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Abstract. The volume of DNA in a sequencing experiment is often am-
plified by PCR, leading to the possibility that the same original DNA
fragment will be sequenced twice - a ‘PCR duplicate’. Sometimes in-
distinguishable from these are multiple sequences arising from identical
but independent molecules, which can lead to an over-estimation of the
PCR duplicate proportion. The PCR duplicate proportion, and other
measures derived from it, are important statistics for quality assurance,
experimental design, and interpretation of sequencing experiments. Here
we provide a full likelihood basis for a combinatorial approach using het-
erozygous SNPs as implemented in our R package, and demonstrate the
efficacy of the approach. We also discuss the association with DNA copy
number, and demonstrate the impact on a question of inferring mito-
chondrial DNA copy number that has recently been a feature of several
high-profile cancer studies. This is explored through a simulation study.
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1 Duplicate Sequencing Reads

A simple DNA whole-genome sequencing (WGS) experiment might consist of
sampling DNA from several cells, breaking the DNA up into fragments, increas-
ing the number of fragments by creating copies, using a sequencer to identify
the sequences of a random sample of those fragments, and mapping them to a
reference genome. Once this is done, we can assume that the number of reads
mapping to a genomic region is proportional to the average DNA copy number
for that region, and that the degree of evidence for a particular feature of the
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genome is measured in the number of sequenced fragments (reads) that support
the feature.

It is desirable for the accuracy of these quantitative methods that no original
small molecule ends up being counted more than once in the analysis, for which
reason ‘duplicate reads’ are typically removed from analyses.

Typically, duplicate reads are defined by the locations to which they map in
the genome. Broadly, there are three ways in which such reads can arise. The first
is an error in the imaging or image processing (hereafter referred to as “optical
duplicates”, although our definition may be broader than that usually associated
with this term). The second is that the same original DNA fragment can give rise
to multiple clusters on the sequencing flow cell - most likely because the fragment
was duplicated in a Polymerase Chain Reaction (PCR) amplification step - and
so we refer to these as PCR duplicates. The third is that two independent DNA
molecules happen to fragment in the same positions and both give rise to clusters
on the flow cell (hereafter referred to as “fragmentation duplicates”).

Since fragmentation duplicates represent independent molecules, we wish to
retain them in analyses. By contrast, ideally we would wish to retain only one
of a set of PCR duplicates, and so all others are typically removed. As fragmen-
tation duplicates are generally indistinguishable from PCR duplicates but fewer
in number, fragmentation duplicates are typically removed along with PCR du-
plicates. Optical duplicates by their nature are typically identifiable and can be
removed as a separate process, but could also reasonably be combined with the
PCR duplicates in an “undesirable” duplicate category. We will ignore optical
duplicates for the rest of the manuscript.

1.1 An Example Data Set

We illustrate this article with WGS data sets previously published by the Oe-
sophageal Cancer Clinical and Molecular Stratification (OCCAMS) consortium
[14]. In particular we focus on 22 ‘control’ WGS data sets that we can assume
to be broadly diploid (i.e. they have two copies of each of the autosomal chro-
mosomes). These were generated from blood (n = 12) and non-cancerous oe-
sophageal tissue (n = 10) from 22 Oesophageal Adenocarcinoma (OAC) patients.
DNA from oesophageal tissue was extracted using the DNeasy kit (Qiagen) and
from blood using the NucleonTM Genomic Extraction kit (Gen-Probe) (accord-
ing to the manufacturers’ instructions). A single library was created for each
sample and was sequenced to a nominal depth of 50x, using paired-end reads
of length 100. Read-pairs were aligned to the human reference genome GRCh37
using the Burrows-Wheeler Aligner (BWA) [9].

The median duplicate percentage (counting both PCR and Fragmentation)
across these samples, as derived using Picard [3], is 6.5% (ranging from 3.73% to
14.49%). As might be anticipated, these values are skewed by areas of the genome
that are not diploid (e.g. mitochondria), or which (due to problems with aligning
reads and discrepancies between the reference genome and the true genome) do
not behave as diploid (e.g. telomeres). Such regions need to be removed before
calculating and correcting the values.
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2 Approaches to Separating Out the Duplicate Types

When classifying specific duplicate reads as being fragmentation duplicates is not
possible, i.e. when random tags have not been appended to the original molecules
in the mix, it is sufficient for some analyses merely that we can estimate the
numbers in each class.

A probabilistic approach for estimating the numbers of fragmentation du-
plicates, through considering the distribution of insert sizes, read lengths and
coverage has been presented in the context of high-coverage targeted sequencing
experiments [16]. This makes such reasonable assumptions about the indepen-
dence of reads, the independence of insert size and depth of coverage, and the
lack of external limiting factors (e.g. constraints imposed by starting with few
molecules). While it is possible to apply an approach comparable to Zhou et al’s
[16] to WGS data, the nature of these data allows for an empirical estimate of
the proportion of fragmentation duplicates.

Specifically, we take advantage of knowing that many loci in a WGS experi-
ment will be heterozygous, with known allele fraction (often 0.5), and that the
definition of duplicate reads makes use of their genomic locations rather than
their sequences. PCR duplicates covering a heterozygous site should show the
same allele, while fragmentation duplicates are neither constrained to show the
same allele nor compelled not so to do. This was a characteristic that we ex-
ploited in our 2016 software and the update accompanying this manuscript [11],
and which has been similarly exploited by others [1]. This latter application is
notable for suggestions of application also to RNA-seq data.

3 A Likelihood Approach Based on Allele Patterns at
Heterozygous Loci

Here we set out a likelihood methodology for estimating the proportion of du-
plicate reads that are PCR duplicates (or equivalently the proportion that are
fragmentation duplicates). This is the same approach as implemented in our
software [11].

3.1 A Simple Approach Using only Pairs of Duplicates

We first simplify the problem by imagining that where duplicate reads exist,
there are precisely two reads mapping to the locus and no more.

We will consider such pairs of reads that overlay the sites of heterozygous
Single Nucleotide Polymorphisms (SNPs). In each case, one of the pair will have
been marked as a duplicate. In practice we will consider only a pre-defined set of
potential sites of heterozygous SNPs in order to simplify computations. Our aim
is to identify the proportion, PD, of duplicate reads that do not represent an ob-
servation arising from a novel molecule and to separate this from the proportion
that do.
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If we assume that we are dealing only with a pair of fragments, then with
probability PD (the quantity we wish to estimate) they are observations of the
same original molecule, while with probability FD = 1 − PD they are observa-
tions representing different starting molecules. We exploit the fact that at these
locations, if we are restricting ourselves to parts of the genome that are in allelic
balance (i.e. the same number of copies of paternal and maternal sequence) then
we can make the following statements:

If the two reads are observations of the same original molecule then they
should report the same nucleotide at the locus of the heterozygous SNP (except-
ing for sequencing errors, the inclusion of which we assume we can control by
filtering on the base-calling quality score). This scenario we denote AA regardless
of the allele being reported.

If the reads arise from different starting molecules, then they will report
the same nucleotide (AA) half of the time and different nucleotides (denoted
AB) half of the time (assuming that the number of cells contributing to the
sequencing library is such that removing one molecule from one cell does not
noticeably affect the balance of available alleles).

If we observe counts of NAA pairs of reads where the duplicate is reporting
the same nucleotide, and NAB where it is reporting different nucleotides, giving
a total number N = NAA + NAB , then equating the observed and expected
proportions of AA and AB patterns gives

NAA/N = PD × 1 + FD × 0.5

NAB/N = FD × 0.5

which we can rearrange to gain an estimate of PD:

PD = 1− 2×NAB/N. (1)

3.2 A Likelihood Approach for Pairs of Duplicates

We can explicitly frame this in terms of a likelihood model. There are Q = 2
distinct observable allele patterns (AP1 = AA and AP2 = AB). We wish to
calculate the probabilities of observing each of the Q allele patterns given a
value of PD, denoted Pr(APk|PD) for allele pattern k of Q. Coupled with the
observed counts of each allele pattern, N(APk), these allow us to define the
log-likelihood of PD to within an additive constant:

l(PD) =

Q∑
k=1

N(APk) log Pr(APk | PD), (2)

We can write down Pr(APk | PD) in a straightforward manner. When Q = 2,

Pr(AA | PD) =
1

2
(1 + PD)

Pr(AB | PD) =
1

2
(1− PD).
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The log-likelihood is then

l(PD) = NAA log((1 + PD)/2) +NAB log((1− PD)/2), (3)

and if we seek the maximum likelihood estimate by equating the first derivative
to zero, we obtain 0 = NAA(1− P̂D) +NAB(1 + P̂D), whence

P̂D = (NAA +NAB)/N = 1− 2×NAB/N

as required to match the estimate in (1).

3.3 The Full Model

If we have more than two fragments in our duplicate set, then we can extend
the log-likelihood approach in a natural manner. For each size M of duplicate
set, we still sum over all Q = QM potential allele patterns the number of times
that allele pattern was seen multiplied by the log of the probability of seeing
that allele pattern. We simply have to extend this by summing also over all
values of M . The challenge is to calculate the probabilities of the allele patterns,
Pr(APk | PD).

This calculation can be facilitated by conditioning on the underlying partition
of the M reads into the, at most M , original molecules contributing to the set.
We consider every possible partitioning of M fragments into m non-identifiable
bins representing m original molecules, to obtain

Pr(APk | PD) =
∑
i

Pr(APk | PARTi) Pr(PARTi | PD), (4)

allowing us to calculate the log-likelihood and to find the maximum likelihood
estimate of PD.

Determining the Number of Partitions Details of the sequence of partition
numbers can be found at http://oeis.org/A000041/. Since the task need only
be performed once, and the largest value of M observed will typically not be
very large, the numbers can be determined by recursively deriving all possible
partitions.

Determining the Probability of an Allele Pattern Given a Partition
Given a partition, we know the number of molecules present, and the number
of read-pairs each molecule contributes (this is in essence our definition of a
partition). Every pattern of assignment of alleles (“A” or “B”) to the molecules
is given equal probability. Without loss of generality, we can initially assign “A”
to the first molecule, so the number of allele assignments to be considered is only
2m−1 where m is the number of molecules in the partition. Similarly, for reasons
of identifiability, if necessary we relabel the alleles within a pattern so that the
number of “A” alleles is at least as great as the number of “B” alleles. See Fig.
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Fig. 1. Details for the case when M = 4. For example if the 4 read-pairs arose from
two original molecules then they must partition into a 3 and 1, or into 2 lots of 2.
In the latter case the only two patterns that can be seen are “AAAA” and “AABB”
depending on whether the two original molecules exhibited the same or different alleles
respectively. Each has equal probability when arising from this partitioning, but the
same observed patterns can also result from other partitionings.

1 and supplementary materials for example calculations. The probability of an
allele pattern is the sum of probabilities of assignments that give rise to that
pattern.

When M read-pairs are partitioned amongst m molecules, it is straightfor-
ward to see that the form of Pr(PARTi | PD) must be:

Pr(PARTi | PD) = KF
(m−1)
D P

(M−m)
D (5)

since m molecules implies that we have (m−1) fragmentation duplicates (the “-
1” since one read-pair is regarded as an original and not a duplicate of anything)
and the remaining (M −m) read-pairs in the set must be PCR duplicates.

The value of K is

K =

∑
j

νj

!

/∏
j

νj ! (6)

where νj is the number of molecules from which exactly j read-pairs have origi-
nated. This may be intuited via combinatorial arguments, or a proof is given in
the appendix.
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As a concrete example, consider the case when there are four fragments
(M = 4) partitioned amongst three molecules (m = 3) such that two read-pairs
arise from one molecule and one read-pair arises from each of the other two (as
in case (D) of Fig. 1). Then ν1 = 2 and ν2 = 1 (νj = 0 ∀j > 2). The value of K
is then 3!/(2!1!) = 3.

3.4 Application to our Example data

Our method relies on identifying heterozygous SNPs in regions of constant copy
number. In this case, we seek regions that are well-behaved and diploid. We also
require an observation of the proportion of duplicates that we can correct. The
basic observation of percentage of duplicates for the samples (the total number
of duplicates seen, minus optical duplicates, divided by the total number of read-
pairs examined) varies from 3.7% to 14.5% with a median of 6.5%. However, as
highlighted above, the proportion of duplicates seen is affected by the inclusion
of regions that are not representative of the regions in which our SNPs are lo-
cated, and we may then choose to replace our basic observation with a “masked”
observation.

With the removal of masked regions, the median duplicate percentage seen
in our 22 samples is 5.0% (ranging from 2.3% to 13.2%). The reduction in the
percentage is quite uniform across samples (Fig. 2) but, additionally, we have a
third observation. To apply the methods described above, we investigate 2,500
common SNPs in anticipation of identifying 1,000 heterozygous sites for each
sample: In fact, the numbers seen per sample vary from 942 to 1,093. From
these approximately 1, 000 heterozygous SNPS, we can calculate an observed
proportion of duplicates that directly relates to the correction we will make. On
average there are 70,000 read-pairs considered per sample, which is sufficient to
estimate the duplicate proportion well.

As seen in Fig. 2, masking the genome brings the observed proportion much
more in line with that observed from the SNP loci (median 4.5%, range 1.9%
to 12.1%), but the observations remain over-estimates of the duplicate propor-
tions at the SNPs. Therefore, our calculations that follow will take the direct
observation at the SNP loci as the combined PCR and fragmentation duplicate
rate.

In total, 78, 173 sets of duplicates are observed across our 22 samples, with
the largest set containing six duplicate read pairs. The percentage of observed
duplicates attributed to fragmentation varied from 1.7% to 19.8% and was higher
in blood samples (which have a lower observed duplicate proportion than the
tissue samples). As seen in Fig. 2, the “corrected” estimate for PCR duplicate
proportion is overestimated by more than a tenth in several samples if the frag-
mentation contribution is not removed, but more noticeably it is overestimated
by a factor of up to 2.5 if, additionally, over-influential regions of the genome are
not masked, or some other approach to establishing a representative observation
of duplicate proportion is not used.
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Fig. 2. Left: Showing the basic and masked observations of duplicate proportions to be
unsatisfactory estimates of the proportions at our SNP loci. Right: Showing the degree
to which the basic observation and observation from our SNP loci over-estimate our
best, corrected, estimate.

Single vs Paired End Sequencing. We have, to this point, been considering
read-pairs, those reads arising from DNA fragments where both ends of the
fragment are sequenced. It is possible also to conduct sequencing such that only
one end of the fragment is read (“Single-end sequencing”). In the case of single-
end sequencing the definition of a duplicate is based on only the coordinate of
one end of the fragment, and not the length of the fragment. With this laxer
criterion reads will be classed as fragmentation duplicates more readily.

We can simulate a single-end read data set by discarding the second end
from each read in our example data. Crucially, in doing this, we are simulating
a single end data set with the same PCR duplicate proportion as the paired-end
data set, because these are the same DNA fragments represented in both. One
property of our correction method then is that it should return the same value
when applied to each data set in turn.

In Fig. 3 we see that the observed duplicate proportion is indeed substantially
higher in the single end data, and not even highly correlated with the observation
in the paired-end data. After applying the correction methods presented here,
the estimates show remarkable agreement (also Fig. 3).

A Cancer Sample We have until now been considering ‘normal’ diploid sam-
ples, but much interest lies in the study of cancer samples which are not diploid.
We will illustrate now the application of this methodology to an OAC sample.
Specifically, we consider sequencing library SS6003314 from the same study [14]
as the blood and benign tissue samples that have been the examples so far.
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Fig. 3. Left: Comparing the basic observations of duplicate proportions from our
paired-end example data and simulated single-end sequencing data. Right: Showing
the agreement between corrected estimates of PCR duplicate proportion from the two
data sets.

SS6003314 appears to be generated from a broadly tetraploid tumour with
approximately 74% tumour purity (i.e. 26% of cells in the sample are contam-
inating normal tissue). While a copy number stage of “AABB” (i.e. two copies
of both the paternal and maternal genome) is most frequently observed (Fig.
4, there are noticeable regions with copy number ranging from one to six and
ranging from balanced to exhibiting loss of heterozygosity (i.e. for a given region
only one of the maternal or paternal genome is present). Importantly for this
analysis, there are regions present with inferred copy number state “AB”.

So long as the SNP loci selected are from regions with the same copy number,
and are balanced, then we can apply the methods outlined in this paper. For
this example, we can apply them independently to the “AB” and “AABB” copy
number states. For the “AABB” regions we have identified 8, 396 heterozygous
SNPs to use in the analysis, while for the “AB” regions we have identified 759.

The results from the analysis in Table 1 show that the inferred proportion of
duplicates due to fragmentation is still, for this data set, low at a copy number of
four. Therefore the duplicate proportions are similar before and after correction
and also when comparing “AABB” and “AB” regions. While still small, the
proportion of duplicates due to fragmentation did increase going from “AB” to
“AABB”.

Note that the likelihood models presented here could be extended to any
copy number state where both alleles are present, but a) this is more complicated
and b) most cases have a region that can be identified as balanced. Note also,
that even if the assignment of copy number states was wrong (perhaps we have
actually been considering regions that were “AABB” and “AAABBB”) we are
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Observed
duplicates

Proportion due
to fragmentation

PCR
duplicates

Fragmentation
duplicates

AABB 3.76% 0.047 3.58% 0.18%

AB 3.68% 0.017 3.62% 0.06%
Table 1. Reporting the percentage of observed duplicates and the estimated PCR and
Fragmentation duplicate percentages both for regions of the genome that have copy
number pattern “AABB” and those with copy number pattern “AB”.

not affected, because all we have made use of is the knowledge that the regions
were balanced.

Fig. 4. Left: Illustrating the expected patterns to be seen when plotting minor allele
frequency against sequencing depth for a sample that is 74% tumour. Genomic regions
that, in the tumour, share the same copy number state in all cells are expected to
appear at the points indicated, and the copy number state associated with each point
is annotated. For example “AAABB” indicates a region of copy number five with three
paternal and two maternal copies or vice versa, while “0” indicates regions that are
entirely missing in the tumour genome. Note that since the minor allele fraction is
bounded at 0.5, the expected value for balanced regions has to be less than this, and
the bias is more extreme the lower the copy number count. Right: A scatter plot illus-
trating the observed relationship between smoothed minor allele fraction and smoothed
sequencing depth for sequencing library SS6003314; an oesophageal adenocarcinoma
sample with inferred tumour purity of 74%. Darker regions indicate that more of the
genome lies at this position. The grid from the left hand plot is superimposed. Clouds
of points lying off the grid may indicate regions of the genome that do not have a
common copy number state in all cancer cells, artefacts from the smoothing, or that
the tumour purity has been misidentified.
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4 Effects on the estimation of DNA Copy Number

While the effects of copy number may sometimes be minimal when comparing
diploid and tetraploid genomes, there are circumstances in considering duplicate
proportions when it is important to distinguish DNA copy number and depth of
sequencing coverage despite the linear relationship we anticipate (as in Fig. 4).

Local to a region of constant copy number, the PCR duplicate proportion
will be trivially linked to depth of coverage since duplicate sequences count
towards that coverage, and if fewer than two reads are present then there cannot
be a duplicate. There may also be factors such as GC content that have the
potential to influence both properties locally within a genome. Beyond this,
there is no reason to expect the PCR duplicate proportion to vary with copy
number. The variation of our observed duplicate proportion with copy number
we then attribute to the fragmentation duplicates.

At high values, it is clear that depth of sequencing will drive the proportion
of fragmentation duplicates we see. There are only a finite number of positions in
which sequencing read pairs can be positioned, and that there must be a depth of
coverage, beyond which, all additional reads will be classed as duplicates. That
is, we achieve saturation, and there is a depth beyond which our sequencing will
reveal only additional duplicates. Consequently, if we remove duplicates from
an analysis, we place an artificial threshold on the copy number we can call.
Moreover, as one approaches that threshold, reads will be classed as duplicates
more frequently. Depth of sequencing for a region of the genome will depend on
the DNA copy number locally (as shown in Fig. 4) and the overall number of
sequences generated for the sample.

For a given DNA copy number, there are three key aspects of the sequencing
that determine the numbers of reads that are lost after being classed as frag-
mentation duplicates. These are a) the depth of sequencing associated with a
region of copy number one: More depth is generally a good thing in sequencing
experiments, but leads us to problems with fragmentation duplicates sooner. b)
the standard deviation (or more generally the distribution) of the fragment sizes:
Less variable fragment lengths are conceptually useful for identifying some types
of structural variant, but increase the numbers of fragment duplicates. c) The
lengths of the sequencing reads: For most purposes it is beneficial that these are
long, and minimizing fragmentation duplicates is no exception.

If we simulate some not-unrealistic data, where the sequencing coverage as-
sociated with one copy of DNA is 30 reads (achieved using paired-end 100 base
pair (bp) reads and a DNA fragment length standard deviation of 50, and with
no PCR duplicates) then we see that the removal of duplicates (all due to frag-
mentation) has an increasingly large effect as the copy number increases. At
moderate copy numbers, taking a copy number of 2 as the baseline, there is
little effect - regions of copy number 8 for example will be estimated to have a
copy number of 7.98 in these conditions. A true copy number of 50 would be
estimated to be 49, 100 would be estimated to be 96, 500 would be estimated
to be 410, and a copy number of 1000 would be estimated to be 686. This ‘com-
pression’ of observed copy numbers in high-copy-number-states will naturally
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result in increased uncertainty in the inference of true copy number, even before
saturation is reached.

In Fig. 5 we show the percentages of reads that are lost through being frag-
mentation duplicates for three simulated examples. One example matches the
scenario given above where the parameters provide an approximation to our
real data. The second example is a more extreme case with shorter reads and a
tighter distribution of insert sizes, while the third shows the effect for a case with
longer reads, more variable fragment length, but lower coverage per DNA copy
(perhaps because the sample being studied is tetraploid not diploid). From this
figure we can see that the effects can vary from extreme to possibly ignorable.
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Fig. 5. Showing the percentages of reads incorrectly discarded due to being identified
as fragmentation duplicates under three simulation schemes. The parameters varied
are read length (RL), standard deviation of the fragment lengths (SD), and depth of
coverage for a region of copy number one (Cov).

Although most of the genome is of a copy number where these effects are
small, it is worth noting that a) the PCR duplicate proportion is also small, and
the effect on this (and downstream characteristics such as inferred sequencing
library size) can be considerable, b) that only a small region of genome at very
high copy number can greatly increase the number of fragmentation duplicates
present in a samples, and c) the inference of copy number states can sometimes be
finely balanced between multiple credible solutions, and any discrepancy between
the assumptions of the model and the true nature of the data, could affect the
proffered solution.

5 The Estimation of Mitochondrial DNA Copy Number

Mitochondria are organelles within a cell that contain their own small (∼17 kB)
genome (mtDNA). There will be many mitochondria within a cell and each can
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have several copies of the mtDNA. Thus the mtDNA is expected to be present
in a cell at high copy number.

That different cell types have different mtDNA copy numbers has been known
for nearly half a century [2] and ‘next-generation’ sequencing data have been
used to investigate this since the early days of the technology using targeted
sequencing [13] or WGS [5]. A review of the changes in mtDNA copy number
in cancers of various tissues highlights the potential importance of this quantity
and also highlights the range of copy numbers that are possible (0-100,000) [12].
A recent pan-cancer analysis of over 2000 tumour samples estimated values from
8 in a pancreatic cancer to > 1750 in a cancer originating in the central nervous
system [15].

Clearly then, we can be of an order of copy number where the saturation
effects described above could have an effect, in underestimating the mtDNA
copy number.

5.1 PCAWG Copy Number

Assuming that appropriate measures of coverage for the nuclear genome and
mitochondrial genome can be identified, the recent Pan Cancer Analysis of Whole
Genomes (PCAWG) survey of mitochondrial changes in cancer [15] used the
following approach for the estimation of mtDNA copy number (mtDNA-CN):

mtDNA-CNtumour =
mtDNA coverage

nuclear coverage
×mean nuclear copy number (7)

where the mean nuclear copy number is defined as

f × ‘Tumour mean nuclear copy number’ + (1− f)× 2, (8)

f being the proportion of tumour within the sample.

Tumour purity We note that the term

nuclear coverage

mean nuclear copy number
(9)

is simply a measure of the coverage per copy number, and while it has been
calculated taking into account the tumour purity, when we rearrange Equation
7 it becomes clear that there is no further correction for tumour purity in the
mitochondrial copy number:

mtDNA-CNtumour =
mtDNA coverage

coverage per copy number
(10)

Thus the estimated mtDNA copy number is that averaged over the tumour
and contaminating benign tissue. This is natural if, as is often the case, the
mtDNA copy number for benign tissue is not known (unlike for the nuclear



14 Andy G. Lynch et al.

genome where the copy number for benign tissue can be assumed to be 2),
but since it has long been known that mtDNA copy number can differ between
malignant and benign tissue [8], trends between estimated mtDNA copy number
and tumour purity would seem inevitable.

In particular the tumour mtDNA-CN will be shrunk towards the benign
value. A process that accentuates any bias due to duplicate removal if the
mtDNA-CN is higher in the tumour than surrounding benign tissue, but may
apparently compensate for it if the mtDNA-CN is lower. Nevertheless, in that
scenario, the two competing biases cannot be relied upon to ‘cancel out’ (Fig.
6). These two effects clearly have the potential to mask or reduce the differences
in mtDNA-CN observed between groups.
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Fig. 6. Showing how the effect of removing duplicates can quickly outstrip the effect
of impurity in the sample. For a range of true tumour mtDNA-CN values and a fixed
mtDNA-CN of 500 for contaminating benign tissue (indicated with a vertical dotted
line) three curves are depicted for the copy number inferred from simulation with three
different levels of tumour purity. A line of agreement is shown in bold for contrast.

Consideration of Duplicates It seems clear that in calculating the ratio of
coverages in Equation 7, that duplicates should either be retained in both nu-
merator and denominator, or duplicates should be removed from both numerator
and denominator. Early examples of research into mitochondria using sequencing
technologies retained the duplicates [13, 4, 10], but many more recent investiga-
tions have been secondary analyses. It is almost certainly the case that reported
values pertaining to the nuclear genome will have been calculated after removing
duplicates and revisiting an entire WGS data set to recalculate values for the
nuclear genome will be costly. Therefore it may be more convenient to remove
duplicates from both numerator and denominator, as indeed appears to have
been done in the recent pan-cancer characterization [15] and in other studies.
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5.2 An Approach to Correct the Estimate of mtDNA Copy Number

The problem with removing duplicates in both denominator and numerator is
that it is only the PCR duplicates that we would wish to remove, and we have
seen that while the contribution of fragmentation duplicates will have minimal
effect on the nuclear genome calculations, it will have potentially great effect on
the mitochondrial calculations (Fig. 6).

Assuming that we do not wish to pay the cost of reanalysing the complete
data set, then we are typically in the position of having the nuclear coverage
with PCR and fragmentation duplicates removed, and mitochondrial coverage
with PCR and fragmentation duplicates removed. For little cost, it is possible
to extract and reprocess the mitochondrial-mapping sequences, while applying
the methods of this paper to the nuclear genome.

We are then left with observations of the nuclear coverage with PCR and
Fragmentation duplicates removed, an estimate of the corresponding fragmen-
tation duplicate proportion, an estimate of the PCR duplicate proportion, and
the observed mitochondrial coverage with no duplicates removed. From these it
is clearly possible to obtain an estimate either of the ratio of coverages with no
duplicates removed, or the ratio of coverages with PCR duplicates removed.

Note that the fragmentation duplicate proportion in the mitochondrial genome
can not be estimated directly using our methods due to the lack of heterozygous
SNPs in the mtDNA. Note also that in many cases, the correction of the nuclear
genome with the nuclear fragmentation duplicate proportion will have minimal
effect and might be dropped for even greater computational simplicity.

5.3 Example

We contrast the mtDNA CN calculated with duplicates removed with a corrected
estimate for our example data in Fig. 7. In this figure we can see that, not only are
the absolute values of mtDNA CN poorly estimated if all duplicates are removed,
but the general reduction in copy number will shrink differences between groups,
making comparisons less powerful (although a contrast as striking as blood vs
tissue still shows a clear difference).

In calculating the coverages, we have assumed that the alignment process was
well-behaved and that there are minimal biases - enabling a natural measure of
coverage to be used. Note also, that since these are benign samples, we do not
need to worry about tumour purity or ploidy in the calculations.

Applying the method to cancer samples is only marginally trickier, but as
previously mentioned, the inference of nuclear copy number can often present
multiple credible solutions. For example, distinguishing between a copy num-
ber of 2 and a high tumour purity and a copy number of 4 and lower tumour
purity can sometimes be near impossible (consider sequencing a sample immedi-
ately following a nuclear genome doubling event). It should be noted that such
uncertainty will naturally lead to a reciprocal change in the inferred mtDNA
copy number, and so uncertainty in the nuclear copy number is something of
which one should be aware. Although the ranges of mtDNA copy number for a
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cancer type typically range by more than a factor of two, the inferred mtDNA
copy number may be a tool for distinguishing between competing nuclear copy
number solutions.

0

200

400

600

800

Duplicates Retained CorrectedAll Duplicates Removed PCAWG

E
st

im
at

ed
 m

tD
N

A
 c

op
y 

nu
m

be
r

Benign
Tissue Blood

Benign
Tissue Blood

Benign
Tissue Blood

Tumour
tissue

Fig. 7. Showing estimates of mtDNA CN in the gold standard scenario that no du-
plicates (excepting optical duplicates) are removed from either coverage estimate, the
scenario that all duplicates are removed, and then also estimates corrected using the
approach described above. For comparison, the estimates for OAC tumour tissue re-
cently reported [15] are also shown.

6 Conclusions

We have set out a framework for estimating the PCR duplicate proportion in a
WGS library. This we have argued from basic principles, but have also demon-
strated to provide sensible and consistent results. We have updated our software
[11], better to make these methods available. Our approach relies on being able
to identify a subset of the genome where the PCR duplicate to fragmentation
duplicate ratio is constant (i.e. regions of constant copy number state), and we
require knowledge of the minor allele fraction (which should preferably be 0.5).

Should we not know the true minor allele fraction or should the number of
cells being sequenced be such that removing one DNA fragment greatly changes
the minor allele fraction, then these methods will be biased. For all reasonable
experimental scenarios, their application would still be an improvement over
attributing the basic observed duplicate proportion to be the PCR duplicate
proportion.

There are implications too for quality control metrics that rely on the PCR
duplicate proportion, e.g. sequencing library complexity. Complexity is an im-
portant metric, allowing comparison with previously sequenced libraries in order
to detect out-of-control library preparation [7]. It also predicts the value of gen-
erating further sequencing from a sample, making it invaluable for experimental
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design (especially adaptive designs), and will be underestimated if fragmentation
duplicates are not corrected for.

We have also shown that the estimation of DNA copy number is affected by
the removal of fragmentation duplicates and that regions of high copy number
can be severely affected. Additionally, we have demonstrated a computation-
ally effective way to make corrections when the copy number estimation is a
secondary analysis on WGS data for which duplicates have been removed.

7 Appendix: Proof that K = (
∑

j νj)!/
∏

j νj!

The proof is by induction.

7.1 The Base Case (M = 2)

If M = 2, we either have the case where two fragments have been observed from
the same starting molecule (and so ν2 = 1, νj = 0 for all j > 2), or we have
the right-hand case where one fragment is observed from each of two original
molecules (and so ν1 = 2, νj = 0 for all j > 1). In the first case, K = 1!/1! = 1
and in the second K = 2!/2! = 1 as required.

7.2 The Assumption (M = G − 1, G > 2)

For typographical convenience, we write ν+ =
∑

j νj in what follows. We assume
that for all partitions where M = G− 1, that the relationship

a = ν+! /
∏
j

νj ! (11)

holds.

7.3 The Inductive Step (M = G)

We assume that our partition of G duplicates is represented by the vector
(ν1, ν2, ν3, ...). We view the set of G duplicates as having arisen from a set of
G − 1 fragments and then sequencing one more. We must distinguish between
the two cases: 1) where the new duplicate in the set is the first from a previously
unseen molecule (only possible if ν1 > 0), and 2) where the new duplicate is a
further PCR duplicate from a previously seen molecule.

Case 1: A New Molecule If we have observed a new molecule with our Gth
fragment then the previous set of G− 1 duplicates must have been represented
by the vector (ν1 − 1, ν2, ν3, ...). Clearly this is only possible if ν1 > 0 and, since
observing a new molecule in this situation will always result in our observed
partition, the full coefficient is inherited from the previous set (there will of
course be a factor of FD as well).
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Hence the contribution to a from this case is

I(ν1 > 0) (ν+ − 1)!

(ν1 − 1)!
∏

j>1 νj !
(12)

where I() is the indicator function.

Case 2: A PCR Duplicate from a Previously Observed Molecule In
this case, the previous set of G − 1 duplicates must have been represented by
the vector (..., νk−1 + 1, νk − 1, ...) for some k such that νk > 0 and k > 1.

The coefficient, a′, associated with that vector is

a′ =
I(νk > 0) ν+!

(νk−1 + 1)! (νk − 1)!
∏

j /∈k,(k−1) νj !

but a new PCR duplicate added to that set might create patterns other than
the one in which we are interested, so only a portion of the coefficient makes a
contribution to our estimate of a. It would only have led to our observed pattern
if the PCR duplicate had been of a molecule of which there previously existed
k−1 copies. The fraction of the coefficient, a′, that contributes to our value of a
(not withstanding a factor PD) is therefore the proportion of molecules of which
there were previously k − 1 copies: (νk−1 + 1) /ν+.

The additive contribution to a for this value of k is therefore

(νk−1 + 1)

ν+

I (νk > 0)ν+!

(νk−1 + 1)! (νk − 1)!
∏

j /∈k,(k−1) νj !

and in total the contributions from this second case are∑
k>1

(
(νk−1 + 1)

ν+

I(νk > 0)ν+!

(νk−1 + 1)! (νk − 1)!
∏

j /∈k,(k−1) νj !

)
. (13)

Combining The Two Cases. If we combine the terms from the two cases as
represented by expressions (12) and (13) then we get

a =
I(ν1 > 0) (ν+ − 1)!

(ν1 − 1)!
∏

j>1 νj !
+
∑
k>1

(
(νk−1 + 1)

ν+

I(νk > 0) ν+!

(νk−1 + 1)! (νk − 1)!
∏

j /∈k,(k−1) νj !
,

)
which we can simplify by removing the terms in the first fraction on the right
hand side, to get

a =
I(ν1 > 0) (ν+ − 1)!

(ν1 − 1)!
∏

j>1 νj !
+
∑
k>1

(
I(νk > 0) (ν+ − 1)!

(νk−1)! (νk − 1)!
∏

j /∈k,(k−1) νj !

)
and this can be tidied to

a =
I(ν1 > 0) (ν+ − 1)!

(ν1 − 1)!
∏

j>1 νj !
+
∑
k>1

(
I(νk > 0) (ν+ − 1)!

(νk − 1)!
∏

j ̸=k νj !
,

)
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Adjusting the products to be independent of 1 and k, we get

a =
I(ν1 > 0) (ν+ − 1)! ν1!

(ν1 − 1)!
∏

j νj !
+
∑
k>1

(
I(νk > 0) (ν+ − 1)! νk!

(νk − 1)!
∏

j νj !

)
.

Tidying up the other terms,

a =
I(ν1 > 0) (ν+ − 1)! ν1∏

j νj !
+
∑
k>1

(
I(νk > 0) (ν+ − 1)! νk∏

j νj !

)

We can now combine everything into one sum over k:

a =
∑
k

(
I(νk > 0) (ν+ − 1)! νk∏

j νj !

)

Moving the terms that are independent of k out of the sum,

a =
(ν+ − 1)!∏

j νj !

∑
k

(νkI(νk > 0)) =
(ν+ − 1)!∏

j νj !
ν+,

whence

a =
ν+!∏
j νj !

as was to be shown.

8 Data Availability

The raw data are archived in the European Genome-Phenome Archive [EGA:
EGAD00001000704]. Processed data and code to generate these values, alongside
code to reproduce the figures in this text, have been added to the GitHub repos-
itory: https://github.com/dralynch/duplicates. DOI:10.5281/zenodo.6257577.

9 OCCAMS Consortium

For membership of the OCCAMS Consortium see [6].
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com/dralynch/duplicates (2016). DOI DOI:10.5281/zenodo.6257577

12. Meng, S., Han, J.: Mitochondrial DNA copy number alteration in human cancers.
North American Journal of Medicine and Science 6, 22–25 (2013)

13. Vasta V., V., Ng B., S.B., Turner, E.H., Shendure, J., Hahn, S.H.: Next generation
sequence analysis for mitochondrial disorders. Genome Medicine 1(10), 1–10 (2009)

14. Weaver, J.M.J., Ross-Innes, C.S., Shannon, N., Lynch, A.G., Forshew, T., Bar-
bera, M., Murtaza, M., Ong, C.J., Lao-Sirieix, P., Dunning, M.J., Smith, L.,
Smith, M.L., Anderson, C.L., Carvalho, B., O’Donovan, M., Underwood, T.J.,
May, A.P., Grehan, N., Hardwick, R., Davies, J., Oloumi, A., Aparicio, S., Caldas,
C., Eldridge, M.D., Edwards, P.A.W., Rosenfeld, N., Tavaré, S., Fitzgerald, R.C.,
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