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Enhanced subglacial discharge from
Antarctica during meltwater pulse 1A

Tao Li 1,2,3 , Laura F. Robinson2,4, Graeme A. MacGilchrist5,6, Tianyu Chen 3,
JosephA. Stewart 2, AndreaBurke 6,MaoyuWang3,Gaojun Li 3, JunChen3&
James W. B. Rae 6

Subglacial discharge from the Antarctic Ice Sheet (AIS) likely played a crucial
role in the loss of the ice sheet and the subsequent rise in sea level during the
last deglaciation. However, no direct proxy is currently available to document
subglacial discharge from the AIS, which leaves significant gaps in our
understanding of the complex interactions between subglacial discharge and
ice-sheet stability. Here we present deep-sea coral 234U/238U records from the
Drake Passage in the Southern Ocean to track subglacial discharge from the
AIS. Our findings reveal distinctively higher seawater 234U/238U values from
15,400 to 14,000 years ago, corresponding to the period of the highest
iceberg-rafted debris flux and the occurrence of the meltwater pulse 1A event.
This correlation suggests a causal link between enhanced subglacial discharge,
synchronous retreat of the AIS, and the rapid rise in sea levels. The enhanced
subglacial discharge and subsequent AIS retreat appear to have been pre-
conditioned by a stronger and warmer Circumpolar Deep Water, thus under-
scoring the critical role of oceanic heat in driving major ice-sheet retreat.

The uranium isotopic (δ234U = (234U/238Uactivity ratio − 1) × 1000) com-
position of seawater is a potential tracer for subglacial discharge and
thus ice-sheet stability in the past1,2. Due to the relativelymobile nature
of 234U induced by α-recoil effects3, 234U is preferentially released and
transported to the ocean via riverine input4,5, resulting in an enrich-
ment of 234U relative to 238U in modern seawater (δ234U = 146.8‰)6.
Within debris-ladenbasal ice and subglacial sediments, however, recoil
rejection of 234U is maintained in either basal ice or subglacial waters,
thus leading to a 234U-enriched reservoir beneath the ice sheets2. For
example, lake waters derived from the melting of glaciers in the
McMurdoDryValleys, East Antarctica, havebeen found to exhibitδ234U
values exceeding 4000‰7. High δ234U values of a similar magnitude
have also been observed in chemical precipitates formed in subglacial
aquatic environments in East Antarctica2. These observations collec-
tively suggest that 234U-enrichment is likely a prevalent characteristic
of subglacial water beneath the Antarctic Ice Sheet (AIS).

Given the widespread presence of subglacial lakes beneath
the AIS8, the pool of excess 234U is expected to be considerable, andmay
have significantly impacted local seawater δ234U if it was released into
the Southern Ocean during episodes of AIS retreat during the last
deglaciation. A parallel event occurred due to the collapse of the
Laurentide ice sheet during the last deglaciation, resulting in a tem-
porary positive shift in Atlantic δ234U that overshoots the modern value
by 3‰1. Nevertheless, the presence of the strong Antarctic Circumpolar
Current (ACC) encircling the Antarctic continent implies that any sea-
water δ234U anomaly caused by subglacial discharge from the AISwould
quickly disperse in the Southern Ocean9 (Fig. 1). This suggests that
reconstructions of Southern Ocean seawater δ234U are likely to capture
such anomalies only during significant subglacial discharge events.

Deep-sea scleractinian corals have been used to reconstruct the
evolution of seawater δ234U in the past1, 10. The incorporation of U into
coral skeletonsduring their growth not only enables thedetermination
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of coral ages through U-Th dating but also allows for the reconstruc-
tion of δ234U of contemporaneous seawater (δ234Ui)

11. However, the
reliability of this method faces two primary challenges linked to the
preservation of fossil coral samples. Firstly, potential post-mortem
diagenetic alteration of the coral skeleton can lead to open-system
behavior within U-series isotopes, resulting in biased dates and δ234Ui

values12. One common approach to identify altered fossil deep-sea
coral samples involves comparing their δ234Ui with the modern sea-
water value. This relies on the assumption that seawater δ234U remains
relatively stable over deglacial timescales (~10 thousand years (kyr))
due to the long residence time of U in seawater (~400 kyr)13,14. How-
ever, a growing body of research suggests that seawater δ234U is not
constant, exhibiting discernible glacial-interglacial cycles10,15–17, with
lower δ234U during the glacial period than the interglacial period, and
resolvable inter-basin difference during the last deglaciation1. It is
therefore important to deconvolve the relative contributions of
diagenetic overprinting versus seawater variations to obtain a reliable
Southern Ocean seawater δ234U record, which requires high sample
density within the target age interval. Secondly, U-Th dating of deep-
sea corals is complicated by the need to correct for initial 230Th,
introduced by either detrital silicates or Fe-Mn oxides with uncertain
230Th/232Th activity ratios. The initial 230Th correction, based on
measured 232Th contents, has a significant impact on the final age
results, although its influence on the δ234Ui values is somewhat muted
(Supplementary Fig. 1). Additionally, deep-sea coral samples with high
external Th content may potentially undergo open-system processes
caused bymicrobial-driven boring and organic binding of Th18, further
complicating the calculation of δ234Ui values.

In this study, deep-sea coral samples recovered from seamounts in
the Drake Passage, including two sites to the north of the polar
front (PF) (Cape Horn and Burdwood Bank), one site aligning with
the PF (Sars Seamount), and two sites to the south of the PF (Interim
Seamount andShackletonFractureZone (SFZ)),wereprecisely datedby
isotope-dilution U-Th disequilibrium (Fig. 1 and “Methods”). This com-
prehensive geographic coverage allowed us to investigate a range of
oceanographic conditions and potential sources of δ234U anomalies.
Samples were categorized into three groups: (I) shallow Sars Seamount
(647–981m), Interim Seamount (1064–1196m), and SFZ (806–823m)
that are located in the core region predominantly influenced by east-
ward ACC are most likely to record any δ234U anomaly caused by

enhanced subglacial discharge originating from the Antarctic Peninsula
and the Amundsen Sea; (II) deep Sars Seamount (1662–1701 m), deep
CapeHorn (1214–1877m), anddeepBurdwoodBank (1419–1879m) that
are today bathed by Circumpolar Deep Water (CDW) may help to dis-
cern the δ234U signal originating from other ocean basins; (III) shallow
Cape Horn (450–1012m) and shallow Burdwood Bank (316–894m) to
the north can be used to assess whether the observed δ234U anomalies
are related to discharge from the neighboring South American con-
tinent. We analyzed 38 new samples from Sars Seamount 695–981m,
and integrated these data with 335 existing U-Th measurements19–23 to
investigate the presence of δ234U anomalies in the Southern Ocean at
the highest possible temporal resolution. Benefiting from our high
sample density, deep-sea coral samples that likely experienced diage-
netic alternationswere excluded (Supplementary Fig. 2 and “Methods”).

Results and discussion
Reconstruction of Southern Ocean seawater δ234U
The range of δ234Ui observed in deep-sea corals of similar ages within a
specific location group is noticeably broader than the uncertainties
introduced by the analytical process and initial 230Th correction (Fig. 2
and Supplementary Fig. 1). This phenomenon holds true across four
different deep-sea coral genera (Desmophyllum, Caryophyllia, Fla-
bellum, andBalanophyllia), all of whichexhibit a comparabledegree of
variability and follow a common temporal trend (Supplementary
Fig. 3). This suggests that species-related effects have a negligible
impact on the first-order trend of the δ234Ui record. Replicate sampling
and analysis of six coral samples yielded consistent age results (within
uncertainties) but δ234Ui differences up to 3‰ (Supplementary Fig. 4),
which suggests that this degree of variability is likely inherent to deep-
sea coral δ234Ui records

24. This is further supported by measurements
of recent deep-sea corals (<1 thousand years ago (ka)) from different
ocean basins, which exhibit a maximum difference of ~2.6‰ although
their averaged values agree well with modern seawater δ234U (Sup-
plementary Fig. 5). These interspecimen and intraspecimen δ234Ui

variations are likely attributed to processes such as the internal diffu-
sive movement of uranium25 and coral vital effects24, which may
obscure the identification of modest δ234Ui variability. Nevertheless,
the large sample density enables us to statistically discern the large-
scale trends and noteworthy perturbations, which we delve into in-
depth in this study (Fig. 3 and Supplementary Fig. 6).
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Our results reveal a general increase in Southern Ocean seawater
δ234U from the last glacial period to the early Holocene, with a glacial
low of ~144.0‰ (~20 ka) to a value of ~148.9‰ during the early Holo-
cene (~10 ka), followed by a gradual decreasing trend towards a
modern value of 146.8‰ (i.e., identical to modern open ocean δ234U6)
(Fig. 2). When excluding the high δ234U spikes during the last degla-
ciation (discussed below), this overall deglacial trend in seawater δ234U
closely aligns with previous studies1, 10,17,26. The deglacial increase of
seawater δ234U reflects the input of excess 234U relative to 238U to the
global ocean, which has been linked to the intensified physical
weathering resulting from the rapid retreat of ice sheets during the last
deglaciation1,16. However, the subsequent Holocene drop of ~2‰ sug-
gests that the decay of 234U and the gradual mixing with lower-δ234U
watermasses has surpassed the input flux of excess 234U, which is likely
related to reduced physical weathering when ice sheets stabilized
during the Holocene (Figs. 2 and 3).

Southern Ocean seawater δ234U anomaly during the last
deglaciation
Superimposed on the general deglacial trend is a remarkable spike in
δ234U reaching up to ~155‰ from ~15.4 to 14 ka (Fig. 2a). Statistical
analysis indicates that this δ234U excursion is restricted to depths of

~1000m (Group I) within the core region primarily influenced by the
eastward ACC, whereas the other sites in the Drake Passage remain
unaffected (Fig. 1 and Fig. 3). This high δ234U signal cannot be fully
explained by the advection of 234U-enriched water from other ocean
basins for several reasons. Firstly, a weakened Atlantic Meridional
Overturning Circulation during Heinrich Stadial 1 (HS1)27–29 would
imply reduced influence of North Atlantic Deep Water (NADW) on
Southern Ocean seawater δ234U, despite the relatively high δ234U
observed in the North Atlantic1 (Supplementary Fig. 7). Secondly, the
observed δ234U spike in the Southern Ocean is significantly higher
than the peak observed in the North Atlantic, indicating a local
source of excess 234U from the south. Thirdly, deep-sea corals from
Group III do not exhibit elevated δ234U signals (Fig. 2b), which sug-
gests that the excess 234U is unlikely to be transported from other
ocean basins because the Circumpolar Deep Water (CDW) bathing
these sites today is a mixture of Atlantic-derived deep waters and
recirculating Pacific waters9. Moreover, there is also no sign of high
δ234U in the Pacific Ocean during this time interval (Supplementary
Fig. 7). The possibility of surface discharge with high δ234U from
South America can also be ruled out since no significant departure
from the deglacial δ234U trend is observed at sites closer to South
America (shallow Burdwood Bank and shallow Cape Horn) (Figs. 1
and 3). Therefore, the most plausible explanation for the identified
δ234U spike at depths of ~1000m near Antarctica is enhanced
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subglacial discharge from the AIS during this time period. It is
important to note that not all deep-sea coral samples from these sites
(Group I) exhibit high δ234U values from ~15.4 to 14 ka. Some samples
display δ234Ui values within the deglacial trend as constrained by
samples fromGroup II and III. This may reflect the episodic nature of
the subglacial discharge events from the AIS, a phenomenon also
supported by modern observations30,31. Consequently, some short-
lived corals may not have captured these transient events.

The geographically and temporally constrained nature of the
δ234U spike at the Drake Passage provides additional constraints on
the possible source regions of excess 234U. Specifically, the turbulent
nature of ocean circulation means that tracer anomalies tend to be
mixed away over rather short distances32,33. Consequently, there is a
maximum distance that this δ234U anomaly could still be detectable at
these specific depths. To visualize this distance in the vicinity of the
Drake Passage, we conducted an analysis of backward-in-time trajec-
tories originating from the approximate locations of the deep-sea
coral sites in the north and south of the Drake Passage (Fig. 4 and
“Methods”). Figure 4a shows the weighted-mean latitude of these
trajectories as a function of upstream longitude, bounded by patches
spanning two standard deviations both to the north and south.
The trajectory latitude serves as a proxy for passive tracer behavior,
helping us to understand how far upstream we can expect distinct

properties in the Drake Passage to persist32. Our results reveal
that, although the weighted-mean latitude of trajectories remains
distinct, the distribution of properties becomes increasingly indis-
tinguishable in a relatively short distance upstream (on the order of
~3000 km) (Fig. 4). This relatively constant weighted-mean latitude
likely reflects the jet-like dynamics of the ACC34,35. If the potential
source regions of excess 234U were significantly farther away from the
coral sites (e.g., in East Antarctica), the δ234U anomaly would likely be
found at both the northern and southern Drake Passage sites. While a
more precise determination of the exact origins of excess 234U would
require far tighter constraints on regional circulation during the last
deglaciation, we can reasonably conclude that the excess 234U must
have originated from a region within a few thousand kilometers
upstream of the Drake Passage, such as the Antarctic Peninsula or the
Amundsen Sea (Fig. 4a). Furthermore, it is important to note that
vertical mixing away of the δ234U anomaly occurs much more slowly
than it does horizontally because themixing coefficient is three orders
of magnitude lower in the vertical than in the horizontal dimension36.
In other words, the distinct δ234U anomaly observed at ~1000m in the
Drake Passage suggests that the excess 234U may have originated from
a similar depth range, which is close to the depth range of the
grounding line from which the dense subglacial discharge would
emanate37 (Fig. 1).
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Enhanced subglacial discharge and ice-mass loss from the AIS
To investigate the potential temporal and causal connection between
enhanced subglacial discharge and the retreat of theAISduring the last
deglaciation, we have compared the deep-sea coral δ234Ui record with
published records of iceberg-rafted debris from the Iceberg Alley sites
(MD07-3133 and MD07-3134) located ~1000 km downstream from the
coral sites in the Southern Ocean38, 39 (Figs. 1 and 5). Despite the
uncertainties associated with the age models and the interpretations
of detrital records, their high temporal resolution and proximity to the
coral sites allow for a direct comparison with our deep-sea coral δ234Ui

record. It is worth noting that the beryllium (Be) isotope composition
of marine sediments serves as a novel proxy for ice-sheet dynamics40

and has been applied to constrain the retreat history of the AIS41–43.
However, due to the absence of a continuous Be isotope record off-
shore of Antarctica that covers the last deglaciation period, it is cur-
rently unfeasible to compare the deep-sea coral δ234U anomaly with a
sediment Be isotope record.

Seven AIS discharge events are documented by the iceberg-rafted
debris record during the last deglaciation, among which the one
at ~15–14 ka (Event 6) stands out with the highest flux of iceberg-rafted
debris. Importantly, Event 6 coincides in time with the prominent high
δ234U anomaly recorded by deep-sea corals in the Drake Passage
(Fig. 5f). The δ234U anomaly in the Southern Ocean exhibits a pattern
similar to the iceberg-rafted debris record, displaying a relatively
abrupt onset at ~15.4 ka and persisting until ~14.0 ka. Although the
deep-sea coral sites in the Drake Passage are unlikely to be influenced
by downstream subglacial drainages from the Weddell Sea sector of
the AIS, as supported by trajectory analysis (Fig. 4), ice-sheetmodeling
suggests comparable ice-mass loss also from the Antarctic Peninsula
and the Amundsen Sea sectors of the AIS during this period44 (Fig. 5g).
Consistent withmodern observations of the close linkage between ice-
sheet instability and the rapid draining of subglacial water30, 31,45,46, the
fact that the largest AIS discharge event has the same age and duration
as the Southern Ocean seawater δ234U anomaly suggests a causal link
between enhanced subglacial discharge and AIS retreat during the last
deglaciation.

The Southern Ocean δ234U anomaly can be further divided into two
distinct time intervals (Fig. 5a). From ~15.4 to 14.6 ka, we observe sig-
nificant fluctuations in δ234U values ranging from 145.2‰ to 156.2‰.
Thesefluctuations are likely indicative of episodic discharge events from
the AIS. Subsequently, from ~14.6 to 14 ka, seawater δ234U remains con-
sistently elevated, exceeding 151.0‰. This prolonged period of high
δ234U suggests a sustained, catastrophic subglacial discharge from the
AIS. Intriguingly, this time interval aligns with the rapid sea-level rise
associated with meltwater pulse 1A (MWP-1A, ~14.65 to 14.3 ka) that was
initially documented by coral reefs from Barbados in the Caribbean
Sea47,48 and re-constrained by the Tahiti49 and Great Barrier Reef50 sea-
level records (Fig. 5b). In combination with research on meltwater
fingerprinting49,51,52 and the iceberg-rafted debris record39, our findings
provide evidence supporting an Antarctic contribution to MWP-1A
during the last deglaciation.However, because seawaterδ234U anomaly is
related to subglacial discharge rather than the freshwater flux resulting
from extensive melting, our results do not provide precise constraints
on the volume ofmeltwater originating from the AIS. Consequently, the
possible contribution of meltwater from Northern Hemisphere ice
sheets, such as Laurentide ice sheet53–56, Cordilleran ice sheet53,55,56, and
Eurasian ice sheet57, during MWP-1A cannot be ruled out.

Anothermeltwater pulse event termedMWP-1B (~11.5 to 11.2 ka) is
also documented in the Barbados sea-level records58. While both the
iceberg-rafted debris record and some model outputs suggest an
Antarctic contribution to MWP-1B39,44, our results do not reveal a sig-
nificant δ234U anomaly comparable to that of the MWP-1A (Fig. 5). This
is likely associated with reduced subglacial discharge from the AIS,
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predictions from a glacio-isostatic model50 (purple shading). c Mean ocean tem-
perature as constrained by noble gases trapped in ice cores60. The enveloped line
shows the splined temperature record with a 2σ uncertainty band. d Antarctic ice
core δ18O records (an air temperature proxy) from EPICA Dronning Maud Land
(EDML) plotted on the AICC2012 timescale61,78, and smoothedwith a 50-yr Gaussian
filter (dark green line). eOpalflux in the AtlanticOcean sector of the Antarctic Zone
(core TN057-13-4PC)62. f Stacked iceberg-rafted debris records from sites MD07-
3133 and MD07-3134 in the central Scotia Sea39. The numbers denote the Antarctic
Ice-sheet Discharge (AID) events. g Modeled ice-sheet mass loss history from dif-
ferent sectors of the Antarctic Ice Sheet (AIS) during the last deglaciation44. The
vertical brown bars denote the two meltwater pulse (MWP) events and the vertical
yellow bar highlights the Southern Ocean seawater δ234U anomaly. ACR, Antarctic
Cold Reversal. YD, Younger Dryas. HS1, Heinrich Stadial 1. LGM, Last Glacial Max-
imum. Source data are provided as a Source Data file.
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with the high δ234U signal being rapidly dissipated by the ACC before
reaching the coral sites. Further investigation with additional deep-sea
coral samples located closer to Antarctica is needed to assess the
intensity of the discharge and to test an AIS contribution to sea-level
rise during MWP-1B59.

Oceanic forcing of AIS retreat
The cause of the enhanced subglacial discharge and subsequent
AIS retreat from ~15.4 to 14 ka remains unclear. Here we compare our

deep-sea coral δ234U record with several climate proxies: the mean
ocean temperature record as constrained by noble gases from ice
cores60 (Fig. 5c), an Antarctic ice core δ18O record61 (air temperature
proxy) (Fig. 5d), and an opal flux record in the Atlantic Ocean sector of
the Southern Ocean62 (Southern Ocean upwelling proxy) (Fig. 5e).
The mean ocean temperature record reveals two significant tempera-
ture increases of ~1.5 °C, one during the HS1 and the other during the
Younger Dryas (YD). The first temperature increase occurs from ~18 to
15.2 ka, immediately preceding the onset of enhanced subglacial dis-
charge from the AIS, as indicated by our deep-sea coral δ234U record
(Fig. 5c). The rapid warming in the subsurface ocean during the HS1 is
accompanied by intensified wind-driven upwelling of deep waters in
the Southern Ocean62 (Fig. 5c) and a comparatively milder rise in sur-
face air temperature at Antarctica61 (Fig. 5d). This suggests thatoceanic
processes (i.e., a combination of warmer and stronger CDWupwelling)
instead of rising surface air temperature, played a pivotal role in con-
ditioning the rapid subglacial discharge and subsequent AIS retreat
from ~15.4 to 14 ka. This oceanic thermal forcing may have triggered
the initial stage of AIS retreat by enhancing basal ice-shelf melting and
calving rates at ~15.4 ka (Fig. 6b). Once initiated, freshwater forcing
could have facilitated the poleward migration of warm CDW to the
base of ice shelves, as suggested by transient numerical modeling
results39. This, in turn, would have spurred further grounding-line
retreat, ice-sheet calving, andmore freshwater release, all contributing
to the rapid sea-level rise during MWP-1A (Fig. 6c).

In summary, our high-resolution Southern Ocean seawater δ234U
record provides compelling evidence for enhanced discharge of
234U-enriched subglacial waters from the AIS during the last deglacia-
tion. This discharge occurred synchronously with the peak in iceberg-
rafted debris originating from the Weddell Sea sector of the AIS39 and
MWP-1A49. These findings suggest a connection between enhanced
subglacial discharge, AIS retreat, and subsequent rapid sea-level rise.
We further demonstrate that stronger upwelling of warmer CDWmay
have preconditioned this rapid AIS retreat and the release of melt-
water. Our results therefore underscore the critical role of subsurface
warming and enhanced upwelling in driving AIS retreat in the past.
Considering the current centennial-scale CO2-driven warming of sub-
surface waters63 and southward shifts and strengthening of the wes-
terly winds in the Southern Ocean64,65, there is a high risk of AIS retreat
by oceanic forcing in the coming centuries.

Methods
Sample preparation and U-Th dating
All fossil deep-sea coral samples were collected by research dredge or
trawl from the seamounts at the Drake Passage, including Burdwood
Bank (54° 30′ S 62° 10′ W) and Cape Horn (57° 10′ S 66° 06′ W) to the
north of the Polar Front (PF), Sars Seamount (59° 48′ S 68° 58′W) and
Interim Seamount (60° 36′ S 66° 0′ W) on the PF, and Shackleton
Fracture Zone (SFZ, 60° 11′ S 57° 50′ W) to the south of the PF19–21

(Fig. 1a). Coral sampleswere collected fromwater depths ranging from
316 to 1879 m, and from different water masses, including Antarctic
Intermediate Water (AAIW), Sub-Antarctic Mode Water (SAMW),
Upper Circumpolar Deep Water (UCDW), and Lower Circumpolar
Deep Water (LCDW) (Fig. 1b). Samples from Burdwood Bank encom-
pass two major depth ranges, at 334m and 1879 m, with a relatively
high abundance during the Antarctic Cold Reversal (ACR) and the
Holocene (Supplementary Fig. 8). The majority of coral samples from
Cape Horn were retrieved from a depth of 1012m and display a high
abundance during the HS1, early ACR, early YD, and the Holocene22.
Sars Seamount coral samples are mainly from 981m and 1701 m, with
samples from 981m massing at middle to late HS1 and early ACR and
samples from 1701 m displaying a high abundance at late HS1 and YD.
Samples from SFZ and Interim Seamount cover the last glacial period
and are relatively scarce during the last deglaciation and theHolocene.
The scarcity of deep-sea corals at great depths in the Drake Passage
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Fig. 6 | Schematic of changes in ocean circulation, subglacialmeltwater plume,
and AIS. a During the Last Glacial Maximum (LGM), the upwelling of warm Cir-
cumpolar Deep Water (CDW) and the subglacial meltwater plume were weak. The
Antarctic Ice Sheet (AIS) was buttressed by a wide and thick ice shelf. b At 15.4 ka,
the stronger andwarmerCDWtriggered the initial stageofAIS retreatby enhancing
the basal ice-shelf melting and calving rate. The emergence of enhanced subglacial
discharge at this time indicates that the AIS became unstable. The subglacial
meltwater plume with abnormally high δ234U was dispersed and recorded by deep-
sea corals at the seamounts close to Antarctica. c Freshwater forcing due to basal
ice-shelf melting may facilitate poleward migration of CDW that enables the
transport of more warm CDW to the base of ice shelves39, leading to further
grounding-line retreat, enhanced ice-sheet calving, and release ofmore freshwater.
More subglacial discharge with high δ234U and iceberg-rafted debris was released
and documented by deep-sea corals and sediment cores, respectively. AABW,
Antarctic Bottom Water.
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during the ACR has been attributed to a northward migration of food
supply and poorly oxygenated seawater at depth at that time22. Pre-
viously, 335 deep-sea coral samples were dated by U-series isotope-
dilution techniques19–23 and here we have added a further 38 samples
from Sars Seamount 695–981m.

The protocol for isotope-dilution U-series dating of the fossil
deep-sea corals follows the previously established method19–21,66.
Approximately 0.3 g of the coral piece was cut and the very surface
part of the samplewas carefully removed using a Dremel tool. Samples
were then extensively cleaned with both oxidizing and reducing che-
mical procedures11. A 236U-229Th mixed spike was added before dissol-
ving the mixture in 2ml 7mol/L Optima-grade HNO3. The mixed spike
was previously calibrated to the gravimetric standards (388 ppb U
solution (CRM-145) and 58 ppt 232Th solution)19. This was followed by
co-precipitationofU andThwith pure iron hydroxides before isolating
U and Th by passing through anion-exchange columns67. U and Th
isotopes were measured and corrected by bracketing standard (U112a
for U and SGS for Th) on MC-ICPMS (Neptune) at the University of
Bristol. A desolvating nebulizer system (Aridus I) was employed to
increase the sensitivity of U and Th. A pure 236U single spike was added
to the Th fraction to correct for any drift during the peak jump
between 229Th and 230Th on the secondary electron multiplier. Mass
bias correction was performed using the standard-sample-bracketing
(SSB) method. The accuracy and precision were monitored by reg-
ularly measuring Harwell uraninite standard (HU1) and ThB standards,
whichgive a long-termexternal reproducibility of ~1‰ for 234U/238U and
~2‰ for 229Th/230Th, respectively. We use a modern 230Th/232Th ratio of
2 ± 2 × 10−4 (2σ) as measured in unfiltered seawater collected at depths
close to the dredge sites for the initial 230Th correction68. Because a
relatively large uncertainty in the modern-day 230Th/232Th atomic ratio
was applied to correct the initial 230Th, the final age uncertainties
strongly dependon the 232Th concentrations. All errors associatedwith
the blank correction, mass bias correction, and initial 230Th correction
were propagated with a Monte Carlo method19–21.

We note that different approaches to calibrate U-series mea-
surementsmay lead to biased initialδ234U values due to the differences
between individual aliquots of the secular equilibrium standard (HU1)
and between HU1 and the gravimetric standards16,69. Since the mixed
U-Th spikes used in this studywere calibrated to gravimetric standards
with older decay constants11, it becomes necessary to update the decay
constant values for both 234U and 230Th to make comparisons with
more recent dataset69. Nevertheless, it should be noted that these
corrections for decay constants primarily affect the absolute δ234Ui

values and do not impact the overall trends observed in the evolution
of deep-sea coral δ234Ui. Given that all deep-sea coral δ234U data shown
in this study were generated in the same lab and calculated with the
same decay constants19–22, additional decay constant corrections were
not performed here. For this reason, the δ234U values of modern sea-
water and recent deep-sea corals reported in this study exhibit a ~2‰
difference when compared to a recent compilation that did account
for differences in decay constants and calibration standards16 (Sup-
plementary Fig. 5).

Screening criterion
In this study, fossil deep-sea corals were screened based on analytical
uncertainties and their initial δ234U values. Firstly, samples with δ234U
analytical uncertainties exceeding 3‰ were excluded. Although error
propagation may introduce some additional uncertainty due to the
presence of 232Th, this influence remains substantially lower than 3‰
(Supplementary Fig. 1). Consequently, δ234U analytical uncertainties
exceeding 3‰may be indicative of unstable instrument conditions. 10
out of 373 samples were screened out based on this criterion (Sup-
plementary Dataset S1). We did not reject data based on 232Th contents
because the initial 230Th correction introduced by contaminants sig-
nificantly affects the final age results but has a somewhat muted

influence on the δ234Ui values (Supplementary Fig. 1). Samples were
then screened by δ234Ui values using a sliding scale, to account for the
fact that Southern Ocean seawater δ234U is evolving over the last
30,000 years (Supplementary Fig. 2). We first determined the mean
seawater δ234U value by smoothing deep-sea coral δ234Ui record from
Burdwood Bank, Cape Horn, and deep Sars Seamount (1662–701 m).
Samples were rejected if their δ234Ui values were >3‰ departure from
the mean value, considering the upper limits of natural variability of
deep-sea coralδ234U (Supplementary Fig. 4). It should benoted that the
threshold of 3‰ is greater than the observed natural variability (~1.3‰,
2σ) as determined by recent (<1 ka) deep-sea coral from the Southern
Ocean (Supplementary Fig. 5). We opted for this threshold to avoid
removing samples artificially, recognizing that natural variabilitymight
have differed in the past. For samples from Group I (Sars Seamount
647–981m, Interim Seamount 1064–1196m, and SFZ 806–823m), this
criterion is not applicable due to the presence of δ234U anomaly at the
HS1/B-A transition during the last deglaciation. In these cases, the
elevated δ234Ui values cannot be attributed to open systems, as
diagenetic alternations typically result in a positive correlation
between 234U/238U and 230Th/238U, a phenomenon often observed in
fossil corals from the same terrace70. By contrast, the positive shifts of
δ234U observed here are accompanied by insignificant changes in
230Th/238U (Supplementary Fig. 2), thus supporting the interpretation
that these high deep-sea coral δ234Ui values capture the rising seawater
δ234U during the last deglaciation. Apart from the samples from the
HS1/B-A transition, two coral samples from Group I with initial δ234U
values significantly higher than the other samples were omitted from
thefinaldataset. In total, 24 out of 373 sampleswere removedbasedon
the δ234Ui criterion.

Trajectory analysis
This analysis uses three-dimensional velocity fields from the Biogeo-
chemical Southern Ocean State Estimate (B-SOSE, iteration 133)71. This
data-assimilating ocean model approximates the ocean state between
2013 and 2018. Themodel has a horizontal resolution of 1/6 degrees in
both latitude and longitude, allowing it to partially resolve the ocean’s
turbulent eddy field within the specified region. The velocity field data
were saved at 5-day means. Although this is a contemporary ocean
model, and the large-scale circulationmay have been notably different
during the last deglaciation62, the dynamics of interest for our analysis,
i.e., horizontal ocean mixing, are more-than-likely to be consistently
represented.

Trajectories were evaluated using the Ocean Parcels python
package72,73. They are evolved through time using a 4th order
Runge–Kutta scheme, with a time-step of 180min (results presented
herein show no sensitivity to this time-step choice). To circumvent
complexities arising from advective pathways in the presence of
parameterized vertical mixing, trajectories were terminated upon
intersecting with the ocean’s mixed layer. No additional diffusive
parameterization for the trajectories was employed because the tur-
bulent nature of the model circulation already accounts for a sig-
nificant level of tracer mixing32.

For the present analysis, trajectories were initialized at the
approximate horizontal locations of two of the coral sites. All trajec-
tories were initialized at 66°W; the southern (pink) trajectories
were initialized between 59.5° S and 60.5° S, and the northern trajec-
tories were initialized between 56.5° S and 57.5° S. At each site, 8000
trajectories were evenly spacedbetween latitudes and distributed every
10m in the depth range of 400–2000 m, during each of the last
12 months of the simulations, for a total of 193,200 trajectories. These
were run backward in time for a duration of 6 years, with their position
recorded every 30days. All trajectories were considered together in the
analysis.

The Jensen–Shannon distance between probability distributions P
and Q is the square-root of the Jensen-Shannon Divergence, which is
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given by:

JSD PjjQð Þ= 1
2
KLD PjjMð Þ+ 1

2
KLDðQjjMÞ ð1Þ

where M = (P +Q)/2 and KLD is the Kullback–Leiber Divergence, a
measure of statistical entropy given by:

KLD PjjMð Þ=
X

P log
P
M

� �
ð2Þ

Data availability
The data generated in this study are presented in the Supplementary
Information and are also available on Zenodo https://doi.org/10.5281/
zenodo.8433805. Source data are provided with this paper.
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