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A B S T R A C T

The transition from the epithelial to mesenchymal phenotype and its reverse (from mesenchymal to epithelial)
are crucial processes necessary for the progression and spread of cancer. In this paper, we investigate how
phenotypic switching at the cancer cell level impacts the behaviour at the tissue level, specifically on the
emergence of isolated foci of the invading solid tumour mass leading to a multifocal tumour. To this end, we
propose a new mathematical model of cancer invasion that includes the influence of cancer cell phenotype on
the rate of invasion and metastasis. The implications of the model are explored through numerical simulations
revealing that the plasticity of tumour cell phenotypes appears to be crucial for disease progression and local
invasive spread. The computational simulations show the progression of the invasive spread of a primary
cancer reminiscent of in vivo multifocal breast carcinomas, where multiple, synchronous neoplastic foci are

frequently observed and are associated with a poorer patient prognosis.
1. Introduction

The epithelial-to-mesenchymal transition (EMT) is a reversible pro-
cess of cell phenotype transition from, as the name indicates, the
epithelial phenotype to the mesenchymal phenotype. This transition is
perceived as a crucial developmental program characterised by loss of
cell–cell adhesion, and increased cell mobility [1,2]. The reverse pro-
cess, called mesenchymal-to-epithelial transition (MET), involves trans-
forming mesenchymal-type cells into epithelial-like cells [1,2]. Both
processes are present in at least three different biological contexts [3].
The first one, often referred to as type 1 EMT, is associated with
embryonic development and aims to generate diverse cell types that
share common mesenchymal phenotypes. This type neither causes fi-
brosis nor induces an invasive phenotype (which can result in systemic
spread via the circulation system). Essentially type 1 EMT generates
mesenchymal cells that have the potential to subsequently undergo a
reverse transition to regain the epithelial phenotype [3]. Type 2 EMT is
associated with inflammation and occurs during wound healing, tissue
regeneration, and organ fibrosis. During these processes, otherwise non-
motile epithelial cells pass through EMT, acquire motility properties,
and migrate to a wound site. Once inflammation is attenuated, as is
seen during most cases of wound healing and tissue regeneration, EMT
ceases and cells revert to the epithelial state to restore the integrity of
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the epithelial barrier [3]. Finally, type 3 EMT occurs in neoplastic cells
that have previously undergone genetic and/or epigenetic changes pro-
moting clonal outgrowth and the development of localised tumours [3].
Excessive epithelial cell proliferation and tumour-induced angiogenesis
are recognised as hallmarks of the early stage of growth of primary
epithelial cancers [3,4]. At some point in the development of a solid
tumour cells from the primary cancerous mass start to invade the local
tissue surrounding the tumour. This initial invasion of the local tissue
is the first step in the complex process of secondary spread where the
cancer cells migrate to other locations in the body and set up new life-
threatening tumour foci called metastases. These secondary tumours
are responsible for around 90% of all (human) deaths from cancer [4].

Within the process of invasion, one can distinguish four basic com-
ponents: the adhesion of tumour cells to the extracellular matrix (the
extracellular matrix being the substance that fills the space between
cells that binds cells to tissues and organs), the secretion of matrix-
degrading enzymes by tumour cells, the migration of tumour cells
and finally their proliferation. The migration of tumour cells is the
result of several different mechanisms, the most important of which is
haptotaxis — the movement of cells towards a higher density of non-
diffusive substances such as collagen or fibronectin which are contained
in the extracellular matrix. Migratory tumour cells produce enzymes
vailable online 20 November 2023
877-7503/© 2023 The Author(s). Published by Elsevier B.V. This is an open access
c/4.0/).

https://doi.org/10.1016/j.jocs.2023.102175
Received 14 May 2023; Received in revised form 13 October 2023; Accepted 6 No
article under the CC BY-NC license (http://creativecommons.org/licenses/by-

vember 2023

https://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
mailto:z.szymanska@icm.edu.pl
mailto:lachowic@mimuw.edu.pl
mailto:n.sfakianakis@st-andrews.ac.uk
mailto:majc@st-andrews.ac.uk
https://doi.org/10.1016/j.jocs.2023.102175
https://doi.org/10.1016/j.jocs.2023.102175
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Journal of Computational Science 75 (2024) 102175Z. Szymańska et al.
Fig. 1. Histology image of multifocal breast cancers in 4 different patients. Panels (A)–
(D) exhibit a central tumour with 2–5 foci respectively. Image from Pekar et al. [8]
(Wiley Publishers) under the open access Creative Commons Attributions Licence
(CC-BY).

that digest the extracellular matrix, which in turn leads to the formation
of gradients in its density. It is haptotaxis that is most responsible for
tissue infiltration by tumour cells. Thus, the phenomenon of invasion
is largely understood, but despite many efforts, we lack a deeper
understanding of the relevant details [5]. Nowadays, many efforts are
focused on better understanding the mechanisms governing the pheno-
typic changes leading to increased invasion and the emergence of new
tumour foci. That means chiefly creating more sophisticated in vitro
assays suitable to investigate scenarios like releasing growth factors
during the invasion process [6,7]. Investigation into intratumoural
phenotypic heterogeneity has also been explored [8]. Fig. 1 shows a
sample of histology images of multifocal breast cancers in patients
who had tumours 2–5 foci. The results of this study demonstrated
that patients who had phenotypically heterogeneous, multifocal cancers
had a greater risk of dying from disease and had significantly shorter
survival times.

In this paper, we propose a new mathematical model of cancer
invasion explicitly taking into account the processes of EMT and its
reverse MET. To investigate the importance of these phenomena on
the formation of isolated neoplastic foci, we modify a generic can-
cer invasion model by incorporating the phenotype as a structured
variable describing the density of cancer cells. We chose to model
the tumour cell phenotype as a continuous structure because obser-
vations indicate that cancer cells may undergo EMT differently, with
some cells retaining many epithelial traits while acquiring only some
mesenchymal ones, and other cells dropping most vestiges of their
epithelial origin and becoming fully mesenchymal [9]. In line with the
biological evidence, we model transitions of phenotypes using switch
functions that, depending on the local concentration of TGF-𝛽, force
an appropriate change of phenotype. To the best of our knowledge,
epigenetic changes in phenotypes associated with EMT and MET have
not been modelled in this way. The model behaviour suggests a possible
mechanism responsible for the emergence of isolated focal colonies of
cancer cells, which is clearly illustrated by the numerical simulations
we perform.

2. Related work

The first mathematical models describing the phenomenon of cancer
invasion appeared in the literature more than 25 years ago immediately
gaining much attention as they accurately depict the invasion process
qualitatively [10,11]. Most invasion models have the form of systems
2

of nonlinear partial differential equations describing the proliferation
and migration of cancer cells into the surrounding extracellular matrix.
Typically, these models also take into account the activity of matrix-
degrading enzymes which are produced by cancer cells, breaking down
the components of extracellular matrix thus facilitating the cancer cells
migration. Other variants of the model were proposed depending on the
particular area of interest of researchers. Therefore in the literature,
there are models, which, in addition to the main variables take into
account the effects of other factors [12–16]. For instance, an interesting
extension of the invasion model was proposed in 2005 by Lolas and
Chaplain who described the effect of the dynamics of the urokinase
enzyme on the invasion speed [14]. Another type of modification was
presented in the paper devoted to the study of the effect of heat shock
proteins on cancer invasion [16]. So far, this effect has been linked
to the activation of metalloproteinase, one of the major extracellular
matrix-degrading enzymes [17]. Based on the results of the simula-
tions and experiments, the authors proposed an alternative hypothesis
whereby the effect of heat shock proteins on cancer invasion is achieved
by influencing cellular flexibility.

Apart from taking into account various biochemical factors, the
structure of the generic model has been also modified to better re-
flect the chosen features of the biological system under consideration.
A good example here may be modifications of models to hybrid or
non-local ones. Within the hybrid approach, cancer cells are usu-
ally modelled as discrete individuals which interact with each other
via some type of potential function, while spatiotemporal dynamics
of the other variables in the model, such as extracellular matrix,
matrix-degrading enzymes or stroma are governed by partial differ-
ential equations [18]. Treating biological cells as discrete individuals
has several advantages. First of all, the dynamics of the system are
being investigated from the level of a cell, linking its behaviour with
the macroscopic condition. Cells are influenced by signals from other
cells, external factors, such as nutrient or chemical factors, stress,
and of course their internal signalling pathways. It provides an easy
framework to include different cell types, intracellular dynamics and
spatial location of individual cells. The literature involving hybrid
models is vast and led to obtaining many interesting results, including
both mathematical modelling and methodology development [5]. For
instance, very interesting results concern the influence of the environ-
ment on the emergence of the malignant glycolytic phenotype [19],
while others examine how individual-based cell interactions can af-
fect the tumour shape [20]. Due to the extreme complexity of the
global system, such models often require so-called hybrid approaches
to computational implementation, with systems enabling coarse-grain
and fine-grain parallel implementation. This has led to the development
of several high-performance simulation platforms with cutting-edge,
tailored-to-the-problem algorithmic solutions [21–25].

The non-local approach is usually used to model processes where
the interacting entities are some distance apart, which leads to par-
tial integro-differential equations. Usually, this means simplifying the
description of the investigated processes because even if there are
known information-transmitting factors, taking them into account di-
rectly would in most cases complicate the model leading to analysis
becoming unfeasible. In the past, non-local approaches were used to
model the invasion process, for instance, to capture adhesive prop-
erties of in vivoin vivo cells [26,27], cell motion [28], cell–matrix
interactions [29], variable cell–cell and cell–matrix adhesion [30], and
cell proliferation [31,32]. These models address the problem using
non-local integral terms for both cell–cell and cell–matrix interactions
and the concepts of adhesive flux and cell sensing radius. Innovative
multiscale modelling along with a moving boundary approach has also
been pioneered to examine interactions between the cancer cells and
the components of the extracellular matrix [33–35].

More recently raised the idea of describing different or even chang-
ing, properties of cancer cells with a variable describing phenotype. The
cellular phenotypes were modelled using both discrete and continuous
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approaches [36–38]. Focusing on the continuous description which
appears now to be more suitable to capture epigenetic changes, we
note that a continuous structural variable was used to model, for
instance, the selection of chemoresistant phenotypes within cancer
treatment [39,40]. Later that concept was also adopted to model the
emergence of phenotypic heterogeneity within a solid tumour [41,42].

The activation of the EMT program is perceived as the critical
mechanism for acquiring malignant phenotypes by epithelial cancer
cells. Therefore, the genetic and biochemical mechanisms underlying
the acquisition of the invasive phenotype and the subsequent systemic
dissemination of the cancer cell is a focus of intensive studies [3]. The
importance of the topic, and the fact that many aspects of the EMT
transition associated with cancer are still unclear, the issue also gained
interest from the mathematical modelling community. Therefore, in the
recent past, several mathematical models aiming to shed more light on
the phenomenon have also been proposed [43–50].

3. The mathematical model

We consider three functions: 𝑐(𝑡, 𝑥, 𝛼), 𝑣(𝑡, 𝑥), and 𝑓 (𝑡, 𝑥) describ-
ing the cancer cells, tumour micro-environment densities, and growth
factors concentrations, respectively. More precisely, the function 𝑐 =
𝑐(𝑡, 𝑥, 𝛼) describes the density of cancer cells at the instant of time 𝑡 ≥ 0,
at position 𝑥 ∈ D, where D is a bounded domain in R𝑛 and 𝛼 ∈ [0, 1] is
a parameter that describes the cell’s phenotype along the epithelial–
mesenchymal axis. We assume that 𝛼 = 0 corresponds to purely
epithelial-like cancer cells, 𝛼 = 1 corresponds to purely mesenchymal-
like cancer cells, and 0 < 𝛼 < 1 stands for intermediate phenotypes.
Function 𝑣(𝑡, 𝑥) describes the density of the tissue surrounding the
primary tumour at the instant of time 𝑡 ≥ 0, at position 𝑥 ∈ D. For
simplicity, we represent the surrounding tissue using one function that
comprises the description of the extracellular matrix (ECM) and tissue-
resident fibroblasts. Finally, to complete the essential description of the
system regulating the change in cancer cells’ phenotype we consider the
main signalling factor responsible for the epithelial and mesenchymal
transitions, namely transforming growth factor beta (TGF-𝛽). The func-
tion 𝑓 (𝑡, 𝑥) stands for the concentration of TGF-𝛽 at the instant of time
𝑡 ≥ 0, at position 𝑥 ∈ D, whose concentration conditions the phenotype
of cancer cells, i.e. it shifts towards a more epithelial phenotype or
mesenchymal one.

Cancer cells: Epithelial cells are characterised by the stable cell–
cell junction, apical-basal polarity and interactions with the basement
membrane. During EMT cells acquire mesenchymal characteristics, that
is fibroblast-like morphology and cytoskeleton architecture, as well as
invasive properties including increased migratory capacity [51]. There
is growing evidence that EMT is triggered in response to signals that
cells receive from their micro-environment and the activation and exe-
cution of EMT do not require changes in DNA sequence and is as a result
of complex epigenetic regulatory programmes. Recent studies support
this hypothesis as it was demonstrated that some cell populations might
undergo multiple rounds of EMT and MET, indicating substantial phe-
notypic plasticity [51]. Moreover, EMT programmes rarely function as
binary switches that toggle between the two extremes of the epithelial–
mesenchymal spectrum [52]. On the contrary, an important feature of
the type 3 EMT that was observed in vivo is that EMT is often incom-
plete, which results in the emergence of cells that are in intermediate
states having both epithelial and mesenchymal characteristics [53–57].
We furthermore assume that there are sufficient nutrients in the tumour
microenvironment to sustain the proliferation of the cancer cells.

Induction of EMT is regulated by extracellular signals and fre-
quently involves cooperation between various signalling pathways
among which TGF-𝛽 plays a dominant role [58,59]. It was found that
TGF-𝛽 signalling is required not only for inducing EMT but also for
maintenance of in vitro invasiveness and metastasis [59–62]. Precisely,
3

inhibition of TGF-𝛽 signalling prevents EMT in epithelial cells and
causes MET in mesenchymal tumour cells [61–63]. Phenotypic re-
verted epithelial cells obtained after MET induction presented epithelial
morphologies and proliferation rates resembling E cells [63]. TGF-𝛽
binds to complexes of receptors and activates the crucial factors that
trigger EMT, namely proteins from Snail and Prrx1 families [58,64–
67]. In particular, Prrx1 was identified as an EMT inducer that can
trigger the whole process independently on Snail1 and in a dose-
dependent manner [67]. Upon the expression of Prrx1 cells acquire the
mesenchymal-like phenotype and invasive properties, while the loss of
Prrx1 allows mesenchymal cells a complete reversion to the epithelial
phenotype even in the presence of the classical EMT inducers [67].
Knowing that a drop in concentration of Prrx1 causes MET and that
the level of Prrx1 depends on TGF-𝛽 activation, we assume that MET
is also TGF-𝛽 dependent, however, this dependence is inverse [67]. As
both processes have limited intensity we assume that TGF-𝛽-dependent
stimulation of the EMT process is described by

𝑆𝐸𝑀𝑇 (𝑓 ) =
𝐿emt

1 + 𝑒−𝜆
emt

(

𝑓−𝑓emt
0

) , (1)

where 𝜆emt and 𝑓 emt
0 define the intensity (slope) of the process, whereas

𝐿emt is its maximal strength. We opt for this particular switch function
as it provides good control of the inflection point, the asymptotic
values, and the transition rate between them, cf. Fig. 2.

Similarly, for the TGF-𝛽 dependent MET switch we propose

𝑆𝑀𝐸𝑇 (𝑓 ) =
𝐿met

1 + 𝑒𝜆
met

(

𝑓−𝑓met
0

) , (2)

with analogical interpretation of parameters 𝜆met, 𝑓met
0 and 𝐿met. The

integral terms describe the change in the phenotype, with the kernel
𝑘(𝛼, 𝛼′) describing the nature of these changes. We require that the
kernel 𝑘(𝛼, 𝛼′) is symmetrical, that is 𝑘(𝛼, 𝛼′) = 𝑘(𝛼′, 𝛼). To sum up, we
assume that the influx and outflux of the cancer cells of phenotype 𝛼
due to the EMT are given by

𝐿emt

1 + 𝑒−𝜆emt(𝑓−𝑓 emt
0 )

(

∫

𝛼

0
𝑘(𝛼, 𝛼′)𝑐(𝑡, 𝑥, 𝛼′) 𝑑𝛼′ − 𝑐(𝑡, 𝑥, 𝛼)∫

1

𝛼
𝑘(𝛼, 𝛼′) 𝑑𝛼′

)

,

(3)

hereas the influx and outflux of the cancer cells of phenotype 𝛼 due
o the MET is given by

𝐿met

1 + 𝑒𝜆
met

(

𝑓−𝑓met
0

)

(

∫

1

𝛼
𝑘(𝛼, 𝛼′)𝑐(𝑡, 𝑥, 𝛼′) 𝑑𝛼′ − 𝑐(𝑡, 𝑥, 𝛼)∫

𝛼

0
𝑘(𝛼, 𝛼′) 𝑑𝛼′

)

.

(4)

We may note that both the terms given by Eqs. (3) and (4) are
conservative in the sense that the integrals with respect to 𝛼 over [0,1]
give 0. This means that these terms do not cause any growth — they
just describe the changes of phenotype 𝛼. To approximate the character
of EMT and MET processes we choose the kernel

𝑘(𝛼, 𝛼′) = 𝑒−𝛾(𝛼−𝛼
′)2 (5)

as it gives more probability to the phenotypic change to a similar
rather than a distant one. We note here the symmetric dependence
of the EMT and MET operators on 𝛼. We note that one of the key
differences between the two phenotypes is the difference in adhesion,
with epithelial phenotypes being more self-adhesive and mesenchymal
phenotypes being less self-adhesive (i.e. more loosely connected, to the
point of being free individual cells). Hence, the EMT transition serves
as a proxy for the loss of cell–cell adhesion. For this reason, we have
chosen not to explicitly include cell–cell adhesion in this model but this
could be done in future developments of this work using a non-local
kernel which will fit nicely with the structure of the current model,
cf. [30].

We assume that the cancer cells migrate into the surrounding tissue

through a combination of diffusion and haptotaxis, with haptotaxis
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Fig. 2. (a) Examples of the sigmoid function used as (𝑓 dependent) EMT and MET switches, cf. (1) and (2). They are also used for the (𝛼 dependent) cancer cell diffusivity (6)
and chemotaxis sensitivity (7). (b) Examples of the exponential functions used as the (𝛼 dependent) proliferation switch, cf. (8).
being the dominant mechanism. Therefore we consider some (relatively
small) diffusion of cancer cells and a more pronounced cancer cell hap-
totaxis towards higher densities of ECM components that co-constitute
the surrounding tissue. We assume that both types of movement depend
on the cell phenotype, that is, epithelial cells due to their tight junctions
with neighbouring cells tend to be more sessile, whereas mesenchy-
mal cells are highly motile. These features are captured through the
diffusion coefficient 𝐷𝑐 and haptotaxis sensitivity 𝜒𝑐 being functions
of the phenotype 𝛼. The diffusivity of the cells is assumed to be
correlated with the migratory properties of the cancer cells (i.e. with
𝛼), with epithelial cells having low diffusion and mesenchymal cells
having higher diffusion. Furthermore, to take into account the interac-
tions of the cancer cells and the ECM, we model this using a porous
medium-like diffusion coefficient. This has been used and discussed
previously in [68–71] and has the added benefit of providing a bio-
logically relevant finite propagation speed [72,73]. Altogether we take
the diffusivity of the cancer cells to be

𝐷𝑐 (𝑐, 𝛼) = 𝑐2(𝑡, 𝑥, 𝛼)
𝐷𝑀

𝑐

1 + 𝑒−𝐷𝑠𝑙
𝑐 (𝛼−𝐷𝛼0

𝑐 )
, (6)

where 𝐷𝑀
𝑐 is the maximum diffusivity, and where the dependence on

𝛼 is a typical sigmoid curve with 𝐷𝑠𝑙
𝑐 its maximum slope and 𝐷𝛼0

𝑐 the
corresponding middle point of the sigmoid. Similarly, the haptotactic
response 𝜒𝑐 of the cancer cells has been modelled to have a dependence
on the phenotype 𝛼. Namely, we assume a sigmoid-like dependence

𝜒𝑐 (𝛼) =
𝜒𝑀
𝑐

1 + 𝑒−𝜒𝑠𝑙
𝑐 (𝛼−𝜒𝛼0

𝑐 )
, (7)

where 𝜒𝑀
𝑐 represents the maximum haptotactic sensitivity achieved

by larger values of 𝛼, 𝜒𝑠𝑙
𝑐 the slope of sigmoid curve, and 𝜒𝛼0

𝑐 the
corresponding inflection point. We refer to Fig. 2 for a graphical
representation for both (6) and (7).

Finally, the last term to include in the equation describing the
cancer cell dynamics is the proliferation of cancer cells. Focusing on
phenotypic transition we employ the simple logistic type of prolifera-
tion with an inhibition term for overcrowded regions. However, as the
proliferation rate strongly depends on cell phenotype, with epithelial
cells, contrary to mesenchymal ones, being highly proliferative, we use
an 𝛼 dependent proliferation coefficient. Function

𝛾𝑐 (𝛼) =
𝛾𝑐

1 + 𝑒𝛾∗𝑐 𝛼
, (8)

with 𝛾𝑐 and 𝛾∗𝑐 being constants, assigns the maximum proliferation
value for endothelial cells, and for cells with a pure mesenchymal
phenotype, the value is close to none. Altogether we get the following
equation for cancer cell dynamics

𝜕 𝑐(𝑡, 𝑥, 𝛼)
4

𝜕 𝑡
= 𝐿emt

1 + 𝑒−𝜆
emt

(

𝑓−𝑓 emt
0

)

(

∫

𝛼

0
𝑘(𝛼, 𝛼′)𝑐(𝑡, 𝑥, 𝛼′) 𝑑𝛼′ − 𝑐(𝑡, 𝑥, 𝛼)∫

1

𝛼
𝑘(𝛼, 𝛼′) 𝑑𝛼′

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
EMT transition

(9)

+ 𝐿met

1 + 𝑒𝜆
met

(

𝑓−𝑓met
0

)

(

∫

1

𝛼
𝑘(𝛼, 𝛼′)𝑐(𝑡, 𝑥, 𝛼′) 𝑑𝛼′ − 𝑐(𝑡, 𝑥, 𝛼)∫

𝛼

0
𝑘(𝛼, 𝛼′) 𝑑𝛼′

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
MET transition

+ ∇ ⋅
(

𝐷𝑐 (𝛼) 𝑐2(𝑡, 𝑥, 𝛼)∇𝑐(𝑡, 𝑥, 𝛼)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
diffusion

−∇ ⋅
(

𝜒𝑐 (𝛼) 𝑐(𝑡, 𝑥, 𝛼)∇𝑣(𝑡, 𝑥)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
haptotaxis

+ 𝛾𝑐 (𝛼)𝑐(𝑡, 𝑥, 𝛼)
(

1 − ∫

1

0
𝑐(𝑡, 𝑥, 𝛼) 𝑑𝛼 − 𝑣(𝑡, 𝑥)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
proliferation

.

Tumour micro-environment: Although cancer arises from mutations
accruing within cancer cells the disease progression and responses to
therapy are strongly modulated by non-mutant cells residing in the
tumour microenvironment [74]. In a simplified framework, the tumour
microenvironment is composed of an extracellular matrix (ECM), which
is a large network of macro-molecules that surround cells giving them
support and structure, and stroma cells. Among all the stromal cells,
a group of activated fibroblasts with significant heterogeneity and
plasticity, which are referred to as cancer-associated fibroblasts (CAFs),
are one of the most abundant and critical components [75,76]. CAFs
secrete a variety of active factors to participate in the generation and
maintenance of cancer cell stemness, immune regulation, angiogen-
esis, metabolic response, therapeutic resistance, and other biological
processes [76,77]. They are considered the most effective cell within
the tumour micro-environment at depositing and remodelling the ECM,
and, according to recent studies, might promote disease malignant
progression as they are a substantial source of growth factors including
TGF-𝛽 [74,76–79].

While there is consensus that type III EMT is associated with
increased cell migration, invasion, metastasis, and hence cancer ag-
gressiveness, it has only recently been shown that the epigenetic
changes that occur also involve the regulation of matrix-degrading
enzymes [80]. These new data confirm that the higher expression of
genes involved in the degradation of ECM, such as MMP9, is not specific
to a particular experimental model, tissue, or pathology but constitutes
a reliable biomarker of EMT in different cancers in vivo. Therefore,
we account for the phenotype-dependent ability to degrade the ECM
using the integral term with the kernel 𝜂(𝛼) that we assume to be an
increasing function of 𝛼, more precisely

𝜂(𝛼) =
�̄�𝑣

1 + 𝑒−𝜂∗(𝛼−𝜂𝛼0 )
, (10)

where �̄� , 𝜂∗, and 𝜂𝛼0 are constants.
𝑣
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Altogether we have the following equation for the density of the
tumour microenvironment
𝜕
𝜕 𝑡

𝑣(𝑡, 𝑥)

= − 𝑣(𝑡, 𝑥) ∫

1

0
𝜂(𝛼)𝑐(𝑡, 𝑥, 𝛼) d𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
degradation

+ 𝜆𝑣𝑣(𝑡, 𝑥)
(

1 − ∫

1

0
𝑐(𝑡, 𝑥, 𝛼) 𝑑𝛼 − 𝑣(𝑡, 𝑥)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ECM remodelling and tissue regrowth

.

(11)

GF-𝛽: The phenotypic change from epithelial to mesenchymal one
s governed by extracellular signals that activate a plethora of EMT
ranscription factors [58]. However, there is a consensus that TGF-𝛽 is a
ajor inducer and modulator of EMT [60,77]. Because TGF-𝛽 is mainly
roduced by CAFs, and CAFs are stromal fibroblast cells activated by
umour cells through stimulation with paracrine growth factors, we
ssume that it is produced within the tumour microenvironment upon
he activation by cancer cells [77,81].

Because signalling factors are small molecules, particularly com-
ared to the cell size we assume its linear diffusion with the coefficient
𝑓 . We assume that TGF-𝛽 is produced by CAFs, which we do not

xplicitly model, therefore, we assume that it is produced by the
icroenvironment 𝑣 in the presence of cancer cells, independently of

heir phenotype. The TGF-𝛽 inflow is therefore described by

𝑓 𝑣(𝑡, 𝑥)∫

1

0
𝑐(𝑡, 𝑥, 𝛼) 𝑑𝛼,

here 𝛾𝑓 ∈ R is a constant. We also assume some linear degradation
f molecules proportional to some constant 𝑑𝑓 . Altogether we have the
ollowing equation for the concentration of the growth factors

𝜕
𝜕 𝑡

𝑓 (𝑡, 𝑥) = 𝐷𝑓𝛥𝑓 (𝑡, 𝑥)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

diffusion

+ 𝛾𝑓 𝑣(𝑡, 𝑥)∫

1

0
𝑐(𝑡, 𝑥, 𝛼) 𝑑𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
production

− 𝑑𝑓𝑓 (𝑡, 𝑥)
⏟⏞⏟⏞⏟

decay

. (12)

The whole system reads as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕
𝜕 𝑡 𝑐(𝑡, 𝑥, 𝛼) =

𝐿emt

1 + 𝑒−𝜆
emt

(

𝑓−𝑓emt
0

)

(

∫

𝛼

0
𝑘(𝛼, 𝛼′)𝑐(𝑡, 𝑥, 𝛼′) 𝑑𝛼′

−𝑐(𝑡, 𝑥, 𝛼)∫

1

𝛼
𝑘(𝛼, 𝛼′) 𝑑𝛼′

)

+ 𝐿met

1 + 𝑒𝜆
met

(

𝑓−𝑓met
0

)

(

∫

1

𝛼
𝑘(𝛼, 𝛼′)𝑐(𝑡, 𝑥, 𝛼′) 𝑑𝛼′

−𝑐(𝑡, 𝑥, 𝛼)∫

𝛼

0
𝑘(𝛼, 𝛼′) 𝑑𝛼′

)

+∇ ⋅
(

𝐷𝑐 (𝛼) 𝑐2(𝑡, 𝑥, 𝛼)∇𝑐(𝑡, 𝑥, 𝛼)
)

−∇ ⋅
(

𝜒𝑐 (𝛼) 𝑐(𝑡, 𝑥, 𝛼)∇𝑣(𝑡, 𝑥)
)

+𝛾𝑐 (𝛼)𝑐(𝑡, 𝑥, 𝛼)

(

1 − ∫

1

0
𝑐(𝑡, 𝑥, 𝛼) 𝑑𝛼 − 𝑣(𝑡, 𝑥)

)

𝜕
𝜕 𝑡𝑣(𝑡, 𝑥) = −𝑣(𝑡, 𝑥) ∫ 1

0 𝜂(𝛼)𝑐(𝑡, 𝑥, 𝛼) d𝛼 + 𝜆𝑣𝑣(𝑡, 𝑥)

×

(

1 − ∫

1

0
𝑐(𝑡, 𝑥, 𝛼) 𝑑𝛼 − 𝑣(𝑡, 𝑥)

)

𝜕
𝜕 𝑡

𝑓 (𝑡, 𝑥) = 𝐷𝑓𝛥𝑓 (𝑡, 𝑥) + 𝛾𝑓 𝑣(𝑡, 𝑥)∫

1

0
𝑐(𝑡, 𝑥, 𝛼) 𝑑𝛼 − 𝑑𝑓𝑓 (𝑡, 𝑥)

(13)

4. Model parameters, numerical experiments and computational
simulations

In general, the accurate approximation of parameters for models de-
scribing biological processes is a very challenging task. That is because
establishing proper experimental setups for most cases is very difficult
or for now impossible. The latter is the case of the cancer invasion
models in vivo. Despite this fact, we sought the best approximation of
the relevant values using in vitro experiment data or results obtained
for cognate cell lines.
5

p

We start by specifying the space and time units relevant to the
process. Considering the maximum distance that cancer cells may
achieve at the early stage of invasion, we settle the space unit to be
in cm. In light of the average duration of the healing process, we set
the time unit to be 1 day.

TGF-𝛽1 (transforming growth factor) is secreted by fibroblasts as
inactive precursors and deposited into the extracellular matrix [82].
Active TGF-𝛽1 half-life is about two minutes whereas latent TGF-𝛽1
half-life is about 90 min [82].

We approximate the range of cellular diffusion rate with values
measured for the cells originating from the mesodermal cell line,
precisely for microvessel endothelial cells (MEC) [83]. The measured
mean value of the diffusion parameter of MEC cells is 7.1 ± 2.7 ×
10−9 cm2 s−1, which leads us to assume 𝐷𝑐 = 6.1 × 10−2 mm2 s−1. The
ame authors in another paper investigated the chemotactic coefficient
f migrating endothelial cells in gradients of acidic fibroblast growth
actor (aFGF) [84]. The maximum chemotactic response was measured
or concentrations of aFGF around 10−10 M (with a concentration
radient equal to 3.5 × 10−15 Mμm−1) giving a chemotactic coefficient
f 26 × 102 cm2 s−1 M−1, which gives 2.25mm2 d−1 M−1. Collagen type I,
II, IV, V, and FGF were found capable of inducing a similar chemotactic
esponse among human endothelial cells however, their stimulation
apacity was estimated to be one-third to one-half of the maximal
apacity of factors such as ECGF [85]. Summarising we set the value
f haptotaxis sensitivity 𝜒𝑐 to be equal to 0.71mm2 d−1 M−1 which is

consistent with previous studies [10,86,87].
Using numerical simulations we verify whether the proposed sim-

plified mechanism of phenotype transition under the influence of the
TGF-𝛽 enables qualitative reconstruction of metastases formation in
the form of isolated neoplastic foci. To this end, we present a number
of numerical experiment results. At first, focusing on the investigated
mechanism of phenotype changes and its consequences, we assume that
the tissue surrounding the primary tumour is homogeneous.

The initial conditions are set as follows
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐(𝑡 = 0, 𝑥, 𝛼) = 2𝑒−‖𝑥‖2∕0.3{‖𝑥‖2<0.1}(𝑥), 𝛼 = 0

𝑐(𝑡 = 0, 𝑥, 𝛼) = 0, 0 < 𝛼 ≤ 1

𝑓 (𝑡 = 0, 𝑥) = 0.8{‖𝑥‖2<0.1}(𝑥)

(14)

or 𝑥 ∈ D and where 𝑆 (𝑥) is the characteristic function over the set
⊂ D and ‖ ⋅ ‖ is the Euclidean norm. The initial density of the ECM
ill be considered to be either constant or randomly structured as in
ig. 4, cf. [48].

xperiment 1 (Uniform ECM). To illustrate the dynamics of the system
ithout the impact of the non-uniformity of the extratumoural tissue,
e first perform a numerical experiment with initially uniform ECM
ensity. The set of parameters for this experiment is shown in Table 1.

Our simulations show that originally, EMT takes place in the centre
f the spatial domain where the concentration of the TGF-𝛽 is highest,
hich gives rise to cancer cells of higher phenotype 𝛼, that is cells
aving more mesenchymal features. These cells degrade the ECM and
reate a local gradient in the tissue which, in turn, facilitates their
igration away from their original formation location. Due to the
niformity of the ECM, and the radially symmetric initial conditions,
he gradient in the tissue remains radially symmetric. In effect, the
igration of the cancer cells takes the form of invasion rings. These

esults are presented in Fig. 3 where they are organised as follows: in
wo major panels, representing the time instances 𝑡 = 0 and 𝑡 = 150,
re shown (a) the densities of the cancer cells (first row, columns
–3) along with the corresponding isolines (second row, columns 1–
) for the cancer-cell phenotypes 𝛼 = 0, 0.5, 1, respectively, and the
ensities of TGF-𝛽 (upper row, column 4) and the ECM (bottom row,
olumn 4). The invasion rings, consisting of cells which are of higher
henotypic value 𝛼, grow away from the origin, and move to regions of
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Table 1
Parameters used in Experiment 1 — Uniform ECM. They are organised by equation
and by system component. The acronym ‘‘CC’’ represents the cancer cells.

Param. Name Value Units Reference

𝑐-
eq

.

𝐷𝑀
𝑐 CC diffusion rate 10−6 mm2 d−1 [83]

𝐷𝑠𝑙
𝑐 CC diffusion scale 20 M2 mm−4 (our estimate)

𝐷𝛼0
𝑐 CC diffusion midpoint 0.5 – (our estimate)

𝜒𝑀
𝑐 CC haptotactic response 0.05 mm2 M−1 d−1 cf. [10,86,87]

𝜒𝑠𝑙
𝑐 CC haptotaxis scale 20 – (our estimate)

𝜒𝛼0
𝑐 CC haptotaxis midpoint 0.5 – (our estimate)

𝐿emt EMT rate 10−3 M mm−2 d−1 (our estimate)
𝜆emt EMT scale 30 M−1 mm−2 (our estimate)
𝑓 emt
0 Midpoint EMT 10−2 M mm2 (our estimate)

𝐿met MET rate 10−4 M mm−2 d−1 (our estimate)
𝜆met MET scale 20 M−1 mm−2 (our estimate)
𝑓met
0 Midpoint MET 10−3 M mm2 (our estimate)

𝛾𝑐 CC proliferation rate 2 d−1 [83]
𝛾∗𝑐 CC proliferation exponent 4.2 – (our estimate)

𝑓
-e

q. 𝐷𝑓 TGF-𝛽 diffusion rate 10−2 mm2 d−1 [83]
𝛾𝑓 TGF-𝛽 production rate 0.3 mm2 M−1 d−1 (our estimate)
𝑑𝑓 TGF-𝛽 decay 3 d−1 cf. [82]

𝑣-
eq

. �̄�𝑣 ECM degradation rate 0.022 mm2 M−1 d−1 cf. [14,48]
𝜂∗ ECM degradation exponent 10 – (our estimate)
𝜂𝛼0 ECM degradation midpoint 0.75 – (our estimate)
𝜆𝑣 ECM reconstruction rate 0.005 mm2 M−1 d−1 cf. [48]

lower concentration of TGF-𝛽. In these regions, the MET transition is,
ccordingly, triggered, resulting in the appearance of cells having more
pithelial features including the proliferative potential. As a result,
here emerge rings of higher-density of cancer cells, disconnected from
he pre-existing cluster of cancer cells.

xperiment 2 (Generic Invasion). The second numerical experiment
s designed to illustrate the formation of isolated tumour foci in a
ore biologically realistic scenario in which the tissue surrounding the
rimary tumour is heterogeneous. We present with this experiment the
ull range of the dynamics of the system (13). The parameters for this
xperiment are shown in Table 2. The results are presented in Fig. 5
here they are organised as follows: in each one of the three major
anels, that represent the time instances 𝑡 = 0, 𝑡 = 200, and 𝑡 = 400,
re shown (a) the densities of the cancer cells (first row, columns 1–
) along with the corresponding isolines (second row, columns 1–3)
or the cancer-cell phenotypes 𝛼 = 0, 0.5, and 1 respectively, and
he densities of the TGF-𝛽 (row 1, column 4) and the ECM (row 2,
olumn 4). As in the previous experiment, EMT initially occurs in the
entre of the spatial domain where the concentration of TGF-𝛽 is the
ighest. However, the differences in the ECM concentration gradient in
he surrounding tissue cause uneven migration of mesenchymal cells.
esenchymal cells that follow the ECM gradient will find themselves

‘far’’ from the primary tumour at the same time find themselves in
n area of lower TGF-𝛽 concentration, which causes a change in their
henotype to more epithelial, accelerated proliferation and consequent
ormation of a new cluster of cancer cells. Accordingly, cancer cells of
igher phenotypic value 𝛼 emerge. These cancer cells introduce a local
radient of the local tissue by degrading the ECM faster, cf. (10) and
13). In turn, this local gradient drives the migration of the cancer cells
f higher 𝛼 phenotypes away from their original formation location.
he invasion of the cancer cells of higher phenotype 𝛼 brings them
o regions of lower TGF-𝛽 concentration, where the MET transition is,
ccordingly, triggered. As a result, tumour foci in the form of cancer
ell clusters appear in lower phenotypic values 𝛼 and are disconnected
rom the pre-existing cancer cell concentrations.

For this experiment, the initial ECM density is set to randomly vary
ver the domain according to a procedure developed in [48], where we
efer the reader for full details. The process, in two dimensions, is illus-
rated in Fig. 4 and starts with a 8 × 8 grid/matrix with entries taken
6

Table 2
Parameters used in Experiment 2 — Generic invasion.

Param. Name Value Units Reference

𝑐-
eq

.

𝐷𝑀
𝑐 CC diffusion rate 10−6 mm2 d−1 [83]

𝐷𝑠𝑙
𝑐 CC diffusion scale 20 M2 mm−4 (our estimate)

𝐷𝛼0
𝑐 CC diffusion midpoint 0.5 – (our estimate)

𝜒𝑀
𝑐 CC haptotactic response 0.5 mm2 M−1 d−1 [10,86,87]

𝜒𝑠𝑙
𝑐 CC haptotaxis scale 20 – (our estimate)

𝜒𝛼0
𝑐 CC haptotaxis midpoint 0.5 – (our estimate)

𝐿emt EMT rate 10−3 M mm−2 d−1 (our estimate)
𝜆emt EMT scale 30 M−1 mm−2 (our estimate)
𝑓 emt
0 Midpoint EMT 10−2 M mm2 (our estimate)

𝐿met MET rate 10−4 M mm−2 d−1 (our estimate)
𝜆met MET scale 30 M−1 mm−2 (our estimate)
𝑓met
0 Midpoint MET 10−3 M mm2 (our estimate)

𝛾𝑐 CC proliferation rate 2 d−1 [83]
𝛾∗𝑐 CC proliferation exponent 4.2 – (our estimate)

𝑓
-e

q. 𝐷𝑓 GF diffusion rate 10−2 mm2 d−1 [83]
𝛾𝑓 GF production rate 0.3 mm2 M−1 d−1 (our estimate)
𝑑𝑓 GF decay 3 d−1 cf. [82]

𝑣-
eq

. �̄�𝑣 ECM degradation rate 0.011 mm2 M−1 d−1 cf. [14,48]
𝜂∗ ECM degradation exponent 10 – (our estimate)
𝜂𝛼0 ECM degradation midpoint 0.75 – (our estimate)
𝜆𝑣 ECM reconstruction rate 0.005 mm2 M−1 d−1 cf. [48]

from a standard normal distribution,  (0, 1). A number of bisection
steps are taken until the grid size reaches the desired resolution of the
domain. At every refinement stage, the new entries are obtained from
interpolating the values of the previous stage matrix with the addition
of a small amount of Gaussian noise. As a result, the final ECM density
preserves the initial randomly chosen distribution of the 8 × 8 grid. The
final values are scaled between the biologically relevant minimum and
maximum ECM density values.

Experiment 3 (Decoupled EMT-MET Switch Functions). Being aware of
the wide range of invasive strategies that can be observed in vivo we
wonder whether it is the phenotype sensitivity on the TGF-𝛽 concentra-
tion, which is in mathematical terms reflected in the shapes of functions
𝑆𝐸𝑀𝑇 and 𝑆𝑀𝐸𝑇 that trigger EMT and MET, respectively, influences the

acroscopic picture of the infiltrating tumour.
As the simulations in Experiment 2 exhibit—shown in Fig. 5—the

MT and MET processes are driven by the 𝑆𝐸𝑀𝑇 and 𝑆𝑀𝐸𝑇 switch
functions (1), (2) respectively. In particular, their relative dependence,
on the concentrations of TGF-𝛽, has a significant impact on the final bal-
ance between the two processes. This is an important component of our
model and has significant biological implications. We will investigate
it in this and the follow-up experiments.

In this experiment, in particular, we consider a parameter setting
where the EMT and MET switch functions (1) and (2) are decoupled,
i.e. the MET switch is effectively activated in lower concentrations of
TGF-𝛽. Confer also the parameter values in Table 3 and the graphs of
𝑆𝐸𝑀𝑇 and 𝑆𝑀𝐸𝑇 in Fig. 8.

In more detail, as can be seen in Fig. 6, EMT gives rise to cancer
cells of higher phenotype value 𝛼 which in turn degrade the ECM, cf.
(10), (13), and migrate along the ECM gradient. As in the previous
experiments, when the more migratory cancer cells reach regions of
the domain of low TGF-𝛽 concentration 𝑓 , they undergo MET and give
rise to cancer cell foci of lower phenotypic value 𝛼. These cancer cell
foci resemble cancer cell islands and are disconnected from the initial
body of the tumour. To make this more clear, we have plotted in Fig. 6
the isolines down to the double precision accuracy of 10−15.

It should be noted that the parameters in this numerical experiment
are such that the simulation results are pronounced enough so that,
through the comparison with the ensuing experiment, the qualitative
conclusions of our modelling become clear.
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Fig. 3. Experiment 1 — Uniform ECM. Top panel: Initial conditions (𝑡 = 0) for 𝛼 = 0, 0.5, 1 for the density of cancer cells (1st row, columns 1–3), their isolines (2nd row,
columns 1–3), and TGF-𝛽 and ECM on column 4. Lower panel: At a later time (𝑡 = 150), EMT has given rise to higher 𝛼 cancer cell densities. As the ECM is degraded, they are
driven by its gradient and, due to the rotational symmetry of the system, they invade the local tissue in the form of circular invasion rings.
Fig. 4. Construction of the initial ECM density employed in Experiments 2, 3, and
4. The process starts with random values over an 8 × 8 grid. In every stage of the
construction process, the grid is bisected and the new values are attained by averaging
the neighbouring values. The process stops when the required grid size is reached,
when scaling to the proper biological range takes place cf. [48].

Experiment 4 (Coupled EMT-MET Switch Functions). In contrast to
the previous Experiment 3 where the EMT and MET switch functions,
𝑆𝐸𝑀𝑇 (1) and 𝑆𝑀𝐸𝑇 (2), were decoupled, we consider here a parameter
setting where 𝑆 and 𝑆 are, in effect, coupled.
7

𝐸𝑀𝑇 𝑀𝐸𝑇
Table 3
Parameters used in Experiment 3 — Decoupled EMT-MET switch functions.

Param. Name Value Units Reference

𝑐-
eq

.

𝐷𝑀
𝑐 CC diffusion rate 10−6 mm2 d−1 [83]

𝐷𝑠𝑙
𝑐 CC diffusion scale 20 M2 mm−4 (our estimate)

𝐷𝛼0
𝑐 CC diffusion midpoint 0.5 – (our estimate)

𝜒𝑀
𝑐 CC haptotactic response 0.4 mm2 M−1 d−1 [10,86,87]

𝜒𝑠𝑙
𝑐 CC haptotaxis scale 20 – (our estimate)

𝜒𝛼0
𝑐 CC haptotaxis midpoint 0.5 – (our estimate)

𝐿emt EMT rate 10−1 M mm−2 d−1 (our estimate)
𝜆emt EMT scale 30 M−1 mm−2 (our estimate)
𝑓 emt
0 Midpoint EMT 10−2 M mm2 (our estimate)

𝐿met MET rate 20 M mm−2 d−1 (our estimate)
𝜆met MET scale 3 × 102 M−1 mm−2 (our estimate)
𝑓met
0 Midpoint MET 0.003 M mm2 (our estimate)

𝛾𝑐 CC proliferation rate 2 d−1 [83]
𝛾∗𝑐 CC proliferation exponent 4.2 – (our estimate)

𝑓
-e

q. 𝐷𝑓 GF diffusion rate 10−2 mm2 d−1 [83]
𝛾𝑓 GF production rate 0.3 mm2 M−1 d−1 (our estimate)
𝑑𝑓 GF decay 3 d−1 cf. [82]

𝑣-
eq

. �̄�𝑣 ECM degradation rate 0.011 mm2 M−1 d−1 cf. [14,48]
𝜂∗ ECM degradation exponent 10 – (our estimate)
𝜂𝛼0 ECM degradation midpoint 0.75 – (our estimate)
𝜆𝑣 ECM reconstruction rate 10−4 mm2 M−1 d−1 cf. [48]

The parameters for this experiment are shown in Table 4 and differ
from the ones in Experiment 3, i.e. in Table 3, only in the values of the
midpoint MET parameter 𝑓met

0 . For more clarity, we have produced the
graphs of the corresponding switch functions 𝑆𝐸𝑀𝑇 and 𝑆𝑀𝐸𝑇 in Fig. 8.
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Fig. 5. Experiment 2 — Generic invasion. An initial concentration of epithelial (𝛼 = 0) cancer cells (top panel) gives rise, through EMT, to mesenchymal, higher 𝛼, cancer cell
densities (middle and lower panels) which degrade and invade the ECM. As these move to regions of lower TGF-𝛽 concentration (lower panel), MET is triggered and tumour foci
appear at lower 𝛼 that are disconnected from the original location of the tumour.
Namely, as can be seen in Fig. 6, EMT gives rise to cancer cells of
higher phenotype value 𝛼 that degrade the ECM and migrate along the
ECM gradient. As in the previous experiments, these more migratory
cancer cells reach regions of low TGF-𝛽 concentration 𝑓 where they
undergo MET and give rise to cancer cell foci of lower phenotypic
value 𝛼.

In Experiment 4 the tumour foci formed by this process in the
phenotype 𝛼 = 0 are connected to the initial tumour. This is not
apparent when inspecting the cancer cell densities, it is rather revealed
through the isolines of the cancer cell densities. This becomes apparent
8

in Fig. 7 where we have plotted the isolines down to the double
precision accuracy of 10−15.

Experiment 5 (Coupled Versus Decoupled EMT-MET Switch). The two
EMT-MET strategies described in Experiment 3 and 4, and presented in
Figs. 6 and 7 respectively, have significant implications in the under-
standing of the EMT and MET processes. Their difference relies solely
in the relative dependence of the switch functions 𝑆𝐸𝑀𝑇 and 𝑆𝑀𝐸𝑇 on
the concentration of TGF-𝛽. See (1), (2), the parameter Tables 3 and 4
and Fig. 8 where we have plotted 𝑆𝐸𝑀𝑇 and 𝑆𝑀𝐸𝑇 .
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Fig. 6. Experiment 3 — Decoupled EMT-MET switch functions: Shown here are the transient dynamics of the cancer growth when the EMT and MET triggers are decoupled
as shown in Fig. 8. The isolines are plotted down to the double precision accuracy 10−15. A characteristic of this experiment is that the cancer foci that are formed, in lower 𝛼,
after the EMT-MET cascade are disjoint from the main body of the tumour.
A direct comparison of the qualitative predictions of the two exper-
iments is presented in Fig. 9 where we plot the densities and isolines
of the epithelial phenotype 𝛼 = 0 cancer cells at three different time
instances 𝑡 = 0, 𝑡 = 150, 𝑡 = 300.

Inspecting the simulation results using the eyeball norm directly on
the density profiles (upper panel) exhibits some difference but does not
reveal any significant qualitative difference between the two. Whereas,
when inspecting the corresponding isolines (lower panel); it can be seen
that the newly formed tumour foci in the decoupled EMT-MET case are
indeed disjoint from the initial tumour. This is clearly not the case with
9

the coupled EMT-MET switch scenario. It needs to be noted again, as
in the previous experiments, that the isolines have been plotted down
to the double precision accuracy of 10−15.

The difference between the two scenarios can be understood as
follows: in the coupled EMT-MET case, the EMT and MET processes
take place (primarily) in adjacent regions of the physical domain. This
is because their corresponding switch functions are ‘‘complementary’’
with respect to the concentration of the TGF-𝛽. On the other hand, in
the decoupled EMT-MET case, MET takes place (primarily) in regions
of lower densities of TGF-𝛽 than EMT does. These two regions are
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Fig. 7. Experiment 4 — Coupled EMT-MET switch functions: In this experiment the EMT and MET trigger functions are coupled as detailed in Fig. 8. As a result, the cancer
cell foci that appear, after the EMT-MET cascade, in lower 𝛼 are connected to the main body of the tumour. Rather than in the density plots, where disjoint islands might be
occasionally visible, this becomes visible with the isolines plots.
not adjacent as the TGF-𝛽 diffuse freely in the environment and decay
rapidly.

5. Conclusions

By combining biological findings and mathematical modelling, we
postulate that we have reproduced, in a gross simplification, of course,
the general mechanism of isolated tumour foci formation. We believe,
that cell phenotype change occurring as a result of the action of TGF-𝛽,
10
and possibly other growth factors as well, which we assume is produced
by CAF cells in the vicinity of the primary tumour, leads to the forma-
tion of neoplastic foci distant from the primary tumour. As a result of
elevated TGF-𝛽 levels at the edge of the primary tumour epithelial cells
transform into mesenchymal cells that can migrate. Mesenchymal cells
migrate toward the extracellular matrix concentration gradient, which
naturally means moving away from the primary tumour. This results
in these cells finding themselves at some distance from the primary
tumour, where the concentration of TGF-𝛽 factor is lower, causing the
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Table 4
Parameters used in Experiment 4 — Coupled EMT-MET switch functions.

Param. Name Value Units Reference

𝑐-
eq

.

𝐷𝑀
𝑐 CC diffusion rate 10−6 mm2 d−1 [83]

𝐷𝑠𝑙
𝑐 CC diffusion scale 20 M2 mm−4 (our estimate)

𝐷𝛼0
𝑐 CC diffusion midpoint 0.5 – (our estimate)

𝜒𝑀
𝑐 CC haptotactic response 0.4 mm2 M−1 d−1 [10,86,87]

𝜒𝑠𝑙
𝑐 CC haptotaxis scale 20 – (our estimate)

𝜒𝛼0
𝑐 CC haptotaxis midpoint 0.5 – (our estimate)

𝐿emt EMT rate 10−1 M mm−2 d−1 (our estimate)
𝜆emt EMT scale 30 M−1 mm−2 (our estimate)
𝑓 emt
0 Midpoint EMT 10−2 M mm2 (our estimate)

𝐿met MET rate 20 M mm−2 d−1 (our estimate)
𝜆met MET scale 3 × 102 M−1 mm−2 (our estimate)
𝑓met
0 Midpoint MET 10−2 M mm2 (our estimate)

𝛾𝑐 CC proliferation rate 2 d−1 [83]
𝛾∗𝑐 CC proliferation exponent 4.2 – (our estimate)

𝑓
-e

q. 𝐷𝑓 GF diffusion rate 10−2 mm2 d−1 [83]
𝛾𝑓 GF production rate 0.3 mm2 M−1 d−1 (our estimate)
𝑑𝑓 GF decay 3 d−1 cf. [82]

𝑣-
eq

. �̄�𝑣 ECM degradation rate 0.011 mm2 M−1 d−1 cf. [14,48]
𝜂∗ ECM degradation exponent 10 – (our estimate)
𝜂𝛼0 ECM degradation midpoint 0.75 – (our estimate)
𝜆𝑣 ECM reconstruction rate 10−4 mm2 M−1 d−1 cf. [48]

Table 5
Butcher tableaux for the explicit (upper) and the implicit (lower) parts of the third
order IMEX scheme (18), see also [88].

0
1767732205903
2027836641118

1767732205903
2027836641118

3
5

5535828885825
10492691773637

788022342437
10882634858940

1 6485989280629
16251701735622

− 4246266847089
9704473918619

10755448449292
10357097424841

1471266399579
7840856788654

− 4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

0 0
1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

3
5

2746238789719
10658868560708

− 640167445237
6845629431997

1767732205903
4055673282236

1 1471266399579
7840856788654

− 4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654

− 4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

Fig. 8. Comparison of the MET switch functions (2) between the decoupled EMT-MET
scenario where 𝑓met

0 = 0.003 (solid decreasing) and the coupled EMT-MET scenario
where 𝑓met

0 = 0.01 (dashed decreasing). In both scenarios the EMT switch function (1)
is the same with midpoint EMT rate 𝑓 emt

0 = 0.01 (increasing).

mesenchymal cells to become endothelial cells again. That change in
phenotype alters the behaviour of the cells, which stop migrating and
become highly proliferative cells again.

Although the mechanism we have presented relates to the formation
of isolated tumour foci localised in a single tissue, we postulate that
it is a mechanism that also explains the formation of metastases in
distant parts of the body. This is also evidenced by new experimental
findings, namely the non-plastic mesenchymal cells were observed to
be unable to form metastatic outgrowths, as cancer cells need to at
11
least partially reverse to a more epithelial phenotype for metastasis to
form [89]. Thus, EMT may be important for cancer cell dissemination
but is not sufficient for metastatic colonisation, which requires the
reverse phenotype transition, that is MET [89].

What now seems to be one of the main challenges for cancer
researchers is to elucidate the entire system controlling the changes in
the phenotype of cancer cells that promote invasion and, consequently,
cancer metastasis. It is clear that although TGF-𝛽 appears to be the main
or one of the main players responsible for regulating the plasticity of
the cancer cell phenotype, it is undoubtedly not the only one. A better
reconstruction of the regulatory system that governs phenotypic plas-
ticity gives a chance to reveal the constituent susceptible to the right
external forcing. In the context of further development of the model,
it is also worth mentioning recent papers indicating that depending on
the time of activation of the mesenchymal phenotype, the return to the
epithelial state has a different course [90–92]. These findings concern
more the intracellular processes and are in some way complement the
knowledge on the EMT-MET transitions as they give additional insights
into the signalling pathways governing the process. Further research
also requires improving experimental techniques and designs, although
progress in this area is already impressive [7]. And not to be lip service,
one can cite new techniques for studying tumour invasion in vitro, in
which TGF-𝛽 was controlled release from gelatin hydrogel microspheres
making it possible to study, for example, CAF activation by increased
TGF-𝛽 concentration [6].

Multifocal breast cancer (MBC) patients are known to have a poorer
prognosis compared to those with unifocal breast cancer [8], and this
has been attributed to the underestimation of tumour size in MBC
cases [93,94]. As our model develops, it could aid in further studying
MBC cases by potentially improving the accuracy of tumour size esti-
mation and the extent of invasive spread, which may result in better
prognostic outcomes for patients with MBC. In particular, our model
in conjunction with magnetic resonance imaging (MRI) could prove
especially valuable, given the increasing relevance of MRI in breast
cancer diagnosis in recent years, [95].
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Appendix. Numerical method

The advection–reaction–diffusion system (13) is solved numerically
using a specific second-order Implicit-Explicit Runge–Kutta Finite Dif-
ferences, Finite Volumes (IMEX-RK FD-FV) numerical method. This
method constitutes an extension of a previous method developed and
employed in [45,47,48,96–99] to which we refer the reader for most

of the details. Here, we only discuss some of its components.
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Fig. 9. Coupled versus decoupled EMT-MET switch scenarios: The upper two rows are the cancer cell density profiles of the two solutions for 𝛼 = 0, whereas the lower two are
the corresponding isolines. These isolines exhibit that in the decoupled EMT-MET case the tumour spreads in disjoint tumour foci. This is a result of the MET switch function
𝑆𝑀𝐸𝑇 that promotes MET primarily in lower concentrations of 𝑓 , i.e. away from the location of the initial tumour.
We consider, at first, a generic advection–reaction diffusion system
of the form

𝑤𝑡 = 𝐴(𝑤) + 𝑅(𝑤) +𝐷(𝑤), (15)

where 𝑤 represents the analytical solution vector of the system, and
𝐴,𝑅, and 𝐷 are the advection, reaction and diffusion operators re-
spectively. After spatial discretisations have taken place, we denote the
corresponding semi-discrete approximation by 𝑤ℎ, where the index ℎ
denotes the (maximal, if the space discretisation is non-uniform) spatial
grid diameter. The semi-discrete solution 𝑤ℎ satisfies the following
system of ODEs

𝜕𝑡𝑤ℎ = (𝑤ℎ) +(𝑤ℎ) +(𝑤ℎ), (16)

where the numerical operators , and  are (spatially) discrete
approximations of the advection–reaction, diffusion operators, 𝐴,𝑅
and 𝐷 in Eq. (15). Moreover, as the numerical scheme we employ is
(partially) FV, raising its accuracy to the second order necessitates the
use of flux limiters for the interface reconstruction of the numerical
fluxes. Out of a large number of flux limiter options, we have found that
the Monotonized Central Difference (MC) limiter, cf. [100], constitutes
a robust and efficient choice.
12
Before solving (16), we re-organise it in implicit and explicit (IMEX
splitting) and, accordingly, (16) takes the form

𝜕𝑡𝑤ℎ = (𝑤ℎ) + (𝑤ℎ). (17)

The actual IMEX splitting depends on the problem at hand, but in a
typical case the advection terms  are treated explicitly in time, the
diffusion terms  implicitly, and the reaction  terms either explicitly
or implicitly, depending on their stiffness. In the problems that we
encounter in this paper, all reaction terms have been resolved explicitly
in time.

The semi-discrete problem (17) is now solved using a diagonally
implicit RK method for the implicit part (𝑤ℎ), and an explicit RK for
the explicit part (𝑤ℎ). Altogether, we solve (17) using the additive RK
scheme

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑤∗
𝑖 = 𝑤𝑛

ℎ + 𝜏𝑛
𝑖−1
∑

𝑗=1
�̄�𝑖,𝑗𝐸𝑗 , 𝑖 = 1… 𝑠,

𝑤𝑖 = 𝑤∗
𝑖 + 𝜏𝑛

𝑖−1
∑

𝑗=1
𝑎𝑖,𝑗𝐼𝑗 + 𝜏𝑛�̄�𝑖,𝑖𝐼𝑖, 𝑖 = 1… 𝑠,

𝑤𝑛+1
ℎ = 𝑤𝑛

ℎ + 𝜏𝑛
𝑠
∑

�̄�𝑖𝐸𝑖 + 𝜏𝑛
𝑠
∑

𝑏𝑖𝐼𝑖,

(18)
⎩
𝑖=1 𝑖=1
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where 𝑠 = 4 are the stages of the IMEX-RK method, 𝐸𝑖 = (𝑤𝑖),
𝑖 = (𝑤𝑖), 𝑖 = 1… 𝑠, and {�̄�, �̄�}, {𝑏, 𝐴} are the coefficients for
he explicit and implicit part of the scheme respectively. These coef-
icients can be found in the Butcher Tableau in Table 5, cf. [88]. As
final stage of this method, we solve the linear system in (18) using

he Iterative Biconjugate Gradient Stabilised Krylov subspace method,
ee [101,102].
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