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Abstract. Cancer is a disease driven and characterised by mutations
in the DNA. Different categorisations of DNA mutations have allowed
the identification of patterns that can act as signatures for the processes
that have governed the life of the cancer. Over the last decade, research
groups have identified more than 100 such signatures.

Mutational signature analyses are improving our understanding of can-
cer aetiology and have the potential to play a role in diagnosis, prognosis
and treatment choice. Consisting of the estimation of probability mass
functions or weights determining non-negative weighted combinations,
they are perhaps unique amongst comparable analyses in the medical
literature, in that no confidence intervals or other representations of un-
certainty are demanded when reporting the results.

Here, we review the key statistical challenges for the field, assess the po-
tential of existing approaches to adapt to those challenges, and comment
on what we think are promising directions. As we deal with data that
are noisy and heterogeneous, we evaluate how to present them so that
models use all the information available. Often posed as a matrix factori-
sation problem, we argue that a fully probabilistic approach is required
to quantify uncertainty around model parameters and to underpin prin-
cipled study design. Lastly, we argue that novel methodology is required
to evaluate uncertainties in analyses where prior information is available.
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1 Introduction

Cancers can result from relatively few changes to a cell’s DNA, but typically
carry many additional somatic (i.e. occurring within the life of the patient)
mutations. We can identify these mutations by sequencing and then comparing
DNA from the cancer and DNA from healthy tissue from the same individual
[1, 2]. “Mutation”, here, refers to a wide range of events ranging from single
base substitutions to larger structural variants (e.g. genomic rearrangements
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where large segments of a chromosome might be deleted, duplicated or have
their orientation inverted [3]). See e.g. [4] for a review of mutation classes.

Somatic mutations are the result of biological mechanisms, termed muta-
tional processes, associated with characteristic patterns of mutations or muta-
tional signatures, described by means of probability mass functions over muta-
tional categories [5]. Therefore, the catalogue of somatic mutations observed in
an individual cancer genome can be thought of as a mixture of the mutational
signatures that have acted on the tumour over time.

Some mutational processes act continuously throughout life [6], while others
arise as a result of exposures to carcinogens [7,8]. They might be ongoing, inter-
mittent, or might have stopped [4]. Some processes are associated with germline
mutations in tumour suppressor genes, such as BRCA1/2 [5,9]. Cancer genomes
contain the imprint of many such processes to differing degrees. Consequently,
the goals of mutational signature analyses are to infer from the somatic muta-
tions in tumours (1) the signatures of mutational processes, (2) the contribution
of each process to individual cancer genomes and (3) when those processes con-
tributed.

To achieve those goals a range of mathematical methods have been, and are
being, developed [10–21] (for a review, see e.g. [22, 23]). Their application to
data sets of ever-increasing size and complexity has resulted in a remarkable
improvement of our understanding of cancer and its causes [24]. More than a
hundred inferred mutational signatures are available to the wider research com-
munity [24,25]. In the context of personalised medicine, these have a remarkable
potential to stratify cancer patients [26, 27] and to predict response to treat-
ment [28].

1.1 Modelling Framework

Data Gathering. In the context of mutational signature analyses, we in-
vestigate data sets generated using next-generation sequencing and analysis
pipelines (involving (a) sequencing, (b) alignment to a reference genome, (c)
often-probabilistic mutation calling and (d) post-processing). The output is a
list of “mutations” observed in the tumour. Often, data are not solely collected
for the purpose of signature analysis.

In the sequencing step, short segments of DNA from both tumour and matched
healthy tissue are read as base sequences. Each of those ’reads’ covers 100-250
base pairs and may contain errors. We define the coverage of an individual base
to be the number of times it has been sequenced. Additionally, we define the
sequencing depth of an experiment to be the average number of times a base is
sequenced. While sequencing depth is typically set by the investigator, coverage
is not uniform across genomic regions. In particular, regions with high prevalence
of Cs and Gs are susceptible to low coverage [29].

Sequence reads are then aligned to a reference genome, and aligned reads
from both tissues are presented to a ‘mutation caller’ that determines whether
a mutation is present at a given locus by means of a statistical test. Thus, there
must be a balance between sensitivity and specificity that will differ between
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cancer types. Additionally, that balance is unlikely to be uniform across muta-
tion types. Thus, the systematic bias introduced in this step will be propagated
to mutational signature analyses, affecting inferences. This problem can be ex-
acerbated by the application of post-calling filters [30,31].

Mutational Signatures and Mutational Catalogues. For the mutational
class being considered, biologically meaningful categorisations must be defined
(see e.g. [4] for a review) and we denote the resulting categories by k = 1, . . . ,K.
We define a mutational signature, sn = (s1n, . . . , sKn)

T , to be a probability
mass function over the K categories, with skn denoting the probability that a
mutation generated by signature n is of type k.

We now consider the mutational catalogues of G cancer patients, and assume
that they have been exposed to N mutational processes. The observed number
of mutations of category k in patient g, mkg, is approximately

mkg ≈
N∑

n=1

skneng (1)

where eng denotes the exposure of patient g to signature n, that is, the number
of mutations attributed to that signature. In matrix form,

M ≈ S ×E (2)

where M = [m1 · · ·mG], S ≈ [s1 · · · sN ] and E ≈ [e1 · · · eG].

1.2 Mathematical Approaches to Mutational Signatures

We will consider two problems. The first, termed de novo signature extraction,
consists in estimating S and E for known M . The second, termed refitting,
consists in estimating E for known M and S.

De Novo Signature Extraction. This problem, consisting of estimating S
and E given M in (2), was originally posed as the following non-convex optimi-
sation problem:

arg min
S≥0,E≥0

||M − SE|| (3)

where || · || denotes an appropriate norm. This is the approach taken by the
original and arguably most popular method, SigProfiler [10,24]. Several other
software packages are available implementing similar solutions based on standard
Nonnegative Matrix Factorization (NMF) [25, 32–36]. An alternative method is
EMu [14], which considers the exposures to be nuisance parameters and uses the
EM algorithm to estimate the matrix S.

A slightly different approach is to place equation (2) in a Bayesian setting, as
done by SignatureAnalyzer [12,13], signeR [15] and sigfit [16]. Briefly, prior
distributions are placed on the elements of S and E, and a likelihood function
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is assumed for the elements of M . SignatureAnalyzer performs Maximum
A Posteriori estimation of S and E using the methodology developed by Tan
and Févotte [37]. Alternatively, the other two methods use different MCMC
algorithms [38–40] to draw from the posterior distributions of S and E.

Those methods also differ in their model selection criterion ( Table 1). For
brevity, we refer the reader to [22] for a thorough albeit somewhat dated sum-
mary.

Table 1: Overview of methods for de novo mutational signature analysis.

Software Method
Point
estimation

Posterior
sampler

Model
selection

SigProfiler [24] NMF [41] MLE - Ad hoc

SomaticSignatures [11] NMF/PCA [41] Optimisation - -

SignatureAnalyzer [12, 13] Bayesian NMF [37] MAP - Not needed

EMu [14] Poisson model MLE (EM) - BIC

signeR [15] Bayesian NMF [38,39] - Gibbs BIC

sigfit [16] Bayesian NMF - HMC (stan [40]) Ad hoc

SparseSignatures [17] Sparse NMF - - Cross validation

The Bayesian Non-Parametric Alternative. An alternative approach to
the methods described above is the one by Roberts [18], implemented in the R

package, hdp, using the methodology of Teh et al. [42]. Here, we are not presented
with vectors of counts but with lists of mutations.

Specifically, we are presented with a data set X = (x1, . . . ,xJ) where xj =
(xj1, . . . , xjnj

)T is the list of mutations observed in the jth patient. Within
this framework, patients are assumed to be exchangeable, i.e. the joint proba-
bility distribution p(X) does not depend on the ordering of patients. Similarly,
mutations are assumed to be partially exchangeable, meaning that p(X) is in-
dependent of the ordering of mutations within a specific patient. Observations
are assumed to be draws from a categorical distribution:

xji|θji ∼ Categorical(θji) (4)

The parameters θji of the discrete distributions are draws from a Dirichlet Pro-
cess associated with the jth patient, Gj , whose base measure G0 is distributed
according to a “global” DP with base measure H and concentration parameter
γ. Formally,

θji|Gj ∼ Gj (5)

Gj |α,G0 ∼ DP(α,G0) (6)

G0|γ,H ∼ DP(γ,H) (7)

where DP(·, ·) denotes a Dirichlet Process [42]. That is a non-parametric hierar-
chical prior that does not assume a fixed number of components and has three
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hyperparameters: H is the mean of the prior distribution over the signatures,
and γ and α control the variability around that mean at the global and patient
level, respectively. Often, H is conveniently set to Dirichlet(1, . . . , 1), a flat prior
over the (K − 1)-simplex, and non-informative Gamma hyper-priors are placed
on γ and α. As with any Bayesian analysis, a sensitivity analysis is required to
assess the prior choice for H. The model of equations (4-7) is referred to as the
Hierarchical Dirichlet Process Mixture Model (HDPMM).

This method has several advantages over the ones reviewed above: First, the
number of components (signatures) is inferred from the data, rather than fixed.
Second, it naturally models the hierarchical nature of patient data. Further, it
assumes naturally that the number of components grows with the number of
observations, explicitly modelling the rate of growth. Although the assumption
that the number of clusters grows logarithmically with the number of patients
and doubly-logarithmically with the number of mutations is unchecked [43]. The
main disadvantage is that, even if MCMC samplers are available, inference from
the raw MCMC output is non-trivial as it requires a post-processing procedure
that is currently not available.

Additionally, it should be noted that the HDPMM allows for the assumption
of exchangeability at the patient level to be relaxed by extending the hierarchy
of Dirichlet Processes. Patients can then be considered partially exchangeable
and grouped e.g. according to the tissue where the tumour arose [18]. However,
to relax the assumption of exchangeability at the mutation level would be more
challenging.

Refitting of Mutational Signatures. This is a simpler problem which con-
sists of solving for eg for a single patient g in (2), assuming mg and S are
known. The most popular approach is perhaps deconstructSigs [19]. Alterna-
tively, one can solve (2) using e.g. nonnegative least squares [20,44]. An attempt
to quantify uncertainty by using the Bootstrap within the context of refitting
has been provided by SignatureEstimation [20]. A Bayesian alternative that
also enforces sparsity in the solution is sigLASSO [21]. For brevity, we do not
detail these approaches here.

Statistical Challenges. Despite the advances in this area over the last decade,
it is a concern that within this field, uncertainty quantification is not receiving
enough attention. Even if the effort to develop new methods has been substantial,
recognition of uncertainty within the discipline is surprisingly limited. While
previous reviews have focused on a mathematical description of the methods
[22] and their performance [23], here we focus on the key statistical challenges
for the field, enumerated in Table 2. In the forthcoming sections, we describe
these challenges, highlighting the potential of different methods to address these
challenges.

The first group of challenges (section 2) concerns the uncertainties arising
from data collection. The second group (section 3) concerns uncertainties in de
novo analyses, and how accounting for them could inform data collection. We



6 Vı́ctor Velasco-Pardo et al.

will argue that the Bayesian Nonparametric approach is suitable to address those
challenges. The third group (section 4) concerns uncertainty in analyses where
partial information is available. While we will highlight that progress has been
made, the need to address these challenges demands the development of new
methodology.

Table 2: Overview of challenges, grouped by proposed statistical solution.
Proposed statistical approach Challenge

Constructing the matrix M

1. Accounting for bias and variance in M
2. Recognising intra-tumour heterogeneity
3. Accounting for opportunities
4. Going beyond the 96 categories

Bayesian non-parametrics
5. Uncertainty in the number of signatures
6. Uncertainty around the signatures
7. Sample size calculations

Novel statistical methodology
8. Uncertainty around the exposures
9. Obtaining separated signatures
10. Partial information about the signatures

2 Challenges in constructing M

2.1 Challenge 1: Accounting for Bias and Variance in M

Sequencing experiments are stochastic events, and the identification of muta-
tions, necessary for constructing M , is often based on probabilistic models [31].
M is itself therefore also an observation of a random variable. While uncer-
tainty around the mutation calls is unavoidable, it can be reduced by increasing
sequencing depth [29]. High sequencing depth increases the chance of calling
sub-clonal mutations (see also section 2.2) and reduces disagreements between
mutation callers [31]. Typically, it is beneficial to increase the depth of sequenc-
ing as it results in the identification of mutations that are present in a fraction
of cells. However, the benefits of doing so are marginal after a certain depth
threshold, which differs across individual tumours [30]. Therefore, allocating ex-
tra resources to recruit more patients might be more cost-efficient.

As well as exhibiting variation, M will be a biased estimate of the true
value. Different callers [31] and sequencing pipelines [30] can return systemati-
cally different results. Genomic context affects the power to detect mutations (via
variation of sequencing coverage [45]) and the false discovery rate [31], meaning
that some classes of mutation are less likely to be called correctly than others.
There is potential for novel statistical developments to estimate more accurate
catalogues.

Going back to the identification of mutations present in a small fraction of
cells, these are more likely to have occurred more recently —and thus they are
more likely to be overlooked due to insufficient coverage. If there is a change
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in mutational patterns over time [46] then this will cause a bias in M . On
the other hand, if the tumour has recently diverged into subclones, then recent
mutational processes might have their impact measured on each subclone, and
these processes will be over represented relative to the truth for any cell present.

2.2 Challenge 2: Recognising Intra-Tumour Heterogeneity

Intra-tumour heterogeneity (ITH) poses a difficulty with mutational signature
analyses that is not always acknowledged. Briefly, tumours are heterogeneous
mixtures of cells, and we are often able to identify mutations only at the patient
level (i.e. not with single cell resolution). We can sometimes infer whether a mu-
tation is clonal (meaning it is present in every sampled cancer cell) or subclonal.
Every subclonal mutation belongs to one or more subclones, subpopulations of
cells that carry the same variants. Subclones can be inferred by clustering on the
space of the cancer cell fraction (CCF), the unobserved proportion of tumour
cells in which a mutation is present [47].

ITH in De Novo Signature Extraction. All de novo methods ignore ITH.
They consider, explicitly or implicitly, mutations to be exchangeable at the pa-
tient level, ignoring their clonal status. Ideally, we would relax the assumption of
exchangeability by incorporating available information regarding ITH. An inter-
esting approach has been taken in recent studies of normal and non-neoplastic
colon biopsies [48,49], and consists of extending the tree-like hierarchical struc-
ture of the HDPMM to a further level. Then, mutations are grouped according
to their subclone, which are in turn grouped according to patients. However, it
remains to be shown whether this approach is applicable to cancer data.

ITH in Signature Refitting. By combining the estimation of subclones with
refitting methods we can learn about the evolution of cancers [46]. One approach
is to infer the subclones and then apply a refitting algorithm to each of them [50].
A second is implemented by TrackSig [51], and consists of sorting mutations
by CCF (a surrogate for “age”). Refitting is then applied to“time points” of
100 mutations each. Lastly, subclones are inferred at boundaries between time
points.

The first approach fails to propagate the uncertainty around subclones to
the second step of the analysis. Performing inference on the subclones and the
subclone-specific exposures jointly, as done by TrackSig, seems sensible but is
unproven regarding uncertainty in the estimation of the CCF.

2.3 Challenge 3: Accounting for Opportunities

A mutation category implies a “reference state” and a “variant state”. For ex-
ample, consider the category “A[C>T]G” in the standard categorisation of SBSs
implying a reference state “ACG” and a variant state “ATG”. Reference states
are not uniformly distributed across the human genome and their distribution
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varies across cancer patients (due to copy number variation and loss of heterozy-
gosity events).

Fischer et al. [14] have proposed to adjust the observed number of mutations
of category k by the relative prevalence of that category’s reference state. That
relative prevalence is termed “opportunity” and, for patient g, is denoted okg.
Adjusting for opportunities, equation (1) becomes:

mkg ≈ okg

N∑
n=1

skneng (8)

While this approach is available in several de novo methods [14–16], it does not
seem to be widely used in practice.

Opportunities, when measured, are informative about the distribution of mu-
tations that might occur contemporaneously, but are used to analyse mutations
that have occurred in the past. Copy-Number gains change the opportunities
for late mutations, while loss of heterozygosity events and copy number losses
effectively change the opportunities for early events. By contrast, other processes
can gradually shift the balance of opportunities. An SBS event can change three
local contexts, so a hypermutation event with 1, 000, 000+ similar mutations
would noticeably change the opportunities.

2.4 Challenge 4: Going Beyond the 96 Categories

As mentioned in section 1.1, signature analyses are applicable to a range of mu-
tational classes. Most, though, have been performed on single base substitutions
(SBS) for which a canonical categorisation with 96 categories is available. Six
basic categories result from considering the pyrimidine in the mutated base pair,
and the base to which it mutates (C>A, C>G, C>T, T>A, T>C, T>G). Con-
sidering this and the four possible nucleotides before and after the mutated base,
we obtain the most common categorisation, with 4× 6× 4 = 96 mutation types.

Further Categorisations of SBS. We could consider four flanking bases in-
stead of two. The number of categories in this taxonomy is then 6× 44 = 1536.
While it has been shown that the two bases immediately flanking the mutated
base carry a stronger signal, in some cases using this extended taxonomy has led
to further resolution. [24]. This taxonomy comes with its own challenges. First,
we would not expect MCMC-based methods to scale to this level of resolution.
Second, we would expect matrix M to contain many zeroes, requiring methods
that can account for such sparsity.

A related problem is that there is currently no distance structure between
mutation categories. A mutation A[C>T]G is as different from C[C >T]G as
it is from T[T>A]T. While the NMF approach offers no obvious way of creat-
ing such distance structure, the one-dimensional categorical observations xji ∈
{1, . . . , 96} in the HDPMM could be replaced with three-dimensional observa-
tions xji = (xji1, xji2, xji3) with xji2 ∈ {1, . . . , 6} and xji1, xji3 ∈ {1, . . . , 4}.
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Integrating Mutation Classes. Whether it would be informative for signa-
tures to integrate all the mutation classes is a matter of debate [4, 24]. A cross-
class categorisation, such as the one with 1,697 categories proposed by Alexan-
drov et al. [24], ignores the difference in noise and degree of sparsity between
mutational classes. Performing separate analyses for each class, followed by post-
hoc association analysis of exposures has the drawback of ignoring uncertainty in
mutation attribution. Instead, we would suggest a strategy of information shar-
ing, using class-specific categorisations and catalogues to extract signatures, but
incorporating an association parameter that would quantify which signatures of
diverse classes tend to occur together.

Accounting for Genomic Properties. So far, we have considered mutations
from a given patient to be exchangeable. That is reasonable if we lack information
to distinguish them, other than the category we are measuring. However, that
is not entirely true, as each mutation has genomic properties (e.g. chromosome,
chromatin state, proximity to a particular binding site, etc.) that we might be
able to measure. Those properties can help elucidate the aetiology of a signature,
as well as help determine whether a signature is an artefact of the extraction
algorithm.

Categorisations can be augmented to account for these genomic properties,
but increasing the number of categories comes at a price. With that strategy,
we are likely to be able to consider one genomic property at a time. Vöhringer
et al. have suggested an alternative based on non-negative tensor factorisation,
TensorSignatures [52]. This method scales to a large number of genomic prop-
erties. However, it has the disadvantage of not being a probabilistic method. Fur-
ther methods may arise, in the spirit of TensorSignatures, perhaps modelling
mutation categories and genomic properties with a joint probability distribution
and thus relaxing the assumption of exchangeability.

3 Challenges Addressed with Bayesian Non-parametrics

3.1 Challenge 5: Uncertainty in the Number of Signatures

Parametric methods such as those based on NMF, reviewed in section 1.2, assume
a fixed number of signatures. Therefore, uncertainty for the number of signatures
is not modelled or evaluated. Moreover, it has been argued that uncertainty
around model dimension should be disregarded as its influence in the estimation
of the main signatures is marginal [4].

We argue that as the number of signatures is unknown, there is uncertainty
about the true model dimension. This uncertainty can be modelled and evaluated
after collecting data. A Bayesian clustering approach relaxes the assumption
of a fixed number of signatures and lets this number be a parameter whose
value is to be learned. This is achieved by placing a prior on the number of
signatures. A nonparametric prior implies that model dimension increases with
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the number of observations [53]. The assumed rate of growth depends on the
chosen nonparametric prior, as briefly discussed for the HDPMM in section 1.2.

The latter approach has, in our opinion, several advantages. First, avoiding an
upper bound on the number of signatures is intuitively appealing, as we expect
to see more signatures as more observations arrive. However, the assumption
about the rate of growth is rather strong and must be checked. Second, it allows
for inference to be performed on model parameters and model dimension jointly.
Hence, uncertainty intervals around model parameters will reflect the uncertainty
around the number of signatures (see also section 3.2).

Provided with a data set, a sampler for the HDPMM will produce draws
from a posterior distribution, each of them with a different number of signa-
tures. From those draws, it is straightforward to produce a (marginal) posterior
distribution over the number of signatures. As that posterior will help quantify
the strength of the signal in the data set, it must be reported along with the
“most representative set of signatures”. Relatedly, the required evaluation of un-
certainty around signatures in that representative set is not trivial (see section
3.2).

3.2 Challenge 6: Uncertainty Around the Signatures

Contrary to usual practice in the biomedical literature, estimates of mutational
signatures have typically been reported without intervals of uncertainty [5,9,24].
This is undesirable, as we are often interested in the possible range of values
that might have generated the data. First, even if we were only interested in the
“centre” of the signatures, uncertainty in estimating that centre is unavoidable.
Second, if there is any randomness in the biological mechanism under which
mutational processes generate mutations, we would expect them to leave slightly
different “fingerprints” in each patient. Uncertainty intervals around signature
probabilities should reflect that variability.

The Bayesian paradigm provides a natural setting to quantify that uncer-
tainty. While this has been proposed in two contexts, Bayesian NMF [15,16] and
Bayesian clustering [18], we believe that the latter is more promising. This is
because the Bayesian clustering approach accounts for the uncertainty in model
dimension when reporting uncertainty around the signatures (see section 3.1).
This can be useful considering study design (see section 3.3).

The Bayesian clustering framework provides a posterior over the space of
possible partitions. At every iteration of the MCMC sampler, every mutation is
allocated to a cluster which is, in turn, characterised by θji in (5-7). The ran-
dom vector θji represents the signature attributed to mutation xji. For ease of
interpretation, a representative clustering must be determined from the MCMC
output. An objective criterion must be defined to determine that “most repre-
sentative set of signatures”.

Once a representative set has been derived, the MCMC output can be used to
determine the strength of the signal. If a signature is needed to explain the data,
it will appear consistently across iterations of the sampler, and hence credible
intervals around it will be narrow. Conversely, if a signature appears in the best
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set but does not appear throughout the MCMC output (e.g. because it might
emerge admixed with similar signatures), it will be reported with wide credible
intervals.

Such an approach, while needing development, would differ from the post-
processing method of Roberts [18] that disregards uncertainty in clustering by
assuming that every reported signature is present across iterations of the sam-
pler. Rather, one of the strengths of the Bayesian clustering approach is that it
allows one to assess whether a given signature is present across iterations.

3.3 Challenge 7: Sample Size Calculations

Since a first collection of 5 mutational signatures was found on a data set of 21
breast cancer whole-genomes [9], the number of known mutational signatures has
grown as with the number of cancer genomes available for analysis. The first pan-
cancer mutational signature study reported 21 SBS signatures in 507 genomes
and 6535 exomes [5, 10], while the most recent large scale study has reported
49 SBS signatures in 4645 genomes and 19184 exomes [24], suggesting that the
rate at which new mutational signatures can be found shrinks as the number of
patients and observed mutations grows. Heterogeneity within the cohort is also
known to influence the power to extract signatures.

While we would expect the inventory of mutational signatures to keep increas-
ing as new tumour samples are observed, it is good practice to make sample size
calculations before collecting new samples. When making sample size calcula-
tions it is advisable to consider, (1) the number of new individuals recruited, (2)
the number of mutations observed in each patient and (3) heterogeneity within
the cohort.

Whereas methods based on Non-negative matrix factorisation do not provide
an obvious way of informing study design, the fully probabilistic approach of the
HDPMM could be used to inform future sample collection. In particular, we
would be interested in assessing the posterior probability of discovering a new
signature, conditional on the data already observed and L future observations
xJ+1,xJ+2, . . . ,xJ+L.

The scaling properties of the HDPMM [43,53], explained in sections 1.2 and
3.1, can be applied to assess that probability. Related probabilistic questions on
future data collection could be answered, for example regarding heterogeneity
within the cohort. This approach has been successful in other problems, such as
single cell sequencing experiments with competing budget constraints [54]. How-
ever, to avoid making false inferences, we must check that the newly discovered
signatures are likely to be genuine, considering the level of support for them by
the observed data.

4 Challenges Requiring a New Modelling Approach

4.1 Challenge 8: Uncertainty Quantification Around Exposures

Remember that the goal of a refitting analysis is to solve for eg in (2) for a single
patient g. In section 1.2, we have briefly reviewed the mathematical methods
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available for performing this task. To date, it remains the case that most point
estimates in refitting analyses are reported without an uncertainty interval (see
e.g. [55]).

So far, there has been one attempt to provide confidence intervals around
the estimates of a refitting analysis, provided by SignatureEstimation [20],
which uses the bootstrap to produce confidence intervals around the exposure
estimates. There is concern though that this approach accounts at best for a
fraction of the uncertainty.

Avoiding False Exposures and Obtaining a Sparse Solution. Because
signatures overlap, different weighted combinations of signatures can explain
a mutational catalogue equally well. Thus, it has been argued that S should
include only the signatures that one could reasonably expect to see in the tissue
where the tumour arose [4]. Moreover, any extra signature added to the S matrix
will result in a fitted vector that better resembles the observed vector.

Those two difficulties are acknowledged and addressed by Alexandrov et al.
[24]. Their solution consists in (a) including in S all the signatures that have
been previously found in the relevant tissue, (b) removing signatures from S
sequentially, until the removal of a single signature results in a reduction in the
cosine similarity ≥ 0.01 and (c) adding to S the signatures that result in an
increase in cosine similarity of ≥ 0.05, even if they have not been previously
associated with the relevant tissue.

However, that approach is not without problems. First, inference is based on
ad-hoc rules, and relies on cut-offs that appear arbitrary. A first suggestion from
a statistical point of view would be to elucidate an informative prior distribution
over the exposures. If prior information is limited to the tissue in which the
tumour was observed it might be possible to adopt a hierarchical modelling
approach, with the ambition to borrow information across patients. Further, a
penalty parameter could be included, ensuring that over-fitting is avoided.

Assessing All Sources of Uncertainty. In principle, to avoid underestimat-
ing uncertainty, all its sources should be modelled explicitly. Degasperi et al. [25]
have argued that, even if most signatures occur in more than one tissue, the pro-
file of each signature is tissue-specific. Therefore, the matrix S should contain
signatures as extracted from tumours of the relevant tissue only. While this seems
sensible, we would go further and argue that, if there is any randomness in the
mechanism under which a given mutational process generates mutations, then
the fingerprint of that process must differ at least slightly between patients. This
must be accounted for when allocating mutations to signatures.

Another source of uncertainty that is often ignored has been termed “sam-
pling uncertainty” by Li and colleagues [21]. It formalises the idea that uncer-
tainty in the estimated exposures will decrease as more mutations are observed.
A response to that is their method, sigLASSO. However, even if this method
accounts for such “sampling uncertainty” in its modelling, it reports point esti-
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mates only. This is an appealing idea that could be incorporated into the other
methods.

4.2 Challenge 9: Obtaining Separated Signatures

If we are looking to extract a representation of the true exposures and signatures,
then it should be noted that two true but distinct signatures can be similar. This
has been highlighted as problematic, as the presence of similar signatures in the
matrix S prevents unambiguous attribution of mutations to signatures [24]. We
should also note that the interpretation of similarity is very much dependent on
the vector space in which we are representing signatures, which is a restrictive
space due to the non-negativity constraint.

To avoid such ambiguity in post hoc refitting analysis, we can impose a spar-
sity constraint on de novo methods by adding a penalty term to the optimisation
problem 3, as suggested by Lal et al. [17]:

λ

N∑
n=1

||sn||1 (9)

where || · ||1 is the L1 norm and λ can be interpreted as the data set’s degree
of sparsity. This approach results in extracting signatures that are sparse, thus
making pairs of signatures more likely to be separated. It should be noted how-
ever that, by imposing a sparsity constraint, a restriction that may not be sup-
ported by evidence is introduced for computational and interpretational conve-
nience.

By shrinking the signature parameters towards zero, the aforementioned spar-
sity constraint results in a rather strong restriction over a space that is already
restrictive. This has implications for the stability of present and future signa-
tures: presented with additional data carrying novel signatures, a de novo method
may fail to find space to accommodate those novel signatures, potentially dis-
torting old ones.

4.3 Challenge 10: Partial Information About the Signatures

With the methodology available to date, a researcher has two options when
attempting to analyse data —to rely on an external collection of signatures to
perform a refitting analysis or to perform a de novo analysis. However, there are
situations where it would be more natural to assume an intermediate setting,
where the signatures are neither known nor unknown.

In this context, it might make sense to consider an intermediate approach
where partial information about the signatures is available, but they are not
known precisely. This is not the same as the approach termed fit-ext in [16]
and also implemented in [18]. That approach, consisting in setting part of the
signatures matrix to point estimates derived from previous studies, ignores the
uncertainty associated with those point estimates. Moreover, it does not allow
for those estimates to be updated.
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Rather than considering previously discovered signatures to be fixed, it seems
more appropriate to incorporate knowledge obtained from previous studies through
means of an informative prior distribution. This setting has, to some extent, been
explored also in [16], allowing informative Dirichlet priors over both signatures
and the exposures. However, there is little guidance on how to take advantage
of this method. We note however two possible lines of future research within
this approach. First, the Dirichlet distribution might not be flexible enough to
model prior knowledge about the signatures. Second, a hierarchical prior over
the exposures might be worth considering, to borrow statistical strength between
patients.

5 Conclusions

This review has set out what we perceive to be the main statistical challenges
in the field of mutational signatures. While highlighting the achievements of the
mutational signatures community in improving our understanding of cancer, we
have drawn attention to the lack of estimates of uncertainty in such analyses.
Motivated by this, and by related statistical challenges we have highlighted the
strengths of certain methods to address those challenges while also emphasizing
the need for future developments.

First, we have outlined four challenges involving potential errors or loss of
information when constructing M . We have highlighted that the problem of esti-
mating the “true” M has been largely ignored (section 2). As an alternative, we
could have argued for a single Bayesian pipeline integrating mutation calling and
signature analysis. However, that would set back the adoption of new methods,
since mutation calling pipelines are established. Relatedly, we have underlined
the promise of TrackSig in the study of tumour evolution, but further develop-
ments are required to account for all the uncertainties (section 2.2). Similarly,
we drew attention to the concept of mutational opportunities while calling for
new developments to account for the opportunities’ temporal evolution (section
2.3).

Second, we have outlined three challenges related to uncertainty quantifi-
cation in de novo applications. Whilst NMF approaches have been augmented
with probabilistic models, their lack of flexibility regarding model dimension is
a drawback. We have argued that the Bayesian Nonparametrics approach, first
suggested by Roberts, offers a more natural framework for assessing sources of
uncertainty. However, we have argued that further study is needed to take ad-
vantage of the vast MCMC output resulting from this approach (sections 3.1 and
3.2). We have also discussed the potential of this fully probabilistic modelling to
underpin study design, allowing practitioners to address trade-offs and optimise
limited resources (section 3.3).

Lastly, we have outlined three challenges for which no obvious statistical
solution is available. We have highlighted the need for quantifying uncertainty
in the context of refitting. We have also highlighted the recent application of
statistical methods such as the Bootstrap to assess a fraction of such uncertainty,
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while identifying additional sources of uncertainty that are being ignored (section
4.1). Finally, we have underlined the fit-ext approach as an attempt to pose an
intermediate problem between de novo and refitting. However, that approach
needs enhancement to account for the uncertainty around estimates obtained in
previous studies (section 4.3).
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