125.48 (C8), 128.41 (d, J = 14.1 Hz,
C10), 129.66 (d, J = 10.0 Hz, C9), 130.48 (C3), 132.91 (d, J = 2.3 Hz, C11), 135.96 (d, J = 6.8 Hz,
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C7), 149.36 (d, J = 7.0 Hz, C5). 31P NMR (202 MHz, DMSO-d6) δ 14.39. IR (ATR) 3229, 3167,
2893, 1597, 1477, 1444, 1213, 1168, 922, 752. mp 147–148 ◦C. HRMS (ESI) calculated for
C15H12O2NPNa [M + Na]+ 292.0503; found 292.0495.

3.2. 6-(prop-2-yn-1-yloxy)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide 5
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cohol (0.69 mL, 11.9 mmol, 1.10 eq.) and NEt3 (1.64 mL, 11.77 mmol, 1.1 eq.) were dissolved
in dry THF (5 mL), and the amine solution was added slowly dropwise over 10 min, then
warmed to rt, and subsequently stirred for 16 h. The resulting suspension was filtered, and
the solvent was removed from the filtrate under reduced pressure, and the crude product
was purified via column chromatography on silica gel eluting with EtOAc/hexane (0–75%)
to afford 6-(prop-2-yn-1-yloxy)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide 5 (2.26 g, 74%)
as an off-white solid. 1H NMR (500 MHz, DMSO-d6) δ 3.90 (1H, t, J = 2.4 Hz, H9), 5.02
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δ 56.75 (d, J = 4.3 Hz, C7), 77.65 (d, J = 6.6 Hz, C8), 80.12 (C9), 121.31 (d, J = 4.4 Hz, C6),
127.10 (C4), 127.45 (C2), 130.31 (C11), 130.66 (C5), 146.91 (d, J = 9.1 Hz, C1). 31P NMR
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2,2′-biphenol (2.00 g, 10.7 mmol, 1.00 eq.) was dissolved in dry THF (40 mL) and
cooled to 0 ◦C under N2. POCl3 (1.00 mL, 10.7 mmol, 1.00 eq.) was added, followed
by the dropwise addition of NEt3 (3.00 mL, 21.5 mmol, 2.00 eq.), and then warmed to
rt and stirred under N2 for 3 h. The resulting suspension was filtered, and the solvent
was removed from the filtrate under reduced pressure to afford intermediate 7, which
was used immediately in the next step. Crude 7 was dissolved in fresh dry THF (25 mL)
and cooled to 0 ◦C under N2. Propargylamine (0.76 mL, 11.9 mmol, 1.10 eq.) and NEt3
(1.67 mL, 12.0 mmol, 1.10 eq.) were dissolved in dry THF (5 mL), and the amine so-
lution was added slowly dropwise over 10 min, then warmed to rt, and subsequently
stirred for 16 h. The resulting suspension was filtered, and the solvent was removed
from the filtrate under reduced pressure, and the crude product was purified via column
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chromatography on silica gel eluting with EtOAc/hexane (0–80%) to afford 6-(prop-2-yn-1-
ylamino)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide 6 (2.16 g, 69%) as an orange solid.
1H NMR (500 MHz, DMSO-d6) δ 3.28 (1H, t, J = 2.5 Hz, H10), 3.69 (2H, ddd, J = 14.5, 6.9,
2.5 Hz, H8), 6.47 (1H, dt, J = 13.9, 6.9 Hz, H7), 7.32–7.36 (2H, m, H6), 7.41–7.46 (2H, m,
H4), 7.54 (2H, dddd, J = 8.1, 7.4, 1.7, 0.8 Hz, H5), 7.68 (2H, dd, J = 7.7, 1.7 Hz, H3). 13C
NMR (126 MHz, DMSO-d6) δ 30.21 (C8), 73.77 (C10), 82.11 (d, J = 4.4 Hz, C19), 121.77
(d, J = 3.7 Hz, C6), 126.38 (C4), 128.04 (C2), 129.91 (C3), 130.22 (C5), 147.45 (d, J = 9.3 Hz,
C1). 31P NMR (202 MHz, DMSO-d6) δ 13.89. IR (ATR) 3248, 3225, 2918, 1477, 1437, 1246,
1184, 999, 918, 758. mp 182–183 ◦C (decomp.). HRMS (ESI) calculated for C15H12O3NPNa
[M + Na]+ 308.0452; found 308.0439.

3.4. 6-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)dibenzo[d,f][1,3,2]dioxaphosphepine
6-oxide 12
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MHz, DMSO-d6) δ 30.21 (C8), 73.77 (C10), 82.11 (d, J = 4.4 Hz, C19), 121.77 (d, J = 3.7 Hz, 
C6), 126.38 (C4), 128.04 (C2), 129.91 (C3), 130.22 (C5), 147.45 (d, J = 9.3 Hz, C1). 31P NMR 
(202 MHz, DMSO-d6) δ 13.89. IR (ATR) 3248, 3225, 2918, 1477, 1437, 1246, 1184, 999, 918, 
758. mp 182–183 °C (decomp.). HRMS (ESI) calculated for C15H12O3NPNa [M + Na]+ 
308.0452; found 308.0439. 

3.4. 6-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)dibenzo[d,f][1,3,2]dioxaphosphepine 6-
oxide 12 

 
6 (53.8 mg, 0.19 mmol, 1.05 eq.), benzyl azide (23.8 mg, 0.18 mmol, 1.00 eq.), sodium 

ascorbate (7.70 mg, 0.04 mmol, 0.20 eq.), and copper sulfate pentahydrate (9.40 mg, 0.04 
6 (53.8 mg, 0.19 mmol, 1.05 eq.), benzyl azide (23.8 mg, 0.18 mmol, 1.00 eq.),

sodium ascorbate (7.70 mg, 0.04 mmol, 0.20 eq.), and copper sulfate pentahydrate (9.40 mg,
0.04 mmol, 0.20 eq.) were dissolved in MeOH (3 mL) and stirred at rt for 12 h. The reac-
tion was diluted with water (10 mL); extraction was carried out with DCM (3 × 5 mL),
and the combined organic extracts were washed with aq. sat. NaHCO3 (10 mL) and
brine (10 mL) before being dried over anhydrous MgSO4, and the solvent was removed
under reduced pressure. The crude product was purified via column chromatography
on silica gel eluting with EtOAc/hexane (0–90%) to afford6-(((1-benzyl-1H-1,2,3-triazol-4-
yl)methyl)amino)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide 12 (46.8 mg, 63%) as a white
solid. 1H NMR (500 MHz, DMSO-d6) δ 4.11 (2H, dd, J = 13.5, 6.9 Hz, H8), 5.61 (2H, s, H11),
6.46 (1H, dt, J = 13.9, 6.9 Hz, H7), 7.13–7.18 (2H, m, H6), 7.31–7.47 (9H, m, H4/5/13/14/15),
7.64 (2H, dd, J = 7.5, 1.9 Hz, H3), 8.01 (1H, s, H10). 13C NMR (126 MHz, DMSO-d6) δ 36.47
(C8), 52.76 (C11), 121.64 (d, J = 3.6 Hz, C6), 122.94 (C10), 126.26 (C4), 128.02 (C13), 128.04
(C2), 128.16 (C15), 128.78 (C14), 129.87 (C3), 130.11 (C5), 136.21 (C12), 146.46 (d, J = 4.9 Hz,
C9), 147.55 (d, J = 9.3 Hz, C1). 31P NMR (202 MHz, DMSO-d6) δ 13.99. IR (ATR) 2931, 2870,
1593, 1500, 1437, 1251, 1093, 1024, 935, 785, 754. mp 177–178 ◦C HRMS (ESI) calculated for
C22H19O3N4PNa [M + Na]+ 441.1092; found 441.1078.

3.5. X-ray Crystallography

X-ray diffraction data for 5 were collected at 173 K using a Rigaku SCXmini CCD
diffractometer with a SHINE monochromator [Mo Kα radiation (λ = 0.71073 Å)]. Intensity
data were collected usingω steps accumulating area detector images spanning at least a
hemisphere of reciprocal space. X-ray diffraction data for 6 were collected at 125 K using a
Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics with a XtaLAB
P200 diffractometer [Mo Kα radiation (λ = 0.71073 Å)], and data for 3 were collected
at 173 K using a Rigaku MM-007HF High Brilliance RA generator/confocal optics with
XtaLAB P100 diffractometer [Cu Kα radiation (λ = 1.54187 Å)]. Data for 5 were collected
using CrystalClear [48], and for 6 and 3, data were collected using CrysAlisPro [49]; all
data were processed (including correction for Lorentz, polarisation, and absorption) using
CrysAlisPro. Structures were solved using dual-space methods (SHELXT) [50] and refined
using full-matrix least squares against F2 (SHELXL-2019/3) [51]. Non-hydrogen atoms
were refined anisotropically, and hydrogen atoms were refined using a riding model, except
for the hydrogen atoms on N2 (in both 3 and 6), which were located from the difference
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Fourier map and refined isotropically subject to a distance restraint. All calculations were
performed using the Olex2 [52] interface. The structure of 5 is in the polar space group Pca21
and has an ambiguous flack x parameter (0.13(7)). With the lack of chiral directing groups,
the crystal is considered to likely be a racemate. Selected crystallographic data are presented
in Tables S3 and S4. CCDC 2300932–2300934 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via the following link: www.ccdc.cam.ac.uk/structures.

4. Conclusions

The development of novel flame-retardant materials is important. Here, the potential
impact that novel organophosphorus-containing heterocycles bonded to lignin could have
in the context of the development of novel flame-retardant materials was assessed. The
study began with the synthesis of the phosphorus-containing heterocycles that were anal-
ysed using small-molecule X-ray crystallography. The preparation of two different lignins
from date palm was then achieved, and both 31P and 1H-13C HSQC NMR methods were
used to determine the lignin’s structure. The results of our thermogravimetric analysis
revealed that by covalently linking the novel heterocycles to lignin, an increased amount of
char was formed compared to lignin alone or a physically mixed control.

Supplementary Materials: The following supporting information can be downloaded at:
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