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Abstract

Learning depends on the dynamics of one’s personal circumstances and immediate envi-
ronment that provides hands- experience. As a result, educators are constantly striving
to create personalised learning experiences for learners. The increasing use of technol-
ogy in education has led to the development of various e-learning systems. However,
these systems are limited by their inability to create immersive and interactive learning
environments that cater to each learner’s individual needs and preferences. Extended
Reality (XR) technologies such as Virtual Reality (VR), Augmented Reality (AR), and
Mixed Reality (MR) o↵er a new way of delivering Experiential Learning (ExL) that can
meet these challenges. However, existing XR-based learning systems lack the ability
to adapt to learners’ individual needs and preferences, which may reduce their learn-
ing performance. Nevertheless, there is a lack of research and guidance on e↵ectively
incorporating XR technologies to design adaptive experiential learning systems. Thus,
this thesis aims to contribute new knowledge on how XR technologies can be used
to design and develop interactive, adaptive ExL systems that can be integrated into
future learning environments. This is accomplished by (i) presenting a comprehensive
design space grounded in XR technology and the theoretical underpinnings of learning
and instructional guidance, and by (ii) conducting three di↵erent user studies, each
focusing on an interactive experiential learning system developed based on a particular
configuration of the presented design space.

In the first study, the focus is placed on how di↵erent representation methods of the
future building (paper, desktop and VR HMD) would a↵ect the user experience, di-
mensions of user engagement, the understanding of the space with minimum guidance,
and support users to project themselves into the future o�ce space. The second study
explores how di↵erent factors of instructional guidance – i.e., the amount of guidance
(fixed vs. adaptive-amount) and the type of guidance (fixed vs. adaptive-associations) –
would a↵ect the user experience, engagement and the learning outcomes of a language
learning scenario. The final study further looks into detail at how di↵erent interfaces
(AR vs. non-AR) and types of guidance (keyword only vs. keyword + visualisation)
would a↵ect user experience, engagement and consequently the learning performances
in vocabulary learning.

The results of this research will provide insights into the design and development of
interactive XR based experiential learning systems that can meet the diverse learning
needs and preferences of individual learners, leading to improved learning outcomes.
This work will be useful and of interest to researchers and practitioners who conduct
research within the fields of Human-Computer Interaction (HCI), instructional design
or education.
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B.1 Ethical Approvals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.2 Participant Consent Form . . . . . . . . . . . . . . . . . . . . . . . . . 110

C Study III: Vocabulary 111
C.1 Ethical Approvals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.2 Participant Consent Form . . . . . . . . . . . . . . . . . . . . . . . . . 113





List of Figures

1.1 Design space overview and research method illustrating the thesis overview 4
1.2 A high level overview of the work within and structure of this thesis. . 8

2.1 Experiential learning cycle by Kolb [69]. . . . . . . . . . . . . . . . . . 14
2.2 Reality-Virtuality continuum by Milgram and Kishino [89]. . . . . . . . 21
2.3 Extended reality environments . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 The dimensions of the design space. . . . . . . . . . . . . . . . . . . . . 25
3.2 Hardware used: (a) Tobii pro HTC vive HMD, (b) Tobii pro spectrum

display, (c) Magic leap one HMD, (d) Microsoft hololens 2 HMD. . . . 30

xv





List of Tables

2.1 A brief overview of learning paradigms including the major theories of
learning and their period of development. . . . . . . . . . . . . . . . . . 12

2.2 Descriptions of popular mnemonic techniques and systems [101]. . . . . 18

3.1 Prior work on learning in XR as they fall within the design space illus-
trated in Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Chapter 1

Introduction

Learning is instinctive. It is a conscious activity in formal education and training, but
it also lives in one’s subconscious, thinking, reflection and even imagination. Learning
depends on the dynamics of personal circumstances and the immediate environment.
Students can learn best when they are immersed in learning experiences that are active,
stimulating, meaningful and interactive. These can be small team projects, study
trips, internship programmes or any other experiential learning task. This means
learning can occur not only in classrooms but anywhere at any time in our daily
lives. The advancement of platforms such as Metaverse 1 and NVIDIA Omnivers 2

open up a world of possibilities for creating engaging and interactive Extended Reality
(XR) – mixing real world with digital content or replacing it altogether – learning
environments, as they can better support di↵erent forms of experiential learning and
group collaboration not always possible to be achieved in traditional classroom or
with existing learning tools. Research in Human-Computer Interaction (HCI) aims
to investigate how computer powered technologies can be utilised to support humans
as they interact with them. This work, takes an HCI perspective in order to better
understand how novel technologies, such as XR, can be used to design and develop
interactive Experiential Learning (ExL) systems that can be integrated into future
classrooms as well as our day-to-day lives.

1.1 Research Context

Experiential Learning (ExL) is a well-known learning approach used in education, train-
ing, facilitation, coaching and organisational development [81, 71, 44]. ExL refers to the
process of learning through experience or “learning by doing” and can be described by
one of the most influential models in ExL [81] – Kolb’s learning model [69]. This model
defines ExL as “the process whereby knowledge is created through the transformation
of experience. Knowledge results from the combination of grasping and transforming
experience” [69]. The model is represented by four cyclical learning stages visible also
in Figure 2.1:

1. Concrete experience (feeling): doing or having a novel experience.

1https://about.meta.com/metaverse/
2https://www.nvidia.com/omniverse/

2

https://about.meta.com/metaverse/
https://www.nvidia.com/omniverse/


CHAPTER 1. INTRODUCTION 3

2. Reflective observation (watching): reviewing and reflecting on the novel experi-
ence, focusing on whether there were any discrepancies between the experience
and understanding.

3. Abstract conceptualisation (thinking): what was learned from the experience,
thinking how to improve for the next time.

4. Active experimentation (doing): planning or practically applying what has been
learned.

It is possible to enter the learning cycle at any stage, but all stages in the cycle must
be addressed for a meaningful learning to occur [69].

The degree to which these stages occur spontaneously is a point of departure for di↵er-
ent approaches. Some researchers promote an unguided approach in which the learner
freely explores and constructs meaning through an unstructured process [25, 47, 21].
At the core of these approaches is the belief that learners learn by being immersed
in an authentic environment. As they make sense of it and build their own cognitive
structures, they develop a deep understanding. Some researchers on the other hand
promote the creation of guided experiences that intentionally structure the environ-
ment and/or sequences of events based on learner’s personality, creativity, motivation,
attitude, etc., including prior knowledge and previous experiences [67].

In learning, including ExL, guidance is beneficial. The term guidance has a broad
meaning, but we adopt the generally understood definition of guidance as “any form of
assistance o↵ered to users so they can achieve a learning goal”. In more precise terms,
the role of guidance is “to simplify, provide a view on, elicit, supplant, or prescribe
the scientific reasoning skills” [79] involved in pursuing a goal. It can be explicit, as
when a teacher provides instructions on how to solve a mathematical problem with
all the in-depth explanations of concepts and skills students need to learn, or provides
feedback on the current performance. Or it can be implicit, as it is provided within
the environment for users to find, interpret and use in order to progress in the task
at hand [10, 26]. In either case, the amount, the type and timing of guidance play an
essential role in engagement and consequently, in the learning outcomes [27, 128, 63].

While several educational definitions of guidance exist [32, 79, 3], in the context of this
thesis we focus on instructional “guidance”, which is defined as “providing users with
accurate and complete procedural information (and related declarative knowledge) that
they have not yet learned in a demonstration about how to perform the necessary se-
quence of actions and make the necessary decisions to accomplish a learning task” [32].
Guidance also has di↵erent dimensions such as “how much” (amount) instructional
support is given [86, 126, 139], “what kind” (type) of support is given [3], and “when”
(timing) is the support given [9, 85, 115].

The term Extended Reality (XR) describes interactive environments generated by com-
puter technology combining real and virtual worlds. XR is an encompassing term for
Augmented Reality (AR), Mixed Reality (MR) and Virtual Reality (VR). It describes
interactive environments generated by computer technology combining real and/or vir-
tual worlds. XR can provide an environment for simulating various experiences by
combining the physical environments with adaptive digital elements that can be ma-
nipulated by the user. XR can thus replicate the real-world ExL scenarios and provide
instructional guidance by showing information in a coherent and meaningful way.
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Researchers have previously leveraged XR systems as tools for guiding or teaching
di↵erent skills that can be learned best through experience [128, 124, 17, 51, 137,
119, 8, 76]. As the review of recent XR studies highlight (Chapter 2 and Chapter 3),
the majority of studies have primarily focused only on learning stages of Kolb’s ExL
cycle [128, 17, 119, 8, 76]. However, according to Kolb, the learner must continue
cycling through all the four stages of the ExL cycle, thus creating a “learning spiral of
ever-increasing complexity” in order to gain a better learning outcome [70]. Currently,
we are unaware of any literature that focuses on providing guidance to support learners
move from one stage to another in the ExL cycle and progress on the learning spiral.

Moreover, these approaches have focused only on providing generic guidance where
all users receive the same set of general instructional cues, with the same amount, in
the same way [128, 17, 60, 119, 76]. However, the theories and other groundwork on
learning and instructional guidance claim that tailoring guidance to the di↵erent needs
of users (changing the type, the amount and timing) plays a critical role in learning
as it a↵ects the engagement and consequently the performance of individual learners
di↵erently [9, 115, 139]. Currently, besides the limited numbers of studies such as
[124], there is a lack of research on providing adaptive guidance by adjusting the type,
the amount and timing of the instructions for di↵erent user needs.

Figure 1.1: Design space overview and research method illustrating the thesis overview.
The thesis constitutes of 3 user studies (i.e. VRNav, Arigatō and VocabulARy) ex-
ploring the design space of XR experiential learning systems with a focus on guidance
amount (A1, A2, A3, A4) and type of guidance (T1, T2). Throughout the thesis, de-
pendant variables cover User Engagement, Learning Performance and User Experience
performance metrics. When designing XR learning systems a particular attention was
given to Display configuration (e.g. HMD, Desktop), Input system (e.g. controller
based, mid-air gesture based), Data presentation modality(e.g. 2D, 3D, text) and Per-
ceived space (e.g. local, remote).

The use of XR technology in the design of interactive ExL environments has the po-
tential to transform the way students learn and interact with educational systems.



CHAPTER 1. INTRODUCTION 5

However, existing XR-based learning systems are often not fully tailored to the diverse
needs of learners, leading to lack of engagement and poor learning performance.

Thus, this thesis aims to explore the potential of XR technologies in designing and
implementing experiential learning environments that cater to the unique needs of in-
dividual learners. The goal is to enhance understanding and increase engagement by
providing interactive and stimulating environments supported by e↵ective guidance.

To achieve this, the thesis presents a comprehensive design space that incorporates the
characteristics of XR environments and the underlying theories of learning and guid-
ance. The design space considers various dimensions such as display configuration, data
modality, input, perceived space, experiential learning, and guidance, which are dis-
cussed in Chapter 3.The research employs the design space to (i) systematically explore
the existing literature and identify the gaps and (ii) develop interactive experiential
learning systems tailored to di↵erent learning scenarios –e.g., Study 1:VRNav focuses
on spatial learning and the e↵ect immersion has on relocating to the new o�ce space
while Study 2:Arigatō and Study 3:vocabulARy focus on second language learning. The
primary focus of this thesis is to evaluate the e↵ectiveness of di↵erent configurations
within the design space for creating these learning experiences in XR environments.
The evaluation will encompass various aspects, including user experience, user engage-
ment (covering a↵ective, behavioural, and cognitive factors), and ultimately, learning
performance. To better present thesis structure Figure 1.1 shows the overview of the
design space and the research methods we follow.

The research questions that will be explored in this thesis are presented in Section 1.2

1.2 Research Questions and Hypotheses

This section lists a set of research questions and hypotheses that we investigate in this
thesis.

RQ1: How can XR technology be used to create immersive and interactive
experiential learning environments by exploring the importance and e↵ectiveness
of di↵erent configurations of XR, ExL and instructional guidance?

H1-1: Constructive experiential learning experiences can be designed by investi-
gating di↵erent configurations of XR, ExL and instructional guidance.

H1-2: User engagement and learning performance (e.g. user actions, cognitive
load, attention, task completion time, and error rate) vary for di↵erent configu-
rations of ExL environments.

RQ2: What are the XR interventions that can be used to remodel the type and
the amount of instructional guidance and nudge learners to move from one stage
to another in the ExL cycle?

H2-1: User engagement and learning performance (e.g. user actions, cognitive
load, attention, task completion time, and error rate) can be e�ciently measured
in XR environments to remodel the instructional guidance.
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H2-2: XR interventions can be embodied as explicit guidance to support the
learner to proceed spontaneously from one stage to another in Kolb’s ExL cycle.

RQ3: How can XR technology be used to create immersive and adaptive experi-
ential learning environments where the learning system needs to take over some
or all of the tasks commonly conducted by educators (e.g. providing guidance,
detecting and deciding on the amount of guidance and selecting the appropriate
XR interventions to support guidance [RQ2])?

H3-1: XR can be used to create adaptive educational systems that would be
able to provide immersive and e�cient learning environments which outperform
standard learning systems.

RQ4: How do the di↵erent configurations of XR (i.e., display configuration, in-
put type, data modality, perceived space) and/or degree of dynamic adaptions
of guidance (i.e., amount and type – or what can be jointly called “personal-
isation” of instructional guidance) a↵ect the user experience, engagement and,
consequently, the learning outcomes of immersive ExL environments?

H4-1: The display configuration, input type, data modality, and perceived space
of XR environments would a↵ect the user experience, engagement and learning
outcomes of an ExL task.

H4-2: The type and the amount of instructional guidance generated by XR en-
vironments would a↵ect the user experience, engagement and learning outcomes
of an ExL task.

H4-3: Adaptive amount of guidance will outperform fixed guidance in subjective
and objective performance measures.

1.3 Methodology and Approach

Due to the interdisciplinary and challenging nature of the research, we conducted three
di↵erent studies to investigate the above mentioned research questions. The first study
(VRNav : Chapter 4) utilises an immersive VR environment to investigate, measure
and compare how di↵erent representation methods – i.e., VR head-mounted display
(HMD), desktop VR and paper-based 2D floor plans – of the o�ce building would,
(i) a↵ect the user’s engagement and the understanding of the space and, (ii) support
the users projecting themselves into the building. More specifically, VRNav is centred
around the first research question (RQ1) and last research question (RQ4), and their
corresponding hypotheses presented in the previous section (Section 1.2).

The second study (Arigatō: Chapter 5) includes an adaptive guidance AR system for
language learning that explores RQ2, RQ3, and RQ4, presented in Section 1.2. In
particular, in this study, we aim to investigate how the di↵erent factors of instruc-
tional guidance, – i.e., the amount (fixed vs. adaptive-amount) and the type (fixed vs.
adaptive-associations) of guidance – would a↵ect user engagement and, consequently,
the learning outcomes of a language learning scenario.
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The final study (vocabulARy : Chapter 6) includes an AR system for vocabulary learn-
ing that investigates RQ2 and RQ4, presented in Section 1.2. In this study, we aim to
explore how the interface (AR vs. non-AR) and di↵erent types of guidance (keyword
only vs. keyword + visualisation) would a↵ect user engagement and, consequently, the
learning performances in vocabulary learning. This was achieved by designing a HMD
based AR vocabulary system that visually annotates objects in the user’s surroundings
and comparing it to a non-AR systems on a tablet.

In order to maximise the e↵ectiveness of each study, a mixed methods approach was
adopted, and details decided on a study-by-study basis (see Chapter 4, Chapter 5 and
Chapter 6 for more details). Factors considered when making these decisions included:
study design, number of participants, duration of the study, data collection and research
aim of the study. As a result, the research described in this work was conducted
using di↵erent, but interrelated methodological approaches. Thus,in all studies, the
data was collected using both qualitative and quantitative techniques. In addition,
the combination of descriptive, observational and experimental approaches allowed for
a broad perspective on how participants are influenced by technology as a tool for
experiential learning settings. At the same time, this allowed for detailed insights into
specific student-centred technology interactions within experiential learning scenarios
based on real-word phenomena and applications. Furthermore, each of the studies can
be considered individually to create a loose picture of the whole - a useful facet for
researchers in HCI and education.

1.3.1 Ethics Approval

All of the studies conducted have been subject to full ethical approval from both the
University of Primorska and the University of St.Andrews. In addition, all participants
participated on a voluntary basis and consented to their participation in the work. All
documents pertaining to ethical considerations of this work are included in Appendix A,
Appendix B, and Appendix C.

1.4 Contributions

While HCI is a subsection of Computer Science, it is a interdisciplinary field, which
draws on research from many areas, including Psychology, Social Science, Engineering
and Design. The research scope of this thesis touches upon, and draws from learning
theories and instructional design theories. The findings presented here will primarily
be of interest to researchers within the field of HCI and instructional design. However,
it may also have be of interest to those within education, and educational technology
fields. Through the interdisciplinary work described in this thesis, our work contributes
to research in the areas of HCI, instructional design and education. In this research we
propose a novel design approach to develop adaptive and interactive XR environments
and show how these can be used to improve experiential learning and promote user
engagement. In particular, our contributions are outlined more specifically in the
following:

• A series of user studies demonstrating the usability of XR for designing inter-
active, ExL environments (Chapter 4, Chapter 5 and Chapter 6) that maximise
user engagement and, consequently, learning performance.
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• Successful examples for XR interventions that are e↵ective in designing guidance
(Chapter 4, Chapter 5 and Chapter 6) and supporting the learners move from
one stage to another in the ExL cycle (Chapter 5).

• Successful examples for developing interactive ExL systems in XR with mini-
mum guidance to maximise user engagement (Chapter 4).

• Design considerations for adapting the type of guidance in immersive ExL envi-
ronments to maximise user engagement and learning performance (Chapter 6).

• Design considerations for adapting the amount of guidance in immersive ExL
environments to maximise user engagement and learning performance (Chap-
ter 5).

• A comprehensive analysis of variables such as user engagement (i.e., a↵ective,
behavioural, cognitive), learning outcomes and user experience, to understand
the usability of XR for designing interactive, adaptive ExL environments (Chap-
ter 7).

• Design considerations for the development of future interactive, experiential
learning systems, consolidated from the results of analytical and empirical re-
search (Chapter 7).

1.5 Thesis Outline

This thesis is organised into seven chapters, a high level overview can be seen in Fig-
ure 1.2. The outline threads together the publications discuss in this thesis and com-
bines them into a single unified body of work.

Figure 1.2: A high level overview of the work within and structure of this thesis.

Chapter 2 introduces the background and related research relevant to this work. It
provides a sound knowledge of theoretical underpinnings of learning and instructional
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design for developing learning systems, and XR technology as part of HCI. Addition-
ally, this chapter looks at how AR and VR technologies have been researched before,
identifying a research gap regarding the use of technologies as tools for learning in
educational environments.

Chapter 3 introduces a broader design space by exploring the domain, and highlighting
the importance and e↵ectiveness of di↵erent configurations of XR-based experiential
learning systems as described in Chapter 2. It also provides a comprehensive un-
derstanding of the dimensions of the design space and shows (i) how it was used to
systematically explore the existing body of literature and identify knowledge gaps, and
(ii) how it was utilised to design and develop various learning scenarios.

Chapter 4 includes the journal article published based on the Study 1: VRNav, that
was conducted to investigate how di↵erent representation methods (VR, paper and
desktop) would a↵ect the dimensions of user engagement and the understanding of
the space with minimum guidance. Chapter 5 presents the article published based on
the Study 2: Arigatō, that explores the e↵ects of adaptive guidance on engagement
and performance in AR learning environments. Chapter 6 includes the journal article
published based on the Study 3: vocabulARy, that investigates the e↵ects of di↵erent
types of guidance on engagement and performance of vocabulary learning in AR.

Chapter 7 concludes the work described in this thesis, identifying the contributions
were made. This also establishes the limitations of this work and proposes directions
that future research could take.

Appendix A, contains the ethical and study documentation relevant for Study 1:VR-
Nav. Some study findings, including statistical analyses, are reported in full here also.
Documents regarding Study 2: Arigatō, including ethics and study resources, are in-
cluded in Appendix B. Appendix C, provides the ethical and study documents required
during Study 3: VocabulARy.



Chapter 2

Research Background

“Learning without reflection is a
waste. Reflection without learning
is dangerous.”

Confucius

The scope of the research, which discusses the role of technology in designing adaptive
learning systems, draws upon the theoretical underpinnings of learning and instruc-
tional guidance and places them within the field of HCI by evaluating technologies
used to develop immersive learning experiences. The following sections provide the
reader with relevant background information on the educational context of this re-
search, approaches to instructional guidance design, and existing novel technologies
for developing immersive learning systems that can be integrated into future learning
environments. In this context, Section 2.1 examines how psychologists and educa-
tionalists have explained learning from di↵erent perspectives, with a particular focus
on experiential learning. Section 2.2 introduces the concept of instructional guidance
and its broader position in designing adaptive instruction for experiential learning sys-
tems. This includes an insight into the debate about the amount, type and timing
of instructional guidance that is most e↵ective and e�cient for learning and compre-
hension. Section 2.3 provides a brief description of engagement and its dimensions
(i.e., a↵ective, cognitive, behavioural and agentic) that are useful for designing e↵ec-
tive learning environments. Before concluding this chapter, Section 2.4 has outlined
the novel technologies for developing immersive learning systems and the research that
has been conducted to better understand its use in context was explained.

2.1 Learning

Learning is of interest to several research disciplines. Numerous psychologists and
educators have explained the concept of learning from di↵erent points of view. Some
define learning as a process, others as a change in performance, while some define it as
the acquisition and retention of knowledge [13, 92, 142, 6]. These are parts of di↵erent
learning paradigms and theories described in the following sections.

10
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2.1.1 Learning Paradigms and Theories

Learning theories are conceptual frameworks that describe how people acquire, process,
and retain knowledge during the learning process. They fall into one of several learning
paradigms, including behaviourism, cognitivism, constructivism, and humanism [13].

Di↵erent theories are appropriate for di↵erent situations and learning outcomes. There
is no single accepted definition of learning, since it depends on one’s point of view or a
learning paradigm. Most commonly accepted learning paradigms suggest that learning
is:

• a visible change in one’s behaviour, which can be measured [13, 92] (i.e., pro-
viding feedback in a game to learners and providing reinforcement to positively
impact performance)

• the active process of acquisition (including insight, information processing, mem-
ory, perception) of new knowledge and developing adequate mental construc-
tions [13, 142] (i.e., stimulating various regions of the brain and increase the
number of consolidation processes through repetition and improve reflexes, pro-
mote critical thinking, and help people learn)

• an active, socially enhanced process of knowledge construction based on one’s
own subjective interpretation of the objective reality [13, 16] (i.e., collaboratively
and cooperatively engaging in a task in order to achieve a goal in a game).

• a natural desire of human beings, a mean of self-actualisation and developing
personal potentials [13, 6] (i.e., learning in a game through a cycle of concrete
experiences, reflective observation, abstract conceptualisation and active exper-
imentation).

• the process of connecting to information sources containing actionable knowl-
edge and maintaining those connections [13, 72] (i.e leveraging game skills that
are transferable across media, platforms and tools to expand students’ learning
networks).

Theories within the same paradigm share the same basic point of view [13]. It has
to be stressed that each of the paradigms has attracted both supporters and critics.
Presenting all possible views is beyond the scope of this chapter and what follows is a
brief overview of the paradigms mentioned above.

Behaviourism states that all behaviours are learned through the interactions with the
external environment. Behaviourists do not attempt to analyse its inner processes
of mind such as thoughts, feelings, or motivation. From a behaviourist perspective,
a learner starts o↵ as a clear state and simply responds to environmental stimuli.
These responses can be shaped through positive and negative reinforcement (a reward
for desired or a punishment for undesired behaviour), increasing or decreasing the
probability of repeating the same behaviour [13, 92]. Sign learning model presents
learning as the acquisition of knowledge through meaningful behaviours (Tolman 1922).

Cognitivism is a learning paradigm focused on the inner mental processes of humans:
how the human brain perceives things, how it makes memories and create new knowl-
edge [13, 142]. The cognitive approach to learning sees the learner as an active par-
ticipant in the learning process, acquiring new knowledge and constructing mental
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Time
Period

1900s 1950s 1960s 1970s 1980s 2000-

Learning
Theories

Behaviorism: Based on observable changes in behaviour. Behaviorism
focuses on a new behavioural pattern being repeated until it becomes
automatic.
(Sign Learning: presents learning as the acquisition of knowledge
through meaningful behaviours [127])

Cognitivism: Based on the thought process behind the be-
haviour. Changes in behaviour are observed, and used as in-
dicators to what is happening inside the learner’s mind.
(Brain-Based Learning: presents learning as a cognitive de-
velopment process which emphasises how people learn di↵er-
ently as they grow, mature socially and emotionally, and cog-
nitively [61])

Humanism: Based on the natural human desires & de-
velopment of personal potentials.
(Experiential Learning: defines the process of learn-
ing as ”learning through reflection on doing”. Accord-
ing to the Experiential learning theory, knowledge results
from the combination of grasping and transforming ex-
perience [81, 71])

Constructivism: Based on the premise that
we all construct our perspective of the world
through, individual experiences and also social
interactions.
(Problem-Based Learning: suggests that
learning is more e↵ective when learners are
faced with a real-life practical problem and em-
powers learners to conduct research and apply
knowledge and skills to develop a viable solu-
tion [114]
Inquiry-Based Learning: encourages learn-
ers to use world connections through exploration
and high-level questioning while learning [78])

Connectivism: Based on the pro-
cess of connection forming in the
context of technological develop-
ment.
(Simulation-Based Learning:

provides learners with an experi-
ence of working on a simplified
simulated world or system [77])

Table 2.1: A brief overview of learning paradigms including the major theories of
learning and their period of development.

constructions based on prior knowledge and experience. Unlike behaviourism, it tries
to understand the complex cognitive processes by searching for associations between
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learning and information processing, perceptions and memory.

Constructivism is a learning paradigm claiming that learners construct their own
knowledge of the world through experiencing things and reflecting on those experi-
ences [13, 16]. Constructivism’s approach to learning di↵ers from behaviourism and
cognitivism in that it perceives learning as an active, socially supported process of
knowledge construction. As such, learner constructs their own subjective interpreta-
tion and meaning of what is being learnt of objective reality.

Humanism defines learning as a natural human desire, based on self-actualisation and
development of personal potentials [13, 6]. It emphasises the importance of every
individual in that they are striving towards happiness through self-achievement while
being responsible for their own actions. Individuals should also have control over the
learning process, which should be based on observing and exploring. The learning
process is considered more important than the learning outcomes. Since the control
is in the learner’s hands the role of the teacher is to encourage, motivate and provide
reasons for embarking on the learning journey.

Connectivism claims that learning occurs not only in individual but also within and
across networks. As such, learning resides also outside an individual such as within
an organisation or web. The connections and the network of an individual are thus
more important than their current state of knowledge. Connectivism is proposed as
a learning paradigm for the digital age, which attempts to approach learning and
knowledge in the context of technological development [13, 72]. Connectivist learners
share and communicate dynamic knowledge creation through networked interaction
with machines and other people.

Learning theories fall into one or more learning paradigms. Experiential learning the-
ory, for example, is based on the humanistic and constructivist perspectives, which
emphasise that learning occurs naturally, and that experience is crucial in knowledge
acquisition. Table 2.1 provides an overview of learning paradigms and learning theories
that fall predominantly into one paradigm. As our work focuses on designing immer-
sive experiential learning environments that can be integrated into future educational
settings, the following section delves into more details on ExL and some of the popular
ExL models.

2.1.2 Experiential Learning

Experiential Learning (ExL) theory is based on the idea that learning is a process of
acquiring knowledge through experience or “learning through reflection on doing” [69,
81, 65]. It is one of the major theories of education grounded in constructivism and
humanism learning paradigms [39, 113]. As Keeton and Tate express it [65], ExL
“involves direct encounter with the phenomenon being studied rather than merely
thinking about the encounter or only considering the possibility of doing something
with it”. These thoughts about experiential learning continue to evolve overtime and,
several models as “theories-in-use” for ExL have been proposed. To shed further light
on our understanding, we can zoom in to examine some of the more recent and popular
models related to ExL.

Kolb’s Model of Experiential Learning
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Kolb’s model is one of the most popular models of ExL [81]. As shown in Fig-
ure 2.1, Kolb describes ExL as a four-part process, where the learner is asked to
engage in a new experience, actively reflects on that experience, conceptualises
that experience and integrates it with prior experiences and further, makes deci-
sions based on the created concepts. According to Kolb, the learner must continue
cycling through the four-parts, thus creating a “learning spiral of ever-increasing
complexity” [81]. A learner might begin anywhere in the cycle at any level of
knowledge concerning the subject matter. The facilitator’s job is to guide them
through each stage in an ever increasing level, expanding their learning of a topic.
Finally, through this model Kolb stresses that learning is a process where “ideas
are not fixed and immutable elements of thought but are formed and re-formed
through experience” [69].

Figure 2.1: Experiential learning cycle by Kolb [69].

Boud and Walker’s Stages in Experiential Learning

Boud and Walker discuss ExL as a series of stages where there is some kind of
preparation done before a learning event, the actual experience itself, and then
reflection to “debrief” the learner on what took place [20]. This idea incorporates
two significant aspects of Kolb’s model: experience and reflection. It also adds
a third aspect: preparation for the event, that the authors think is important
in learning. When considering preparation for a learning event, the facilitator
needs to focus on what experiences the learners bring and what they want to
learn. Overall, through their model Boud and Walker stress that “learners bring
with them ‘intent’, which may or may not be able to be articulated, and which
influences their approach to the event” and thus “greater use can be made of
learning events if the learners prepare beforehand” [20].

Dean’s Process Model of Experiential Learning
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Dean’s Process Model of ExL is based on stages adapted from Pfei↵er and Jone’s
work [98]. This model is presented as a series of stages in the process of developing
and implementing an ExL activity [38]:

1. Planning - Getting Ready to Start

2. Involvement - Getting Started

3. Internalisation - Learning by Doing

4. Reflection - Making Meaning

5. Generalisation - Making Connections

6. Application - Transfer of Learning

7. Follow-up - Assessment & Planning

As with Boud and Walker [20], Dean also sees ExL as a process that the facilitator
goes through to develop the learning experience. The central concept of Dean’s
model relates to the other models of ExL [69, 20], in that there needs to be some
form of experience (involvement and internalisation) and a reflection on that
experience for meaningful learning to occur. Overall, Dean’s process model of
ExL places an important emphasis on the role of the facilitator. The facilitator
will have to assume the leadership role in helping the group of learners to get
involved in the learning activity, to process the learning, and to apply the learning
to activities on their experiences.

Joplin’s Five Stage Model

Joplin’s Five Stage Model of ExL also follows the “action-reflection” process [62].
However, Joplin adds three other stages that are similar to Boud and Walker’s,
and Dean’s models [20, 38]. The first stage of Joplin’s model is focus, which
defines the task to be completed and looks at the learners’ attention on that
task. Second is action, where learners must become involved with the subject
matter in a physical, mental, or emotional manner. Third and fourth stages
are support and feedback. These are present throughout the learning experience
and are provided by the facilitator or fellow learners. The fifth and last stage
is debrief, where the learners and facilitator sort and order the information and
reflect on its implications. Joplin stresses that “experience alone is insu�cient
to be called experiential education, and it is the reflection process, which turns
experience into experiential education” [62].

Amongst all the models for ExL, Kolb’s model has been identified as one of the most
cited and widely used learning model in the field of education [81, 71]. Besides, after
examining the other popular models for ExL, it can be seen that most of the models
have adopted Kolb’s model as a groundwork for designing their conceptual models [20,
38]. As such, in this thesis, we use Kolb’s ExL model as the base model for designing
our learning system and further exploring the field.

Learning, including experiential learning, benefits from instructional guidance. How-
ever, in a learning environment, di↵erent learners may process information most e↵ec-
tively through their own preferred modes of instructions. Therefore, when designing
instructional support, instructional designers follow various theories and perspectives
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that address how people learn and how the cognitive processes behind the learning
experience work. The following section provides a background on these theoretical
perspectives and their broader position in designing adaptive instruction for experien-
tial learning systems.

2.2 Instructional Guidance

The instructional support provides during learning has been categorised and explained
using di↵erent concepts and terms, such as above mentioned learning paradigms (i.e.,
behaviorism, cognitivism and constructivism, etc.) [88, 126] and instructional methods
(e.g. lectures, case studies, peer feedback, quizzes, etc.) [35, 125]. Such paradigms
and methods often emerge from di↵erent learning theories and sometimes various be-
lief systems, and philosophies [35, 88, 52, 139, 86]. Therefore, when trying to employ
a construct, such as “instructional guidance”, we depend on the fact that the use of
di↵erent conceptual frameworks and theories tend to define and operationalise instruc-
tional support in di↵erent ways. However, the main purpose of instructional guidance
is to reduce the learner’s potential cognitive overload (i.e., the amount of information
that working memory can hold at one time) by providing appropriate information in
the right amount, at the right time and in the suitable format. This section provides
an insight into the debate about the amount, type and timing of instructional guid-
ance that is most e↵ective and e�cient for learning and comprehension (the transfer
of knowledge).

Amount of Guidance

Debates about the impact of instructional guidance and “how much” instruc-
tional support needs to be provided in a learning environment have been ongoing
for at least the past century [86, 67, 75, 126]. For example, is it better to tell
learners what they need to know by presenting them the essential information, or
is it better to allow learners to discover or construct essential knowledge for them-
selves? Koedinger and Aleven called this issue the “assistance dilemma” [68], i.e.,
deciding whether to provide or withhold assistance. The contrast between the
two practices can be better understood as a continuum. On one side of this con-
tinuum are those supporting the hypothesis that people learn best in an unguided
or minimally guided environment [25, 118]. On the other side are those suggest-
ing that learners should be given a direct instructional guidance on the concepts
and procedures required by a particular task [35, 86, 67]. In this case, the “direct
instructional guidance” is defined as “providing information that fully explains
the concepts and procedures that learners are required to learn as well as learn-
ing strategy support that is compatible with human cognitive architecture” [67].
Learning, in turn, is defined as a change in human long-term memory.

The minimally guided approach has been explained using various learning the-
ories including problem-based learning [114], inquiry learning [79] and ExL [70].
There seem to be two main assumptions underlying instructional support ap-
proaches using minimal guidance. First, they challenge learners to solve “authen-
tic” problems or acquire advanced knowledge by assuming that letting learners
construct their own knowledge leads to the most e↵ective learning experience.
Second, they appear to presume that knowledge can best be acquired through
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experience based on the procedures of the task. In other words, in a minimally
guided learning environment, students are seen as active learners and are given
opportunities to digest contents for themselves rather than as passive learners
who merely follow instructions. These guided approaches have been widely ac-
cepted as major teaching methods by teachers and educators with constructivist
views of learning [138].

In contrast, there also have been decades of e↵orts to discourage educators from
adopting minimally guided learning approaches. The past half-century of empir-
ical research on the topic has provided evidence that minimal guidance during
instruction is significantly less e↵ective and less e�cient than guidance specifically
designed to support the cognitive processing necessary for learning [67]. The au-
thors also highlight evidence for the superiority of fully guided instruction – i.e.,
provide a direct instructional guidance on the concepts and procedures required
by a particular task– , which is explained in the context of human cognitive
architecture, expert-novice di↵erences, and cognitive load.

Furthermore, while all these disputes agree that the amount of guidance, i.e.,
“all-or-none” is important to think about, Wise and O’Neill, present a review of
evidence to support that the optimal amount of guidance often is an intermediate
amount and the granularity of the advice provided in a task (i.e., the level of
details) is equally important [139]. To illustrate this, Wise and O’Neill revisit one
of the primary sources of evidence cited by Kirschner et al., “the worked-example
e↵ect”, for their claim that more guidance is always better [29, 96, 129, 90]. A
worked-example is a step-by-step demonstration of how to perform a task or
how to solve a problem [33]. Beyond the worked-example literature, Wise and
O’Neill also explain other studies which suggest that, aiming for the right level of
granularity in guidance is a better guideline than “more is always better” – e.g.,
Nadolski, Kirschner, and van Merriënboer’s work explains that breaking the task
of preparing a legal plea into four steps was more e↵ective in supporting their
target population of learners than presenting the task as a whole (one step) or in
nine steps [94].

Type of Guidance

Research on memory and learning has shown that comprehension and recall de-
pend on di↵erent types of instructional methods and techniques that can be used
to process and store information [40]. Mnemonic is one type of instructional
technique designed for enhancing the memory and recall [141, 101, 84, 99]. This
technique connects new learning to prior knowledge through the use of visual
and/or acoustic cues. The basic types of mnemonic techniques rely on the use
of phonetic systems, key words, rhyming words, or acronyms [101, 84]. Table 2.2
provides short descriptions of some major mnemonic techniques.

Each mnemonic is designed to help remember a specific kind of information.
“Acronyms and acrostics”, for example, help a user remember word lists, but the
words can refer to anything (e.g., the rainbow colours, or the planets) perhaps ex-
plaining why learner use first-letter strategies more than other mnemonics [117].
Unfortunately, there is mixed evidence about whether first-letter mnemonics ac-
tually facilitate recall. Researchers have argued that first-letter mnemonics are
not e↵ective retrieval cues, and thus will likely not aid recall unless learners are
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Mnemonic Description

Link method Interactive visual imagery connects items in a list, making a chain.
Item 1 is joined with item 2; a separate image joins item 2 with
item 3 and so on. Thus, retrieving one item in the list cues the
next item.

Method of loci First, a memory palace—a mental map of a building that one know
well, such as a house—is memorised. Then, imagery is used to store
list items at di↵erent locations throughout the memory palace and
items are retrieved by “walking” through the palace.

Peg system A “peg list”, or a list of concrete objects in a specific order (e.g.,
one is a bun, two is a shoe, three is a flea) is learned. Then, visual
imagery combines the to be remembered items with the peg items.
Items can be retrieved by thinking of a number and the correspond-
ing peg, which cues the target item.

Keyword
method

First, a keyword is found that sounds like the unfamiliar word (e.g.,
“dentist” sounds like “la dent”). Then imagery joins the keyword
with the definition of the unfamiliar word (an image of a “dentist”
holding a large “tooth”). Seeing “la dent” activates dentist, which
in turn should activate tooth.

Phonetic system Each number corresponds to a consonant sound (1 = t, 2 = n, 3 =
m etc.). Then numbers can be remembered as words, using vowels
as necessary. For example, 321 can be remembered as “manatee”.
Words can be decoded back into numbers.

Acronyms The first letters of a list of words are used to create a new word.
For example, the colours of the rainbow (red, orange, yellow, green,
blue, indigo, violet) can be remembered asROYGBIV. Each letter
serves as a retrieval cue for the target items.

Acrostics The first letters in a list of words serve as the first letters in a new
sentence or phrase. For example, the colours of the rainbow can be
remembered as Richard Of York Gave Battle In Vain. The first
letter in each word of the acrostic serves as a retrieval cue.

Table 2.2: Descriptions of popular mnemonic techniques and systems [101].

already familiar with the material [28]. Thus, despite being theoretically ap-
plicable to a wide range of educational materials and popular among learners,
first-letter mnemonics may not be e↵ective memory aids.

In contrast, in the field of language learning, the “keyword method” [14] or cre-
ating mental associations to a known language has proven to be e↵ective in the
memorisation of vocabulary. In the keyword method, students associate the
sound of a word they want to learn to one they already know in either their
first language or the target language. They then mentally create an image of
the known word to memorise the association [99]. This association based tech-
nique provides a powerful tool for words that have a high degree of “imagenabil-
ity” [105], or for word pairs between which the learner can form some kind of
semantic link [42]. The important thing is that the keyword should clearly relate
to the thing being remembered.
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A wide range of existing studies in the broader literature have explored the ef-
fectiveness of the keyword method [14, 102, 11, 136]. For example, Atkinson and
Raugh [14] found that participants who were given a keyword along with the
translation learned more words and also remembered more words after 6 weeks.
Also, Sagarra and Alba [107] compared rehearsal, semantic mapping displays and
the keyword method, and found that the keyword method resulted in the best
retention. It has also been shown that the keyword method is superior over sys-
tematic teaching [66, 100]. In the same sense, Raug et al. [103] evaluated the
use of the keyword method over a long period of 8 to 10 weeks to teach Russian
vocabulary and found it to be highly e↵ective. Despite the generally positive
results [99, 107, 66, 103] , there have been some negative findings [130, 136]. For
example, a study conducted by Zheng Wei [136] found no significant di↵erences
between the keyword method, the word-part technique (recognizing part of a
word) and the self-strategy. One specific concern is that the keyword method
may be less e↵ective when the target materials are not “keyword friendly”—that
is, when they lack an obvious keyword or are di�cult to visualise [50]. Until fu-
ture research clarifies which factors influence the success of the keyword method
(e.g., how much experience does the user have with learning languages), its use
should be limited to keyword friendly materials.

Timing of Guidance

Di↵erent educational practices and learning perspectives have been also debating
on “when” exactly the instructional support needs to be provided in a learning
environment. While not always in agreement about when specifically the guid-
ance should be given, all these disputes admit that the timing of instructional
guidance is important [9, 115].

From one perspective, the best time to provide guidance is as soon as possible –
i.e., “either at the beginning of the instruction or as soon as a learner makes an
error”. However, the detailed research on “intelligent-tutoring systems” suggests
that depending on the instructional goals being pursued, providing immediate
guidance is not always the best strategy [9, 85]. Here, “intelligent-tutoring sys-
tems” are computer-based problem-solving environments that model problems for
learners and o↵er personalised guidance based on observing every step of their
attempts at solving a problem [131].

A pioneering work by Anderson notes that o↵ering learners guidance as soon as
they deviate from a path to a viable solution, increases their problem-solving
speed [9]. To test this hypothesis, the authors conducted an experiment with two
conditions using an intelligent tutor – a computer systems that aim to provide
immediate and customised or feedback to learners, without a human instruc-
tor [48]–, to teach students LISP programming [18]. In one condition, learners
were interrupted during their work and o↵ered guidance as soon as they took a
step that would not lead to a correct solution. In the other, learners received
guidance only on their request. Findings from this study indicate that learners
who were interrupted during their work and o↵ered guidance as soon as they
deviate from a path to a viable solution completed the programming exercises in
about half the time taken by those who received feedback only on request [9].

On the other hand, in a review of the intelligent-tutoring literature, Mathan
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and Koedinger suggest that delaying guidance may result in better retention
and transfer of learning [85]. To test this hypothesis, Mathan and Koedinger
also experimented using two di↵erent conditions. In one condition, the tutor
o↵ered immediate guidance on errors. In the other, the tutor waited to see
whether learners detected their own errors, and attempted to guide them through
detecting and correcting their mistakes only if they attempted to move on to a
new problem. Findings from this study show that while learners in the two groups
performed similarly on the first problem, those in the delayed guidance condition
learned at a faster rate on all subsequent problems [85].

These studies suggest two things about the timing of instructional guidance.
First, if the guidance is constantly provided to the learner, timing strongly af-
fects short-term outcomes. Second, the timing of guidance should vary according
to instructional goals. While immediate guidance promotes more rapid problem-
solving in the short term, delaying guidance can result in better long-term reten-
tion and transfer.

The literature reports that appropriate guidance helps increase user engagement in
a learning activity [22, 128] and that engagement is important to support experien-
tial learning [91]. Therefore, a better understanding of engagement in learning is
needed when designing instructions for ExL environments. In the following section,
we therefore provide a brief description of engagement and its dimensions (i.e., a↵ec-
tive, cognitive, behavioural and agentic) that are useful for designing e↵ective learning
environments.

2.3 Engagement in Learning

Engagement is a necessary first step in learning [30]. Engagement is considered from
di↵erent aspects in the literature since a common approach or a theoretical structure
is lacking in relation to users engagement in educational environments [34, 45, 74].
However, the most comprehensive view emphasises that engagement is a complex and
multi-dimensional process [112, 108, 128] intertwined with learners’ internal indicators
such as motivation, feelings, etc. (a↵ective dimension) [46], mental e↵ort, perceptions,
etc. (cognitive dimension) [46], and observable actions such as performing various ac-
tivities, interacting with a system, etc. (behavioural dimension) [12, 46]. In addition,
Reeve and Tseng suggested incorporating agentic engagement as a fourth dimension of
engagement [104]. Agentic engagement refers to the proactive and intentional activity
of the learner to personalise the conditions of learning and to enrich external learning
goals.

Previous studies have shown that behavioural, cognitive and a↵ective dimensions pre-
dict learner’ performance as separate dimensions and also together form a bigger
construct [7, 128]. This means that the dimensions of engagement are interrelated
and simultaneously a↵ect human behaviour [46]. Altogether, engagement in learning
experiences; helps learners increase their satisfaction, enhances motivation to learn,
reduces the sense of isolation, and improves performance during the learning pro-
cess [30, 22, 128]. In terms of technology, immersive environments such as Extended
Reality (XR) can be identified as creative tools for designing engagement and simulat-
ing such learning experiences [128, 49].
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2.4 Extended Reality (XR) Technology

Milgram and Kishino first introduced the virtuality continuum or reality-virtuality
continuum concept in 1994 [89]. The continuum represents the full spectrum of tech-
nological possibilities between the entirely physical world or real environment and the
fully digital world or virtual environment. The di↵erent sections of the continuum
define how many real elements vs. digital elements are displayed, starting from the left
end –the real environment– where 100% of what is displayed are real or physical objects
and 0% are digital elements versus the right end –the virtual environment– where 100%
of the objects displayed are digital and 0% are physical objects. It includes all cur-
rent technologies that alter reality with computer-generated graphics as well as those
yet to be developed. In a continuum, adjacent parts are almost indistinguishable, but
the extremes are very di↵erent. Therefore, the exact limits of the various terms are
debatable.

Figure 2.2: Reality-Virtuality continuum by Milgram and Kishino [89].

The virtuality continuum is broken down into four categories:

• Real environment: consists solely of real or physical objects. The real environ-
ment represents the left end of the virtuality continuum.

• Augmented reality: the real world is augmented with digital elements.

• Augmented virtuality: the virtual world is augmented by the inclusion of real
or physical objects.

• Virtual environment: consists solely of digital objects. The virtual environment
represents the right end of the virtuality continuum.

Extended Reality (XR) includes Augmented Reality (AR), Mixed Reality (MR), Vir-
tual Reality (VR) and any other technology – “even those that have yet to be
developed–situated at any point of the virtuality continuum”(Figure 2.3). AR has
been described as “the concept of digitally superimposing virtual objects onto physical
objects in real space so that individuals can interact with both at the same time” [15]
(Figure 2.3 (b)). It enhances the real world with digital contents such as images, text,
and animation. Individuals can access the environment through HMDs (AR glasses)
or handheld devices such as tablets or smartphones. In contrast, VR is “an immersive,
completely artificial computer-simulated environment with real-time interaction” [64]
(Figure 2.3 (a)). An individual can experience and interact with the environment
through a 360 view HMD. Finally, MR, is the result of blending the physical world
with the digital world. In MR, digital and real-world objects co-exist and can interact
with one another in real-time (Figure 2.3 (c)). It provides the ability to have one foot
in the real world, and the other in an imaginary place, breaking down basic concepts
between real and imaginary.
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Extended reality has been utilised across multiple domains such as education [128, 124],
psychology [133], construction [4, 122], medicine [41, 55] and the military [95, 80]. The
main advantage of XR is that it can recreate environments that are di�cult to sim-
ulate and provide a safer environment with less risk [95]. Other advantages of XR
include the ability to control and manipulate constraints in complex and dynamic en-
vironments to create specific situations that are repeatable (e.g. landing an aircraft
after an engine failure during a flight simulation). Compared to the traditional class-
room learning method, XR has many advantages in the field of education. Instead
of traditional whiteboard instruction, XR can create an immersive learning environ-
ment where learners can thrive. With an immersive environment, education becomes
an experience that is fun and engaging. Learning in an immersive XR environment
has also been proven to enhance the performance of the learners [132, 111, 128]. The
interactive nature of XR brings elements to life, thereby creating a highly personalised
user experience. With XR, learners can pay more attention to their surroundings and
make connections to their experience, which leads to better knowledge retention.

Figure 2.3: Extended reality environments: (a) Virtual reality, (b) Augmented reality,
(c) Mixed reality.

2.4.1 Learning in XR

Researchers in the HCI community have leveraged XR systems as tools to guide or
teach di↵erent skills and activities that can be learned best through experience [121,
58, 56, 57, 51, 128, 124, 17, 60, 8, 76]. However, these works have primarily focused on
learning stages of the Kolb’s ExL cycle. According to Kolb, the learner must continue
cycling through all the four stages of the ExL cycle, thus creating a “learning spiral of
ever-increasing complexity” in order to gain better learning outcomes [70]. Currently,
we are unaware of any literature that focuses on providing guidance in XR to support
learners move from one stage to another in the ExL cycle and progress on the learning
spiral.

Furthermore, most of these work have provided fixed guidance, in which all the users
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receive the same set of general instructional cues, with the same amount, in the same
way [121, 58, 56, 57, 128, 17, 60, 8, 76]. However, the theories and other groundworks
on instructional guidance claim that the type, the amount and timing play a vital
role when providing instructional guidance as they di↵erently a↵ect engagement and
consequently the learning outcomes of each individual learner [9, 115, 139]. Currently,
besides the limited numbers of studies such as [51, 124], there is a lack of research
on providing adaptive guidance by adjusting the type, the amount and timing of the
instructions for di↵erent user needs.

2.5 Chapter Summary

This chapter has described the background and research relevant to this thesis. In Sec-
tion 2.1, we looked at the theories and model that describe the learning process, with a
particular focus on experiential learning models. Section 2.2 has introduced the concept
of instructional guidance and its broader position in designing adaptive instruction for
experiential learning systems. Section 2.3 has provided a brief description of engage-
ment and its dimensions that are useful for designing e↵ective learning environments.
Before concluding this chapter, Section 2.4 has outlined the novel technologies, such
as AR, VR and MR, for developing immersive experiential learning systems and their
existing literature.

As highlighted in Section 2.4.1, despite the fact that researchers have used AR, VR
and MR technologies to develop learning systems, there are still some potentially open
questions that need to be addressed, such as: How to design XR-based future experi-
ential learning environments to enhance user engagement and learning performances?
How to improve instructional guidance through “adaptation/personalisation”– i.e., re-
model the type, timing and the amount, of guidance? Is it possible to develop adaptive
XR learning environments where the learning system needs to take over some or all of
the tasks commonly conducted by educators ? and, How the adaptation of guidance
would a↵ect the engagement and consequently the learning outcomes?. Therefore, to
shed further light on this topic, the following chapter presents a broader design space
with possible dimensions, developed based on the features of XR environments and the
theoretical underpinnings of learning and guidance described in this Chapter 2.



Chapter 3

Design XR Learning Systems

“Any su�ciently advanced
technology is indistinguishable
from magic.

Arthur C. Clark

If novel technologies, such as Virtual Reality (VR), Augmented Reality (AR), and
Mixed Reality (MR), are to be more widely adopted as learning tools in the future,
it will be necessary to consider how existing learning environments can be better sup-
ported. Therefore, the design of future learning systems needs to be considered from
many perspectives, such as existing learning practices, established learning models
that influence learning approaches, the di↵erent guidance methods, and the features
that novel technologies can o↵er. Thus, in this chapter, we introduce a design space
with several dimensions that can potentially be used to design and develop interactive
learning systems which can be integrated into future classrooms and/or our day-to-day
lives. Section 3.1 of this chapter presents the design space with its dimensions: –the
display configuration, data modality, input, perceived space, experiential learning, and
guidance – in more detail. Section 3.2 describes how the dimensions of our design space
are used to systematically explore the existing body of literature and identify the gaps
in knowledge. Finally, Section 3.3 describes how we utilised the presented design space
to develop three di↵erent interactive learning systems to answer the research questions
presented in Section 1.2.

3.1 Design Space

While previous work has included specific configurations of XR-based instruction to
support experiential learning, this thesis aims to present a broader design space by
exploring the domain, and highlighting the importance and e↵ectiveness of di↵erent
configurations based on the features of XR environments and the theoretical underpin-
nings of learning and guidance.

The performance of an experiential learning task takes place in a particular environment
and follows a specific set of instructions. In addition to these fundamental dimensions,
in our design space we explore how AR and VR can be used to augment and facilitate

24
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experiential learning and lead learners to progress in the experiential learning spiral.
Therefore, in our work, we introduce the following six dimensions: Display Configu-
ration, Data Modality, Input, Perceived Space, Experiential Learning and Guidance to
form a design space that can be used to categorise previous work and/or to develop
future learning systems.

Figure 3.1: The dimensions of the design space.

Display Configuration

The display configuration dimension refers to “how” the user can see and interact
with space(s), and environments, which can take many forms depending on the
technology available. In this thesis, we explore mixed reality (MR) and virtual
reality (VR) as a means to observe and interact with the user’s perceived space.
For instance, MR gives the user a direct view of the real environment, the ability
to interact with it naturally, as well as the ability to augment and annotate the
local space. On the other hand, VR can simulate both physically existing (natural
or already built) and non-existing (imaginary or to be built) environments and
allows the user to observe and interact with it immersively. Additionally, both
MR and VR enables the user to situate a remote user in their own space as
an avatar and interact with them as if they are actually present there. In our
approach, we only focus on head-mounted displays (HMD), which enable MR
(e.g. Magic Leap one 1 or Microsoft HoloLens 2 2) and VR (e.g. HTC Vive 3)
individually. Other display configurations, such as projected or hand-held video-
see-through AR, and desktop VR are also possible, but outside the scope of our
current investigation.

Data Modality

1https://www.magicleap.com/
2https://www.microsoft.com/hololens
3https://www.tobiipro.com/product-listing/vr-integration/

https://www.magicleap.com/
https://www.microsoft.com/hololens
https://www.tobiipro.com/product-listing/vr-integration/
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The data modality dimension refers to “what” type of data is obtains and is
presents to convey the information in the learning environment. Using spatial
data, the user could see and interact with the local or remote space using a 3D
reconstruction of the environment, that is not readily available through other
forms such as video. It also allows navigating to novel viewpoints, to avoid
issues with occlusion, to add 3D annotations (e.g. 3D objects/animations) in the
space, etc. Additionally, the user could also see a video of the space. The video
can provide a high resolution, easily understood mechanism to comprehend the
environment and activities. In the local space, multiple videos can provide in
di↵erent viewpoints to enable third-person views of the user’s own actions and
environment. Many other technologies can be leveraged to provide novel lenses
to view and interact with the spaces (e.g. embedded sensors, recording audio),
however, we limit our exploration in this thesis to the ones described above.

Input

The input dimension refers to “how the user can interract” with the space(s),
and environments, which could also take many forms depending on the technol-
ogy. XR platforms can take advantage of a rich variety of input features when
designing user interactions. Mainly, these interactions can be designed in two
di↵erent ways: as controller inputs or hand gesture/touch inputs. However, ac-
cess to these input features can vary a lot between platforms. Other inputs, such
as keyboard, voice, and eye gaze are also possible, but outside the scope of our
current investigation.

Perceived Space

The perceived space dimension refers to “which” space(s), and environments the
user can see and interact with. Each user has the potential to see and interact
with their own local space, which is the environment that they are physically
within and the objects within that space. The user would primarily interact in
this space to perform the task or action in their own environment with their own
objects or tools. The user may also see the other user’s remote space, which is
the environment and objects of another user. In this space, the user can observe,
inspect and give feedback on the remote user’s actions and their interactions with
objects and tools.

Experiential Learning

The dimension of experiential learning refers to “which elements” of the ExL
cycle we focus on. Kolb’s experiential cycle is formed of four stages/bases and
four edges to progress between the stages. Designed instructional support in XR
environments could be used to support these bases of the experiential learning
cycle. Instead, it could also be used to encourage users to move from one base
to the next. In this case, users can touch all bases, go through the experiential
learning cycle and progress towards the learning spiral.

Guidance

The guidance dimension refers to “what type of instructional support” is cre-
ated to assist the learners to move from one stage to another in the experiential
learning cycle. The type of instructional support could be fixed, in which all
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the users get the same set of generic instructional cues in the same amount, at
a specific predefined time slot. At the same time, it could be a adaptive set of
instructions based on the user needs and the user engagement (cognitive, a↵ec-
tive and behavioural engagement). In this case, the type (generic to mnemonic
techniques) and the amount (minimally guided to fully guided) of the instruc-
tional is support remodelled according to the learning performances and cognitive
capabilities, such as “cognitive load” and attention, of di↵erent users.

Here, “cognitive load” relates to the amount of information that working memory
can hold at one time [120]. However, Cognitive Load Theory shows that working
memory can be extended in two ways. First, as the mind processes visual and
auditory information separately, auditory items in working memory do not com-
pete with visual items in the same way that two visual items compete with each
other (e.g. a picture and some text compete with one another). Second, working
memory treats an established schema as a single item. So, learning activities
that draw upon prior knowledge expand the capacity of the working memory.
Therefore, pre-training, or teaching learners prerequisite skills before introduc-
ing a more complex topic, will help them establish schemas that extend their
working memory; which then leads them to understand and learn more di�cult
information easily.

3.2 Learning in XR

Botelho [19]

Menaker [87]

Adams [3]

Ternier [121]

Huang [58]

Hsu [56]

Huang [57]

Herbert [51]

Alrehaili [8]

Kwon [76]

Topu [128]

Jarmon [60]

Birt [17]

Thoravi [124]

Table 3.1: Prior work on learning in XR as they fall within the design space illustrated
in Figure 3.1.
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In this thesis, we first use above mentioned dimensions in our design space (as illus-
trated in Figure 3.1) to categorised the prior work on learning in XR that presented in
Section 2.4.1. It is summed in Table 3.1. Notably, most of the previous work makes a
single set of choices along these dimensions and often centred on o↵ering fixed guidance,
in which all the users receive the same set of general instructional cues, in the same way,
with the same amount, at a specific predefined time frame [128, 93, 17, 60, 119, 76].
According to the debates about the impact of instructional guidance presented in Sec-
tion 2.2, providing appropriate information in the right amount, at the right time, and
in the right format is important, as it a↵ects engagement and the learning outcomes of
each individual learner di↵erently. However, besides a few recent AR, VR studies such
as [51, 124], there is a lack of research on o↵ering adaptive guidance by adjusting the
type, the amount and timing of the instructions for di↵erent user needs.

Further, these works have primarily focused on creating simulated environments to
support experiential learning tasks [121, 56, 58, 57, 51, 8, 76, 128, 17, 60, 124]. A
key insight from our background review of the learning literature (Section 2.1) is that
experiential learning tasks involves several distinct stages – doing or having a novel
experience; reviewing and reflecting on the novel experience, focusing on whether there
were any discrepancies between the experience and understanding; what was learned
from this experience, thinking how it can be improved for the next time; and planning
or practically applying the learning. As described in Section 2.1 Kolbs’ experiential
learning model, within a single learning session, the ability to switch spontaneously
between these stages and continue cycling through all the stages of the experiential
learning cycle is beneficial for obtaining a better learning outcome [70]. However, in
previous works, we could not find any AR, VR or MR study that focuses on supporting
learners to move spontaneously from one stage to another in the experiential learning
cycle and progress on the learning spiral.

3.3 Our Learning Systems

Our general problem in this thesis is how to use XR technologies to design and de-
velop adaptive learning systems to improve learning and promote engagement through
active, stimulating, and interactive environments supported by appropriate guidance.
After reviewing the existing body of literature and identifying the gaps, we used the
dimensions of our design space (in Figure 3.1) to design and develop three di↵erent
interactive learning systems viz. VRNav, Arigatō and VocabulARy, that di↵er in par-
ticular on display configuration, experiential learning and guidance dimensions of the
design space (Figure 3.2). Further, the three systems also have di↵erent learning objec-
tives. For example, VRNav focuses on spatial learning in which the learners acquire a
mental representation of the environment by experiencing it through various represen-
tations. Spatial learning is essential for individuals to navigate and interact e↵ectively
with their surroundings [24]. On the other hand Arigatō and vocabulARy focus on
second language learning in particular on learning vocabulary and grammar. Despite
the di↵erent learning objectives across these three studies, they all share the common
ground on the potential benefit from experiential learning. Experiential learning em-
phasises the active engagement of learners in practical experiences, enabling them to
construct their knowledge through reflection and application [69]. For example, a study
conducted by Kozhevnikov et al. [73] investigated the impact of experiential learning
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on spatial ability. They found that engaging in immersive virtual environments that
require spatial navigation and exploration significantly improved participants’ spatial
skills and mental representation abilities. A meta-analysis by Elola and Oskoz [43]
examined the e↵ectiveness of di↵erent instructional approaches for second language
vocabulary learning. They found that experiential learning methods, such as using
multimedia, authentic materials, and real world contexts, were e↵ective in promoting
vocabulary acquisition and retention. As such it is important to know how one can
simulate and enrich such experiential learning environments with novel technology such
as XR.

In order to evaluate the above mentioned learning system we designed specific user
studies that considered qualitative and quantitative data collection techniques, which
would allow us test the e↵ects of di↵erent configurations of XR and degree of dy-
namic adaptions of guidance on learning outcomes and user engagement and answer
the research questions in Section 1.2.

Table 3.2: (i) VRNav, (ii) Arigatō and (iii) VocabulARy learning systems as they fall
within the design space illustrated in Figure 3.1.

VRNav (Publication 01)

VRNav presents two prototype systems developed for a VR HMD (i.e. Tobii Pro
HTC Vive 4) and a regular computer display (i.e. Tobii pro spectrum computer
display 5). Each prototype grants a di↵erent representation method for the same
3D virtual tour of a building space. In both systems, the experiential learning
task was to freely explore the environment without any additional guidance.
However, to facilitate navigation, information boards and signs were included in
the environment as in an actual building. The two virtual environments di↵ered
only in terms of Display configuration (VR HMD and Desktop), and Input (HTC
controller and computer mouse) dimensions (Figure 3.2).

This study is centred around our first research question, RQ1:How can XR tech-
nology be used to create immersive and interactive experiential learning environ-
ments by exploring the importance and e↵ectiveness of di↵erent configurations
of XR, ExL and instructional guidance?, and its corresponding hypotheses pre-
sented in the Section 1.2. In the VRNav study, focus is placed on how VR HMD

4https://www.tobiipro.com/product-listing/vr-integration/
5https://www.tobiipro.com/product-listing/tobii-pro-spectrum/

https://www.tobiipro.com/product-listing/vr-integration/
https://www.tobiipro.com/product-listing/tobii-pro-spectrum/
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and the other representation methods (desktop VR and paper-based 2D floor
plans) of the o�ce building would (i) a↵ect the dimensions of user engagement
and the understanding of the space with minimum guidance (i.e. the spatial and
the volumetric understanding of the building) and, (ii) support the users project
themselves into the building space.

Arigatō (Publication 02)

Arigatō presents a prototype system for language learning developed on the Magic
Leap one 6 AR HMD (Figure 3.2 (c)) with controller inputs. The Experiential
Learning (Stages and Transitions) and Guidance (Adaptive Amount and Fixed
Amount) dimensions were mainly considered when designing the Arigatō proto-
type (Figure 3.2).

The prototype replicates all four stages of Kolbs’ experiential cycle. The system
starts the learning cycle in the abstract conceptualisation (AC) stage. The AC
stage provides the description of the vocabulary and the basic grammar rules
related to phrases being learnt. The vocabulary is presented using two di↵erent
types of instruction methods (i.e, (i) fixed-associations– 3D virtual objects of real
world objects associate with the vocabulary or (ii) adaptive-associations– merged
3D virtual objects/combined metaphors created using the keyword method). Af-
ter familiarising themselves with the content in the AC stage, the learner proceeds
to the active experimentation (AE) stage.

Figure 3.2: Hardware used: (a) Tobii pro HTC vive HMD, (b) Tobii pro spectrum
display, (c) Magic leap one HMD, (d) Microsoft hololens 2 HMD.

In the AE stage, the system shows each English phrase with a puzzle task to
generate the corresponding Japanese phrase made of three parts from six (6)
possibilities o↵ered. The puzzle is presented in two ways based on the type of
instructions: (i) a word puzzle with text components only or (ii) a word puzzle
together with 3D virtual objects for the learner to create associations using the
keyword method from a given set of objects. If the learner does not know the
solution to the puzzle they can skip that phrase.

After completing the puzzles related to all four phrases, the system nudges the
learner to proceed to the concrete experience stage (CE). A 3D avatar is shown
asking the learner to recall each phrase in Japanese by speaking it aloud. To eval-
uate the spoken answers, the IBM Watson speech to text recognition was used.
If the phrase is correctly voiced, the corresponding 3D AR model is displayed.
The learner can manipulate the object and place it anywhere in the room as they

6https://www.magicleap.com/

https://www.magicleap.com/
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would be able to do it in a real-world experiential learning scenario with physical
objects.

If all the phrases are not recalled correctly in the CE stage, the system auto-
matically moves to the reflective observation (RO) stage. There, the learner can
first go through all the phrases that include corresponding visual models and au-
dio pronunciation, and then recall them by selecting the correct Japanese phrase
(out of four phrases) corresponding to the given English phrase. The system
then returns back to the AC stage. Besides text instructions and explanations,
audio instructions and explanations are also provided throughout the cycle. In
this way, the system nudges the learner to proceed further in the experiential
learning cycle and consequently on the learning spiral until all four (4) phrases
are recalled correctly in the CE stage.

Arigatō explores RQ2: What are the XR interventions that can be used to remodel
the type and the amount of instructional guidance?, RQ3:How can XR technol-
ogy be used to create immersive and adaptive experiential learning environments
where the learning system needs to take over some or all of the tasks commonly
conducted by educators?, and RQ4:How do the di↵erent configurations of XR and
adaptions of guidance would a↵ect the engagement and learning outcomes of im-
mersive ExL environments?, presented in Section 1.2. In particular, the aim of
this study is to: (i) identify the XR interventions that can be used to “person-
alise” – i.e. remodel the type and the amount of – instructional guidance and
(ii) investigate how the di↵erent adaptation factors of instructional guidance, –
i.e. the amount (fixed vs. adaptive-amount) and the type (fixed vs. adaptive-
associations) of guidance – would a↵ect user engagement and, consequently, the
learning outcomes of a language learning scenario.

VocabulARy (Publication 03)

VocabulARy presents two prototype systems for vocabulary learning developed
on an AR HMD (i.e. Microsoft HoloLens 2 7) and an 10.5 in Android tablet
device (i.e. Samsung Galaxy Tab S4 8). Both AR and tablet systems combine
the keyword method (Section 2.1) with physical objects in the context. With
the AR HMD, the system allows the user to interact with the real-environment
where certain objects are labelled with a button indicating that their translations
are available. Upon clicking these buttons with a hand gesture, the English
and Foreign words corresponding to the object appear. At the same time, an
audio of the pronunciation of the foreign word is also played. In addition to the
words and audio, a pre-generated keyword with an animated 3D visualisation,
also appear. The functionalities of the tablet prototype is similar to the AR
prototype. However, instead of seeing the real world environment, an image of
an environment is displayed on the screen. The Display Configuration (Tablet
and AR HMD) and Guidance (Keyword and Keyword+Visualisation) were the
main dimensions considered for designing the VocabulARy system (Figure 3.2).

VocabulARy investigates RQ3 and RQ4 (as discussed above), presented in Sec-
tion 1.2. More specifically, the aim of study is to investigate how (i) di↵erent

7https://www.microsoft.com/hololens
8https://www.samsung.com/si/tablets/galaxy-tab-s/

https://www.microsoft.com/hololens
https://www.samsung.com/si/tablets/galaxy-tab-s/
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display configurations – i.e. interfaces (AR vs. non-AR) – and (ii) di↵erent types
of guidance – i.e. instruction mode (keyword only vs. keyword + visualisation) –
would a↵ect user engagement and, consequently, the learning performances in
vocabulary learning.

3.4 Chapter Summary

This chapter has presented a comprehensive understanding of the dimensions of a de-
sign space and showed, how it was (i) used to systematically explore the existing body
of literature and identify knowledge gaps, and (ii) utilised to develop three di↵erent
interactive learning systems (VRNav, Arigatō, 6) to answer the research questions
presented in Section 1.2. The next three chapters (Chapter 4,Chapter 5,Chapter 6)
include the research articles that we published based on the studies described in Sec-
tion 3.3. In particularly, Chapter 4 includes the journal article published based on
the Study 1: VRNav, that was conducted to investigate how di↵erent representation
methods (VR, paper and desktop) would a↵ect the dimensions of user engagement
and the understanding of the space with minimum guidance. Chapter 5 presents the
article published based on the Study 2: Arigatō, that explores the e↵ects of adaptive
guidance on engagement and performance in AR learning environments. Chapter 6
includes the journal article published based on the Study 3: vocabulARy, that inves-
tigates the e↵ects of di↵erent types of guidance on engagement and performance of
vocabulary learning in AR.



Chapter 4

Publication 01: VRNav [135]

Title: Exploring the Future Building: Representational E↵ects on Projecting Oneself
into the Future O�ce Space

Authors: Maheshya Weerasinghe, Klen Čopič Pucihar, Julie Ducasse, Aaron Quigley,
Alice Toniolo, Angela Miguel, Nicko Caluya, Matjaž Kljun

Year: 2022

Journal: Virtual Reality (Q1)

DOI: 10.1007/s10055-022-00673-z

Link: https://link.springer.com/article/10.1007/s10055-022-00673-z

Summary: The VRNav Study has two aims. The first aim is to investigate the impact
of immersion by projecting participants into a future scenario, while the second aim
focuses on the learning process (in particular spatial learning). The analysis of im-
mersiveness in the first part is not intended to measure learning directly, but rather to
serve as an indicator of the persuasive and e↵ective nature of immersive environments
in simulating experiential learning. While the objective of the second part is to enable
participants to develop a mental representation of the environment through spatial
learning (by experiencing the environment), facilitating various tasks such as distance,
direction, and volumetric estimation. To this end, we explored the impact of di↵erent
Display Configurations and Data Modalities on user engagement and understanding
of space with minimal guidance. We observed and evaluated di↵erent representation
methods –i.e., VR, desktop and 2D paper-based floor plans – on spatial comprehension
in ExL environments, through various data collection and standard questionnaires com-
bining qualitative and quantitative research methods. Through this the study directly
addresses research question RQ1 (How can XR technology be used to create immersive
and interactive experiential learning environments by exploring the importance and
e↵ectiveness of di↵erent configurations of XR, ExL and instructional guidance?). The
findings from this study provided valuable insights into the impact of immersive VR
and other representation methods on user experience, user engagement dimensions,
and spatial understanding of ExL environments. Additionally, these findings helped to
address the research question RQ4 (How do the di↵erent configurations of XR and/or
degree of dynamic adaptations of guidance a↵ect the user experience, engagement and,
consequently, the learning outcomes of immersive ExL environments?).
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Summary: The Arigatō Study, aimed to investigate the influence of the Experien-
tial Learning cycle and the di↵erent adaptation factors of Guidance on the user en-
gagement, and learning outcomes in a language learning task. We developed a HMD
based AR language learning system that o↵ered immediate assistance to guide learners
through di↵erent stages of the ExL cycle. This study directly addressed RQ1 (How
can XR technology be used to create immersive and interactive experiential learning
environments by exploring the importance and e↵ectiveness of di↵erent configurations
of XR, ExL and instructional guidance?) and then, by designing the amount and type
of guidance provided, we addressed RQ3 (How can XR technology be used to create
immersive and adaptive experiential learning environments where the learning system
needs to take over some or all of the tasks commonly conducted by educators?). Ari-
gatō also helped identify XR interventions that can be used to enhance instructional
guidance (considered in RQ2). Furthermore, the study investigated how the dynamic
adaptations of guidance influenced user experience, engagement, and performance in
a language learning task within an immersive ExL environment, which contributed to
addressing RQ4 (How do the di↵erent configurations of XR and/or degree of dynamic
adaptations of guidance a↵ect the user experience, engagement and, consequently, the
learning outcomes of immersive ExL environments?).
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Arigatō: Effects of Adaptive Guidance on Engagement and
Performance in Augmented Reality Learning Environments

Maheshya Weerasinghe,Student Member, IEEE, Aaron Quigley, Klen Čopič Pucihar,
Alice Toniolo, Angela Miguel and Matjaž Kljun

Fig. 1. Arigatō prototype and its experiential learning stages for two different topics: Christmas and birthday celebration. (a) Reflective
observation (RO), (b) Abstract conceptualisation (AC), and (c) Active experimentation (AE), stages for fixed-associations condition
on the Christmas celebration topic. (d) Concrete experience (CE) for both topics. (e) Active experimentation (AE), (f) Abstract
conceptualisation (AC), and (g) Reflective observation (RO) stages for adaptive-associations condition on a birthday celebration topic.
To avoid excessive clutter of the AR scene the black background was selected.

Abstract— Experiential learning (ExL) is the process of learning through experience or more specifically “learning through reflection on
doing”. In this paper, we propose a simulation of these experiences, in Augmented Reality (AR), addressing the problem of language
learning. Such systems provide an excellent setting to support “adaptive guidance”, in a digital form, within a real environment. Adaptive
guidance allows the instructions and learning content to be customised for the individual learner, thus creating a unique learning
experience. We developed an adaptive guidance AR system for language learning, we call Arigatō (Augmented Reality Instructional
Guidance & Tailored Omniverse), which offers immediate assistance, resources specific to the learner’s needs, manipulation of these
resources, and relevant feedback. Considering guidance, we employ this prototype to investigate the effect of the amount of guidance
(fixed vs. adaptive-amount) and the type of guidance (fixed vs. adaptive-associations) on the engagement and consequently the
learning outcomes of language learning in an AR environment. The results for the amount of guidance show that compared to the
adaptive-amount, the fixed-amount of guidance group scored better in the immediate and delayed (after 7 days) recall tests. However,
this group also invested a significantly higher mental effort to complete the task. The results for the type of guidance show that the
adaptive-associations group outperforms the fixed-associations group in the immediate, delayed (after 7 days) recall tests, and learning
efficiency. The adaptive-associations group also showed significantly lower mental effort and spent less time to complete the task.

Index Terms—Experiential learning, instructional guidance, adaptive learning systems, augmented reality, engagement, language
Learning

1 INTRODUCTION

Experiential learning (ExL) is a well-known learning approach used
in education, training, facilitation, coaching and organisational devel-
opment [28, 52, 57]. ExL refers to the process of learning through
experience or “learning by doing”. One of the most influential models
in ExL [57] is the Kolb’s learning model [50]. This model defines
ExL as “the process whereby knowledge is created through the trans-
formation of experience. Knowledge results from the combination
of grasping and transforming experience” [50]. The model is repre-
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sented by four cyclical learning stages as seen in Fig. 2: (1) concrete
experience (feeling), (2) reflective observation (watching), (3) abstract
conceptualisation (thinking), and (4) active experimentation (doing).
One can enter the learning cycle at any stage, but all stages in the cycle
must be addressed for meaningful learning to occur.

In learning, including experiential learning, guidance is beneficial.
The term guidance has a broad meaning, but we adopt the generally
understood definition of, guidance as “any form of assistance offered
to users so they can achieve a learning goal”. In more precise terms,
the role of guidance is “to simplify, provide a view on, elicit, supplant,
or prescribe the scientific reasoning skills” [55] involved in pursuing
a goal. It can be explicit, as when a teacher provides instructions on
how to solve a mathematical problem with all the in-depth explanations
of concepts and skills students need to learn, or provides feedback on
the current performance. Or it can be implicit, as it is provided within
the environment for users to find, interpret and use in order to progress
in the task at hand [7, 16]. In either case the amount and the type of
guidance play an essential role in engagement and consequently, in the
learning outcomes [17, 44, 96].

While several educational definitions of guidance exist [5, 19, 55], in
the context of this study we focus on instructional “guidance”, which
is defined as “providing users with accurate and complete procedural
information (and related declarative knowledge) that they have not



yet learned in a demonstration about how to perform the necessary
sequence of actions and make the necessary decisions to accomplish
a learning task” [19]. Guidance also has different dimensions such as
“how much” (amount) instructional support it provides [64, 95, 105],
and “what kind” (type) of support it provides [5]. Digital technologies
such as augmented reality (AR) appear ideal to support adaptation
of guidance. AR can provide an environment for simulating various
experiences by combining the physical environments with in-context
adaptive digital elements that can be manipulated by the user. AR can
thus replicate the real-world ExL scenario (e.g. learning by decorating
a room for Christmas celebrations with AR objects as can be done with
real objects) and show information in a coherent and meaningful way
within the real world context.

Researchers have previously explored AR systems as tools to guide
or teach different skills and activities that can be learned best through
experience [37, 67]. Most of these projects have primarily focused
on creating simulated environments to support different stages of the
Kolb’s experiential learning cycle [12, 37, 67, 68, 97]. However, these
projects explored generic guidance only, in which all the users receive
the same set of general instructional cues, with the same amount, in the
same way [12,41,60,63,101]. Therefore, there are several questions that
remain unanswered, such as: How to design and implement guidance
in learning environments where the learning system needs to take over
some or all of the tasks commonly conducted by educators? How the
adaptation of guidance (the amount and the type) would affect the
engagement and consequently the learning outcomes?

To this end, we built the Arigatō – an AR prototype, which aims
to effectively support learners to proceed through the ExL cycle fa-
cilitated by adaptive guidance. We deliberately selected AR as the
most probable future technology that will be used in the classroom
since it better supports real-world in-person communication and group
collaboration compared to a desktop, tablet, and VR [69, 80]. And
rather than comparing the AR to other technologies our goal was to
explore the design space of the AR. With the Arigatō prototype that
provides options for a fixed and adaptive amount and type of guidance,
we aimed to answer the following research questions:

RQ1 How do the dynamic adaptations of AR guidance influence learn-
ers’ (RQ1a) recall of previously learned information, (RQ1b)
mental effort, (RQ1c) task completion time, and (RQ1d) instruc-
tional efficiency?

RQ2 How does learners’ engagement with AR content in terms of (i.e.,
task completion time, mental effort and motivation) affect their
performance (i.e., recall and efficiency)?

The focus on AR in language learning covers the exploration of XR
applications in the education and training domains making this study
strongly relevant to the XR research community.

2 RESEARCH BACKGROUND

We first identify and analyse the relevant literature on experiential
learning, instructional guidance and in particular the amount and type
with a focus on language learning, user engagement, and language
learning in AR.

2.1 Experiential Learning
Experiential learning theory is based on the idea that learning is a pro-
cess of acquiring knowledge through experience or “learning through
reflection on doing” [50, 57]. Theoretical work on experiential learning
continues to evolve and several models as “theories-in-use” have been
proposed such as the Kolb’s model [50], Boud and Walker’s model [13],
Joplin’s five stage model [42], etc. Among these, the Kolb’s experiential
learning model is arguably the most influential model on educational
scholarship [57]. As shown in Fig. 2, the model describes experiential
learning as a four-part process, where the learner is asked to engage
in a new experience, actively reflect on that experience, conceptualise
it, and integrate it with prior experiences and knowledge. After com-
pleting this cycle, future decisions can be based on the newly acquired
concepts.

Fig. 2. Experiential learning cycle by Kolb [50]

A range of prior work has explored the use of simulated environ-
ments and AR technology to support experiential learning [3,12,37,40,
67,68,70,93,97,102]. Most of these approaches have primarily focused
only on the learning stages of the Kolb’s experiential learning cycle,
allowing learners to perform an action and providing feedback, which
learners could reflect on [12, 32, 37, 67, 68, 97]. However, according to
Kolb, the learner must continue cycling through all the four stages, thus
creating a “learning spiral of ever-increasing complexity” in order to
gain a better learning outcome [51]. Currently, we are unaware of any
work that focuses on providing guidance to support learners move from
one stage to another in the experiential learning cycle and progress on
the learning spiral.

2.2 Instructional Guidance
In the past, the instructional support provided during learning has been
categorised and explained using different concepts and terms, such
as learning paradigms (e.g. behaviourism, cognitivism and construc-
tivism, etc.) [65, 95], instructional strategies (e.g. direct instructions,
indirect instructions, interactive instructions, etc.) [66, 103] and in-
structional methods (e.g. lectures, case studies, peer feedback, quizzes,
etc.) [22, 94]. Such paradigms, strategies and methods often emerge
from different learning theories, and sometimes various belief systems
and philosophies [22,35,64,65,105]. Therefore, when trying to employ
a construct, such as “instructional guidance”, we depend on the fact
that the use of different conceptual frameworks and theories tend to
define and operationalise instructional support in different ways. In the
following sections, we will focus on the amount and type of guidance
as described in the literature.

2.2.1 Amount of Guidance
Debates about the impact of instructional guidance and “how much”
instructional support needs to be provided in a learning environment
have been ongoing for at least the past century [47, 54, 64, 95]. For
example, is it better to instruct learners on what they need to know
by presenting them the essential information, or is it better to allow
learners to discover or construct essential knowledge for themselves?
Koedinger and Aleven called this issue the “assistance dilemma” [48],
i.e., deciding whether to provide or withhold assistance. The contrast
between the two practices can be better understood as a continuum. On
one side of this continuum is the hypothesis that people learn best in an
unguided or minimally guided environment [15, 90]. On the other side
is the hypothesis that learners should be given instructional guidance on
the concepts and procedures required for a particular task [22, 47, 64].

In a minimally guided learning environment, students are seen as
active learners and are given opportunities to digest content for them-
selves rather than as passive learners who merely follow instructions.
While these approaches have been adopted by some teachers and ed-
ucators [104], there have also been decades of efforts to discourage
educators from using minimally guided learning approaches. The past
half-century of empirical research on the topic has provided overwhelm-
ing and unambiguous evidence that minimal guidance during learning



is significantly less effective and less efficient compared to guided
learning [47]. The superiority of the latter is explained in the context
of human cognitive architecture and expert-novice differences [47].
Wise and O’Neill present a review of evidence to support the view that
the optimal amount of guidance is often somewhere in the middle of
the aforementioned continuum and that the granularity of the advice
provided in a task (i.e. the level of details) is equally important [105].

2.2.2 Type of Instruction
Research on memory and learning has shown that comprehension and
recall depend on different types of instructional methods and techniques
that can be used to process and store information [25]. The mnemonic
techniques have proven to be extremely effective in improving memory
and recall, especially in the area of foreign language learning [6, 20,
72, 76]. Mnemonic is an instructional strategy designed for enhancing
both memory and recall [62, 74, 75, 106]. This technique connects new
learning to prior knowledge through the use of visual and/or acoustic
cues. The basic types of mnemonic techniques rely on the use of key
words, rhyming words, or acronyms [62, 75].

In the field of language learning, mnemonics have mostly been used
for vocabulary learning. Despite the great variety of techniques for
presenting mnemonic, the “keyword method” [11] for creating mental
associations to a known language has proven to be effective in the
memorisation of vocabulary. In the keyword method, learners associate
the sound of a word they want to learn to one they already know in
either their first language or the target language. They then mentally
create an image of the known word to memorise the association [74].
This association based technique provides a powerful tool for words
that have a high degree of “imagenability” [79], or for word pairs
between which the learner can form some kind of semantic link [26].
The important aspect is that the keyword should clearly relate to the
thing being remembered. This method also motivates learners to be
more creative and use their minds more productively.

2.3 User Engagement
Engagement is a complex and multi-dimensional process [81, 83, 96]
intertwined with a learners’ internal indicators such as motivation, feel-
ings, etc. (affective dimension) [30], mental effort, perceptions, etc.
(cognitive dimension) [30], and observable actions such as performing
various activities, interacting with a system, etc. (behavioural dimen-
sion) [8, 30]. In addition, Reeve and Tseng suggested incorporating
agentic engagement as a fourth dimension of engagement [77]. Agentic
engagement refers to the proactive and intentional activity of the learner
to personalise the conditions of learning and to enrich external learning
goals.

Previous studies have shown that behavioural, cognitive and affec-
tive dimensions predict learner’ performance both separately and in
unison [4, 96]. This means that the dimensions of user engagement are
interrelated and simultaneously affect human behaviour [30].

Kearsley and Shneiderman have stressed that engagement can be
stimulated without technology, but digital technology opens up novel
possibilities that are hard to achieve in a physical form [46]. Accord-
ingly, research in this area has explored engagement with images [29],
video clips [2,89], music [39,49], and real-life scenarios [45,99]. How-
ever, while there are a limited numbers of studies such as [33,96], there
is a lack of research on learning and engagement in AR environments.

2.4 Language Learning in AR
A considerable body of literature focuses on guidance in AR environ-
ments to support learning in general [12, 60, 63, 93, 101] and language
learning in particular [9, 23, 24, 38, 87, 107]. Prior work on language
Learning in AR is summed in Table 1. We categorised it based on
the following dimensions: (i) Hardware used: mobile AR, HMD, sen-
sors; Learning focus: vocabulary and/or grammar; Guidance method:
generic or adaptive; and Learning method: experiential, contextual,
game-based learning, etc. [100]). Importantly, most of the existing ap-
proaches deliver generic guidance, in which all users receive the same
set of general instructional cues, and in the same way [12, 60, 63, 101].

Table 1. Selected prior work related to language learning in AR environ-
ments and how our work differs alongside different dimensions.

Study
Hardware
used

Learning
Focus

Guidance
Method

Learning
Method

Draxler et al.
(2020) [24] Mobile Grammar Generic Context-based

learning
Arvanitis et al.
(2020) [9] Mobile Vocabulary Generic Self-directed

learning
Yang & Mei
(2018) [107] Mobile Vocabulary Generic Game-based

learning
Ibrahim et al.
(2018) [38] HMD Vocabulary Generic Context-based

learning
Vazquez et al.
(2017) [98] HMD Vocabulary Generic Context-based

learning
Dita
(2016) [23] Mobile Vocabulary Generic Game-based

learning
Seedhouse et al.
(2014) [87] Sensors Vocabulary Generic Experiential

learning
Liu & Tsai
(2013) [59] Mobile Vocabulary Generic Context-based

learning

Arigatō (2022) HMD Vocabulary
Grammar

Adaptive Experiential
learning

However, as pointed out in Sect. 2.2, the amount and the type of
guidance play a vital role when providing instructional guidance. In
addition, the adaptation of guidance to user needs is also important
as noted in Sect. 2.2.1. Together they affect the engagement and con-
sequently the learning outcomes of each individual learner. While
there are studies such as [36, 93] that provide adaptive guidance for
performing a physical task, generally there is a lack of research on pro-
viding adaptive guidance based on the amount or type of instructions.
Moreover, we are unaware of any work that focuses on the “keyword
method” as the type of guidance used to support language learning in
AR environments.

In order to address these gaps, we developed an adaptive guidance
AR system for language learning called Arigatō. We employ this
prototype to investigate the effect of the amount (fixed vs. adaptive)
and the type of associations (fixed vs. adaptive) on the engagement
and consequently the learning outcomes of language learning in an AR
environment. The research method to investigate the aforementioned
effects is presented in the next section.

3 RESEARCH METHOD

The Arigatō prototype for language learning was developed to answer
our research questions. In this section, we present the prototype and
we describe the study conditions, study design, study procedure, partic-
ipants’ sampling, data collection, and analysis.

3.1 Study Conditions
The language selected for this study was Japanese, since it is unrelated
to the Indo-European family of languages and we expected people
would not be familiar with its grammar and vocabulary. We designed
four different study conditions based on two different aspects of in-
structional guidance that can be adapted: the AMOUNT of guidance
(FIXED-AMOUNT, which is the same for all, and ADAPTIVE-AMOUNT,
which decreases based on the learners’ performance), and the TYPE of
instructions, (FIXED-ASSOCIATIONS using predefined 3D AR models
of the vocabulary being learnt and ADAPTIVE-ASSOCIATIONS using
self selected 3D AR models to create associations (“keyword method”)
to the vocabulary being learnt).

The structure of the design of the study with all four (4) study condi-
tions is illustrated in Fig. 3. The study was planned as a 2 x 2 mixed
design study (including both within and between-subjects) envisaged
to take approximately 60 to 75 minutes. A common within-subjects



Fig. 3. Study design and conditions.

design would make this cognitively demanding learning study even
longer (approx two to three hours), which might hinder participants’
performance and negatively affect the results. Other options such as
splitting the study into several sessions would also introduce other bi-
ases (e.g. users might study between sessions, day to day performance
might vary) and practical issues (e.g. getting all users back for the
following session).

The AMOUNT of guidance was thus evaluated as a within-subjects
variable while the TYPE of instructions as a between-subjects variable.
This means that each participant either received the FIXED-AMOUNT or
the ADAPTIVE-AMOUNT of guidance, but all participants experienced
both FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS.

In each condition, participants had to learn Japanese vocabulary and
grammar around a particular topic (Christmas or birthday celebration)
by learning and understanding four (4) distinct phrases and their struc-
ture, and recall them successfully. The phrases related to Christmas
were: family gathering, Christmas tree preparation, turkey dinner and
lights decorations. The phrases related to birthday celebration were:
invite friends, blow balloons, bake a cake and light up candles.

In the FIXED-AMOUNT condition, at each stage of the learning cycle
participants received all the instruction for all the content needed to
be learnt for all four (4) phrases repeatedly through consequent cycles
until all phrases were correctly recalled. In the ADAPTIVE-AMOUNT
condition, at each stage of the learning cycle participants only received
instructions for the phrases that were not recalled correctly in previous
cycles. Thus, once a phrase was recalled correctly in the CE stage,
the guidance for that phrase was not shown in the next cycles. In
the FIXED-ASSOCIATIONS condition, participants were presented with
predefined 3D AR models of objects corresponding to vocabulary of
the phrases being learned. In the ADAPTIVE-ASSOCIATIONS condition,
the participants could self-select 3D AR models to create associations
for the corresponding vocabulary of the phrases being learned.

To avoid the “order effects” (the influence of the order in which
the conditions are presented on participants’ performances [86]), the
order of TYPE of instructions (FIXED and ADAPTIVE) as well as the
order of the topic being learnt (Christmas and birthday celebration) was
balanced among the participants.

3.2 The Arigatō Prototype
The prototype was developed for the Magic Leap one AR head mounted
display (HMD) with controller inputs 1, using the Unity3D game de-
velopment environment 2. The Lumin SDK 0.26 and Magic leap tools
were used for setting up the development environment with Lumin OS
0.98.3. The MRTK Mixed Reality tool kit 3 was used for integrating
the inputs and object manipulation techniques. Speech recognition was
implemented with the IBM Watson speech to text API 4.

1https://www.magicleap.com/
2https://unity.com/
3https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity
4https://cloud.ibm.com/apidocs/speech-to-text

The prototype replicates all four stages of Kolbs’ experiential cycle.
Before entering the cycle, the learner first sees an introduction window
including all four (4) phrases related to the topic being learnt in English
in order to familiarise themselves with the intent and content of the
study. Besides text instructions and explanations, audio instructions
and explanations are also provided throughout the cycle.

Fig. 4. The study setup where the participant tries to finish the learning
tasks visible in AR HMD and researcher follows the process on the laptop
screen.

The system starts the learning cycle in the abstract conceptualisation
(AC) stage. The AC stage provides the description of the vocabu-
lary and the basic grammar rules related to phrases being learnt. The
vocabulary is presented by either (i) FIXED-ASSOCIATIONS (for ex-
ample, for the word lights – “raito” in Japanese – a 3D virtual object
of a real world light set is shown by the word as visible in Fig. 1b),
or (ii) ADAPTIVE-ASSOCIATIONS (for example, for the word candle –
“rosoku” in Japanese – a merged 3D virtual object/a combined metaphor
of a rose inside a sock is shown by the word as visible in Fig. 1f). After
familiarising themselves with the content in the AC stage, the learner
proceeds to the active experimentation (AE) stage.

In the AE stage, the system shows each English phrase with a puzzle
task to generate the corresponding Japanese phrase made of three parts
from six (6) possibilities offered. The puzzle is also presented in two
ways based on the TYPE of instructions: (i) a word puzzle with text
components only (Fig. 1c) or (ii) a word puzzle together with 3D virtual
objects for the learner to create associations (Fig. 1e) from a given set
of objects. If the learner does not know the solution to the puzzle they
can skip that phrase. Feedback for the correct and incorrect phrases is
given as text and highlights as shown in Fig. 1c and Fig. 1e. There, if
the answer is incorrect, it highlights the given answer in red and shows
the correct answer separately.

After completing the puzzles related to all four phrases, the system
nudges the learner to proceed to the concrete experience stage (CE). A
3D avatar is shown asking the learner to recall each phrase in Japanese
(Fig. 1d) by speaking it aloud. To evaluate the spoken answers, the
IBM Watson speech recognition was not accurate enough, so a Wizard
of Oz technique was used for the experiment. If the phrase is correctly
voiced, the corresponding 3D AR model is displayed. The learner
can manipulate the object and place it anywhere in the room as they
would be able to do it in a real-world experiential learning scenario
with physical objects.

If all the phrases are not recalled correctly in the CE stage, the
system automatically moves to the reflective observation (RO) stage.
There, the learner can first go through all the phrases that include
corresponding visual models and audio pronunciation, and then recall
them by selecting the correct Japanese phrase (out of four phrases)
corresponding to the given English phrase (Fig. 1a and g). The system
then returns back to the AC stage.



In this way, the system nudges the learner to proceed further in the
experiential learning cycle and consequently on the learning spiral until
all four (4) phrases are recalled correctly in the CE stage. In the FIXED-
AMOUNT condition, all learners have to repeat all phrases in all stages
in each cycle in the same way. In the ADAPTIVE-AMOUNT condition,
the learner has to go only through and repeat previously incorrectly
recalled phrases (in the CE stage) as the content related to previously
correctly recalled phrases is no longer shown.

One of the main features of the Arigatō prototype is the possibility to
move digital objects around the physical space as well as move various
elements of the interface (e.g. puzzle) in order to complete the tasks
given. It is this manipulation of the digital elements that can be brought
in the visual field and removed that supports experiential learning or
learning by doing.

3.3 Participants
In total, 28 participants were recruited for the study by invitation in a
mailing list and web page as well as by snowball sampling. All were
students and staff members from our university whose first language
is one of the Indo-European languages. None of the participants had
any prior knowledge in the Japanese language (identified via a short
competency test questionnaire). The between-subject experimental
sample comprised 14 participants in the FIXED-AMOUNT condition
with 6 (46%) females and 14 participants in the ADAPTIVE-AMOUNT
condition with 8 (54%) females. All participants were between 18 to 31
years old (x = 25) and randomly assigned to one of the two conditions.
The study was approved by the local Research Ethics Board.

3.4 Procedure
Participants were first given a consent form to sign, together with
the Participant Information Sheet (PIS) outlining the entire research
process, and were given an opportunity to ask any question related to
the study. They were also instructed that they could abandon the study
at any stage. Next, they were requested to fill out the Questionnaire on
Current Motivation (QCM).

Before starting the actual task, they completed a five minute train-
ing session on a demo application to understand the interface and
the interaction with the system. Participants were then instructed to
complete a language learning task on one topic (Christmas or birth-
day celebration) in one condition (either FIXED-ASSOCIATIONS or
ADAPTIVE-ASSOCIATIONS) and the other topic in the other condi-
tion (see within-subject part of the Fig. 3). After finishing each topic,
participants filled out a mental effort questionnaire and a recall question-
naire (to assess their immediate recall) asking participants to remember
phrases they just tried learn. They were given a 5 minutes break in
between the topics.

In addition, at the end of the study, participants answered two stan-
dard questionnaires: a system usability (SUS) [56] and a user expe-
rience questionnaire (UEQ) [85]. They also filled out a short post-
questionnaire with demographic questions, questions about previous
experience with AR technology, and questions about their vision. The
whole experiment lasted from 60 to 75 minutes.

One week after the study, participants were again requested to answer
the same recall questionnaire (as just after finishing the study) to assess
their delayed recall.

3.5 Data Collection
In all conditions, the performance progression data and the time stamp
data were logged by the system as a part of behaviour engagement.
To measure the motivation, the short form of the Questionnaire on
Current Motivation (QCM) with 12 items/questions [31, 78] was used.
QCM measures anxiety, challenge, interest, and probability of success
on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
(i.e., anxiety, challenge, interest, and probability of success), we used
the mean score of the 12 items as an indicator of the overall motivation.

For measuring mental effort we used a standard 8-questions ques-
tionnaire from [43] that focuses on mental load for learning contexts.

To ensure comparability with other studies while maintaining coher-
ence with our tasks, we just changed the wording to reflect the task
at hand and better fit our learning scenario. In addition, we added 5
questions relevant to our study (How much effort did you invest in
(i) memorising the words, (ii) understanding particles, (iii) recalling
the memorised words, (iv) building the sentences with puzzle blocks,
and in (v) speaking the sentences out loud?). All 13 questions were
answered on a nine-point scale. The mean scores of the 8 (MEQ8) and
the 5 (MEQ5) answers as well as the overall mean score (MEQ13) were
used as indicators for the mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To measure the usability of the system, we used the System Usability
Scale (SUS) questionnaire [14] (10 questions answered on a five-point
Likert scale). The SUS scores were calculated with the standard SUS
analysis. For measuring the user experience, we used the short version
of the User Experience Questionnaire (UEQ-S) [84, 85] with eight
items/questions. The first four represent pragmatic qualities (Perspicu-
ity, Efficiency and Dependability) and the last four hedonic qualities
(Stimulation and Novelty) [84]. The results are converted to a range
between -3 to 3.

To assess the reliability of motivation and mental effort question-
naires, we performed Cronbach’s alpha test. Estimated reliability for
each questionnaire (motivation Cronbach’s a = 0.71 and mental effort
a = 0.89) was acceptable for the research purposes [10]. For the recall
questionnaire, the reliability was measured using the Kuder-Richardson
20 test [53] because of the binary nature of the results (correct/incorrect).
The KR = 0.76 > 0.5 value indicates that the reliability of the recall
questionnaire was also acceptable.

3.6 Data Analysis
Each data set collected in the study was first checked for normality
using the Shapiro–Wilk normality test [88].

The analysis was done in R studio, using “WRS2” R package. For
immediate recall, delayed recall, mental effort, task completion time
and learning efficiency, the statistical significance was examined using
a mixed between-within subjects ANOVA on the 20% trimmed means–
“bwtrim” [61]. The main between-subjects effect (group comparisons),
the main within-subjects effect (e.g., due to repeated measurements),
and the interaction effect, were computed using the “sppba”, “sppbb”,
and “sppbi” functions respectively [61]. Statistical significance for
motivation was examined using the Mann-Whitney U test [91].

The resulting p < 0.05 are reported as statistically significant.
All boxplots use a 1.5xIQR (interquartile range) rule and Tukey’s
fences [92] for whiskers and identified outliers. Asterisk notation is
used in figures to visualise statistical significance (ns: p > 0.05, *:
p < 0.05, **: p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [21], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [73] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further into
the effects of guidance on various measures we have checked whether
the motivation has had an effect on the study. The results show that the



motivation had no statistically significant effect on the rest of the results
presented in this section (Mann-Witney U test, U(NFIXED-AMOUNT =
14,NADAPTIVE-AMOUNT = 14) = 90.20, p > 0.05). The following
sections present the effect of adaptive guidance (amount and type) on
learning performance (immediate and delayed recall), mental effort,
task completion time, and learning efficiency (immediate and delayed).
The last section presents correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall
is shown in Fig. 5 (top left). The data summarised in Fig. 5 (bottom
left) is analysed using a mixed between-within subjects ANOVA on the
20% trimmed means [61].

The results in Fig. 5 (bottom left) show that the effects of the
AMOUNT and TYPE of guidance on immediate recall are statistically
significant. The effect of the AMOUNT of guidance alone (df = 14.19,
p < 0.001) is significant. Fig. 5 (top left) indicates that the immediate
recall in the FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is
significantly better compared to the ADAPTIVE-AMOUNT condition
(x = 66.7%, SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (df = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 5 (top left) indicates
that the immediate recall in the ADAPTIVE-ASSOCIATIONS condition
(x= 86.61%, SD= 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (df = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 5 (top centre). The data summarised in Fig. 5
(bottom centre) is analysed using a mixed between-within subjects
ANOVA on the 20% trimmed means [61].

The results show that the effects of the AMOUNT and TYPE of
guidance on delayed recall are statistically significant. The effect
of the AMOUNT of guidance alone (df = 15.13, p < 0.01) is also
significant. Fig. 5 (top centre) indicates that the delayed recall in
the FIXED-AMOUNT condition (x = 70.54%, SD = 23.20) is signifi-
cantly better compared to ADAPTIVE-AMOUNT condition (x = 50.00%,
SD = 23.15).

The effect of the TYPE on the delayed recall (df = 17.68, p < 0.001)
is also significant. Fig. 5 (top centre) indicates that the delayed recall
in the ADAPTIVE-ASSOCIATION condition (x = 73.21%, SD = 18.12)
is significantly better compared to FIXED-ASSOCIATION condition
(x = 47.32%, SD = 20.24). The interaction effect of the AMOUNT and
TYPE on the delayed recall (df = 17.68, p > 0.05) is not significant.

4.2 The Effect of Guidance on Mental Effort
The effect of the adaptive guidance (AMOUNT and TYPE) on mental
effort is shown in Fig. 5 (top right). The data summarised in Fig. 5 (bot-
tom right) is analysed using a mixed between-within subjects ANOVA
on the 20% trimmed means [61].

The results show that the effects of the AMOUNT and TYPE of
guidance on mental effort are statistically significant. The effect
of the AMOUNT of guidance alone (MEQ13 df = 17.47, p < 0.01;
MEQ08 df = 16.09, p < 0.01; MEQ05 df = 14.73, p < 0.01) is sig-
nificant. Fig. 5 (top right) indicates that the overall mental effort in
the ADAPTIVE-AMOUNT condition (x = 3.66%, SD = 1.06) is signif-
icantly lower compared to the FIXED-AMOUNT condition (x = 4.61,
SD = 0.98).

The effect of the TYPE alone is also significant (MEQ13 df = 17.78,
p < 0.001; MEQ08 df = 12.58, p < 0.01; MEQ05 df = 17.73, p <
0.01). Fig. 5 (top right) indicates that the overall mental effort in

the ADAPTIVE-ASSOCIATIONS condition (x = 3.39, SD = 0.63) is
significantly lower compared to the FIXED-ASSOCIATIONS condition
(x = 4.88, SD = 0.73). The interaction effect of the AMOUNT and TYPE
on mental effort (MEQ13 df = 17.78, p > 0.05; MEQ08 df = 12.58,
p > 0.05; MEQ05 df = 17.73, p > 0.05) is not statistically significant.

4.3 The Effect of Guidance on Task Completion Time

The results for the task completion time presented in Fig. 6 (bottom left)
are analysed using a mixed between-within subjects ANOVA on the
20% trimmed means. The results indicate that the AMOUNT of guidance
has no statistically significant effect on the task completion time (df =
15.29, p > 0.05). It can thus not be concluded that participants in the
ADAPTIVE-AMOUNT condition completed the task faster compared to
participants in the FIXED-AMOUNT condition.

In contrast, the effect of the TYPE on the task completion time is sig-
nificant (df = 17.88, p < 0.001) as can be also observed in Fig. 6 (top
left). This also shows that the task completion time in the ADAPTIVE-
ASSOCIATIONS condition (x = 15.78 min, SD = 3.17) is significantly
lower compared to the FIXED-ASSOCIATION condition (x = 27.13 min,
SD= 6.69). The interaction effect of the AMOUNT and TYPE on the task
completion time is not statistically significant (df = 17.88, p > 0.05).

4.4 The Effect of Guidance on Learning Efficiency

The learning efficiency for each study condition was determined using
Equation 1 [18, 34, 71].

E =
zP � zMp

2
(1)

E = Learning efficiency
zP = Average performance in Z-scores
zM = Average task difficulty in Z-scores

We measured the performance of each study condition based on
the recall scores participants obtained after completing the task for
that study condition. We estimated the difficulty of the task based
on the mental effort questionnaire for that study condition. We then
calculated the learning efficiency for each of the four conditions: (a)
FIXED-AMOUNT of guidance with FIXED-ASSOCIATIONS, (b) FIXED-
AMOUNT of guidance with ADAPTIVE-ASSOCIATIONS, (c) ADAPTIVE-
AMOUNT of guidance with FIXED-ASSOCIATIONS, and (d) ADAPTIVE-
AMOUNT of guidance with ADAPTIVE-ASSOCIATIONS using Formula 1.
This was done for both immediate recall (immediately after participants
had completed the task) and delayed recall (a week after participants
had completed the task).

4.4.1 Immediate Efficiency

The immediate recall learning efficiency results across the study con-
ditions are depicted in Fig. 7 (left). It shows that, for both FIXED-
AMOUNT and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATIONS
condition is more efficient (i.e., has a higher efficiency value) compared
to the FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance, on immediate
recall learning efficiency are shown in Fig. 6 (top centre). The data is
analysed using a mixed between-within subjects ANOVA on the 20%
trimmed means (Fig. 6 (bottom centre)). There is no significant effect
of the AMOUNT of guidance conditions on participants’ immediate
recall learning efficiency (df = 16.80, p = 0.460).

By contrast, the effect of the TYPE of instructions on immedi-
ate recall learning efficiency is statistically significant (df = 16.80,
p < 0.001). Fig. 6 (top centre) indicates that the immediate recall
learning efficiency in the ADAPTIVE-ASSOCIATIONS condition is sig-
nificantly higher compared to the FIXED-ASSOCIATIONS condition.
The interaction effect of the AMOUNT and TYPE on the immediate
recall learning efficiency is not statistically significant (df = 16.80,
p > 0.05).
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condition (x = 70.54%, SD = 23.20) is significantly better compared
to ADAPTIVE-AMOUNT condition (x = 50.00%, SD = 23.15).

The effect of the TYPE on the delayed recall (d f = 17.68, p <
0.001) is also significant. Fig. 6 indicates that the delayed recall in
the ADAPTIVE-ASSOCIATION condition (x = 73.21%, SD = 18.12)
is significantly better compared to FIXED-ASSOCIATION condition
(x = 47.32%, SD = 20.24). The interaction effect of the AMOUNT and
TYPE on the delayed recall (d f = 17.68, p > 0.05) is not significant.

4.2 The Effect of Guidance on Mental Effort
The effect of the adaptive guidance (AMOUNT and TYPE) on mental
effort is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on mental effort are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 17.47, p� value < 0.01) is signifi-
cant. Fig. 7 indicates that the mental effort in the ADAPTIVE-AMOUNT
condition (x = 3.66%, SD = 1.06) is significantly lower compared to
the FIXED-AMOUNT condition (x = 4.61, SD = 0.98).

The effect of the TYPE alone is also significant (d f = 17.78,
p < 0.001). Fig. 7 indicates that the mental effort in the ADAPTIVE-
ASSOCIATIONS condition (x = 3.39, SD = 0.63) is significantly lower
compared to the FIXED-ASSOCIATIONS condition (x = 4.88, SD =
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0.73). The interaction effect of the AMOUNT and TYPE on mental effort
(d f = 17.78, p > 0.05) is not statistically significant.

4.3 The Effect of Guidance on Task Completion Time
The results for the task completion time presented in Table 2 are
analysed using a mixed between-within subjects ANOVA on the 20%
trimmed means. The results indicate that the AMOUNT of guidance
has no statistically significant effect on the task completion time
(d f = 15.29, p > 0.05). It can thus not be concluded that partici-
pants in the ADAPTIVE-AMOUNT condition completed the task faster
compared to participants in the FIXED-AMOUNT condition.

In contrast, the effect of the TYPE on the task completion time
is significant (d f = 17.88, p < 0.001) as can be also observed in
Fig. 8. This also shows that the task completion time in the ADAPTIVE-
ASSOCIATIONS condition (x = 15.78 min, SD = 3.17) is significantly
lower compared to the FIXED-ASSOCIATION condition (x = 27.13 min,
SD= 6.69). The interaction effect of the AMOUNT and TYPE on the task
completion time is not statistically significant (d f = 17.88, p > 0.05).
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To measure the motivation, the short form of the Questionnaire on
Current Motivation (QCM) with 12 items/questions [29, 73] was used.
QCM measures anxiety, challenge, interest, and probability of success
on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
(i.e., anxiety, challenge, interest, and probability of success), we used
the mean score of the 12 items as an indicator of the overall motivation.

The mental effort questionnaire consisted of 13 questions answered
on a nine-point Likert scale. We used an 8-question questionnaire
as used in [13, 33, 89]. Some wording was adapted to our study. In
addition, we added 5 questions relevant to our study. The mean score
of 13 answers was used as an indicator for the overall mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To assess the reliability of motivation and mental effort question-
naires, we performed the Cronbach’s alpha test. Estimated reliability
for each questionnaire (motivation Cronbach’s a = 0.71 and mental
effort a = 0.89) was acceptable for the research purposes [9]. For
the recall questionnaire, the reliability was measured using the Kuder-
Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
bility of the recall questionnaire was also acceptable.

3.6 Data Analysis
Each data sets collected in the study was first checked for normality
using the Shapiro–Wilk normality test [81].

The analysis was done in R studio, using “WRS2” R package that im-
plements various robust statistical methods [57]. For immediate recall,
delayed recall, mental effort, task completion time and learning effi-
ciency, the statistical significance was examined using a mixed between-
within subjects ANOVA on the 20% trimmed means–“bwtrim” [57].
The main between-subjects effect (group comparisons), the main within-
subjects effect (e.g., due to repeated measurements), and the interac-
tion effect, were computed using the “sppba”, “sppbb”, and “sppbi”
functions respectively [57]. For motivation and system usability, the
statistical significance was examined using a robust one-way ANOVA.
The resulting p < 0.05 are reported as statistically significant. All box-
plots use a 1.5xIQR (interquartile range) rule and Tukey’s fences [84]
for whiskers and identified outliers. Asterisk notation is used in fig-
ures to visualise statistical significance (ns: p > 0.05, *: p < 0.05, **:
p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [20], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [68] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further
into the effects of guidance on various measures we have checked
whether the motivation has had an effect on the study. The results show
that the motivation had no statistically significant effect on the rest
of the results presented in this section (one-way ANOVA d f = 23.5
and the exact value of p = 0.452). The following sections present the
effect of adaptive guidance (amount and type) on learning performance
(immediate and delayed recall), mental effort, task completion time, and

Table 2. Mixed between-within subjects ANOVA on the 20% trimmed
means examining the between-subjects (AMOUNT), the within-subjects
(TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent
variables–i.e., immediate recall, delayed recall, mental effort, task com-
pletion time and learning efficiency (immediate and delayed).

Immediate recall
d f1 d f2 F p

Amount 1 14.19 26.58 0.000 ���
Type 1 17.88 91.09 0.000 ���

Amount : Type 1 17.88 0.21 0.655
Delayed recall

d f1 d f2 F p
Amount 1 15.13 12.60 0.002 ��

Type 1 17.68 92.65 0.000 ���
Amount : Type 1 17.68 0.15 0.706

Mental Effort
d f1 d f2 F p

Amount 1 17.47 13.32 0.002 ��
Type 1 17.78 171.13 0.000 ���

Amount : Type 1 17.78 2.42 0.137
Task Completion Time

d f1 d f2 F p
Amount 1 15.29 2.62 0.126

Type 1 17.88 189.77 0.000 ���
Amount : Type 1 17.88 0.94 0.346

Learning Efficiency: immediate recall
d f1 d f2 F p

Amount 1 16.69 0.66 0.427
Type 1 16.80 183.92 0.000 ���

Amount : Type 1 16.80 1.53 0.233
Learning Efficiency: delayed recall

d f1 d f2 F p
Amount 1 17.74 0.10 0.756

Type 1 16.72 151.92 0.000 ���
Amount : Type 1 16.72 0.57 0.460

learning efficiency (immediate and delayed). The last section presents
correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 5.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 5 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 5 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 6.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 6 indicates that the delayed recall in the FIXED-AMOUNT
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QCM measures anxiety, challenge, interest, and probability of success
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addition, we added 5 questions relevant to our study. The mean score
of 13 answers was used as an indicator for the overall mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To assess the reliability of motivation and mental effort question-
naires, we performed the Cronbach’s alpha test. Estimated reliability
for each questionnaire (motivation Cronbach’s a = 0.71 and mental
effort a = 0.89) was acceptable for the research purposes [9]. For
the recall questionnaire, the reliability was measured using the Kuder-
Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
bility of the recall questionnaire was also acceptable.

3.6 Data Analysis
Each data sets collected in the study was first checked for normality
using the Shapiro–Wilk normality test [81].

The analysis was done in R studio, using “WRS2” R package that im-
plements various robust statistical methods [57]. For immediate recall,
delayed recall, mental effort, task completion time and learning effi-
ciency, the statistical significance was examined using a mixed between-
within subjects ANOVA on the 20% trimmed means–“bwtrim” [57].
The main between-subjects effect (group comparisons), the main within-
subjects effect (e.g., due to repeated measurements), and the interac-
tion effect, were computed using the “sppba”, “sppbb”, and “sppbi”
functions respectively [57]. For motivation and system usability, the
statistical significance was examined using a robust one-way ANOVA.
The resulting p < 0.05 are reported as statistically significant. All box-
plots use a 1.5xIQR (interquartile range) rule and Tukey’s fences [84]
for whiskers and identified outliers. Asterisk notation is used in fig-
ures to visualise statistical significance (ns: p > 0.05, *: p < 0.05, **:
p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [20], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [68] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further
into the effects of guidance on various measures we have checked
whether the motivation has had an effect on the study. The results show
that the motivation had no statistically significant effect on the rest
of the results presented in this section (one-way ANOVA d f = 23.5
and the exact value of p = 0.452). The following sections present the
effect of adaptive guidance (amount and type) on learning performance
(immediate and delayed recall), mental effort, task completion time, and

Table 2. Mixed between-within subjects ANOVA on the 20% trimmed
means examining the between-subjects (AMOUNT), the within-subjects
(TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent
variables–i.e., immediate recall, delayed recall, mental effort, task com-
pletion time and learning efficiency (immediate and delayed).

Immediate recall
d f1 d f2 F p

Amount 1 14.19 26.58 0.000 ���
Type 1 17.88 91.09 0.000 ���

Amount : Type 1 17.88 0.21 0.655
Delayed recall

d f1 d f2 F p
Amount 1 15.13 12.60 0.002 ��

Type 1 17.68 92.65 0.000 ���
Amount : Type 1 17.68 0.15 0.706

Mental Effort
d f1 d f2 F p

Amount 1 17.47 13.32 0.002 ��
Type 1 17.78 171.13 0.000 ���

Amount : Type 1 17.78 2.42 0.137
Task Completion Time

d f1 d f2 F p
Amount 1 15.29 2.62 0.126

Type 1 17.88 189.77 0.000 ���
Amount : Type 1 17.88 0.94 0.346

Learning Efficiency: immediate recall
d f1 d f2 F p

Amount 1 16.69 0.66 0.427
Type 1 16.80 183.92 0.000 ���

Amount : Type 1 16.80 1.53 0.233
Learning Efficiency: delayed recall

d f1 d f2 F p
Amount 1 17.74 0.10 0.756

Type 1 16.72 151.92 0.000 ���
Amount : Type 1 16.72 0.57 0.460

learning efficiency (immediate and delayed). The last section presents
correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 5.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 5 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 5 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 6.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 6 indicates that the delayed recall in the FIXED-AMOUNT
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To measure the motivation, the short form of the Questionnaire on
Current Motivation (QCM) with 12 items/questions [29, 73] was used.
QCM measures anxiety, challenge, interest, and probability of success
on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
(i.e., anxiety, challenge, interest, and probability of success), we used
the mean score of the 12 items as an indicator of the overall motivation.

The mental effort questionnaire consisted of 13 questions answered
on a nine-point Likert scale. We used an 8-question questionnaire
as used in [13, 33, 89]. Some wording was adapted to our study. In
addition, we added 5 questions relevant to our study. The mean score
of 13 answers was used as an indicator for the overall mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To assess the reliability of motivation and mental effort question-
naires, we performed the Cronbach’s alpha test. Estimated reliability
for each questionnaire (motivation Cronbach’s a = 0.71 and mental
effort a = 0.89) was acceptable for the research purposes [9]. For
the recall questionnaire, the reliability was measured using the Kuder-
Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
bility of the recall questionnaire was also acceptable.

3.6 Data Analysis
Each data sets collected in the study was first checked for normality
using the Shapiro–Wilk normality test [81].

The analysis was done in R studio, using “WRS2” R package that im-
plements various robust statistical methods [57]. For immediate recall,
delayed recall, mental effort, task completion time and learning effi-
ciency, the statistical significance was examined using a mixed between-
within subjects ANOVA on the 20% trimmed means–“bwtrim” [57].
The main between-subjects effect (group comparisons), the main within-
subjects effect (e.g., due to repeated measurements), and the interac-
tion effect, were computed using the “sppba”, “sppbb”, and “sppbi”
functions respectively [57]. For motivation and system usability, the
statistical significance was examined using a robust one-way ANOVA.
The resulting p < 0.05 are reported as statistically significant. All box-
plots use a 1.5xIQR (interquartile range) rule and Tukey’s fences [84]
for whiskers and identified outliers. Asterisk notation is used in fig-
ures to visualise statistical significance (ns: p > 0.05, *: p < 0.05, **:
p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [20], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [68] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further
into the effects of guidance on various measures we have checked
whether the motivation has had an effect on the study. The results show
that the motivation had no statistically significant effect on the rest
of the results presented in this section (one-way ANOVA d f = 23.5
and the exact value of p = 0.452). The following sections present the
effect of adaptive guidance (amount and type) on learning performance
(immediate and delayed recall), mental effort, task completion time, and

Table 2. Mixed between-within subjects ANOVA on the 20% trimmed
means examining the between-subjects (AMOUNT), the within-subjects
(TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent
variables–i.e., immediate recall, delayed recall, mental effort, task com-
pletion time and learning efficiency (immediate and delayed).

Immediate recall
d f1 d f2 F p

Amount 1 14.19 26.58 0.000 ���
Type 1 17.88 91.09 0.000 ���

Amount : Type 1 17.88 0.21 0.655
Delayed recall

d f1 d f2 F p
Amount 1 15.13 12.60 0.002 ��

Type 1 17.68 92.65 0.000 ���
Amount : Type 1 17.68 0.15 0.706

Mental Effort
d f1 d f2 F p

Amount 1 17.47 13.32 0.002 ��
Type 1 17.78 171.13 0.000 ���

Amount : Type 1 17.78 2.42 0.137
Task Completion Time

d f1 d f2 F p
Amount 1 15.29 2.62 0.126

Type 1 17.88 189.77 0.000 ���
Amount : Type 1 17.88 0.94 0.346

Learning Efficiency: immediate recall
d f1 d f2 F p

Amount 1 16.69 0.66 0.427
Type 1 16.80 183.92 0.000 ���

Amount : Type 1 16.80 1.53 0.233
Learning Efficiency: delayed recall

d f1 d f2 F p
Amount 1 17.74 0.10 0.756

Type 1 16.72 151.92 0.000 ���
Amount : Type 1 16.72 0.57 0.460

learning efficiency (immediate and delayed). The last section presents
correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 5.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 5 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 5 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 6.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 6 indicates that the delayed recall in the FIXED-AMOUNT
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Fig. 5. Left: Immediate recall in percentage of correctly remembered phrases. Centre: Delayed recall in percentage of correctly remembered phrases.
Right: Overall mental effort (MEQ13) invested during the task. Below are results form mixed between-within subjects ANOVA on the 20% trimmed
means examining the between-subjects (AMOUNT), the within-subjects (TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent variables.

Fig. 5. Immediate recall in percentage of correctly remembered phrases.

Fig. 6. Delayed recall in percentage of correctly remembered phrases.

condition (x = 70.54%, SD = 23.20) is significantly better compared
to ADAPTIVE-AMOUNT condition (x = 50.00%, SD = 23.15).

The effect of the TYPE on the delayed recall (d f = 17.68, p <
0.001) is also significant. Fig. 6 indicates that the delayed recall in
the ADAPTIVE-ASSOCIATION condition (x = 73.21%, SD = 18.12)
is significantly better compared to FIXED-ASSOCIATION condition
(x = 47.32%, SD = 20.24). The interaction effect of the AMOUNT and
TYPE on the delayed recall (d f = 17.68, p > 0.05) is not significant.

4.2 The Effect of Guidance on Mental Effort
The effect of the adaptive guidance (AMOUNT and TYPE) on mental
effort is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on mental effort are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 17.47, p� value < 0.01) is signifi-
cant. Fig. 7 indicates that the mental effort in the ADAPTIVE-AMOUNT
condition (x = 3.66%, SD = 1.06) is significantly lower compared to
the FIXED-AMOUNT condition (x = 4.61, SD = 0.98).

The effect of the TYPE alone is also significant (d f = 17.78,
p < 0.001). Fig. 7 indicates that the mental effort in the ADAPTIVE-
ASSOCIATIONS condition (x = 3.39, SD = 0.63) is significantly lower
compared to the FIXED-ASSOCIATIONS condition (x = 4.88, SD =

Fig. 7. Mental effort invested during the task.

0.73). The interaction effect of the AMOUNT and TYPE on mental effort
(d f = 17.78, p > 0.05) is not statistically significant.

4.3 The Effect of Guidance on Task Completion Time
The results for the task completion time presented in Table 2 are
analysed using a mixed between-within subjects ANOVA on the 20%
trimmed means. The results indicate that the AMOUNT of guidance
has no statistically significant effect on the task completion time
(d f = 15.29, p > 0.05). It can thus not be concluded that partici-
pants in the ADAPTIVE-AMOUNT condition completed the task faster
compared to participants in the FIXED-AMOUNT condition.

In contrast, the effect of the TYPE on the task completion time
is significant (d f = 17.88, p < 0.001) as can be also observed in
Fig. 8. This also shows that the task completion time in the ADAPTIVE-
ASSOCIATIONS condition (x = 15.78 min, SD = 3.17) is significantly
lower compared to the FIXED-ASSOCIATION condition (x = 27.13 min,
SD= 6.69). The interaction effect of the AMOUNT and TYPE on the task
completion time is not statistically significant (d f = 17.88, p > 0.05).

Fig. � . Task completion time in minutes.

4.4 The Effect of Guidance on Learning Efficiency
The learning efficiency for each study condition was determined using
Equation 1 [17, 32, 66].
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4.4.1 Immediate Efficiency
The immediate recall learning efficiency results across the study con-
ditions are depicted in Fig. 8. It shows that, for both FIXED-AMOUNT
and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATIONS condition
is more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance, on immediate
recall learning efficiency are shown in Fig. 7. There is no significant ef-
fect of the AMOUNT of guidance conditions on participants’ immediate
recall learning efficiency, d f = 16.80, p = 0.460.

Fig. 7. Average learning efficiency for immediate performance.

Fig. � . Immediate recall learning efficiency.

By contrast, the effect of the TYPE of instructions on immedi-
ate recall learning efficiency is statistically significant (d f = 16.80,
p < 0.001). Fig. 7 indicates that the immediate recall learning ef-
ficiency in the ADAPTIVE-ASSOCIATIONS condition is significantly
higher compared to the FIXED-ASSOCIATIONS condition. The interac-
tion effect of the AMOUNT and TYPE on the immediate recall learning
efficiency is not statistically significant (d f = 16.80, p > 0.05).

4.4.2 Delayed Efficiency
The delayed recall learning efficiency results across the study condi-
tions are shown in Fig. 10. The figure indicates that, for both FIXED-
AMOUNT and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATION is

more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance on delayed recall
learning efficiency are illustrated in Fig. 7.

There is no significant effect of the AMOUNT of guidance condition
on the delayed recall learning efficiency (d f = 16.72, p = 0.460).

Fig. � . Average learning efficiency for delayed performance.

Fig. 10. Delayed recall learning efficiency.

By contrast, the effect of the TYPE of instructions on the de-
layed recall learning efficiency is statistically significant (d f = 16.72,
p < 0.001). The results also show that the delayed recall learning effi-
ciency is significantly higher for ADAPTIVE-ASSOCIATIONS compared
to FIXED-ASSOCIATIONS condition. No statistically significant interac-
tion effect was found between conditions (d f = 16.72, p > 0.05).

4.5 Correlations between Measures
A Pearson multiple correlation test was applied to find out whether or
not there were any correlations between the measures (recall, efficiency,
mental effort, task completion time). The results are presented in
Table 3.

The results for the FIXED-AMOUNT condition indicate that in both
FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS conditions, the
mental effort is negatively related to both immediate and delayed recall
as well as to both immediate and delayed efficiency. The task comple-
tion time measure does not show any relationship to other variables.
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E =
zP � zMp

2
(1)

E = Learning efficiency
zP = Average performance in Z-scores
zM = Average task difficulty in Z-scores

We measured the performance of each study condition based on
the recall scores participants obtained after completing the task for
that study condition. We estimated the difficulty of the task based
on the mental effort questionnaire for that study condition. We then
calculated the learning efficiency for each of the four conditions: (a)
FIXED-AMOUNT of guidance with FIXED-ASSOCIATIONS, (b) FIXED-
AMOUNT of guidance with ADAPTIVE-ASSOCIATIONS, (c) ADAPTIVE-
AMOUNT of guidance with FIXED-ASSOCIATIONS, and (d) ADAPTIVE-
AMOUNT of guidance with ADAPTIVE-ASSOCIATIONS using Formula 1.
This was done for both immediate recall (immediately after participants
had completed the task) and delayed recall (a week after participants
had completed the task).

4.4.1 Immediate Efficiency
The immediate recall learning efficiency results across the study condi-
tions are depicted in Fig. 10. It shows that, for both FIXED-AMOUNT
and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATIONS condition
is more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance, on immediate
recall learning efficiency are shown in Fig. 9. There is no significant ef-
fect of the AMOUNT of guidance conditions on participants’ immediate
recall learning efficiency, d f = 16.80, p = 0.460.

Fig. � . Average learning efficiency for immediate performance.

By contrast, the effect of the TYPE of instructions on immedi-
ate recall learning efficiency is statistically significant (d f = 16.80,
p < 0.001). Fig. 9 indicates that the immediate recall learning ef-
ficiency in the ADAPTIVE-ASSOCIATIONS condition is significantly
higher compared to the FIXED-ASSOCIATIONS condition. The interac-
tion effect of the AMOUNT and TYPE on the immediate recall learning
efficiency is not statistically significant (d f = 16.80, p > 0.05).

4.4.2 Delayed Efficiency
The delayed recall learning efficiency results across the study condi-
tions are shown in Fig. 12. The figure indicates that, for both FIXED-
AMOUNT and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATION is
more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

Fig. 10. Immediate recall learning efficiency.

The effects of the AMOUNT and TYPE of guidance on delayed recall
learning efficiency are illustrated in Fig. 9.

There is no significant effect of the AMOUNT of guidance condition
on the delayed recall learning efficiency (d f = 16.72, p = 0.460).

Fig. 11. Average learning efficiency for delayed performance.

By contrast, the effect of the TYPE of instructions on the de-
layed recall learning efficiency is statistically significant (d f = 16.72,
p < 0.001). The results also show that the delayed recall learning effi-
ciency is significantly higher for ADAPTIVE-ASSOCIATIONS compared
to FIXED-ASSOCIATIONS condition. No statistically significant interac-
tion effect was found between conditions (d f = 16.72, p > 0.05).

4.5 Correlations between Measures

A Pearson multiple correlation test was applied to find out whether or
not there were any correlations between the measures (recall, efficiency,
mental effort, task completion time). The results are presented in
Table 3.

The results for the FIXED-AMOUNT condition indicate that in both
FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS conditions, the
mental effort is negatively related to both immediate and delayed recall
as well as to both immediate and delayed efficiency. The task comple-
tion time measure does not show any relationship to other variables.
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To measure the motivation, the short form of the Questionnaire on
Current Motivation (QCM) with 12 items/questions [29, 73] was used.
QCM measures anxiety, challenge, interest, and probability of success
on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
(i.e., anxiety, challenge, interest, and probability of success), we used
the mean score of the 12 items as an indicator of the overall motivation.

The mental effort questionnaire consisted of 13 questions answered
on a nine-point Likert scale. We used an 8-question questionnaire
as used in [13, 33, 89]. Some wording was adapted to our study. In
addition, we added 5 questions relevant to our study. The mean score
of 13 answers was used as an indicator for the overall mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To assess the reliability of motivation and mental effort question-
naires, we performed the Cronbach’s alpha test. Estimated reliability
for each questionnaire (motivation Cronbach’s a = 0.71 and mental
effort a = 0.89) was acceptable for the research purposes [9]. For
the recall questionnaire, the reliability was measured using the Kuder-
Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
bility of the recall questionnaire was also acceptable.

3.6 Data Analysis
Each data sets collected in the study was first checked for normality
using the Shapiro–Wilk normality test [81].

The analysis was done in R studio, using “WRS2” R package that im-
plements various robust statistical methods [57]. For immediate recall,
delayed recall, mental effort, task completion time and learning effi-
ciency, the statistical significance was examined using a mixed between-
within subjects ANOVA on the 20% trimmed means–“bwtrim” [57].
The main between-subjects effect (group comparisons), the main within-
subjects effect (e.g., due to repeated measurements), and the interac-
tion effect, were computed using the “sppba”, “sppbb”, and “sppbi”
functions respectively [57]. For motivation and system usability, the
statistical significance was examined using a robust one-way ANOVA.
The resulting p < 0.05 are reported as statistically significant. All box-
plots use a 1.5xIQR (interquartile range) rule and Tukey’s fences [84]
for whiskers and identified outliers. Asterisk notation is used in fig-
ures to visualise statistical significance (ns: p > 0.05, *: p < 0.05, **:
p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [20], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [68] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further
into the effects of guidance on various measures we have checked
whether the motivation has had an effect on the study. The results show
that the motivation had no statistically significant effect on the rest
of the results presented in this section (one-way ANOVA d f = 23.5
and the exact value of p = 0.452). The following sections present the
effect of adaptive guidance (amount and type) on learning performance
(immediate and delayed recall), mental effort, task completion time, and

Table 2. Mixed between-within subjects ANOVA on the 20% trimmed
means examining the between-subjects (AMOUNT), the within-subjects
(TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent
variables–i.e., immediate recall, delayed recall, mental effort, task com-
pletion time and learning efficiency (immediate and delayed).

Immediate recall
d f1 d f2 F p

Amount 1 14.19 26.58 0.000 ���
Type 1 17.88 91.09 0.000 ���

Amount : Type 1 17.88 0.21 0.655
Delayed recall

d f1 d f2 F p
Amount 1 15.13 12.60 0.002 ��

Type 1 17.68 92.65 0.000 ���
Amount : Type 1 17.68 0.15 0.706

Mental Effort
d f1 d f2 F p

Amount 1 17.47 13.32 0.002 ��
Type 1 17.78 171.13 0.000 ���

Amount : Type 1 17.78 2.42 0.137
Task Completion Time

d f1 d f2 F p
Amount 1 15.29 2.62 0.126

Type 1 17.88 189.77 0.000 ���
Amount : Type 1 17.88 0.94 0.346

Learning Efficiency: immediate recall
d f1 d f2 F p

Amount 1 16.69 0.66 0.427
Type 1 16.80 183.92 0.000 ���

Amount : Type 1 16.80 1.53 0.233
Learning Efficiency: delayed recall

d f1 d f2 F p
Amount 1 17.74 0.10 0.756

Type 1 16.72 151.92 0.000 ���
Amount : Type 1 16.72 0.57 0.460

learning efficiency (immediate and delayed). The last section presents
correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 6.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 6 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 6 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 7 indicates that the delayed recall in the FIXED-AMOUNT
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To measure the motivation, the short form of the Questionnaire on
Current Motivation (QCM) with 12 items/questions [29, 73] was used.
QCM measures anxiety, challenge, interest, and probability of success
on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
(i.e., anxiety, challenge, interest, and probability of success), we used
the mean score of the 12 items as an indicator of the overall motivation.

The mental effort questionnaire consisted of 13 questions answered
on a nine-point Likert scale. We used an 8-question questionnaire
as used in [13, 33, 89]. Some wording was adapted to our study. In
addition, we added 5 questions relevant to our study. The mean score
of 13 answers was used as an indicator for the overall mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To assess the reliability of motivation and mental effort question-
naires, we performed the Cronbach’s alpha test. Estimated reliability
for each questionnaire (motivation Cronbach’s a = 0.71 and mental
effort a = 0.89) was acceptable for the research purposes [9]. For
the recall questionnaire, the reliability was measured using the Kuder-
Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
bility of the recall questionnaire was also acceptable.

3.6 Data Analysis
Each data sets collected in the study was first checked for normality
using the Shapiro–Wilk normality test [81].

The analysis was done in R studio, using “WRS2” R package that im-
plements various robust statistical methods [57]. For immediate recall,
delayed recall, mental effort, task completion time and learning effi-
ciency, the statistical significance was examined using a mixed between-
within subjects ANOVA on the 20% trimmed means–“bwtrim” [57].
The main between-subjects effect (group comparisons), the main within-
subjects effect (e.g., due to repeated measurements), and the interac-
tion effect, were computed using the “sppba”, “sppbb”, and “sppbi”
functions respectively [57]. For motivation and system usability, the
statistical significance was examined using a robust one-way ANOVA.
The resulting p < 0.05 are reported as statistically significant. All box-
plots use a 1.5xIQR (interquartile range) rule and Tukey’s fences [84]
for whiskers and identified outliers. Asterisk notation is used in fig-
ures to visualise statistical significance (ns: p > 0.05, *: p < 0.05, **:
p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [20], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [68] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further
into the effects of guidance on various measures we have checked
whether the motivation has had an effect on the study. The results show
that the motivation had no statistically significant effect on the rest
of the results presented in this section (one-way ANOVA d f = 23.5
and the exact value of p = 0.452). The following sections present the
effect of adaptive guidance (amount and type) on learning performance
(immediate and delayed recall), mental effort, task completion time, and

Table 2. Mixed between-within subjects ANOVA on the 20% trimmed
means examining the between-subjects (AMOUNT), the within-subjects
(TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent
variables–i.e., immediate recall, delayed recall, mental effort, task com-
pletion time and learning efficiency (immediate and delayed).

Immediate recall
d f1 d f2 F p

Amount 1 14.19 26.58 0.000 ���
Type 1 17.88 91.09 0.000 ���

Amount : Type 1 17.88 0.21 0.655
Delayed recall

d f1 d f2 F p
Amount 1 15.13 12.60 0.002 ��

Type 1 17.68 92.65 0.000 ���
Amount : Type 1 17.68 0.15 0.706

Mental Effort
d f1 d f2 F p

Amount 1 17.47 13.32 0.002 ��
Type 1 17.78 171.13 0.000 ���

Amount : Type 1 17.78 2.42 0.137
Task Completion Time

d f1 d f2 F p
Amount 1 15.29 2.62 0.126

Type 1 17.88 189.77 0.000 ���
Amount : Type 1 17.88 0.94 0.346

Learning Efficiency: immediate recall
d f1 d f2 F p

Amount 1 16.69 0.66 0.427
Type 1 16.80 183.92 0.000 ���

Amount : Type 1 16.80 1.53 0.233
Learning Efficiency: delayed recall

d f1 d f2 F p
Amount 1 17.74 0.10 0.756

Type 1 16.72 151.92 0.000 ���
Amount : Type 1 16.72 0.57 0.460

learning efficiency (immediate and delayed). The last section presents
correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 6.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 6 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 6 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 7 indicates that the delayed recall in the FIXED-AMOUNT
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To measure the motivation, the short form of the Questionnaire on
Current Motivation (QCM) with 12 items/questions [29, 73] was used.
QCM measures anxiety, challenge, interest, and probability of success
on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
(i.e., anxiety, challenge, interest, and probability of success), we used
the mean score of the 12 items as an indicator of the overall motivation.

The mental effort questionnaire consisted of 13 questions answered
on a nine-point Likert scale. We used an 8-question questionnaire
as used in [13, 33, 89]. Some wording was adapted to our study. In
addition, we added 5 questions relevant to our study. The mean score
of 13 answers was used as an indicator for the overall mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To assess the reliability of motivation and mental effort question-
naires, we performed the Cronbach’s alpha test. Estimated reliability
for each questionnaire (motivation Cronbach’s a = 0.71 and mental
effort a = 0.89) was acceptable for the research purposes [9]. For
the recall questionnaire, the reliability was measured using the Kuder-
Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
bility of the recall questionnaire was also acceptable.

3.6 Data Analysis
Each data sets collected in the study was first checked for normality
using the Shapiro–Wilk normality test [81].

The analysis was done in R studio, using “WRS2” R package that im-
plements various robust statistical methods [57]. For immediate recall,
delayed recall, mental effort, task completion time and learning effi-
ciency, the statistical significance was examined using a mixed between-
within subjects ANOVA on the 20% trimmed means–“bwtrim” [57].
The main between-subjects effect (group comparisons), the main within-
subjects effect (e.g., due to repeated measurements), and the interac-
tion effect, were computed using the “sppba”, “sppbb”, and “sppbi”
functions respectively [57]. For motivation and system usability, the
statistical significance was examined using a robust one-way ANOVA.
The resulting p < 0.05 are reported as statistically significant. All box-
plots use a 1.5xIQR (interquartile range) rule and Tukey’s fences [84]
for whiskers and identified outliers. Asterisk notation is used in fig-
ures to visualise statistical significance (ns: p > 0.05, *: p < 0.05, **:
p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [20], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [68] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further
into the effects of guidance on various measures we have checked
whether the motivation has had an effect on the study. The results show
that the motivation had no statistically significant effect on the rest
of the results presented in this section (one-way ANOVA d f = 23.5
and the exact value of p = 0.452). The following sections present the
effect of adaptive guidance (amount and type) on learning performance
(immediate and delayed recall), mental effort, task completion time, and

Table 2. Mixed between-within subjects ANOVA on the 20% trimmed
means examining the between-subjects (AMOUNT), the within-subjects
(TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent
variables–i.e., immediate recall, delayed recall, mental effort, task com-
pletion time and learning efficiency (immediate and delayed).

Immediate recall
d f1 d f2 F p

Amount 1 14.19 26.58 0.000 ���
Type 1 17.88 91.09 0.000 ���

Amount : Type 1 17.88 0.21 0.655
Delayed recall
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Amount 1 15.13 12.60 0.002 ��

Type 1 17.68 92.65 0.000 ���
Amount : Type 1 17.68 0.15 0.706

Mental Effort
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Amount 1 17.47 13.32 0.002 ��
Type 1 17.78 171.13 0.000 ���

Amount : Type 1 17.78 2.42 0.137
Task Completion Time
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Amount 1 15.29 2.62 0.126

Type 1 17.88 189.77 0.000 ���
Amount : Type 1 17.88 0.94 0.346

Learning Efficiency: immediate recall
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Amount 1 16.69 0.66 0.427
Type 1 16.80 183.92 0.000 ���
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learning efficiency (immediate and delayed). The last section presents
correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 6.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 6 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 6 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 7 indicates that the delayed recall in the FIXED-AMOUNT
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Fig. 6. Left: Task completion time in minutes. Centre: Average learning efficiency for immediate performance. Right: Average learning efficiency for
delayed performance. Below are results form mixed between-within subjects ANOVA on the 20% trimmed means examining the between-subjects
(AMOUNT), the within-subjects (TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent variables.
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Fig. 5. Immediate recall in percentage of correctly remembered phrases.

Fig. 6. Delayed recall in percentage of correctly remembered phrases.

condition (x = 70.54%, SD = 23.20) is significantly better compared
to ADAPTIVE-AMOUNT condition (x = 50.00%, SD = 23.15).

The effect of the TYPE on the delayed recall (d f = 17.68, p <
0.001) is also significant. Fig. 6 indicates that the delayed recall in
the ADAPTIVE-ASSOCIATION condition (x = 73.21%, SD = 18.12)
is significantly better compared to FIXED-ASSOCIATION condition
(x = 47.32%, SD = 20.24). The interaction effect of the AMOUNT and
TYPE on the delayed recall (d f = 17.68, p > 0.05) is not significant.

4.2 The Effect of Guidance on Mental Effort
The effect of the adaptive guidance (AMOUNT and TYPE) on mental
effort is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on mental effort are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 17.47, p� value < 0.01) is signifi-
cant. Fig. 7 indicates that the mental effort in the ADAPTIVE-AMOUNT
condition (x = 3.66%, SD = 1.06) is significantly lower compared to
the FIXED-AMOUNT condition (x = 4.61, SD = 0.98).

The effect of the TYPE alone is also significant (d f = 17.78,
p < 0.001). Fig. 7 indicates that the mental effort in the ADAPTIVE-
ASSOCIATIONS condition (x = 3.39, SD = 0.63) is significantly lower
compared to the FIXED-ASSOCIATIONS condition (x = 4.88, SD =

Fig. 7. Mental effort invested during the task.

0.73). The interaction effect of the AMOUNT and TYPE on mental effort
(d f = 17.78, p > 0.05) is not statistically significant.

4.3 The Effect of Guidance on Task Completion Time
The results for the task completion time presented in Table 2 are
analysed using a mixed between-within subjects ANOVA on the 20%
trimmed means. The results indicate that the AMOUNT of guidance
has no statistically significant effect on the task completion time
(d f = 15.29, p > 0.05). It can thus not be concluded that partici-
pants in the ADAPTIVE-AMOUNT condition completed the task faster
compared to participants in the FIXED-AMOUNT condition.

In contrast, the effect of the TYPE on the task completion time
is significant (d f = 17.88, p < 0.001) as can be also observed in
Fig. 8. This also shows that the task completion time in the ADAPTIVE-
ASSOCIATIONS condition (x = 15.78 min, SD = 3.17) is significantly
lower compared to the FIXED-ASSOCIATION condition (x = 27.13 min,
SD= 6.69). The interaction effect of the AMOUNT and TYPE on the task
completion time is not statistically significant (d f = 17.88, p > 0.05).

Fig. � . Task completion time in minutes.

4.4 The Effect of Guidance on Learning Efficiency
The learning efficiency for each study condition was determined using
Equation 1 [17, 32, 66].
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4.4.1 Immediate Efficiency
The immediate recall learning efficiency results across the study con-
ditions are depicted in Fig. 8. It shows that, for both FIXED-AMOUNT
and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATIONS condition
is more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance, on immediate
recall learning efficiency are shown in Fig. 7. There is no significant ef-
fect of the AMOUNT of guidance conditions on participants’ immediate
recall learning efficiency, d f = 16.80, p = 0.460.

Fig. 7. Average learning efficiency for immediate performance.

Fig. � . Immediate recall learning efficiency.

By contrast, the effect of the TYPE of instructions on immedi-
ate recall learning efficiency is statistically significant (d f = 16.80,
p < 0.001). Fig. 7 indicates that the immediate recall learning ef-
ficiency in the ADAPTIVE-ASSOCIATIONS condition is significantly
higher compared to the FIXED-ASSOCIATIONS condition. The interac-
tion effect of the AMOUNT and TYPE on the immediate recall learning
efficiency is not statistically significant (d f = 16.80, p > 0.05).

4.4.2 Delayed Efficiency
The delayed recall learning efficiency results across the study condi-
tions are shown in Fig. 10. The figure indicates that, for both FIXED-
AMOUNT and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATION is

more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance on delayed recall
learning efficiency are illustrated in Fig. 7.

There is no significant effect of the AMOUNT of guidance condition
on the delayed recall learning efficiency (d f = 16.72, p = 0.460).

Fig. � . Average learning efficiency for delayed performance.

Fig. 10. Delayed recall learning efficiency.

By contrast, the effect of the TYPE of instructions on the de-
layed recall learning efficiency is statistically significant (d f = 16.72,
p < 0.001). The results also show that the delayed recall learning effi-
ciency is significantly higher for ADAPTIVE-ASSOCIATIONS compared
to FIXED-ASSOCIATIONS condition. No statistically significant interac-
tion effect was found between conditions (d f = 16.72, p > 0.05).

4.5 Correlations between Measures
A Pearson multiple correlation test was applied to find out whether or
not there were any correlations between the measures (recall, efficiency,
mental effort, task completion time). The results are presented in
Table 3.

The results for the FIXED-AMOUNT condition indicate that in both
FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS conditions, the
mental effort is negatively related to both immediate and delayed recall
as well as to both immediate and delayed efficiency. The task comple-
tion time measure does not show any relationship to other variables.
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E =
zP � zMp

2
(1)

E = Learning efficiency
zP = Average performance in Z-scores
zM = Average task difficulty in Z-scores

We measured the performance of each study condition based on
the recall scores participants obtained after completing the task for
that study condition. We estimated the difficulty of the task based
on the mental effort questionnaire for that study condition. We then
calculated the learning efficiency for each of the four conditions: (a)
FIXED-AMOUNT of guidance with FIXED-ASSOCIATIONS, (b) FIXED-
AMOUNT of guidance with ADAPTIVE-ASSOCIATIONS, (c) ADAPTIVE-
AMOUNT of guidance with FIXED-ASSOCIATIONS, and (d) ADAPTIVE-
AMOUNT of guidance with ADAPTIVE-ASSOCIATIONS using Formula 1.
This was done for both immediate recall (immediately after participants
had completed the task) and delayed recall (a week after participants
had completed the task).

4.4.1 Immediate Efficiency
The immediate recall learning efficiency results across the study condi-
tions are depicted in Fig. 10. It shows that, for both FIXED-AMOUNT
and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATIONS condition
is more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance, on immediate
recall learning efficiency are shown in Fig. 9. There is no significant ef-
fect of the AMOUNT of guidance conditions on participants’ immediate
recall learning efficiency, d f = 16.80, p = 0.460.

Fig. � . Average learning efficiency for immediate performance.

By contrast, the effect of the TYPE of instructions on immedi-
ate recall learning efficiency is statistically significant (d f = 16.80,
p < 0.001). Fig. 9 indicates that the immediate recall learning ef-
ficiency in the ADAPTIVE-ASSOCIATIONS condition is significantly
higher compared to the FIXED-ASSOCIATIONS condition. The interac-
tion effect of the AMOUNT and TYPE on the immediate recall learning
efficiency is not statistically significant (d f = 16.80, p > 0.05).

4.4.2 Delayed Efficiency
The delayed recall learning efficiency results across the study condi-
tions are shown in Fig. 12. The figure indicates that, for both FIXED-
AMOUNT and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATION is
more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

Fig. 10. Immediate recall learning efficiency.

The effects of the AMOUNT and TYPE of guidance on delayed recall
learning efficiency are illustrated in Fig. 9.

There is no significant effect of the AMOUNT of guidance condition
on the delayed recall learning efficiency (d f = 16.72, p = 0.460).

Fig. 11. Average learning efficiency for delayed performance.

By contrast, the effect of the TYPE of instructions on the de-
layed recall learning efficiency is statistically significant (d f = 16.72,
p < 0.001). The results also show that the delayed recall learning effi-
ciency is significantly higher for ADAPTIVE-ASSOCIATIONS compared
to FIXED-ASSOCIATIONS condition. No statistically significant interac-
tion effect was found between conditions (d f = 16.72, p > 0.05).

4.5 Correlations between Measures

A Pearson multiple correlation test was applied to find out whether or
not there were any correlations between the measures (recall, efficiency,
mental effort, task completion time). The results are presented in
Table 3.

The results for the FIXED-AMOUNT condition indicate that in both
FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS conditions, the
mental effort is negatively related to both immediate and delayed recall
as well as to both immediate and delayed efficiency. The task comple-
tion time measure does not show any relationship to other variables.
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To measure the motivation, the short form of the Questionnaire on
Current Motivation (QCM) with 12 items/questions [29, 73] was used.
QCM measures anxiety, challenge, interest, and probability of success
on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
(i.e., anxiety, challenge, interest, and probability of success), we used
the mean score of the 12 items as an indicator of the overall motivation.

The mental effort questionnaire consisted of 13 questions answered
on a nine-point Likert scale. We used an 8-question questionnaire
as used in [13, 33, 89]. Some wording was adapted to our study. In
addition, we added 5 questions relevant to our study. The mean score
of 13 answers was used as an indicator for the overall mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To assess the reliability of motivation and mental effort question-
naires, we performed the Cronbach’s alpha test. Estimated reliability
for each questionnaire (motivation Cronbach’s a = 0.71 and mental
effort a = 0.89) was acceptable for the research purposes [9]. For
the recall questionnaire, the reliability was measured using the Kuder-
Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
bility of the recall questionnaire was also acceptable.

3.6 Data Analysis
Each data sets collected in the study was first checked for normality
using the Shapiro–Wilk normality test [81].

The analysis was done in R studio, using “WRS2” R package that im-
plements various robust statistical methods [57]. For immediate recall,
delayed recall, mental effort, task completion time and learning effi-
ciency, the statistical significance was examined using a mixed between-
within subjects ANOVA on the 20% trimmed means–“bwtrim” [57].
The main between-subjects effect (group comparisons), the main within-
subjects effect (e.g., due to repeated measurements), and the interac-
tion effect, were computed using the “sppba”, “sppbb”, and “sppbi”
functions respectively [57]. For motivation and system usability, the
statistical significance was examined using a robust one-way ANOVA.
The resulting p < 0.05 are reported as statistically significant. All box-
plots use a 1.5xIQR (interquartile range) rule and Tukey’s fences [84]
for whiskers and identified outliers. Asterisk notation is used in fig-
ures to visualise statistical significance (ns: p > 0.05, *: p < 0.05, **:
p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [20], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [68] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further
into the effects of guidance on various measures we have checked
whether the motivation has had an effect on the study. The results show
that the motivation had no statistically significant effect on the rest
of the results presented in this section (one-way ANOVA d f = 23.5
and the exact value of p = 0.452). The following sections present the
effect of adaptive guidance (amount and type) on learning performance
(immediate and delayed recall), mental effort, task completion time, and

Table 2. Mixed between-within subjects ANOVA on the 20% trimmed
means examining the between-subjects (AMOUNT), the within-subjects
(TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent
variables–i.e., immediate recall, delayed recall, mental effort, task com-
pletion time and learning efficiency (immediate and delayed).

Immediate recall
d f1 d f2 F p

Amount 1 14.19 26.58 0.000 ���
Type 1 17.88 91.09 0.000 ���

Amount : Type 1 17.88 0.21 0.655
Delayed recall

d f1 d f2 F p
Amount 1 15.13 12.60 0.002 ��

Type 1 17.68 92.65 0.000 ���
Amount : Type 1 17.68 0.15 0.706

Mental Effort
d f1 d f2 F p

Amount 1 17.47 13.32 0.002 ��
Type 1 17.78 171.13 0.000 ���

Amount : Type 1 17.78 2.42 0.137
Task Completion Time

d f1 d f2 F p
Amount 1 15.29 2.62 0.126

Type 1 17.88 189.77 0.000 ���
Amount : Type 1 17.88 0.94 0.346

Learning Efficiency: immediate recall
d f1 d f2 F p

Amount 1 16.69 0.66 0.427
Type 1 16.80 183.92 0.000 ���

Amount : Type 1 16.80 1.53 0.233
Learning Efficiency: delayed recall

d f1 d f2 F p
Amount 1 17.74 0.10 0.756

Type 1 16.72 151.92 0.000 ���
Amount : Type 1 16.72 0.57 0.460

learning efficiency (immediate and delayed). The last section presents
correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 6.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 6 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 6 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 7 indicates that the delayed recall in the FIXED-AMOUNT
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To measure the motivation, the short form of the Questionnaire on
Current Motivation (QCM) with 12 items/questions [29, 73] was used.
QCM measures anxiety, challenge, interest, and probability of success
on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
(i.e., anxiety, challenge, interest, and probability of success), we used
the mean score of the 12 items as an indicator of the overall motivation.

The mental effort questionnaire consisted of 13 questions answered
on a nine-point Likert scale. We used an 8-question questionnaire
as used in [13, 33, 89]. Some wording was adapted to our study. In
addition, we added 5 questions relevant to our study. The mean score
of 13 answers was used as an indicator for the overall mental effort.

The recall questionnaire (immediate and delayed) included Japanese
phrases the participants practised during the learning tasks (e.g., “How
do you say ‘invite friends’ in Japanese?”, “How do you say ‘family
gathering’ in Japanese?” with the result marked as either correct or
incorrect).

To assess the reliability of motivation and mental effort question-
naires, we performed the Cronbach’s alpha test. Estimated reliability
for each questionnaire (motivation Cronbach’s a = 0.71 and mental
effort a = 0.89) was acceptable for the research purposes [9]. For
the recall questionnaire, the reliability was measured using the Kuder-
Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
bility of the recall questionnaire was also acceptable.

3.6 Data Analysis
Each data sets collected in the study was first checked for normality
using the Shapiro–Wilk normality test [81].

The analysis was done in R studio, using “WRS2” R package that im-
plements various robust statistical methods [57]. For immediate recall,
delayed recall, mental effort, task completion time and learning effi-
ciency, the statistical significance was examined using a mixed between-
within subjects ANOVA on the 20% trimmed means–“bwtrim” [57].
The main between-subjects effect (group comparisons), the main within-
subjects effect (e.g., due to repeated measurements), and the interac-
tion effect, were computed using the “sppba”, “sppbb”, and “sppbi”
functions respectively [57]. For motivation and system usability, the
statistical significance was examined using a robust one-way ANOVA.
The resulting p < 0.05 are reported as statistically significant. All box-
plots use a 1.5xIQR (interquartile range) rule and Tukey’s fences [84]
for whiskers and identified outliers. Asterisk notation is used in fig-
ures to visualise statistical significance (ns: p > 0.05, *: p < 0.05, **:
p < 0.01 and ***: p < 0.001).

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [20], selected the minimum effect size (Cohen’s
d = 1.251) and estimated the statistical power (1�b = 0.8) of data to
check whether the type II error probability (b ) is within an acceptable
range for a given sample size (n = 14 per group) and a significance
level (a = 0.05). The estimated power value 0.8 shows that with the
given sample size, we can have a 80% chance that we correctly reject
the null hypothesis with a significance level 0.05.

Finally, we used a Pearson’s multiple correlation test [68] to find out
whether there were any correlations between a learner’s mental effort,
task completion time, motivation and their performances (i.e., recall
and efficiency).

4 RESULTS

The results of the analysis based on the input from the 28 participants
who completed the study is presented here. Before dwelling further
into the effects of guidance on various measures we have checked
whether the motivation has had an effect on the study. The results show
that the motivation had no statistically significant effect on the rest
of the results presented in this section (one-way ANOVA d f = 23.5
and the exact value of p = 0.452). The following sections present the
effect of adaptive guidance (amount and type) on learning performance
(immediate and delayed recall), mental effort, task completion time, and
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means examining the between-subjects (AMOUNT), the within-subjects
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pletion time and learning efficiency (immediate and delayed).
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4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 6.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 6 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 6 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 7 indicates that the delayed recall in the FIXED-AMOUNT
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on a five-point Likert scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). Instead of focusing in individuals sub-dimensions
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the mean score of the 12 items as an indicator of the overall motivation.
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as used in [13, 33, 89]. Some wording was adapted to our study. In
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naires, we performed the Cronbach’s alpha test. Estimated reliability
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Richardson 20 test [50] because of the binary nature of the results
(correct/incorrect). The KR = 0.76 > 0.5 value indicates that the relia-
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The analysis was done in R studio, using “WRS2” R package that im-
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correlations between these measures.

4.1 The Effect of Guidance on Learning Performance
Learning performance was measured with the recall questionnaires
right after the study (immediate) and after 7 days (delayed). The results
are presented in the following two sections.

4.1.1 Immediate recall
The effect of the adaptive guidance – i.e., the AMOUNT (FIXED and
ADAPTIVE) and TYPE (FIXED and ADAPTIVE) – on immediate recall is
shown in Fig. 6.

The results in Table 2 show that the effects of the AMOUNT and
TYPE of guidance on immediate recall are statistically significant. The
effect of the AMOUNT of guidance alone (d f = 14.19, p� value <
0.001) is significant. Fig. 6 indicates that the immediate recall in the
FIXED-AMOUNT condition (x = 83.04%, SD = 16.44) is significantly
better compared to the ADAPTIVE-AMOUNT condition (x = 66.7%,
SD = 19.15).

Similarly, the effect of the TYPE on immediate recall (d f = 17.88,
p < 0.001) is also significant. Furthermore, Fig. 6 indicates that the
immediate recall in the ADAPTIVE-ASSOCIATIONS condition (x =
86.61%, SD = 11.57) is significantly better compared to the FIXED-
ASSOCIATIONS condition (x = 62.5%, SD = 14.42). The interaction
effect of the AMOUNT and TYPE on the immediate recall (d f = 17.88,
p > 0.05) is not statistically significant.

4.1.2 Delayed recall
The effect of the adaptive guidance (AMOUNT and TYPE) on delayed
recall is shown in Fig. 7.

The results show that the effects of the AMOUNT and TYPE of guid-
ance on delayed recall are statistically significant. The effect of the
AMOUNT of guidance alone (d f = 15.13, p�value < 0.01) is also sig-
nificant. Fig. 7 indicates that the delayed recall in the FIXED-AMOUNT
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Fig. 7. Left: Task completion time in minutes. Centre: Average learning efficiency for immediate performance. Right: Average learning efficiency for
delayed performance. Below are results form mixed between-within subjects ANOVA on the 20% trimmed means examining the between-subjects
(AMOUNT), the within-subjects (TYPE) and, the interaction (AMOUNT:TYPE) effects, over dependent variables.

FIXED-AMOUNT of guidance with FIXED-ASSOCIATIONS, (b) FIXED-
AMOUNT of guidance with ADAPTIVE-ASSOCIATIONS, (c) ADAPTIVE-
AMOUNT of guidance with FIXED-ASSOCIATIONS, and (d) ADAPTIVE-
AMOUNT of guidance with ADAPTIVE-ASSOCIATIONS using Formula 1.
This was done for both immediate recall (immediately after participants
had completed the task) and delayed recall (a week after participants
had completed the task).

4.4.1 Immediate Efficiency
The immediate recall learning efficiency results across the study con-
ditions are depicted in Fig. 9. It shows that, for both FIXED-AMOUNT
and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATIONS condition
is more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance, on immediate
recall learning efficiency are shown in Fig. 8. There is no significant ef-
fect of the AMOUNT of guidance conditions on participants’ immediate
recall learning efficiency, d f = 16.80, p = 0.460.

Fig. � . Average learning efficiency for immediate performance.

By contrast, the effect of the TYPE of instructions on immedi-
ate recall learning efficiency is statistically significant (d f = 16.80,
p < 0.001). Fig. 8 indicates that the immediate recall learning ef-

Fig. � . Immediate recall learning efficiency.

ficiency in the ADAPTIVE-ASSOCIATIONS condition is significantly
higher compared to the FIXED-ASSOCIATIONS condition. The interac-
tion effect of the AMOUNT and TYPE on the immediate recall learning
efficiency is not statistically significant (d f = 16.80, p > 0.05).

4.4.2 Delayed Efficiency

The delayed recall learning efficiency results across the study condi-
tions are shown in Fig. 11. The figure indicates that, for both FIXED-
AMOUNT and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATION is
more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance on delayed recall
learning efficiency are illustrated in Fig. 8.

There is no significant effect of the AMOUNT of guidance condition
on the delayed recall learning efficiency (d f = 16.72, p = 0.460).

By contrast, the effect of the TYPE of instructions on the de-
layed recall learning efficiency is statistically significant (d f = 16.72,
p < 0.001). The results also show that the delayed recall learning effi-
ciency is significantly higher for ADAPTIVE-ASSOCIATIONS compared
to FIXED-ASSOCIATIONS condition. No statistically significant interac-
tion effect was found between conditions (d f = 16.72, p > 0.05).
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Fig. 10. Average learning efficiency for delayed performance.

Fig. 11. Delayed recall learning efficiency.

4.5 Correlations between Measures
A Pearson multiple correlation test was applied to find out whether or
not there were any correlations between the measures (recall, efficiency,
mental effort, task completion time). The results are presented in
Table 3.

The results for the FIXED-AMOUNT condition indicate that in both
FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS conditions, the
mental effort is negatively related to both immediate and delayed recall
as well as to both immediate and delayed efficiency. The task comple-
tion time measure does not show any relationship to other variables.
The correlations between immediate/delayed and recall/efficiency vari-
ables was expected since these measures are all related.

Similar results can be observed for ADAPTIVE-AMOUNT condition.
In both FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS con-
ditions, the mental effort is negatively related to both immediate and
delayed recall as well as to both immediate and delayed efficiency.
The task completion time does also not show any relationship to other
variables. While, as before, immediate/delayed and recall/efficiency
correlations are not surprising.

5 DISCUSSION

Arigatō allows us to compare how learners would perform in learning
a new language, when presented with different adaptation factors of

instructional guidance in an experiential learning environment. These
comparisons are based on varying (i) the AMOUNT of guidance, which
is either FIXED or an ADAPTIVE-AMOUNT, and (ii) the TYPE of asso-
ciation, which is either FIXED or with ADAPTIVE-ASSOCIATIONS. In
this paper, the impact of the guidance method was measured through
performances (i.e., recall and efficiency) and their engagement (i.e.,
task completion time, mental effort and motivation).

We measured behavioural engagement for FIXED guidance and
ADAPTIVE guidance by observing how participants interacted with Ari-
gatō and how much time they spent in each condition. We could observe
participants being more interested in the ADAPTIVE-ASSOCIATIONS
than the FIXED-ASSOCIATIONS condition, even though they completed
the task in less time. This was expected, as previously, keyword meth-
ods have been suggested as motivating learners to be more creative and
enjoy using their minds more productively [74].

We measured cognitive engagement for all the study conditions
by analysing how much mental effort participants invested during the
task. We found that the mental effort with the ADAPTIVE-AMOUNT
of guidance was significantly lower compared to the FIXED-AMOUNT
of guidance. This is in line with the literature, as prior work has
shown that repeating the same information could increase the amount
of cognitive work and consequently the mental effort [76]. We fur-
ther identified that the mental effort in the ADAPTIVE-ASSOCIATIONS
condition was lower than in FIXED-ASSOCIATIONS condition. Again,
this was somewhat expected, as the association method connects new
learning to prior knowledge through the use of visual and/or acoustic
cues [58, 70], which could lower the mental effort. However, we have
shown that in the context of language learning the AR environment can
support the creation of adaptive constructs not only in the form of the
keywords (the “keyword method” [10]) and mental associations, but
also in combination with 3D digital objects that users can manipulate
with. It is this combination that supports experiential learning through
manipulation of digital objects and that outperformed the traditional
“keyword method” in our study.

We measured learning performance through analysis of recall (im-
mediate recall after the study and delayed recall test 7 days after the
study) and learning efficiency. Interestingly, we found that compared to
the ADAPTIVE-AMOUNT of guidance, the FIXED-AMOUNT of guidance
group scored better in the immediate and delayed recall tests, although
they have invested a significantly higher mental effort during the task.
In addition, we found that the ADAPTIVE-ASSOCIATIONS outperformed
the FIXED-ASSOCIATIONS group, in the immediate, delayed recall tests,
and learning efficiency, while investing a significantly lower mental
effort and spending a less amount of time during the task. These find-
ing suggest avenues for future work in archetypal user models, which
might allow users to slowly adapt pre-developed personal models from
a standard set of ideal users. What we would refer to as the “follow the
leader” learning approach.

We have also investigated how different variables are correlated
and how they could be combined in order to more accurately present
engagement and learning performances of the participants’ for each
study condition. This contrasts to the existing literature in learning
that often looks at these aspects individually. Our results show corre-
lations between mental effort and learning performances (both recall
and efficiency) in all conditions, which was to be expected since the
two are considered related. Interestingly, there were no correlations
found between task completion time and learning performance in any
condition. Again, these findings suggest potential future work in “trans-
fer motivation” between individual learners or between instructors and
learners.

6 CONCLUSION

In this paper we present the Arigatō (Augmented Reality Instructional
Guidance & Tailored Omniverse) prototype – an adaptive guidance
augmented reality (AR) system for language learning. AR has been
identified as an ideal platform to support simulating various experiences
for experiential learning. With our prototype we investigated how
the amount of guidance (fixed vs. adaptive-amount) and the type of
guidance (fixed vs. adaptive-associations) affects the engagement and
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Fig. 7. Left: Immediate recall learning efficiency. Right: Delayed recall learning efficiency.



4.4.2 Delayed Efficiency
The delayed recall learning efficiency results across the study conditions
are shown in Fig. 7 (right). The figure indicates that, for both FIXED-
AMOUNT and ADAPTIVE-AMOUNT, the ADAPTIVE-ASSOCIATION is
more efficient (i.e., has a higher efficiency value) compared to the
FIXED-ASSOCIATIONS condition.

The effects of the AMOUNT and TYPE of guidance on delayed recall
learning efficiency are illustrated in Fig. 6 (top right).

There is no significant effect of the AMOUNT of guidance condition
on the delayed recall learning efficiency (df = 16.72, p = 0.460).

By contrast, the effect of the TYPE of instructions on the de-
layed recall learning efficiency is statistically significant (df = 16.72,
p < 0.001). The results also show that the delayed recall learning
efficiency is significantly higher for ADAPTIVE-ASSOCIATIONS com-
pared to FIXED-ASSOCIATIONS condition. No statistically significant
interaction effect was found between conditions (df = 16.72, p > 0.05).

4.5 System Usability and User Experience
The average SUS score shows that the system usability is in an ac-
ceptable range (FIXED-AMOUNT = 82.3, ADAPTIVE-AMOUNT = 85.8;
SUS > 70). The results for UEQ show that pragmatic (FIXED-AMOUNT
= 1.54, ADAPTIVE-AMOUNT = 1.75) and hedonic qualities (FIXED-
AMOUNT = 2.33, ADAPTIVE-AMOUNT = 2.52), as well as overall user
experience (FIXED-AMOUNT = 1.93, ADAPTIVE-AMOUNT = 2.14) are
perceived as strongly positive in both conditions. In all cases we see
that the adaptive-amount has higher values.

4.6 Correlations between Measures
A Pearson multiple correlation test was applied to find out whether or
not there were any correlations between the measures (recall, efficiency,
mental effort, task completion time). The results are presented in
Table 2.

The results for the FIXED-AMOUNT condition indicate that in both
FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS conditions, the
mental effort is negatively related to both immediate and delayed recall
as well as to both immediate and delayed efficiency. The task comple-
tion time measure does not show any relationship to other variables.
The correlations between immediate/delayed and recall/efficiency vari-
ables was expected since these measures are all related.

Similar results can be observed for ADAPTIVE-AMOUNT condition.
In both FIXED-ASSOCIATIONS and ADAPTIVE-ASSOCIATIONS con-
ditions, the mental effort is negatively related to both immediate and
delayed recall as well as to both immediate and delayed efficiency.
The task completion time does also not show any relationship to other
variables. While, as before, immediate/delayed and recall/efficiency
correlations are not surprising.

5 DISCUSSION

Arigatō was developed to compare how learners perform in learning a
new language, when presented with different adaptation factors of AR
based instructional guidance in an experiential learning environment.
The AR system was deliberately selected as the most probable future
technology that will be used in the classroom. An AR classroom has
several advantages over other types of digitised classrooms such as
taking the real world into consideration and consequently embedding
information directly into the user’s field of view. These advantages
better support real-world in-person communication and group collabo-
ration compared to other technologies AR is often contrasted to, such
as desktop, tablet computers, and VR [69, 80].

By taking the real world into consideration, our prototype did not
just show content on the HMD, but allowed users to move and place
AR objects in their physical surroundings. With this functionality, AR
was used to replicate the real-world experiential learning scenario (e.g.,
learning by decorating a room for Christmas celebrations with AR
objects as can be done with real objects) and show information in a
coherent and meaningful way within the real world context.

Arigatō allowed us to vary (i) the AMOUNT of guidance, which is
either FIXED or an ADAPTIVE-AMOUNT (the amount changes based

on participants’ performance), and (ii) the TYPE of association, which
is either FIXED or with ADAPTIVE-ASSOCIATIONS (participants can
select associations by themselves from a predefined set). We used a
2 × 2 mixed design to evaluate the study conditions, as explained in
Sect. 3.1. The AMOUNT of guidance was evaluated as a within-subjects
variable while the TYPE of instructions as a between-subjects variable.
In this paper, the impact of the guidance method was measured through
performance (i.e., recall and efficiency) and engagement (i.e., task
completion time, mental effort, and motivation).

We measured behavioural engagement for FIXED guidance and
ADAPTIVE guidance by observing how participants interacted with Ari-
gatō and how much time they spent in each condition. We could observe
participants being more interested in the ADAPTIVE-ASSOCIATIONS
than the FIXED-ASSOCIATIONS condition, even though they completed
the task in less time. This was expected, since keyword methods have
been suggested as motivating learners to be more creative and to enjoy
using their minds more productively [79].

We measured cognitive engagement for all the study conditions by
analysing how much mental effort participants invested in completing
the task. We found that the mental effort with the ADAPTIVE-AMOUNT
of guidance was significantly lower compared to the FIXED-AMOUNT
of guidance. This is in line with the literature, as prior work has
shown that repeating the same information could increase the amount
of cognitive work and consequently the mental effort [82]. We fur-
ther identified that the mental effort in the ADAPTIVE-ASSOCIATIONS
condition was lower than in FIXED-ASSOCIATIONS condition. Again,
this was somewhat expected, as the association method connects new
learning to prior knowledge through the use of visual and/or acoustic
cues [62, 75], which could lower the mental effort. However, we have
shown that in the context of language learning the AR environment can
support the creation of adaptive constructs not only in the form of the
keywords (the “keyword method” [11]) and mental associations, but
also in combination with 3D digital objects that users can manipulate
with. It is this combination that supports experiential learning through
manipulation of digital objects and that outperformed the traditional
“keyword method” in our study.

We measured learning performance through analysis of recall (im-
mediate recall after the study and delayed recall test 7 days after the
study) and learning efficiency. Interestingly, we found that compared to
the ADAPTIVE-AMOUNT of guidance, the FIXED-AMOUNT of guidance
group scored better in the immediate and delayed recall tests, although
they have invested a significantly higher mental effort during the task.
In addition, we found that the ADAPTIVE-ASSOCIATIONS outperformed
the FIXED-ASSOCIATIONS group, in the immediate, delayed recall tests,
and learning efficiency, while investing a significantly lower mental
effort and spending a less amount of time during the task. These find-
ing suggest avenues for future work in archetypal user models, which
might allow users to slowly adapt pre-developed personal models from
a standard set of ideal users. What we would refer to as the “follow the
leader” learning approach.

We have also investigated how different variables are correlated
and how they could be combined in order to more accurately present
engagement and learning performances of the participants’ for each
study condition. This contrasts to the existing literature in learning
that often looks at these aspects individually. Our results show corre-
lations between mental effort and learning performances (both recall
and efficiency) in all conditions, which was to be expected since the
two are considered related. Interestingly, there were no correlations
found between task completion time and learning performance in any
condition. Again, these findings suggest potential future work in “trans-
fer motivation” between individual learners or between instructors and
learners.

6 LIMITATIONS AND FUTURE WORK

The average age of participants in our study was 25 years, which
presents a possible age bias. Despite this, this age group is worth
studying as it is highly mobile, spending an extended period of time in
a foreign speaking country (for example, the EU Erasmus+ programme
alone funds more than half a million exchanges yearly [27]). As such,



Table 2. Correlations between different measures for the FIXED-AMOUNT of guidance condition (left) and the ADAPTIVE-AMOUNT of guidance condition
(right). ME: mental effort, CT: task completion time, IR: immediate recall, DR: delayed recall, IE: immediate efficiency and DE: delayed efficiency.

Fig. 12. Delayed recall learning efficiency.

Similar results can be observed for ADAPTIVE-AMOUNT condition.
Table 4 indicates that in both FIXED-ASSOCIATIONS and ADAPTIVE-
ASSOCIATIONS conditions, the mental effort is negatively related to
both immediate and delayed recall as well as to both immediate and
delayed efficiency. The task completion time does also not show any
relationship with other variables. While immediate/delayed and re-
call/efficiency correlations are not surprising.

5 DISCUSSION

Arigatō allows us to compare how learners would perform in learning
a new language, when presented with different adaptation factors of
instructional guidance in an experiential learning environment. These
comparisons are based on varying (i) the AMOUNT of guidance, which
is either FIXED or a ADAPTIVE-AMOUNT, and (ii) the TYPE of asso-
ciation, which is either FIXED or with ADAPTIVE-ASSOCIATIONS. In
this paper, the impact of the guidance method was measured through
performances (i.e., recall and efficiency) and their engagement (i.e.,
task completion time, mental effort and motivation).

We measured behavioural engagement for FIXED guidance and
ADAPTIVE guidance conditions by observing how participants inter-
acted with Arigatō and how much time they spent in each condition.
We could observe participants being more interested in ADAPTIVE-
ASSOCIATIONS than FIXED-ASSOCIATIONS condition, even though
they completed the task in less time. This was expected, as previously,
keyword methods have been suggested as motivating learners to be
more creative and enjoy using their minds more productively [74].

We measured affective engagement through analysis of current moti-
vation for FIXED and ADAPTIVE-AMOUNT of guidance conditions. We
could not find any significant difference between the two conditions.
This was also expected, as we used similar AR environments for both
conditions.

We measured cognitive engagement for all the study conditions by
analysing how much mental effort participants invested during the task.
We found that the mental effort with the ADAPTIVE-AMOUNT of guid-
ance was significantly lower than the learners with the FIXED-AMOUNT
of guidance. This was also expected, as prior work has shown that
repeating the same information could increase the amount of cognitive
work and consequently the mental effort [76]. We further identified that
the mental effort of the learners, with ADAPTIVE guidance, was lower
than those with FIXED guidance. Again, this was somewhat expected,
as the association method connects new learning to prior knowledge
through the use of visual and/or acoustic cues [58, 70], which could
lower the mental effort.

We measured learning performance through analysis of recall (im-
mediate recall after the study and delayed recall test 7 days after the
study) and learning efficiency. Interestingly, we found that compared to

Table 3. Correlations between different measures for the FIXED-AMOUNT
of guidance condition – ME: mental effort, CT: task completion time, IR:
immediate recall, DR: delayed recall, IE: immediate efficiency and DE:
delayed efficiency.

FIXED-AMOUNT of guidance

FIXED-ASSOCIATIONS

ME CT IR DR IE DE

ME 1
CT �0.233 ns 1
IR �0.627 � �0.014 ns 1
DR �0.819 ��� 0.046 ns 0.797 ��� 1
IE �0.863 ��� 0.097 ns 0.935 ��� 0.891 ��� 1
DE �0.931 ��� 0.125 ns 0.764 �� 0.972 ��� 0.920 ��� 1

ADAPTIVE-ASSOCIATIONS

ME CT IR DR IE DE

ME 1
CT 0.154 ns 1
IR �0.846 ��� �0.075 ns 1
DR �0.903 ��� �0.338 ns 0.745 �� 1
IE �0.963 ��� �0.121 ns 0.958 ��� 0.860 ��� 1
DE �0.972 ��� �0.260 ns 0.812 ��� 0.979 ��� 0.931 ��� 1

*** Correlation is significant at 0.001 level, (p < 0.001)
** Correlation is significant at 0.01 level, (p < 0.01)
* Correlation is significant at 0.05 level, (p < 0.05)
ns Correlation is not significant, (p > 0.05)

the ADAPTIVE-AMOUNT of guidance, the FIXED-AMOUNT of guidance
group scored better in the immediate and delayed recall tests, although
they have invested a significantly higher mental effort during the task.
In addition, we found that ADAPTIVE instruction outperformed the
FIXED instruction group, in the immediate, delayed recall tests, and
learning efficiency, while investing a significantly lower mental effort
and spending a less amount of time during the task. These finding
suggest avenues for future work in archetypal user models which might
allow users to slowly adapt pre-developed personal models from a
standard set of ideal users. What we would refer to as the “follow the
leader” learning approach.

We have also investigated how different variables are correlated
and how they could be combined in order to more accurately present
engagement and learning performances of the participants’ for each
study condition. This contrasts to the existing literature in learning that
often looks at these aspects individually. Our results show correlations
between mental effort and learning performances (both recall and effi-
ciency) in all conditions, which was to be expected since the two are
considered relate. Results also show correlations between motivation
and learning performances in FIXED-AMOUNT guidance. Interestingly,
there were no correlations found between motivation and long term
recall in ADAPTIVE-AMOUNT guidance, as well as between task com-
pletion time and learning performance in any condition. Again, these
findings suggest potential future work in “transfer motivation” between
individual learners or between instructors and learners.

6 CONCLUSION
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this group could benefit from an improved language learning system.
Nevertheless, the results cannot be generalised over the whole popu-
lation, and expanding the study to other age groups and exploring the
effect of age on the proposed learning system is an important future
direction.

Another bias is the self-selection bias because the participants who
opted-in are likely to be at ease when learning a new language. How-
ever, even if this study attracted only a particular group of language
learners, the results still show the benefit of AR guidance with adaptive
associations that would most likely benefit also other users in our stud-
ied age group. However, this needs to be further investigated. Using
questionnaires for measuring certain aspects such as motivation and
mental effort can result in social desirability bias as users could answer
them to please the researcher. However, we used well established ques-
tionnaires together with measurements that can hardly be affected by
such bias (i.e., recall and efficiency and task completion time).

The Arigatō prototype covers the first three levels (categories) of
the Bloom’s taxonomy [1] only: Knowledge (remembering the words,
sentences), Comprehension (understanding the structure of sentences),
and Application (applying or speaking out the sentences). The expan-
sion to higher levels of the taxonomy (Analysis (analyse), Synthesis,
and Evaluation (evaluate), Creation) is also relevant and we aim to take
this into consideration in future implementations. In addition, we used
the task of learning vocabulary and other language constructs as a use-
case to explore the potential of AR in adaptive learning scenarios. In
future, this use-case should be expanded to other use-cases to confirm
its generalisability.

7 CONCLUSION

In this paper we present the Arigatō (Augmented Reality Instructional
Guidance & Tailored Omniverse) prototype – an adaptive guidance
augmented reality (AR) system for language learning. AR has been
identified as an ideal platform to support simulating various experiences
for experiential learning and we explored the AR’s design space in
the learning context rather than comparing it to other technologies.
With our prototype we investigated how the amount of guidance (fixed
vs. adaptive-amount) and the type of guidance (fixed vs. adaptive-
associations) affects the engagement and consequently the learning
outcomes of language learning in an AR environment.

Compared to the adaptive-amount, the fixed-amount of guidance
group scored better in the immediate and delayed (after 7 days) recall
tests. However, this group also invested a significantly higher mental

effort to complete the task. Adaptive-associations group outperformed
the fixed-associations group in the immediate, delayed (after 7 days)
recall tests, and learning efficiency. The adaptive-associations group
also showed significantly lower mental effort and spent less time to
complete the task. Both results hint at potential for the archetypal user
models in comparable learning scenarios, which might allow users to
“transfer motivation” between individual learners or between instructors
and learners, and slowly adapt pre-developed personal models. Such
approach could achieve the balance between the (adaptive) amount
and (adaptive) type to optimise the mental effort need to complete the
learning task.

The results also show the potential of AR in adaptive learning sce-
narios where the learning environment needs to be simulated and where
virtual content needs to be added or removed on the fly based on the
learning needs. Learning vocabulary and other language constructs as a
use-case explored in this study, presents just one of many possibilities
that offer venues for future work in AR classrooms as it is likely that
the technology will get better and widely accessible in the future [58].
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VocabulARy: Learning Vocabulary in AR Supported by Keyword
Visualisations

Maheshya Weerasinghe,Student Member, IEEE, Verena Biener, Jens Grubert, Aaron Quigley,
Alice Toniolo, Klen Čopič Pucihar and Matjaž Kljun

Fig. 1. VocabulARy prototype. (a) Participant interacting with VocabulARy during the study; (b) VocabulARy prototype though HoloLens2
in KEYWORD + VISUALISATION instruction mode (the Japanese word “hagaki” sounds as the English phrase “hug a key” (keyword)
and visualised with an animated hand grabbing a key (visualisation)); (c) Participant interacting with non-AR version of VocabulARy in
KEYWORD instruction mode (Note there is no visualisation of the keyword). AR and non-AR condition were tested with both instruction
modes.

Abstract—Learning vocabulary in a primary or secondary language is enhanced when we encounter words in context. This context
can be afforded by the place or activity we are engaged with. Existing learning environments include formal learning, mnemonics,
flashcards, use of a dictionary or thesaurus, all leading to practice with new words in context. In this work, we propose an enhancement
to the language learning process by providing the user with words and learning tools in context, with VocabulARy. VocabulARy visually
annotates objects in AR, in the user’s surroundings, with the corresponding English (first language) and Japanese (second language)
words to enhance the language learning process. In addition to the written and audio description of each word, we also present the
user with a keyword and its visualisation to enhance memory retention. We evaluate our prototype by comparing it to an alternate AR
system that does not show an additional visualisation of the keyword, and, also, we compare it to two non-AR systems on a tablet, one
with and one without visualising the keyword. Our results indicate that AR outperforms the tablet system regarding immediate recall,
mental effort and task-completion time. Additionally, the visualisation approach scored significantly higher than showing only the written
keyword with respect to immediate and delayed recall and learning efficiency, mental effort and task-completion time.

Index Terms—Augmented Reality, vocabulary learning, keyword method, contextual learning

1 INTRODUCTION

Learning a language is a complex task that requires dedication, perse-
verance and hard work. The basic learning process consists of com-
prehension of input (i.e. hearing or reading), comprehensible output
(i.e. speaking or writing) and feedback (i.e. identifying errors and mak-
ing changes in response) [6, 45]. Through these processes we learn
vocabulary and grammar enhancing our language comprehension and
expression abilities.

Expanding one’s vocabulary is an essential element of language
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• Klen Čopič Pucihar and Matjaž Kljun are with the University of Primorska,
Slovenia. E-mail: {klen.copic |matjaz.kljun}@famnit.upr.si .

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

learning and in vocabulary learning, methods for improving learners’
memory play a vital role. Mnemonics is one such effective method, in
which the learner attempts to link new learning with prior knowledge
through the use of visual and/or acoustic cues. Keywords are one such
practical technique in which the learner attempts to create a symbolic
link between new and prior knowledge using associations triggered
by keywords, a method shown to be particularly effective in prior
research [4].

Furthermore, previous research shows that learning vocabulary can
be enhanced through an encounter with words in context [50]. Existing
learning environments include formal learning, flashcards, use of a
dictionary or thesaurus, all leading to practice with new words in
context. For example, in formal learning the context is provided by
the instructor or the provided instructional materials, in flashcards it is
formed through images depicted on physical cards, in thesaurus it is
provided through the provision of synonyms.

Consumer devices such as smartphones, tablets and head mounted
displays can be used to enhance existing learning environments or to
provide new ones. These systems enable technology driven paradigm
shifts such as e-learning [40, 41, 44], and more recently m-learning
(mobile learning) [19, 32, 71]. All are capable of enhancement through
better provision of learning context and methods for improving learn-
ers’ memory. Furthermore, these systems are also capable of running
Augmented Reality (AR) applications which have the potential to make
language learning more intuitive and immersive because of their intrin-
sic ability to visualise digital information within a real world context.



This is particularly important for vocabulary learning because it al-
lows word encounters in real-world context, an important catalyst for
vocabulary learning [28, 62, 76].

Despite the fact that prior work looked at AR for vocabulary learning
discovering several benefits, such as better improved retention, higher
enjoyment, motivation and engagement, none provide a direct com-
parison of AR applications that run in head-mounted displays to the
same technique within a non-AR interface. Furthermore, to the best
of our knowledge, no existing evaluation of vocabulary learning that
combines keywords with visualisations exist.

This paper contributes to addressing this gap with VocabulARy, an
AR application for vocabulary learning that visually annotates objects
in AR, in the user’s surroundings, with the corresponding English (first
language) and Japanese (second language) words. In addition to the
written and audio description of each word, VocabulARy also presents
the user with a keyword and its visualisation to enhance memory re-
tention. We evaluate the VocabulARy prototype by comparing it to an
alternate AR system that does not show an additional visualisation of
the keyword and also, we compare it to two non-AR systems on a tablet,
one with and one without visualising the keyword. The results show
that AR outperforms the NON-AR (tablet) system regarding short-term
retention, mental effort and task-completion time. Additionally, the
visualisation approach scored significantly higher than only showing
the written keyword with respect to immediate and delayed recall and
learning efficiency, mental effort and task-completion time.

2 RELATED WORK

Vocabulary learning can be enhanced through methods for improv-
ing learners’ memory [39, 53] or through an encounter with words in
context [50]. AR is an emerging technology for learning in real-world
context and to scaffold this we structure our related work into: Learning
context, Vocabulary learning in AR and Memory enhancement tech-
niques. To better position our work in the context of language learning
in AR environments we also classify prior work based on AR devices,
learning content, presentation and learning method (Table 1).

Table 1. Selected prior work related to language learning in AR environ-
ments.

Study AR Device  Content  Presentation Learning Method

Draxler et al. (2020) Hand-held Grammar Visual, Audio & Text Context-based

Dalim et al. (2020) Desktop Vocabualry Visual, Audio & Text Experiential

Arvanitis et al. (2020) Hand-held Vocabualry Visual, Audio & Text Self-directed

Ibrahim et al. (2018) HMD Vocabualry Visual, Audio & Text Context-based

Yang & Mei (2018) Hand-held Vocabualry Visual, Audio & Text Context-based

Hautasaari et al. (2019) Hand-held Vocabualry Audio Context-based

Vazquez et al. (2017) HMD Vocabualry Visual, Audio & Text Context-based

Santos et al. (2016) Hand-held Vocabualry Visual, Audio & Text Context-based

Dita (2016) Hand-held Vocabualry Visual & Text Context-based

Li et al. (2014) Hand-held Vocabualry Visual & Text Not Speicified

Liu  & Tsai (2013) Hand-held Vocabualry Visual & Text Context-based

VocabulARy HMD Vocabualry Visual, Audio & Text Context-based & 
Keyword

2.1 Learning Context
It has been shown that people are more motivated to learn, if they can
see the importance of the content with respect to the situation or, if
they find the content interesting [49]. For example, being in a bar in
a foreign country is likely to increase the interest in learning words
and sentences required for ordering a coffee. Additionally, the context
makes it possible to form associations that help later retrieval in similar
circumstances [28, 62, 76, 80]. In other words, new words relevant
to the learning context are more likely to be recalled than unrelated
words [15].

AR has the ability to provide context-specific information in an
interactive manner. In addition, AR can take any situation, location,
environment, or experience to a whole new level by combining digital
information with real-world contents. Thus, it has the potential to
create more engaging and immersive learning environments. There
exists a considerable body of previous work on AR systems that support

learning in real-world contexts. For instance, there are systems that
provide labels of new words corresponding to real-world objects [13,
62], while others create imaginary settings to describe and enhance the
physical properties of everyday objects [27, 73].

2.2 Vocabulary Learning in AR
Previous studies have shown that AR offers many advantages for lan-
guage and vocabulary learning. For instance, some studies reported
that AR improved learning achievements and boosted motivation, en-
gagement and collaboration among learners [12,13,25,28,62]. Despite,
some technical limitations of using AR for learning should be taken
into account such as such as educators’ limited proficiency with the
relatively new technology [29] or the trade-off between connecting
the experience to the context of the current location and providing a
flexible and portable experience [79].

Fujimoto et al. [18] have shown that users can memorise AR in-
formation better if it is shown within the location of a target object
in the real world (e.g. AR information about a country shown over a
map within this country). However, the information to be memorised
in study did not take the context of the real environment and users’
surroundings into account.

Several studies presented applications for learning vocabulary using
hand-held AR devices. Hautasaari et al. [25] developed the VocaBura
smartphone application for learning vocabulary during dead time. The
application tracks a users’ GPS locations and presents vocabulary re-
lated to the current location via audio. A study comparing this to an
audio-only method showed that 7 days after the study, participants
could recall significantly more words. Santos et al. [62] presented a
handheld AR system that displays text, images, animation and sound
next to corresponding real-world objects to learn Filipino or German.
They compared this system to a non-AR tablet application using a
flash card method. Their results indicate that for tests directly after the
experiment non-AR users performed better, yet this difference was not
detected for long-term retention.

Positive effects of AR technology in the context of increased moti-
vation and enjoyment have also been detected. For example, Dalim et
al. [12] presented a system combining desktop-AR and speech recogni-
tion (TeachAR) and found that it increases children’s knowledge gain
and enjoyment. Similarly, Li et al. [34] explored an AR application
for language learning and found that it increased motivation in the
beginning, yet for most participants motivation decreased at the end of
the study.

The existing body of literature also includes applications for learning
vocabulary on AR head-mounted devices. While most previous systems
used some sort of marker to align virtual content with physical objects,
Vazquez et al. [76] presented a platform (WordSense) that detects
objects in the physical environment and augments them with additional
content for language learning including words, sentences, definitions,
videos and audio. However, no formal user study was conducted to
evaluate the system.

Another example of using AR head-mounted devices for language
learning is ARbis Pictus, a system presented by Ibrahim et al. [28]
which labels objects in the user environment with the corresponding
vocabulary in the target language. They compared this system to a
conventional flashcard-based system and found that AR was more
effective and enjoyable and participants could remember words better
both shortly after the experiment and four days later. However, the
significance of these findings is limited, because the flashcard and AR
systems were inherently different. For example, with flashcards the
word was shown on the opposite side to the image depicting word
meaning thus the image and word were never shown together. This
was not the case in the AR condition where word annotations were
always visible for all objects in the scene. Therefore it is not clear if
AR accounted for the improved performance or the different learning
approach.

In contrast to the presented studies we compare our AR prototype to
a non-AR system that is as similar as possible to enable us to measure
only the effect of AR without confounding variables like the learning
method. To our knowledge, such an experiment has not yet been



conducted for AR applications that run on head-mounted devices.

2.3 Memory Enhancement Techniques
Research on memory and learning has shown that learning performance
and retention depend on different strategies and techniques that can be
used to process information in learning [14]. “Mnemonic” is one such
technique where the memory capabilities are enhanced by connecting
new information to prior knowledge through the use of visuals and/or
acoustic cues [39, 53]. Several researchers experimentally showed that
“Mnemonic” techniques improve memory and recall, especially in the
area of language learning [1, 10, 47, 54].

In the field of language learning, mnemonics have mostly been
used for vocabulary learning [2]. One such mnemonic method is the
“keyword method” in which learners connect the sound of a word they
want to learn to one they already know in either their first language
or the target language. Through this process learners create a mental
image that helps them remember the association [50]. For example, the
Japanese word for bread is “sokupan” which in English sounds like
“Sock + Pan”. As a result, the learner can imagine a sentence that links
a mnemonic keyword with the foreign word. For example, “sokupan”
can be imagined as frying a sock and putting it on a slice of bread.

A wide range of existing studies in the broader literature have ex-
plored the effectiveness of the keyword method [2, 4, 54, 77]. In this
context, comparing the keyword method against other methods in vo-
cabulary learning is one of the most common research designs. There,
the keyword method has been compared with learning words in context
or learning words with no given strategy. For example, Pressley et
al. [51] found the keyword method to be significantly more effective in
learning over the context method. Also, Sagarra and Alba [58] com-
pared rehearsal, semantic mapping displays and the keyword method,
and found that the keyword method resulted in the best retention. It has
also been shown that the keyword method is superior over systematic
teaching [30, 51]. In 1975, Atkinson and Raugh [4] found that partic-
ipants who were given a keyword along with the translation learned
more words and also remembered more words after 6 weeks. In the
same sense, Raug et al. [55] evaluated the use of the keyword method
over a long period of 8 to 10 weeks to teach Russian vocabulary and
found it to be highly effective.

Altogether, a significant number of research studies have shown that
the keyword method of vocabulary learning is highly effective, yet oth-
ers showed mixed results [48, 77]. For example, a study conducted by
Zheng Wei [77] found no significant differences between the keyword
method, the word-part technique (recognizing part of a word) and the
self-strategy. From the perspective of the learning method, VocabulARy
builds upon the work of Anonthanasap et al. [2] in which the authors
propose an interactive vocabulary learning system to teach Japanese
that automatically creates keywords using phonetic algorithms. There,
if the learner selects an image in the system, the phonetically similar
words with image representations will gather around the selected image.
Results showed that the keyword-based vocabulary learning system
required significantly lower workload than the other compared methods
(e.g. paper dictionary and static visualisation in a form of an image).

In summary, our work was inspired by Santos et al. [62], Vazquez
et al. [76] and Ibrahim et al. [28] who already used AR devices to aug-
ment real world objects with annotations for vocabulary learning. We
combined this approach of providing context with a keyword method
which has proven to work well in various experiments thus far [2,4,58].
To further advance this learning method we augment keywords with
visualisations. AR provides ideal conditions for that, because the key-
word and its visualisation can be shown in the same context as the
corresponding physical object. However, in contrast to existing visuali-
sations of keyword approaches we make a careful selection of keywords
so that they not only sound similar, but can also be visualised with an
animation in a meaningful way. For example, a Japanese word for bread
is “sokupan” and sounds similar to keyword “Sock+Pan” which can be
visualised with an animation of frying a sock in a pan and putting it on
a slice of bread. We do this to uncover if one can improve vocabulary
learning beyond the influence of the traditional keyword method, by
augmenting the keywords with animated visualisations. According to

Shapiro and Waters [67] the level of visual imagery of a word enhances
vocabulary learning suggesting our approach should work, however no
formal evaluation of this exists ( Table 1). This makes our work both
ground breaking and timely.

3 AUGMENTED VOCABULARY LEARNING / LEARNING VOCAB-
ULARY WITH VISUALISATIONS IN REAL LIFE CONTEXT

This work presents two prototype systems for vocabulary learning
developed on an AR head-mounted-display (HMD) (i.e. Microsoft
HoloLens 2) and an 10.5 in Android tablet device (i.e. Samsung Galaxy
Tab S4) (Fig. 1). To the best of our knowledge, AR HMD systems for
vocabulary learning have not yet been evaluated against comparable
non-AR systems (see Sect. 2.2). Both AR and tablet systems combine
the keyword method with physical objects. With the AR HMD, our
system allows the user to look around a physical room where certain
objects are labelled with a button indicating that their translation is
available. Upon clicking these buttons with a hand gesture, the English
and Japanese word, as well as a keyword with or without visualisation,
appears. In addition to the words in both languages and a keyword, an
audio of the pronunciation is played. The details of application design
and implementation of both prototypes are described in the following
sub sections.

3.1 Application Design
In this section we describe key design decisions regarding annotations,
animated visualisations and interactions. Careful consideration was
given to the selection of annotation and visualisation size. Previous
research showed the size of images affects our ability to remember
image content during naturalistic exploration [38]. However in such
exploration individuals are first asked to freely explore an image without
any instructions and are then asked about the details observed. As such
there is no guarantee that the visual attention is equally distributed
across the observed image and as the image gets smaller so does the
key information, which makes it easier to miss it.

To prevent participants from missing key information we design our
application to effectively guide visual attention. The application shows
only one word visualisation at a time, which avoids cluttering the scene
and overloading participants with too much information. Furthermore,
we specifically chose to place AR buttons on the physical surface at
close proximity to the object of which word was being memorised.
This led users to the appropriate physical location from which AR
visualisations are clearly visible as the corresponding annotation and
animated visualisation size were appropriated for such viewing. To
make the NON-AR and AR condition as comparable as possible we made
sure that the relative size of annotations and animation was roughly the
same in both conditions.

Furthermore, in one of the instruction modes, the keyword is also
accompanied by its animated visualisation. Such a visualisation con-
sists of a 3D model resembling the keyword and a short animation
involving the objects in question. Besides, the user can also listen to the
pronunciation of the Japanese word again by clicking a virtual button
that is displayed next to the keyword. For example, Figure 1b shows
how the English word “Postcard” and the corresponding Japanese word
“Hagaki” are displayed. “Hagaki” sounds like “Hug + A Key”, so it is
displayed as a keyword and visualised through “hugging a key”.

3.2 Implementation of AR Prototype
The AR prototype was implemented for Microsoft HoloLens 2 [42]
using the Unity3D game development engine [75]. For camera pose
tracking, the HoloLens inbuilt tracking system was used. To initialise
the positions of augmentations in our application, we used Vuforia [52]
and our custom-made image markers (see Figure 2). We opted for
markers in order to support a reliable and accurate detection of physical
objects that correspond to the set of vocabulary. These markers were
removed from the scene after initialisation.

It would be technically possible to use object recognition techniques
to perform object identification and localisation as in [7, 59, 60]. Such
implementation could support arbitrary environments without prior
preparation, which would enable wide implementation of the system.



Fig. 2. Custom-made image markers.

However, this was not the scope of this work, as we focus on the effect
of learning vocabulary using AR and visualisations.

To interact with the virtual contents, we use HoloLens’ built-in hand-
tracking and gesture inputs, which allow the user to interact with virtual
content by moving the hands or fingers to content’s corresponding
positions. More specifically we chose to use virtual buttons placed on
top of planar physical surfaces such as a table or a wall. In this way,
touching a surface acted as a tangible feedback making the button press
more realistic.

3.3 Implementation of Android Prototype

The Android version of the prototype was also implemented using
the Unity 3D development environment, but deployed on a Samsung
Galaxy Tab S4 [36] tablet device. Its functionality is similar to the AR
prototype. However, instead of seeing the real world environment, an
image of an environment is displayed on the screen. In our prototype
this was either a kitchen or an office environment. As in the AR proto-
type certain objects are accompanied with a button. If the user touches
the button, the corresponding English and Japanese words, keywords,
and animated visualisations appear (Figure 1c). Visualisations only
appear in one instruction mode. As the size of all objects was adapted
to be clearly visible on the screen and to ensure that the relative size
of annotations and animation was roughly the same in both conditions
(see Sect. 3.1), we did not provide a feature to zoom into the scene.

Compared to the AR implementation, the tablet application can be
used anywhere as it can also show scenes that are not related to the
real-world environment around the learner. Because all kinds of virtual
scenes can be presented, the tablet allows a more flexible use, such as
learning words related to a forest while sitting in the living room.

3.4 Generating Keywords

For generating the keywords, we conducted a small informal survey
with 7 participants. They were presented with 28 Japanese-English
word pairs and were asked to come up with English words sounding
similar to the Japanese words. At the end, we selected 20 words for the
study for which the participants could come up with good keywords.
As already mentioned, the process of finding keywords could also be
automatized [2], but for the scope of this study, this was not needed.

4 RESEARCH METHOD

This section describes the study conditions, study design, participants’
sampling, study procedure, data collection instruments, and analysis.

4.1 Study Conditions

We designed four study conditions based on two distinct vocabulary
learning scenarios. The first scenario displays ten physical objects
related to a kitchen environment, while the second shows an office envi-
ronment with ten relevant physical objects. In each of these scenarios a
different INSTRUCTION MODE is provided. This is either a KEYWORD
instruction mode or a KEYWORD + VISUALISATION instruction mode.
In the KEYWORD condition, only the written keywords are displayed to
support the participants in remembering the word. In the KEYWORD
+ VISUALISATION condition, an animated 3D visualisation of the key-
word is displayed in addition to the written keyword. These variations
are presented to the participants on two different INTERFACES, one in
AR on a HoloLens2 and one in NON-AR on an Android tablet. These
study conditions are illustrated in Figure 3.

Fig. 3. Study design and conditions.

4.2 Study Design
Our study design has two independent variables: INSTRUCTION MODE
which is KEYWORD or KEYWORD + VISUALISATION and INTERFACE
which is either AR or NON-AR. We used a 2 × 2 mixed design (see Fig-
ure 3) because a within-subjects design would make the study, which
is mentally demanding, too long (i.e. approximately two hours). We
believe that such a long duration could intensify the fatigue and hin-
der the performance of the participants. Furthermore, running all 4
conditions in a within-subject design would require 2 additional learn-
ing scenarios making it more difficult to counterbalance for scenario
effects. Reducing the study length by running the study in several
sessions also introduces other biases and practical issues. Therefore,
the INSTRUCTION MODE was evaluated as a within-subjects variable
and the INTERFACE as a between-subjects variable. This means each
participant was either using the AR-prototype or the NON-AR-prototype,
but all participants experienced the KEYWORD and the KEYWORD +
VISUALISATION conditions.

To avoid the “order effects”, which may have an influence on par-
ticipants’ performance due to the order in which the conditions are
presented [66], the order of the INSTRUCTION MODE as well as the
order of the learning scenarios (the kitchen and the office environments)
was counter balanced. Special care was given to counterbalance the
learning scenario across all independent variables.

4.3 Participants
The study was completed by 32 participants, all voluntarily recruited
from our university. None of the participants had any prior knowledge
of the Japanese language (identified via a short competency test ques-
tionnaire). The between subject sample comprised of 16 participants
for the AR condition (10 females) and 16 participants for the NON-AR
condition (7 females). All the participants were between the age of 19
to 30 years, with the mean of x = 21.6 and SD = 2.1.

All our participants were computer science undergraduate and grad-
uate students. No student had previous experience with AR HMDs.
The mean age for the AR group was x = 22.13 (SD = 2.68), and for
NON-AR group x = 21.13 (SD = 1.26). The percentage of females in
the AR group was x = 62.5%, and in the NON-AR group x = 43.75%.
The groups were comparable.

4.4 Procedure
On arrival participants were first randomly assigned to one of the two
groups (AR or NON-AR). Next, we randomly selected which instruction
mode would be used first (KEYWORD or KEYWORD + VISUALISATION).
Finally, the learning scenario was also randomly chosen (kitchen or
office environment). All randomisations were counterbalanced.

After being assigned to a particular condition, participants were
given a consent form to sign, together with the Participant Information
Sheet (PIS) outlining the entire research process in simple language.
After briefly explaining the vocabulary learning task with the two
learning scenarios, they were asked to fill in the Questionnaire on
Current Motivation (QCM) [57].

Before starting the actual task they completed a five-minute training
session on a separate demo application to understand the VocabulARy
interface. Participants were then given up to 15 minutes to complete



the first language learning scenario with 10 words. After finishing the
first scenario, they filled in the NASA Task Load Index (NASA-TLX)
questionnaire [24] and, then answered a post-test questionnaire devel-
oped by the researchers to assess their immediate recall performance.
After taking a 5 minutes break, they were again given up to 15 minutes
to complete the second language learning scenario with 10 words. Sub-
sequent to the second scenario, they filled in the same NASA-TLX and
the immediate recall questionnaires.

After finishing the experiment, participants were given another two
standard questionnaires – a system usability (SUS) [33] and a user
experience questionnaire (UEQ) [64]. At the end, participants filled
in a short post-questionnaire with demographic questions, questions
about previous experience with AR technology and vision problems
they might have. The entire experiment took 45 to 60 minutes.

One week later, participants were again requested to answer the
same post-test questionnaire developed by the researchers to assess
their delayed recall performance as undertaken in prior work [25].

4.5 Data Collection
In order to measure the task completion time, the time stamp data
(start time and end time) were logged by the system. To measure the
motivation, the short form of Questionnaire on Current Motivation
(QCM) with 12 items/questions [17, 56] was used. Anxiety, challenge,
interest, and probability of success were measured on a five-point Likert
scale, with the labels “strongly disagree” at 1 and “strongly agree” at
5. Rather than aiming for constructing sub-dimensions (i.e., anxiety,
challenge, interest, and probability of success), we used the mean score
of the 12 items as an indicator for the overall motivation.

The NASA Task Load Index (NASATLX) [23, 43] was used to
measure participants’ subjective level of workload/mental effort. Partic-
ipants rated five of its six dimensions (mental demand, physical demand,
temporal demand, effort and frustration) on a 20-point scale ranging
from 0 (very low) to 20 (very high). The endpoints of the sixth dimen-
sion (own performance) were success and failure. Finally, the overall
workload/mental effort was calculated across these six dimensions.

In the retention questionnaires, participants were asked for the
Japanese translations of the vocabulary they learned. This was un-
dertaken immediately after interacting with the prototype (Immediate
Recall) and after one week (Delayed Recall).

Learning efficiency was determined based on the ratio of perfor-
mance to the difficulty of the learning task as proposed in [46]. The
performance of each study condition was based on the recall scores
participants obtained after completing the task. The difficulty of the
task was based on the mental effort they invested during the learning
phase (see Sect. 5.3). Performance and task difficulty data were then
standardised using Formula 1 where z = Z-score, r = Raw data score,
M = Population mean, and SD = Standard deviation.

z =
r�M

SD
(1)

Next, the learning efficiency (E) was assessed for each of the four
study conditions (Sect. 4.1) using Formula 2 [9, 22, 46] where E =
Learning efficiency, zP = Average performance in Z-scores, and zM =
Average task difficulty in Z-scores. This was done for both immediate
recall performance (immediately after participants had completed the
task) and delayed recall performance (a week after participants had
completed the task). Note that square root of 2 in this formula comes
from the general formula for the calculation of distance from a point,
p(x,y), to a line, ax+by+ c = 0.

E =
zP � zMp

2
(2)

To measure the usability of the system, we used the System Usability
Scale (SUS), a ten question questionnaire originally created by Brooke,
1996 [5], on a five-point Likert scale, ranging from “Strongly” agree
at 1 to “Strongly disagree” at 5. For measuring the user experience
we used the short version of the User Experience Questionnaire (UEQ-
S) [63,64] with eight items/questions, reported on a 7-point Likert scale.

The first four represent pragmatic qualities (Perspicuity, Efficiency and
Dependability) and the last four hedonic qualities (Stimulation and
Novelty) [63].

4.6 Data Analysis
The analysis was completed in R studio. Each data set collected in the
study was first checked for mixed ANOVA assumptions. The normality
assumption was checked using the Shapiro–Wilk normality test [68].
Most of the data sets were normally distributed with some of them
only approximately normally distributed. The homogeneity of variance
assumption of the between-subject factor (INTERFACE) was checked
using the Levene’s test [65] that confirmed homogeneity of variances
for each variable (p> 0.05). Finally, the homogeneity of covariances of
the between-subject factor (INTERFACE) was evaluated using the Box’s
M-test of equality of covariance matrices. The test showed homogeneity
of covariances for each variable (p > 0.001). Considering the fact that
some of the data sets were only approximately normally distributed, we
used robust statistical methods implemented in the “WRS2” R package
to conduct the analysis [37], which is a standard practice in such cases.

In all statistical analyses we used a significance level p� value >
0.05 and a restrictive confidence interval (CI) of 95%. For immediate
recall, delayed recall, mental effort, task completion time and learning
efficiency, the statistical significance was examined using a robust
two-way mixed ANOVA on the 20% trimmed means–“bwtrim” [37].

For motivation, system usability and user experience, the statistical
significance was examined using a Mann–Whitney U test [74]. Asterisk
notation is used in tables to visualise statistical significance (ns: p >
0.05, *: p < 0.05, **: p < 0.01, and ***: p < 0.001).

To assess the reliability of motivation and mental effort question-
naires, we performed a Cronbach’s alpha test. Estimated reliability for
each questionnaire (motivation Cronbach’s a = 0.77 and mental effort
a = 0.85) is acceptable for research purposes [3]. To measure the reli-
ability of retention questionnaires, we conducted a Kuder-Richardson
20 test [31]. The KR = 0.61 > 0.5 value indicates that the reliability of
the retention questionnaire is also acceptable.

We also conducted a power analysis to check and validate the results
and findings of the study. We calculated the effect size (Cohen’s d) for
each data set collected [11], selected the minimum effect size (Cohen’s
d = 0.69) and estimated the statistical power (1�b ) of data to check
whether the type II error probability (b ) is within an acceptable range
for a given sample size (n = 16 per group) and a significance level
(a = 0.05). The estimated power value 0.96 shows that with the given
sample size, we can have more than a 90% chance that we correctly
reject the null hypothesis with a significance level of 0.05.

5 RESULTS

The results and analysis are based on the 32 participants who had com-
pleted all the facets of the study, i.e., the motivation questionnaire, the
basic training, the vocabulary learning task and the post-questionnaires
include mental effort, immediate recall and delayed recall tests. Par-
ticipants had not undertaken any extra study for the delayed recall
test.

We conducted a statistical analysis including gender as a between-
subject factor (2 (GENDER) x 2 (INTERFACE) x 2 (INSTRUCTION
MODE) mixed design) in order to exclude possible gender-based dif-
ferences. The results did not indicate any statistical significant effect
of GENDER on any dependant variable: immediate and delayed recall,
mental effort, task completion time and, immediate and delayed learn-
ing efficiency. The results related to these variables are presented in the
following subsections.

5.1 Immediate Recall
The mean values of immediate recall performance and the ANOVA
results across study conditions, i.e., the INTERFACE (AR and
NON-AR) and, the INSTRUCTION MODE (KEYWORD and KEY-
WORD+VISUALISATION) are shown in Figure 4a.

A significant main effect of INTERFACE on immediate recall per-
formance could be detected (F(1,60) = 7.46, p < 0.05, n2 p = 0.11).
Here, participants’ immediate recall scores were significantly better



  

 

 

 

 

  Immediate Recall  

SS df MS F p n2p 

Interface 1225 1 1225 7.46 0.01 ** 0.11 
Instruction Mode 2025 1 2025 12.34 0.00 *** 0.17 

Interface * 
Instruction Mode 0 1 0 0.00 1.00 0.00 

 
 Delayed Recall  

SS df MS F p n2p 

Interface 77 1 77 3.86 0.65 0.00 
Instruction Mode 5814 1 5814 20.39 0.00 *** 0.25 

Interface * 
Instruction Mode 76 1 76 0.27 0.61 0.00 

  Mental Effort  

SS df MS F p n2p 

Interface 2010 1 2910 57.05 0.00 *** 0.49 
Instruction Mode 2236 1 2236 43.83 0.00 *** 0.42 

Interface * 
Instruction Mode 0.72 1 0.72 0.01 0.906 0.00 

(a) (b) (c) 

Fig. 4. Means with standard deviation and ANOVA results for: (a) immediate recall performance in percentage of correctly remembered words; (b)
delayed recall performance in percentage of correctly remembered words; (c) Mental effort.

in AR condition (x = 88.13%, SD = 10.34) compared to the NON-AR
condition (x = 79.38%, SD = 14.67). Also, a significant main effect
of INSTRUCTION MODE on immediate recall performance could be
detected (F(1,60) = 12.34, p < 0.001, n2 p = 0.17). Results indicated
that participants’ immediate recall scores in KEYWORD + VISUALI-
SATION (x = 89.38%, SD = 10.75) were significantly better than in
KEYWORD (x = 78.13%, SD = 14.26). No significant interaction ef-
fect could be found between INTERFACE and INSTRUCTION MODE
(F(1,60)< 0.001, p > 0.05, n2 p < 0.001).

5.2 Delayed Recall
The mean values of delayed recall performance and the ANOVA results
across all study conditions, i.e., the INTERFACE (AR and NON-AR) and,
the INSTRUCTION MODE (KEYWORD and KEYWORD + VISUALISA-
TION) are shown in Figure 4b.

No significant main effect was found between INTERFACE on de-
layed recall performance (F(1,60) = 3.86, p > 0.05, n2 p < 0.001).
The significance was only marginally missed. In addition, the mean
values for the AR condition (x = 77.50%, SD = 18.50) were higher
than for the NON-AR condition (x = 65.30%, SD = 20.00).

A significant main effect of INSTRUCTION MODE on delayed recall
could be detected (F(1,60) = 20.39, p < 0.001, n2 p = 0.25). Results
indicate that participants’ delayed recall scores in KEYWORD + VISU-
ALISATION (x = 80.88%, SD = 13.60) were significantly better than
in KEYWORD (x = 61.88%, SD = 19.65). No significant interaction
effect could be found between INTERFACE and INSTRUCTION MODE
(F(1,60) = 0.27, p > 0.05, n2 p < 0.001).

5.3 Mental Effort
The mean values of mental effort (measured by NASA-TLX) invested
to carry out the learning task and the ANOVA results over the study
conditions are illustrated in Figure 4c.

A significant main effect of INTERFACE on mental effort could
be detected (F(1,60) = 57.05, p < 0.001, n2 p = 0.49), such that the
mental effort was significantly lower for AR condition (x = 34.36,
SD = 7.14) compared to the NON-AR condition (x = 47.85, SD = 7.02).
Also, a significant main effect of INSTRUCTION MODE on mental effort
could be detected (F(1,60) = 43.83, p < 0.001, n2 p = 0.42). Here,
participants’ mental effort in KEYWORD + VISUALISATION (x = 35.19,
SD= 6.42) was significantly lower than in KEYWORD (x= 47.01, SD=
7.73). No significant interaction effects was found between INTERFACE
and INSTRUCTION MODE (F(1,60) = 0.01, p > 0.05, n2 p < 0.001).

5.4 Motivation
The mean values of motivation between INTERFACES (AR and NON-
AR) is illustrated in Figure 5a. The data summarised in Figure 5a is
analysed using a Mann–Whitney U test.

A significant effect was found between INTERFACES for participants’
motivation (U(NAR = 16,Nnon�AR = 16) = 48.50, p < 0.001). There,
the motivation was significantly higher for the AR condition (x = 3.69,
SD = 0.36) compared to the NON-AR condition (x = 3.29, SD = 0.27).

5.5 System Usability
The answers to System Usability Scale (SUS) questions/items are
reported on a 5-point Likert scale. The SUS scores are calculated as
follows: for each of the odd numbered questions, subtract one from the
user response, while for each of the even numbered questions, subtract
their response from five and, add up the converted responses for each
user and multiply that total by 2.5. This converts possible values to
the range of 0 to 100 instead of 0 to 40. These adjustments are kept
throughout the rest of the analysis.

The average SUS scores for AR and NON-AR INTERFACES are
illustrated in Figure 5b. A Mann–Whitney U test indicated that there
was no significant effect between the INTERFACES for SUS (U(NAR =
16,Nnon�AR = 16) = 91.50, p > 0.05).

5.6 User Experience
The UEQ-s questionnaire provides a benchmark to compare user expe-
rience between different systems [26]. It measures pragmatic qualities
of a system (including efficiency, perspicuity and dependability) and
hedonic qualities (including stimulation and novelty). The overall value
was calculated from all 5 UEQ scale means. We adapted the standard
method as suggested in [63,64] for calculating the scale means for each
factor individually (efficiency, perspicuity, dependability, stimulation
and novelty) and to obtain values for pragmatic quality, hedonic quality
and overall user experience for both AR and NON-AR systems.

In the AR condition the pragmatic (x = 2.48) and hedonic (x =
2.41) qualities, as well as overall user experience (x = 2.45) were all
perceived as excellent (benchmarks for an excellent score: pragmatic
> 1.73, hedonic > 1.55, overall > 1.58). In the NON-AR condition the
mean value of pragmatic quality was perceived as excellent (x = 2.23),
and the overall experience as good (x = 1.55) (benchmarks for a good
score: pragmatic between 1.55 - 1.73, hedonic between 1.25 - 1.55,
overall between 1.4 - 1.58). However, the hedonic factor was perceived
as below average (x = 0.88) (benchmarks for below average score:
pragmatic between 0.73 - 1.14, hedonic between 0.88 - 1.24, overall
between 0.68 - 1.01).

The overall user experience was analysed using a Mann–Whitney
U test. The data is presented in Fig. 5c. A significant effect was
found between INTERFACES (U(NAR = 16,Nnon�AR = 16) = 16.00,
p < 0.001).

5.7 Task Completion Time
The mean values of task completion time across study conditions,
i.e., the INTERFACE (AR and NON-AR) and, the INSTRUCTION MODE



   

 

 

 

 

 

 

 

 

 

 

 

             Motivation  

Statistics p Sample Size 

Interface 48.50 0.00 *** 16 

  System Usability  

Statistics p Sample Size 

Interface 91.50 0.17 16 

      User Experience  

Statistics p Sample Size 

Interface 16.00 0.00 *** 16 

(a) (b) (c) 

Fig. 5. Means with standard deviation for: (a) Motivation before starting the experiment and Mann–Whitney U test results; (b) SUS score and
Mann–Whitney U test results; (c) UEQ factors (pragmatic and hedonic) and all item/question together (overall) with Mann–Whitney U test results.

(KEYWORD and KEYWORD + VISUALISATION) are shown in Figure 6a.
The data summarised in Figure 6a is analysed using a between-within
subjects ANOVA on the 20% trimmed means [37].

A significant main effect of INTERFACE on task completion time
could be detected (F(1,60) = 14.06, p< 0.001, n2 p= 0.19). Here, the
completion time was significantly lower for AR condition(x = 618.57s,
SD = 77.92s) compared to the NON-AR condition (x = 698.41s, SD =
90.59s). Also, a significant main effect of INSTRUCTION MODE on
task completion time could be detected (F(1,60) = 31.19, p < 0.001,
n2 p = 0.34), such that KEYWORD + VISUALISATION (x = 599.04s,
SD = 74.99s) resulted in a significantly lower completion time than
KEYWORD (x = 717.95s, SD = 93.52s). There was no significant
interaction effect found between INTERFACE and INSTRUCTION MODE
(F(1,60) = 0.25, p > 0.05, n2 p < 0.001).

5.8 Learning Efficiency
The average learning efficiencies for immediate recall and delayed
recall across study conditions are shown in Figure 6a and Figure 6b
respectively. For the definition of learning efficiency refer to Sect. 4.5.
The data summarised in Figure 6a and Figure 6b are analysed using a
between-within subjects ANOVA on the 20% trimmed means [37].

Statistical analysis in Figure 6b and Figure 6c showed no significant
effect of INTERFACE for participants’ learning efficiency for immediate
recall (F(1,60) = 9e� 6, p > 0.05, n2 p < 0.001) or delayed recall
(F(1,60) = 9e�5, p > 0.05, n2 p < 0.001). A significant main effect
of INSTRUCTION MODE on participants’ learning efficiency for immedi-
ate recall could be detected (F(1,60) = 34.14, p < 0.001, n2 p = 0.36).
There, the learning efficiency was significantly higher in KEYWORD
+ VISUALISATION support (x = 0.92, SD = 0.23) compared to the
KEYWORD (x = �0.92, SD = 0.23). A significant main effect on
participants’ learning efficiency for delayed recall also could be de-
tected (F(1,60) = 41.25, p < 0.001, n2 p = 0.41). There, the learning
efficiency was significantly higher in KEYWORD + VISUALISATION
instruction mode (x = 1.07, SD = 1.15) compared to the KEYWORD
(x = �1.07, SD = 1.32) mode. There was no significant interaction
effect found between INTERFACE and INSTRUCTION MODE for in im-
mediate recall (F(1,60) = 0.07, p > 0.05, n2 p < 0.001) or delayed
recall (F(1,60) = 0.18, p > 0.05, n2 p < 0.001).

6 DISCUSSION AND FUTURE DIRECTIONS

For this study, we developed an AR system called VocabulARy, that
supports learning new Japanese words, but can be expanded to support
other languages. The system was used to evaluate user experience, sys-
tem usability, mental effort, motivation and memory recall when shown
keywords over the objects vs. keywords together with a visualisation
of the objects. These were compared in two interfaces: AR (Microsoft
HoloLens 2) and a NON-AR (Android tablet computer). We used the

two interfaces to investigate whether showing keywords and visuali-
sations in context of immediate surrounding compared to the context
provided on the virtual scene on the screen results in any performance
difference.

6.1 Usability and User Experience
The results of the study show that participants evaluated both AR and
NON-AR prototypes with good usability scores, clearly higher than
average (68) and no significant difference between the two could be
found. In addition, during the study we did not observe any readability
problems (e.g. none of the users tried to zoom in on the tablet computer
in order to make it easier to view presented information and none of the
AR HMD users were observed to move very close to augmentations).
This provided a good basis for further investigation, as we wanted
to make the comparison as fair as possible by trying to not influence
learning performance with usability issues as well as by making both
conditions as comparable as possible (see Sect. 3.1).

It has been shown for example that the unfamiliarity with AR could
result in lower performance as has been reported in prior work [78].
In addition, the user experience in both conditions has been rated very
positively with a higher score for AR regarding the hedonic factors
represented by Stimulation and Novelty. This makes sense, as AR is
still an exciting and less widely used technology compared to tablet
computers for many users.

A recent study also revealed that the size of images affects our
ability to remember image content during naturalistic exploration [38].
Although our study did not involve naturalistic exploration, it clearly
steered participants’ attention, and we made extra care that both AR and
NON-AR showed comparable imagery, it would still be interesting to
explore if the size of imagery has an effect on the ability to memorise
vocabulary words.

The prolonged use of HMDs in the current form factor can also in-
fluence the usability and thus performance of users. Some studies have
already investigated the effects of the HMDs weight, their pressure on
the face, latency, image quality and the authenticity of the representa-
tion of digital objects [20, 21, 69, 72]. However, these issues will likely
be addressed with future development of HMDs.

6.2 AR vs Non-AR
Our results show that immediate recall (a recall of words right after the
study) in the AR system is significantly higher compared to the NON-AR
system. However, no statistical significance was detected for delayed
recall (a recall of the same words a week after the study). Nonetheless,
it is important to note that significance was only marginally missed
for delayed recall. The results can thus not confirm the outcomes of a
previous study conducted by Ibrahim et al. [28] who report a signifi-
cantly better performance of the AR system compared to FLASHCARDS
for both immediate and delayed recall. One of the reasons, and also



  

 

 

 

 

 

 

 

 

 

 

 

  Task Completion Time  

SS df MS F p n2p 

Interface 1e+5 1 1e+5 14.06 0.00 *** 0.19 
Instruction Mode 2e+5 1 2e+5 31.19 0.00 *** 0.34 

Interface * 
Instruction Mode 1811 1 0 0.25 0.62 0.00 

  Immediate Efficiency  

 SS df MS F p n2p 

Interface 1e-5 1 1e-5 9e-6 0.99  0.00 
Instruction Mode 53.93 1 53.93 34.14 0.00 *** 0.36 

Interface * 
Instruction Mode 0.11 1 0.11 0.07 0.79 0.00 

  Delayed Efficiency  

SS df MS F p n2p 

Interface 1e-4 1 1e-4 9e-5 0.99 0.00 
Instruction Mode 64.37 1 64.37 41.25 0.00 *** 0.41 

Interface * 
Instruction Mode 

0.28 1 0.28 0.18 0.68 0.00 

(a) (b) (c) 

Fig. 6. Means with standard deviation and ANOVA results for: (a) Task-completion-time in seconds; (b-c) immediate recall and delayed recall learning
efficiency.
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Fig. 7. Learning efficiency: (a) immediate recall learning efficiency; (b) delayed recall learning efficiency.

a major difference between this and our study, might be that in the
aforementioned work, the learning methods were not identical in both
conditions, which could have placed the AR system at an advantage.
For example, with flashcards the word was shown on the opposite
side to the image depicting word meaning; thus, the image and word
were never shown together. This was not the case in our AR condition
where the word annotations were always visible for a selected object
in the scene. In comparison, we carefully designed our experiment
to minimise any such confounding variable that might influence the
results.

Furthermore, participants expressed a significantly higher level
of motivation in the AR condition. This is in line with previous
work [12, 34] and should be considered when interpreting our results
since motivation can be an important factor in learning [8] and tech-
nology can play a significant role in this [35]. What causes higher
motivation falls out of the scope of this study; however, one could
hypothesise that the novelty of the AR plays an important role. The
observations show that participants were excited about testing the AR
HMD compared to using a tablet. This introduces a need for a longi-
tudinal study of using AR in vocabulary learning, as the influence of
motivation might decrease with increasing familiarity with the system.

Interestingly, the AR condition also outperformed the NON-AR con-
dition in task completion time (about 11% faster). This results show
that participants were able to learn all words faster in AR condition
compared to the NON-AR condition whilst also achieving higher imme-

diate recall scores. This result is also somewhat surprising as AR is at a
disadvantage to NON-AR for activating objects. That is, target selection
in our setup was typically faster on a tablet computer compared to
in mid-air tapping on a HMD. Furthermore, a tablet computer also
offered instant access to all buttons at the same distance, whereas users
need to physically move to activate some of the buttons in AR. One
future direction could involve making users spend the same amount of
time in both conditions and explore if this would further improve the
performance of AR condition.

6.3 Keyword vs. Keyword + Visualisation
Regarding our second independent variable INSTRUCTION MODE, our
results clearly show that vocabulary learning can be improved beyond
the traditional keyword method, by augmenting the keywords with
animated 3D visualisations. We found overwhelming evidence for this
in all metrics, such as immediate and delayed recall, learning efficiency,
mental effort, and even task completion time.

This is in line with observations by Shapiro and Waters [67], who
reported that the level of visual imagery of a word enhances vocabu-
lary learning. In this work, we go beyond simple imagery and show
that the 3D animated content is potentially an even more effective ap-
proach. This opens up another direction for future work involving the
necessity for detailed comparison of the effect of different visualisation
techniques.

As mentioned, our results showed that providing visualisations for



keywords reduced the mental effort for vocabulary learning. However,
reducing mental effort in learning scenarios can also result in reduced
learning outcomes. For example, Salmon showed that the amount of
invested mental effort positively correlates with learning efficiency [61].
Knowing this, we could expect a decline in performance of immediate
and delayed recall. One reason why this did not happen in our case
might be the fact that enough effort was needed in order to complete the
task (moving, tapping, remembering). One way to increase the mental
effort would be to require users to come up with their own associations
for keywords instead of providing predefined keywords as in our study.
Providing predefined keywords might not be in line with user’s mental
model, thus making it difficult for the user to (mentally) visualise
them. This could have made visualisations in our study more important.
However, previous research suggests that users might have difficulties
coming up with their own keywords and that predefined keywords lead
to better learning outcomes [4]. Despite, future studies should explore
if the difference persists also when personalised keywords are used in
learning scenario presented in this study.

6.4 Implications and Design Recommendations

The benefits of the keyword method over other learning techniques
are well known [30, 51]. We have shown that the keyword method
can provide even better results by adding animated visualisations that
depict the keyword itself. This is an important implication for designing
such applications for vocabulary learning. However, this also opens
up several questions. For example, do animations of visualisations of
keywords contribute to the learning outcome or would visualisation
without an animation result in comparable efficiency?

One of the most important things to consider in designing such a
system is the keywords or words from the language a learner speaks that
sound similar to the word being learnt. In our prototype, we only used
a limited set of vocabulary for which we were able to find appropriate
keywords and accompanying visualisations. Finding these keywords
and visualisations takes time, which needs to be considered when
thinking about applying this method in practice. And it is no necessary
that every word would have an appropriate keyword. Crowd-sourcing
could be one approach to tackle this problem. Additionally, approaches
for automating the process of finding keywords already exist [2]. Also,
our future direction will involve investigating the effect of asking users
to choose their own keywords and visualisations. A system that would
use a combination of these approaches could probably satisfy a variety
of learning types.

Another thing to keep in mind, and we are not aware of any study
investigating it, is the fact that the vast number of keywords might be
overwhelming for users. One of the unanswered question is thus how
many keywords is recommended to provide at one time (in our study
only one was shown at the time to direct users).

For the purpose of this study we used marker based tracking to
initialise the settings in AR. As such, our system was linked to a
particular physical space. To enable wider adoption, another space-
independent object recognition technique should be used as discussed
in Sect. 3.2. Such a system would also need to have a database of
objects with the corresponding keywords available upfront so when
users look at a physical scene AR visualisations would be fetched on
the fly.

Only two participants used all the available time to learn and all
10 words were correctly remembered in 23% of immediate and 4%
of delayed recall tests. For immediate recall we might have reached
the ceiling effect, and making the task more difficult would highlight
even greater changes between the test conditions. This was even more
obvious for delayed recall, where only very few users finished the test
with no errors. This could be taken in consideration when building such
a system – during the testing phase the system should try to increase
the level of engagement and encourage users to take more time, while
and after testing the system should encourage users to rethink about
wrong answers.

6.5 Limitations

As explained in Sect. 5 gender did not have a significant effect on the
results of the study. However, future work should look into a possible
gender bias in more detail with a higher number of participants, as our
result on this is not conclusive.

Another thing to consider in our study is age bias. However, the age
group studied is highly mobile, spending extended periods of time in
foreign countries (for example, the EU Erasmus+ programme alone
funds more than half a million exchanges yearly [16]). As such, this
group could benefit from an improved vocabulary learning system. Nev-
ertheless, the results cannot be generalised over the whole population,
and expanding the study to other age groups and exploring the effect of
age on the proposed learning system is an important future direction.

Further, we only used nouns in our prototype. More specifically,
all nouns were associated with objects. In fact, a number of studies
have shown that concrete terms (e.g., nouns such as bread) are better
remembered than abstract terms (e.g., abstract nouns and verbs) [70].
The benefits of in-situ learning with AR will therefore be reduced when
abstract terms are considered as it becomes difficult to make them rele-
vant to context of users’ immediate environment. Nevertheless, future
studies could focus on exploring the potential of 3D AR animation to
make abstract terms visually more accessible.

As mentioned in the paper, our prototype was only tested for a short
time on a limited vocabulary. To further validate our findings, the
vocabulary should be expanded and tested over a longer period of time.
Especially the effect of higher motivation in AR could wear off as users
become more familiar with the system. Additionally, we only measured
the immediate recall (immediately after participants had completed the
task) and a delayed recall (a week after participants had completed the
task) of the vocabulary learned. Future work should also consider recall
after longer periods of several weeks. This could also be combined
with repeating the learning phase in certain intervals, as it is normally
done when learning vocabulary.

7 CONCLUSION

Learning vocabulary can be enhanced when encountering words in
context. This context can be afforded by the place or activity people
are engaged with. For this purpose we developed VocabulARy, a HMD
AR system that visually annotates objects in the user’s surroundings,
with the corresponding English (first language) and Japanese (second
language) words to enhance the language learning process. In addition
to the written and audio description of each word, we also present
the user with a keyword and its animated 3D visualisation to enhance
memory retention.

We evaluated our prototype by comparing it to an alternate AR sys-
tem that does not show any additional visualisation of the keyword,
and also, we compare it to two non-AR systems on a tablet, one with
and one without visualising the keyword. Our results indicate that
AR outperforms the NON-AR system regarding short-term retention,
mental effort and task-completion time. Additionally, the visualisation
approach scored significantly higher than only showing the written key-
word with respect to immediate and delayed recall, learning efficiency,
mental effort and task-completion time. Visualisation of keywords thus
proved more efficient compared with the traditional keyword method
only and opens new avenues for future improvements in AR enabled
vocabulary learning systems.

ACKNOWLEDGMENTS

The authors wish to thank Cuauthli Campos for helping with preparing
the video and all the volunteers who participated in the user study.

This research was supported by European Commission through the
InnoRenew CoE project (Grant Agreement 739574) under the Hori-
zon2020 Widespread-Teaming program and the Republic of Slovenia
(investment funding of the Republic of Slovenia and the European
Union of the European Regional Development Fund). We also acknowl-
edge support from the Slovenian research agency ARRS (program no.
BI-DE/20-21-002, P1-0383, J1-9186, J1-1715, J5-1796, and J1-1692).



REFERENCES

[1] M. Amiryousefi and S. Ketabi. Mnemonic instruction: A way to boost
vocabulary learning and recall. Journal of Language Teaching & Research,
2(1), 2011.

[2] O. Anonthanasap, C. He, K. Takashima, T. Leelanupab, and Y. Kitamura.
Mnemonic-based interactive interface for second-language vocabulary
learning. Proceedings of the Human Interface Society, HIS, 14, 2014.

[3] D. Ary, L. C. Jacobs, C. K. S. Irvine, and D. Walker. Introduction to
research in education. Cengage Learning, 2018.

[4] R. C. Atkinson. Mnemotechnics in second-language learning. American
psychologist, 30(8):821, 1975.

[5] J. Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[6] H. D. Brown and S. T. Gonzo. Readings on second language acquisition.
Allyn & Bacon, 1995.

[7] R. O. Castle and D. W. Murray. Object recognition and localization while
tracking and mapping. In 2009 8th IEEE International Symposium on
Mixed and Augmented Reality, pp. 179–180, 2009. doi: 10.1109/ISMAR.
2009.5336477

[8] Y.-C. Chen and P.-C. Chen. The effect of english popular songs on learning
motivation and learning performance. WHAMPOA-An Interdisciplinary
Journal, 56:13–28, 2009.

[9] R. C. Clark, F. Nguyen, and J. Sweller. Efficiency in learning: Evidence-
based guidelines to manage cognitive load. John Wiley & Sons, 2011.

[10] A. D. Cohen and E. Aphek. Retention of second-language vocabulary over-
time: Investigating the role of mnemonic associations. System, 8(3):221–
235, 1980.

[11] J. Cohen. Statistical power analysis for the behavioral sciences. England:
Routledge, 1988.

[12] C. S. C. Dalim, M. S. Sunar, A. Dey, and M. Billinghurst. Using augmented
reality with speech input for non-native children’s language learning.
International Journal of Human-Computer Studies, 134:44–64, 2020.

[13] F. Draxler, A. Labrie, A. Schmidt, and L. L. Chuang. Augmented reality to
enable users in learning case grammar from their real-world interactions. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1–12, 2020.

[14] J. Dunlosky, K. A. Rawson, E. J. Marsh, M. J. Nathan, and D. T. Will-
ingham. Improving students’ learning with effective learning techniques:
Promising directions from cognitive and educational psychology. Psycho-
logical Science in the Public interest, 14(1):4–58, 2013.

[15] D. Edge, E. Searle, K. Chiu, J. Zhao, and J. A. Landay. Micromandarin:
mobile language learning in context. In Proceedings of the SIGCHI
conference on human factors in computing systems, pp. 3169–3178, 2011.

[16] Erasmus+. Factsheets and statistics on Erasmus+. https://
erasmus-plus.ec.europa.eu/node/2585. 2022-05-24.

[17] P. A. Freund, J.-T. Kuhn, and H. Holling. Measuring current achieve-
ment motivation with the qcm: Short form development and investiga-
tion of measurement invariance. Personality and Individual Differences,
51(5):629–634, 2011.

[18] Y. Fujimoto, G. Yamamoto, H. Kato, and J. Miyazaki. Relation between
location of information displayed by augmented reality and user’s mem-
orization. In Proceedings of the 3rd Augmented Human International
Conference, pp. 1–8, 2012.

[19] T. Georgiev, E. Georgieva, and A. Smrikarov. M-learning-a new stage
of e-learning. In International conference on computer systems and
technologies-CompSysTech, vol. 4, pp. 1–4, 200.

[20] J. Guo, D. Weng, Z. Zhang, H. Jiang, Y. Liu, Y. Wang, and H. B.-L.
Duh. Mixed reality office system based on maslow’s hierarchy of needs:
Towards the long-term immersion in virtual environments. In 2019 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp.
224–235. IEEE, 2019.

[21] J. Guo, D. Weng, Z. Zhang, Y. Liu, and Y. Wang. Evaluation of maslows
hierarchy of needs on long-term use of hmds–a case study of office en-
vironment. In 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pp. 948–949. IEEE, 2019.

[22] A. K. Halabi. Applying an instructional learning efficiency model to
determine the most efficient feedback for teaching introductory accounting.
Global Perspectives on Accounting Education, 3(1):6, 2006.

[23] S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings
of the human factors and ergonomics society annual meeting, vol. 50, pp.
904–908. Sage publications Sage CA: Los Angeles, CA, 2006.

[24] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load index):
Results of empirical and theoretical research. In Advances in psychology,

vol. 52, pp. 139–183. Elsevier, 1988.
[25] A. Hautasaari, T. Hamada, K. Ishiyama, and S. Fukushima. Vocabura: A

method for supporting second language vocabulary learning while walking.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(4):1–23, 2019.

[26] A. Hinderks, M. Schrepp, and J. Thomaschewski. A benchmark for
the short version of the user experience questionnaire. In WEBIST, pp.
373–377, 2018.
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Chapter 7

Conclusion

Nowadays, harnessing the wonders of technology means that we can learn not only in
classrooms, but anywhere, anytime in our daily lives. This factor has motivated the
studies described in the previous chapters of this thesis. While technological innova-
tions have become great “door openers” for learning, thought should also be given to
the obstacles they have yet to overcome, such as the impact on established learning
approaches and experiences. To understand and solve this problem, it is necessary to
explore from many perspectives how technology can and could be meaningfully inte-
grated into our daily lives. In this work, we have chosen to look more closely at the
use of extended reality (XR) technology from the perspective of designing adaptive
guidance and creating experiential learning (ExL) environments to explore the benefits
and identify areas for future development. This concluding chapter will bring together
the key findings of the research articles presented in this thesis. Section 7.1 considers
how the findings of di↵erent user studies address the research questions presented in
Section 1.2 followed by the recap of research contributions of this thesis (Section 7.2).
This is followed by a discussion regarding the limitations of this research and possible
directions for future work in Section 7.3. Lastly, this chapter closes in Section 7.4 with
concluding remarks around the value of this work.

7.1 Experiential Learning in XR

This work investigated the potential of XR technologies in designing and implementing
adaptive learning environments that aim to tailor the learning experience to meet each
learner’s unique needs, enhance their understanding and increase engagement through
interactive and stimulating environments supported by e↵ective guidance. It explored
the e↵ectiveness of di↵erent configurations of XR, ExL, and instructional guidance in
creating immersive learning experiences.

We structure the research presented around four research questions (RQs) each with
several corresponding hypothesis (see Section 1.2). To answer the research questions,
three studies were conducted – each focusing on an experiential learning system devel-
oped based on a particular configuration of the design space presented in Chapter 3 (i.e.,
focusing on di↵erent configurations of XR based instruction to support experiential
learning). Each study resulted in a di↵erent research publication, as presented in
Chapter 4, Chapter 5, and Chapter 6.

84
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In Study 1 (VRNav Study: Chapter 4), our objective was to explore how di↵erent Dis-
play Configurations and Data Modalities would a↵ect user engagement and understand-
ing of space with minimal guidance. We observed and evaluated di↵erent representation
methods –i.e., VR, desktop and 2D paper-based floor plans – on spatial learning in ExL
environments, through various data collection and standard questionnaires combining
qualitative and quantitative research methods. The findings from this study provided
valuable insights into the impact of immersive VR and other representation methods
on user experience, user engagement dimensions, and spatial understanding of ExL
environments. These findings helped to address RQ1 and RQ4 and are discussed in
detail within the following subsections (7.1.1 and 7.1.2).

In Study 2 (Arigatō Study : Chapter 5), we aimed to investigate the influence of the
Experiential Learning (ExL) cycle and di↵erent adaptation factors of Guidance –i.e.,
the amount and the type of the guidance – on user experience, engagement, and learning
outcomes in a language learning task. This was achieved by designing a HMD based
AR language learning system that o↵ers immediate assistance to guide learners through
di↵erent stages of the ExL cycle addressing RQ1. By examining the amount and type of
guidance provided, we addressed RQ3. The findings from this study also helped identify
XR interventions that could be used to enhance instructional guidance addressing
RQ2. Furthermore, this study investigated how the dynamic adaptations of guidance
influenced user experience, engagement, and performance in a language learning task
within an immersive AR ExL environment, which contributed to addressing RQ4.

In Study 3 (VocabulARy Study : Chapter 6), we focused on investigating the impact of
di↵erent Display Configurations (i.e., AR HMD and non-AR 2D display) and di↵erent
types of Guidance (i.e., keyword only and keyword + visualisations) on user engage-
ment and learning performance in a vocabulary learning task. This was achieved by
designing an HMD application that visually annotated objects in the user’s surround-
ings and compared it to a non-AR system on a tablet. This study directly addressed
RQ1 and RQ4, and provided valuable findings into the importance and e↵ectiveness
of AR and di↵erent types of guidance in immersive vocabulary learning environments.
These are discussed in detail within the following subsections.

While each study contributes to the overall research aim, it is crucial to merge the
findings together to gain clearer insights into how the four research questions were
addressed. By doing so, we can enhance our understanding of the impact of di↵erent
configurations of XR, ExL, and instructional guidance on user experience, engagement
and learning performance in ExL environments.

7.1.1 Impact on User Experience and Engagement

The impact of XR technology on the experience and engagement of the users was an
underlying theme of each of the studies conducted in this thesis.

Engagement can be categorised into a↵ective, cognitive, and behavioural engage-
ment [12]. In Study 1 (VRNav Study), presented in Chapter 4, we hypothesised that
the di↵erent Display Configurations and Data Modalities –i.e., representation meth-
ods – would a↵ect engagement (H1-2, H4-1). The results of VRNav Study clearly
confirm these two hypotheses. For example, we measured behavioural engagement for
VR and desktop conditions by observing where users spent their time and how much



86 7.1. EXPERIENTIAL LEARNING IN XR

time they spent in di↵erent locations and found out that people spent nearly 40% more
time moving in VR compared to the desktop. Perhaps this is the case because moving
in space has been pointed out as one of the pivotal a↵ordances in VR [143, 54]. This
shows that the display configuration has a clear e↵ect on engagement. On the other
hand, in paper condition we could also observe users being more interested in renders
(egocentric view) than in floor plans (allocentric view). This was expected as floor
plans can be hard to mentally translate to an egocentric view for non professionals,
which has also been found in this study. This shows the data modalities have a clear
e↵ect on engagement.

In addition, in VRNav Study, we also measured a↵ective engagement through analysis
of facial expression for desktop and paper conditions. The amount of positive feelings
was higher in the desktop condition. Significantly more negative feelings were recorded
in the paper condition, while these were almost absent in the desktop condition. A↵ec-
tive engagement is directly linked to the sense of presence and emotions. For example,
experience in anxious or relaxing VR environments increased these emotions as well as
the sense of presence [106]. Studies on learning in VR also report on higher emotional
arousal compared to content presented on a computer monitor [97]. We could not
measure a↵ective engagement in the VR condition; although, since the virtual environ-
ment was the same in the desktop condition as in the VR condition, and since users
spent considerably more time in the VR condition, we can assume that the VR condi-
tion would show even higher a↵ective engagement based on the increased behavioural
engagement. Again this shows the display configuration a↵ects engagement.

In Study 2 (Arigatō Study), presented in Chapter 5, we hypothesised that di↵erent
adaptation factors ofGuidance –i.e., the type and the amount of guidance – would a↵ect
engagement and enable the creation of more e↵ective immersive adaptive educational
systems (H4-1, H3-1). The results of Arigatō Study confirm these hypothesise. For
example in Arigatō Study, we measured behavioural engagement for fixed-guidance
and adaptive-guidance by observing how participants interacted with the AR language
learning system and how much time they spent in each condition. We could observe
participants being more interested in adaptive-association type of guidance than the
fixed-association type of guidance, even though they completed the task in less time.
This was expected, since the keyword method has been suggested to motivate learners
to be more creative and to use their minds more productively [105]. This clearly
indicates the the amount and type of guidance a↵ect engagement, which in turn enable
the creation of more e↵ective immersive adaptive educational systems.

In addition, the Arigatō Study also measured the cognitive engagement for study condi-
tions by analysing how much mental e↵ort participants invested in completing the task.
We found that the mental e↵ort with the adaptive-amount of guidance was significantly
lower compared to the fixed-amount of guidance. This is in line with the literature, as
prior work has shown that repeating the same information could increase the amount
of cognitive work and consequently the mental e↵ort [109]. We further identified that
the mental e↵ort in the adaptive-association type of guidance was lower than in fixed-
association type of guidance. This was expected, as the keyword method connects new
learning to prior knowledge through the use of visual and/or acoustic cues [101, 84],
which could lower the mental e↵ort. This again confirms that the amount and type of
guidance a↵ects engagement.
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The ability to change the amount of guidance dynamically in the Arigatō Study clearly
shows it is possible to remodel the guidance in XR environments based on the engage-
ment and learning outcomes (H2-1). The study also revealed indirect evidence that the
explicit guidance can support the learner to move from one stage to the other in Kolb’s
ExL cycle (H2-2).This finding is based on good learning outcomes and above average
user experience scores reported by UEQ questionnaire. Both would not be possible if
learners would not successfully move through all stages of Kolb’s ExL cycle [69].

In Study 3 (VocabulARy Study), presented in Chapter 6, we hypothesised that di↵erent
Display Configurations (i.e., AR HMD and non-AR 2D display) and di↵erent types of
Guidance (i.e., keyword only and keyword + visualisations) would a↵ect engagement
(H4-1, H4-2). The results of VocabulARy Study confirm these hypotheses. For ex-
ample, in VocabulARy Study, we measured behavioural engagement by observing how
participants interacted with the vocabulary learning system and how much time they
spent in each condition. We could observe participants being more interested in learn-
ing in AR compared to the non-AR condition, even though they completed the task
in less time. This confirms that the display configuration has an e↵ect on engagement.
In Study 3 (VocabulARy Study), we also measured the cognitive engagement for study
conditions by analysing how much mental e↵ort participants invested in completing
the task. We found that the mental e↵ort within the AR was significantly lower com-
pared to the non-AR. We further identified that the mental e↵ort in the keyword +
visualisations type of guidance was lower than in keyword only type of guidance. Inline
with the findings from Study 2, this was expected, as the level of visual imagery of a
word enhances vocabulary learning [116]. This confirms that the type of guidance has
an e↵ect on engagement.

In all the studies we used the UEQ questionnaire which provides a benchmark to
compare user experience between di↵erent systems [53]. It measures pragmatic factors
of a system (including e�ciency, perspicuity and dependability) and hedonic factors
(including stimulation and novelty). The results showed very positive scores for all XR
systems in particular for the hedonic factors. This confirms our hypothesis that XR
learning environments can outperform standard learning systems (H3-1).

7.1.2 Impact on Learning Outcomes

The studies conducted as part of this thesis, provide insights into how learning outcomes
are a↵ected by the XR technology and instructions design. While Study 1 provides a
‘broad & general’ view of the role of learning and guidance, the findings from Study
2 and Study 3 provide a very ‘concentrated & specific’ perspective of the impact XR
technology on learning and designing guidance.

It has long been argued that spatial understanding is the VR’s most intuitive bene-
fit [23]. In the physical world we exploit several depth cues such as stereopsis, motion
parallax, perspective, and occlusion for reconstructing 3D scenes. Similar depth cues
can be provided by a detailed 3D VR environment and a high level of immersion can
lead to greater spatial understanding. In Study 1 (VRNav Study), we hypothesised
that the immersive VR condition will improve learning outcomes, such as for example
spatial understanding (H4-1). The results of VRNav Study confirm this hypothesis.
For example we explored participants’ understanding of the space by measuring par-
ticipants’ abilities to estimate distance and direction within the functional space in
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three conditions (i.e., VR, desktop and 2D paper-based floor plans). The findings from
Study 1 show that users in desktop and VR conditions underestimated distances and
users in VR condition were best in distance estimation with the error rate of around
7% (desktop 13%). The highly-detailed virtual environment o↵ering several depth cues
probably lead to the results comparable to real world distance estimations [140, 123].
Active exploration of the virtual environment can also lead to accurate egocentric dis-
tance between virtual objects [123].

In the study, participants also had to estimate the direction to a certain interesting area
(landmark) from their egocentric position using traditional direction circles [134]. As in
distance estimations, this was done for when egocentric position and users were on the
same floor, when there was one floor di↵erence (between the user and the interesting
area) and two floor di↵erence. The direction estimations in all study conditions resulted
in high error rates (VR error was minimum) and we found no significant di↵erence in
direction estimation in all three study conditions. The findings in the literature show
approximately 85% correctness in direction estimation while observing simple objects
in non-realistic desktop based virtual environment [5]. Other studies showed that
estimating directions in real, high-detailed desktop based and VR based environment
are comparable and amount to around 8° error for adults [134, 59]. While estimations
using direction circles had an error twice as high [134]. It has to be stresses out
that in all these studies participants had clear tasks to perform before being tested.
The free-style tour used in our experiment clearly a↵ected our results. Nevertheless,
these findings confirms our hypothesis that immersive VR environment improves spatial
understanding.

In Study 2 (Arigatō Study), we hypothesised the the type and the amount of instruc-
tional guidance generated by XR environments would a↵ect the learning outcomes
whilst adaptive amount of guidance will also outperform fixed amount (H4-2, H4-3).
The results of Arigatō Study confirm only the hypothesis H4-2. For example, in Ari-
gatō Study we measured learning performance through analysis of recall (immediate
recall after the study and delayed recall test 7 days after the study) and learning ef-
ficiency. Interestingly, we found that compared to the adaptive-amount of guidance,
the fixed-amount of guidance group scored better in the immediate and delayed recall
tests, although they have invested a significantly higher mental e↵ort during the task.
In addition, we found that the adaptive-associations type of guidance outperformed
the fixed-associations type of guidance, in the immediate, delayed recall tests, and
learning e�ciency, while investing a significantly lower mental e↵ort and spending less
amount of time to complete the task. These finding suggest avenues for future work
in archetypal user models, which might allow users to slowly adapt pre-developed per-
sonal models from a standard set of ideal users. What we would refer to as the “follow
the leader” learning approach. These findings clearly confirm our hypothesis that the
type and the amount of instructional guidance a↵ects the learning outcomes, however
rejects the hypothesis that the adaptive-amount is better than fixed-amount.

In Study 3 (VocabulARy Study), we hypothesised that the display configuration and
the type of instructional guidance generated by XR environments would a↵ect the
learning outcomes and enable immersive educational systems that would outperform
standard learning systems (H4-1, H4-2 and H3-1). The results of VocabulARy Study
confirm these hypotheses. For example, in VocabulARy we again measured learning
immediate recall, delayed recall and learning e�ciency metrics to measure the learning
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performance. Our findings show that immediate recall (a recall of words right after
the study) in the AR system is significantly higher compared to the non-AR system.
However, no statistical significance was detected for the delayed recall (a recall of the
same words a week after the study). Nonetheless, it is important to note that signif-
icance was only marginally missed for the delayed recall. Furthermore, participants
expressed a significantly higher level of motivation in the AR condition. This is in line
with previous work [37, 82] and should be considered when interpreting our results,
since the motivation can be an important factor in learning [31] and technology can
play a significant role as well [83]. These findings clearly confirm our hypotheses that
the display configuration and the type of instructional guidance a↵ect the learning
outcomes.

The findings form Study 3 also show that the vocabulary learning can be improved
beyond the traditional keyword method, by augmenting the keywords with animated
3D visualisations. We found overwhelming evidence for this in all metrics, such as
immediate and delayed recall and learning e�ciency. This is in line with observations
by Shapiro and Waters [116], who reported that the level of visual imagery of a word
enhances vocabulary learning. In this work, we go beyond simple imagery and show
that the 3D animated content is potentially an even more e↵ective approach. Our
findings also show that providing visualisations for keywords reduced the mental e↵ort
for vocabulary learning. However, reducing mental e↵ort in learning scenarios can also
result in reduced learning outcomes. For example, Salmon showed that the amount of
invested mental e↵ort positively correlates with learning e�ciency [110].

Knowing this, we could expect a decline in performance of immediate and delayed re-
call. One reason why this did not happen in our case might be the fact that enough
e↵ort was needed in order to complete the task (moving, tapping, remembering). One
way to increase the mental e↵ort would be to require users to come up with their own
associations for keywords instead of providing predefined keywords as in our study.
Providing predefined keywords might not be in line with user’s mental model, thus
making it di�cult for the user to (mentally) visualise them. This could have made
visualisations in our study more important. However, previous research suggests that
users might have di�culties coming up with their own keywords and that predefined
keywords lead to better learning outcomes [14]. Overall, it is Study 2 (Arigatō Study)
and Study 3 (VocabulARy Study), which provide direct insights into the potential im-
pact of XR technology for designing interactive, adaptive ExL environments for better
learning outcomes. This clearly confirms that the XR technology has the potential
to generate immersive educational systems that could outperform standard learning
systems.

7.2 Contributions Recapped

This work explored the role of XR technology for designing interactive ExL systems: its
impacts on learning and learning experience. Taken together, these findings contribute
to the design and development of interactive XR based experiential learning systems
that can meet the diverse learning needs and preferences of individual learners, leading
to improved learning outcomes. As part of this, the potential for technology to be a
source of disruption is acknowledged; negatively a↵ecting the activities in the learning
experiences of the learners. The findings of Chapter 4, 5 and 6 shed light on several
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significant contributions that are of interest to educators, researchers, and designers
alike.

First, this thesis presents a range of user studies conducted to demonstrate the e↵ec-
tiveness of XR in designing interactive ExL environments. These studies, detailed in
Chapter 4, Chapter 5 and Chapter 6, showcase how XR technology maximises user
experience and engagement, consequently enhancing learning performance. Further-
more, the studies highlights successful examples of XR interventions that e↵ectively
guide learners through various stages of the ExL cycle. Chapter 4 outlines how XR
can create engaging experiences while minimising the need for explicit guidance, thus
fostering user engagement.

The research investigates design considerations for immersive ExL environments, fo-
cusing on adapting the type and amount of guidance provided to maximise user en-
gagement and learning performance. Chapter 5 explores how adjusting the level of
guidance influences user engagement, while Chapter 4 delves into adapting the type of
guidance to enhance user engagement and learning outcomes.

A comprehensive analysis of various variables, including user experience, dimensions
of user engagement and learning outcomes, is presented in Chapter 7. This analysis
aims to better understand the usability of XR for designing interactive and adaptive
ExL environments, consolidating insights gained from empirical research.

In summary, this thesis provides educators, researchers, and designers with evidence
of XR’s usability in designing interactive ExL environments, successful examples of
XR interventions for guidance and support, design considerations for maximising user
engagement and learning performance, and comprehensive analyses of user engagement
and learning outcomes. The findings contribute to the advancement of XR technology
in education and lay the foundation for the development of innovative interactive and
experiential learning systems in the future.

7.3 Limitations and Future Work

As with many research projects there are limitations which should be acknowledged.
As described in Section 1.3, the mixed methodological approach to the study design,
data collection and data analysis itself provides limitations to the results presented
in the studies. More specifically, failings in the experimental set-up of a study o↵ers
an opportunity to critique the findings presented. For example, if the sample size is
too small or not representative of the population of interest, the results may not be
statistically significant or applicable to a larger population. Similarly, if the control
group is not properly defined or not properly controlled, it may lead to confounding
variables that can skew the results. Additionally, as with all studies, the possibilities
for bias (either from the researcher, the data collection, the data analysis or from
participants), should all be considered as sources of potential error. For example using
questionnaires for measuring certain aspects such as motivation, system usability, user
experience and mental e↵ort can result in social desirability bias [36] as users could
answer them to please the researcher.

The average age of the participants of the studies within this thesis was 27 years (mostly
university students except for some participants of Study 01), which presents a possible
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age bias. Choosing participants of this age group was a decision based on several
factors: access to the participants; the age group studied is highly mobile; and ability
to articulate thoughts and opinions. However, this has meant that the work has not
addressed younger children or older participants, or those with cognitive impairments.
Furthermore, the cultural background of our participants were comparable. As a result,
our findings cannot be said to be indicative, representative or generalised over the
whole population, in every region of the world. Thus expanding the studies to other
age groups, cultural backgrounds and exploring the e↵ects on the proposed systems is
an important future direction.

Furthermore, our systems were only tested for a shorter period of time. To further
validate our findings, the systems should be expanded and tested over a longer period
of time. Especially, the e↵ect of higher motivation and engagement in XR environ-
ments could wear o↵ as users become more familiar with the system. Additionally,
learning performances of Study 2 (Arigatō Study : Chapter 5) and 3 (vocablARy Study :
Chapter 6) were measured only, immediately after participants had completed the task
and a week after participants had completed the task. Future work should also con-
sider measure performances after longer periods of several weeks. This could also be
combined with repeating the learning phase in certain intervals.

Finally, the technology that was evaluated in this work is itself a limitation. The results
presented in this work have limited applicability to the technologies used within the
studies. Furthermore, as technology continues to develop and improve, some of the
usability or experiential issues identified may now have changed or no longer exist.

7.4 Concluding Remarks

As we move into the future, it is important to consider how educational approaches
and theories can and should adapt to both the capabilities of modern technology
and the needs of the students within it. As more and more new technology, such
as artificial intelligent (AI), and extended reality (XR) environments enter class-
rooms and educational setups – from primary school through to the university –,
questions around their suitability arise. How can we promote better learning, or
at the very least not impeded when using novel technology. This concern has
been the main motivation behind the research conducted in this thesis. How
to best incorporate new technology into learning environments is a challenge for
researchers in the areas of HCI and education. This thesis, and the studies con-
ducted within it, has provided a small contribution to meeting that challenge. Finally,

With or without “Magic”...
“Learning without reflection is a
waste. Reflection without learning
is dangerous.”

-
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