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Abstract 

This paper utilizes a large universe of 18,410 technical trading rules (TTRs) and adopts a tech-

nique that controls for false discoveries to evaluate the performance of frequently traded 

spreads using daily data over 1990–2016. For the first time, the paper applies an excessive out-

of-sample analysis in different subperiods across all TTRs examined. For commodity spreads, 

the evidence of significant predictability appears much stronger compared to equity and cur-

rency spreads. Out-of-sample performance of portfolios of significant rules typically exceeds 

transaction cost estimates and generates a Sharpe ratio of 3.67 in 2016. In general, we reject 

previous studies’ evidence of a uniformly monotonic downward trend in the selection of pre-

dictive TTRs over 1990–2016.  
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1. Introduction  

Technical trading is believed to be one of the longest-established forms of investment analysis, 

which explores future trading opportunities for financial assets by analyzing the asset prices' time-

series history. Numerous studies have studied the profitability of technical analysis across several 

financial markets. Half of them plead in favor of technical analysis profitability (see Neely et al., 

1997; Sullivan, Timmermann, and White, 1999 (STW); Lo et al., 2000; Hsu, Taylor and Wang, 

2016 (HTW)), whereas the rest argue against it at least in the recent past (see, Allen and Kar-

jalainen, 1999; Marshall et al., 2008a, 2008b; Bajgrowicz and Scaillet, 2012 (BS); Shynkevich, 

2012a, 2012c, 2012b; Kuang, Schroder and Wang, 2014, Shynkevich, 2016). However, out of the 

studies that reveal technical analysis' profitability, only a few control for data snooping bias via a 

statistical inference specification (see STW and HTW).  

Nevertheless, technical analysis remains extremely popular among practitioners; see, for exam-

ple, the surveys and studies of Bogomolov (2013) for the equities market, Gehrig and Menkhoff 

(2004) for the forex market and Levine and Pedersen (2016) for the commodities market. For 

example, Levine and Pedersen (2016) support that trend-following strategies such as time-series 

momentum, moving averages, and filters are some of the principal investment styles followed by 

hedge funds and commodity trading advisers (CTAs). So far, studies using advanced statistical 

inference tools did not investigate realistic technical trading rules (TTRs) widely used by practi-

tioners, which might be a possible reason for the observed argument on technical analysis' profit-

ability. Academics support that implicitly, all TTRs are not profitable once controlling for luck, 

even when they test specific rules in their studies. However, those rules might not be the same as 

or a subset of the ones used extensively by the practitioners. 
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Our study aim is to contribute to this debate and offer a convincing answer. We assess the 

predictability and OOS profitability of an up-to-date and broader universe of more than 18,000 

disciplined TTRs on spread trading, combined with the false discovery rate control (FDR+/-) of 

Barras, Scaillet, and Wermers (BSW) (2010, 2019) to control for data-snooping effects. For this 

purpose, we consider frequently traded spreads on several markets from January 1990 to December 

2016. We report that technical analysis still displays significant predictability on spread trading 

across different markets while controlling for data snooping bias. Our findings are consistent with 

statistical arbitragers' and active traders' reports that successfully employ technical trading to cap-

ture significant trends and reversals of the market price. 

Spread trading is a relative-value arbitrage strategy with a 35-year plus history. Over that time, 

the strategy has remained popular among fund managers as it constitutes one of three broad types 

of strategies used by hedge funds (see Pedersen, 2015). Such a strategy can generate excess returns 

by going long one asset while going short another to yield profits because of a short-term deviation 

of their relative valuations from a perceived equilibrium. 1 Practitioners frequently employ tech-

nical analysis to measure such a correlated relationship between two assets and trade the spread 

process (see among others, Vidyamurthy, 2004; Bogomolov, 2013), but this is the first time an 

academic study coherently focuses on assessing the predictive ability of technical analysis on 

spread trading of different assets.   

Data snooping becomes a considerable concern when recruiting an extensive dataset whose 

number of variables is larger than the number of observations. This issue results in false discover-

ies, especially when classical statistical inference is used in which investors repeatedly test the 

same single hypothesis without adapting a rejection region. Contrary to its recent computationally 

 
1 Popular statistical arbitrage studies also include those of  Gatev et al. (2006), Kondor (2009), and Chen et al. (2017). 
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intensive counterparts, the FDR+/- is a simple approach, while on the other hand, it is efficient in 

terms of yielding only a minimal bias when estimating the proportion of rules with zero perfor-

mance, and it identifies models with true outperformance even if the best model's performance 

results from pure luck (BSW, 2019). We also use the manipulation-proof performance measure 

(MPPM) of Ingersoll et al. (2007) to validate that the OOS performance of significant TTRs is not 

the result of manipulated time-series properties but true outperformance. As far as we know, this 

is the first time such an approach is employed in spread trading. 

 In addition, to evaluating the predictability of TTRs over the full sample, we also separate our 

dataset into five subperiods, based on major historical events, using each subperiod's last year as 

the OOS period. Although the major picture of OOS performance of TTRs on individual spreads 

shows a scattered predictive ability, portfolios of significant rules on commodity pairs (i.e., Heat 

oil-Gasoil) are still able to consistently achieve healthy Sharpe ratios (e.g., 4.29) over the recent 

years, whereas specific foreign exchange pairs (i.e., EUR-JPY) yield similar Sharpe ratios over 

2016. Such a finding contrasts with the literature (BS; HTW), stating that the predictability of 

technical analysis has shrunk over time because of informational efficiency. Their corresponding 

outstanding MPPMs reveal that such a performance is probably robust rather than a result of ma-

nipulation due to unpriced risk. On the contrary, most of the equity indices' spreads seem to un-

derperform most of the time except from one case (i.e., CAC-TOPIX). 

Additionally, we try to uncover potential drivers of the above significant performance of tech-

nical analysis for spread trading. We achieve that by assessing whether the yielded returns can be 

explained by risk factors, such as Carhart's (1997) four-factor model and Asness et al.'s (2013) 

value and momentum everywhere factors. We also evaluate the effect of investors’ sentiment, 

market volatility, and funding and market liquidity shocks on spreads’ trading performance. The 
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evidence reveals a positive and significant co-movement with market volatility, and so, higher 

spread trading performance during periods of turmoil. A global market portfolio also seems to 

perform well when borrowing is difficult, while the portfolio’s negative loading on market liquid-

ity shocks reveals that its profitability is probably a result of taking contrarian positions to crowded 

trades and providing liquidity to abandoned securities with low price and high expected returns 

when those types of shocks exist. Finally, we present a break-even analysis of transaction costs 

and OOS profitability of combined market portfolios, among other robustness checks in our Online 

Appendix.  

The remainder of the paper is organized as follows. Section 2 provides the statistical data anal-

ysis and pairs formation. Section 3 and Appendix introduce the TTRs that are implemented. Sec-

tion 4 focuses on the transaction costs and performance metrics employed. Section 5 presents the 

issue of data-snooping bias. Section 6 presents the empirical findings, while Section 7 concludes. 

 

2. Data and descriptive statistics 

2.1. Data and pairs formation 

We consider daily data on the pairs employed to construct these spreads, including those be-

tween the closing prices of commodities, equity indices, and currencies. In total, we examine 15 

pairs, including five spreads from each of the three markets considered. The complete list of the 

examined spreads can be found in Table 1. We use the universe of 45 commodities, equities, and 

currencies series of Moskowitz et al. (2012), who examine time-series momentum in various asset 

classes, to pool the spread series under investigation. We then follow the approach of Chen et al. 

(2017) and compute the pairwise correlations between every single series within the same asset 

class (e.g., commodities). In particular, we calculate the Pearson correlation coefficients between 
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the returns of every single series and the rest series within the same asset class from January 1, 

1990, to December 12, 2016.2 Finally, we keep the top five spreads with the highest correlations 

as evidence that those pairs move closer together while simultaneously being popular among sta-

tistical arbitrage investors. 3 The employed cross-currency pairs are U.S. dollar-denominated (i.e., 

U.S. dollars per unit of foreign currency). We use the equity indices directly instead of any corre-

sponding exchange-traded funds (ETFs) for the equity spreads, following the previous literature 

on technical analysis. Furthermore, for our commodity spreads, we employ the continuous price 

series of each commodity futures contract offered by Thomson Reuters Datastream, with the near-

est deliverable contract forming the first value in the series.4 We also consider daily data on short-

term interest rates for every currency to calculate currency returns. We used WM/Reuters FX 

benchmarks to acquire data on the foreign exchange rates and Thomson Reuters Datastream to 

acquire the closing prices of the commodities futures and equity indices listed above. 

To evaluate the technical analysis used in spread trading, it is essential to ensure that the issue 

of nonsimultaneous pricing that often plagues such trading strategies does not exist. Indeed, all the 

examined commodities contracts have the same trading hours as they are listed on the CBOT (ag-

riculture), NYMEX (energy and precious metals), and COMEX (precious metals) exchanges, 

which constitute the CME group derivatives marketplace.5 Each European equity spread consists 

of equity indices issued by the same or different stock exchanges (i.e., London and Frankfurt Stock 

 
2 Except in Heat oil-Gasoil, where the sample period starts in 1995 due to data availability. 
3 Moskowitz et al. (2012) also focus on the most liquid instruments to avoid contaminated returns by illiquidity or 

stale price issues. We also communicated with fund managers and statistical arbitrage investors, who confirmed that 

our chosen pairs are frequently advertised by trading websites or launched by financial market companies, such as the 

CME and ICE groups. 
4 When the first day of the delivery month is reached, we roll to the nearest deliverable contract. Doing so ensures that 

the underlying instrument should last longer than the observation period when analyzing technical trading performance 

and that no nonsynchronous trading issues exist. 
5 For example, the closing times for agricultural futures are 13:20 and 07:45, whereas for energy and precious metals 

is 17:00 EST. 
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Exchanges and Euronext Paris), which have the exact actual closing times after considering the 1-

hour time difference. The same holds for each of the considered U.S. indices, which the NYSE 

mainly issues. In addition to this, because we obtain our foreign exchange rates data from the 

WM/Reuters FX benchmarks, all represent the closing spot rates, fixed daily at 16:00 GMT. 

Market participants can construct spreads in various ways, depending on their principal invest-

ment goal. In our study, we pair any two assets by subtracting the closing price of one underlying 

leg from the other because our main aim is to capture their dominant trends and reversals through 

technical analysis. This approach means that we allocate an equal proportion of our wealth to each 

side. Thus, the formation of a pair 𝑆𝑡, in which we go long a risky asset 𝑃1 and short another risky 

asset 𝑃2 at time 𝑡, is 𝑆𝑡 = 𝑃1,𝑡 − 𝑃2,𝑡. However, in the case of commodity spreads, we must consider 

whether both commodity futures contracts are traded in different units before calculating the 

spreads, and if not, to adjust for that.6 For the equity and exchange rate spreads, such an issue does 

not exist. Hence, we do not follow a specific rule and just calculate the difference between the spot 

prices of these assets.  

2.2. Descriptive statistics and statistical behavior 

Table 1 reports the descriptive statistics of the daily returns on all the spreads formed, along 

with the pairwise correlation regarding the time series of each pair’s underlying legs.7 Regarding 

the former, the annualized mean and standard deviation and the p-values from the first-order au-

 
6 For example, we use a 2:1 ratio for the Platinum-Gold because the gold and palladium futures contract unit is 100 

troy ounces, whereas the platinum contract is 50 troy ounces. We apply similar transformations for the rest if the two 

components are traded in different units. 
7 The pairwise correlations presented here have been calculated based on the full sample time series (i.e., January 1990 

- December 2016). For our OOS performance exercise, which separates the whole sample into five different subsam-

ples, the pairwise correlations have been calculated again, and the spreads selected concerning the highest correlation 

coefficients remain the same across all subperiods.  
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tocorrelation under the Ljung-Box (1978) Q statistics of the daily returns of each spread are re-

ported. Regarding the latter, we calculate the correlation coefficient between every two series 

forming a spread to assess their co-movement.8  

 

[Insert Table 1 around here] 

 

In terms of performance, the mean returns vary across spreads in every asset class. Commodity 

and currency spreads are dominated by negative returns, while equity spreads by positive returns. 

In terms of the standard deviation of daily gross returns, not surprisingly, commodity and equity 

spreads are more volatile than currency spreads. However, there are also considerable deviations 

of volatility levels even within the same asset class, especially in equity spreads. The Ljung-Box 

test for residual autocorrelation in daily gross returns indicates persistence in all the cases, at least 

at the 10% significance level. We translate this into the existence of trends for the majority of the 

spreads considered. The statistical significance is even more substantial in the equity and currency 

pairs cases at the 1% and 5% significance levels, respectively. This evidence strongly supports the 

use of also trend-following TTRs. Regarding pairwise correlations between the two legs of a 

spread, we find that commodity spreads report the highest correlation coefficients on average, with 

a couple of cases even having perfect correlation, while the equity spreads follow. The currency 

spreads present the lowest correlation coefficients on average compared to the rest asset classes, 

but again the correlation levels of the pairs selected are pretty high.  

3. TTR universe 

 
8 We have also tested for cointegration ranking between every two series forming a spread to assess their co-movement 

further. We find that mostly commodity spreads reject the null hypothesis for zero-rank cointegration. The results are 

available upon request. 
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We consider seven families of TTRs based on past price data of the computed pairs, as they are 

widely used by commodities, equities, and foreign exchange traders. Following previous studies, 

we also consider numerous variations of the above TTRs (see STW; BS; HTW). Those rules are 

categorized into momentum/trend-following and contrarian/mean-reverting rules, usually em-

ployed by pair traders to identify overbought/oversold levels.  

Filter rules: Follow strong trends by taking long (short) positions accordingly. They allow the 

initiation of a spread's trader position only in response to significant price trends. Therefore, an 

investor buys a spread if its price increases by a fixed percentage from a previous low, and she 

sells it if the price decreases by a fixed percentage from a previous high. We assume three different 

filter rule variations, which consider a certain number of previous days to define high/low values, 

allow for neutral positions and hold a position for a fixed number of days. 

Moving averages: Attempt to ride trends and take positions when crossovers occur, between 

the spread value and moving average of a given length or between two moving averages of differ-

ent lengths, signifying a break in the trend. This upside (downside) penetration of a moving aver-

age helps an investor discover new trends and maintain her position as long as the crossover re-

mains. We adopt four moving average rule variations, which consider a certain number of previous 

days to define the crossover between the spread and a moving average, a certain number of previ-

ous days to define the crossover between a short and a long moving average, where in this case 

the number of formation days of short and long moving averages is different, and hold a position 

for a fixed number of days for both previous variants. 

Support and resistance rules: Try to identify breaches in a pair’s price through local maximums 

(minimums), triggering further price movements in the same direction and leading to long (short) 
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signals. The intuition behind this rule is that, usually, investors think that sooner or later, the move-

ment in the spread's price will tend to stop, and the price will return to equilibrium. However, if 

the price breaks through a specific resistance or support level by a certain amount, it is more likely 

to continue moving in the same direction until it finds a new equilibrium. We assume two variants 

of support and resistance rules. For the first one, a prespecified number of previous closing values 

is adopted to define the local maximums/minimums, while for the second one, a holding-period 

filter is also added, similar to the previous families.  

Channel breakouts: Similar to having time-varying support and resistance levels that form a 

channel of a fixed percentage, leading to a signal when a pair's price penetrates the channel from 

above or below. A buy or sell signal is generated as soon as one of these trend lines is broken. 

Thus, an investor goes long (short) when the price moves above (below) the channel. The graphical 

representation of a price channel is equal to a spread of parallel trend lines drifting together within 

a certain width. We consider two variants of channel breakouts, as follows, a prespecified number 

of previous days to construct a channel of a certain percentage as the difference between the local 

maximums and minimums, holding the same position for a specific number of days. 

Relative strength indicators (RSIs): They belong to the general family of overbought/oversold 

indicators and attempt to capture a correction of a pair’s extreme price movement in the opposite 

direction. The RSI estimates the dominance of an upward movement relative to the dominance of 

a downward movement. In its simplest version, an RSI of value 70 characterizes a specific spread 

as overbought, and so, a sell signal is triggered, whereas a value of 30 rates the spread as oversold, 

in which case a buy signal is generated. Three RSI variations are assumed in our study. A simple 

version of RSI based on the benchmark overbought/oversold levels (i.e., 70 /30), an RSI variant 
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with different values of overbought/oversold levels, and an alternative one in which neutral posi-

tions are taken after a certain number of days from which the initial position is triggered.  

Bollinger band reversals: Attempt to identify overbought and oversold market levels, defined 

as the price is a particular distance away (in terms of standard deviations) from its moving average 

of a given length. Thus, any breakout above or below moving average bands of a given width 

concerning each spread's standard deviation is a significant event. Investors believe the closer the 

prices move to the upper (lower) band, the more overbought (oversold) the market, and a short 

(long) position is taken. This can lead to a pullback of asset prices. We assume two Bollinger band 

variations, one which takes a neutral position when the spread value reverts to its moving average 

value after a long/short position is taken and one which holds the long/short position for a certain 

number of days before neutralizing. 

Commodity channel index (CCI) rules: Similar to a combination of RSIs and Bollinger band 

reversals, they try to quantify the connection between a pair’s price, its corresponding moving 

average, and its standard deviation, but a specific inverse factor is used to scale the index in this 

rule. The CCI measures the current price level relative to an average price level over a specific 

period and is relatively high when prices are far above the moving average and vice versa. As a 

reversal indicator, the CCI searches overbought (i.e., 𝐶𝐶𝐼 > +100) or oversold (i.e., 𝐶𝐶𝐼 <

−100) conditions to foretell a mean reversion. Similarly, bullish and bearish divergences can also 

detect early momentum shifts, leading to trend reversals. Three variants of CCI are employed. The 

first one uses different values above +100 and -100 to trigger short and long signals, respectively. 

The second one holds the same position for a certain number of days, while the third variant is a 
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particular case of a CCI and divergence breakout. Divergences can foresee a potential trend rever-

sal point as they usually reflect a change in momentum.9 

The above TTRs along with the variants of each family of rules and a spectrum of different 

plausible parameterizations of each variation form a large universe, totaling 18,412 including 

1,932 filter rules, 7,920 moving averages, 2,310 support and resistance, 2,250 channel breakouts, 

730 RSIs, 2,160 Bollinger bands, and 1,110 CCI rules. Online Appendix A presents the exact 

details of the variations and the various parameterizations of the families of trading rules examined. 

 

4. Excess returns, transaction costs, and performance metrics 

Before we assess the performance of the TTRs, we must first compute the daily excess return 

obtained from buying and holding each spread (i.e., buying the first underlying asset and selling 

the second simultaneously) for each prediction period. To estimate the daily gross and, therefore, 

the investment performance of spread trading, we employ simple returns rather than logs because 

they are additive in the cross-section and pairs formation. For the commodity and equity spreads, 

the calculation of their daily excess return is the daily gross return of a self-financing portfolio: 

𝑟𝑡 = [
(𝑃1,𝑡−𝑃1,𝑡−1)

𝑃1,𝑡−1
−

(𝑃2,𝑡−𝑃2,𝑡−1)

𝑃2,𝑡−1
].         (1) 

where 𝑟𝑡 is the daily gross return from buying and holding the pair for one day; 𝑃1,𝑡 and 𝑃2,𝑡 are 

the spot prices of the first and second components, respectively, on day 𝑡; and 𝑃1,𝑡−1, and 𝑃2,𝑡−1 

are the spot prices of the two components on day 𝑡 − 1. To calculate the daily excess return for 

currency spreads, we follow HTW and consider the short-term interest rates of each currency. 

Thus, we consider two parts to construct the excess returns: the simple return of each component, 

 
9 A detailed description of a divergence breakout can be found in our Online Appendix. 
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over the holding period, and the interest rate carry related to borrowing one unit of domestic cur-

rency and lending one unit of foreign currency overnight. We also transform the annualized short-

term interest rates into daily rates for our application.  

Now, let 𝑠𝑗,𝑡−1 denote the trading signal generated from the trading rule 𝑗, 1 ≤ 𝑗 ≤  𝑙 (where 

𝑙 = 18,412) at the end of the prediction period 𝑡 − 1 (𝜏 ≤ 𝑡 ≤ 𝑇), which depends on the infor-

mation given, where 𝑠𝑗,𝑡−1 = 1, 0, or − 1 represents a long, neutral, or short position taken at time 

𝑡. We use the Sharpe ratio criterion as the primary performance metric for creating portfolios of 

significant TTRs (see also STW; BS) and the MPPM to assess whether any outperformance results 

from manipulated returns due to unpriced risk or excessive leverage. The Sharpe ratio as being a 

relative performance criterion 𝑆𝑅𝑗  for trading rule 𝑗 at time 𝑡 is defined by 

𝑆𝑅𝑗,𝑡 =
𝑓𝑗

�̂�𝑗
, 𝑗 = 1, … , 𝑙,                     (2) 

where 𝑓
𝑗,𝑡

, and 𝜎𝑗,�̂� are the mean excess return and the estimated standard deviation of the mean 

excess return. The mean excess return criterion 𝑓
𝑗,𝑡

 for the trading rule 𝑗 is given by  

𝑓
𝑗,𝑡

=
1

𝑁
∑ 𝑠𝑗,𝑡−1𝑟𝑡

𝑇
𝑡=𝑅 , 𝑗 = 1, … , 𝑙,       (3) 

where 𝑁 = 𝑇 − 𝜏 + 1 is the number of days examined, and 𝜏 denotes the start date of each sub-

period. We consider that some of the TTRs employ lagged values up to 1 year (252 days). Further-

more, the Sharpe ratio is strictly connected to the observable t-statistic of the empirical distribution 

of a strategy's returns, making this metric appropriate for our multiple-hypothesis-testing frame-

work (Harvey and Liu, 2015).10 

 
10 The t-statistic of a given sample of historical returns (𝑟1, 𝑟2, … 𝑟𝑡), testing the null hypothesis that the average excess 

return is zero, is usually defined as 𝑡 =
�̂�

�̂� √𝑇⁄
, whereas the corresponding Sharpe ratio is given by the formula 𝑆𝑅 =

�̂�

�̂�
. 
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Ingersoll et al. (2007) proposed that the MPPM measures the return on a fund's strategy rela-

tive to the amount of accepted risk over a specific period while resembling a representative utility 

function. The measure considers return distributions far from normal or lognormal and could result 

in concave payoffs. As already mentioned, those payoffs often lead to a performance that looks 

superior. Hence, employing such a measure is to verify that potentially generated OOS Sharpe 

ratios are not inflated. The MPPM is strictly increasing and concave to prevent manipulation. The 

measure is also time separable, allowing it to avoid the dynamic manipulation of the estimated 

statistic, and the measure has a power form, allowing it to be consistent with an economic equilib-

rium (Ingersoll et al., 2007).  The MPPM formula, which represents the annualized continuously 

compounded excess return certainty equivalent of the portfolio, is defined as 

𝑀𝑃𝑃𝑀 =
1

(1−𝜌)𝛥𝑡
𝑙𝑛 [

1

𝑇
∑ (1 + 𝑠𝑗,𝑡−1𝑟𝑡)1−𝜌𝑇

𝑡=𝑅 ],                                       (4) 

where 𝜌 denotes a constant risk tolerance parameter, which historically takes values between 2 and 

4; 𝛥𝑡 denotes the length of time between observations (in our case 𝛥𝑡 = 1/252 for daily returns); 

and 𝑟𝑡 denotes each pair’s excess return series, which has been calculated above. Ingersoll et al. 

(2007) conclude that the level of 𝜌 = 2 results in performance metrics consistent with the risk 

tolerances of typical retail investors. For this reason, we mainly present results based on this 

level.11  

So far, we have not considered the impact of transaction costs on the TTRs' performance over 

the examined spreads. These costs may be pretty high in practice, especially for statistical arbitrage 

traders who form long-short portfolios. Additionally, the potential predictability of a selected strat-

egy before implementing transaction costs can be easily neutralized when those costs are adjusted 

 
11 We also tested more conservative risk tolerance levels (i.e., 𝜌 =3 and 4), and we can report that the results were 

slightly different. The relevant findings are also available on request. 
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through the selection process, sometimes because of the impact of frequent signals (Timmerman 

and Granger 2004). Thus, we handle transaction costs endogenously to the selection process. In 

particular, we subtract the transaction costs every time a buy or sell signal is triggered based on 

the prediction of the corresponding spread considering the one-way transaction costs of each com-

ponent separately.  

Following Locke and Venkatesh (1997), we consider one-way transaction costs of 3.3 basis 

points for a position taken on each commodity futures to construct the commodity spreads. Fur-

thermore, we assume that an investor funds her position with 100% equity rather than using a 

margin account because we measure daily returns as the difference in the relative prices (Miffre 

and Rallis 2007). In terms of stock indices trading costs, we are aware of the complexity of pre-

cisely measuring the transaction costs, which have declined over time. Earlier studies use one-way 

transaction costs ranging from 10 to 30 basis points to trade U.S. stock indices (Allen and Kar-

jalainen 1999). However, recent evidence shows that live trading costs faced by real-world arbi-

trageurs are pretty lower.12 Based on the findings of Frazzini et al. (2015) and communications 

with several brokerage firms, we consider 19.73 basis points as the one-way trading costs for stock 

indices. This cost level represents the value-weighted mean (i.e., weighted by the dollar value of 

the trades) of the market impact estimate of a long-short portfolio traded on live data, similar to a 

pairs trading strategy. The only transaction costs investors face when trading currencies arise from 

the bid-ask spreads in spot exchange rates and interest rates (no fixed brokerage costs). Following 

Neely and Weller (2013) and HTW, we calculate the one-way transaction costs for each currency 

 
12 For example, Frazzini et al. (2015) estimate that market impact, which covers the most significant part of the exe-

cution cost for a large institutional trader, is under nine basis points, on average, for trades executed during a day. In 

contrast, the rest of the costs (e.g., commissions, bid-ask spreads) are almost negligible, especially for large trade 

sizes, because they do not increase analogously with size. 
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from the corresponding bid-ask spread in the forward exchange rates on any particular day. Spe-

cifically, we use one-third of the quoted 1-month forward rate bid-ask spread for each currency. 

Several studies have shown that posted bid-ask spreads are usually larger than the effective ones 

traded (Lyons, 2001; Neely and Weller, 2003). This results in an average one-way transaction cost 

of 4 basis points for all the developed economies tested. 

 

5. Data-snooping bias 

5.1. Defining the data-snooping bias and existing data-snooping methods  

Data-snooping bias has become even more urgent as of late because of the use of large datasets 

involving data replication issues by investors and researchers. Classical statistical inference focus-

ing on single-hypothesis testing for each set of series, without paying attention to the performance 

of the remaining ones, can lead to false rejections or the so-called type I error due to the extensive 

specification search. Multiple-hypothesis frameworks, developed to limit such occurrences, are 

more than necessary nowadays. Recently, Harvey (2017) raised this issue as the p-hacking phe-

nomenon (i.e., frequent false significant p-values) and explained that new, adjusted p-values re-

flecting the genuine significance of an investment strategy should be defined. Large universes of 

TTRs provide a breeding ground for testing the power of multiple-hypothesis methods because it 

is pretty likely that one will discover a rule that works well, even by chance, especially within a 

specific family of rules (see, among others, STW; Hsu et al., 2010; HTW; BS, Shynkevich, 2012a; 

2012b, 2012c, 2016). 

Studies trying to control data snooping bias are divided into two classes, based on the primary 

criterion employed for statistical inference, those using the family-wise error rate (FWER) and 

those using the false discovery rate (FDR). Their difference is mainly intuitive. The FDR is defined 
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as the proportion of false discoveries among the total rejections, while the FWER estimates the 

probability of making at least one false rejection.  

Starting with studies using the latter criterion, White (2000) introduces the so-called bootstrap 

reality check (BRC), which focuses on the statistical significance only of the best performing strat-

egy, drawn from several strategies, while contemporaneously tests whether the significance of all 

strategies is less than the nominal significance level. Following studies have also tried to reassess 

the power of the BRC test concerning TTR's predictability in different markets (see Hsu and Kuan, 

2005; Marshall et al., 2008a, 2008b). Focusing also on the maximal trading rule, Hansen (2005) 

proposes the superior predictive ability (SPA) test to correct drawbacks of the BRC test by utiliz-

ing studentized test statistics, while setting fewer weights to the test statistics of rules showing 

poor performance. Studies that exploit TTRs performance on equities markets via the SPA test 

also include those of Hsu and Kuan (2005) and Shynkevich (2012a; 2012b, 2012c). 

Incorporating the assumption that investors are keen on discovering all the statistically signifi-

cant TTRs showing positive performance instead of investing their total wealth in the maximal 

one, Romano and Wolf (2005) suggest their stepwise multiple testing (StepM) method as an im-

provement to the single-step BRC test of White (2000). They follow a stepwise structure, in which 

individual p-values are placed in an acceding order, after bootstrapping the empirical distribution 

of each rule. After comparing each p-value with a nominal significance level during the first step, 

they replicate the same mechanism in the second step, after excluding the statistically significant 

rules of the first step. Similarly, Hsu et al. (2010) develop a stepwise extension of the SPA test of 

Hansen (2005) to minimize the influence of poor performers on the power of the test. HTW (2016) 

and Shynkevich (2016) use the same extension to evaluate the profitability of TTRs in foreign 

exchange and bond portfolios, respectively. 
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Although the above developments aim to achieve a good trade-off between Type I errors and 

Type II errors, the FWER control is not well qualified for finance applications as it lacks power 

and is mechanically affected by the number of hypotheses being tested (Chordia, Goyal and 

Saretto, 2020). For instance, the FWER methods are more conservative, and they do not select 

further rules once they have detected a rule whose performance is due to luck. On the other hand, 

the FDR, by definition, tolerates a certain proportion of false rejections to improve the power of 

detecting more significant discoveries while having an optimal balance in minimizing Type I and 

II errors (Abramovich et al., 2006).  

In finance, BSW (2010) propose a modified FDR+/-, based on Storey's (2004) FDR approach, 

which aims to discover significant alphas in mutual fund performance while allowing a separate 

quantification of false discoveries among funds. By developing such a framework, BSW (2010) 

try to accommodate what investors do in practice, who usually assess and combine multiple strat-

egies at any given time to diversify against model risk. BS employ the FDR+/- approach in the 

context of identifying outperforming TTRs on the DJIA index, and their findings confirm the com-

parative advantage of the FDR+/- over the FWER. Another important feature of the FDR method 

is that it also holds under weak dependence conditions, when the number of hypotheses is very 

large (Benjamini and Yekuteli 2001; Storey 2002; Storey et al., 2004), due to asymptotics. This is 

a crucial assumption for our study because the TTRs included in our universe satisfy this feature 

by being dependent on small blocks within the same family but essentially independent across 

different families. 

On the other hand, the FDR+/- approach has been reviewed on its ability to accurately detect the 

proportions of mutual funds with zero and significant performance. Andrikogiannopoulou and Pa-

pakonstantinou (2019) found that the zero-alpha proportion of funds in BSW (2010) to be upward 
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biased and so over-conservative, especially when the number of series’ observations is small (e.g., 

monthly). In their reply, BSW (2019) have convincingly shown that FDR+/- is still capable of pro-

ducing efficient and consistent estimators especially when the number of time series observations 

is large, such as in our case, at which daily series observations of multiple years returns are con-

sidered. Also, our study is mainly a prediction exercise, contrary to the skill detection of funds 

generating significant alphas. This means that even slight over-conservativeness in estimating 

lucky rules is not a big issue as we mostly care about the most significant predictors among TTRs. 

For the above reasons, we adopt the FDR+/- test as the most suitable multiple-hypothesis-testing 

method for our experiment. 

 

5.2. FDR methodology 

As a multiple-hypothesis-testing procedure, the value of the test statistic for each rule j, 𝜑𝑗, 

defines the null hypothesis in which rule j does not outperform the benchmark (i.e., 𝐻0𝑗: 𝜑𝑗 = 0), 

while the alternative hypothesis assumes the presence of abnormal performance, either positive or 

negative (i.e., 𝐻𝐴𝑗: 𝜑𝑗 > 0 𝑜𝑟 𝜑𝑗 < 0).13 In our case, we consider the annualized Sharpe ratio as a 

test statistic for performing the multiple hypothesis testing. Now let 𝑅+ be the number of signifi-

cantly positive rules and 𝐹+ the number of erroneous selections among them. The FDR+ concen-

trating on the rules generating positive returns is then defined as the expected value of the ratio of 

false selections to the number of outperforming rules. Thus, the estimate of FDR+ is given by 

𝐹𝐷�̂�+ =
�̂�+

�̂�+
, where �̂�+ and �̂�+ are the estimators of 𝐹+and 𝑅+, respectively.14  

 
13 Because we use the Sharpe ratio as the performance metric, our benchmark is, by definition, the risk-free rate, 

describing an investor who is out of the market. 
14

 Similarly, we can compute a separate estimator of the 𝐹𝐷𝑅− among the rules generating negative returns. Doing 

so, however, would be outside of the scope of this paper. 



   
 

20 
 

To estimate the FDR+, we just need to estimate the number of lucky rules, 𝐹+, in the right tail 

of the distribution of performance metrics, 𝜑𝑗, at a given significance level 𝛾. This is given by  

�̂�+ = 𝜋0 ∗ 𝑙 ∗ 𝛾/2,     (5) 

where 𝜋0 is the proportion of rules showing no abnormal performance, in the entire universe, of 

size 𝑙, and 𝛾 is the p-value cutoff, multiplied by 1/2 since we assume symmetry in the appearance 

of lucky rules in the two tails of the empirical distribution. The FDR method tries to capture infor-

mation from the center of the distribution of test statistics (i.e., 𝜑𝑗), mostly dominated by rules with 

no significant performance (either positive or negative), to correct any luck in the two tails (BSW) 

(2010). For this reason, an accurate estimator of 𝜋0 is the key point for the FDR+ approach. Storey’s 

(2002) main assumption that the true null p-values are uniformly distributed over the interval [0,1], 

whereas the p-values of alternative models lie close to zero, in a two-sided setup, helps us to define 

the estimator of 𝜋0 as 

�̂�0(𝜆) =
#{𝑝𝑗>𝜆;  𝑗=1,…,𝑙}

𝑙(1−𝜆)
,           (6) 

where 𝜆 ∈ [0,1) is a tuning parameter indicating the specific level above which the null p-values 

should appear. After acquiring the estimator of 𝜋0, and given the number of significantly positive 

TTRs (i.e., #{𝑝𝑗 ≤ 𝛾, 𝜑𝑗 > 0;   𝑗 = 1, … , 𝑙}), we can obtain a conservative estimator for FDR+ un-

der threshold γ as 

𝐹𝐷𝑅+̂(𝛾) = �̂�+ �̂�+⁄ =
1/2�̂�0𝑙𝛾

#{𝑝𝑗≤𝛾,𝜑𝑗>0;  𝑗=1,…,𝑙}
.      (7) 

Finding γ is essential for controlling FDR+ at an acceptable level of erroneous selections, allowing 

us to select rules with p-values ≤ γ. 
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The FDR+ method requires p-values, 𝑝𝑗 for 1 ≤ 𝑗 ≤ 𝑙, from a two-tailed test because the main 

parameter we need to estimate is 𝜋0, in the total universe. Furthermore, and because we require no 

prior knowledge of the exact distribution of p-values, the stationary bootstrap resampling tech-

nique is used to obtain the individual p-values. This resampling method is mainly applicable to 

stationary weakly dependent time-series data as it works by sampling blocks of varying lengths of 

consecutive observations of returns (Politis and Romano 1994). 15 Then the corresponding p-value 

of each rule is given by comparing the original Sharpe ratio with the quantiles of simulated Sharpe 

ratios centered by the original value. Nevertheless, the critical part of the FDR method is to identify 

the correct p-value cut off γ by controlling the FDR+ at a fixed, predetermined level (i.e., 10%) to 

isolate the genuinely outperforming rules from the total population. We achieve this by employing 

the point estimates approach of Storey et al. (2004) under the weak-dependence condition. In this 

regard, we start by placing the p-values of the rules with a positive performance in ascending order. 

Then we compute 𝐹𝐷𝑅+ using equation (7) for the rule with the smallest p-value. We continue by 

adding the rule with the second-smallest p-value and recompute  𝐹𝐷𝑅+. We repeat the same pro-

cedure until the desired 𝐹𝐷𝑅+ target is achieved (i.e., 10%). 

 

6. Empirical findings 

6.1. Portfolio construction and full sample performance 

We now try to measure the empirical predictability of technical analysis on spread trading based 

on the entire 25-year sample period. After utilizing the universe of 18,412 TTRs on every single 

spread and asset class, we apply the FDR+ as described in the previous section to identify and 

 
15 During our empirical simulations, we set the stationary bootstrap parameters as B = 1,000 realizations and the 

average block length equal to 0.1 (i.e., q = 10). 
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measure the performance of the best rule and assess its ability as a portfolio optimization tool. We 

construct portfolios of significant rules by setting the 𝐹𝐷𝑅+̂ equal to 10% as a good trade-off 

between truly outperforming TTRs and poorly chosen ones, similar to BS. Thus, we build a 10% 

– FDR+ portfolio of TTRs for each pair, meaning that 90% of all the portfolio’s rules significantly 

outperform the benchmark. We pool the signals of the chosen rules with equal weight, similarly to 

a forecast averaging technique (allocating $1 evenly).16 Finally, we avoid investing the proportion 

of our wealth in a savings account (i.e., at the risk-free rate) when a neutral signal is triggered. 

This assumption helps us measure the actual returns generated by the FDR portfolios of TTRs 

without being augmented with the risk-free rate of return. 

Table 2 provides evidence for the full sample performance of the 10%-𝐹𝐷𝑅+ portfolio of sig-

nificant rules for each spread over the 1990-2016 period. In particular, we present the number of 

predictive rules, the Sharpe ratio, and MPPM of every single portfolio. The Sharpe ratio and its 

corresponding p-value (in parenthesis) and the family of the best significant rule found for each 

spread are also reported in the two last columns.  

[Insert Table 2 around here] 

 

In general, technical analysis predictability appears significantly strong for all spreads consid-

ered, with commodity spreads being the most predictable in terms of significant rules selected. 

Equity spreads are the next most predictable, and currency spreads seem to follow by including 

the least predictive rules in their corresponding portfolios. Considering the performance, the over-

all picture is the same. Commodity spreads yield the highest annualized Sharpe ratios and MPPMs, 

 
16 We do not attribute more weight to the most outperforming rules because doing so would result in a deviation from 

the desired FDR level and, likewise, the selection of fewer strategies.  
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denoted excess returns, compared to the equity and currency families of spreads. In particular, 

commodities' Sharpe ratios and MPPMs range from 0.72 to 1.06 and 0.22% and 3.98%, respec-

tively. The equity spreads’ portfolios Sharpe ratios and MPPMs range from 0.40 to 1.39 and 0.05% 

to 3.74%, respectively, while relevant performance metrics for currency spreads range from 0.34 

to 0.86 and 0.04% to 0.29%, respectively. The top-performing spread across all assets considered 

is the Brent-WTI crude oil or the so-called crack spread, with the CAC-TOPIX following closely 

in performance.  

Considering the information given for each spread’s best performing rules, all of them are sta-

tistically significant. Analogous to the previous evidence, the corresponding best rule for each one 

of the commodities spreads is statistically significant at the 1% level. For the top rules of equity 

and currency spreads, the picture is almost identical with few cases (i.e., FTSE100-CAC 40, EUR-

CHF, and EUR-JPY) being significant only at the 10% nominal level. What is interesting here is 

the comparison of the Sharpe ratio of the portfolios of significant rules with that of the best signif-

icant rule. For most cases, the corresponding Sharpe ratios of the 𝐹𝐷𝑅+ portfolios are better or at 

least almost equal to those of the best performing rule for each spread. Such a finding reveals the 

diversification benefits of the 𝐹𝐷𝑅+ approach as a portfolio construction tool. Pinpointing now 

which TTRs contribute the lion's share of the best predictive rule, most of them belong to two 

contrarian families for the commodity pairs, namely, the RSIs and the Bollinger bands. For the 

equity spreads, a similar finding is evident, with CCIs being the top-performing rules. On the con-

trary, among the currency spreads, we observe a variety of families of best-performing rules. For 

example, moving averages, support, and resistance, channel breakouts, RSIs, and Bollinger bands 

are among the top ones. Overall, mean-reverting rules, especially those holding the rule's signal 

for a certain period, seem to be the best performing for the majority of the spreads examined.  
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6.2. Out-of-sample performance 

To evaluate the actual performance of the TTRs and address the issue of data snooping in more 

realistic conditions, we employ an OOS analysis in the following sections. Doing so helps us eco-

nomically evaluate the performance of a portfolio of rules, selected ex-ante, similar to how insti-

tutional investors would do so in practice.17 Such an analysis also provides evidence of the perfor-

mance persistence and the economic evaluation of the TTRs, even in an artificial post-sample 

period.  

We separate the whole sample into five historical subperiods- 1991-1996, 1997-2001, 2002-

2007, 2008-2011, and 2012-2016 -for our OOS experiment, investigating different market dynam-

ics in a more sensible algorithmic trading application. Although our sample starts from 1990, this 

year is not included in our first subsample because we require data going back one year to generate 

some TTRs. Even though the above subperiods may be of different sizes, they are closely related 

to major historical events for all markets considered, namely, the Maastricht Treaty in 1992, the 

East Asian currency crisis in 1997, the dot-com bubble in 1999-2000, and the subsequent 2002 

credit crunch, the appearance of the euro in 2002 and the 2003-2007 energy crisis, the global fi-

nancial crisis of 2008, and, finally, the recent crude oil downturn in 2014. 

Before we move forward with the results, another critical issue with the OOS estimation, raised 

by Harvey and Liu (2015), is splitting the dataset between the IS and OOS segments. This estima-

tion procedure usually comes down to a trade-off between Type I (false discoveries) and Type II 

(missed discoveries) errors, a trade-off closely related to the testing power of the IS and OOS 

periods. In particular, the shorter is the IS dataset, the greater the chance of missing true discoveries 

(Type II errors), and vice versa. For instance, a 90-10 split of the data will increase Type I errors, 

 
17 We also find the same spreads as the most correlated when we implement Chen et al., (2017) method on the time 

series universe of Moskowitz et al.'s (2012) for each subperiod separately.  
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whereas a 50-50 split will increase Type II errors. Although multiple-hypothesis-testing frame-

works aim to minimize these types of errors, we adopt a 70-30 split for the IS and OOS intervals 

to secure a good balance between them.  

The FDR procedure is employed during the IS period for each pair to select the TTRs for eval-

uation in the OOS horizon. Specifically, we construct the portfolios of rules by selecting them as 

in the previous section, and we build a 10% – FDR+ equally-weighted portfolio of TTRs for each 

spread, using 70% of each subperiod's historical data. The last 30% is used for the OOS estimation. 

This approach provides us with almost the whole of the last year as the OOS horizon for every 

subperiod, whereas the previous years (no more than four years) constitute the IS period. Although 

we appreciate that this is still a stiff OOS evaluation, it better matches what traders do in practice 

than previous studies, which use only a single long-term OOS horizon of many years (see HTW, 

among others).  

 Table 3 reports the median number of significant rules for each portfolio and, across all periods, 

the OOS performance of the equally weighted FDR portfolios of significant rules based on the 

Sharpe ratio criterion and their computed MPPM. The results are reported for each spread exam-

ined. 

[Insert Table 3 around here] 

 

First, Table 3 supports the ability of the FDR method to select a sufficient number of predictive 

rules across all subperiods and for each pair. Specifically, the commodities spreads seem to be 

more predictable, with an average median of their portfolios being close to 407 rules, whereas, for 

equity and currency spreads, this number is considerably lower, at 24 and 11 rules, respectively. 

In general, the OOS performance of the TTRs on the commodity pairs is, on average, higher than 
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the almost equal performance of the TTRs on the equity and foreign exchange pairs. The FDR 

portfolio can produce a small profit in many cases, with the MPPM being consistent with Sharpe 

ratio findings, leaving no room for manipulation of excess returns. 

Concentrate on the commodity pairs. Each pair has at least one post-sample period, in which 

the FDR portfolio of significant TTRs yields a positive Sharpe ratio. The MPPM findings advocate 

that performance, indicating no manipulation of those ratios, ranging from 0.79 to a very healthy 

4.29, while the MPPMs range from 1.31% to an outstanding 22.5%. The most promising spread is 

the Heat oil-Gasoil, which yields consistently very healthy Sharpe ratios (above 1) and an average 

MPPM of 15.8% for all the examined post-sample periods. Interestingly, its performance seems 

to be enhanced over the more recent periods, especially in the last period when a Sharpe ratio of 

4.29 and an MPPM of 22.5% are generated. The Brent-WTI crude oil spread follows by providing 

almost equally positive metrics. However, its positive performance concentrates only on the first 

two periods. The metal spreads also seem to yield a positive performance over the last three periods 

but of a lower magnitude, which could still be found attractive, while the Corn-Soybean spread 

performs worst.  

Considering the results for the equity pairs, the overall picture shows a weak OOS performance 

across all the periods, in general, apart from a few cases. For instance, only the CAC-TOPIX spread 

yields consistently positive performance, which reaches a peak over the last three subperiods, by 

reporting an outstanding maximum Sharpe ratio of 3.00 and an MPPM of 10.3%. Then only the 

FTSE100-CAC 40 in 1996 and the DAX-FTSE100 spread in 2001 seem to demonstrate positive 

performance metrics but of a small magnitude. For the rest cases, negative Sharpe ratios and 

MPPMs are generated across all five post-sample years.   
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Regarding the OOS performance of currency spreads, the results seem more encouraging for 

most cases, with portfolios of significant rules yielding positive Sharpe ratios and MPPMs ranging 

from 0.07 to 1.41 and 0.01% and 3.60%, respectively, at least during the first three OOS periods. 

The EUR-JPY pair, for example, decays in performance through the years, whereas the EUR-CHF 

pair, as another example, shows considerable Sharpe ratios cyclically, reaching its top performance 

in 2011, with a Sharpe ratio of 1.00 and an MPPM of 3.60%. Moreover, NOK-SEK seems able to 

yield a Sharpe ratio of 1.41 in 2011.  

We now compare the above performance of the 10% – FDR+ portfolio of TTRs with a naïve 

benchmark strategy to assess the usefulness of FDR+ specification in accurately selecting the out-

performing rules for each spread. We use the same IS and OOS horizons as above, but this time 

we evaluate the performance of all rules found with positive performance IS in the five OOS pe-

riods without considering their statistical significance. In particular, we create equally weighted 

portfolios of all TTRs with positive Sharpe ratios IS and trade them OOS. Table 4 reports the 

related findings, such as the median number of rules with positive Sharpe ratios for each portfolio, 

the OOS Sharpe ratio of the equally weighted portfolios of positive rules, and their computed 

MPPM. 

[Insert Table 4 around here] 

Generally, the naïve portfolio of rules with positive performance underperforms the 10% – 

FDR+ portfolio of TTRs, as shown in Table 3, for most spreads and OOS periods examined. The 

former portfolio seems to generate negative returns most of the time, with only a few positive 

exemptions in specific OOS years, such as those of Brent-WTI, Heat oil-Gasoil, Platinum- Gold, 

CAC-TOPIX, AUD-CAD. But again, the 10% – FDR+ portfolio yields higher Sharpe ratios and 

MPPMs than the benchmark portfolio for most of those spreads. There are only a couple of cases 
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(i.e., Brent-WTI in 1996 and 2007; Platinum-Gold in 2016; AUD-CAD in 2016), where the naïve 

portfolio outperforms the portfolio constructed with the FDR+ specification. However, this outper-

formance is highly likely due to pure luck as it happens sporadically in specific years. Another 

important finding is the superiority of the FDR+ to control for losses. We observe that even in cases 

where negative returns are generated for both portfolios, the 10% – FDR+ reports far lower negative 

Sharpe ratios and MPPMs than the benchmark portfolio. A particular case is that of Brent-WTI in 

2016, in which the benchmark portfolio yields negative returns, but the FDR+ portfolio selects no 

rules and remains out of the market. We also compute and compare the maximum drawdown of 

the examined portfolios to illustrate that the FDR+ selected rules suffer less extreme losses com-

pared to the in-sample positive rules only in one of the following sections. 

 

6.3 Drivers of performance 

We assess the spreads’ risk-adjusted performance, their factor exposures, and their relationship 

with liquidity, market volatility, and the level of investor sentiment in Table 5. Firstly, in Panel A, 

we employ Carhart's (1997) four-factor model, and we run monthly time-series regressions of an 

equally-weighted global portfolio’s returns on the size (SMB), value (HML), and cross-sectional 

momentum (UMD) factors over the 1990-2016 period.18
  We construct the global portfolio based 

on FDR+ selections, across all three markets, over the full sample period, while we transform the 

daily returns to monthly by taking the average portfolio return for each month. We use Carhart's 

(1997) four-factor model because it also includes the momentum factor due to trend-following 

apart from contrarian rules in the total universe of TTRs. Panel B reports the results of a similar 

 
18 All factors employed have been downloaded by Kenneth’s, R., French website (https://mba.tuck.dart-

mouth.edu/pages/faculty/ken.french/data_library.html). We use monthly regression over the full sample period since 

most of the factors and indices are available on a monthly basis, and by just running the regressions over the OOS 

periods, we would have left with only a few observations to produce robust findings. 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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regression, but this time on the value and momentum everywhere cross-sectional factors of Asness 

et al. (2013). Finally, we assess in Panel C how the global portfolio returns co-vary with the time 

series levels and monthly changes (first differences) of the investor’s sentiment index of Baker 

and Wurgler (2007), the time-series log values of the VIX index as a measure of market volatility, 

especially in periods of turmoil, and the levels of funding and market liquidity shocks in separate 

regressions.1920 In a similar manner to Asness et al. (2013), we use as funding liquidity proxy the 

negative of the Treasury-Eurodollar (TED) spread and as market liquidity proxy the Pastor and 

Stambaugh (2003) liquidity factor (i.e., the innovations in aggregate liquidity)21. We compute the 

residuals from the AR(2) process applied to those proxies to obtain the funding and market liquid-

ity shocks. 

 

[Insert Table 5 around here] 

 

Panel A of Table 5 demonstrates significantly negative loadings with the market index and the 

HML and the UMD factors. However, those are of a tiny magnitude to fully explain the spread 

portfolio's returns, a finding which is also supported by the small value of adjusted-R2 (i.e., 6.73%). 

Our global portfolio also delivers a significant alpha of 0.04%. Panel B reveals a similar picture. 

The betas of the market index and value and momentum everywhere factors are also significantly 

negative, but of low levels, supporting the previous findings. The alpha of the model remains al-

most at the same level (i.e., 0.05%), but the corresponding adjusted-R2 is slightly higher at 8.01%. 

 
19The investor's sentiment index of Baker and Wurgler (2007) has been downloaded from Jeffrey Wurgler's website 

(http://people.stern.nyu.edu/jwurgler/). 
20 We have run the same time series regressions for commodity, equity, and currency spread portfolios of TTRs. The 

relevant results are available upon request. 
21 The TED spread data has been downloaded from Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/se-

ries/TEDRATE), while the Pastor and Stambaugh (2003) liquidity factor from Robert F. Stambaugh’s website 

(http://finance.wharton.upenn.edu/~stambaug/). 

http://people.stern.nyu.edu/jwurgler/
https://fred.stlouisfed.org/series/TEDRATE
https://fred.stlouisfed.org/series/TEDRATE
http://finance.wharton.upenn.edu/~stambaug/
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Regarding the relationship between the global portfolio of TTRs' returns and the investor's senti-

ment index, there is no significant effect in both levels and first differences. However, this is not 

the case between the portfolio's returns and the VIX index. There seems to be a significantly pos-

itive relationship of a small magnitude. In other words, spread trading could be more profitable 

during periods of high market volatility. When it comes to the relationship of global portfolio 

returns and liquidity shocks, this is significantly negative for both funding and liquidity risk, with 

the funding liquidity having a more significant impact on spread trading. Hence, spread trading 

performs better when funding liquidity drops or, in other words, when borrowing is not easy. The 

negative loading on market liquidity shocks indicates no positive liquidity risk premium given as 

compensation for taking such a type of risk, and so its interpretation seems more of a puzzle. A 

potential explanation could also support that the most profitable rules are contrarian. Pastor and 

Stambaugh (2003) realize a significantly positive relationship between U.S. equity momentum 

returns and liquidity shocks. In this direction, contrarian trading strategies usually provide liquidity 

to demand pressure triggered by strategies like momentum, which put more price pressure on 

crowded trades during liquidity shocks. In such conditions, contrarian rules provide liquidity by 

buying low and selling high, a strategy that can yield higher returns (see also, Pedersen, 2015). 

 

7. Conclusion 

We investigate a hedge fund trading strategy based on the high correlation of two assets while 

employing technical analysis to predict the price movements of the constructed spreads. For that 

purpose, we conducted large-scale research on the full sample and OOS performance of TTRs 
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across a set of commodity, equity, and currency spreads being actively traded by statistical arbi-

trageurs over the 1990 - 2016 period. Our analysis involves quite a large number of TTRs split 

between generic trend-following and contrarian classes.  

To mitigate the data mining problem arising from the usage of such a large pool of predictive 

rules, we adopt a recently developed, simple, and efficient multiple hypothesis testing method, 

namely FDR+/- of BSW (2010, 2019), which allows us to create statistical inferences to generate 

new, adjusted thresholds for significant t-statistics. Additionally, we employ an MPPM to assess 

whether OOS performance is illusory because of some unpriced risk or because of a product of 

pure skill. 

Our findings reveal that technical trading still yields significant Sharpe ratios for many of the 

spreads considered. Positive MPPMs of almost analogous magnitude consistently follow those 

ratios. Commodity pairs consistently outperform the equity and currency ones. The OOS analysis, 

conducted across five different subperiods, reveals that technical analysis performance has not 

worsened over time, with commodity and currency spread displaying outperformance even in re-

cent periods. Hence, increased hedge fund activity, through which a mass exercise of trading rules, 

has not squeezed out potential returns. The economic significance of the returns achieved using 

TTRs on certain spreads and periods may compensate for short-term market inefficiencies. We try 

to shed more light on the main drivers of the above performance by running time-series regressions 

between the returns of a global portfolio of spreads and famous risk factors, such as those of Fama 

and French (1993) and Carhart (1997), as well as the very recent value and momentum everywhere 

factors of Asness et al. (2013). The findings report a significantly negative relationship between 

the global portfolio's returns and the momentum factor. We perform similar regressions by con-

sidering the investor's sentiment index of Baker and Wurgler (2007), VIX index, and funding and 
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market liquidity shocks. The evidence suggests that TTRs' performance on spread trading is sig-

nificantly driven by the market volatility and possibly related to its contrarian nature of buying 

less liquid securities with lower prices and higher expected returns than more crowded securities 

during market liquidity shocks. 
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Table 1. Descriptive statistics and statistical behavior of spreads’ daily spot prices and returns. 

 

Spreads Ann. Mean 

(%) 

Ann. SD 1st autoc. 

(p-value) 

Pairwise 

Correla-

tion 

 

Commodities 
   

  

Brent-WTI crude oil -0.79% 22.07% 0.00 0.99  

Heat oil-Gasoil 1.16% 31.20% 0.00 0.99  

Platinum-Gold 0.15% 19.10% 0.03 0.86  

Gold-Silver -3.90% 20.30% 0.08 0.95  

Corn-Soybean -0.27% 22.80% 0.00 0.92  

Equities 
   

  

FTSE100-CAC 40 -0.48% 11.91% 0.00 0.87  

AMST-CAC 40 -1.35% 10.80% 0.00 0.92  

S&P500-DAX 1.35% 19.80% 0.00 0.97  

CAC-TOPIX 4.90% 25.90% 0.00 0.91  

DAX-FTSE100 4.04% 14.70% 0.00 0.91  

Currencies 
   

  

EUR-CHF -1.92% 6.51% 0.00 0.69  

EUR-JPY -0.08% 12.04% 0.02 0.55  

AUD-CAD -0.06% 10.16% 0.00 0.91  

AUD-NZD 0.72% 7.80% 0.01 0.92  

NOK-SEK 0.21% 7.31% 0.00 0.91  

We present the descriptive statistics and pairwise correlation of daily returns on holding spreads of 

different asset classes for the period 1990-2016. The descriptive statistics are the annualized mean 

return and volatility as well as the p-value testing the null of no autocorrelation. The pairwise cor-

relation is assessed by reporting the correlation coefficients between the spot prices of the underly-

ing components of each spread.  
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Table 2. Predictive ability and outperformance of TTRs for the full 25-year sample period 
 

#  predictive 

rules 

Sharpe Ra-

tio Port. 

MPPM 

Port. (%) 

Highest ratio 

(p-value) 

Best Rule 

Commodities 
   

 
 

Brent-WTI crude oil 563 0.77 3.98 1.20 (0.00) BB2 

Heat oil-Gasoil 147 0.84 1.07 0.73 (0.00) SR2 

Platinum-Gold 12 0.77 0.22 0.61 (0.00) RSI2 

Gold-Silver 140 0.72 0.86 0.60 (0.00) SR1 

Corn-Soybean 34 1.06 1.34 1.24 (0.00) RS1 

Equities      

FTSE100-CAC 40 27 0.39 0.12 0.31 (0.07) CCI3 

AMST-CAC 40 28 0.65 0.05 0.34 (0.00) CCI3 

S&P500-DAX 29 0.40 0.40 0.40 (0.00) CCI3 

CAC-TOPIX 88 1.39 3.74 1.49 (0.00) BB1 

DAX-FTSE100 8 0.59 0.09 0.36 (0.00) F1 

Currencies      

EUR-CHF 9 0.34 0.12 0.34 (0.06) MA1 

EUR-JPY 16 0.86 0.29 0.34 (0.08) CB1 

AUD-CAD 18 0.65 0.13 0.49 (0.00) SR2 

AUD-NZD 10 0.41 0.08 0.34 (0.00) RSI2 

NOK-SEK 9 0.51 0.03 0.34 (0.00) BB2 

We examine the performance of a total of 18,412 TTRs over the 1990-2016 period after imposing transaction costs. 

We implement the FDR+ at a fixed predetermined level (i.e., 10%) to select technical rules providing significantly 

positive performance under the Sharpe ratio performance metric. #predictive rules denotes the number of TTRs that 

provide significantly positive Sharpe ratios. The highest ratio denotes the best rule’s Sharpe ratio, with p-values in 

parentheses. Sharpe Ratio port. and MPPM port. report the performance of the equally-weighted portfolio of predictive 

rules under the Sharpe ratio and MPPM criteria respectively. The best rules are reported in the Best rule section. All 

MPPMs and Sharpe ratios are annualized. 
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Table 3. Out-of-sample annualized Sharpe ratios and MPPMs of the FDR+ portfolio, of significant in-sample rules.  
 1996 

 
2001 

 
2007 

 
2011 

 
2016 

 

 
Median 

Port. 

Sharpe 

ratio 

MPPM 

(%) 

Sharpe 

ratio 

MPPM 

(%) 

Sharpe 

ratio 

MPPM 

(%) 

Sharpe 

ratio 

MPPM 

(%) 

Sharpe 

ratio 

MPPM 

(%) 

Commodities  
          

Brent-WTI crude oil 1,204 1.14 11.5 1.72 18.3 -0.01 -0.43 0.00 0.00 0.00 0.00 

Heat oil-Gasoil 700 - - 1.72 10.1 3.76 13.38 3.65 17.5 4.29 22.5 

Platinum-Gold 23 -0.59 -0.15 -0.69 -1.08 -0.25 -0.28 1.83 2.64 0.63 0.21 

Gold-Silver 77 -0.11 -0.07 -1.18 -1.45 0.85 2.05 1.09 2.21 1.05 1.22 

Corn-Soybean 33 -0.41 -1.31 -0.28 -0.08 0.79 1.31 -1.12 -2.75 0.63 1.81 

Equities            

FTSE100-CAC 40 12 1.28 0.53 -0.91 -0.31 -0.81 -0.10 -1.47 -1.25 -1.21 -0.23 

AMST-CAC 40 19 -1.51 -0.37 -0.35 -0.15 -0.10 -0.01 -1.61 -0.91 -0.73 -0.06 

S&P500-DAX 22 -2.27 -2.11 -0.73 -1.59 0.73 1.34 -3.07 -3.11 -1.55 -1.00 

CAC-TOPIX 51 0.41 0.11 0.78 0.68 3.00 10.3 1.31 7.00 2.57 9.55 

DAX-FTSE100 15.5 -0.94 -0.26 0.66 0.24 -0.55 -0.13 -0.16 -0.31 - - 

Currencies            

EUR-CHF 11 1.32 0.07 -0.07 -0.02 0.73 0.01 1.00 3.60 0.15 0.01 

EUR-JPY 13 1.01 0.23 0.85 0.59 0.47 0.16 -0.92 -0.20 0.70 0.11 

AUD-CAD 4 -0.64 -0.66 0.82 0.66 0.81 0.35 -0.26 -0.33 0.00 0.00 

AUD-NZD 15 -1.36 -0.84 -1.74 -0.28 0.23 0.22 -0.56 -0.05 -1.13 -0.34 

NOK-SEK 10 -1.28 -0.41 0.24 0.05 0.07 0.06 1.41 0.37 -2.22 -1.01 
 

We report out-of-sample annualized Sharpe ratios and MPPMs for the last year of each subperiod based on the 10% -FDR+ portfolios of significant 

rules. The rules are those selected in the in-sample horizon, which covers 70% of each subperiod’s observations. We impose historical transaction 

costs on the computations. 
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Table 4. Out-of-sample annualized Sharpe ratios and MPPMs of all rules with positive performance  
 1996 

 
2001 

 
2007 

 
2011 

 
2016 

 

 
Median 

Port. 

Sharpe 

ratio 

MPPM 

(%) 

Sharpe 

ratio 

MPPM 

(%) 

Sharpe 

ratio 

MPPM 

(%) 

Sharpe 

ratio 

MPPM 

(%) 

Sharpe 

ratio 

MPPM 

(%) 

Commodities  
          

Brent-WTI crude oil 2,400 1.35 15.1 0.73 6.64 0.83 4.76 -1.39 -7.15 -1.27 -1.31 

Heat oil-Gasoil 1,862 - - 1.01 5.14 2.78 7.77 1.66 6.93 2.01 7.91 

Platinum-Gold 1,319 -3.13 -1.85 -1.39 -4.31 -1.19 -4.46 -0.38 -2.02 1.74 2.52 

Gold-Silver 1,802 -0.89 -1.96 -2.25 -8.09 -0.64 -4.78 -1.24 -5.08 -2.01 -1.61 

Corn-Soybean 1,464 -1.76 -4.28 -2.28 -2.53 -0.54 -1.51 -1.09 -3.75 -0.93 -3.04 

Equities            

FTSE100-CAC 40 271 -2.22 -0.49 -3.84 -2.67 -3.71 -1.58 -2.51 -1.21 -1.84 -0.83 

AMST-CAC 40 303 -2.66 -0.73 -3.73 -1.24 -2.41 -0.16 -4.19 -1.32 -1.82 -0.27 

S&P500-DAX 450 -4.51 -1.56 -0.56 -1.32 -1.84 -0.19 -2.10 -2.25 -1.41 -2.11 

CAC-TOPIX 454 -2.84 -0.70 -1.46 -0.95 1.15 1.85 0.17 0.54 1.72 3.98 

DAX-FTSE100 407 -1.48 -0.33 -0.65 -0.51 -6.68 -1.75 -2.70 -3.00 -2.86 -0.54 

Currencies            

EUR-CHF 186 -2.71 -0.35 -1.81 -0.01 -0.73 -0.01 0.00 0.00 -2.62 -0.48 

EUR-JPY 2,124 -2.91 -2.94 -2.88 -2.59 -1.21 -0.68 -1.41 -5.29 -3.06 -6.27 

AUD-CAD 1,388 -1.53 -3.40 -2.42 -0.34 -0.87 -0.25 -2.78 -3.11 0.35 0.11 

AUD-NZD 500 -3.55 -0.76 -0.94 -0.29 -0.45 -0.22 -2.17 -0.49 -2.22 -0.57 

NOK-SEK 298 -2.40 -5.34 -1.80 -0.58 -1.00 -0.11 -1.78 -0.36 -5.60 -2.31 
 

We report out-of-sample annualized Sharpe ratios and MPPMs for the last year of each subperiod based on equally weighted portfolios of all 

positive rules found in-sample. The rules are those selected in the in-sample horizon, which covers 70% of each subperiod’s observations. We 

impose historical transaction costs on the computations. 
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Table 5. Factor exposures, liquidity, volatility, and investor’s sentiment of the FDR+ global portfolio of significant rules. 
 

Panel A Carhart (1997) 4-Factor Models      

  MSCI World SMB HML UMD Intercept R2 Adj. R2 

                   

Global port. Coefficient  -0.003*** 0.0004 -0.003*** -0.0018*** 0.04%*** 7.92% 6.73% 

 (t-Stat)  (-4.21) (0.39) (-2.88) (-2.55) (13.46)   

          

Panel B 

Asness, Moskowitz, and Pedersen (2013)  

factors      

  MSCI World VAL  MOM  Intercept R2 Adj. R2 

       Everywhere Everywhere         

Global port. Coefficient  -0.003*** -0.007*** -0.006***  0.05%*** 8.91% 8.01% 

 (t-Stat)  (-3.32) (-2.61) (-3.11)  (12.76)   

          

Panel C Market volatility, liquidity, and sentiment      

   TED spread  Pastor-Stambaugh Sentiment Change in lnVIX  

       (2003)  Sentiment  (monthly)    

Global port. Coefficient  -0.046***       

 (t-Stat)  (-3.35) -0.002***      

    (-4.30)      

     -0.0006     
     (-1.51) -0.0004    

      (-0.98) 0.001***   

       (5.84)   
We run monthly time-series regressions of the returns of the global portfolio on the factors of SMB, HML, and UMD of Carhart's (1997) model and the 

Asness et al, (2013) value and momentum everywhere factors over the 1990-2016 period. We also run similar regressions of global portfolio’s returns, on 

the funding liquidity (TED spread, market liquidity (Pastor-Stambaugh, 2003), the investor’s sentiment index of Baker and Wurgler (2007), and the VIX 

index separately. 


