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Abstract

Hausdorff and box dimension are two familiar notions of fractal dimension. Box
dimension can be larger than Hausdorff dimension, because in the definition of
box dimension, all sets in the cover have the same diameter, but for Hausdorff
dimension there is no such restriction. This thesis focuses on a family of
dimensions parameterised by θ ∈ (0, 1), called the intermediate dimensions,
which are defined by requiring that diam(U) ⩽ (diam(V ))θ for all sets U, V in
the cover.

We begin by generalising the intermediate dimensions to allow for greater
refinement in how the relative sizes of the covering sets are restricted. These new
dimensions can recover the interpolation between Hausdorff and box dimension
for compact sets whose intermediate dimensions do not tend to the Hausdorff
dimension as θ → 0. We also use a Moran set construction to prove a necessary
and sufficient condition, in terms of Dini derivatives, for a given function to be
realised as the intermediate dimensions of a set.

We proceed to prove that the intermediate dimensions of limit sets of infinite
conformal iterated function systems are given by the maximum of the Hausdorff
dimension of the limit set and the intermediate dimensions of the set of fixed
points of the contractions. This applies to sets defined using continued frac-
tion expansions, and has applications to dimensions of projections, fractional
Brownian images, and general Hölder images.

Finally, we determine a formula for the intermediate dimensions of all self-
affine Bedford–McMullen carpets. The functions display features not witnessed
in previous examples, such as having countably many phase transitions. We
deduce that two carpets have equal intermediate dimensions if and only if the
multifractal spectra of the corresponding uniform Bernoulli measures coincide.
This shows that if two carpets are bi-Lipschitz equivalent then the multifractal
spectra are equal.
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Chapter 1

Introduction

1.1 Fractal geometry

Beautiful, damn hard,
increasingly useful. That’s
fractals.

Benoît Mandelbrot

Fractals are geometric objects which display intricate structure at arbitrarily small scales.
There is no precise definition of a fractal, but many exhibit some form of self-similarity, in
the sense that the fractal is made up of several copies of itself which are scaled down and
possibly distorted. For instance, the Sierpiński carpet in Figure 1.1 is comprised of eight
scaled copies of itself. Fractal features are ubiquitous in nature; in one striking example,
the buds of a Romanesco broccoli resemble scaled copies of the entire flower bud. Fractal

Figure 1.1: Left: the Sierpiński carpet is a self-similar fractal. Right: Romanesco broccoli
exhibits fractal-like features. Both pictures are CC0, from references [htt1], [htt2] respect-
ively.

patterns have been used for centuries by many different cultures in creative work such as
art and architecture. For example, clusters of houses in Benin city and its surrounding
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villages (in present-day Nigeria) are laid out in fractal patterns [Egl]. However, it was not
until the 1970s that Mandelbrot [Man1; Man2] coined the term ‘fractal’ (from the Latin
word ‘fractus,’ meaning ‘fractured’ or ‘broken’), and widely popularised the concept. Today,
fractal geometry is a flourishing branch of mathematics which puts fractals into a rigorous
framework [Bar2; Bar3], and has particular relevance to chaotic dynamical systems [PJS].

An especially important notion in fractal geometry is that of dimension. The question
of how best to define dimension for fractal sets is a challenging problem because, unlike for
smooth manifolds, there is no obvious way to associate ‘tangent’ vector spaces to points on
fractals. Therefore, it is natural to define notions of dimension that make sense even for
fractal sets using covers the set (or a part of it). Most notions of dimension satisfy standard
properties such as dimM = d for a smooth d-manifold, and dimE ⩽ dimF whenever
E ⊆ F . For fractal sets, notions of dimension very often take non-integer values. For
example, if S is the Sierpiński carpet from Figure 1.1 and dim is Hausdorff or box dimension
(described below), then dimS = log 8/ log 3 ≈ 1.89. This makes intuitive sense, since S
appears to fill up more space than a one-dimensional curve, but less than a two-dimensional
filled square. For general background on fractal geometry and dimension theory, we refer
the reader to Falconer’s seminal books [Fal3; Fal6].

The Hausdorff dimension is perhaps the most widely used notion of fractal dimension in
mathematics; we give the precise definition in Section 1.3. One first defines s-dimensional
Hausdorff measure Hs on Rd for each s ⩾ 0. If a set F happens to satisfy 0 < Hs(F ) <∞
for some s (for example if F is a disc and s = 2), then for all t ̸= s, the value of Ht(F ) can
be shown to be 0 or ∞. This suggests that s is in some sense the correct value at which
to measure F , and the Hausdorff dimension of F is s. Hausdorff dimension can also be
defined for sets whose Hausdorff measure is never positive and finite.

Box dimension is another familiar notion of fractal dimension. It has some properties
that may be considered mathematically undesirable; for example countable compact sets
can have positive box dimension (but always have 0 Hausdorff dimension). However, in
many situations, box dimension is easier to calculate or estimate numerically than Hausdorff
dimension. Box dimension of real-world fractals such as coastlines can be estimated over
a range of scales. If the box dimension of a set F exists and equals s then this says that
the number of balls of size δ needed to cover F scales approximately like δ−s as δ → 0+;
if box dimension does not exist then one can define upper and lower box dimension by
considering the scales at which the set looks largest or smallest respectively. There are
many longstanding open problems about Hausdorff and box dimension, such as the Kakeya
conjecture [KT]. The Hausdorff dimension of any set cannot exceed its lower (or upper)
box dimension. For many nice sets, box dimension exists and coincides with Hausdorff
dimension, but this is not always the case. If the dimensions do indeed coincide, this
indicates that the set has a large amount of spatial regularity. For example, the dimension
version of Falconer’s distance set conjecture is known for this class of sets [SW], but is wide
open in general.

The main topic of this thesis are the intermediate dimensions, which are an example of
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dimension interpolation. This area has gathered significant interest since around 2018; for
a survey of this topic we refer the reader to [Fra2]. The idea is to consider two different
notions of dimension and find a geometrically meaningful family of dimensions which lie
between them. This family should share some characteristics of both dimensions, but
provide more information about sets than either does in isolation. The hope is that, as well
as being interesting in its own right and leading to a rich theory, dimension interpolation
can help illuminate why for some sets the two endpoint dimensions give different values. A
different example of dimension interpolation is the Assouad spectrum, which lies between
the upper box and Assouad dimensions, giving information about the ‘thickest’ part of
the set. We will encounter many applications of dimension interpolation in this thesis, for
example to distinguish when sets are not bi-Lipschitz equivalent or to bound the Hölder
distortion between two sets. As discussed below, the intermediate dimensions can give
information about dimensions of images of sets under projections or stochastic processes,
and the Assouad spectrum has been used in functional analysis and conformal geometry.

1.2 Structure of thesis

The introduction (Chapter 1) describes background material, mostly from [Fal6; FFK2]; we
provide references where appropriate.

Chapter 2 introduces a family of dimensions, which we call the Φ-intermediate di-
mensions, and is based on our paper [Ban2] which has been accepted for publication in
Monatshefte für Mathematik. These dimensions also lie between Hausdorff and box dimen-
sion, and put the intermediate dimensions into a more general framework by restricting the
sizes of allowable covers in ways that allow for greater refinement than in the definition of
the intermediate dimensions. We show that for any compact subset of an appropriate space,
these dimensions can be used to ‘recover the interpolation’ between the Hausdorff and
box dimensions of sets for which the intermediate dimensions are discontinuous at θ = 0,
thus providing more refined geometric information about such sets. We also study many
analytic and geometric properties of the Φ-intermediate dimensions, and investigate their
relationships with several other notions of dimension. Moreover, we prove Hölder distortion
estimates which imply bi-Lipschitz stability for the Φ-intermediate dimensions. We prove a
mass distribution principle and Frostman type lemma, and use these to study dimensions
of product sets, and to show that the lower versions of the dimensions, unlike the upper
versions, are not finitely stable. Furthermore, we extend the theory from Euclidean space
to a wider class of metric spaces, namely those that are uniformly perfect and doubling
with more than one point.

Chapter 3 describes the general behaviour of the intermediate dimensions, and is based
on the paper [BR] (joint with A. Rutar, published in Annales Fennici Mathematici). In
Section 3.2 (which also includes a little material from [Ban2]), we provide general bounds for
the intermediate dimensions, some of which can be proved using the continuity bounds for
the Φ-intermediate dimensions in Chapter 2. These results improve existing bounds in the
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literature, and in Section 3.2.3, based on joint work with J. M. Fraser from [BF1], we use
them to calculate the intermediate dimensions of the inversion of the lattice {1p, 2p, 3p, . . . }d
in the unit d-sphere in Rd. In Section 3.2.4, based on joint work with H. Chen from the
paper [BC] published in the Journal of Fractal Geometry, we use the bounds to calculate
the intermediate dimensions of the graph of the well-known ‘popcorn function’ and its
pyramid-like higher-dimensional analogues. One bound that we prove is that any function
that can be realised as the intermediate dimensions of a subset of Euclidean space must
satisfy a straightforward constraint in terms of its Dini derivatives. In fact a converse result
also holds: any function that satisfies this constraint (together with some mild continuity
and monotonicity assumptions) can be realised as the intermediate dimension function of
some set, showing that a wide variety of behaviour is possible. We prove this using a Moran
set construction that is homogeneous at each fixed scale, but has inhomogeneity between
different scales. We also show that the lower and upper intermediate dimensions can be
prescribed simultaneously, using a set which behaves like a union of homogeneous Moran
sets at each fixed scale.

Chapter 4 relates to limit sets of iterated function systems consisting of a countably
infinite number of contractions, and is based on a joint paper [BF1] with J. M. Fraser
which has been accepted for publication in Transactions of the American Mathematical
Society. Our main results are in the case when all the contractions are conformal. Under a
natural separation condition we prove that the intermediate dimensions of the limit set are
given by the maximum of the Hausdorff dimension of the limit set and the intermediate
dimensions of the set of fixed points of the contractions. This builds on work of Mauldin
and Urbański concerning the Hausdorff and upper box dimension. Our results apply to
well-studied examples such as sets of numbers which have real or complex continued fraction
expansions with restricted entries. We prove general upper bounds for the Hausdorff, box
and intermediate dimensions of infinitely generated attractors in terms of a topological
pressure function, without assuming conformality or separation conditions. We also make a
few remarks from the preprint [BF2] (also joint with J. M. Fraser), in particular that our
results can be applied to infinite parabolic IFSs. Moreover, we show that the limit set of
a ‘generic’ infinite IFS has box and intermediate dimensions equal to the ambient spatial
dimension, where ‘generic’ can refer to either full measure or comeagre.

Chapter 5 relates to self-affine Bedford–McMullen carpets and is based on joint work
with I. Kolossváry from the preprint [BK1]. In Theorem 5.2.1, which we consider to be
one of the best results in this thesis, we calculate a precise formula for the intermediate
dimensions of any Bedford–McMullen carpet for the whole range of θ ∈ (0, 1), in terms of
a certain rate function from large deviations theory. The intermediate dimensions exist
and are strictly increasing in θ, and the function θ 7→ dimθ Λ exhibits interesting features
not witnessed on any previous example, such as having countably many phase transitions,
between which it is analytic and strictly concave. We make an unexpected connection to
multifractal analysis by showing that two carpets have equal intermediate dimensions if
and only if the Hausdorff multifractal spectra of the uniform Bernoulli measures supported
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on the two carpets are equal. Since intermediate dimensions are bi-Lipschitz invariant, this
shows that the equality of these multifractal spectra is a necessary condition for two such
carpets to be bi-Lipschitz equivalent.

1.3 Notation and preliminaries

Throughout this thesis, we denote the natural logarithm by log, and the cardinality of
a set S by #S. We write a ≲ b to mean a ⩽ cb for some constant c which may depend
on parameters in the subscript of ≲ but is independent of other parameters unless stated
otherwise. For each x > 0, we write ⌊x⌋ := max{n ∈ N+ : n ⩽ x }. All the sets F we
consider will be assumed to be non-empty and totally bounded subsets of an underlying
metric space. We usually take the underlying space to be Rd with the Euclidean metric, but
the theory in Chapter 2 works in more general spaces. We denote the (Euclidean) diameter
of a subset of Rd by | · |, and d-dimensional Lebesgue measure on Rd by Ld. The symbol
N will denote {1, 2, 3, . . . }, and || · || will denote either the Euclidean norm on Rd or the
supremum norm of a continuous function, depending on context.

We write
B(x, δ) := { y ∈ Rd : ||y − x|| < δ } (1.3.1)

for the open ball of radius δ > 0 centred at x ∈ Rd, and BF (x, r) := B(x, r)∩F . We denote
by Nδ(F ) the smallest integer such that there exist x1, . . . , xNδ(F ) ∈ F such that

F ⊆
Nδ(F )⋃

i=1

B(xi, δ/2). (1.3.2)

For subsets of Rd, by calculations similar to [Fal6, Equivalent definitions 2.1], there
are several other definitions for Nδ(F ) which would work equally well when calculating
dimensions. For U ⊆ Rd and δ > 0 let

Sδ(U) := {x ∈ Rd : there exists y ∈ U such that ||x− y|| ⩽ δ }

be the closed δ-neighbourhood of U . For d ∈ N and r ⩾ 1, we denote by Ad,r ∈ N the
smallest integer such that for all U ⊂ Rd there exist U1, . . . , UAd,r

⊆ Rd, each of diameter
|U |/r, which cover U , meaning that

U ⊆
Ad,r⋃

k=1

Uk. (1.3.3)

Given x ∈ Rd, we denote the jth coordinate of x by x(j). We write F to denote the
topological closure of F .

Hausdorff measure and dimension were first introduced in the early 20th century in [Car;
Hau]. Given s ⩾ 0 and a finite or countable set U = {U1, U2, . . . } of non-empty subsets of
Rd, we call the quantity

∑
i |Ui|s the s-cost of U . As explained in [Fal6, Chapter 3], the
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Hausdorff content of a subset F of Rd can be defined, for s ⩾ 0 and δ > 0, by

Hs
δ(F ) = inf

{ ∞∑

i=1

|Ui|s
∣∣∣∣∣F ⊆

∞⋃

i=1

Ui, diam(Ui) ⩽ δ

}
.

As δ decreases, the class of covers is reduced so the infimum increases, and therefore
converges to a limit

Hs
δ(F ) → Hs(F ) ∈ [0,∞] as δ → 0+,

called the s-dimensional Hausdorff measure of F . It can be shown that this is an outer
measure on Rd, and so its restriction to the Hs-measurable sets is a measure, as is its
further restriction to the Borel sets. It is straightforward to see that for each F there is a
unique s ⩾ 0, called the Hausdorff dimension of F , such that if 0 ⩽ t < s then Ht(F ) = ∞
and if t > s then Ht(F ) = 0, as illustrated in Figure 1.2. The s-dimensional Hausdorff
measure of F may be any value in [0,∞]; if it is positive and finite then F is called an s-set.
Sets with Hausdorff dimension less than 1 are necessarily totally disconnected, see [Fal6,
Proposition 3.5]. Hausdorff measures and dimension have been studied in detail in [Fal1;
Fed; Mat; Rog].

dimH F d

∞

0
s

Hs(F )

Figure 1.2: Graph of the s-dimensional Hausdorff measure of a subset of Rd against s.

The upper and lower box dimensions, also called box-counting, Minkowski–Bouligand
or Minkowski dimensions, originated in [Bou; PS] and are respectively defined by

dimBF := lim sup
δ→0+

logNδ(F )

− log δ
; dimBF := lim inf

δ→0+

logNδ(F )

− log δ
. (1.3.4)

If the two coincide, it is called simply the box dimension, denoted dimB F . Box dimension
can also be described in terms of the Lebesgue measure of the δ-neighbourhood of the set:

dimBF = d− lim inf
δ→0+

logLd(Sδ(F ))
log δ

; dimB = d− lim sup
δ→0+

logLd(Sδ(F ))
log δ
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for F ⊂ Rd, see [Fal6, Proposition 2.4]. The packing dimension, introduced in [Tri] and
studied in [Mat], can be defined using packing measure, or equivalently as the modified
upper box dimension:

dimP F := inf

{
sup
i∈N

dimBFi : F ⊆
∞⋃

i=1

Fi, each Fi non-empty and bounded

}
. (1.3.5)

Since the important work of Assouad [Ass1; Ass2; Ass3] and Larman [Lar], other notions
of dimension which describe the local scaling behaviour of sets have been studied. The
Assouad and lower dimensions, studied in detail in [Fra1], give information about the
‘thickest’ and ‘thinnest’ part of a set respectively. The Assouad dimension of a subset F of
a metric space with more than one point is defined by

dimA F = inf{α : there exists C > 0 such that Nr(B(x,R) ∩ F ) ⩽ C(R/r)α

for all x ∈ F and 0 < r < R }.
(1.3.6)

Dually, the lower dimension of F is defined by

dimL F = sup{λ : there exists C > 0 such that Nr(B(x,R) ∩ F ) ⩾ C(R/r)λ

for all x ∈ F and 0 < r < R ⩽ |F | }.

For θ ∈ (0, 1), the Assouad spectrum of F at θ is defined by fixing the scales R = rθ in the
definition of Assouad dimension:

dimθ
A F = inf {s : there exists C > 0 such that for all x ∈ F and

0 < R ⩽ 1, we have NR1/θ(B(x,R) ∩ F ) ⩽ CRs(1−1/θ)
}
.

Clearly dimBF ⩽ dimθ
A F ⩽ dimA F for all θ ∈ (0, 1). The lower spectrum is defined by

dimθ
L F = sup {s : there exists C > 0 such that for all x ∈ F and

0 < R ⩽ 1, we have NR1/θ(B(x,R) ∩ F ) ⩾ CRs(1−1/θ)
}
.

The Assouad spectrum is not always monotonic in θ (see [FY2]). The upper Assouad
spectrum at θ, however, is monotonic, and is defined by

dim
θ
AF = inf {s : there exists C > 0 such that for all x ∈ F and

0 < r ⩽ R1/θ ⩽ R ⩽ 1, we have Nr(B(x,R) ∩ F ) ⩽ C(R/r)s
}
.

The Assouad spectrum was introduced in [FY2] and has been calculated for various
families of fractals in [BF2; BFF2; FS; FY1] and other works. Rutar [Rut] has given a
complete description of the attainable forms of Assouad spectra of sets, showing that a
wide variety of behaviour is possible in general. The Assouad spectrum can be used to give
information about dimensions of orthogonal projections of sets [FFS], and has applications

7



related to spherical maximal functions [AHRS; RS2] and conformal geometry [GT]. The
quasi-Assouad dimension, introduced in [LX], can be defined by

dimqA F := lim
θ→1−

dimθ
A F, (1.3.7)

or equivalently dimqA F := limθ→1− dim
θ
AF (see [Fra1, Corollary 3.3.7]). We always have

dimH F ⩽ dimBF ⩽ dimθ
A F ⩽ dim

θ
AF ⩽ dimqA F ⩽ dimA F,

and all inequalities can be strict. We sometimes write dim1
A or dim

1
A to mean the quasi-

Assouad dimension, and since dim
θ
AF → dimBF as θ → 0+, we sometimes write dim0

A F or
dim

0
AF to mean the upper box dimension of F . The Assouad spectrum and upper Assouad

spectrum are continuous in θ ∈ (0, 1), see [FHHTY; FY2]. In [FHHTY], Fraser et al. show
that we always have dim

θ
AF = supθ′∈(0,θ] dim

θ′
A F .

There are also various different notions of fractal dimension of a measure. The Assouad
dimension of a Borel probability measure µ is

dimA µ := inf { s ⩾ 0 : there exists A > 0 such that if 0 < r < R ⩽ |supp(µ)|

and x ∈ supp(µ) then
µ(B(x,R))

µ(B(x, r))
⩽ A

(
R

r

)s}
.

To obtain bounds involving the lower dimension in Chapters 2 and 3, we will use the dual
notion of lower dimension of a measure:

dimL µ := sup {λ ⩾ 0 : there exists A > 0 such that if 0 < r < R ⩽ |supp(µ)|

and x ∈ supp(µ) then
µ(B(x,R))

µ(B(x, r))
⩾ A

(
R

r

)λ}
.

(1.3.8)

A measure µ is said to be doubling if there exists M ⩾ 1, called the doubling constant, such
that µ(B(x, 2r)) ⩽Mµ(B(x, r)) for all x ∈ supp(µ) and r > 0. For further details we refer
the reader to [Fra1, Section 4.1].

Given a closed set D ⊂ Rd, a contraction on D is a map S : D → D for which there exists
r < 1 with ||S(x)− S(y)|| ⩽ r||x− y|| for all x, y ∈ D. An iterated function system (IFS)
on D is a finite set Φ := {F1, . . . , Fm} of contractions on D, with m ⩾ 2. Hutchinson [Hut]
showed that given such an IFS, there is a unique non-empty compact set K ⊆ D called the
attractor or limit set of the IFS, such that

K =

m⋃

i=1

Fi(K).

This can be proved either directly or using Banach’s contraction mapping theorem. The
attractor is very often fractal in nature; examples include the Sierpiński carpet in Figure 1.1
(page 1) and the fractal in 5.1 (page 108). Define F (E) := ∪mi=1Fi(E) for non-empty,
compact sets E, and let F 0(E) = E and F k(E) = F (F k−1(E)) for each k ∈ N. Then if E
is any non-empty compact subset of D such that Fi(E) ⊆ E for all i, then

K =

∞⋂

k=0

F k(E).
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Furthermore, K is the closure of the set of fixed points of finite compositions Fi1 ◦ · · · ◦ Fip
of the Fi.

Given positive numbers p1, . . . , pm summing to 1, one can define a measure by repeated
subdivision according to the probabilities pi. The resulting probability measure µ will have
supp(µ) = K and satisfy

µ(A) =

m∑

i=1

piµ(F
−1
i (A))

for all Borel sets A. If all of the contractions are similarity maps, which means that there
exists ri depending only on the map for which ||Fi(x)−Fi(y)|| = ri||x− y|| for all x, y ∈ D,
then the attractor is said to be a self-similar set and µ a self-similar measure. In [Var4],
Varjú has surveyed results relating to the dimension theory of self-similar sets and measures
in R.

To obtain dimension results, one often assumes the open set condition (OSC), which
means that there is a non-empty, bounded, open set V ⊂ Rd such that

V ⊇
m⋃

i=1

Fi(V )

with the union disjoint. Intuitively, this says that the components Fi(K) do not overlap
too much. If this is satisfied, then the Hausdorff, box, Assouad and lower dimensions of
self-similar sets are all equal to the similarity dimension dimsimΦ, which is the unique
non-negative number satisfying

m∑

i=1

rdimsim Φ
i = 1,

see [Fal6; Fra1; Hut]. This is known as the Hutchinson–Moran formula. Moreover,
the attractor has positive and finite Hausdorff measure in its Hausdorff dimension, and
this measure is Ahlfors regular : there exists C ⩾ 1 such that C−1Rdimsim Φ ⩽ µ(BR) ⩽

CRdimsim Φ for all closed balls BR of radius 0 < R < diam(supp(µ)). Even if the OSC is
not satisfied, the Hausdorff and box dimension of all self-similar sets still coincide. The
famous exact overlaps conjecture asks whether the only way the Hausdorff dimension of a
self-similar set in the real line can differ from the general upper bound min{dimsimΦ, 1} is
if there are exact overlaps, in other words if different finite compositions of the defining
contractions can result in the same function. Hochman [Hoc] has made important progress
in this direction, showing that any potential counter-example to the conjecture would have
to be given by an IFS with very rapidly accumulating cylinders (but without exact overlaps).
The first examples of IFSs with this ‘super-exponential concentration’ property were given
in [Bak; BK3], and there has been further work on the dimension theory of such IFSs [Rap;
RV]. There are also longstanding open problems about dimensions and absolute continuity
of overlapping self-similar measures such as Bernoulli convolutions [BV; Erd1; Erd2; Var1;
Var2; Var3].

We often require the metric spaces we work with to satisfy certain properties, especially
in Chapter 2.
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Definition 1.3.1. For c ∈ (0, 1) we say a metric space X is c-uniformly perfect if for all
x ∈ X and R ∈ R such that 0 < R < |X| we have

B(x,R) \B(x, cR) ̸= ∅.

The space X is uniformly perfect if there exists c ∈ (0, 1) such that X is c-uniformly perfect.

Intuitively, a metric space is uniformly perfect if it does not have islands which are very
separated from the rest of the space.

Definition 1.3.2. A metric space is said to be doubling if there exists a constant M ∈ N
(called the doubling constant) such that for every x ∈ X and r > 0, there exist x1, . . . , xM ∈
X such that B(x, 2r) ⊆ ⋃M

i=1B(xi, r).

In [Fra1, Section 13.1.1] it is shown that a metric space X with more than one point is
uniformly perfect if and only if 0 < dimLX. Such a space cannot have any isolated points,
so must be infinite. It is also shown that a space X is doubling if and only if dimAX <∞.
In this case we will see in Proposition 2.2.1 that all dimensions of all subsets F will be finite,
as we will need to assume for many of the results in this chapter. A metric space is said to
be Ahlfors regular if there exists s > 0, C ⩾ 1 and a Borel regular measure µ supported
on X such that C−1Rs ⩽ µ(BR) ⩽ CRs for all closed balls BR of radius 0 < R < diam(X).
By [Hei, Corollary 14.15], every Ahlfors regular space with more than one point is uniformly
perfect and doubling. An example of such a space which is not bi-Lipschitz equivalent
to any subset of Rd is the Heisenberg group with its usual Carnot-Carathéodory metric,
see [LLR; Pan; Sem]. In Chapters 2 and 3, we will use the fact that if F is a complete,
uniformly perfect, totally bounded, doubling metric space with more than one point, then

dimA F = inf{dimA µ : µ ∈ PF },
dimL F = sup{ dimL µ : µ ∈ PF },

(1.3.9)

where PF is the set of doubling Borel regular finite outer measures µ with suppµ = F . For
more on these results, we refer the reader to [BG; KLV; LS; VK], [KL, Theorem 3.2], and
[Fra1, Section 4.1].

1.4 Intermediate dimensions

1.4.1 Definitions and general theory

Since the Hausdorff dimension of a set F is the infimum of values s for which Hs(F ) = 0,
an equivalent definition of Hausdorff dimension is

dimH F = inf{ s ⩾ 0 : for all ε > 0 there exists a finite or countable cover

{U1, U2, . . . } of F such that
∑

i

|Ui|s ⩽ ε }. (1.4.1)
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It is clear from (1.3.4) that lower box dimension can equivalently be defined as

dimBF = inf{ s ⩾ 0 : for all ε > 0 there exists a finite cover {U1, U2, . . . }
of F such that |Ui| = |Uj | for all i, j, and

∑

i

|Ui|s ⩽ ε }. (1.4.2)

These definitions look rather similar, and we see that in the definition of Hausdorff
dimension there is no restriction on the size of the covering sets, whereas for the box
dimension all the sets in the cover have the same size, as illustrated in [Fra1, Figures 1.2
and 1.3]. Note also that it is immediate from the definitions that dimH F ⩽ dimBF ⩽ dimBF

always holds. This motivates the definition of the intermediate dimensions, which lie between
the Hausdorff and box dimensions and require the sizes of the covering sets to be restricted
in a way that depends on a parameter θ. These dimensions form the basis around which
this thesis is built. Given θ ∈ [0, 1], we say that a family of sets {Ui}i is a (δ, θ)-cover of F
if

F ⊆
⋃

i

Ui and ∀i : δ1/θ ⩽ |Ui| ⩽ δ (1.4.3)

where for convenience we take δ1/0 = 0.

Definition 1.4.1 (Falconer–Fraser–Kempton [FFK2]). For θ ∈ [0, 1], the upper θ-
intermediate dimension of a non-empty, bounded subset F ⊂ Rd is given by

dimθF = inf{ s ⩾ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all δ ∈ (0, δ0)

there exists a (δ, θ)-cover {Ui}i of F such that
∑

i

|Ui|s ⩽ ε }.

Similarly the lower θ-intermediate dimension of F is

dimθF = inf{ s ⩾ 0 : for all ε > 0 and δ0 ∈ (0, 1] there exists δ ∈ (0, δ0)

and a (δ, θ)-cover {Ui}i of F such that
∑

i

|Ui|s ⩽ ε }.

If these coincide, then we refer to the intermediate dimension of F , denoted dimθ F . Note
that dim1 = dimB and dim1 = dimB and dim0 = dim0 := dimH.

For all non-empty, bounded F ⊂ Rd, these satisfy the inequalities

0 ⩽ dimH F ⩽dimθF ⩽ dimθF ⩽ dimBF ⩽ dimA F ⩽ d,

dimθF ⩽ dimBF ⩽ dimBF.
(1.4.4)

The intermediate dimensions have been studied in [Ban2; BC; BF1; BK1; BR; Bur1; Bur2;
BFF1; BFF2; Daw; DK; DS2; Fal8; Fal9; FFK2; Fen2; Fra2; Kol1; Tan]. A specific variant
was used in [KP2] (before the paper [FFK2]) to study the singular sets of certain partial
differential equations. The intermediate dimensions satisfy standard properties that most
other dimensions satisfy; for example if E ⊆ F then dimθ E ⩽ dimθ F . In several ways, the
intermediate dimensions behave more like box than Hausdorff dimension. For example, it
is straightforward to see that box and intermediate dimensions are unchanged under taking
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closure of the set, but Hausdorff dimension is not. A dimension dim is said to be countably
stable if for all countable sequences of sets F1, F2, . . . , it holds that

dim

( ∞⋃

n=1

Fn

)
= sup{ dimFn : n ∈ N }.

It is shown in [FFK2, Proposition 3.1] that for p > 0 and 0 ⩽ θ ⩽ 1,

dimθ({0} ∪ {n−p : n ∈ N }) = θ

p+ θ
,

so although Hausdorff dimension is countably stable, box and intermediate dimensions are
not.

Some examples of the possible forms of intermediate dimension functions are given
in [FFK2, Section 3.2], and a full characterisation is obtained in Chapter 3. The maps
θ 7→ dimθF and θ 7→ dimθF are trivially increasing in θ ∈ [0, 1]. They were shown in [FFK2,
Section 2.1] to be continuous in θ ∈ (0, 1]. For many classes of sets for which the intermediate
dimensions have been calculated, they are also continuous at θ = 0, so fully interpolate
between the Hausdorff and box dimensions. Such classes include elliptical polynomial
spirals [BFF2], concentric spheres and attenuated topologist’s sine curves [Tan], polynomial
sequences and lattice sets (see [FFK2, Proposition 3.1] and Section 3.2.3), popcorn-like
pyramid sets (see Section 3.2.4), and Bedford–McMullen carpets (see [FFK2, Section 4]
and Section 5). In Section 1.4.2, we will see that continuity of the intermediate dimensions
at θ = 0 has powerful consequences.

On the other hand, there are a plethora of compact subsets of R, such as {0} ∪{
1

log k : k ∈ N, k ⩾ 3
}

(see [FFK2, Section 3.2]), for which the intermediate dimensions are
constant at the value of the box dimension and discontinuous at θ = 0, thus providing very
little information about the set. Note that every compact subset of R can be obtained
by starting with a closed interval and removing a sequence of disjoint open intervals from
it. Now fix any non-increasing, summable sequence of positive numbers (ak)

∞
k=1 such that

− log ak/ log k → 1 as k → ∞ (for example ak := k−1(log(2k))−2). By [BT, Theorem 1],
for all s ∈ [0, 1], one can start with a closed interval of length

∑∞
k=1 ak and recursively cut

out open intervals of length ak in such a way that the resulting compact set F satisfies
dimH F = s. But by [Fal3, Section 3.2], dimB F = 1 (independent of precisely which
intervals are removed). It was shown in [FFK2, Proposition 2.4] (see also Chapter 3) that
this implies that dimθ F = 1 for all θ ∈ (0, 1]. Therefore if dimH F < 1 then θ 7→ dimθ F is
discontinuous at θ = 0.

Following [BFF1], for a bounded and non-empty set F ⊂ Rd, θ ∈ (0, 1) and s ∈ [0, d],
we introduce

Ssδ,θ(F ) := inf
{ ∑

i

|Ui|s : {Ui}i is a cover of F such that δ1/θ ⩽ |Ui| ⩽ δ for all i
}
.

(1.4.5)
The motivation for introducing Ssδ,θ(F ) is that from [BFF1, Lemma 2.1] and the definitions
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of dimθF and dimθF it follows that

dimθF = the unique s ∈ [0, d] such that lim inf
δ↘0

logSsδ,θ(F )

− log δ
= 0

and

dimθF = the unique s ∈ [0, d] such that lim sup
δ↘0

logSsδ,θ(F )

− log δ
= 0. (1.4.6)

For each θ ∈ (0, 1), lim infδ↘0
logSs

δ,θ(F )

− log δ and lim supδ↘0
logSs

δ,θ(F )

− log δ are strictly decreasing
and continuous functions of s.

Some methods for estimating Hausdorff and box dimension are given in [Fal6, Chapter 4].
In particular, to obtain an upper bound, one often uses covers which arise naturally in
the construction of the fractal, and to obtain lower bounds one often puts an appropriate
measure on the set and applies a mass distribution principle. Similar strategies often work
for the intermediate dimensions as well. In particular, we will use the following version
of the mass distribution principle for the intermediate dimensions of Falconer, Fraser and
Kempton, [FFK2, Proposition 2.2].

Proposition 1.4.2. Let F be a non-empty, bounded subset of Rd, and let θ ∈ [0, 1], s ⩾ 0,
δ0 ∈ (0, 1). Suppose that for all δ ∈ (0, δ0) there exists a Borel measure µδ with support
supp(µδ) ⊆ F such that µδ(U) ⩽ |U |s for all Borel sets U ⊂ Rd with δ1/θ ⩽ |U | ⩽ δ. Then

lim inf
δ↘0

logSsδ,θ(F )

− log δ
⩾ lim inf

δ↘0

logµδ(supp(µδ))

− log δ
.

The same holds if we replace lim inf with lim sup.

Proof. If {Ui} is a cover of F with δ1/θ ⩽ |Ui| ⩽ δ for all i, then supp(µδ) ⊆ F ⊆ ∪iUi.
Therefore

µδ(supp(µδ)) ⩽
∑

i

µδ(Ui) ⩽
∑

i

|Ui|s.

Since the cover was arbitrary, also µδ(supp(µδ)) ⩽ Ssδ,θ(F ).

The intermediate dimensions also satisfy an appropriate analogue of Frostman’s lemma
(see [FFK2, Section 2.3] and Section 2.4.2 of this thesis). Moreover, bounds for dimensions
of products have been obtained in [FFK2, Section 2.5] and Section 2.4.3.

There are several natural questions about the intermediate dimensions which no-one has
yet investigated, and which we will not pursue in this thesis. We give three possible lines of
enquiry here; others relevant to the different chapters, and some specific open questions,
are given later in the thesis.

• In this thesis we write dim0 = dim0 = dimH to keep notation consistent with the
literature on intermediate dimensions (where ‘continuity at θ = 0’ is frequently
discussed) and with Definition 1.4.1 under the convention δ1/0 = 0. However, it
could be argued that it is mathematically more natural to define these quantities
as dim0F = limθ→0+ dimθF and dim0F = limθ→0+ dimθF . One could study these
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limits in their own right, for example by asking what geometric information they
provide about F , characterising when they coincide with Hausdorff dimension, and
calculating them for some families of sets where they do not.

• Douzi and Selmi [DS2] have introduced a family of dimensions which they call the
modified intermediate dimensions by making the intermediate dimensions countably
stable, similarly to (1.3.5). They are larger than the Hausdorff dimension but smaller
than the packing/Hewitt–Stromberg/modified box dimensions. It could be of interest
to calculate the modified intermediate dimensions of families of sets such as those
considered in Chapters 4 or 5. However, we suspect that for many dynamically
defined fractals they will coincide with the intermediate dimensions, and for others,
such as level sets of local dimensions of self-affine measures on Bedford–McMullen
carpets, this is likely to be a hard problem because even packing dimension is not
fully understood.

• Many notions of fractal dimensions of sets (such as Hausdorff, packing, box, Assouad)
have analogous notions for measures, and it would be natural to try to define an
appropriate notion of intermediate dimensions of a measure.

1.4.2 Dimensions of images of sets

Different notions of fractal dimension, including the intermediate dimensions, can be used
to give information about the possible Hölder exponents of maps between different sets.
For a more in-depth discussion of the Hölder mapping problem in the context of dimension
theory we refer the reader to [Fra1, Section 17.10]. Let (X, dX) and (Y, dY ) be metric
spaces. We say that a map f : X → Y is Hölder, α-Hölder or C,α-Hölder if

dY (f(x1), f(x2)) ⩽ CdX(x1, x2)
α for all x1, x2 ∈ X

for constants α ∈ (0, 1] and C ∈ [0,∞), and we call α the Hölder exponent. It is a
straightforward exercise to show that if f : F → Rd is α-Hölder and dim is any one of
Hausdorff, upper box, lower box, or (for fixed θ ∈ [0, 1]) upper θ-intermediate or lower
θ-intermediate dimensions, then

dim f(F ) ⩽ α−1 dimF. (1.4.7)

For further Hölder distortion estimates for the intermediate dimensions we refer the reader
to [Bur2, Theorem 3.1].

In Section 2.3 we prove more such estimates for generalised intermediate dimensions
which, interestingly, are different to (1.4.7). In previous examples such as elliptical polyno-
mial spirals [BFF2], the box dimension gives the best information about Hölder exponents.
In this thesis, however, we will see that for several classes of sets, the intermediate dimen-
sions for θ ∈ (0, 1) can give better information than either the Hausdorff or box dimensions.
In particular, this is the case for some popcorn-like pyramid graphs (see Corollary 3.2.16 on

14



page 62), continued fraction sets (see Example 4.4.5 on page 98), and Bedford–McMullen
carpets (see Proposition 5.2.14 on page 122). Fraser [Fra3] showed that for the spiral winding
problem, another spectrum of dimensions (the Assouad spectrum) gives better information
about Hölder exponents than has been obtained from either of the two dimensions (the
upper box and Assouad dimensions) that it interpolates between.

Lipschitz maps are simply 1-Hölder maps and we see from (1.4.7) that the intermediate
dimensions of sets cannot increase under Lipschitz maps. Two sets F and G are said to
be bi-Lipschitz equivalent if there exists a Lipschitz bijection f : F → G with a Lipschitz
inverse. It is clear from the definitions that all of the notions of dimension considered in this
thesis take the same values for two bi-Lipschitz equivalent sets. Dimensions can therefore
be used to give necessary conditions for two sets to be bi-Lipschitz equivalent. As we will
see in Chapter 5, for the intermediate dimensions this is particularly relevant in the setting
of Bedford–McMullen carpets.

Potential-theoretic methods have been used to study the intermediate dimensions (and
variants) of images of sets under various deterministic and random functions in [Bur2;
BFF1; DK; DS2; Fen2]. Burrell, Falconer and Fraser [BFF1] have proved a Marstrand-
type projection theorem for the intermediate dimensions, namely that the intermediate
dimensions of orthogonal projections of a set are almost surely independent of the choice
of subspace. Continuity of the intermediate dimensions has powerful consequences, as
illustrated by the following result.

Theorem 1.4.3 (Burrell–Falconer–Fraser). Let 1 ⩽ k < d be integers and let F ⊂ Rd

be bounded with dimH F < k and dimθF continuous at θ = 0. Then there exists c < k

such that dimBπ(F ) ⩽ c for every orthogonal projection π : Rd → Rk, and dimBπ(F ) = c

for almost every such orthogonal projection π (with respect to the natural measure on the
Grassmannian). The same holds with dim replaced by dim throughout.

Proof. This follows by combining [BFF1, Corollary 6.4] with [Fal7, Theorem 1.8].

In Example 4.3.7, we observe that this can be applied to a particular class of dynamically
generated sets whose intermediate dimensions we prove are continuous. The modified
intermediate dimensions also satisfy a Marstrand-type projection result [DS2].

Fractional Brownian motion is an important stochastic process, introduced by Mandel-
brot and Van Ness [MV] and studied by Kahane [Kah]; we refer the reader to those texts for
the precise definition. In the cases of interest to us, it is a random function Bα : Rd → Rd,
where 0 < α < 1 and d ∈ N are fixed. One can write Bα = (Bα,1, . . . , Bα,d) and show that
each Bα,i : Rd → R is almost surely locally (α − ε)-Hölder continuous for all ε > 0 but
almost nowhere differentiable. Moreover, Bα,i(0) = 0, and the increments Bα,i(x)−Bα,i(y)

are normally distributed with mean 0 and variance |x− y|2α. For all x, y ∈ Rd and distinct
i, j ∈ {1, . . . , n}, the processes Bα,i(x) and Bα,j(y) are independent. The case α = 1/2 is
usual Brownian motion, and in this case the increments Bα,i(x)−Bα,i(y) are independent,
but if α ̸= 1/2 then the increments are dependent.

15



Falconer [Fal9] has explicitly computed the intermediate dimensions of fractional
Brownian images of certain sequence sets. Burrell [Bur2, Corollary 3.7] has shown that for
sets F with dimθF continuous at θ = 0, almost surely

dimBF < d if α >
1

d
dimH F, (1.4.8)

but that almost surely dimBF = d if α ⩽ 1
d dimH F . The analogous result holds for

the lower versions of the dimensions. Note the interplay between Hausdorff and box
dimension in (1.4.8). This result can in particular be applied for several classes of sets
whose intermediate dimensions we prove are continuous in this thesis, such as lattices (see
Section 3.2.3), popcorn-like pyramid sets (see Section 3.2.4), and sets of numbers with
real or complex continued fraction expansions with restricted entries (see Section 4.4).
Intermediate dimensions of more general Rosenblatt processes have been studied in [DK].

After the paper on which Chapter 2 is based appeared on arXiv, Feng [Fen2] showed that
the potential-theoretic methods in [Bur2; BFF1] can be adapted to study the Φ-intermediate
dimensions. He has obtained information about Φ-intermediate dimensions of images of sets
under projections and fractional Brownian motion if the function Φ satisfies the property
that for all ε > 0, δε log Φ(δ) → 0 as δ → 0. He has also shown that for every subset E
of the symbolic space, the intermediate and Φ-intermediate dimensions of the projections
of E under typical self-affine coding maps are constant and given by formulas in terms of
capacities.
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Chapter 2

Generalised intermediate dimensions

2.1 Introduction

2.1.1 Discussion of main results

This chapter introduces a more general family of dimensions and is based on [Ban2]. Recall
from Section 1.4 that the intermediate dimensions are always continuous in θ ∈ (0, 1]

but are often discontinuous at θ = 0. In this chapter, we introduce the Φ-intermediate
dimensions, by restricting the sizes of the covering sets to lie in a wider class of intervals
of the form [Φ(δ), δ] for more general functions Φ. These dimensions give even more
refined geometric information than the intermediate dimensions about sets for which
the intermediate dimensions are discontinuous at θ = 0. While many results for the
Φ-intermediate dimensions are similar to results for the intermediate dimensions, others,
such as the Hölder distortion estimates in Theorem 2.3.1, are rather different.

A class of dimensions which generalise the Assouad spectrum were defined in [FY2,
Section 9], greatly developed by García, Hare and Mendivil in [GHM2], and further studied
in [BRT; GHM1; HH; HM1; HM2; Tro]. They are defined by fixing the relative scales in
more general ways than for the Assouad spectrum, thus giving more refined geometric
information about sets whose quasi-Assouad dimension is less that the Assouad dimension.
These Assouad-like dimensions were part of our original motivation for considering the Φ-
intermediate dimensions, and there are parallels between the two settings in a philosophical
sense.

This chapter is structured as follows. In Section 2.1.2, we define the notions of dimension
that we will work with and make some standing assumptions to reduce repetition. In Sec-
tion 2.2, we give relationships between the different notions of dimension (Propositions 2.2.1
and 2.2.12). In Theorem 2.2.5 and Proposition 2.2.6 we prove quantitative continuity-like
properties for the Φ-intermediate dimensions, which intuitively say that if two functions
Φ and Φ1 are ‘close’ to each other then the dimensions of subsets do not differ too much.
Interestingly, the precise bounds depend on the Assouad and lower dimensions of the set,
which give information about its extremal scaling properties. From this result we deduce a
condition for the Φ- and Φ1-intermediate dimensions to coincide for all subsets with finite
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Assouad dimension (Proposition 2.2.8 (ii)).
In Section 2.3 we prove Hölder distortion estimates for the Φ-intermediate dimensions

(Theorem 2.3.1) which are different from the usual bound (1.4.7) on page 14. The estimates
imply bi-Lipschitz stability (Corollary 2.3.3), which is an important property that most
notions of dimension satisfy. This means that the Φ-intermediate dimensions provide yet
another invariant for the classification of subsets up to bi-Lipschitz image.

In Section 2.4 we prove a mass distribution principle (Lemma 2.4.1) and a converse,
a Frostman type lemma (Lemma 2.4.2) for the Φ-intermediate dimensions. The latter
is an example of where the extension from Euclidean space to the more general metric
spaces in which we work is non-trivial; we use an analogue of the dyadic cubes in general
doubling metric spaces given in [HK]. The mass distribution principle and Frostman type
lemma combine to give Theorem 2.4.3, a useful alternative definition of the Φ-intermediate
dimensions in terms of measures. We use this characterisation to prove Theorem 2.4.4
on the dimensions of product sets, giving new bounds in terms of the dimensions of the
marginals, one of which we improve further in the case of self-products. In particular,
(dimΦ,dimB) and (dimθ, dimB) satisfy the inequalities (2.4.6) that many ‘dimension pairs’
satisfy, although our upper bound for dim

Φ
(E × F ) is different to what might be expected.

We also use the mass distribution principle to prove in Proposition 2.4.5 that the lower
versions of the intermediate and Φ-intermediate dimensions are not finitely stable (in
contrast to the upper versions).

Proposition 2.4.5 also gives an example of a set to which Theorem 2.5.1, which is perhaps
the most significant result of this chapter, can be applied. Theorem 2.5.1 implies that for
all compact subsets of an appropriate space there is a family of functions Φ which ‘recover
the interpolation’ between the Hausdorff and box dimensions, even if the intermediate
dimensions are discontinuous at θ = 0. In fact, there exists a single family of Φ which
interpolate for both the upper and lower versions of the dimensions, and whose dimensions
vary monotonically for all sets, but in Proposition 2.5.2 we show that it might not be
possible to ensure that the dimensions vary continuously for all other sets.

2.1.2 Definitions of dimensions

For the purposes of this thesis, we make the following definition.

Definition 2.1.1. A function Φ: (0,∆) → R is admissible if Φ is monotonic, 0 < Φ(δ) ⩽ δ

for all δ ∈ (0,∆), and Φ(δ)/δ → 0 as δ → 0+.

In some situations, in particular in Chapter 4, it will be convenient to work with ad-
missible functions that satisfy the additional mild condition that Φ(δ)/δ → 0 monotonically
as δ → 0+. This is satisfied by many reasonable functions such as δ1/θ and e−δ−0.5), and we
call such functions monotonically admissible. To minimise repetition, we make the following
standing assumptions for the rest of this chapter:

• The letter Φ will represent an arbitrary admissible function (except in Proposi-
tion 2.2.11 where we explore the conditions on Φ).
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• The underlying metric space is denoted by X (or sometimes Y ), and will be assumed
to have more than one point and be uniformly perfect. The letter d will denote
the the metric of the underlying space, and c will usually denote the constant from
Definition 1.3.1.

• Subsets of X are denoted by F (or sometimes E or G), and are assumed to be
non-empty and totally bounded.

Using these conventions, and based on Definition 1.4.1, we now make the main definition of
this chapter.

Definition 2.1.2. We define the upper Φ-intermediate dimension of a subset F by

dim
Φ
F = inf{ s ⩾ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all δ ∈ (0, δ0)

there exists a cover {U1, U2, . . . } of F such that

Φ(δ) ⩽ |Ui| ⩽ δ for all i, and
∑

i

|Ui|s ⩽ ε }.

Similarly, we define the lower Φ-intermediate dimension of F by

dimΦF = inf{ s ⩾ 0 : for all ε > 0 and δ0 ∈ (0, 1] there exists δ ∈ (0, δ0) and a cover

{U1, U2, . . . } of F such that

Φ(δ) ⩽ |Ui| ⩽ δ for all i, and
∑

i

|Ui|s ⩽ ε }.

If these two quantities coincide, we call the common value the Φ-intermediate dimension of
F and denote it by dimΦ F .

In the above definition, the cover {Ui} of F is a priori countable, but since it satisfies
0 < Φ(δ) ⩽ |Ui| for all i, and

∑
i |Ui|s ⩽ ε, it must be finite. If F were not totally bounded

then the Φ-intermediate dimensions of F would be infinite according to Definition 2.1.2. If
θ ∈ (0, 1) and Φ(δ) = δ1/θ for all δ ∈ [0, 1], then it is straightforward to check that Φ is
admissible, and dim

Φ
F = dimθF and dimΦF = dimθF are the definitions of the upper and

lower intermediate dimensions of F at θ, respectively.

2.2 General bounds

In this section we examine general bounds and continuity-like properties for the Φ-
intermediate dimensions. Recall that the letter d is reserved for the metric in this chapter.
Note that since we work in a more general space than Rn, balls of radius δ (as defined
in (1.3.1)) can have diameter less than 2δ, which makes several of the proofs in this chapter
more technical. In the special case X = Rn, if dimL F is replaced by 0, and dimA F is
replaced by n, then the bounds in this section will hold for all subsets. The dimensions
satisfy the inequalities in Proposition 2.2.1 below, as with the intermediate dimensions.
We assume that the ambient metric space X is c-uniformly perfect with more than one
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point, and that Φ(δ)/δ → 0 as δ → 0+, to ensure that Proposition 2.2.1 will hold and to
avoid cases like the two-point metric space, which would have infinite intermediate and
Φ-intermediate dimensions according to Definition 2.1.2.

Proposition 2.2.1. For a subset F ,

0 ⩽ dimH F ⩽ dimΦF ⩽ dim
Φ
F ⩽ dimBF ⩽ dimA F ⩽ dimAX, and

dimΦF ⩽ dimBF ⩽ dimBF.

Proof. We first prove dim
Φ
F ⩽ dimBF . Recalling that |X| is the diameter of X, since

Φ(δ)/δ → 0, there exists ∆ ∈ (0,min{|X|, 1}) such that Φ(δ)/δ < c/2 for all δ ∈ (0,∆).
Let s > dimBF and ε > 0. Let t ∈ (dimBF, s), so we can reduce ∆ further to assume that
∆ < ε

1
s−t and that for all δ ∈ (0,∆) there exists a cover of F by δ−t or fewer sets {Ui},

each having diameter at most δ. We may assume without loss of generality that each Ui
intersects F . If |Ui| ⩾ δ/2 then leave Ui in the cover unchanged. If |Ui| < δ/2, then fix
xi ∈ Ui and yi ∈ B(xi, δ/2) \ B(xi, cδ/2); add the point yi to Ui, and call the resulting
cover {Vi}. For each i,

Φ(δ) ⩽ cδ/2 ⩽ |Vi| ⩽ δ

by the triangle inequality. Moreover,
∑

i

|Vi|s ⩽ δ−tδs < δs−t0 < ε.

Thus dim
Φ
F ⩽ s by Definition 2.1.2, so dim

Φ
F ⩽ dimBF , as required.

The proof that dimΦF ⩽ dimBF is similar. Indeed, let s′ > dimBF and ε′ > 0. Let
t′ ∈ (dimBF, s

′), so for all ∆′ ∈ (0,min{(ε′)
1

s′−t′ , |X|, 1}) there exists δ′ ∈ (0,∆′) and a
cover of F by (δ′)−t

′ or fewer sets, each having diameter at most δ′. As above, we can use
this cover to form a cover {V ′

j } which satisfies Φ(δ′) ⩽ |V ′
j | ⩽ δ′ for all j and

∑
j |V ′

j |s < ε′.
Therefore dimΦF ⩽ s′, so dimΦF ⩽ dimBF .

The inequalities dimH F ⩽ dimΦF , dimΦF ⩽ dim
Φ
F and dimBF ⩽ dimBF follow

directly from the definitions. The inequality dimBF ⩽ dimA F holds by fixing R = |F | in
the definition 1.3.6. The inequality dimA F ⩽ dimAX follows from 1.3.6 since F ⊆ X.

It follows from Proposition 2.2.1 that if F ⊂ Rn is non-empty and bounded then
dimΦF ⩽ dim

Φ
F ⩽ n, and if in addition F is open with respect to the Euclidean metric

then dimΦF = dim
Φ
F = n, as one would expect. There is no general relationship

between the lower box dimension and the upper intermediate dimensions. Indeed, it is a
straightforward exercise to construct a non-empty bounded F ⊂ R such that dimBF = 0

and dimBF = 1, in which case dimθF = 1 for all θ ∈ (0, 1] by [FFK2, Proposition 2.4] (see
also Corollary 3.2.6). But if G = { 1/n : n ∈ N }, then dimθG = θ

1+θ < 1/2 = dimBG for
all θ ∈ (0, 1) by [FFK2, Proposition 3.1].

The dimensions satisfy the following basic properties.

Proposition 2.2.2.
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(i) Both dim
Φ and dimΦ are increasing for sets: if E ⊆ F then dim

Φ
E ⩽ dim

Φ
F and

dimΦE ⩽ dimΦF .

(ii) Both dim
Φ and dimΦ are stable under closure: dim

Φ
F = dim

Φ
F and dimΦF =

dimΦF .

Proof. This is straightforward from the definition.

Example 2.2.3. The set F := Q ∩ [0, 1] ⊂ R is countable, so dimH F = 0, but dimΦF =

dim
Φ
F = 1 for all admissible Φ, directly from Definition 2.1.2. This demonstrates that:

• The dimensions dimΦ and dim
Φ are different from dimH.

• There are subsets of R, such as F , for which there does not exist a family of admissible
functions for which the Φ-intermediate dimensions interpolate between the Hausdorff
and box dimensions of the set. This means that the assumption of compactness in
Theorem 2.5.1 on page 42 cannot be removed in general.

• The dimensions dimΦ and dim
Φ are not countably stable.

In Proposition 2.2.4 we give a sufficient condition for the Φ-intermediate dimension
always to equal the box dimension. As an example, the function Φ(δ) := δ

− log δ satisfies the
assumptions of Proposition 2.2.4. Recall that in this chapter Nδ(F ) is defined as in (1.3.2).

Proposition 2.2.4. Let Φ be an admissible function such that log δ
log Φ(δ) → 1 as δ → 0+.

Then for any subset F , dimΦ
F = dimBF and dimΦF = dimBF .

Proof. We prove that dim
Φ
F = dimBF ; the proof of dimΦF = dimBF is similar. Assume

(for the purpose of obtaining a contradiction) that dim
Φ
F < dimBF , and let s, t ∈ R be

such that dim
Φ
F < s < t < dimBF . Then for all sufficiently small δ there exists a cover

{Ui} of F such that Φ(δ) ⩽ |Ui| ⩽ δ for all i, and
∑

i |Ui|s ⩽ 1. Therefore

Nδ(F )δ
t ⩽

∑

i

δt
|Ui|s|Ui|t−s

|Ui|t
⩽
∑

i

δt
|Ui|sδt−s
(Φ(δ))t

⩽

(
δ1+(t−s)/t

Φ(δ)

)t
,

which converges to 0 as δ → 0+. This contradicts t < dimBF and completes the proof.

We now consider continuity-like results for the Φ-intermediate dimensions. The main
such result is Theorem 2.2.5, which roughly implies that if two admissible functions Φ

and Φ1 are in a quantitative sense ‘close’ to each other, then the Φ and Φ1-intermediate
dimensions of sets whose Assouad dimension is not too large do not differ greatly. In
a similar spirit, quantitative continuity results have been proven for the intermediate
dimensions in Rn, for example [FFK2, Proposition 2.1] and [Fal8, (14.2.2)]. In Chapter 3,
we will see what Theorem 2.2.5 says about the θ-intermediate dimensions of sets and deduce
a complete characterisation of attainable forms of intermediate dimensions (we will also
give a self-contained proof for completeness).
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Theorem 2.2.5. Let Φ and Φ1 be admissible functions. Let F be a subset satisfying
0 < dimA F < ∞, and assume that F is complete. Suppose that 0 < dim

Φ
F < dimA F ,

and let η ∈ [0, dimA F − dim
Φ
F ). Define

γ :=
dim

Φ
F − dimL F

dim
Φ
F + η − dimL F

; α :=
dimA F − dim

Φ
F

dimA F − dim
Φ
F − η

. (2.2.1)

If
Φ1 (δ) ⩽ (Φ(δ1/α))γ (2.2.2)

for all sufficiently small δ > 0, then dim
Φ1
F ⩽ dim

Φ
F + η. The same holds with dim

replaced by dim throughout.

By a similar argument, if we only assume that Φ1 (δ) ⩽ (Φ(δ1/α))γ (with γ and α as
in (2.2.1)) holds only for a sequence of δ → 0+, then we can only conclude dimΦ1F ⩽

dim
Φ
F + η.

Proof. Without loss of generality assume η > 0, so γ < 1 < α. The idea of the proof is to
convert a cover for the interval [Φ(δ), δ] into a cover for [Φ1(δ

α), δα]. We do this by using the
Assouad dimension to replace sets which are too large with sets of size δα (corresponding
to indices I1). We use the lower dimension to replace sets which are too small with sets of
size (Φ(δ))γ (corresponding to indices I3). We have chosen the parameters γ and α so that
the ‘cost’ of each of these actions in terms of how much the dimension can increase is the
same, namely η.

Without loss of generality we assume that F is closed. Now for s ∈ (dim
Φ
F,dimA F −η)

let s′ ∈ (dim
Φ
F, s), a > dimA F and λ < dimL F satisfy

γ(s+ η − λ)− (s′ − λ) > 0 and a− s′ − α(a− s− η) > 0. (2.2.3)

Let c ∈ (0, 1/2) be such that X is c-uniformly perfect. Fix C ∈ (0,∞) such that
Nr(B(x,R) ∩ F ) ⩽ C(R/r)a for all x ∈ F and 0 < r < R. Since F is assumed to be
complete, by (1.3.9) there exists a doubling Borel probability measure µ with supp(µ) = F

and dimL µ ∈ (λ,dimL F ]. In particular, there exists A ∈ (0, 1) such that if 0 < r < R ⩽ |F |
and x ∈ X then

µ(B(x,R))

µ(B(x, r))
⩾ A

(
R

r

)λ
.

Fix M > 1 such that µ is M -doubling.
Let ε > 0. Choose ∆ > 0 such that for all δ ∈ (0,∆) there exists a cover {Ui}i∈I of F

such that Φ(δ) ⩽ |Ui| ⩽ δ for all i, and
∑

i

|Ui|s
′
⩽ (c−(s+η)M2A−110s+η + 3s+η + 2aC)−1ε.

We may reduce ∆ to assume that (2.2.2) and δ/Φ1(δ) ⩾ 5/c hold for all δ ∈ (0,∆), and
∆ < 1, ∆ < |X|. Write I as a disjoint union I = I1 ∪ I2 ∪ I3 where

I1 := { i ∈ I : Φ(δ) ⩽ |Ui| < Φ1(δ
α) }

I2 := { i ∈ I : Φ1(δ
α) ⩽ |Ui| ⩽ δα/2 }

I3 := { i ∈ I : δα/2 < |Ui| ⩽ δ },
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noting that some of these sets may be empty. Let z1, . . . , zK be a maximal 4Φ1(δ
α)-separated

subset of

F \


 ⋃

i∈I2∪I3
SΦ1(δα)(Ui)


 ,

recalling that Sr(U) is the r-neighbourhood of U .
For each k ∈ I3 pick

xk,1, . . . , xk,⌊C(2|Uk|/δα)a⌋ ∈ F

such that

SΦ1(δα)(Uk) ∩ F ⊆
⌊2aC|Uk|aδ−aα⌋⋃

l=1

B(xk,l, δ
α/2).

Define

U1 := {B(zm, 5Φ1(δ
α)/c) : 1 ⩽ m ⩽ K },

U2 := { SΦ1(δα)(Uj) : j ∈ I2 },
U3 :=

⋃

k∈I3
{B(xk,l, δ

α/2) : 1 ⩽ l ⩽ ⌊2aC|Ul|aδ−aα⌋ }.

Then U1 ∪ U2 ∪ U3 is a cover of F , and for sufficiently small δ the diameter of each covering
set lies in the interval [Φ1(δ

α), δα].
We bound the (s+ η)-powers of the diameters of each part of the cover separately. First

consider U1. For m ∈ {1, . . . ,K} let Jm := { i ∈ I1 : Ui ∩B(zm,Φ1(δ
α)) ̸= ∅ }. If i ∈ Jm,

let ui,m ∈ Ui ∩B(zm,Φ1(δ
α)). Then

µ(Ui) ⩽ µ(B(ui,m, 2|Ui|))

⩽ A−1µ(B(ui,m, 2Φ1(δ
α)))

(
Φ1(δ

α)

|Ui|

)−λ

⩽M2A−1µ(B(zm,Φ1(δ
α)))

(
Φ1(δ

α)

|Ui|

)−λ
.

Therefore

µ(B(zm,Φ1(δ
α))) ⩽

∑

i∈Jm
µ(Ui) ⩽M2A−1µ(B(zm,Φ1(δ

α))) · (Φ1(δ
α))−λ ·

∑

i∈Jm
|Ui|λ.

Since supp(µ) = F , we can cancel through by the positive number µ(B(zm,Φ1(δ
α))). Note

also that if i ∈ I1 then there is at most one m for which Ui ∩B(zm,Φ1(δ
α)) ̸= ∅. Therefore

∑

U∈U1

|U |s+η ⩽ K(10c−1Φ1(δ
α))s+η

⩽ c−(s+η)M2A−110s+η(Φ1(δ
α))s+η−λ

∑

i∈I
|Ui|λ

⩽ c−(s+η)M2A−110s+η(Φ1(δ
α))s+η−λ(Φ(δ))−(s′−λ)∑

i∈I
|Ui|s

′

⩽ c−(s+η)M2A−110s+η(Φ(δ))γ(s+η−λ)−(s′−λ)∑

i∈I
|Ui|s

′

23



< c−(s+η)M2A−110s+η
∑

i∈I
|Ui|s

′
,

where we used (2.2.3) in the last step.
For U2, ∑

U∈U2

|U |s+η ⩽
∑

j∈I2
(3|Uj |)s+η ⩽ 3s+η

∑

j∈I
|Uj |s

′
.

Finally, consider U3. Since |Uk| ⩽ δ for k ∈ I3,

∑

k∈I3

⌊2aC|Uk|aδ−aα⌋∑

l=1

|B(xk,l, δ
α/2)|s+η ⩽

∑

k∈I3
2aC|Uk|aδ−aαδα(s+η)

⩽ 2aCδ−aα+α(s+η)+a−s
′ ∑

k∈I3
|Uk|s

′

⩽ 2aC
∑

k∈I
|Uk|s

′
.

Bringing the above bounds together, for all δ ∈ (0,∆),
∑

U∈U1∪U2∪U3

|U |s+η ⩽ (c−(s+η)M2A−110s+η + 3s+η + 2aC)
∑

i∈I
|Ui|s

′
⩽ ε.

It follows that dim
Φ1
F ⩽ s+ η, as required. The proof for when dim is replaced by dim is

similar.

We have a similar result for the case when the Φ-intermediate dimension of F is 0.

Proposition 2.2.6. Let Φ,Φ1 be admissible functions, assume 0 < dimA F < ∞, let
η ∈ (0,dimA F ), and let b > 0. If for all sufficiently small δ,

Φ1(δ) ⩽
(
Φ(δ1/α)

)b
where α = α(η) :=

dimA F

dimA F − η
(2.2.4)

holds, then if dimΦF = 0 then dimΦ1F ⩽ η, and if dim
Φ
F = 0 then dim

Φ1
F ⩽ η. If

we assume only that (2.2.4) holds for a subsequence of δ → 0+, then if dimΦ
F = 0 then

dimΦ1F ⩽ η.

Proof. This is a straightforward modification of the proof of Theorem 2.2.5. A cover for
[Φ(δ), δ] is converted into a cover for [Φ1(δ

α), δα] by breaking up the largest sets using
the Assouad dimension of F , and fattening the smallest sets. The details are left to the
reader.

In particular, if Φ1(δ) ⩽ (Φ(δ))b holds for some b > 0 and all sufficiently small δ,
then dim

Φ
F = 0 implies dim

Φ1
F = 0. The following corollary of Theorem 2.2.5 and

Proposition 2.2.6 says that if the underlying metric space is doubling, then if Φ and Φ1

are ‘close’ in a way that depends only on X, then the difference between the Φ- and
Φ1-intermediate dimensions of subsets will be small, independently of the particular subset.
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Corollary 2.2.7. Let X be a doubling metric space and suppose F ⊆ X is bounded. If

Φ1

(
δ

dimA X

dimA X−η

)
⩽ (Φ(δ))

dimA X

dimA X+η (2.2.5)

holds for all sufficiently small δ, then if dimΦ
F < dimA F and η ∈ [0, dimA F − dim

Φ
F )

then dim
Φ1
F ⩽ dim

Φ
F + η, and the same holds with dim replaced by dim throughout. If

we only assume that (2.2.5) holds for a subsequence of δ → 0+, and if dimΦ
F < dimA F

and η ∈ [0, dimA F − dim
Φ
F ), then dimΦ1F ⩽ dim

Φ
F + η.

Proof. Using notation from (2.2.1), by Proposition 2.2.1,

γ ⩽
dimAX

dimAX + η
⩽ 1 ⩽

dimAX

dimAX − η
⩽ α,

so the result follows from Theorem 2.2.5 in the cases dimΦ
F > 0 and dimΦF > 0, and from

Proposition 2.2.6 in the cases dim
Φ
F = 0 and dimΦF = 0.

We now define an equivalence relation ≡ on the set of admissible functions by setting
Φ1 ≡ Φ2 if for every subset F with dimA F < ∞ of every underlying space X we have
dim

Φ1
F = dim

Φ2
F and dimΦ1F = dimΦ2F . We define a non-strict partial order ⪯ on the

equivalence classes of ≡ by setting [Φ1] ⪯ [Φ2] if dimΦ1
F ⩽ dim

Φ2
F and dimΦ1F ⩽ dimΦ2F

for all such F . We abuse notation by writing Φ1 ⪯ Φ2 to mean [Φ1] ⪯ [Φ2].
Consider the topology on the set of equivalence classes generated by the basis of open

sets
{NΦ,α : Φ an admissible function, α ∈ (1,∞) },

where

NΦ,α := {C : there exists Φ1 ∈ C such that (Φ(δa))a ⩽ Φ1(δ) ⩽ (Φ(δ1/a))1/a

for all a ∈ (1, α) and all sufficiently small δ }.

Then for any given subset F of finite Assouad dimension, the maps [Φ] 7→ dim
Φ
F and

[Φ] 7→ dimΦF are well-defined and, by Theorem 2.2.5 and Proposition 2.2.6, continuous
with respect to this topology. This provides motivation for calling these ‘continuity-like’
results. It is natural to ask about abstract properties of the topological space, such as
connectivity and separability (see [BRT, Corollary B] and the remarks after it relating to
the generalised Assouad dimensions), but we will not pursue this.

Corollary 2.2.8 gives a condition for the dimensions to coincide for all sets.

Corollary 2.2.8. Let Φ,Φ1 be admissible functions.

(i) If for all α ∈ (1,∞) there exists ∆ > 0 such that for all δ ∈ (0,∆) we have

Φ1(δ) ⩽ (Φ(δ1/α))1/α (2.2.6)

(noting that this will be the case if, for example, there exists C ∈ (0,∞) such that
lim supδ→0+

Φ1(Cδ)
Φ(δ) <∞), then Φ1 ⪯ Φ. If we only assume that for all α ∈ (1,∞)

and δ0 > 0 there exists δ ∈ (0, δ0) such that (2.2.6) holds, then we can only conclude
that dimΦ1F ⩽ dim

Φ
F for all subsets F with finite Assouad dimension.
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(ii) If for all α ∈ (1,∞) there exists ∆ > 0 such that for all δ ∈ (0,∆),

(Φ(δα))α ⩽ Φ1(δ) ⩽ (Φ(δ1/α))1/α (2.2.7)

holds, then Φ ≡ Φ1.

Proof. In the cases dim
Φ
F = 0 and dim

Φ
F = dimA F , (i) follows from Propositions 2.2.6

and 2.2.1. If 0 < dim
Φ
F < dimA F then for all η ∈ [0, dimA F − dim

Φ
F ), by the case

of (2.2.6) with

α := min

{
dimA F − dim

Φ
F

dimA F − dim
Φ
F − η

,
dim

Φ
F + η

dim
Φ
F

}
,

it follows that dim
Φ1
F ⩽ dim

Φ
F + η by Theorem 2.2.5. Since η was arbitrary, dimΦ1

F ⩽

dim
Φ
F . Similarly, in all cases dimΦ1F ⩽ dimΦF , so Φ1 ⪯ Φ. The case when we only

assume (2.2.7) along a subsequence is proved similarly, and (ii) follows from (i).

We now use Corollary 2.2.8 to explore the conditions that can be imposed on the
function Φ, and show that nothing is really lost by only considering functions which are
strictly increasing, invertible and continuous.

Proposition 2.2.9. For every admissible function Φ there exists an admissible function
Φ1 : (0, 1) → (0, 1) that is a strictly increasing, C∞ diffeomorphism, such that Φ ≡ Φ1.

Proof. Fix N ∈ N such that Φ is positive and increasing on (0, 2−N ] with Φ(2−N ) < 1. We
construct a strictly increasing function Φ2 : (0, 1] → (0, 1] by defining Φ2 to be linear on
[2−N , 1] with Φ2(2

−N ) = Φ(2−N ) and Φ2(1) = 1 and defining Φ2 inductively on (0, 2−N ) as
follows. Suppose we have defined Φ2 on [2−n, 1] for some n ⩾ N . If Φ(2−n−1) < Φ2(2

−n)

then define Φ2(2
−n−1) = Φ(2−n−1) and Φ2 linear on [2−n−1, 2−n]. If, on the other hand,

Φ(2−n−1) = Φ2(2
−n), then let m > n be the smallest integer such that Φ(2−m) < Φ(2−n),

define Φ2(2
−m) := max{Φ2(2

−n)/2,Φ(2−m)}, and define Φ2 to be linear on [2−m, 2−n]. Then
by construction Φ2 is strictly increasing on (0, 1] with Φ2(δ/4) ⩽ Φ(δ) and 2Φ2(2δ) ⩾ Φ(δ)

for all δ ∈ (0, 2−N−1). Each of the countably many points of non-differentiability of Φ2 can
be locally made smooth to give an admissible function Φ1 : (0, 1) → (0, 1) that is C∞ on
(0, 1), still strictly increasing, and such that Φ2(δ)/2 ⩽ Φ1(δ) ⩽ 2Φ2(δ) for all δ ∈ (0, 2−N ).
Then

Φ1(δ)/δ ⩽ 2Φ2(δ)/δ ⩽ 2Φ(4δ)/δ = 8Φ(4δ)/(4δ) −−−−→
δ→0+

0,

so Φ1 is admissible. Moreover,

Φ(δ/2)/4 ⩽ Φ2(δ)/2 ⩽ Φ1(δ) ⩽ 2Φ2(δ) ⩽ 2Φ(4δ)

for all δ ∈ (0, 2−N−3), so Φ1 ≡ Φ by Corollary 2.2.8 (ii). By the smooth inverse function
theorem, Φ1 has a C∞ inverse, as required.

In the proof of Theorem 4.3.1 on page 88 we will use the following technical lemma.
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Lemma 2.2.10. If Φ: (0,∆] → R is monotonically admissible then there exists an invertible
monotonically admissible function Φ1 : (0,∆] → (0,Φ(∆)] such that ϕ ≡ ϕ1.

Proof. Define Φ1 by Φ1(∆/2
n) := Φ(∆/2n) and Φ1 linear on [∆/2n+1,∆/2n] for n =

0, 1, 2, . . . . Then clearly Φ1 is invertible and satisfies Φ1(δ) ⩽ δ for all δ ∈ (0,∆] and
Φ1(δ)/δ ↘ 0 monotonically as δ → 0+. Moreover Φ(δ/2) ⩽ Φ1(δ) ⩽ Φ(2δ) for all
δ ∈ (0,∆/2], so by Corollary 2.2.8, ϕ ≡ ϕ1.

The following proposition shows that the assumption that Φ is monotonic and strictly
positive does not really lose anything.

Proposition 2.2.11. Let Φ: (0,∆] → [0,∞) be any function (not necessarily mono-
tonic) such that Φ(δ)/δ → 0 as δ → 0+, and define the Φ-intermediate dimensions as in
Definition 2.1.2. Let F be a subset.

(i) If Φ1 is defined by Φ1(δ) := sup{Φ(δ′) : δ′ ∈ [0, δ] } then dim
Φ
F = dim

Φ1
F .

(ii) (1) If there is a sequence of δ → 0+ for which Φ(δ) = 0 then dimΦF = dimH F .

(2) Suppose Φ(δ) > 0 for all δ ∈ (0,∆) but for all δ2 ∈ (0,∆) there exists δ3 ∈ (0, δ2)

such that inf{Φ(δ) : δ ∈ [δ3, δ2] } = 0. Then if F is compact then dimΦF =

dimH F . In particular, if F is a non-empty, bounded subset of X = Rn then
dimΦF = dimH F .

(3) If Φ2 : (0,∆) → R defined by Φ2(δ) := inf{Φ(δ′) : δ′ ∈ [δ,∆] } is positive for all
δ ∈ (0,∆), then dimΦF = dimΦ2F .

Proof. We may assume that ∆ < min{1, |X|} and that Φ(δ) ⩽ (1+2/c)−1δ for all δ ∈ (0,∆).
In the proofs of the different parts of the proposition, the same symbols may take different
values.

(i) For all δ ∈ (0,∆),

Φ1(δ)/δ = sup{Φ(δ′)/δ : δ′ ∈ (0, δ] } ⩽ sup{Φ(δ′)/δ′ : δ′ ∈ (0, δ] } −−−−→
δ→0+

0,

and Φ1(δ) is monotonic, so Φ1 is admissible. Also, Φ(δ) ⩽ Φ1(δ), so dim
Φ
F ⩽ dim

Φ1
F .

It remains to prove the reverse inequality. Let s > dim
Φ
F and ε > 0. Then there

exists δ0 > 0 such that for all δ ∈ (0,min{δ0,∆}) there exists a cover {Ui} of F such that
Φ(δ) ⩽ |Ui| ⩽ δ for all i, and

∑

i

|Ui|s ⩽ 2−s(1 + 1/c)−sε. (2.2.8)

Then if δ′ ∈ (0, δ0) then there exists δ ∈ (0, δ′] such that Φ(δ) ⩾ Φ1(δ
′)/2. Let {Ui} be the

cover corresponding to δ as above. For each i, if |Ui| ⩾ Φ1(δ
′) then leave |Ui| in the cover

unchanged, noting that Φ1(δ
′) ⩽ |Ui| ⩽ δ ⩽ δ′. If Φ1(δ

′) > |Ui|, on the other hand, then
fix pi ∈ Ui, and qi ∈ X such that Φ1(δ

′) ⩽ d(pi, qi) ⩽ Φ1(δ
′)/c. Replace Ui in the cover by

Ui ∪ {qi}, and denote the new cover of F by {Vi}i. Then

Φ1(δ
′) ⩽ d(pi, qi) ⩽ |Ui ∪ {qi}| < (1 + 1/c)Φ1(δ

′) ⩽ δ′.
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Also,
|Ui ∪ {qi}| ⩽ 2(1 + 1/c)Φ(δ) ⩽ 2(1 + 1/c)|Ui|.

Therefore ∑

i

|Vi|s ⩽
∑

i

(2(1 + 1/c)|Ui|)s = 2s(1 + 1/c)s
∑

i

|Ui|s ⩽ ε

by (2.2.8), so dim
Φ1
F ⩽ s, hence dimΦ1F ⩽ dim

Φ
F as required.

(ii) (1) Follows directly from (1.4.1) and Definition 2.1.2.
(ii) (2) Assume that F is compact. Let s > dimH F , ε > 0 and δ2 ∈ (0, 1], so there

exists δ3 ∈ (0, δ2) such that inf{Φ(δ) : δ ∈ [δ3, δ2] } = 0. There exists a countable
cover {Ui} of F such that

∑
i |Ui|s ⩽ min{δs3, ε}. In particular, |Ui| ⩽ δ3. Since F is

compact, there is a finite subcover {Vi}, so mini{|Vi|} > 0, and each |Vi| ⩽ δ3. Since
inf{Φ(δ) : δ ∈ [δ3, δ2] } = 0, there exists δ4 ∈ [δ3, δ2] such that Φ(δ4) ∈ (0,mini{|Vi|}).
Then 0 ⩽ Φ(δ4) ⩽ mini{|Vi|}) ⩽ |Vi| ⩽ δ3 ⩽ δ4 for each i, and

∑
i |Vi|s ⩽

∑
i |Ui|s ⩽ ε. As

ε and δ2 were arbitrary, dimΦF ⩽ s, so dimΦF = dimH F .
(ii) (3) Clearly Φ2 is admissible and dimΦ2F ⩽ dimΦF , so it remains to prove the reverse

inequality. Let s > dimΦ2F and ε > 0. Let δ1 > 0 and let δ0 ∈ (0,Φ2(min{∆, δ1})/2).
Then there exists δ ∈ (0, δ0) and a cover {Ui} of F such that Φ2(δ) ⩽ |Ui| ⩽ δ for all i, and

∑

i

|Ui|s ⩽ 2−s(1 + 1/c)−sε. (2.2.9)

By the definition of Φ2, there exists δ2 ∈ [δ,∆] such that Φ(δ2) < 2Φ2(δ). But since
Φ2(δ) ⩽ Φ(δ) ⩽ δ0 < Φ2(min{∆, δ1})/2, it must be the case that δ2 < min{∆, δ1}. If
|Ui| ⩾ Φ(δ2) then leave Ui in the cover unchanged. If |Ui| < Φ(δ2) then fix pi ∈ Ui and qi ∈ X

such that Φ(δ2) ⩽ d(pi, qi) ⩽ Φ(δ2)/c; replace Ui in the cover with Ui∪{qi} and call the new
cover {Vi}. Now, Φ(δ2) ⩽ |Ui∪{qi}| < δ2. Also, |Ui∪{qi}| ⩽ 2(1+1/c)Φ2(δ) ⩽ 2(1+1/c)|Ui|.
Therefore ∑

i

|Vi|s ⩽
∑

i

(2(1 + 1/c)|Ui|)s = 2s(1 + 1/c)s
∑

i

|Ui|s ⩽ ε,

by (2.2.9). It follows that dimΦF ⩽ s, as required.

Another consequence of Corollary 2.2.8 is the following relationships between the
Φ-intermediate and intermediate dimensions.

Proposition 2.2.12. Let Φ be an admissible function, and let

θ1 := lim inf
δ→0+

log δ

log Φ(δ)
; θ2 := lim sup

δ→0+

log δ

log Φ(δ)
, (2.2.10)

noting that 0 ⩽ θ1 ⩽ θ2 ⩽ 1. If dimA F <∞ then the following bounds hold:

• If 0 = θ2 = limδ→0+
log δ

log Φ(δ) then dimΦF ⩽ dimθF and dim
Φ
F ⩽ dimθF for all

θ ∈ (0, 1].

• If 0 = θ1 < θ2 then dimθ2F ⩽ dim
Φ
F ⩽ dimθ2F (so if dimθ2 F exists then dim

Φ
F =

dimθ2 F ), and dimΦF ⩽ min{dimθF,dimθ2F} for all θ ∈ (0, 1].
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• If 0 < θ1 ⩽ θ2 then

dimθ1F ⩽dimΦF ⩽ min{dimθ1F,dimθ2F},
max{dimθ1F,dimθ2F} ⩽dim

Φ
F ⩽ dimθ2F.

• If 0 < θ1 = θ2 then dimΦF = dimθ1F and dim
Φ
F = dimθ1.

Proof. As an example, we prove dim
Φ
F ⩽ dimθ2F under the assumption that θ2 > 0; the

other bounds are proved similarly. If θ2 = 1 then this follows from Proposition 2.2.1, so
assume θ2 ∈ (0, 1). Then letting η ∈ (0, 1− θ2), by the definition of θ2,

lim sup
δ→0+

Φ(δ)

δ1/(θ2+η)
= 0 <∞.

Corollary 2.2.8 (i) now gives dim
Φ
F ⩽ dimθ2+ηF . It is straightforward to verify from

Theorem 2.2.5 that the intermediate dimensions are continuous at θ2 > 0 (see also The-
orem 3.2.5), so the result follows upon letting η → 0+.

For sets whose upper intermediate dimensions are continuous at θ = 0, usually we will
not study the Φ-intermediate dimensions, because much information about the general
Φ-intermediate dimensions of such sets can be obtained directly from results about their
intermediate dimensions and the inequalities from Corollary 2.2.8.

2.3 Hölder and Lipschitz maps

2.3.1 Hölder distortion

We now investigate how these dimensions behave under Hölder and Lipschitz maps and
prove bounds which are different from the usual dim f(F ) ⩽ α−1 dimF .

Theorem 2.3.1. Let Φ and Φ1 be admissible functions and let (X, dX) and (Y, dY ) be
uniformly perfect. Let f : F → Y be a Hölder map with exponent α ∈ (0, 1] for some F ⊆ X,
assume dimA f(F ) <∞, and let γ ∈ [1, 1/α]. Assume that

Φ1(δ) ⩽ (Φ(δ1/(αγ)))α (2.3.1)

for all sufficiently small δ, and suppose dim
Φ
F < α dimA f(F ).

Then

dim
Φ1
f(F ) ⩽

dim
Φ
F + α(γ − 1) dimA f(F )

αγ
.

The same holds with dim replaced by dim throughout.

Proof. The idea of the proof is to consider a cover of F with diameters in [Φ(δ), δ], consider
the cover of f(F ) formed by the images under f of this cover, and ‘fatten’ the smallest sets
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in the new cover to size Φ1(δ
αγ) and break up the largest sets in the new cover to size δαγ .

Assume that f is C,α-Hölder with C ⩾ 1. Let ε > 0. Let

t >
dim

Φ
F + α(γ − 1) dimA f(F )

αγ
.

Then there exist s > dim
Φ
F and a > dimA f(F ) such that s < αa and

t >
s+ α(γ − 1)a

αγ
.

Define
g(η) :=

ηs+ αa(γ − η)

αγ
.

Since a > dimA f(F ), there exists M ∈ N such that for all y ∈ f(F ) and 0 < r < R, we
have Nr(B(y,R)∩ f(F )) ⩽M(R/r)a. Let c ∈ (0, 1) be such that X and Y are c-uniformly
perfect. For all small enough δ we have Φ(δ)/δ < c/2 and Φ1(δ)/δ < c/2, and there exists
a cover {Ui} of F such that Φ(δ) ⩽ |Ui| ⩽ δ for all i, and

∑

i

|Ui|s ⩽ ((C + c−1)s/α +M(2C)a+γg(1))−1ε/2. (2.3.2)

Without loss of generality assume Ui ∩ F ̸= ∅ for all i. Now, {f(Ui)} covers f(F ), and
|f(Ui)| ⩽ C|Ui|α for all i. There are two cases.

Case 1: Suppose i is such that |f(Ui)| ⩽ δαγ/2. Fix any yi ∈ f(Ui). There exists
y′i ∈ Y such that Φ1(δ

αγ) ⩽ dY (yi, y
′
i) ⩽ Φ1(δ

αγ)/c, hence dY (yi, y′i) ⩽ (Φ(δ))α/c. Let
Vi := f(Ui) ∪ {y′i}. By the triangle inequality,

Φ1(δ
αγ) ⩽ dY (yi, y

′
i) ⩽ |Vi| ⩽ |f(Ui)|+Φ1(δ

αγ)/c ⩽ δαγ . (2.3.3)

Moreover, by the assumption (2.3.1) about Φ1,

|Vi| ⩽ |f(Ui)|+Φ1(δ
αγ)/c ⩽ C|Ui|α + (Φ(δ))α/c ⩽ (C + c−1)|Ui|α. (2.3.4)

Case 2: Now suppose that i is such that δαγ/2 < |f(Ui)| ⩽ Cδα. Then
(2C)−1/αδγ < |Ui| ⩽ δ so there exists βi ∈ [1, γ] such that (2C)−1/αδβi < |Ui| ⩽ δβi .
Then δαγ/2 < |f(Ui)| ⩽ Cδαβi ⩽ Cδα. There exists a collection of M(2C)aδα(βi−γ)a ⩽

M(2C)a|Ui|αa(1−γ/βi) or fewer balls, each of diameter at most δαγ/2, which cover
f(Ui) ∩ f(F ). For each ball we can add a point in Y whose distance from the centre
of the ball is between Φ1(δ

αγ) and Φ1(δ
αγ)/c. Each of the new sets, which we call {Wi,j}j ,

will satisfy
Φ1(δ

αγ) ⩽ |Wi,j | ⩽ δαγ . (2.3.5)

Moreover,

|Wi,j | ⩽ δαγ = (2C)γ/βi((2C)−1/αδβi)αγ/βi ⩽ (2C)γ/βi |Ui|αγ/βi . (2.3.6)
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Note that g(η) is linear and decreasing in η, so t > g(1) ⩾ g(η) ⩾ g(γ) = s/α for all
η ∈ [1, γ], and in particular t > g(βi) for all i. Therefore using (2.3.4) and (2.3.6),
∑

k

|Vk|t +
∑

i,j

|Wi,j |t <
∑

k

|Vk|s/α +
∑

i,j

|Wi,j |g(βi)

⩽
∑

k

((C + c−1)|Uk|α)s/α +
∑

i

M(2C)a|Ui|αa(1−γ/βi)((2C)γ/βi |Ui|αγ/βi)g(βi)

⩽ (C + c−1)s/α
∑

k

|Uk|s +M(2C)a+γg(βi)/βi
∑

i

|Ui|s

⩽ ε,

where the last equality follows from (2.3.2). Also, {Vk}k ∪ {Wi,j}i,j covers f(F ), and
(noting (2.3.3) and (2.3.5)) dim

Φ1
f(F ) ⩽ t, as required.

We make several comments about Theorem 2.3.1.

• An important special case is when γ = 1/α and Φ1 = Φ. Then we can conclude

dim
Φ
f(F ) ⩽ dim

Φ
F + (1− α) dimA f(F ).

• Another special case is for the Φ1 which satisfy (2.3.1) with γ = 1, when we can
conclude dim

Φ1
f(F ) ⩽ α−1dim

Φ
F .

• If dimΦ
F ⩾ α dimA f(F ) (contrary to the assumption of Theorem 2.3.1) then the

simple bound dim
Φ
f(F ) ⩽ α−1dim

Φ
F follows immediately.

• If dimΦ
F < α dimA f(F ) but we only assume that (2.3.1) holds along a subsequence

of δ → 0+, then we can conclude only that

dimΦ1f(F ) ⩽
dim

Φ
F + α(γ − 1) dimA f(F )

αγ
.

Setting Φ(δ) = δ1/θ gives a Hölder distortion estimate for the intermediate dimensions
in Corollary 2.3.2. For subsets of Euclidean space, Corollary 2.3.2 was noted in [Fal8,
Section 14.2.1 5.], and it also follows from the stronger result [Bur2, Theorem 3.1] which
is proven using capacity theoretic methods and dimension profiles, but we include it
nonetheless because our proof works for more general metric spaces.

Corollary 2.3.2. If f : F → Y is an α-Hölder map with exponent α ∈ (0, 1] and
dimA f(F ) <∞, then dimθf(F ) ⩽ α−1dimθF and dimθf(F ) ⩽ α−1dimθF for all θ ∈ [0, 1].

Proof. These estimates hold for the Hausdorff and lower and upper box dimensions (similar
to [Fal6, Exercise 2.2 and Proposition 3.3]), so assume that θ ∈ (0, 1) and let Φ(δ) =

Φ1(δ) = δ1/θ. If dimθF ⩾ α dimA f(F ) then dimθf(F ) ⩽ dimA f(F ) ⩽ α−1dimθF . If
dimθF < α dimA f(F ) then since

Φ1(δ) = Φ(δ) = δ1/θ = ((δ1/α)1/θ)α = Φ(δ1/α)α,

the case γ = 1 of Theorem 2.3.1 gives that dimθf(F ) ⩽ α−1dimθF . Similarly, the bound
for the lower intermediate dimensions follows from the version of Theorem 2.3.1 for the
lower Φ-intermediate dimensions.
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2.3.2 Lipschitz stability

Recall that a map is Lipschitz if it is 1-Hölder, and bi-Lipschitz if it is a Lipschitz bijection
with a Lipschitz inverse. Corollary 2.3.3 shows that the Φ-intermediate dimensions cannot
increase under Lipschitz maps. It follows that dimΦ and dimΦ satisfy the important property
of being stable under bi-Lipschitz maps. Bi-Lipschitz stability has already been proven for
the Hausdorff and box dimensions in [Fal6, Propositions 2.5 and 3.3] and, for subsets of Rn,
for the intermediate dimensions in [Fra2, Lemma 3.1].

Corollary 2.3.3. Let X and Y be underlying spaces, let F ⊆ X, let f : F → Y be Lipschitz,
and assume that dimA f(F ) <∞. Then

(i) We have dim
Φ
f(F ) ⩽ dim

Φ
F and dimΦf(F ) ⩽ dimΦF .

(ii) If moreover f is bi-Lipschitz then dim
Φ
f(F ) = dim

Φ
F and dimΦf(F ) = dimΦF .

In (ii), the assumption dimA f(F ) <∞ is equivalent to dimA F <∞ since the Assouad
dimension is stable under bi-Lipschitz maps.

Proof. If dimΦ
F ⩾ dimA f(F ) then dim

Φ
f(F ) ⩽ dimA f(F ) ⩽ dim

Φ
F by Proposition 2.2.1;

if dim
Φ
F < dimA f(F ) then the case α = γ = 1, Φ1 = Φ, of Theorem 2.3.1 gives

dim
Φ
f(F ) ⩽ dim

Φ
F . The proof that dimΦf(F ) ⩽ dimΦF is similar, and (ii) follows

from (i).

2.4 A mass distribution principle

In this section we prove a mass distribution principle for the Φ-intermediate dimensions and a
converse result (a Frostman type lemma), which together give an alternative characterisation
of the intermediate dimensions. We then prove some applications regarding product sets
and finite stability.

2.4.1 A mass distribution principle

The mass distribution principle is a useful tool to bound dimensions from below by putting a
measure on the set. The original version was for the Hausdorff dimension (see [Fal6, page 67]),
and a version was proved for the intermediate dimensions in [FFK2, Proposition 2.2]. The
following natural generalisation for the Φ-intermediate dimensions holds.

Lemma 2.4.1. Let F be a subset and let s, a, c, δ0 > 0 be positive constants.

(i) If there exists a positive decreasing sequence δn → 0 such that for each n ∈ N there
exists a Borel measure µn with support supp(µn) ⊆ F with µn(supp(µn)) ⩾ a, and
such that for every Borel subset U ⊆ X with Φ(δn) ⩽ |U | ⩽ δn we have µn(U) ⩽ c|U |s,
then dim

Φ
F ⩾ s.
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(ii) If, moreover, for all δ ∈ (0, δ0) there exists a Borel measure µδ with support supp(µδ) ⊆
F with µδ(supp(µδ)) ⩾ a, and such that for every Borel subset U ⊆ X with Φ(δ) ⩽

|U | ⩽ δ we have µδ(U) ⩽ c|U |s, then dimΦF ⩾ s.

Proof. We prove (i); the proof of (ii) is similar. If n ∈ N and {Ui} is a cover of F such that
Φ(δn) ⩽ |Ui| ⩽ δn for all i, then the closures Ui are Borel, satisfy Φ(δn) ⩽ |Ui| = |Ui| ⩽ δn,
and cover supp(µn), so

a ⩽ µn(supp(µn)) = µn

(⋃

i

Ui

)
⩽
∑

i

µn(Ui) ⩽ c
∑

i

|Ui|s = c
∑

i

|Ui|s. (2.4.1)

Therefore
∑

i |Ui|s ⩾ a/c > 0, so dim
Φ
F ⩾ s.

2.4.2 A Frostman type lemma

Another powerful tool in fractal geometry and geometric measure theory is Frostman’s
lemma, dual to the mass distribution principle. Lemma 2.4.2 is an analogue of Frostman’s
lemma for the Φ-intermediate dimensions, generalising [FFK2, Proposition 2.3] for the
intermediate dimensions both to more general functions Φ and to more general metric
spaces.

The main difference with the proof of [FFK2, Proposition 2.3] is that in Rn there are
the dyadic cubes to work with, but here we use the fact that dimA F < ∞, and use an
analogue of the dyadic cubes constructed in [HK] for general doubling metric spaces. We
now state a special case of [HK, Theorem 2.2], using notation from that theorem (note
in particular that δ denotes a certain constant). We take the quasi-metric ρ simply to
be the metric d restricted to F (so the usual triangle inequality holds and A0 = 1). Fix
δ := 1/20 (in fact any δ ∈ (0, 1/12) will do). Since dimA F < ∞, for each k ∈ N we have
Nδk/3(F ) <∞. Therefore there exists a finite δk-separated subset {zkα}α of F , of maximum
possible cardinality. Then applying [HK, Theorem 2.2] with c0 = C0 = 1, c1 = 1/3, C1 = 2,
for each k ∈ N there exist subsets Qk := {Qkα}α of F such that:

1. for all k ∈ N, F =
⋃
αQ

k
α with the union disjoint;

2. BF (zkα, (20)
−k/4) ⊆ BF (zkα, c1(20)

−k) ⊆ Qkα ⊆ BF (zkα, C1(20)
−k) = BF (zkα, 2(20)

−k),
recalling that BF denotes the open ball in F ;

3. if k, l ∈ N with k ⩽ l then for all α, β, either Qkα ∩Qlβ = ∅ or Qlβ ⊆ Qkα, and in the
latter case, also BF (zlβ, 2(20)

−l) ⊆ BF (zkα, 2(20)
−k). We call Qkα a parent of Qlβ .

We say that Qkα is a dyadic cube with centre zkα.

Lemma 2.4.2. Assume that dimA F <∞.

(i) If dimΦ
F > 0 then for all s ∈ (0, dim

Φ
F ) there exists a constant c ∈ (0,∞) such that

for all δ0 > 0 there exist δ′ ∈ (0, δ0) and a Borel probability measure µδ′ with finite
support supp(µδ′) ⊆ F such that if x ∈ X and Φ(δ′) ⩽ r ⩽ δ′ then

µδ′(B(x, r)) ⩽ crs.

33



(ii) If dimΦF > 0 then for all s ∈ (0,dimΦF ) there exists c ∈ (0,∞) such that for all
sufficiently small δ′ there exists a Borel probability measure µδ′ with finite support
supp(µδ′) ⊆ F such that if x ∈ X and Φ(δ′) ⩽ r ⩽ δ′ then µδ′(B(x, r)) ⩽ crs.

Proof. We prove (ii); the proof of (i) is similar. The idea of the proof is to put point masses
on an analogue of dyadic cubes of size approximately Φ(δ′) so that the measure of sets
with diameter approximately Φ(δ′) is controlled by the Φ-intermediate dimension of F , and
then iteratively reduce the masses so that the mass of larger cubes is not too large either.
The proof is based on the proof of [FFK2, Proposition 2.3] for the intermediate dimensions,
which is in turn based on [Mat, pages 112–114]. In [FFK2, Proposition 2.3], the assumption
that the set F is closed is not necessary as it is not used in the proof.

We use notation from [HK, Theorem 2.2], as above. Let c2 ∈ (0, 1) be such that X is
c2-uniformly perfect. Suppose dimΦF > 0 and let s ∈ (0,dimΦF ). Then there exists ε > 0

such that for all sufficiently small δ′ and all covers {Ui} of F satisfying Φ(δ′) ⩽ |Ui| ⩽ δ′

for all i, ∑

i

|Ui|s ⩾ ε. (2.4.2)

Let δ′ be small enough such that this is the case, and moreover that Φ(δ′)/δ′ < c2/320.
Define m = m(δ′) to be the largest natural number satisfying Φ(δ′) ⩽ 1

2(20)
−m. Define the

Borel measure µm by
µm :=

∑

α

20−msMzkα

where Mzkα
is a unit point mass at zkα.

Let l be the largest integer such that 8(20−(m−l)) ⩽ δ′, noting that l ⩾ 1. In particular,
|Qm−l| ⩽ δ′/2 for all Qm−l ∈ Qm−l. In order to reduce the mass of cubes which carry too
much measure, having defined µm−k for some k ∈ {0, 1, . . . , l − 1}, inductively define the
Borel measure µm−k−1, supported on the same finite set as µm, by

µm−k−1|Qm−k−1
:= min

{
1,

20−(m−k−1)s

µm−k(Qm−k−1)

}
µm−k|Qm−k−1

for all Qm−k−1 ∈ Qm−k−1. By construction, if k ∈ {0, 1, . . . , l} and Qm−k ∈ Qm−k then

µm−l(Qm−k) ⩽ 20−(m−k)s ⩽ 4sc−s2 |Qm−k|s (2.4.3)

by condition 2. Moreover, each Qm ∈ Qm satisfies µm(Qm) = 20−ms. If k ∈ {0, 1, . . . , l−1}
and Qm−k ∈ Qm−k satisfies µm−k(Qm−k) = 20−(m−k)s and Qm−k−1 ∈ Qm−k−1 is the
parent of Qm−k, then by the construction of µm−k−1, either µm−k−1(Qm−k) = 20−(m−k)s

or µm−k−1(Qm−k−1) = 20−(m−k−1)s. Therefore for all y ∈ F there is at least one k ∈
{0, 1, . . . , l} and Qy ∈ Qm−k with y ∈ Qy such that

µm−l(Qy) = 20−(m−k)s ⩾ 4−s|Qy|s, (2.4.4)

where the inequality is by condition 2.
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For each y ∈ F , choosing Qy such that (2.4.4) is satisfied and moreover Qy ∈ Qm−k for
the largest possible k ∈ {0, 1, . . . , l} yields a finite collection of cubes {Qi} which cover F . For
each i, let zi be the centre of Qi, and by the uniformly perfect condition there exists pi ∈ X

such that Φ(δ′) ⩽ d(pi, zi) ⩽ Φ(δ′)/c2 ⩽ δ′/2. Letting Ui := Qi ∪ {pi}, by condition 2 we
have Φ(δ′) ⩽ |Ui| ⩽ δ′. Then {Ui} covers F , and each |Ui| ⩽ |Qi|+Φ(δ′)/c2 ⩽ (1+1/c2)|Qi|.
Therefore by (2.4.2) and (2.4.4),

µm−l(F ) =
∑

i

µm−l(Qi) ⩾
∑

i

4−s|Qi|s ⩾ 4−s(1 + 1/c2)
−s∑

i

|Ui|s ⩾ 4−s(1 + 1/c2)
−sε.

(2.4.5)
Define µδ′ := (µm−l(F ))−1µm−l, which is clearly a Borel probability measure with finite
support supp(µδ′) ⊆ F .

Now, since dimA F < ∞ there exists C ∈ N such that for all p ∈ F and d > 0,
Nd(B

F (p, 13d)) ⩽ C. Let x ∈ X and r ∈ [Φ(δ′), δ′]. Let j = j(r) be the largest integer
in {0, 1, . . . , l} such that 20−(m−j+1) < r; such an integer exists by the definition of
m. If BX(x, r) ∩ F = ∅ then µδ′(B

X(x, r)) = 0, so suppose that there exists some
x1 ∈ BX(x, r) ∩ F , so BX(x, r) ⊆ BF (x1, 2r). Suppose BX(x, r) ∩ Qm−j ̸= ∅ for some
Qm−j ∈ Qm−j , with centre zm−j , say. Then there exists z ∈ BX(x, r) ∩ Qm−j , and by
condition 2 and the definition of j,

d(x1, zm−j) ⩽ d(x1, z) + d(z, zm−j) ⩽ 2r + 2(20)−(m−j) ⩽ 6(20)−(m−j).

Therefore zm−j ∈ BF (x1, 6(20)
−(m−j)), and the centres of the cubes in Qm−j which intersect

BX(x, r) form a 20−(m−j)-separated subset of BF (x1, 6(20)
−(m−j)). But

N6(20)−(m−j)/13(B
F (x1, 6(20)

−(m−j))) ⩽ C.

Therefore there are most C such centres, so at most C elements of Qm−j which intersect
BX(x, r). Therefore by (2.4.3) and (2.4.5) and the definition of j,

µδ′(B
X(x, r)) = (µm−l(F ))

−1µm−l(B
X(x, r)) ⩽ C(µm−l(F ))

−120−(m−j)s ⩽ crs,

where c := C4s(1 + 1/c2)
sε−1(20)s, as required.

Putting Lemmas 2.4.1 and 2.4.2 together, we obtain a useful characterisation of the
Φ-intermediate dimensions.

Theorem 2.4.3. If Φ is an admissible function and dimA F <∞ then

(i) dim
Φ
F = sup{s ⩾ 0 : there exists C ∈ (0,∞) such that for all δ1 > 0

there exists δ ∈ (0, δ1) and a Borel probability measure µδ

with support supp(µδ) ⊆ F such that if U is a Borel subset

of X which satisfies Φ(δ) ⩽ |U | ⩽ δ then µδ(U) ⩽ C|U |s}

(ii) dimΦF = sup{s ⩾ 0 : there exist C, δ1 ∈ (0,∞) such that for all δ ∈ (0, δ1) there
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exists a Borel probability measure µδ with support

supp(µδ) ⊆ F such that if U is a Borel subset satisfying

Φ(δ) ⩽ |U | ⩽ δ then µδ(U) ⩽ C|U |s}

Proof. We prove (ii) using Lemma 2.4.1 (ii) and Lemma 2.4.2 (ii); (i) follows from
Lemma 2.4.1 (i) and Lemma 2.4.2 (i) in a similar way. We denote by sup the supremum
on the right-hand side of the equation (ii). Fix y ∈ F . If s = 0, then letting C := 1

and letting µδ be a unit point mass at y for all sufficiently small δ, we see that sup is
well-defined and non-negative. Suppose that dimΦF > 0 and let s ∈ (0, dimΦF ). Then by
the Frostman type Lemma 2.4.2 (ii), there exist constants c, δ1 ∈ (0,∞) such that for all
δ ∈ (0, δ1) there exists a Borel probability measure µδ with finite support supp(µδ) ⊆ F

such that if x ∈ X and Φ(δ) ⩽ r ⩽ δ then µδ(B(x, r)) ⩽ crs. If U is a Borel subset of X
satisfying Φ(δ) ⩽ |U | ⩽ δ, then U ∩ F = ∅ implies µδ(U) = 0. Suppose there exists some
x ∈ U ∩F . Let M be the doubling constant of F . Then U ∩supp(µδ) ⊆ B(x, 2|U |), so there
exist x1, . . . , xM ∈ BF (x, 2|U |) such that U ∩ supp(µδ) ⊆ BF (x, 2|U |) ⊆ ⋃M

i=1B
F (xi, |U |).

Therefore

µδ(U) ⩽
M∑

i=1

µδ(B
F (xi, |U |)) =

M∑

i=1

µδ(B
X(xi, |U |)) ⩽ C|U |s,

where C :=Mc. Thus s ⩽ sup.
For the reverse inequality, if sup > 0 and t ∈ (0, sup) then by the mass distribution

principle Lemma 2.4.1 (ii), t ⩽ dimΦF . Therefore if max{sup,dimΦF} > 0 then in fact
sup = dimΦF . But both sup and dimΦF are non-negative, so they must always be
equal.

2.4.3 Product formulae

It is a well-studied problem to bound the dimensions of product sets in terms of the
dimensions of the marginals. Very often, dimensions come in pairs (dim, Dim) which satisfy
dimF ⩽ DimF and

dimE + dimF ⩽ dim(E × F ) ⩽ dimE + DimF ⩽ Dim(E × F ) ⩽ DimE + DimF (2.4.6)

for all ‘reasonable’ sets E and F and ‘reasonable’ metrics on the product space. Examples are
(Hausdorff, packing) [How], (lower box, upper box) [RS1], (lower, Assouad) and (modified
lower, Assouad) [Fra1, Corollary 10.1.2] and, for each fixed θ ∈ (0, 1), (lower spectrum
at θ, Assouad spectrum at θ) and (modified lower spectrum at θ, Assouad spectrum at
θ) [FY2, Proposition 4.4]. In Theorem 2.4.4 we show that for any given Φ or θ, (lower
Φ-intermediate, upper box) and (lower θ-intermediate, upper box) are also such pairs.
However, our upper bound for dim

Φ
(E × F ) is dim

Φ
E + dimBF , rather than the expected

dim
Φ
E + dim

Φ
F . Theorem 2.4.4 generalises [FFK2, Proposition 2.5] on the intermediate

dimensions of product sets to more general functions Φ and more general metric spaces,
and also gives an improved lower bound for dim

Φ
(E × F ) and an improved upper bound
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for dimΦ(E × F ). We improve the lower bound for dim
Φ
(E × F ) further for self-products

in (iii).

Theorem 2.4.4. Consider uniformly perfect metric spaces (X, dX) and (Y, dY ). Let dX×Y
be a metric on X × Y such that there exist constants c1, c2 ∈ (0,∞) such that

c1max(dX , dY ) ⩽ dX×Y ⩽ c2max(dX , dY ). (2.4.7)

Then if E ⊆ X and F ⊆ Y have finite Assouad dimension, then

(i) dim
Φ
E + dimΦF ⩽ dim

Φ
(E × F ) ⩽ dim

Φ
E + dimBF ;

(ii) dimΦE + dimΦF ⩽ dimΦ(E × F ) ⩽ dimΦE + dimBF .

In the case of self-products, (i) can be improved to

(iii) 2dim
Φ
F ⩽ dim

Φ
(F × F ) ⩽ dim

Φ
F + dimBF .

Note that (2.4.7) is the same condition as [RS1, (2.4)], and familiar metrics which satisfy
this are dX×Y := max{dX , dY } and dX×Y := (dpX + dpY )

1/p for p ∈ [1,∞).

Proof. The idea of the proof of the upper bounds is to consider a cover of one of the sets E
with diameters in [Φ(δ), δ], and, for each set Ui in that cover, to form a cover of that other
set F with all the diameters approximately equal to |Ui|, with the number of sets in this
cover controlled by dimBF . We can then cover the product set with approximate squares
with sizes between Φ(δ) and δ to obtain the result. The idea of the proof of the lower
bounds is to use the Frostman type lemma to put measures on each of the marginal sets
such that the measure of sets with diameter in [Φ(δ), δ] is controlled by the Φ-intermediate
dimensions of the sets, and then apply the mass distribution principle with the product
measure on the product set.

Since X and Y each have more than one point, so does X × Y . A straightforward
calculation shows that since (X, dX) is uniformly perfect, so is (X × Y, dX×Y ). Another
routine calculation shows that since E and F have finite Assouad dimension, so does E×F .

(i) We first prove the upper bound of (i), following the proof of the upper bound in [FFK2,
Proposition 2.5]. Let ε > 0. Let cp ∈ (0, 1) be such that X × Y is cp-uniformly perfect, and
without loss of generality assume 0 < cp < c1 < 1 < c2 < ∞. Since dimA(E × F ) < ∞
there exists A ∈ N such that Nr(B

E×F (p, 4c2r)) ⩽ A for all p ∈ E × F and r > 0. Let
∆ > 0 be such that Φ(δ)/δ < cp/2 for all δ ∈ (0,∆). Fix s > dim

Φ
E and d > dimBF . Let

δ1 ∈ (0,∆) be such that for all r ∈ (0, δ1) there is a cover of F by r−d or fewer sets, each
having diameter at most r. Let δ0 ∈ (0, δ1) be such that for all δ ∈ (0, δ0) there exists a
cover {Ui} of E such that Φ(δ) ⩽ |Ui| ⩽ δ for all i, and

∑

i

|Ui|s ⩽ A−1(c2 + c−1
p )−(s+d)ε. (2.4.8)

For such a cover, for each i let {Ui,j}j be a cover of F by |Ui|−d or fewer sets, each
having diameter |Ui,j | ⩽ |Ui|. Then for all i and j,

|Ui × Ui,j | ⩽ c2max{|Ui|, |Ui,j |} = c2|Ui| ⩽ c2δ, (2.4.9)
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so Ui × Ui,j can be covered by A sets {Ui,j,k}k, each having diameter at most
min{δ/2, |Ui × Ui,j |}. We may assume that each of these sets is non-empty, and fix
pi,j,k ∈ Ui,j,k. Fix qi,j,k ∈ X × Y such that Φ(δ) ⩽ dX×Y (pi,j,k, qi,j,k) ⩽ Φ(δ)/cp. Let
Vi,j,k := Ui,j,k ∪ {qi,j,k}, so by the triangle inequality

Φ(δ) ⩽ dX×Y (pi,j,k, qi,j,k) ⩽ |Vi,j,k| ⩽ δ/2 + Φ(δ)/cp ⩽ δ, (2.4.10)

since δ < δ0 < ∆. Also, by (2.4.9),

|Vi,j,k| ⩽ c2|Ui|+Φ(δ)/cp ⩽ (c2 + c−1
p )|Ui|. (2.4.11)

Therefore by (2.4.11) and (2.4.8),
∑

i,j,k

|Vi,j,k|s+d ⩽
∑

i

A|Ui|−d((c2 + c−1
p )|Ui|)s+d ⩽ A(c2 + c−1

p )s+d
∑

i

|Ui|s ⩽ ε.

Also
E × F ⊆

⋃

i,j,k

Ui,j,k ⊆
⋃

i,j,k

Vi,j,k.

This gives dim
Φ
(E × F ) ⩽ s+ d, so dim

Φ
(E × F ) ⩽ dim

Φ
E + dimBF .

The proof of the lower bound is somewhat similar to the proof of the lower bound
in [FFK2, Proposition 2.5]. First assume dimΦF = 0. Fix any f ∈ F . By (2.4.7),
the natural embedding E ↪−→ X × Y , x 7→ (x, f), is bi-Lipschitz onto its image, so by
Corollary 2.3.3 2. and Proposition 2.2.2 (i),

dim
Φ
E + dimΦF = dim

Φ
E = dim

Φ
(E × {f}) ⩽ dim

Φ
(E × F ).

Now assume that dimΦ
E > 0 and dimΦF > 0. Fix t1 ∈ (0,dim

Φ
E) and t2 ∈ (0,dimΦF ). By

Lemma 2.4.2 (i) there exists cE ∈ (0,∞) such that for all δ2 > 0 there exists δ3 ∈ (0, δ2) and
a Borel probability measure µδ3 with supp(µδ3) ⊆ E such that if x ∈ X and Φ(δ3) ⩽ r1 ⩽ δ3

then µδ3(B
X(x, r1)) ⩽ cEr

t1
1 . By Lemma 2.4.2 (ii) there exist cF , δ4 ∈ (0,∞) such that

for all δ5 ∈ (0, δ4) there exists a Borel probability measure νδ5 with supp(νδ5) ⊆ F such
that if y ∈ Y and Φ(δ5) ⩽ r2 ⩽ δ5 then νδ5(BY (y, r2)) ⩽ cF r

t2
2 . If δ7 > 0, then there exists

δ6 ∈ (0,min{δ7, δ4}) and Borel probability measures µδ6 and νδ6 as above. Let µδ6 × νδ6 be
the product measure, which satisfies supp(µδ6 × νδ6) ⊆ E × F .

If U ⊆ X × Y is Borel and satisfies Φ(δ6) ⩽ |U | ⩽ δ6 then if we fix any (x, y) ∈ U then

U ⊆ BX×Y ((x, y), 2|U |) ⊆ BX(x, 2|U |/c1)×BY (y, 2|U |/c1). (2.4.12)

Fix x1, . . . , xC ∈ E and y1, . . . , yC ∈ F such that

E ∩BX(x, 2|U |/c1) ⊆
C⋃

i=1

BX(xi, |U |); F ∩BY (y, 2|U |/c1) ⊆
C⋃

i=1

BY (yi, |U |).

Now,

(E × F ) ∩ (BX(x, 2|U |/c1)×BY (y, 2|U |/c1))
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= (E ∩BX(x, 2|U |/c1))× (F ∩BY (y, 2|U |/c1))

⊆
(

C⋃

i=1

BX(xi, |U |)
)

×




C⋃

j=1

BY (yj , |U |)




=
C⋃

i=1

C⋃

j=1

(BX(xi, |U |)×BY (yj , |U |)).

Then by (2.4.12) and the definition of the product measure,

(µδ6 × νδ6)(U) ⩽ (µδ6 × νδ6)(B
X(x, 2|U |/c1)×BY (y, 2|U |/c1))

⩽ (µδ6 × νδ6)




C⋃

i=1

C⋃

j=1

(BX(xi, |U |)×BY (yj , |U |))




⩽
C∑

i=1

C∑

j=1

(µδ6 × νδ6)(B
X(xi, |U |)×BY (yj , |U |))

= C2cEcF |U |t1+t2 .

Therefore by the mass distribution principle Lemma 2.4.1 (i), dimΦ
(E × F ) ⩾ t1 + t2, as

required. The bound dim
Φ
(E × F ) ⩾ dimΦE + dim

Φ
F follows similarly.

(ii) The proof of (ii) is a straightforward modification of the proof of (i).
(iii) The upper bound is just the upper bound of (i) with E = F ; the improved bound

is the lower bound. Assume dim
Φ
F > 0 and let t ∈ (0, dim

Φ
F ). By Lemma 2.4.2 (i)

there exists cF ∈ (0,∞) such that for all δ0 > 0 there exists δ ∈ (0, δ0) and a Borel
probability measure µδ with supp(µδ) ⊆ F such that if x ∈ X and Φ(δ) ⩽ r ⩽ δ then
µδ(B

X(x, r)) ⩽ cF r
t. Then supp(µδ × µδ) ⊆ F × F , and as in the proof of the lower

bound of (i), if Φ(δ) ⩽ |U | ⩽ δ then (µδ × µδ)(U) ⩽ C2c2F |U |2t. Therefore by Lemma 2.4.1,
dim

Φ
(F × F ) ⩾ 2t, as required.

In the particular case Φ(δ) := δ
− log δ , Proposition 2.2.4 gives dim

Φ
G = dimBG and

dimΦG = dimBG for a subset G of an underlying space X. Therefore from (i) and (ii) we
recover the inequalities for the upper and lower box dimensions of product sets in [RS1,
Theorem 2.4] (which is proven directly, without putting measures on the sets). Note also
that bounds on the dimensions of products of more than two sets can be obtained by
applying Theorem 2.4.4 iteratively, for example

dim
Φ
(E × F ×G) ⩾ dim

Φ
(E × F ) + dimΦG ⩾ dim

Φ
E + dimΦF + dimΦG.

2.4.4 Finite stability

Our next application of the mass distribution principle is Proposition 2.4.5, which illustrates
an important difference between the upper and lower versions of the dimensions. It was
stated in [Fal8, Section 14.2.1 2.] that in Euclidean space, the upper intermediate dimensions
are finitely stable but the lower intermediate dimensions are not.
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Proposition 2.4.5. Let Φ be an admissible function.

(i) The dimension dim
Φ is finitely stable: we always have

dim
Φ
(E ∪ F ) = max{dimΦ

E,dim
Φ
F}.

(ii) The dimension dimΦ is not finitely stable: there exist compact sets E,F ⊂ R such
that

dimΦ(E ∪ F ) > max{dimΦE,dimΦF}.

Proof. It is a straightforward exercise to prove (i) directly from Definition 2.1.2, so we
prove only (ii). To do so, we take inspiration from [Fal6, Exercises 2.8, 2.9]. The idea is
to construct generalised Cantor sets E and F , each of which looks ‘large’ on most scales
but ‘small’ on some sequence of scales. We do this in such a way that the sequences of
scales where the two sets look small do not even approximately coincide, so for each small
δ, either E looks large at every scale between δ and Φ(δ), or F looks large at every scale
between δ and Φ(δ).

Assume without loss of generality that Φ: (0, 1] → R. We inductively define the
numbers kn ∈ {0, 1, 2, . . . } and e10kn , f10kn > 0, for n = 0, 1, 2, . . . , as follows. Let k0 := 0,
e10k0 = f10k0 = 1. Having defined kn, e10kn , f10kn for some n = 0, 1, 2, . . . , there are two
cases depending on the parity of n. If n is even, let kn+1 be the smallest integer such that
kn+1 > kn and

(1/3)10
kn+1−10knf10kn < Φ

(
(1/5)10

kn+1−10kn (1/3)10
kn+2−10kn+1

e10kn
)
, (2.4.13)

and let

e10kn+1 := (1/5)10
kn+1−10kn (1/3)10

kn+1−10kn+1
e10kn ,

f10kn+1 := (1/3)10
kn+1−10knf10kn .

If, on the other hand, n is odd, then let kn+1 > kn be the smallest integer such that

(1/3)10
kn+1−10kne10kn < Φ

(
(1/5)10

kn+1−10kn (1/3)10
kn+2−10kn+1

f10kn
)
, (2.4.14)

and let

f10kn+1 := (1/5)10
kn+1−10kn (1/3)10

kn+1−10kn+1
f10kn ,

e10kn+1 := (1/3)10
kn+1−10kne10kn .

Now let E1 := [0, 1] and for j ∈ N, if 10kn < j ⩽ 10kn+1 for some even n ∈ {0, 2, 4, . . . }
then obtain Ej by removing the middle 3/5 of each interval in Ej−1, otherwise obtain
Ej by removing the middle 1/3 of each interval in Ej−1. Let F1 := [2, 3] and for j ∈ N,
if 10kn < j ⩽ 10kn+1 for some odd n ∈ {1, 3, 5, . . . } then obtain Fj from removing the
middle 3/5 of each interval in Fj−1, otherwise obtain Fj by removing the middle 1/3 of each
interval in Fj−1. Define E :=

⋂∞
j=1Ej and F :=

⋂∞
j=1 Fj , noting that both are non-empty
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and compact subsets of R. For all j ∈ N, let ej and fj be the lengths of each of the 2j

intervals in Ej and Fj respectively, noting that for each n ∈ N, the two different definitions
that we have given for e10kn and f10kn agree by induction. The sequences ej and fj lie in
(0, 1] by induction and converge monotonically to 0.

We now find an upper bound for dimBE. Let n ∈ N be even. Then E10kn+1 is made
up of 210kn+1 intervals, each of length e10kn+1 = (1/5)10

kn+1−10kne10kn ⩽ (1/5)10
kn+1−10kn .

Covering E with these intervals, we see that for all n ∈ N,

logNe
10kn+1

F (E)

− log(e10kn+1)
⩽

log 210
kn+1

log 510kn+1−10kn
=

10 log 2

9 log 5
.

Therefore dimBE ⩽ 10 log 2
9 log 5 , and similarly using F10kn+1 for n odd to cover F gives dimBF ⩽

10 log 2
9 log 5 . Therefore

10 log 2

9 log 5
⩾ max{dimBE,dimBF}. (2.4.15)

To bound dimΦ(E ∪ F ) from below, we use the mass distribution principle. Define the
sequence (rn)n⩾0 by

rn :=




e10kn+2 = (1/5)10

kn+1−10kn (1/3)10
kn+2−10kn+1

e10kn if n even,

f10kn+2 = (1/5)10
kn+1−10kn (1/3)10

kn+2−10kn+1
f10kn if n odd.

This sequence is strictly decreasing, because if n ⩾ 0 is even then by (2.4.13),

rn+1 = f10kn+1+2 < f10kn+1 < Φ(e10kn+2) ⩽ e10kn+2 = rn,

and similarly if n is odd then rn+1 < rn by (2.4.14). Let δ ∈ (0, r0). Define nδ ∈ N by
rnδ

⩽ δ < rnδ−1.
There are two cases depending on the parity of nδ. If nδ is even, then let µδ be any

Borel probability measure on F which gives mass 2−10
knδ+1

to each of the 210
knδ+1

intervals
in F

10
knδ+1 . Let U be a Borel subset of R with Φ(δ) ⩽ |U | ⩽ δ. Define j ∈ N (depending

on |U |) by fj ⩽ |U | < fj−1. By (2.4.13),

f
10

knδ+1 ⩽ Φ(e
10knδ

+2) = Φ(rnδ
) ⩽ Φ(δ) ⩽ |U | < fj−1,

so j − 1 < 10knδ+1 . Also, fj ⩽ |U | ⩽ δ < rnδ−1 = f
10

knδ−1+2 , so in fact 10knδ−1+2 < j ⩽

10knδ+1 . Therefore by the construction of F ,

fj ⩾

(
1

5

)10
knδ−1+1 (

1

3

)j−10
knδ−1+1

>

(
1

5

)j/2(1

3

)j/2
.

Since U has diameter less than fj−1, it can intersect at most two of the 2j−1 intervals in
Fj−1. Therefore U can intersect at most 2(210

knδ+1−j) of the 210
knδ+1

intervals in F
10

knδ+1 .
Therefore

µδ(U) ⩽ 2(210
knδ+1−j)(2−10

knδ+1
) = 2

((
1

3

)j/2(1

5

)j/2) 2 log 2
log 15

⩽ 2f
2 log 2
log 15

j ⩽ 2|U |
2 log 2
log 15 .
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If, on the other hand, nδ is odd, then let µδ be a Borel probability measure on E

which gives mass 2−10
knδ+1

to each of the 210
knδ+1

intervals in E
10

knδ+1 . As above, if

Φ(δ) ⩽ |U | ⩽ δ then µδ(U) ⩽ 2|U |
2 log 2
log 15 . Therefore by the mass distribution principle

Lemma 2.4.1 (ii) and Proposition 2.2.1 and (2.4.15),

dimΦ(E ∪ F ) ⩾ 2 log 2

log 15
>

10 log 2

9 log 5
⩾ max{dimBE,dimBF} ⩾ max{dimΦE,dimΦF}.

It follows from Propositions 2.4.5 and 2.2.1 and the fact that the Hausdorff dimension is
countably stable that for all admissible functions Φ1 and Φ2, the three notions of dimension
dimH, dimΦ1 and dim

Φ2 are pairwise-distinct, even just working in R.
Letting E,F be as in Proposition 2.4.5, applying the mass distribution principle as in

the proof of that result at the scales δ := f10kn+2 shows that

dimH F ⩽ dimΦF ⩽
10 log 2

9 log 5
<

2 log 2

log 15
⩽ dim

Φ
F ⩽ dimBF,

and similarly for E. Suppose F is the set corresponding to a Φ satisfying log δ
log Φ(δ) → 0 as

δ → 0+ (for example Φ(δ) = e−δ
−0.5). Then by Proposition 2.2.12,

dimH F <
2 log 2

log 15
⩽ dim

Φ
F ⩽ dimθF

for all θ ∈ (0, 1], so dimθF is discontinuous at θ = 0. Let Φ1 be an admissible function
such that Φ1(f10kn+1) ⩽ Φ1(f10kn+2+1) for all sufficiently large n. Then for all sufficiently
small δ, there exists an odd integer n(δ) such that Φ(δ) ⩽ f

10
kn(δ)+1 ⩽ δ, and the natural

cover of F
10

kn(δ)+1 with 210
kn(δ)+1

intervals gives dim
Φ1
F ⩽ 10 log 2

9 log 5 < 2 log 2
log 15 . This gives an

indication of how one might construct the admissible functions from Theorem 2.5.1 below
which recover the interpolation for this particular set.

2.5 Recovering the interpolation

It is clear from [FFK2, Proposition 2.4] and the proof of Proposition 2.4.5 that there are
many compact sets with intermediate dimensions discontinuous at θ = 0. For these sets the
intermediate dimensions do not fully interpolate between the Hausdorff and box dimensions.
The main result of this section, Theorem 2.5.1, shows that for every compact set there is
indeed a family of functions Φ for which the Φ-intermediate dimensions interpolate all the
way between the Hausdorff and box dimensions of the set. Moreover, there exists a family
of Φ which interpolates for both the upper and lower versions of the dimensions, and forms
a chain in the partial order introduced in Section 2.2. Banaji, Rutar and Troscheit [BRT]
prove that the Assouad-like dimensions studied in [GHM1] fully interpolate between the
quasi-Assouad and Assouad dimensions of all non-empty, bounded, doubling metric spaces.

Theorem 2.5.1. For each non-empty, compact subset F , there exists a family

{Φs}s∈[dimH F,dimBF ]
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of admissible functions such that if s, t are such that dimH F ⩽ s ⩽ t ⩽ dimBF then the
following three conditions hold:

(i) dim
Φs
F = s;

(ii) dimΦsF = min{s, dimBF};

(iii) Φs ⪯ Φt.

The key definition in the proof is (2.5.1). The assumption of compactness allows us to
take a finite subcover in Definition 1.4.1 of Hausdorff dimension, which ensures that Φs(δ)

is well-defined and positive.

Proof. Define ΦdimBF
(δ) := δ

− log δ , so (i) and (ii) are satisfied for s = dimBF by Proposi-
tion 2.2.4. We henceforth assume that dimH F < dimBF , or else there is nothing more to
prove. The same symbols may take different values in the proofs of parts (i), (ii), (iii).

(i) Let ∆ ∈ (0, 1/5) be such that 0 < δ
− log δ < cδ/3 for all δ ∈ (0,∆). For

now, let s ∈ (dimH F,dimBF ). For each δ ∈ (0,∆) there exists a countable cover
{Vi}i⩾1 of F such that |Vi| ⩽ δ for all i, and

∑
i |Vi|s ⩽ 2−1−2s. We may assume

that each Vi is non-empty and fix pi ∈ Vi. Each Vi ⊆ B(pi,max{2|Vi|, 2−1−2i/s)}), so
{B(pi,max{2|Vi|, 2−1−2i/s})}i⩾1 is an open cover for F . Since F is compact, there is a
finite subset {Ui} ⊆ {B(pi,max{2|Vi|, 2−1−2i/s})} which also covers F . Now,

∑

i

|Ui|s ⩽
∑

i⩾1

|B(pi,max{2|Vi|, 2−1−2i/s})|s ⩽
∞∑

i=1

(2−2i/s)s +
∑

i⩾1

(4|Vi|)s

= 1/3 + 4s
∑

i

|Vi|s

< 1.

Since {Ui} is a finite collection of sets, and each has positive diameter as X is uniformly
perfect, it follows that mini |Ui| > 0. Therefore Φs : (0,∆) → R is positive and well-defined
by

Φs(δ) := sup{x ∈ [0, δ/(− log δ)] : there exists a finite cover {Ui} of F

such that x ⩽ |Ui| ⩽ δ for all i and
∑

i

|Ui|s ⩽ 1 }.

(2.5.1)
By construction, Φs(δ)/δ ⩽

(
δ

− log δ

)
/δ → 0 as δ → 0+, and Φs is increasing in δ, so Φs is

admissible.
We now show that dim

Φs
F ⩽ s. Given η, ε > 0, define δ0 := min{ε1/ηcs/η4−s/η,∆}.

Then for all δ ∈ (0, δ0) there exists a finite cover {Wi} of F satisfying Φs(δ)/2 ⩽ |Wi| ⩽ δ

for all i, and
∑

i |Wi|s ⩽ 1. If |Wi| ⩾ Φs(δ) then leave Wi in the cover unchanged. If
|Wi| < Φs(δ) then pick any wi ∈ Wi and qi ∈ X such that Φs(δ) ⩽ d(qi, wi) ⩽ Φs(δ)/c.
Replace Wi in the cover by Wi ∪ {qi}. Call the new cover {Yi}. By the triangle inequality,

Φs(δ) ⩽ d(qi, wi) ⩽ |Wi ∪ {qi}| < Φs(δ) + Φs(δ)/c ⩽ 2δ/(−c log δ) ⩽ δ.
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Also
|Wi ∪ {qi}| ⩽ 2Φs(δ)/c ⩽ (4/c)Φs(δ)/2 ⩽ 4|Wi|/c.

Therefore ∑

i

|Yi|s+η ⩽
∑

i

|Yi|sδη ⩽ δη0(4/c)
s
∑

i

|Wi|s ⩽ ε.

It follows that dim
Φs
F ⩽ s+ η, so in fact dim

Φs
F ⩽ s.

To prove the reverse inequality, assume for a contradiction that dim
Φs
F < s. Then

there exists δ1 ∈ (0,∆) such that for all δ2 ∈ (0, δ1) there exists a cover {Zi} of F such
that Φs(δ2) ⩽ |Zi| ⩽ δ2 for all i, and

∑
i |Zi|s ⩽ 3−scs. By Proposition 2.2.4 there exists

δ2 ∈ (0, δ1) such that Φs(δ2) < δ2/(− log δ2), and let {Zi} be the cover corresponding to this
δ2, as above. Choose any zi ∈ Zi and let xi ∈ X be such that 2|Zi| ⩽ d(zi, xi) ⩽ 2|Zi|/c.
Then by the triangle inequality,

2Φs(δ2) ⩽ 2|Zi| ⩽ d(zi, xi) ⩽ |Zi ∪ {xi}| ⩽ |Zi|+ 2|Zi|/c ⩽ (3/c)δ2/(− log δ2) < δ2.

Moreover, {Zi ∪ {xi}}i covers F , and
∑

i

|Zi ∪ {xi}|s ⩽
∑

i

(3|Zi|/c)s ⩽ 3sc−s
∑

i

|Zi|s ⩽ 1.

Therefore
Φs(δ2) ⩾ min{2Φs(δ2), δ2/(− log δ2)} > Φs(δ2),

a contradiction. Hence dim
Φs
F ⩾ s for all s ∈ (dimH F,dimBF ), so dim

Φs
F = s.

Now consider the case s = dimH F . Let N ∈ N satisfy

N > max

{
1

dimBF − dimH F
,
1

∆

}
.

For δ ∈ (0, 1/N ], let n ⩾ N be such that δ ∈ ( 1
n+1 ,

1
n ], and define

Φs(δ) := min{Φs+1/N (δ), . . . ,Φs+1/n(δ)}.

Then Φs(δ) ⩽ Φs+1/N (δ) ⩽ δ/(− log δ) for all δ ∈ (0, 1/N ], so Φs(δ)/δ → 0 as δ → 0+. For
all n ⩾ N and δ ∈ (0,∆) it holds that Φs+1/n(δ) > 0, so if δ > 0 then Φs(δ) > 0. Moreover,
if δ1 ⩽ δ2, say δ1 ∈ ( 1

n+1 ,
1
n ] and δ2 ∈ ( 1

m+1 ,
1
m ] where n ⩾ m ⩾ N , then

Φs(δ1) ⩽ min{Φs+1/N (δ1), . . . ,Φs+1/m(δ1)} ⩽ Φs(δ2)

by the monotonicity of each Φs+1/i. Thus Φs is monotonic, so admissible. For all n ⩾

N and δ ∈ (0, 1/n), clearly Φs(δ) ⩽ Φs+1/n(δ). Therefore by Proposition 2.2.1 and
Corollary 2.2.8 (i),

s = dimH F ⩽ dimΦsF ⩽ dim
Φs
F ⩽ dim

Φs+1/nF = s+
1

n
.

Letting n→ ∞ gives dimΦsF = dim
Φs
F = s = dimH F , as required.
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(iii) By construction, (iii) holds since if dimH F ⩽ s ⩽ t ⩽ dimBF then Φs(δ) ⩽ Φt(δ)

for all sufficiently small δ.
(ii) It suffices to prove dimΦsF ⩾ min{s, dimBF}, since the opposite inequality follows

from Proposition 2.2.1 and (i). If s = dimH F or s = dimBF then we are done by
Propositions 2.2.1 and 2.2.4. Suppose s ∈ (dimH F,dimBF ] ∩ (dimH F,dimBF ). Assume
for a contradiction that dimΦsF < s. Let t, t′ be such that dimΦsF < t < t′ < s.
Since t′ < dimBF , there exists ∆ ∈ (0,min{1, |X|}) such that Nδ(F ) ⩾ δ−t

′ for all
δ ∈ (0,∆). Reducing ∆ if necessary, we may assume further that δt−t′

(− log δ)t > (1 + 2/c)−s

and − log δ ⩾ 2(1 + 2/c) for all δ ∈ (0,∆). Since t > dimΦsF , for all δ0 > 0 there exists
δ ∈ (0,min{∆, δ0}) and a cover {Ui} such that Φs(δ) ⩽ |Ui| ⩽ δ for all i, and

(1 + 2/c)−s ⩾
∑

i

|Ui|t ⩾
∑

i

|Ui|s. (2.5.2)

But

(1 + 2/c)−s <
δt−t

′

(− log δ)t
= δ−t

′
(

δ

− log δ

)t
,

so there exists i such that δ/(− log δ) > |Ui| ⩾ Φs(δ). If i is such that |Ui| ⩾

min{2Φs(δ), δ/(− log δ)} then leave Ui in the cover unchanged. If, however, i is such
that |Ui| < min{2Φs(δ), δ/(− log δ)} then fix pi ∈ Ui. Fix qi ∈ X such that 2Φs(δ) ⩽

d(p, q) ⩽ 2Φs(δ)/c, replace Ui in the cover by Ui ∪ {qi}, and call the new cover {Vi}i. In
the case |Ui| < min{2Φs(δ), δ/(− log δ)},

2Φs(δ) ⩽ d(pi, qi) ⩽ |Ui ∪ {qi}| ⩽ |Ui|+ 2Φs(δ)/c < 2(1 + 2/c)Φs(δ)

⩽ 2(1 + 2/c)δ/(− log δ)

⩽ δ.

Then min{δ/(− log δ), 2Φs(δ)} ⩽ |Vi| ⩽ δ for each i, and
∑

i

|Vi|s ⩽
∑

i

((1 + 2/c)|Ui|)s = (1 + 2/c)s
∑

i

|Ui|s ⩽ 1,

by (2.5.2). This means that Φs(δ) ⩾ min{2Φs(δ), δ/(− log δ)} > Φs(δ), a contradiction.
Hence dimΦsF ⩾ s for all s ∈ (dimH F,dimBF ].

Now suppose s ∈ (dimBF,dimBF ). By (iii), ΦdimBF
⪯ Φs, so by what we have

just proved, min{s, dimBF} = dimBF ⩽ dimΦdimBFF ⩽ dimΦsF . Together, the cases
show that for all s ∈ [dimH F,dimBF ] it holds that dimΦsF ⩾ min{s, dimBF} and hence
dimΦsF = min{s, dimBF}, as required.

In the definition (2.5.1) of Φs, any positive constant would work in place of the constant
1, so there are many different Φs that will work. The family of dimensions dim

Φs and
dimΦs may not vary continuously for all sets, as shown by the following proposition.

Proposition 2.5.2. There exist non-empty, compact subsets F,G of R such that:
(i) if (Φs)s∈(dimH F,dimBF ) is a family of admissible functions such that dimΦs

F = s for all

s ∈ (dimH F,dimBF ) then the function s 7→ dim
Φs
G is not continuous on (dimH F,dimBF ),

and
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(ii) if (Ψs)s∈(dimH F,dimBF ) is such that dimΨsF = s for all s ∈ (dimH F,dimBF ) then
the function s 7→ dimΨsG is not continuous on (dimH F,dimBF ).

Proof. Let G := {0} ∪ {1/n : n ∈ N}, so dimθG = θ
1+θ for all θ ∈ [0, 1] by [FFK2,

Proposition 3.1]. Let E ⊂ R be a compact countable set with dimBE = dimAE = 1/4 and
let F = E ∪ G, so as in [FFK2, Example 3] dimH F = 0 and dimθ F = max

{
θ

1+θ , 1/4
}

for all θ ∈ (0, 1]. We now prove (i) using Proposition 2.2.12; the proof of (ii) is similar.
Suppose (Φs)s∈(dimH F,dimBF ) satisfies dim

Φs
F = s for all s ∈ (dimH F,dimBF ). Then if

s > 1/4 then dim
Φs
F = s > 1/4 = dim1/3 F , so by Proposition 2.2.12,

lim sup
δ→0+

log Φs(δ)

log δ
> 1/3

and dim
Φs
G ⩾ dim1/3G = 1/4. For all s < 1/4, log Φs(δ)

log δ → 0 as δ → 0+, so since
dimθG = θ

1+θ → 0 as θ → 0, it follows that dimΦs G = 0. Therefore the function

s 7→ dim
Φs
G is not continuous at s = 1/4.

We believe that the results of this chapter demonstrate that the Φ-intermediate dimen-
sions give rise to a rich and workable theory in their own right, and there are several further
questions about them that we will not explore in this thesis. In particular, it would be
natural to calculate the Φ-intermediate dimensions of two extreme types of cutout sets.
Specifically, decreasing sequences with decreasing gaps such as {0} ∪ { 1

logn : n ∈ N, n ⩾ 3 }
are in some sense the least spatially homogeneous in space of all cutout sets corresponding
to a given sequence of lengths. On the other hand, homogeneous Moran sets are the most
spatially homogeneous, and in this case the Φ-intermediate dimensions will satisfy the
natural analogue of Proposition 3.3.2 from Chapter 3, page 64.
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Chapter 3

Attainable forms of intermediate
dimensions

3.1 Introduction

This chapter considers the general form of intermediate dimensions of sets, and is mostly
based on our joint paper [BR] with A. Rutar. The main result is to obtain a full character-
isation of possible intermediate dimension functions for subsets of Euclidean space. Recall
that the upper Dini derivative of a function f : R → R at x is given by

D+f(x) = lim sup
ε→0+

f(x+ ε)− f(x)

ε
. (3.1.1)

We will prove that the following characterisation holds.

Theorem 3.1.1. Let h : [0, 1] → [0, d] be any function. Then there exists a non-empty
bounded set F ⊂ Rd with dimθ F = h(θ) for all θ ∈ [0, 1] if and only if h is non-decreasing,
is continuous on (0, 1], and satisfies

D+h(θ) ⩽
h(θ)(d− h(θ))

dθ
(3.1.2)

for all θ ∈ (0, 1).

Proof. This follows immediately from Theorem 3.1.3 below.

We see that the intermediate dimensions can have highly varied behaviour; such
behaviour has not been seen in any prior examples. In particular, without stronger
assumptions on the set F , very little can be said about the possible forms of the intermediate
dimensions. For example, it follows directly from (3.1.2) that if f is any non-decreasing
Lipschitz function on [0, 1], there exists some constants a > 0, b ∈ R, and a set F ⊂ R such
that dimθ F = af(θ) + b for all θ ∈ [0, 1]. In particular, the following behaviours for the
intermediate dimensions are all possible:

1. Constant on countably many disjoint closed intervals in [0, 1], and strictly increasing
otherwise.
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2. Strictly concave, strictly convex, or linear and non-constant, on [0, 1].

3. Non-differentiable at each point in a dense subset E of (0, 1) with dimHE = 1 (in
fact, the points of non-differentiability in (0, 1) can form an arbitrary Gδσ subset of
(0, 1) with Lebesgue measure zero [Zah]).

This resolves all remaining questions asked in Falconer’s survey [Fal8].
To state a stronger form of the main result of this chapter, we define the following class

of functions.

Definition 3.1.2. Let 0 ⩽ λ ⩽ α ⩽ d. If λ < α, we denote by H(λ, α) the set of functions
h : [0, 1] → [λ, α] which satisfy the following constraints:

1. h is non-decreasing,

2. h is continuous on (0, 1], and

3. for each θ ∈ (0, 1),

D+h(θ) ⩽
(h(θ)− λ)(α− h(θ))

(α− λ)θ
. (3.1.3)

Otherwise, λ = α and we let H(λ, α) be the set consisting only of the constant function
h(θ) = α.

We now state the main result of this chapter precisely.

Theorem 3.1.3. Suppose F ⊂ Rd has dimL F = λ and dimA F = α. Then if h and h

denote the functions h(θ) = dimθF and h(θ) = dimθF , it holds that h, h ∈ H(λ, α), h ⩽ h,
and h(0) = h(0).

Conversely, if 0 ⩽ λ ⩽ α ⩽ d and h, h ∈ H(λ, α) satisfy h ⩽ h and h(0) = h(0), then
there exists a compact perfect set F ⊂ Rd such that dimL F = λ, dimA F = α, dimθF = h(θ),
and dimθF = h(θ) for all θ ∈ [0, 1].

Proof. This follows from Corollaries 3.2.6 and 3.3.12.

This result gives a full characterisation of all possible forms of the upper and lower
intermediate dimensions of a bounded set F ⊂ Rd. The constraint (3.1.3) generalises all
previously known bounds [Fal8; FFK2]. We see that the Assouad and lower dimensions
influence the possible forms of the intermediate dimensions in a natural way. Note that (3.1.3)
also provides quantitative information about the Assouad and lower dimensions in terms of
the intermediate dimensions. This is in contrast to the box and Hausdorff dimensions, which
provide no more information about the Assouad and lower dimensions beyond the usual
order constraints. We can also view the bound in (3.1.3) as (2θ)−1 times the harmonic mean
of h(θ)−λ and α−h(θ). In particular, if 0 ⩽ λ′ ⩽ λ ⩽ α ⩽ α′ ⩽ d, then H(λ′, α′) ⊇ H(λ, α).
Of course, by taking h = h we can also ensure that the intermediate dimensions exist.
Therefore, Theorem 3.1.1 follows from Theorem 3.1.3.
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The proof of the bound (3.1.3) is given in Corollary 3.2.6, using some similar ideas
to the proof of Theorem 2.2.5. In Sections 3.2.3 and 3.2.4 we will use it to calculate
the intermediate dimensions of some natural classes of sets, including certain lattice sets
and the graph of the popcorn function; in particular, the bound (3.1.2) is attained at all
θ ∈ (0, 1) for the lattices. More remarkable than the bound itself, however, is the fact
that it is essentially the only constraint that a function must satisfy in order to be realised
as the intermediate dimensions of a set. In order to establish this converse result, our
main strategy is to construct sets which we call homogeneous Moran sets. These sets are
analogous to the 2d-corner Cantor sets in Rd, except we only require the subdivision ratios
to be equal within each stage in the construction, and not necessarily between stages.
The following nice property was essentially observed in [CHM]: the optimal covers for a
homogeneous Moran set can be taken to consist of sets with equal diameter. This result is
given in Lemma 3.3.1. A direct application of this result is a convenient formula for the
upper intermediate dimensions of these sets, given in Proposition 3.3.2. Using this formula,
in Lemmas 3.3.6 and 3.3.8, we present a general strategy to construct homogeneous Moran
sets with upper intermediate dimensions given by a certain infimum over a ‘sliding window’
of a function g satisfying certain derivative constraints. Then for each h(θ) satisfying
the general bounds, in Theorem 3.3.9 we construct a function satisfying the derivative
constraints so that the corresponding Moran set has upper intermediate dimensions given
by the prescribed formula. This establishes Theorem 3.1.3 for the upper intermediate
dimensions.

Finally, in Theorem 3.3.11, we construct an inhomogeneous Moran set which, at a
fixed scale, looks like a finite union of homogeneous Moran sets each with prescribed
upper intermediate dimension h(θ). This process is done in such a way to ensure that
the intermediate dimensions exist. Then, taking a disjoint union of this set with the set
provided in Theorem 3.3.9, we complete the proof of Theorem 3.1.3. The details are
provided in Corollary 3.3.12. Heuristically, the covering strategy for Corollary 3.2.6 will
be sharp when the relative covering numbers in the Assouad and lower dimensions are
realised uniformly on the entire set for a fixed scale. In some sense, this motivates the
choice of homogeneous Moran sets, which have the maximum possible uniformity at a fixed
scale. The key observation is that inhomogeneity between scales is sufficient to obtain all
possible forms of the upper intermediate dimensions. In order to prove that the lower and
upper intermediate dimensions can be prescribed simultaneously in Section 3.3.4, we use a
set which behaves like a union of homogeneous Moran sets at each fixed scale, but whose
resolution increases as the scale reduces.

Rutar [Rut] has used ideas about homogeneous Moran sets from the paper [BR] on
which this chapter is based to obtain a full characterisation for attainable forms of Assouad
spectra, building on previous results in [FHHTY].
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3.2 General bounds

3.2.1 Dini derivatives

We begin with some standard results on Dini derivatives, which will be useful later in the
chapter. We refer the reader to [Bru] for more details.

Definition 3.2.1. Let g : R → R be a function. Then the upper right Dini derivative is
given by

D+g(x) = lim sup
ε→0+

g(x+ ε)− g(x)

ε
.

The lower right Dini derivative is defined with lim infε→0+ and denoted D+g, and the left
Dini derivatives are defined analogously using ε→ 0− and denoted D−g and D−g.

We first make the following observation.

Lemma 3.2.2. Let f and g be continuous functions on [a, b] with D+g ⩽ D+f and
g(a) = f(a). Then g ⩽ f .

Proof. Observe that D+(f − g) = D+f −D+g ⩾ 0 so by [Bru, Corollary 11.4.2], f − g is
non-decreasing. But (f − g)(a) = 0 so g ⩽ f .

As an application, we obtain the following analogue of the mean value theorem.

Corollary 3.2.3. Let g be a continuous function on [a, b] and set s = g(b)−g(a)
b−a . Then for

all ϕ ∈ {D+g,D+g,D
−g,D−g},

1. there exists x ∈ [a, b] such that ϕ(x) ⩽ s, and

2. there exists x ∈ [a, b] such that ϕ(x) ⩾ s.

Proof. We prove that there is some x such that D+g(x) ⩾ s; the other cases are similar.
Without loss of generality, there is some x0 ∈ (a, b) such that g(x0) > g(a) + s(x0 − a).
Suppose for a contradiction D+g(x) ⩽ s for all x ∈ [a, x0]. By Lemma 3.2.2, g(x) ⩽

s(x− a) + g(a) for all x ∈ [a, x0], contradicting the choice of x0.

It follows from Corollary 3.2.3 that in (3.1.3) one could take instead the lower Dini
derivative and the class of functions would remain unchanged. We now have the following
elementary result.

Lemma 3.2.4. Let 0 ⩽ λ < α ⩽ d, let g : R+ → (λ, α) be continuous, and let U ⊂ R+ be
an open set. Then the following are equivalent:

1. D+g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U .

2. D+g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U .

3. D−g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U .

4. D−g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U .
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Proof. We will see that D+g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U implies that D+g(x) ∈
[λ − g(x), α − g(x)] for all x ∈ U ; the remaining implications are similar. Suppose for a
contradiction there is some x0 ∈ U such that D+g(x0) /∈ [λ−g(x0), α−g(x0)]. If D+g(x0) <

λ − g(x0) then there is an immediate contradiction, so we assume D+g(x0) > α − g(x0).
Then there is some ε > 0 and x1 such that

g(x1)− g(x0)

x1 − x0
⩾ α− g(x0) + ε,

[x0, x1] ⊂ U , and |g(y)− g(x0)| < ε/2 for all y ∈ [x0, x1]. Then by Corollary 3.2.3, there is
some y ∈ [x0, x1] such that

D+g(y) ⩾ α− g(x0) + ε > α− g(y) +
ε

2

a contradiction.

3.2.2 Bounding the intermediate dimensions

In this section, we prove general bounds for the intermediate dimensions which improve
existing bounds in the literature. Theorem 3.2.5 is a quantitative continuity result for
the intermediate dimensions which improves [FFK2, Proposition 2.1] and [Fal8, (14.2.2)].
The proof of [FFK2, Proposition 2.1] involves breaking up the largest sets in the cover,
while [Fal8, (14.2.2)] is proved by ‘fattening’ the smallest sets in the cover. The novelty in
the proof of Theorem 2.2.5 (from which Theorem 3.2.5 follows) is to deal with the smallest
and largest sets at the same time in such a way that the ‘cost’ of each (in terms of how
much the dimension can increase) is the same.

Theorem 3.2.5. Suppose F is a non-empty, totally bounded subset of a uniformly perfect
metric space with more than one point. Write λ = dimL F , α = dimA F , and let h and h
denote the functions h(φ) = dimφF and h(φ) = dimφF . Assume that 0 ⩽ λ < α <∞ and
let h ∈ {h, h} and 0 < θ ⩽ ϕ ⩽ 1. Then

h(θ) ⩽ h(ϕ) ⩽ h(θ) +
(h(θ)− λ)(α− h(θ))

ϕ(h(θ)− λ) + θ(α− h(θ))
(ϕ− θ). (3.2.1)

Furthermore, h is continuous on (0, 1], Lipschitz on [θ, 1] with Lipschitz constant α−λ
4θ , and

differentiable Lebesgue-almost everywhere on (0, 1).

Proof. We prove the version for dim; the version for dim is similar. The inequality h(θ) ⩽
h(ϕ) is immediate from the definitions. The only non-trivial case of the other inequality is
when 0 < θ < ϕ ⩽ 1 and 0 < h(θ) < α. Define Φ(δ) := δ1/θ. If ϕ < 1, define Φ1(δ) := δ1/ϕ,
but if ϕ = 1 then define Φ1(δ) := δ/(− log δ). Then dim

Φ
F = h(θ) and dim

Φ1
F = h(ϕ).

Define
η :=

(h(θ)− λ)(α− h(θ))

ϕ(h(θ)− λ) + θ(α− h(θ))
(ϕ− θ).

Write
γ :=

h(θ)− λ

h(θ) + η − λ
; β :=

α− h(θ)

α− h(θ)− η
.
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A direct manipulation now shows that β/ϕ = γ/θ. Therefore

Φ1(δ
β) = δβ/ϕ = δγ/θ = (Φ(δ))γ .

Thus dim
Φ1
F ⩽ dim

Φ
F + η by Theorem 2.2.5, as required.

If 0 < θ ⩽ θ′ ⩽ ϕ ⩽ 1 then

h(ϕ)− h(θ′) ⩽
((α− λ)/2)2

(α− λ)θ
(ϕ− θ′) ⩽

α− λ

4θ
(ϕ− θ′),

proving Lipschitz continuity on [θ, 1]. Differentiability almost everywhere now follows from
Lipschitz continuity and Rademacher’s theorem, or alternatively from monotonicity and
Lebesgue’s theorem.

For the convenience of the reader, we now give an alternative direct proof of (3.2.1) for
subsets of Rd and 0 < θ < ϕ < 1 that does not rely on Theorem 2.2.5 but instead uses
similar ideas to those used in the proof of Theorem 2.2.5. More specifically, we will bound
dimθ+εF in terms of θ, dimθF , and the Assouad and lower dimensions of F . Given an
optimal cover for [δ1/θ, δ], we want to convert this to a cover for the smaller range of scales
[δβ/(θ+ε), δβ ] ⊂ [δ1/θ, δ]. We then use the Assouad dimension to replace the sets with large
diameter with sets with smaller diameter (corresponding to the indices in I3), and the lower
dimension to cover the sets with small diameter (corresponding to the indices in I1). The
remaining elements of the cover remain essentially the same. The parameter β is chosen to
optimise this process.

Recall the definition of the lower dimension of a measure from (1.3.8) on page 8. We
also recall that H(λ, α) is defined in Definition 3.1.2.

Proof of (3.2.1). Assume F ⊂ Rd is non-empty and bounded with λ < α, and let 0 < θ <

ϕ < 1. We prove (3.2.1) for the upper intermediate dimensions; the proof for the lower
version is similar. Let ε := ϕ− θ and let η, β be the unique solutions to the equations

α−h(θ)− β(α− h(θ)− η) = 0
β

θ + ε
(h(θ) + η − λ) +

λ− h(θ)

θ
= 0.

One can verify that η and β are given by

η =
(h(θ)− λ)(α− h(θ))ε

(h(θ)− λ)ε+ (α− λ)θ
β =

(h(θ)− λ)ε

(α− λ)θ
+ 1.

Now for s > h(θ), let s′ ∈ (h(θ), s), α′ > α and λ′ < λ satisfy

α′−s− β(α′ − s− η) > 0
β

θ + ε
(s+ η − λ′) +

λ′ − s′

θ
> 0.

For all sufficiently small δ ∈ (0, 1) there exists a (δ, θ)-cover {Ui}i∈I of F whose s′-cost is
less than 1. Define

I1 = { i ∈ I : |Ui| < δ
β

θ+ε }

I2 = { i ∈ I : δ
β

θ+ε ⩽ |Ui| ⩽ δβ/2 }
I3 = { i ∈ I : |Ui| > δβ/2 }.
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There exists C > 0 such that for all 0 < r ⩽ 2R, every set of diameter R contained in
F can be covered by ⌊C(R/r)α′⌋ balls of diameter r. Then for k ∈ I3, let

Bk,1, . . . , Bk,⌊C((2|Uk|)/δβ)α′⌋

satisfy

|Bk,i| = δβ and Sδβ/(θ+ε)(Uk) ∩ F ⊂
⌊C((2|Uk|)/δβ)α

′⌋⋃

i=1

Bk,i,

recalling that Sr denotes the r-neighbourhood. Let z1, . . . , zK be a maximal 4δβ/(θ+ε)-
separated subset of

F \


 ⋃

i∈I2∪I3
Sδβ/(θ+ε)(Ui)


 .

Set

U1 := {B(zm, 5δ
β

θ+ε ) : 1 ⩽ m ⩽ K }
U2 := { Sδβ/(θ+ε)(Uj) : j ∈ I2 }
U3 :=

⋃

k∈I3

{
Bk,ℓ : ℓ = 1, . . . , ⌊C((2|Uk|)/δβ)α

′⌋
}
.

Then for sufficiently small δ,
U := U1 ∪ U2 ∪ U3 (3.2.2)

is a (δβ, θ + ε)-cover of F .
We now bound the (s+ η)-cost of U independently of δ. First consider U1. By (1.3.9),

there exists a doubling Borel probability measure µ with suppµ = F and dimL µ ∈ (λ′, λ].
LetM be a doubling constant for µ. In particular, there is c > 0 such that if 0 < r < R ⩽ |F |
and x ∈ F then

µ(B(x,R))

µ(B(x, r))
⩾ c

(
R

r

)λ′
.

For m ∈ {1, . . . ,K} let

Jm := { i ∈ I1 : Ui ∩B(zm, δ
β/(θ+ε)) ̸= ∅ }.

If i ∈ Jm, fixing xi,m ∈ Ui ∩B(zm, δ
β/(θ+ε)),

µ(Ui) ⩽ µ(B(xi,m, 2|Ui|)) ⩽ c−1µ(B(xi,m, 2δ
β

θ+ε ))

(
δ

β
θ+ε

|Ui|

)−λ′

⩽ c−1µ(B(zm, 4δ
β

θ+ε ))

(
δ

β
θ+ε

|Ui|

)−λ′

⩽ c−1M2µ(B(zm, δ
β

θ+ε ))

(
δ

β
θ+ε

|Ui|

)−λ′

.

Then
µ(B(zm, δ

β
θ+ε )) ⩽

∑

i∈Jm
µ(Ui) ⩽ c−1M2µ(B(zm, δ

β
θ+ε ))δ

−λ′β
θ+ε

∑

i∈Jm
|Ui|λ

′
.
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Note that µ(B(zm, δ
β

θ+ε )) > 0 since suppµ = F . Moreover, if i ∈ I1, then Ui intersects at
most one of the balls of radius δβ/(θ+ε), so for sufficiently small δ,

∑

U∈U1

|U |s+η =
∑

i∈I1

∣∣B(zi, 5δ
β

θ+ε )
∣∣s+η

=
K∑

m=1

(10δ
β

θ+ε )s+η ⩽ 10s+ηc−1M2δ
β

θ+ε
(s+η−λ′)∑

i∈I
|Ui|λ

′

⩽ 10s+ηc−1M2δ
β

θ+ε
(s+η−λ′)δ

λ′−s′
θ

∑

i∈I
|Ui|s

′
⩽ 10s+ηc−1M2.

Next, consider U2:
∑

U∈U2

|U |s+η =
∑

j∈I2

∣∣Sδβ/(θ+ε)(Uj)
∣∣s+η ⩽

∑

j∈I2
(3|Ui|)s+η ⩽ 3s+η.

Finally, consider U3. Since |Uk| ⩽ δ,

∑

U∈U3

|U |s+η =
∑

k∈I3

⌊C((2|Uk|)/δβ)α
′⌋∑

ℓ=1

|Bk,ℓ|s+η ⩽
∑

k∈I3
2α

′
C|Uk|α

′
δ−βα

′
δβ(s+η)

⩽ 2α
′
C
∑

k∈I3
|Uk|sδα

′−s−βα′+β(s+η) ⩽ 2α
′
C
∑

k∈I
|Uk|s ⩽ 2α

′
C.

Thus
∑

U∈U |U |s+η ⩽ 10s+ηc−1M2 + 3s+η + 2α
′
C which does not depend on δ. Since s > h

was arbitrary, we have shown that h(θ + ε) ⩽ h(θ) + η, as required.

Corollary 3.2.6. Suppose F is a non-empty, totally bounded subset of a uniformly perfect
metric space with more than one point, write λ = dimL F , α = dimA F , and assume that
0 ⩽ λ < α <∞. Let h and h denote the functions h(φ) = dimφF and h(φ) = dimφF , and
let h ∈ {h, h}. Then h ∈ H(λ, α), and if h(θ) ∈ {0, λ, α} for some 0 < θ ⩽ 1 then h(θ) is
constant on (0, 1].

Proof. Rearranging (3.2.1) and dividing through by ϕ− θ gives

h(ϕ)− h(θ)

ϕ− θ
⩽

(h(θ)− λ)(α− h(θ))

(h(θ)− λ)(ϕ− θ) + (α− λ)θ
.

Taking the limit ϕ→ θ+, we verify (3.1.3). The particular cases h(θ) ∈ {0, λ, α} for some
θ ∈ (0, 1] follow directly from (3.2.1).

Note that by Theorem 3.1.3 (or more precisely by Theorem 3.3.9 below), every function
h ∈ H(λ, α) can be realised as the upper intermediate dimensions of some set, so must
satisfy (3.2.1) by Theorem 3.2.5. We now give a direct proof of this fact which does not
use the intermediate dimensions.

Proposition 3.2.7. If 0 ⩽ λ < α < ∞ then every function h ∈ H(λ, α) satisfies (3.2.1)
for 0 < θ ⩽ ϕ ⩽ 1.
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Proof. All functions in H(λ, α) are non-decreasing, so the bound h(θ) ⩽ h(ϕ) is immediate.
Suppose g : (0, 1] → [λ, α] is continuous on (0, 1], differentiable on (0, 1) and satisfies

g′(θ′) =
(g(θ′)− λ)(α− g(θ′))

(α− λ)θ′
for all θ′ ∈ (0, 1).

Solving this differential equation by separation of variables gives g(θ′) = Aθ′α+λ
Aθ′+1 for some

A > 0 and all θ′ ∈ (0, 1]. Therefore the unique solution satisfying g(θ) = h(θ) has
A = h(θ)−λ

θ(α−h(θ)) and satisfies

g(ϕ) = h(θ) +
(h(θ)− λ)(α− h(θ))

ϕ(h(θ)− λ) + θ(α− h(θ))
(ϕ− θ).

Using conditions 2 and 3 from Definition 3.1.2, we can apply Lemma 3.2.2 to give h(ϕ) ⩽
g(ϕ), completing the proof.

The fact that h(θ) ∈ {0, λ, α} implies that h is constant extends results in [Fal8; FFK2].
It implies a certain ‘mutual dependency’ between box and intermediate dimensions: in
order to check that the box dimension of a set is 0, it suffices to check the a priori weaker
condition that the θ-intermediate dimension of the set is 0 at a small θ ∈ (0, 1]. It would be
interesting to know if there are sets whose box dimension has resisted calculation by other
methods but can be calculated in this way. Another mutual dependency result between
different notions of dimension is that the upper box dimension of a set is 0 if and only
if its Assouad spectrum and quasi-Assouad dimensions are 0, which follows from work
in [FHHTY; FY2; GH].

Falconer noted that his continuity result [Fal8, (14.2.2)] shows that dimθF
θ and dimθF

θ

are monotonically decreasing in θ ∈ (0, 1], so the graphs of θ → dimθF and θ → dimθF

for θ ∈ (0, 1] are starshaped with respect to the origin. Corollary 3.2.8 shows that in fact
the graphs are strictly starshaped, and every half-line from the origin in the first quadrant
intersects the graphs in a single point. The following two corollaries again hold for any
non-empty, totally bounded subset F of a uniformly perfect metric space with more than
one point.

Corollary 3.2.8. As above, let h and h denote the functions h(θ) = dimθF and h(θ) =
dimθF , let h ∈ {h, h}, and write λ = dimL F , α = dimA F . If 0 < h(1) ⩽ α < ∞ then
h(θ)/θ is strictly decreasing in θ ∈ (0, 1].

Proof. The only non-trivial case is when λ < α. Suppose 0 < θ < ϕ ⩽ 1. By Corollary 3.2.6,
h(θ) > 0, so by Theorem 3.2.5 and a direct algebraic manipulation,

h(ϕ)

ϕ
⩽

1

ϕ

(
h(θ) +

(h(θ)− λ)(α− h(θ))

ϕ(h(θ)− λ) + θ(α− h(θ))
(ϕ− θ)

)
<
h(θ)

θ
.

If 0 < θ ⩽ ϕ ⩽ 1, Theorem 3.2.5 gives an upper bound for h(ϕ) in terms of h(θ) which
can be rearranged to

h(ϕ)(ϕ(h(θ)− λ) + θ(α− h(θ))) ⩽ h(θ)(ϕ(h(θ)− λ) + θ(α− h(θ)))

+ (h(θ)− λ)(α− h(θ))(ϕ− θ).
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Expanding brackets, cancelling terms and rearranging, we obtain what can be thought of
as a lower bound for h(θ) in terms of h(ϕ):

h(θ) ⩾
αθ(h(ϕ)− λ) + ϕλ(α− h(ϕ))

θ(h(ϕ)− λ) + ϕ(α− h(ϕ))
. (3.2.3)

Of particular interest is the lower bound for the intermediate dimensions in terms of the
box dimension, because the box dimension of many sets is known independently. Recall
that dim1F = dimB F and dim1F = dimB F .

Corollary 3.2.9. As above, let h and h denote the functions h(θ) = dimθF and h(θ) =
dimθF , and let h ∈ {h, h}. If λ < α <∞, then for all θ ∈ (0, 1],

h(θ) ⩾
αθ(h(1)− λ) + λ(α− h(1))

θ(h(1)− λ) + (α− h(1))
.

Proof. Set ϕ = 1 in (3.2.3).

0
1

θ

λ

α

h1

h2

h3

h4

h5

Figure 3.1: Plots of the bound in Corollary 3.2.9 for λ = 0.05, α = 0.52, and box dimensions
hi(1) = i/10 for i = 1, 2, . . . , 5.

Plots of this bound for particular parameters are given in Figure 3.1. We make several
remarks about the bound.

• Working in Rd, we can replace λ by 0 and α by d to obtain bounds which hold for all
subsets.

• This bound improves previous general lower bounds in the literature such as [FFK2,
Proposition 2.4] and [Fal8, Corollary 14.4].

• Assume λ < h(1) < α. Then one can differentiate the bound and show that it is real
analytic, strictly increasing, strictly concave, and takes value λ at θ = 0 and h(1) at
θ = 1.

56



• As h(1) approaches α or λ respectively, so does the lower bound pointwise.

• For some self-affine Bedford–McMullen carpets, in particular when the maps in
the defining iterated function system are very unevenly distributed in the different
columns, Corollary 3.2.9 can give non-trivial information when θ is close to 1. For
much more on the intermediate dimensions of Bedford–McMullen carpets, we refer
the reader to Chapter 5.

3.2.3 Lattice sets

In Proposition 3.2.10 below, we will use the bounds from Section 3.2.2 to calculate the
intermediate dimensions of certain lattice sets. Specifically, consider the inversion of the
lattice {1p, 2p, 3p, . . . }d in the unit d-sphere in Rd and observe that the bound (3.1.2)
is attained at each θ ∈ (0, 1). In the case d = 1, the sets are just the polynomial
sequence sets {1−p, 2−p, 3−p, . . . } whose intermediate dimensions were calculated in [FFK2,
Proposition 3.1] using a mass distribution principle. Since we have the benefit of the general
bound, we do not need to use a mass distribution principle. Proposition 3.2.10 will be
useful in Section 4.4 related to continued fraction sets.

Proposition 3.2.10. For d ∈ N and p ∈ (0,∞) define

Gp,d := {x/||x||2 : x ∈ {1p, 2p, 3p, . . . }d }.

Then for all θ ∈ [0, 1],

dimθGp,d =
dθ

p+ θ
.

In particular, the intermediate dimensions are continuous at θ = 0.

Proof. We begin with the upper bound. Let θ ∈ (0, 1]. For δ ∈ (0, 1/10) let n := ⌈δ−θ/(p+θ)⌉.
We form a cover U by covering each point in {x/||x||2 : x ∈ {1p, 2p, . . . , np}d } with a ball
of diameter δ, and covering [0, n−p]d with ≲ (n−p/δθ + 1)d sets of diameter δθ, where here
≲ means up to a multiplicative constant independent of δ and n. Then for s > dθ

p+θ ,

∑

U∈U
|U |s ≲ (n−p/δθ + 1)dδθs + ndδs

≲ δdpθ/(p+θ)δ−dθδθs + δθs + δ−dθ/(p+θ)δs

≲ δθ(s−dθ/(p+θ)) + δs−dθ/(p+θ)

≲ 1,

proving dimθGp,d ⩽ s.
For the lower bound, for δ ∈ (0, 1/10), letm := ⌈δ−1/(p+1)⌉. A direct geometric argument

shows that {x/||x||2 : x ∈ {1p, 2p, . . . ,mp}d } is a ≳ δ-separated set, so if 0 < p < 1 then

Nδ(Gp,d) ⩾ Nδ({x/||x||2 : x ∈ {1p, 2p, . . . ,mp}d }) ≳ md ⩾ δ−d/(p+1).
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A geometric argument shows that for each η > 0,

sup
x∈[0,m−p]d

inf
y∈Gp,d

||x− y|| ≲ δ1−η, (3.2.4)

so if p ⩾ 1 then

Nδ(Gp,d) ⩾ Nδ(Gp,d ∩ [0,m−p]d) ≳ δdη(m−p/δ)d ≳ δ−(d/(p+1)−dη).

Therefore dimBGp,d ⩾ d/(p + 1) for all p ∈ (0,∞). Moreover, by (3.2.4), for all η > 0

sufficiently small,

Nδ1−η([0,m−p] ∩Gp,d) ≈
(
m−p

δ1−η

)d
,

so dimAGp,d = d. Furthermore, Gp,d has isolated points so has lower dimension 0. Thus by
our general lower bound Corollary 3.2.9,

dimθGp,d ⩾
dθ · dimBGp,d

d− (1− θ)dimBGp,d
⩾

dθ · d/(p+ 1)

d− (1− θ)d/(p+ 1)
=

dθ

p+ θ
,

completing the proof.

These sets have isolated points so their lower dimension is λ = 0, and we have shown
that the Assouad dimension α = d. A direct algebraic manipulation shows that the upper
bound from (3.2.1) and the bound in Corollary 3.2.9 are attained: if h(θ) = dimθGp,d and
0 < θ ⩽ ϕ ⩽ 1, then

h(θ) +
(h(θ)− λ)(α− h(θ))

ϕ(h(θ)− λ) + θ(α− h(θ))
(ϕ− θ) =

dϕ

p+ ϕ
= h(ϕ).

This family of examples also shows that the Lipschitz constant of d/(4θ) for subsets
of Rd in Theorem 3.2.5 cannot be improved in general. Note also that it follows from
Proposition 3.2.10 and Burrell’s (1.4.8) on page 16 that for all d ∈ N, p ∈ (0,∞) and α ∈
(0, 1), if Bα : Rd → Rd is index-α fractional Brownian motion on Rd then dimBBα(Gp,d) < d.

3.2.4 Popcorn-like pyramid sets

Another family of sets whose intermediate dimensions can be calculated using the bounds
in Section 3.2.2 are related to the popcorn function, also known as Thomae’s function.
This is an important example in real analysis, with many interesting properties, such as
being Riemann integrable despite not being continuous on any open interval. In fact, it is
discontinuous at the rationals but continuous at the irrationals. There are several intriguing
connections between the popcorn function and different areas of mathematics [Čop; GL;
Ree] and computer science [SM].

In this section, as well as working with the popcorn function itself, we will consider the
following higher-dimensional generalisations of it. Throughout the section, d will denote an
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integer with d ⩾ 2, and 0 < t <∞. Then the popcorn pyramid function ft,d : [0, 1]d−1 → R
is defined by

ft,d(x) =




q−t if x = (p1/q, . . . , pd−1/q), q ∈ N, ∀i : pi ∈ {1, . . . , q − 1}, gcd (pi, q) = 1,

0 otherwise.
(3.2.5)

The popcorn function itself is f1,2. Note that the function is 0 unless all numbers in the
product have the same denominator, for example in the d = 3 case ft,3(1/2, 1/3) = 0. The
graphs of the functions are denoted by

Gt,d :=
{
(x, ft,d(x)) : x ∈ [0, 1]d−1

}
.

Two of the graphs in the d = 2 case are shown in Figure 3.2; the graph on the left is that of
the popcorn function. For completeness, we also include the full set in our analysis, since
we will see that the corresponding sets have the same dimensions:

Ft,d :=

{(
p1
q
, . . . ,

pd−1

q
,

(
1

q

)t)
: q ∈ N,∀i pi ∈ {1, . . . , q − 1}

}
∪ ([0, 1]d−1 × {0}).

Then Gt,d ⊂ Ft,d ⊂ [0, 1]d; for example, the convex hull of G1,3 (or F1,3) is a square-based
pyramid in R3, and (1/2, 1/2, 1/4) ∈ F1,3 \G1,3.

(a) The popcorn graph G1,2 (b) G0.3,2

Figure 3.2: Two popcorn-like graphs

The sets Gt,d and Ft,d have an interesting fractal structure, and it is natural to consider
different notions of dimension of these sets. This was done in the case d = 2 in [Che; CFY].
First consider the Assouad dimension.

Theorem 3.2.11 (Banaji–Chen, Theorem 1.1 from [BC]). We have

dimAGt,d = dimA Ft,d =




d for 0 < t < d

d−1 ,

d− 1 for t ⩾ d
d−1 .

It follows from Theorem 3.2.11 and (1.4.4) that if t ⩾ d/(d − 1) then the Hausdorff,
box and Assouad dimensions are all equal to d− 1, so in all other results in this section we
assume that t < d/(d− 1). Next, consider box dimension.

Theorem 3.2.12 (Banaji–Chen, Theorem 1.2 from [BC]). If 0 < t < d/(d− 1) then

dimBGt,d = dimB Ft,d =
d2

d+ t
.
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Note that dimBGt,d is continuous in t but dimAGt,d is not, since Assouad dimension
depends sensitively on the local scaling behaviour of the set. In order to keep this thesis
to a reasonable length, we omit the proofs of Theorem 3.2.11 (in the t ⩾ d/(d− 1) case)
and Theorem 3.2.12, and refer the reader to [BC]. The lower bound of Theorem 3.2.12
uses the Chung–Erdős inequality from probability theory, the estimate ϕ(n) ≳ n/(log log n)

for Euler’s totient function ϕ(n), and higher-dimensional Duffin–Schaeffer type estimates
from Diophantine approximation. Special cases were proved before the paper [BC] in [Che;
CFY].

Next, we use Theorem 3.2.12 (more precisely, we only use the lower bound) as a black
box to calculate the intermediate dimensions. Our proof also uses the general bounds from
Section 3.2.2; for a direct proof using similar ideas to those used in the proof of those bounds
(fattening the small sets and breaking up the large ones), we refer the reader to [BC].

Theorem 3.2.13. If 0 < t < d/(d− 1) then

dimθGt,d = dimθ Ft,d =




d− 1 for 0 ⩽ θ ⩽ (d−1)t

d ,

d2θ
dθ+t for (d−1)t

d < θ ⩽ 1.

Proof. Note that dimL F = 0 since F has isolated points, and dimA F ⩽ d. Therefore
combining Theorem 3.2.12 with the bound from Corollary 3.2.9 proves the lower bound for
θ > (d− 1)t/d. The idea for the upper bound for this range of θ is to fix a small number
δ > 0 and separate Ft into two parts:

F
(1)
t,d = Ft,d ∩ ([0, 1]d−1 × [0, δdt/(dθ+t)]); F

(2)
t,d = Ft,d ∩ ([0, 1]d−1 × (δdt/(dθ+t), 1]).

Covering [0, 1]d−1 × [0, δdt/(dθ+t)] with balls of size δ gives

Nδ(F
(1)
t,d ) ≲ δ−(d−1)δdt/(dθ+t)−1 = δ−d

2θ/(dθ+t).

It follows from a simple cardinality estimate that

#F
(2)
t,d ≲ (δ−d/(dθ+t))d = δ−d

2/(dθ+t).

We can cover each point in F (2)
t,d with a ball of size δ1/θ and the result now follows from the

estimate
Nδ(F

(1)
t,d ) · δd

2θ/(dθ+t) +#F
(2)
t,d · (δ1/θ)d2θ/(dθ+t) ≲ 1.

This proves the upper bound.
Since the intermediate dimensions are non-decreasing in θ, it follows that dimθFt,d ⩽

dim(d−1)t/dFt,d ⩽ d − 1 for all θ ∈ [0, (d − 1)t/d]. Moreover, dimθGt,d ⩾ dimHGt,d =

d − 1 for all θ ∈ [0, 1]. Since Gt,d ⊂ Ft,d, we have dimθGt,d ⩽ dimθFt,d ⩽ dimθFt,d and
dimθGt,d ⩽ dimθGt,d ⩽ dimθFt,d, and Theorem 3.2.13 follows.

Note that one could alternatively have proved the upper bound for the intermediate
dimensions by combining the simple special case dim(d−1)t/d Ft,d ⩽ d− 1 with 3.2.1. The
t < d/(d − 1) case of Theorem 3.2.11 on the Assouad dimension follows by combining
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Theorem 3.2.13 with the general bound (3.2.9), and the t ⩾ d/(d− 1) case is proved in [BC].
As a special case of Theorem 3.2.13, we obtain a formula for the intermediate dimensions
of the graph of the popcorn function.

Corollary 3.2.14.

dimθG1,2 = dimθ F1,2 =




1 for 0 ⩽ θ ⩽ 1

2 ,

4θ
2θ+1 for 1

2 < θ ⩽ 1.

Proof. This is immediate from Theorem 3.2.13.

We see that the intermediate dimensions are constant and equal to the Hausdorff
dimension until a phase transition at θ = (d − 1)t/d (which is θ = 1/2 for the popcorn
function) and then strictly increasing, concave and analytic. This form has not previously
been seen in ‘natural’ examples of sets, though we will see in Section 4.4 that the intermediate
dimensions of certain sets defined using continued fractions have a similar form. Note
that the graph of the intermediate dimensions is neither convex on the whole domain nor
concave on the whole domain. The fact that the phase transition takes place at θ = 1/2

for the popcorn function means that for the dimension to increase above the Hausdorff
dimension, the sizes of the covering sets need to be restricted to lie in intervals that are
smaller than [δ2, δ].

Recalling the discussion in Section 1.4.2, in the following corollary of Theorem 3.2.13,
we apply results of Burrell [Bur2] to give bounds for the box dimension of images of the
sets Gt,d and Ft,d under fractional Brownian motion.

Corollary 3.2.15. Fix d ∈ N with d ⩾ 2, 0 < t < d/(d− 1) and α > (d− 1)/d. If
Bα : Rd → Rd is index-α fractional Brownian motion then the following hold almost surely:

dimHBα(Gt,d) = dimHBα(Ft,d) =
d− 1

α
,

dimBBα(Gt,d) ⩽ dimBBα(Ft,d) < d.

Proof. The value of the Hausdorff dimension of the fractional Brownian image is a direct
consequence of Kahane’s general results [Kah, Chapter 18], since Gt,d and Ft,d are Borel.
The box dimension result follows from Burrell’s (1.4.8), since the intermediate dimensions
of Gt,d and Ft,d are continuous at θ = 0 by Theorem 3.2.13.

It is interesting to note that the condition α > (d− 1)/d does not depend on t, even
though the box dimension of the sets Gt,d and Ft,d does depend on t.

Corollary 3.2.16 shows that for the sets Gt,d and Ft,d, the intermediate dimensions for
θ ∈ (0, 1) can give better information than either the Hausdorff or box dimensions. The
bound achieved by different values of θ for a certain choice of parameters is shown in
Figure 3.3.
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Corollary 3.2.16. Suppose 0 < t1 < t2 ⩽ d/(d − 1). Then if f : Gt2,d → Rd satisfies
f(Gt2,d) ⊇ Gt1,d and is α-Hölder, then

α ⩽
(d− 1)t2 + t1

dt2
.

The same holds if Gt1,d is replaced by Ft1,d or Gt2,d is replaced by Ft2,d.

Proof. If θ = (d− 1)t2/d then

α ⩽
dimθGt2,d

dimθf(Gt2,d)
⩽

dimθGt2,d
dimθGt1,d

=
(d− 1)t2 + t1

dt2
.

It is straightforward to see that the value of θ which gives the best bound for α in the proof
of Corollary 3.2.16 is indeed θ = (d−1)t2/d (the largest value θ for which dimθGt2,d = d−1).
It may be of interest to determine whether the bounds in Corollary 3.2.16 are sharp, but
we will not pursue this. It follows from Corollary 3.2.16 (and directly from Theorem 3.2.12)
that if 0 < t1 < t2 ⩽ d/(d− 1) then Gt1,d and Gt2,d are not bi-Lipschitz equivalent.

0.5 1

1

4/3

0 θ

y

y = dimθ G1,2

0.15 1

1

4
2.3

0 θ

y

y = dimθ G0.3,2

0.15 0.5 1

0.65

1

0 θ

y

y =
dimθ G1,2

dimθ G0.3,2

Figure 3.3: Graph of the intermediate dimensions of the popcorn sets from Figure 3.2 on
page 59, and their ratio (which gives upper bounds on the possible Hölder exponents of
surjective maps from G1,2 to G0.3,2).

3.3 Moran sets

3.3.1 Definition and dimensions of homogeneous Moran sets

In this section, we prove the converse direction to Theorem 3.1.3. The main objects which
we use to do so are what we call homogeneous Moran sets. The construction of these
sets is analogous to the usual 2d-corner Cantor set, except that the subdivision ratios
need not be the same at each level. Because of the nature of these Moran sets, in this
chapter it is convenient to make two changes to notation when we are in Rd which will not
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affect any definitions or results related to dimensions (see [Fal6, Equivalent definitions 2.1]).
Specifically, we fix some d ∈ N and work in Rd equipped with the max norm rather than
the Euclidean norm, and we define Nδ(F ) to be the smallest number of sets of diameter δ
needed to cover F .

The construction of homogeneous Moran sets is as follows. Fix I = {0, 1}d. We write
I∗ =

⋃∞
n=0 In, and denote the word of length 0 by ∅. Suppose we are given a sequence

r = (rn)
∞
n=1 with 0 < rn ⩽ 1/2 for each n ∈ N. Then for each n and i ∈ I, we define

Sni : Rd → Rd by
Sni (x) := rnx+ bni ,

where bni ∈ Rd has

(bni )
(j) =




0 if i(j) = 0,

1− rn if i(j) = 1,

recalling that y(j) denotes the jth coordinate of a point y ∈ Rd. Given σ = (i1, . . . , in) ∈ In,
we write Sσ = S1

i1
◦ · · · ◦ Snin . Then set

Cn =
⋃

σ∈In

Sσ([0, 1]
d) and C = C(r) :=

∞⋂

n=1

Cn. (3.3.1)

We refer to the set C as a homogeneous Moran set. Note that Cn consists of 2dn hypercubes
each with diameter ρn := r1 · · · rn (with respect to the max norm).

Given δ > 0, let k = k(δ) be such that ρk ⩽ δ < ρk−1. We then define

s(δ) = sr(δ) :=
k(δ) · d log 2

− log δ
. (3.3.2)

One can interpret s(δ) as the best candidate for the ‘box dimension at scale δ.’ We now
prove the following key covering lemma for intermediate dimensions. This result essentially
shows that the optimal covers for a homogeneous Moran set can be taken to consist of balls
all of the same diameter.

Lemma 3.3.1. Let θ ∈ (0, 1] be arbitrary. Then for all δ > 0 sufficiently small, with
t = infϕ∈[δ1/θ,δ] s(ϕ),

4−d ⩽ inf
{∑

U∈U
|U |t : U is a (δ, θ)-cover of C

}
⩽ 1.

Proof. We first prove the lower bound. Let µ denote the uniform Bernoulli measure on C,
i.e. the measure which gives mass 2−dn to each hypercube in Cn for all n. Let U be a set
with δ1/θ ⩽ |U | ⩽ δ, and let k be such that ρk ⩽ |U | < ρk−1. Note that |U |s(|U |) = 2−kd.
Then since U intersects at most 4d hypercubes in Ck,

µ(U) ⩽ 4d · 2−kd = 4d · |U |s(|U |) ⩽ 4d|U |t.

In particular, if U is an arbitrary (δ, θ)-cover of C,

1 = µ(C) ⩽
∑

U∈U
µ(U) ⩽ 4d

∑

U∈U
|U |t
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so that
∑

U∈U |U |t ⩾ 4−d.
For the upper bound, since s(δ) is continuous and increasing on each interval [ρk, ρk−1),

there is ϕ ∈ [δ1/θ, δ] such that t = s(ϕ) = k(ϕ)·d log 2
− log ϕ . For each y = (j1, . . . , jd) ∈ {0, 1}d and

σ ∈ I∗, let Eσ,ϕ(y) denote the hypercube with side length ϕ contained in Sσ([0, 1]d), with
edges aligned with the coordinate axes, and containing the point Sσ(y). Since ϕ ⩾ ρk(ϕ),

V :=
⋃

σ∈Ik(ϕ)−1

{Eσ,ϕ(y) : y ∈ {0, 1}d }

is a cover for Ck(ϕ), and therefore C, consisting of 2k(ϕ)·d hypercubes each with diameter ϕ.
Thus

∑
V ∈V |V |t = 1.

A direct application is the following formula for the intermediate dimensions of C.

Proposition 3.3.2. Let C be a homogeneous Moran set as above. For all θ ∈ (0, 1],

dimθC = lim sup
δ→0

(
inf

ϕ∈[δ1/θ,δ]
s(ϕ)

)
, in particular dimBC = lim sup

δ→0
s(δ),

and
dimHC = dimθC = dimBC = lim inf

δ→0
s(δ).

Proof. This is immediate from Lemma 3.3.1.

3.3.2 Constructing homogeneous Moran sets

In this section, we establish a general strategy for constructing homogeneous Moran sets,
which will be used to show that the bounds from Section 3.2.2 are sharp. We introduce the
following definition, which is in some sense analogous to the definition of H(λ, α).

Definition 3.3.3. Given 0 ⩽ λ < α ⩽ d, we write G(λ, α) to denote the functions
g : R+ → (λ, α) which are continuous and satisfy

D+g(x) ∈ [λ− g(x), α− g(x)]

for all x ∈ R+.

We will essentially show that for any function g ∈ G(0, d), there exists a homogeneous
Moran set such that s(δ) ≈ g(log log(1/δ)). The transformation δ 7→ log log(1/δ) is useful
since it converts the exponentiation map δ 7→ δ1/θ into addition x 7→ x + log(1/θ). In
order to construct such a set, it suffices to define the corresponding contraction ratios by
‘discretising’ the function g. In particular, in Lemma 3.3.6, we show that there exists a
sequence of contractions r = (rn)

∞
n=1 such that the corresponding covering numbers sr(δ)

(recall (3.3.2)) are close to g(log log(1/δ)) in the precise sense given in (3.3.4). Of course,
depending on the choice of the function g, this bound may be impossible to attain for
small x. Thus we begin with a function g̃ and then translate it by some constant amount.
The contraction ratios are then used to define a corresponding Moran set C, and (3.3.4) is
useful to prove dimension results for the Moran set C. Then, in Sections 3.3.3 and 3.3.4, we
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use this technique to construct Moran sets with the desired properties. In Theorem 3.3.9,
we construct the function g depending on some h ∈ H(λ, α) such that the corresponding
homogeneous Moran set has the desired dimension formulas. This construction is also used
in Theorem 3.3.11, where we use the sequence of contraction ratios provided by Lemma 3.3.6
directly. Here, translations of the function g are used to define an inhomogeneous Moran set
which ‘locally’ looks like the homogeneous Moran set C, but with a much greater amount
of uniformity between scales (so that the intermediate dimensions exist). Finally, these
results are combined in Corollary 3.3.12 to obtain a proof of Theorem 3.1.3.

We now begin to describe our general strategy for constructing homogeneous Moran
sets.

Lemma 3.3.4. Let 0 ⩽ λ < α ⩽ d and suppose g ∈ G(λ, α). Then for all x0, x ∈ R+,

λ− (λ− g(x0)) exp(−x) ⩽ g(x0 + x) ⩽ α− (α− g(x0)) exp(−x).

Proof. This is a direct application of Lemma 3.2.2.

Definition 3.3.5. Given a sequence of functions (fk)
∞
k=1 each defined on some interval

(0, ak], the concatenation of (fk)∞k=1 is the function f : (0,
∑∞

k=1 ak) → R given as follows:
for each x ∈ R+ with

∑k−1
j=0 aj < x ⩽

∑k
j=0 aj where a0 = 0, we define

f(x) = fk


x−

k−1∑

j=0

aj


 .

Given a function g ∈ G(λ, α) and w ⩾ 0, we define κw(g) ∈ G(λ, α) by the rule

κw(g)(x) =




g(x− w) for x > w,

limy→0+ g(y) for 0 < x ⩽ w.

Note that κw translates the function g by some value w, and extends it to 0 by the constant
function. The following technical lemma is stated to be useful in the proof of Theorem 3.3.11,
where many offsets of the same function will be required.

Lemma 3.3.6. Let 0 ⩽ λ < α ⩽ d and let g̃ ∈ G(λ, α). Assume that for all y > 0 there
exists some minimal ψ(y) ⩾ y such that

g̃(y) exp(−ψ(y) + y) = g̃(ψ(y))− d log(2) · exp(−ψ(y)). (3.3.3)

Then there exists a sequence r := (rj)
∞
j=1 ⊂ (0, 1/2] and a constant w0 > 0 such that

g := κw0(g̃) satisfies

|sr(exp(− exp(x)))− g(x)| ⩽ d log(2) · exp(−x) (3.3.4)

for all x ⩾ w0.
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Proof. By Lemma 3.3.4, g(ψ(y)) ⩽ d − (d − g(y)) exp(−ψ(y) + y), which after algebraic
manipulation yields ψ(y) ⩾ log(ey + log 2), i.e. exp(− exp(ψ(y))) ⩽ exp(− exp(y))/2.
Let g0 = limy→0+ g̃(y) and note that g0 ∈ (λ, α) by Lemma 3.3.4. Choose r1 such
that 2d log(2)

log(1/r1)
= g0 and let w0 = log log(1/r1). Now set x1 = w0 and, inductively, set

xk+1 = ψ(xk) for each k ∈ N. Let ρk = exp(− exp(xk)) denote the corresponding scales,
and set rk := ρk/ρk−1 for k ⩾ 2. Observe that ρk+1 ⩽ ρk/2 and rk ∈ (0, 1/2] for all k ∈ N.
Thus for 0 < δ ⩽ r1, if k is such that ρk < δ ⩽ ρk−1, we set

s(δ) =
kd log 2

− log δ
.

It suffices to prove by induction that for each k ∈ N, s(ρk) = g(xk), and

g(x)− d log(2) exp(−x) ⩽ s(exp(− exp(x))) ⩽ g(x) for all x ∈ [x1, xk]. (3.3.5)

We first note that s(ρ1) = g(x1) by construction. In general, suppose the hypothesis holds
for k ∈ N. By the definition of ψ and the fact that g(xk) = s(ρk),

g(xk+1) = s(ρk) exp(−xk+1 + xk) + d log(2) exp(−xk+1)

=
d(k + 1) log 2

exp(xk)
· exp(−xk+1) exp(xk) + d log(2) exp(−xk+1)

=
d(k + 2) log 2

exp(xk+1)

= s(ρk+1).

Moreover, by Lemma 3.3.4, g(x) ⩾ g(xk) exp(−x+ xk) for all x ⩾ xk, so (3.3.5) follows for
x ∈ [xk, xk+1] by the minimality of xk+1 in the definition of ψ.

We make several observations about Lemma 3.3.6, which be will used in the proof of
Theorems 3.3.9 and 3.3.11.

Remark 3.3.7. (i) For all continuous functions g̃ for which lim supx→∞ g̃(x) > 0, the
assumption that for all y > 0 there exists ψ(y) ⩾ y such that (3.3.3) holds is indeed
satisfied.

(ii) Observe that w0 depends only on the value limy→0 g̃(y) and the ambient dimension d.
In particular, we may take w0 to be any sufficiently large value.

(iii) Since s(δ) has discontinuities of size d log 2
log(1/δ) , the gap of s(exp(− exp(x))) between the

lower and upper bounds in (3.3.5) cannot be reduced.

We now use the sequence r constructed in the previous lemma to define a homogeneous
Moran set C, and prove that it satisfies the correct properties. Recall that G is defined in
Definition 3.3.3 and homogeneous Moran sets are defined in (3.3.1).

Lemma 3.3.8. Let g ∈ G(0, d), and suppose r = (rj)
∞
j=1 ⊂ (0, 1/2] is such that

|sr(exp(− exp(x)))− g(x)| ⩽ d log(2) · exp(−x) (3.3.6)

for all x sufficiently large. Then the corresponding homogeneous Moran set C = C(r) ⊂ Rd

satisfies:
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1. dimθC = lim sup
x→∞

(
inf

y∈[x,x+log(1/θ)]
g(y)

)
for θ ∈ (0, 1],

2. dimθC = dimHC = lim inf
x→∞

g(x) for θ ∈ (0, 1],

3. dimAC ⩽ lim supx→∞(D+g(x) + g(x)), and

4. dimLC ⩾ lim infx→∞(D+g(x) + g(x)).

Moreover, suppose ψ : R+ → R+ is any function such that exp(ψ(x)) − exp(x) → ∞ as
x→ ∞. Then

5. dimAC ⩾ lim sup
x→∞

(
inf

y∈[x,ψ(x)]
(D+g(y) + g(y))

)
, and

6. dimLC ⩽ lim inf
x→∞

(
sup

y∈[x,ψ(x)]
(D+g(y) + g(y))

)
.

Proof. We first observe that 1 and 2 follow immediately from Proposition 3.3.2. We verify 3
and 5; 4 and 6 are given by an analogous argument.

We first establish a general formula for the Assouad dimension of C in terms of the
numbers sr(δ). Suppose 0 < δ1 ⩽ δ2 are arbitrary. Then the number of subdivision steps
between scales δ1 and δ2, up to an error of size 2, is

sr(δ1) log(1/δ1)− sr(δ2) log(1/δ2)

d log 2
.

Thus there is a bounded function h(x, δ1, δ2) such that

logNδ1(B(x, δ2) ∩ C)
log(δ2/δ1)

=
sr(δ1) log(1/δ1)− sr(δ2) log(1/δ2) + h(x, δ1, δ2)

log(1/δ1)− log(1/δ2)
.

Therefore by the definition of the Assouad dimension, for all δ0 ∈ (0, 1),

dimAC = lim
ε→0

sup
0<δ1<δ2<δ0
δ1⩽εδ2

sr(δ1) log(1/δ1)− sr(δ2) log(1/δ2)

log(1/δ1)− log(1/δ2)
. (3.3.7)

Now we may inductively choose sequences of positive numbers (δ1,n)
∞
n=1 and (δ2,n)

∞
n=1 such

that δ1,n/δ2,n and δ2,n converge to 0, and

sr(δ1,n) log(1/δ1,n)− sr(δ2,n) log(1/δ2,n)

log(1/δ1,n)− log(1/δ2,n)
∈
(
dimAC − 1

n
, dimAC +

1

n

)

for all n ∈ N.
For 0 < x < y, let

Φ(x, y) :=
sr(exp(− exp(y)))− sr(exp(− exp(x)))

1− exp(x− y)
+ sr(exp(− exp(x))).

Moreover, write xn = log log(1/δ2,n) and yn = log log(1/δ1,n). Next, let W denote the family
of functions ψ : R+ → R+ such that limx→∞(exp(ψ(x))− exp(x)) = ∞. The condition that
δ1,n/δ2,n converges to 0 is equivalent to exp(yn)− exp(xn) diverging to infinity. Thus we
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may choose a function ψ0 ∈ W so that ψ0(xn) = yn for infinitely many n. Then with some
rearrangement using (3.3.7) and the definition of Φ,

lim sup
x→∞

Φ(x, ψ0(x)) ⩾ dimAC.

Conversely, if ψ ∈ W is arbitrary, applying the substitutions δ2 = exp(− exp(x)) and
δ1 = exp(− exp(ψ(x))) and using the fact that δ1/δ2 converges to 0 as x→ ∞ gives

lim sup
x→∞

Φ(x, ψ(x)) ⩽ dimAC.

Therefore
dimAC = sup

ψ∈W
lim sup
x→∞

Φ(x, ψ(x)), (3.3.8)

and moreover the supremum is attained.
To conclude the preliminaries, we also note, for 0 < x < y,

exp(−y) + exp(−x)
1− exp(x− y)

+ exp(−x) = 2

exp(y)− exp(x)
+ 2 exp(−x). (3.3.9)

This bound will be used to control the error resulting from (3.3.6).
We now prove 3. Write

α := lim sup
x→∞

(D+g(x) + g(x)),

and let ε > 0. Then there exists Mε > 0 such that for all x ⩾Mε we have D+g(x) + g(x) ⩽

α+ ε. For x ⩾Mε, define gx : [x,∞) → R by

gx(y) := α+ ε− (α+ ε− g(x)) exp(x− y).

Then g(x) = gx(x), and

g′x(y) + gx(y) = α+ ε ⩾ D+g(y) + g(y)

for all y > x. It follows from Lemma 3.2.2 that g(y) ⩽ gx(y) for all y ⩾ x. Now taking a
function ψ0 which attains the supremum in (3.3.8), for all x ⩾Mε, using (3.3.6) and (3.3.9)
combined with the condition on ψ0,

Φ(x, ψ0(x)) ⩽
g(ψ0(x))− g(x)

1− exp(x− ψ0(x))
+ g(x)

+ 2d log(2)

(
1

exp(ψ0(x))− exp(x)
+ exp(−x)

)
.

Moreover, since ψ0 ∈ W,

lim sup
x→∞

2d log(2)

(
1

exp(ψ0(x))− exp(x)
+ exp(−x)

)
= 0.

Thus

lim sup
x→∞

Φ(x, ψ0(x)) ⩽ lim sup
x→∞

(
g(ψ0(x))− g(x)

1− exp(x− ψ0(x))
+ g(x)

)
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⩽ lim sup
x→∞

(
gx(ψ0(x))− g(x)

1− exp(x− ψ0(x))
+ g(x)

)

= α+ ε.

But ε > 0 was arbitrary, giving the claim.
Finally, we prove 5. Fix any ψ ∈ W and ε > 0, and write

α = lim sup
x→∞

(
inf

y∈[x,ψ(x)]
(D+g(y) + g(y))

)
.

Get a sequence (xk)
∞
k=1 diverging to infinity such that for all k ∈ N,

inf
y∈[xk,ψ(xk)]

(D+g(y) + g(y)) ⩾ α− ε.

As above, define g
k
: [xk,∞) → R by

g
k
(x) := α+ ε− (α+ ε− g(xk)) exp(xk − x).

Then g(xk) = g
k
(xk) and g(x) ⩾ g

k
(x) for all x ∈ [xk, ψ(xk)]. Thus the same computations

as before yield that

lim sup
x→∞

Φ(x, ψ0(x)) ⩾ lim sup
k→∞

Φ(xk, ψ(xk))

⩾ α− ε− 2d log 2

exp(ψ(xk))− exp(xk)
− 2d log(2) exp(−xk).

Since exp(ψ(xk)) − exp(xk) diverges to infinity and ε > 0 was arbitrary, the claimed
inequality follows.

In general, 3 and 4 will not be equalities since one would require more robust regularity
assumptions about the function g.

3.3.3 Prescribing the upper intermediate dimensions

Now, using the general construction in the previous section, we show how to construct
homogeneous Moran sets with upper intermediate dimensions given by a function h : [0, 1] →
(0, d). The main idea is to construct functions which we call mountains, which have the
property that there are exactly two points {x, x+ log(1/θ)} which have value h(θ). This
ensures that the limit supremum of infima over windows [x, x+ log(1/θ)] is exactly h(θ).
Figure 3.4 depicts this construction.

Theorem 3.3.9. Let 0 ⩽ λ ⩽ α ⩽ d and let h ∈ H(λ, α). Then there exists a homogeneous
Moran set C such that dimLC = λ, dimAC = α, dimθC = h(0), and

dimθC = h(θ)

for all θ ∈ [0, 1].
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0 log(1/ϵn)x x∗ x + log(1/θ)

h(1)

h(θ)

h(ϵn)

Figure 3.4: The construction of the mountain fn.

Proof. We will assume that λ ⩽ h(0) < h(θ) < α for all θ ∈ (0, 1], and that there exists
θ0 > 0 such that h(θ0) < h(1). The other cases are easier and can be proven with minor
modifications, except the case h(1) = 0, which we address separately at the end of the
proof.

Let (εn)
∞
n=1 ⊂ (0, 1) converge monotonically to 0 and (γn)

∞
n=1 ⊂ (λ, α) converge

monotonically to h(0) in such a way that γn < h(εn+1) < h(1) for all n ∈ N, and
γn + 1/n ⩽ h(εn+1) for all n sufficiently large. Note that if h(0) > λ we can take γn = h(0)

for all n. We will define functions which we refer to as mountains fn and valleys en; a
valley will be used to connect two mountains. Graphical representations of the functions
fn and en are given in Figures 3.4 and 3.5 respectively. Then we will define a function g
by concatenating the fn and en, and the corresponding Moran set C will be defined using
the sequence given in Lemma 3.3.6. The functions fn will ensure that dimθC = h(θ) for
θ > 0, and the functions en will ensure that g is continuous, dimHC = h(0), dimLC = λ,
and dimAC = α.

Part 1. Construction of the mountains fn : [0, log(1/εn)] → [h(εn), h(1)] for n ∈ N.

First set
x∗ := log

(
α− h(εn)

α− h(1)

)

and for x ∈ [0, x∗] define fn(x) = α − (α − h(εn)) exp(−x). Observe that fn(0) = h(εn),
fn(x

∗) = h(1), and

D−fn(x) = (α− h(εn)) exp(−x) = α− fn(x) (3.3.10)

for x ∈ (0, x∗]. Now for x ∈ [0, x∗], if θ ∈ (0, 1] is such that h(θ) = fn(x), we define
fn(x+ log(1/θ)) = h(θ). This is well-defined since h is non-decreasing and continuous. In
particular, fn(x) is non-increasing and continuous on [x∗, log(1/εn)] with fn(log(1/εn)) =
fn(0) = h(εn).

We now wish to bound D−fn(x+ log(1/θ)) for x ∈ (0, x∗]. First, note that

x = log

(
α− h(εn)

α− h(θ)

)
.

Then rearranging (3.1.3), we obtain

D+h(θ) ⩽ (h(θ)− λ)

(
D+h(θ)

h(θ)− α
+

1

θ

)
.
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Since h(θ) < α, D+h(θ) < α−h(θ)
θ so that D+h(θ)

h(θ)−α + 1
θ > 0. Therefore

D+h(θ)
D+h(θ)
α−h(θ) − 1

θ

⩾ λ− h(θ) = λ− fn(x+ log(1/θ)). (3.3.11)

But if x and θ are related as above, x+ log(1/θ) is a smooth function of θ and h(θ), and
h(θ) = fn(x+ log(1/θ)), and x decreases as θ decreases. Thus

D+h(θ) = D−fn(x+ log(1/θ)) ·
(
D+h(θ)

α− h(θ)
− 1

θ

)

which when combined with (3.3.11) yields D−fn(x+log(1/θ)) ⩾ λ−fn(x+log(1/θ)). Note
that we have shown that

D−fn(x) ∈ [λ− fn(x), α− fn(x)]

for all x ∈ (0, log(1/εn)].

Part 2. Construction of the valleys en : [0, wn] → [γn, h(εn)] where wn is given in (3.3.12)
for n ∈ N.

Set
w∗ := log

(
h(εn)− λ

γn − λ

)

and for x ∈ [0, w∗] define en(x) = λ− (λ− h(εn)) exp(−x). Observe that en(w∗) = γn. Let

wn := w∗ + log

(
α− γn

α− h(εn+1)

)
(3.3.12)

and for x ∈ [w∗, wn] define en(x) = α−(α−γn) exp(−x+w∗). Of course, en(wn) = h(εn+1).
It is clear that D−en(x) = λ − en(x) for x ∈ (0, w∗] and D−en(x) = α − en(x) for all
x ∈ (w∗, wn].

0 wnw∗

h(ϵn)

h(ϵn+1)

γn
h(0)

Figure 3.5: The construction of the valley en.

Part 3. Construction of g ∈ G(λ, α) and the corresponding Moran set C.

Let g̃ denote the concatenation of the sequence (f1, e1, f2, e2, . . . ). By Lemma 3.2.4,
as well as Remark 3.3.7 (i) and the assumption h(1) > 0, g̃ satisfies the hypotheses of
Lemma 3.3.6. Let g and r be the function and sequence respectively given by this lemma.
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Note that g ∈ G(λ, α), and let C = C(r) denote the corresponding Moran set. That
dimθC = h(θ) for θ ∈ (0, 1] follows by definition of the functions fn and the fact that

lim
n→∞

(
sup

x∈[0,wn]
en(x)

)
⩽ lim

θ→0
h(θ).

Moreover, Lemma 3.3.8 directly gives that dimHC = dimθC = h(0) for θ ∈ [0, 1], λ ⩽

dimLC, and dimAC ⩽ α.
To see that dimAC ⩾ α, note that the derivative of the strictly increasing part of each

mountain is uniformly bounded above by α. Therefore, for all n ∈ N, the length of the
domain of the nth mountain can be uniformly bounded below:

log

(
1

εn

)
⩾ log

(
1

ε1

)
>
h(1)− h(ε1)

α
> 0.

Similarly, for all n sufficiently large, the length wn of the domain of the nth valley can be
bounded below by 1/(αn). Therefore there exists δ > 0 and a sequence (bm)

∞
m=1 such that

for all m ∈ N we have bm ⩾ δm, and D+g(x) + g(x) = α for all x ∈ [bm, bm + δ/m]. Then
for all m ∈ N,

exp

(
bm +

δ

m

)
− exp(bm) =

(
exp

(
δ

m

)
− 1

)
· exp(bm) ⩾

δ · exp(δm)

m

which diverges to ∞ as m → ∞. Thus we can define a function ψ : R+ → R+ such that
ψ(bm) = bm + δ/m for all m ∈ N and limx→∞(exp(ψ(x)) − exp(x)) = ∞. In particular,
D+g(y)+g(y) = α for all y ∈ [bm, ψ(bm)] and infinitely many m. By part 5 of Lemma 3.3.8,
it follows that dimAC ⩾ α. An analogous application of part 6 gives that dimLC ⩽ λ.

Finally, we address the case when h(1) = 0. We avoid using Lemma 3.3.6; an alternative
strategy would be to apply this lemma to a carefully-chosen function g which satisfies (3.3.3).
By the same arguments as [ORS, Lemma 3.2], if M is any homogeneous Moran set with
notation as above, then for all K ∈ N,

dimAM = lim sup
n→∞

sup
k⩾K

nd log 2

log(ρk/ρk+n)
. (3.3.13)

Therefore if α = 0, then choosing the sequence rn ∈ (0, 1/2] inductively such that ρn+1 ⩽

ρ
exp(n)
n for all n ∈ N, we have dimAM = 0. Now suppose that α ∈ (0, d]. Let n1 = 1, and

for k ∈ N, inductively define nk+1 := nk + k. Define a homogeneous Moran set M which
satisfies ρnk

⩽ ρ
exp(nk)
nk−1 for all k ∈ N, and rj = 2−d/α for all integers j which are not of the

form nk. It follows directly from (3.3.13) that dimAM = α, and after a short calculation,
Proposition 3.3.2 gives that dimBM = 0, as required.

3.3.4 Prescribing the intermediate dimensions

We can get more varied behaviour for the lower intermediate dimensions by taking a finite
union of Moran sets, as illustrated by the following result.
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Proposition 3.3.10. Suppose gi ∈ G(0, d) for i = 1, . . . ,m have corresponding sequences
ri ⊂ (0, 1/2] satisfying

|gi(x)− sri(exp(− exp(x)))| ⩽ d log(2) exp(−x).

Let M be a disjoint union of translations of the homogeneous Moran sets C(ri). Then for
θ ∈ (0, 1],

1. dimθM = lim sup
x→∞

max
i=1,...,m

(
inf

y∈[x,x+log(1/θ)]
gi(y)

)
,

2. dimθM = lim inf
x→∞

max
i=1,...,m

(
inf

y∈[x,x+log(1/θ)]
gi(y)

)
,

3. dimHM = max
i=1,...,m

lim inf
x→∞

gi(x).

Proof. It is a straightforward exercise to verify these dimension formulae.

Suppose h(θ) satisfies h(ε) = h(0) for some ε > 0, and let g denote the infinite
concatenation of a mountain f : [0, log(1/ε)] → (0, d) constructed as in Theorem 3.3.9. If
C denotes the corresponding Moran set, then dimθC = h(θ). Now suppose N is large,
and define functions gi := κwi(g) where wi =

(i−1)
N log(1/ε) for each i ∈ {1, . . . , N}. Write

A = d log(1/ε). Then if x is arbitrary, since the gi are Lipschitz continuous with constant
d, there is some i depending on x such that

inf
y∈[x,x+log(1/θ)]

gi(y) ⩾ h(θ)− A

N

for all large x. In particular, if M denotes the set given by Proposition 3.3.10, this implies
that

h(θ)− A

N
⩽ dimθM ⩽ dimθM = h(θ).

In other words, by taking a finite union of homogeneous Moran sets, we can ensure that
the upper and lower intermediate dimensions are arbitrarily close.

Motivated by this observation, we now construct a set such that the intermediate
dimensions exist and are given by a prescribed formula h(θ). At a fixed scale δ > 0, the
set M will look like a finite union of Moran sets each with the same upper intermediate
dimensions. As δ goes to zero, the resolution increases, so that the intermediate dimensions
exist. The construction here is mildly complicated by the fact that the mountains fn and
valleys en can have arbitrarily large support if h(θ) > h(0) for all θ > 0.

Theorem 3.3.11. Let 0 ⩽ λ ⩽ α ⩽ d and let h ∈ H(λ, α). Then there exists a compact
perfect set M such that dimLM = λ, dimAM = α and

dimθ C = h(θ)

for all θ ∈ [0, 1].

Proof. As in the proof of Theorem 3.3.9, we will assume that λ ⩽ h(0) < h(θ) < α for all
θ ∈ (0, 1], and that there exists θ0 > 0 such that h(θ0) < h(1). The remaining cases follow
by similar, but slightly easier, arguments.
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Part 1. Construction of the set M .

As in the proof of Theorem 3.3.9, fix non-increasing sequences (εn)
∞
n=1 and (γn)

∞
n=1

and construct corresponding mountains (fn)
∞
n=1 defined on intervals [0, zn] and valleys

(gn)
∞
n=1 defined on intervals [0, wn], where zn = log(1/εn) and wn is defined as in (3.3.12).

We may choose εn and γn such that wn + zn = 2n. Let Ψ = {0, 1} × {0, 1, 2, 3} and let
Ψ∗ =

⋃∞
n=0Ψ

n. We first associate to each η ∈ Ψ∗ a number a(η) ∈ [0,∞) as follows. Given
k ∈ N and i = (u, v) ∈ Ψ, we define

ψ(k, i) = u2−k + v4k−1

and then for η = (i1, . . . , ik), we set

a(η) =
k∑

n=1

ψ(n, in).

Observe that a(Ψk) = {j2−k : j ∈ Z} ∩ [0, 4k).
For k ∈ N and i ∈ Ψ, we define ck,i(x) = h(εk) for all x ∈ [0, ψ(k, i)]. Now for each

η = (i1, . . . , in) ∈ Ψ∗, let g̃η denote the concatenation of the sequence

(f1, e1, c1,i1 , f2, e2, c2,i2 , . . . , fn, en, cn,in , fn+1, en+1, fn+2, en+2, . . . ).

In light of Remark 3.3.7 (i) and the fact that h(1) > 0, Lemma 3.3.6 can be applied directly,
giving w0, and we set gη := κw0(g̃η). It follows from Remark 3.3.7 (ii) that w0 does not
depend on the choice of η, and can be taken to be arbitrarily large. Thus there is a sequence
r(η) := (rj(η))

∞
j=1 ⊂ (0, 1/2] such that for all x ⩾ w0,

|sη(exp(− exp(x)))− gη(x)| ⩽ d log(2) · exp(−x),

where sη := sr(η). Let ∅ denote the word of length 0, and let ρk = r1(∅) · · · rk(∅). For
k ⩾ 0, let

yk = w0 +

k∑

i=1

(wi + zi) = w0 + 2k+1 − 1.

Then let nk be the maximal index such that log log(1/ρnk
) ⩽ yk. Choosing w0 large, we

may assume that nk ⩾ 3k for all k ∈ N. Let I = {0, 1}d and let L : I3 → Ψ be given by
L(i, j,k) = (i(1), j(1) + 2(k(1))). For ℓ ∈ N, we let kℓ denote the maximal index such that
nkℓ ⩽ ℓ. We then define a map Λ: I∗ → Ψ∗ by

Λ(i1, . . . , iℓ) = (L(i1, i2, i3), L(i4, i5, i6), . . . , L(i3(kℓ−1)+1, i3(kℓ−1)+2, i3(kℓ−1)+3)).

This is well-defined since ℓ ⩾ nkℓ ⩾ 3kℓ.
We now construct our inhomogeneous Moran set M as follows. Given a word σ =

(i1, . . . , iℓ) ∈ Iℓ, let η = Λ(σ). We then set Sσ = S1
i1,η

◦ · · · ◦ Sℓiℓ,η, where Sii,η(x) =

ri(η) · x+ bii(η) with

bii(η)
(j) :=




0 if i(j) = 0,

1− ri(η) if i(j) = 1.
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We now set
Mℓ :=

⋃

σ∈Iℓ

Sσ([0, 1]
d).

Note that if σ is a prefix of τ , then Λ(σ) is a prefix of Λ(τ) and therefore Sσ([0, 1]d) ⊇
Sτ ([0, 1]

d). Thus M0 ⊇M1 ⊇ · · · , so the set

M :=
∞⋂

ℓ=0

Mℓ

is non-empty.
Intuitively, at a fixed scale δ, M looks like a union of 8k homogeneous Moran sets

corresponding to the sequences r(η) for η ∈ Ψk. We can make this precise in the following
sense. For η ∈ Ψk, we define

Bk(η) = { (σ1, . . . , σk) ∈ I3k : L(σi) = ηi for each 1 ⩽ i ⩽ k },
Jη =

⋃

σ∈Bk(η)

Sσ([0, 1]
d).

Let Cη := C(r(η)) denote the homogeneous Moran set corresponding to the function gη.
Let ℓ ∈ N satisfy

yk + a(η−) < log log(1/(r1(η) · · · rℓ(η))) ⩽ yk+1 + a(η),

where η− ∈ Ψk−1 is the unique prefix of η. Since g∅(yk) = gη(yk + a(η−)), if σ ∈ Iℓ, then
η is a prefix of Λ(σ). Moreover, if τ ∈ Ψ∗ is a word with η as a prefix, then gτ (x) = gη(x)

for all x ⩽ yk+1 + a(η). Thus for any such ℓ, we have

Mℓ ∩ Jη = (Cη)ℓ ∩ Jη. (3.3.14)

But then if η′ is a prefix of η, then rℓ(η′) = rℓ(η) for all ℓ such that

log log(1/(r1(η) · · · rℓ(η))) ⩽ yk+1 + a(η). (3.3.15)

Thus (3.3.14) holds for all ℓ satisfying (3.3.15). We also note that (Cη)ℓ ∩ Jη consists of
exactly 2dℓ−3k hypercubes with diameter r1(η) · · · rℓ(η).

Part 2. Proof that dimθM = h(θ) for θ ∈ (0, 1].

Fix θ ∈ (0, 1]. We first show that dimθM ⩽ h(θ). Let δ be sufficiently small such that
δ ⩽ ρk0 where εk0 ⩽ θ. Now let k be such that ρnk

< δ1/θ. It now follows by the same
argument as Lemma 3.3.1 that for each η ∈ Ψk, with sη := infϕ∈[δ1/θ,δ] sη(ϕ),

inf
{∑

U∈U
|U |sη : U is a (δ, θ)-cover of (Cη)ℓ(η) ∩ Jη

}
⩽ 8−k,

where ℓ(η) is minimal such that r1(η) · · · rℓ(η) ⩽ δ1/θ. But ℓ(η) satisfies (3.3.15) since
ρnk

< δ1/θ, so M ⊆ ⋃η∈Ψk(Cη)ℓ ∩ Jη. Therefore, sη ⩽ h(θ) + d log(2) · exp(−ynk
). This

implies that dimθM ⩽ h(θ).
Now fix ε > 0; we will show that dimθM ⩾ h(θ)− (2 + d)ε. The various variables in

this proof are depicted in Figure 3.6. Let k be such that 2−k ⩽ ε. Let δ > 0 be small and
let x := log log(1/δ). We may assume that
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1. d log(2) exp(−x) ⩽ ε,

2. x ⩾ yk, and

3. x ⩾ ym for some m with εm ⩽ θ.

For each m ∈ N, there is some vm such that fm(vm) = h(θ). Equivalently, g∅(ym+vm) =

h(θ). Let m be maximal such that ym + vm ⩽ x. Since ym+1 + vm+1 − (ym + vm) ⩽ 4m,
there is some η0 ∈ Ψm such that |a(η0)−(x−ym−vm)| ⩽ 2−k. Then since D+g(x) ∈ [−d, d]
for all x ∈ R+,

inf
ϕ∈[δ1/θ,δ]

sη(ϕ) ⩾ inf
y∈[x,x+log(1/θ)]

gη(y)− ε ⩾ h(θ)− (1 + d)ε.

Set s = h(θ)− (2+ d)ε. Again by the same argument as Lemma 3.3.1, since x+ log(1/θ) <

ym+1 + vm+1 < ym+2, with η ∈ Ψm+1 satisfying gη0 = gη, we have

C · δ
−ε

8m
⩽ inf

{∑

U∈U
|U |s : U is a (δ, θ)-cover of M ∩ Jη

}

⩽ inf
{∑

U∈U
|U |s : U is a (δ, θ)-cover of M

}

for some constant C > 0 independent of δ. But x ⩾ ym ⩾ 2m − 1, so

δ−ε

8m
⩾

(
exp(exp(2m − 1))

)ε

8m
−−−−→
m→∞

∞

as required.

ym ym+1ym + vm x x + log(1/θ)

h(θ)

h(ϵm)

a(η)

2−m

gη

g∅

Figure 3.6: Choice of gη for the lower bound of dimθM .

Part 3. Proof that dimHM = h(0), dimLM = λ, and dimAM = α.

It is clear that dimHM ⩾ h(0) since lim infδ→0 sη(δ) ⩾ h(0) for all η ∈ Ψ∗. Conversely,
let ε > 0; we will show that dimHM ⩽ h(0) + 2ε. Let n0 be sufficiently large such that
γn0 ⩽ h(0) + ε. Then let δ > 0 be sufficiently small such that with x = log log(1/δ), we
have x ⩾ yn0+1 and d log(2) · exp(−x) ⩽ ε. Let m be such that x < ym. For each η ∈ Ψm,
by the choice of n0, there exists some x ⩽ xη < ym+1 + a(η) such that

gη(xη) = γm ⩽ h(0) + ε.
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Then by the same argument as Lemma 3.3.1, since d log(2) ·exp(−x) ⩽ ε, with s = h(0)+2ε

and with ℓ(η) minimal so that log log(1/ρℓ(η)) ⩾ xη, we have

inf
{∑

U∈U
|U |s : U is a (δ, 0)-cover of (Cη)ℓ(η) ∩ Jη

}
⩽ 8−m.

Moreover, for x sufficiently large, we can ensure that log log(1/ρℓ(η)) ⩽ ym+1 ⩽ ym+1+a(η).
Thus M ⊆ ⋃η∈Ψm(Cη)ℓ(η) ∩ Jη, so

inf
{∑

U∈U
|U |s : U is a (δ, 0)-cover of M

}
⩽ 1.

But δ > 0 was arbitrary, so dimHM ⩽ h(0) + 2ε, as required.
Now we will show that dimAM = α; the proof that dimLM = λ follows similarly.

Observe that there is some δ > 0 such that D+g∅(x) + g∅(x) = α for all m ∈ N and
x ∈ [ym+1 − δ, ym+1]. Let τ = {(0, 0), (0, 0, ), . . . , (0, 0)} ∈ Ψm and observe that g∅ = gτ .
Then if log log(1/ρℓ) ∈ [ym+1 − δ, ym+1], we have Mℓ ∩ Jτ = C∅ ∩ Jτ . Thus dimAM ⩾ α

follows by the same computation from Theorem 3.3.9.
Conversely, it suffices to show that for all ε > 0 there exist a, ℓ0 > 0 such that for all

ℓ ⩾ ℓ0 and I ∈Mℓ with |I| = R, and all r ∈ (0, aR), we have

Nr(I ∩M) ⩽ (R/r)α+2ε.

Let r > 0 and let m, k be minimal such that log log(1/r) ⩽ log log(1/ρm) ⩽ yk. First
suppose ℓ ⩾ 3k, and suppose I ∈Mℓ satisfies |I| = R. Then there exists a unique η ∈ Ψk

such that I ⊂ Jη, so
(Cη)j ∩ I ∩Mj = I ∩Mj

for all ℓ ⩽ j ⩽ m. Then since D+gη + gη ⩽ α, a similar computation to the proof of
Lemma 3.3.8 gives that for all ε > 0 there exists ℓ0 depending only on ε and M such that
if we additionally assume that ℓ ⩾ ℓ0, then

Nr(I ∩M) ⩽ (2d)m−ℓ ⩽ (rℓ+1(η) · · · rm(η))−
(
α+ 2d

m−ℓ

)
⩽ (R/r)α+

2d
m−ℓ .

For the other case, suppose ℓ < 3k. Let η ∈ Ψk satisfy Jη ∩ I ̸= ∅ and let σ ∈ I3k

satisfy Sσ([0, 1]d) ⊆ I ∩ Jη. Again,

Nr(I ∩ (Cη)m) ⩽ (2d)m−ℓ ⩽ (R/r)α+
2d

m−ℓ ,

so

Nr(I ∩ (Cη)m ∩ Sσ([0, 1])d) ⩽ (2d)m−3k

= (2d)ℓ−3k(2d)m−ℓ

⩽ (2d)ℓ−3k(R/r)α+
2d

m−ℓ .

But I ∩ (Cη)m ∩ Sσ([0, 1]d) = I ∩Mm ∩ Sσ([0, 1]d) and there are precisely (2d)3k−ℓ words σ,
so

Nr(I ∩M) ⩽ Nr(I ∩Mm) ⩽ (R/r)α+
2d

m−ℓ .
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We can therefore choose a small enough so that in either case Nr(I ∩M) ⩽ (R/r)α+2ε, as
required.

Using this construction, along with the preceding construction for the upper interme-
diate dimensions, we can now simultaneously prescribe the upper and lower intermediate
dimensions.

Corollary 3.3.12. Let 0 ⩽ λ ⩽ α ⩽ d and let h, h ∈ H(λ, α) satisfy h(0) = h(0) and
h ⩽ h. Then there exists a compact perfect set M such that dimLM = λ, dimAM = α and

dimθC = h(θ) dimθC = h(θ)

for all θ ∈ [0, 1].

Proof. Let E,F be disjoint compact perfect sets such that dimLE = dimL F = λ, dimAE =

dimA F = α, dimHE = dimH F = h(0) = h(0), and for θ ∈ (0, 1]

dimθF ⩽ dimθ E = h(θ) ⩽ h(θ) = dimθF.

For example, such a set E is provided by Theorem 3.3.11 and such a set F is provided by
Theorem 3.3.9. Let M = E ∪ F . Then dimLM = min{dimLE,dimL F} = λ, dimAM =

max{dimAE,dimA F} = α,

h(θ) = dimθE ⩽ dimθM ⩽ max{dimθE,dimθF} = h(θ),

and
dimθM = max{dimθE,dimθF} = h(θ)

for θ ∈ (0, 1]. Thus M satisfies the requirements.
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Chapter 4

Infinitely generated attractors

4.1 Introduction

4.1.1 Background

This chapter focuses on infinite IFSs and is based on our joint paper [BF1] with J. M. Fraser.
The dimension theory of limit sets of finite iterated function systems (IFSs) has been
studied extensively since Hutchinson’s paper [Hut]. In a seminal 1996 paper [MU1] Mauldin
and Urbański extended the theory to infinite iterated function systems (IIFSs) consisting
of countably many contractions, with the contraction ratios uniformly bounded above by
some ρ < 1. The dimension theory of IIFSs has been studied further in [BF2; CN; KR;
Mau; MU2; NT] and many other works. Mauldin and Urbański paid particular attention
to (infinite) conformal iterated function systems (CIFSs, defined in Definition 4.2.2), where
the contractions are conformal and are sufficiently separated. Approximations to one such
limit set are shown in Figure 4.1.

10 1/21/31/4

Figure 4.1: First and second level cylinders for an infinitely generated self-similar set.

There are many similarities, but also many differences, between finite and infinite
iterated function systems. One notable difference is that Hausdorff and box dimension
coincide for the limit set of every finite CIFS, but can differ for infinite CIFSs, as the
presence of infinitely many maps can cause the limit set to have greater inhomogeneity in
space. In particular, Mauldin and Urbański showed that for a CIFS the Hausdorff dimension
can be determined from a certain topological pressure function defined in (4.2.4) below
(see [MU1, Theorem 3.15]). The same authors proved that the upper box and packing
dimensions are given by the maximum of the Hausdorff dimension of the limit set and the
upper box dimension of images of any given point under the maps in the CIFS (noting
that the box dimension of a countable set, unlike the Hausdorff dimension, can be strictly
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positive), see [MU2, Theorem 2.11]. They applied their results to sets of irrational numbers
whose continued fraction expansions have restricted entries, as these are limit sets of an
appropriate CIFS (see Section 4.4).

The following result describes the Assouad type dimensions of the limit set of a CIFS.
The Assouad spectra can display interesting behaviour, such as having two phase transitions.

Theorem 4.1.1 (Banaji–Fraser [BF2]). Let F be the limit set of an infinite CIFS and let
P be the set of fixed points of the contractions. Then for all θ ∈ (0, 1),

max{dimH F,dim
θ
AP} ⩽ dimθ

A F = dim
θ
AF

⩽ max
ϕ∈[θ,1]

(ϕ−1 − 1)dim
ϕ
AP + (θ−1 − ϕ−1)dimBF

θ−1 − 1
,

and these bounds are sharp in general. If we assume the additional separation condition
that Si(V )∩Sj(V ) = ∅ for all distinct i, j ∈ I (using notation from Definition 4.2.2 below),
then

dimA F = max{dimH F,dimA P}.

To prevent this thesis from becoming unreasonably long, we omit the proof of The-
orem 4.1.1 and instead refer the reader to [BF2]. In this chapter we study the intermediate
dimensions of limit sets of infinite iterated function systems.

4.1.2 Structure of chapter and discussion of results

In Section 4.2 we introduce notation, define limit sets, and define the notions of dimension
we will be working with. We introduce and prove basic properties about the topological
pressure function that we will use to obtain bounds for dimensions of the limit sets. We
also define conformal iterated function systems (CIFSs) and prove geometric consequences
of the definition of a CIFS that we will use in the proof of the main result of this chapter,
Theorem 4.3.4.

In Section 4.3 we prove Theorem 4.3.1, which gives upper bounds for the Hausdorff,
box, intermediate and Φ-intermediate dimensions in terms of the topological pressure
function that hold in the very general setting of arbitrary IIFSs (without any conformality
assumptions or separation conditions). The proof is an induction argument, using efficient
covers at larger scales to construct efficient covers at smaller scales. In the conformal
setting, Mauldin and Urbański [MU1; MU2] proved results for the Hausdorff and upper box
dimensions. We use our upper bound to prove the main result of this chapter, a simplified
version of which we now state.

Theorem (See Theorem 4.3.4 for a stronger statement). If F is the limit set of an (infinite)
CIFS (defined in Definition 4.2.2) and P is the set of fixed points of the contractions then
for all θ ∈ [0, 1],

dimθF = max{dimH F,dimθP}.
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Our methods also apply to infinite parabolic IFSs. In Example 4.3.7 we consider an
example with intermediate dimensions continuous at θ = 0 and apply a result of Burrell,
Falconer and Fraser [BFF1] to give an upper bound for the upper box dimension of
orthogonal projections.

In Section 4.4 we apply our results to give a formula in Theorem 4.4.3 for the upper
intermediate dimensions of sets of irrational numbers whose continued fraction expansions
have restricted entries. Recalling the discussion in Section 1.4, we show that the intermediate
dimensions of continued fraction sets are continuous at θ = 0 apply our results and those
in [Bur2] to give information related to Hölder distortion and fractional Brownian images
of continued fraction sets. We also obtain similar results in Section 4.4.2 for sets of complex
numbers which have complex continued fraction expansions with restricted entries.

In Section 4.5 we consider the limit sets of ‘generic’ IIFSs, in the same vein as the seminal
paper [Fal2] where Falconer considered the generic dimension of a (finitely-generated) self-
affine set by fixing a set of matrices and randomising the translates in a suitable way. We
show that under certain conditions, the limit set of an IIFS with ‘generic’ translates is
somewhere dense, and so in particular the box and intermediate dimensions equal the
ambient spatial dimension, where ‘generic’ can mean either almost surely with respect to a
natural measure, or comeagre with respect to a natural topology. This is in stark contrast
to the Hausdorff dimension, which Käenmäki and Reeve [KR] showed satisfies an analogue
of Falconer’s affinity dimension formula for a generic IIFS of affine contractions.

In this chapter, as in [MU1; MU2], the separation condition we assume in Definition 4.2.2
for a CIFS is the open set condition (OSC). Ngai and Tong [NT] and Chu and Ngai [CN]
study the Hausdorff, box and packing dimensions of the limit sets of IIFSs with overlaps
that do not satisfy the OSC but do satisfy suitable extensions of the weak separation
condition. It is therefore natural to ask (though we will not pursue this) what can be said
about the intermediate or Φ-intermediate dimensions of the limit sets of infinite iterated
function systems with overlaps that do not satisfy the OSC but perhaps satisfy weaker
separation conditions such as the extensions of the weak separation condition considered
in [NT].

4.2 Infinite IFSs and pressure functions

We will work with infinite iterated function systems, defined as in [MU1] as follows.

Definition 4.2.1. Let d ∈ N and let X be a compact, connected subset of Rd with more
than one point, equipped with the metric induced by the Euclidean norm || · ||. We say that
an infinite iterated function system (IIFS) on X is a collection of maps Si : X → X, i ∈ I,
where I is a countable index set, such that there exists ρ ∈ [0, 1) such that

||Si(x)− Si(y)|| ⩽ ρ||x− y|| for all x, y ∈ X and i ∈ I.

The assumption that the maps are uniformly contracting will be important when defining
the limit set. We now introduce some notation. Define I0 := {∅} and I∗ :=

⋃∞
i=1 I

n. We
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call elements of I∗ finite words and elements of IN infinite words. We usually denote words
by the letter w, and we write w = i1 · · · in and w = i1i2 · · · instead of w = (i1, . . . , in) and
w = (i1, i2, . . . ) respectively. We say that a word in In has length n, and an infinite word
has length ∞. If w ∈ I∗ ∪ IN and n ∈ N does not exceed the length of w then we write
w|n := w1 · · ·wn ∈ In, and w|0 := ∅. If w ∈ I0 ∪ I∗ ∪ IN and v ∈ I0 ∪ I∗ then we say that
v is a prefix of w if there exists n ∈ {0, 1, 2, . . . } such that v = w|n. For w ∈ In we define

Sw := Sw1 ◦ · · · ◦ Swn ,

and we define S∅ to be the identity function on X.
Mauldin and Urbański [MU1; MU2] study the IIFSs in Definition 4.2.2, where the

contractions are assumed to extend to conformal maps (see (iii) below for a formal definition),
which means that locally they preserve angles. This assumption is crucial for Mauldin and
Urbański’s formulae for the Hausdorff and box dimensions of the limit set, and they will
be crucial when we prove a formula for the intermediate dimensions in Section 4.3.2. In
one dimension, conformal maps are simply functions with non-vanishing Hölder continuous
derivative. In two dimensions, they are holomorphic functions with non-vanishing derivative
on their domain. In dimension three and higher, by a theorem of Liouville (1850) they
have a very restricted form: they are Möbius transformations, so can be composed from
homotheties, isometries, reflections in hyperplanes, and inversions in spheres. Recall that
Ld denotes d-dimensional Lebesgue measure.

Definition 4.2.2. A conformal iterated function system (CIFS) is an IIFS (as in Defini-
tion 4.2.1) which satisfies the following additional properties:

(i) (Open set condition (OSC)) The set X has non-empty interior U := IntRdX, and
Si(U) ⊂ U for all i ∈ I and Si(U) ∩ Sj(U) = ∅ for all i, j ∈ I with i ̸= j.

(ii) (Cone condition) infx∈X infr∈(0,1) Ld(B(x, r) ∩ IntRdX)/rd > 0.

(iii) (Conformality) There exists an open, bounded, connected subset V ⊂ Rd such that
X ⊂ V and such that for each i ∈ I, Si extends to a C1+ε diffeomorphism from V to
an open subset of V which is conformal, so for all x ∈ V the differential S′

i|x exists,
is non-zero, is a similarity map (so ||S′

i|x(y)|| = ||S′
i|x|| · ||y|| for all y ∈ Rd), and is

ε-Hölder continuous in x. Moreover, there exists ρ ∈ (0, 1) such that ||S′
i|| < ρ for all

i ∈ I, where || · || is the supremum norm over V .

(iv) (Bounded distortion property (BDP)) There exists K > 0 such that ||S′
w|y|| ⩽

K||S′
w|x|| for all x, y ∈ V and w ∈ I∗.

Mauldin and Urbański [MU1, (2.8)] use a stronger form of the cone condition, but
note on page 110 that (ii) is sufficiently strong for their aims. Both forms of this technical
condition will be satisfied if X is ‘reasonable,’ for example if X is convex or has a smooth
enough boundary. In [BF1], there is a typo in the BDP (it should read ‘for all x, y ∈ V ’
rather than ‘for all x, y ∈ X’).
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For every IIFS, since |Sw|n(X)| ⩽ ρn|X| by the uniform contractivity, the map

π : IN → X, π(w) :=

∞⋂

n=1

Sw|n(X)

is well-defined and continuous. We are interested in the following set, which will often be
fractal in nature.

Definition 4.2.3. The limit set or attractor of an IIFS is defined by

F := π(IN) =
⋃

w∈IN

∞⋂

n=1

Sw|n(X).

For w ∈ In define Fw = FSw
:= Sw(F ) and Xw = XSw

:= Sw(X). Now, F is clearly
non-empty and satisfies the relation

F =
⋃

i∈I
Fi. (4.2.1)

It is the largest (by inclusion) of many sets which satisfy (4.2.1). If I is finite then
F is compact (and is indeed the only non-empty compact set which satisfies (4.2.1) by
Hutchinson’s application of the Banach contraction mapping theorem [Hut]), but if I is
infinite then F will not generally be closed. When I is finite, the limit set F equals the
closure of the set of fixed points of all finite compositions of maps in the IFS, and also
satisfies F = ∩∞

n=1S
n(X) (where S(E) := ∪i∈ISi(E) for E ⊆ X), but when I is infinite

these sets may strictly contain F . Some cylinder sets in the construction of an infinitely
generated self-similar set are shown in Figure 4.1 on page 79.

We define some more quantities that will enable us to define a topological pressure
function for the system. For every IIFS, for w ∈ In define

rw = rSw
:= inf

x,y∈X,x ̸=y
||Sw(x)− Sw(y)||

||x− y|| ;

Rw = RSw
:= sup

x,y∈X,x ̸=y

||Sw(x)− Sw(y)||
||x− y|| ,

noting that 0 ⩽ rw ⩽ Rw ⩽ ρ. The value Rw is the smallest possible Lipschitz constant for
Sw, and these constants are clearly submultiplicative; Rvw ⩽ RvRw for all v, w ∈ I∗. For
n ∈ N define Mn := {Sw : w ∈ In }, and for t ∈ [0,∞) define

ϕn(t) :=
∑

σ∈Mn

Rtσ ∈ [0,∞]. (4.2.2)

Note that as in [NT], we sum over σ ∈Mn instead of w ∈ In so that distinct words w that
give rise to the same Sw contribute only one term in the sum (exact overlaps are removed).

Lemma 4.2.4. For every IIFS, for all t ∈ (0,∞), using the convention log∞ = ∞ and
log 0 = −∞,

1

n
log ϕn(t) −−−→

n→∞
inf
n∈N

1

n
log ϕn(t) ∈ [−∞,∞].
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Proof. By the submultiplicativity of the Lipschitz constants, if n,m ∈ N then

log ϕn+m ⩽ log

( ∑

σ∈Mn

∑

τ∈Mm

(RσRτ )
t

)
= log

( ∑

σ∈Mn

Rtσ
∑

τ∈Mm

Rtτ

)
= log ϕn + log ϕm.

Therefore the sequence (log ϕn)
∞
n=1 is subadditive, so the claim follows from Fekete’s

lemma.

In light of Lemma 4.2.4 we can make the following definition, which will later be used
when giving bounds and formulae for the different notions of dimension for the limit sets.

Definition 4.2.5. For an IIFS, define the (topological) pressure function P : (0,∞) →
[−∞,∞] by

P (t) := lim
n→∞

1

n
log ϕn(t) = inf

n∈N
1

n
log ϕn(t).

Lemma 4.2.6. For every IIFS, P is a decreasing function, and if 0 < t < s < ∞ and
P (t) ∈ R then P (t) > P (s).

Proof. For all n ∈ N, for all w ∈ In, Rw ⩽ ρn < 1, so ϕn is a decreasing function.
Therefore P is a decreasing function. If 0 < t < s < ∞ and P (t) ∈ R then for all
n ∈ N, ϕn(s) ⩽ ρ(s−t)nϕn(t) so 1

n log ϕn(s) ⩽ (s − t) log ρ + 1
n log ϕn(t), hence P (s) ⩽

(s− t) log ρ+ P (t) < P (t), as required.

Definition 4.2.7. Throughout this chapter, using the convention that inf ∅ = ∞, we define
the finiteness parameter of the system

θS := inf{ t > 0 : P (t) <∞} ∈ [0,∞],

and the quantity
h := inf{ t > 0 : P (t) < 0 } ∈ [0,∞].

We use the letter h because we will see that it is related to the Hausdorff dimension of
the limit set. For all n ∈ N and t ∈ [0,∞),

ϕn(t) ⩽
∑

w∈In
Rtw ⩽

∑

i1···in∈In

n∏

k=1

Rtik .

Therefore if ϕn(t) is replaced by either
∑

w∈In R
t
w or

∑
i1···in∈In

∏n
k=1R

t
ik

in the definition
of the pressure function then the resulting functions would overestimate P (t). Thus the
infimal values of t > 0 for which these new functions are negative provide upper bounds for
h. These may be easier to compute than h itself. For all n ∈ N, the function 1

n log ϕn(t)

can also be used to give an upper bound, which will be very good when n is large, by
Lemma 4.2.4.

We now establish several geometric facts that hold for all CIFSs and will be important
when proving a formula for the intermediate dimensions of the limit set in Section 4.3.2.
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The following geometric property was proved in [MU1, page 111], recalling that K is the
constant from the bounded distortion principle.

Sw(B(x, r)) ⊇ B(Sw(x),K
−1||S′

w||r) for all x ∈ X, r ∈ (0,dist(X, ∂V )], w ∈ I∗.

(4.2.3)
The following lemma says that the Lipschitz constants are comparable to the norm of

the derivatives of the corresponding map.

Lemma 4.2.8. For every CIFS there exists D ⩾ 1 such that for all w ∈ I∗,

D−1||S′
w|| ⩽ rw ⩽ Rw ⩽ D||S′

w||.

Proof. The proof is similar to the proofs of some of the consequences of the bounded distor-
tion principle in [MU1, page 110–111]. For the upper bound, note that dist(X,Rd \ V ) > 0

since X is compact and disjoint from the closed set Rd \ V . Let w ∈ I∗. If B is a ball of
radius at most dist(X,Rd \ V ) centred at a point in X and x, y ∈ B then by the mean value
inequality ||Sw(x)−Sw(y)|| ⩽ ||S′

w|| · ||x− y||. Since X is compact and connected, it can be
covered by a finite chain of open balls B1, . . . , Bq centred at points in X and with radii at
most dist(X,Rd \ V )/(2K) (chain in the sense that Bi ∩Bi+1 ̸= ∅ for i = 1, 2, . . . , q − 1).
Suppose

D ⩾ max

{
q,K,

K|X|
dist(X,Rd \ V )

}
.

Then since D ⩾ q, the upper bound Rw ⩽ D||S′
w|| holds.

Trivially, rw ⩽ Rw. For the lower bound, if x, y ∈ X and ||x − y|| ⩽ dist(X,Rd \ V )

then by (4.2.3) and the bijectivity of Sw,

||Sw(x)− Sw(y)|| ⩾ K−1||S′
w|| · ||x− y|| ⩾ D−1||S′

w|| · ||x− y||.

If x, y ∈ X and |X| ⩾ ||x− y|| > dist(X,Rd \ V ) then since

Sw(B(x,dist(X,Rd \ V ))) ⊇ B(Sw(x),K
−1||S′

w||dist(X,Rd \ V )),

it holds that

||Sw(x)− Sw(y)|| ⩾ K−1||S′
w||dist(X,Rd \ V ) ⩾ K−1||S′

w||dist(X,Rd \ V )||x− y|| · |X|−1

⩾ D−1||S′
w|| · ||x− y||.

Therefore the lower bound rw ⩾ D−1||S′
w|| holds, as required.

Lemma 4.2.9 essentially says that the cone condition holds not just for the set X itself
but also for its images under the conformal map corresponding to any given finite word.
The purpose of Lemma 4.2.9 is to prove Lemma 4.2.10.

Lemma 4.2.9. For all CIFSs, with D as in Lemma 4.2.8,

inf
w∈I∗

inf
x∈Sw(X)

inf
r∈(0,D||S′

w||)
r−d · Ld(B(x, r) ∩ Sw(IntRdX)) > 0.
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Proof. Write U = IntRdX. Let n ∈ N and let w ∈ In. The idea is that given any ball
centred on Sw(X) whose diameter is not too large we can find a large enough ball centred
on X that is mapped into it under Sw, a uniform proportion of which intersects U by
the cone condition. The measure of the image of this part under Sw is large enough by
conformality and the BDP.

Consider an arbitrary point in Sw(X), which we can write as Sw(x) for some x ∈ X, and
let r ∈ (0, D||S′

w||). By the cone condition there exists c > 0 such that Ld(B(x, r)∩U)/rd >

c for all x ∈ X and r ∈ (0, 1). By the upper bound of Lemma 4.2.8, Sw(B(x, r/(D||S′
w||))) ⊆

B(Sw(x), r). Now, Ld(B(x, r/(D||S′
w||)) ∩ U)r−dDd||S′

w||d > c, so by the inner regularity
of the Lebesgue measure, there exists a compact C ⊂ B(x, r/(D||S′

w||)) ∩ U such that
Ld(C) > crdD−d||S′

w||−d. Since C is compact and disjoint from the closed set Rd \
(B(x, r/(D||S′

w||))∩U), it follows that dist(C,Rd \ (B(x, r/(D||S′
w||))∩U)) > 0. Let n ∈ N

be large enough so that

2−n < min{dist(C,Rd \ (B(x, r/(D||S′
w||)) ∩ U))/

√
d,dist(X,Rd \ V )}.

Define cd ∈ (0, 1) by

cd :=
Ld(B(0, 1))

Ld([−1, 1]d)
.

Then the balls of diameter 2−n inside each of the dyadic cubes of sidelength 2−n which
intersect C form a disjoint collection of balls inside B(x, r/(D||S′

w||)) ∩ U whose total
Lebesgue measure is greater than ccdr

dD−d||S′
w||−d. By (4.2.3), the image of each of

these balls under Sw contains a ball of radius K−1||S′
w||2−(n+1). These balls are dis-

joint subsets of B(Sw(x), r) ∩ Sw(U) whose total Lebesgue measure is greater than
ccdr

dD−d||S′
w||−d||S′

w||dK−d = ccdr
dD−dK−d. Therefore

inf
w∈I∗

inf
x∈Sw(X)

inf
r∈(0,D||S′

w||)
Ld(B(x, r) ∩ Sw(IntRdX))/rd ⩾ ccdD

−dK−d > 0,

as required.

Lemma 4.2.10 says that it is impossible for too many cylinder sets that are larger than
a given size to cluster together and intersect a region that is smaller than that size. This
will be useful when proving facts about dimensions, as it shows that a set of a given size
cannot cover another set which intersects too many cylinders that are larger than that
given size. Lemma 4.2.10 and its proof are an application of Lemma 4.2.9 and the OSC,
and are similar to (2.2) in [MU2, Proposition 2.9]. The use of the cone condition to obtain
Lemma 4.2.10 is similar to [GMW, Theorem 4.9].

Lemma 4.2.10. For all CIFSs there exists M ∈ N such that for all z ∈ Rd and r > 0, if
w1, . . . , wl are distinct words in I∗ such that for all i, j ∈ {1, . . . , l}, wi is not a prefix of
wj, and for all i ∈ {1, . . . , l} it holds that B(z, r) ∩ Swi(X) ̸= ∅ and |Swi(X)| ⩾ r/2, then
l ⩽M .
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Proof. Write U = IntRdX, and let kd be the d-dimensional Lebesgue measure of a ball in
Rd of unit radius. By Lemma 4.2.9 there exists c > 0 such that

inf
w∈I∗

inf
x∈Sw(X)

inf
r∈(0,D||S′

w||·|X|)
Ld(B(x, r) ∩ Sw(U))/rd > c.

For each i = 1, . . . , l there exists xi ∈ X such that Swi(xi) ∈ B(z, r). By the upper bound
from Lemma 4.2.8, r/2 ⩽ |Swi(X)| ⩽ D||S′

w||·|X|, so Ld(B(Swi(xi), r/2)∩Sw(U))2dr−d > c.
Since no wi is a prefix of any wj , by the OSC the l sets B(Swi(xi), r/2)∩Sw(U) are disjoint
subsets of B(z, 2r), each having d-dimensional Lebesgue measure at least crd2−d. Therefore
lcrd2−d ⩽ Ld(B(z, 2r)) = kd2

drd, so if we let M := kd2
2dc−1 then l ⩽M , as required.

Lemma 4.2.10 shows in particular that for all CIFSs, for all n ∈ N,

#{w ∈ In : B(z, r) ∩ Sw(X) ̸= ∅ and |Sw(X)| ⩾ r/2 } ⩽M,

so the family {Sw(X) : w ∈ In } is pointwise finite in the sense that each element of X
belongs to at most finitely many elements of this family. Therefore the limit set satisfies

F =
∞⋂

n=1

⋃

w∈In
Sw(X),

and so is a Borel subset of X in the class Fσδ. Mauldin and Urbański noted this in [MU1,
(2.5)] and also showed that the limit set need not be in the class Gδ (i.e. it need not be a
countable intersection of open sets). Lemma 4.2.8 says that the Lipschitz constants are
comparable to the norm of the derivative of the corresponding map; Lemma 4.2.11 uses
this to show that the sizes of the corresponding cylinder sets are also comparable.

Lemma 4.2.11. For every CIFS there exists D ⩾ 1 such that for all w ∈ I∗,

D−1||S′
w|| ⩽ |Fw| ⩽ |Sw(X)| ⩽ D||S′

w||.

Proof. Lemma 4.2.10 shows in particular that the family {Si : i ∈ I } is pointwise finite, so
since I is infinite, F has positive diameter. Therefore the result follows from Lemma 4.2.8
if we increase D as required.

For a CIFS, for each n ∈ N define ψn : [0,∞) → R by

ψn(t) =
∑

w∈In
||S′

w||t.

Mauldin and Urbański [MU1, Section 3] define the pressure function by

lim
n→∞

1

n
logψn(t), (4.2.4)

showing that this limit always exists in [−∞,∞] and proving many properties about this
function. Lemma 4.2.12 shows that this coincides with our definition for the pressure
function P (t), and is in particular independent of the open set V .
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Lemma 4.2.12. For all CIFSs, for all t ∈ (0,∞),

1

n
logψn(t) → P (t) as n→ ∞.

Proof. The OSC means that there are no exact overlaps, so ϕn(t) =
∑

w∈In R
t
w for all

n ∈ N and t ∈ (0,∞). Therefore by Lemma 4.2.8,

D−tϕn(t) ⩽ ψn(t) ⩽ Dtϕn(t).

Taking logarithms and dividing through by n gives

− 1

n
t logD +

1

n
log ϕn(t) ⩽

1

n
logψn(t) ⩽

1

n
t logD + log ϕn(t),

and the result follows upon taking the limit n→ ∞.

One of the properties proved in [MU1, Section 3] for a CIFS is that the finiteness
parameter for the pressure function is the same as the value at which each of the finite-level
approximations to the pressure function becomes finite: θS = inf{ t > 0 : ψn(t) <∞} for
all n ∈ N. Note that for a CIFS where each of the maps Si are similarities, which means
that there exists ci ∈ (0, 1) such that ||Si(x) − Si(y)|| = ci||x − y|| for all x, y ∈ X, the
quantity h from Definition 4.2.7 satisfies the simple form

h = inf

{
t > 0 :

∑

i∈I
cti < 1

}
. (4.2.5)

4.3 Dimension results

4.3.1 General upper bounds

In Theorem 4.3.1 we provide general upper bounds for the Hausdorff, box, intermediate
and Φ-intermediate dimensions of the limit set of an arbitrary IIFS.

Theorem 4.3.1. For a IIFS with limit set F and notation as above,

(i) dimH F ⩽ h

(ii) dimBF ⩽ max{h, limn→∞ inf{ dimBP : P ⊆ X and ∀w ∈ In, P ∩ Sw(X) ̸= ∅ }}

(iii) For all θ ∈ [0, 1],

dimθF ⩽ max{h, lim
n→∞

inf{ dimθP : P ⊆ X and ∀w ∈ In, P ∩ Sw(X) ̸= ∅ }}

(iv) If Φ is monotonically admissible (recall Definition 2.1.1 from page 18) then

dim
Φ
F ⩽ max{h, lim

n→∞
inf{ dimΦ

P : P ⊆ X and ∀w ∈ In, P ∩ Sw(X) ̸= ∅ }}
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Since dimP F ⩽ dimBF always holds, (ii) also gives an upper bound for the packing
dimension. Note that the above upper bounds hold even when there are overlaps of cylinders,
and for contractions which are not differentiable and do not satisfy any bi-Lipschitz or
bounded distortion condition. However, in some such cases h can overestimate dimH F

significantly, and may even be infinite.

Proof. All the bounds are trivial if h = ∞, so assume h <∞.
(i). The proof is similar to the proof of the first part of [MU1, Theorem 3.15]. Let

s > h. By Lemma 4.2.6 and the definition of h, P (s) < 0. Therefore there exists N ∈ N
such that 1

n log ϕn(s) < P (s)/2, so ϕn(s) < enP (s)/2, for all n ⩾ N . Therefore
∑

σ∈Mn

|σ(X)|s ⩽ |X|sϕn(s) < |X|senP (s)/2 −−−→
n→∞

0.

But {σ(X) : σ ∈Mn } forms a |X|ρn-cover of F , and |X|ρn → 0 as n→ ∞, so this means
that the s-dimensional Hausdorff measure of F is 0. Thus dimH F ⩽ s. Letting s → h+

gives dimH F ⩽ h, as required.
(ii). follows from the case θ = 1 of (iii).
(iii). The proof is motivated by the proof of [MU2, Lemma 2.8], which gives a result for

the box dimension in the less general setting of a CIFS. We will consider δ ∈
(

1
n+1 ,

1
n

]
and

induct on n. The idea is that if we fix a large enough q ∈ N, the level-q cylinders with size
≲ δ can be covered efficiently using a cover of a set P corresponding to level q, and the
cylinders with size ≳ δ can be covered efficiently using images of efficient covers of F with
larger diameters that are assumed to exist by the inductive hypothesis, and the fact that
P (s) < 0 if s > h.

By definition dim0 = dimH, so since we can take P to be a countable set (with Hausdorff
dimension 0) for all n ∈ N, the case θ = 0 follows from (i). Henceforth suppose θ ∈ (0, 1].
Let

s > max{h, lim
n→∞

inf{ dimθP : P ⊆ X and ∀w ∈ In, P ∩ Sw(X) ̸= ∅ }}.

Since s > h, it holds that P (s) < 0. Therefore there exists Q ∈ N such that 1
q log ϕq(s) <

P (s)/2 for all q ⩾ Q. Fix q ⩾ Q large enough such that ϕq(s) ⩽ 1/2 and ρq < 1/4, so
Rw < 1/4 for all words w of length at least q. By the definition of s, increasing q further
if necessary, we may assume there exists a subset Pq ⊆ X such that Pq ∩ Sw(X) ̸= ∅ for
all w ∈ Iq, and dimθPq < s. Therefore there exists A > 0 such that for all δ ∈ (0, 1] there
exists a cover {Vj} of Pq such that δ ⩽ |Vj | ⩽ δθ for all j, and

∑
j |Vj |s ⩽ A. Let Ad,1+2|X|

be as in (1.3.3). Fix any B >
Ad,1+2|X|A

1−ϕq(s) large enough so that for all δ ∈ (1/2, 1] there exists
a cover {U δi }i of F such that δ ⩽ |Ui| ⩽ δθ for all i, and

∑
i |Ui|s ⩽ B. It suffices to show

that dimθF ⩽ s, which follows from the following claim.
Claim: For all n ∈ N, for all δ ∈

(
1

n+1 ,
1
n

]
there exists a cover {U δi }i of F such that

δ ⩽ |Ui| ⩽ δθ for all i, and
∑

i |Ui|s ⩽ B.
Proof of claim: We prove the claim by induction on n. The claim holds for n = 1

by the definition of B. Let n ∈ N, n > 1, and assume the claim holds for 1, 2, . . . , n − 1.
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Let δ ∈
(

1
n+1 ,

1
n

]
. By the definition of A there exists a cover {Vj} of Pq such that

δ ⩽ |Vj | ⩽ δθ for all j, and
∑

j |Vj |t ⩽ A. By the definition of Ad,1+2|X|, for all j there exist
Vj,1, . . . , Vj,Ad,1+2|X| ⊆ Rd, each of diameter

max{δ, |S|X|δ(Vj)|/(1 + 2|X|)},

such that

S|X|δ(Vj) ⊆
Ad,1+2|X|⋃

k=1

Vj,k.

By the triangle inequality,

|Sδ|X|(Vj)| ⩽ |Vj |+ 2|X|δ ⩽ (1 + 2|X|)|Vj | ⩽ (1 + 2|X|)δθ,

so δ ⩽ |Vj,k| ⩽ δθ and |Vj,k| ⩽ |Vj | for all j, k. Recalling that Mq is the set of maps
corresponding to words of length q, let Cδ := { τ ∈ Mq : |Fσ| ⩽ |X|δ }. Since {Vj} covers
Pq, {S|X|δ(Vj)} covers ∪τ∈Cδ

Fτ , so ∪Ad,1+2|X|
k=1 Vj,k covers ∪τ∈Cδ

Fτ .
Now suppose σ ∈Mq \ Cδ, so |X|δ < |Fσ| ⩽ |X|Rσ, so δ/Rσ < 1, and since Rσ < 1/4,

δ

Rσ
⩾

1

(n+ 1)Rσ
>

4

n+ 1
>

1

n
.

Therefore by the inductive assumption there exists a cover {U δ/Rσ

i } of F such that δ/Rσ ⩽

|U δ/Rσ

i | ⩽ (δ/Rσ)
θ for all i and

∑
i |U

δ/Rσ

i |s ⩽ B. For each i, let Wσ,i be a set with diameter

|Wσ,i| = max{|Sσ(U δ/Rσ

i )|, δ} (4.3.1)

such that Sσ(U
δ/Rσ

i ) ⊆Wσ,i. Since {Sσ(U δ/Rσ

i )}i covers Fσ, also {Wσ,i}i covers Fσ. By the
definition of Rσ, |Sσ(U δ/Rσ

i )| ⩽ Rσ|U δ/Rσ

i | for all j, and also δ = Rσδ/Rσ ⩽ Rσ|U δ/Rσ

i |, so
by (4.3.1),

δ ⩽ |Wσ,i| ⩽ Rσ|U δ/Rσ

i | ⩽ Rσ(δ/Rσ)
θ ⩽ δθ. (4.3.2)

The last inequality (which is crucial to the argument) holds since Rσ < 1.
Now, {Vj,k} ∪ {Wσ,i} is a cover of F and the diameter of each of these sets lies in the

interval [δ, δθ]. Moreover, since |Vj,k| ⩽ |Vj | and by (4.3.2),

∑

j

Ad,1+2|X|∑

k=1

|Vj,k|s +
∑

σ∈Mq\Cδ

∑

i

|Wσ,i|s ⩽ Ad,1+2|X|
∑

j

|Vj |s +
∑

σ∈Mq\Cδ

Rsσ
∑

i

|U δ/Rσ

i |s

⩽ Ad,1+2|X|A+Bϕq(s)

⩽ B,

so the claim holds by induction.
(iv). By Lemma 2.2.10 from page 27 we may assume without loss of generality that

Φ is invertible. Then (iv) holds by almost exactly the same proof as (iii), with dimθ, δθ

and (δ/Rw)
θ replaced by dim

Φ, Φ−1(δ) and Φ−1(δ/Rw) respectively throughout. In place
of (4.3.2), the key inequality RwΦ−1(δ/Rw) ⩽ Φ−1(δ) holds since Φ(δ)/δ ↘ 0 monotonically
as δ → 0+ by assumption.
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4.3.2 Precise formulae for conformal iterated function systems

In order to use the upper bounds in Theorem 4.3.1 to prove a simpler formula for intermediate
dimensions of the limit set of a CIFS in Theorem 4.3.4 as the maximum of the Hausdorff
dimension and the intermediate dimensions of the fixed points, we need further lemmas.
The following lemma and proof are similar to [MU2, Proposition 2.9] for the box dimension.

Lemma 4.3.2. Fix any CIFS, let n ∈ N, and assume that P and Q are both subsets of X
which intersect Sw(X) in exactly one point for each w ∈ In. Then dimθP = dimθQ for all
θ ∈ [0, 1], and dim

Φ
P = dim

Φ
Q for all monotonically admissible functions Φ. The same

holds with dim replaced by dim throughout.

Proof. The idea is to use an efficient cover of Q at scale δ to construct an efficient cover of
P at scale δ. Elements of P in cylinders of size ≲ δ can be covered using the cover of the
element of Q in the same cylinder, and the conditions of a CIFS (via Lemma 4.2.10) mean
that each element of the cover can intersect only a bounded number of cylinders that are
larger than the covering set in question.

Since for each n ∈ N, {Sw : w ∈ In } forms a CIFS with the same limit set, we may
henceforth assume without loss of generality that n = 1. Let Ad,3 be as in (1.3.3) and
let M be as in Lemma 4.2.10. If θ = 0 then dimθP = dimθQ = 0 because P and Q are
countable, so henceforth assume that θ ∈ (0, 1].

Claim: Given any δ > 0, if {Uj} is a cover of Q such that δ ⩽ |Uj | ⩽ δθ for all j
then there exists a cover {Vm} of P such that δ ⩽ |Vm| ⩽ δθ for all m, and

∑
m |Vm|s ⩽

(Ad,3 +M)
∑

j |Uj |s for all s ⩾ 0.
Proof of claim: For each j, if i ∈ I is such that |Si(X)| ⩽ |Uj | and Si(X) ∩ Uj ̸= ∅,

then

Si(X) ⊆ S|Uj |(Uj) ⊆
Ad,3⋃

l=1

S|Uj |(Uj)l,

where S|Uj |(Uj) is the neighbourhood set, which has diameter 3|Uj |. By Lemma 4.2.10 there
exist i1, . . . , iM ∈ I, not necessarily distinct, such that Sik(X) ∩ Uj ̸= ∅ for k = 1, . . . ,M ,
and such that if i ∈ I\{i1, . . . , iM} and |Si(X)| > |Uj | then Si(X)∩Uj = ∅. If k = 1, . . . ,M

then we can cover the single element of P ∩ Sik(X) by a ball Bj,k of diameter |Uj |. Since
{Uj} covers Q,

P ⊆
⋃

j



Ad,3⋃

l=1

S|Uj |(Uj)l ∪
M⋃

k=1

Bj.k


 .

Each element of this cover of P has diameter in the interval [δ, δθ] by construction. Moreover,

∑

j



Ad,3∑

l=1

|S|Uj |(Uj)l|s +
M∑

k=1

|Bj,k|s

 = (Ad,3 +M)

∑

j

|Uj |s,

proving the claim.
The claim shows that dimθP ⩽ dimθQ and dimθP ⩽ dimθQ. The reverse inequalities

hold by symmetry, so dimθP = dimθQ and dimθP = dimθQ, as required. If Φ is a
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monotonically admissible function then by Lemma 2.2.10 we may assume without loss of
generality that Φ is invertible. Then the same proof works with δθ, dimθ and dimθ replaced
by Φ−1(δ), dimΦ and dimΦ respectively throughout.

Lemma 4.3.3 shows that the upper intermediate dimensions of a set of points corres-
ponding to the n-th level cylinders are either all bounded above by the finiteness parameter,
and hence the Hausdorff dimension of the limit set, or they all equal the upper intermediate
dimensions of the level-1 fixed points. We will combine this lemma with the upper bounds
in Theorem 4.3.1 (which considers arbitrarily deep levels) to prove that the dimensions
in fact depend only on the level-1 fixed points (and the Hausdorff dimension). Mauldin
and Urbański prove in [MU2, Lemma 2.10] that the upper box dimension of the level-1
iterates of a given point is greater than or equal to the finiteness parameter θS , and deduce
that it equals the box dimension of the n-th level iterates for all n ∈ N. The intermediate
dimensions, on the other hand, will not always exceed the finiteness parameter, so we
cannot make the same conclusion for the intermediate dimensions in Lemma 4.3.3.

Lemma 4.3.3. Consider a CIFS, and suppose that for each n ∈ N, Pn ⊆ X is any set
which intersects Sw(X) in exactly one point for each w ∈ In. Then

(i) for all θ ∈ [0, 1], either dimθPn ⩽ θS ⩽ h for all n ∈ N or dimθPn = dimθP1 for all
n ∈ N.

(ii) If Φ is monotonically admissible then either dim
Φ
Pn ⩽ θS ⩽ h for all n ∈ N or

dim
Φ
Pn = dim

Φ
P1 for all n ∈ N.

Proof. (i). This is true for the Hausdorff dimension because each Pn is countable, so
henceforth suppose θ ∈ (0, 1]. By Lemma 4.3.2, dimθPn does not depend on the particular
set Pn, so dimθP1 ⩽ dimθP2 ⩽ · · · . By Lemma 4.3.2, we can henceforth fix x ∈ X and
assume without loss of generality that Pn := {Sw(x) : w ∈ In } for all n ∈ N. It suffices to
prove that dimθPn ⩽ s for all n ∈ N, which follows from the following claim.

Claim: For all s > max{θS ,dimθP1}, for all n ∈ N there exists Bn ∈ (0,∞) such that
for all δ ∈ (0, 1] there exists a cover {U δ,nj }j of Pn such that δ ⩽ |U δ,nj | ⩽ δθ for all i and∑

j |U
δ,n
j |s ⩽ Bn.

Proof of claim: Fix s > max{θS , dimθP1}. We prove the claim by induction on n.
Suppose n > 1 and assume the claim holds for 1, 2, . . . , n − 1. Let δ ∈ (0, 1]. By the
definition of Ad,1+2|X| in (1.3.3), for all j there exist U δ,n−1

j,1 , . . . , U δ,n−1
j,Ad,1+2|X|

⊆ Rd, each of
diameter

max

{
δ,
|S|X|δ(U

δ,n−1
j )|

1 + 2|X|

}
,

such that

S|X|δ(U
δ,n−1
j ) ⊆

Ad,1+2|X|⋃

k=1

U δ,n−1
j,k .
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By the triangle inequality,

|Sδ|X|(U
δ,n−1
j )| ⩽ |U δ,n−1

j |+ 2|X|δ ⩽ (1 + 2|X|)|U δ,n−1
j | ⩽ (1 + 2|X|)δθ.

Therefore δ ⩽ |U δ,n−1
j,k | ⩽ δθ and |U δ,n−1

j,k | ⩽ |U δ,n−1
j | for all j, k.

Let Cδ := {w ∈ In−1 : |Xw| ⩽ |X|δ }. If w ∈ Cδ then there exists pw ∈ Sw(X) ∩ Pn−1,
and there exists j such that pw ∈ U δ,n−1

j , so the neighbourhood set S|X|δ(U
δ,n−1
j ) covers

Sw(X). Thus

Pn ∩ Sw(X) ⊆ Sw(X) ⊆ S|X|δ(U
δ,n−1
j ) ⊆

Ad,1+2|X|⋃

k=1

U δ,n−1
j,k . (4.3.3)

If, on the other hand, w ∈ In−1 \ Cδ, then |X|δ < |Xw| ⩽ |X|Rw and δ/Rw < 1. Consider
the cover {U δ/Rw,1

l }l of P1 whose existence is guaranteed by the base case n = 1. For
each l, let Ww,l be a set with diameter |Ww,l| = max{|Sw(U δ/Rw,1

l ∩ X)|, δ} such that
Sw(U

δ/Rw,1
l ∩ X) ⊆ Ww,l. Since Pn := {Sw(x) : w ∈ In }, the sets {Sw(U δ/Rw,1

l ∩ X)}l
cover Pn ∩Sw(X), so {Ww,l}l covers Pn ∩Sw(X). By the definition of Rw, for all l we have
|Sw(U δ/Rw,1

l ∩X)| ⩽ Rw|U δ/Rw,1
l ∩X| ⩽ Rw|U δ/Rw,1

l |, and also δ = Rwδ/Rw ⩽ Rw|U δ/Rw,1
l |,

so
δ ⩽ |Ww,l| ⩽ Rw|U δ/Rw,1

l | ⩽ Rw(δ/Rw)
θ ⩽ δθ. (4.3.4)

Now, {U δ,n−1
j,k } ∪ {Ww,l} covers Pn and the diameter of each element of this cover lies in

the interval [δ, δθ]. Moreover, since |U δ,n−1
j,k | ⩽ |U δ,n−1

j | for all j, k, and by (4.3.4),

∑

j

Ad,1+2|X|∑

k=1

|U δ,n−1
j,k |s +

∑

w∈In\Cδ

∑

l

|Ww,l|s

⩽ Ad,1+2|X|
∑

j

|U δ,n−1
j |s +

∑

w∈In\Cδ

Rw
∑

l

|U δ/Rw,1
l |s

⩽ Ad,1+2|X|Bn−1 +B1ϕn(s),

recalling the definition of ϕn from (4.2.2). Therefore letting Bn := Ad,1+2|X|Bn−1+B1ϕn(s),
since s > θS , ϕn(s) <∞, so Bn <∞, and the claim holds by induction.

(ii). By Lemma 2.2.10 we may assume that Φ is invertible. Then (ii) holds by the same
proof as (i), with dimθ, δθ and (δ/Rw)

θ replaced by dim
Φ, Φ−1(δ) and Φ−1(δ/Rw) respect-

ively. In place of (4.3.4), RwΦ−1(δ/Rw) ⩽ Φ−1(δ) holds since Φ(δ)/δ ↘ 0 monotonically
as δ → 0+ by assumption.

Mauldin and Urbański [MU1, Theorem 3.15] show that the Hausdorff dimension of
the limit set F of a CIFS is h. In fact, this is true even if the cone condition (ii) is not
assumed (see [URM, Theorem 19.6.4]), but in this chapter we do use the cone condition
in the proof of Lemma 4.2.9 (and hence Lemmas 4.2.10 and 4.3.2). We now use the fact
that h = dimH F , together with the upper bounds in Theorem 4.3.1 and Lemmas 4.3.3
and 4.3.2, to prove the main result of this chapter, Theorem 4.3.4. This gives the following
simple formulae for other dimensions of the limit set as the maximum of the Hausdorff
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dimension of the limit set and the corresponding dimension of any set P which intersects
each cylinder in exactly one point. Examples for the set P include {Si(x) : i ∈ I } for any
given x ∈ X, as in [MU2], or the set of fixed points in X of the contractions Si.

Theorem 4.3.4. For all CIFSs with limit set F and notation as above, for all subsets
P ⊆ X which intersect Si(X) in exactly one point for each i ∈ I,

(i) dimBF = dimP F = max{h,dimBP} (very similar to Mauldin and Urbański [MU2,
Theorem 2.11] but with a more general condition on P )

(ii) dimθF = max{h,dimθP} for all θ ∈ [0, 1]

(iii) dim
Φ
F = max{h,dimΦ

P} if Φ is monotonically admissible

Proof. (i). follows from the case θ = 1 of (ii) and the fact that dimBF = dimP F by [MU1,
Theorem 3.1].

(ii). For each n ∈ N let Pn := {x ∈ X : x = Sw(x) for some w ∈ In }, so Pn ⊆ F ⊆ X.
Then by Lemmas 4.3.2 and 4.3.3 (i), dimθPn ⩽ max{h,dimθP} for all n ∈ N. Therefore by
Theorem 4.3.1 (iii),

dimθF ⩽ max{h, lim
n→∞

dimθPn} ⩽ max{h,max{h,dimθP}} = max{h,dimθP}.

But Pn ⊆ F so since dimθ is monotonic for subsets, by Lemma 4.3.2, dimθP = dimθP1 ⩽

dimθF , and by [MU1, Theorem 3.15], h = dimH F ⩽ dimθF , so max{h,dimθP} ⩽ dimθF .
Therefore dimθF = max{h,dimθP}, as required.

(iii) is similar to (ii).

A consequence is the following bounds for the lower versions of the dimensions in
Theorem 4.3.4.

Corollary 4.3.5. For all CIFSs with limit set F and notation as above, for all subsets
P ⊆ X which intersect Si(X) in exactly one point for each i ∈ I,

(i) max{h,dimBP} ⩽ dimBF ⩽ max{h,dimBP}

(ii) max{h,dimθP} ⩽ dimθF ⩽ max{h,dimθP} for all θ ∈ [0, 1]

(iii) max{h,dimΦP} ⩽ dimΦF ⩽ max{h,dimΦ
P} if Φ is monotonically admissible.

Proof. We prove (ii); (i) and (iii) are similar. By Theorem 4.3.4 (ii) dimθF ⩽ dimθF =

max{h,dimθP}. If P1 is the set of fixed points in X of the maps {Si}i∈I then by
Lemma 4.3.2, dimθP = dimθP1 ⩽ dimθF , and by [MU1, Theorem 3.15], h = dimH F ⩽

dimθF , so max{h,dimθP} ⩽ dimθF , as required.

Question 4.3.6. Are the bounds in Corollary 4.3.5 sharp or can they be improved in
general?
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If the fixed points are arranged to be at 1
logn then by Falconer, Fraser and Kempton

[FFK2, Example 1], the intermediate dimensions of the set of fixed points will be 1 for all
θ ∈ (0, 1]. However, the contraction ratios can be made small enough (and tending to 0

rapidly enough) so that h < 1. In this case, the limit set and its closure will have the same
Hausdorff dimension as they differ by a countable set (namely the images of the point 0
under maps corresponding to finite words) by Mauldin and Urbański [MU1, Lemma 2.1].
Therefore by Theorem 2.5.1 from page 42, the Φ-intermediate dimensions can be used to
‘recover the interpolation’ between the Hausdorff and box dimensions of the limit set F in
the sense that for all s ∈ [h, 1] there exists an admissible function Φs with dimΦs F = s.
Theorem 4.3.4 (iii) can help to find these functions. It is possible for the intermediate
dimensions to be discontinuous at θ = 0 even when the box dimension is less than 1. Indeed,
consider a countable compact subset P ⊂ R with box and Assouad dimension equal and
strictly between 0 and 1, so by [FFK2, Proposition 2.4], dimθ P = dimB P for all θ ∈ (0, 1).
We may then choose a set of similarity maps whose fixed points form the set P and whose
contraction ratios are small enough that the system forms a CIFS with the Hausdorff
dimension of the limit set being smaller than dimB P . Then the intermediate dimensions of
the limit set will be discontinuous at θ = 0 by Theorem 4.3.4.

Our results are also relevant to the dimension theory of infinite parabolic iterated function
systems. In such a system, each map S : X → X still satisfies ||S(x) − S(y)|| < ||x− y||
for all x, y ∈ X, but finitely many of the maps may contain a parabolic fixed point p ∈ X,
meaning that S(p) = p but the derivative of S (or an extension of S) at p has norm 1.
The other countably many maps must be uniformly contracting, and are called hyperbolic.
Manneville–Pomeau maps of the form x 7→ x− xq for fixed q > 1 are examples of functions
with a parabolic fixed point at 0. The theory of parabolic IFSs has been developed by
Mauldin and Urbański in [MU3], and they have also been studied in [BF2; MU4], [Fra1,
Section 9.2], and many other works. Given an infinite parabolic IFS as defined in [MU3,
Section 2], one can associate an ‘induced’ uniformly contracting infinite CIFS (see [MU3,
Theorem 5.2]). It is clear that if F is the limit set of the parabolic IFS and F ∗ is the
limit set of the induced CIFS then F ∗ ⊆ F with F \ F ∗ countable, and F and F ∗ have
the same closure. Therefore if dim is Hausdorff/box/intermediate/Assouad dimension,
then dimF = dimF ∗. In particular, Theorem 4.3.4 can be applied directly to the induced
system to give information about the corresponding dimension of F . This is only relevant
for systems consisting of infinitely many hyperbolic maps (and finitely many parabolic
maps), because the limit sets of finite parabolic IFSs have equal Hausdorff and upper
box dimensions (see [Urb, Remark 6.6] and [MU4]). In [BF2, Section 6], however, we use
inducing to calculate the Assouad spectrum of a class of ‘parabolic Cantor sets’ (see [Urb]),
which are generated by finite parabolic IFSs.

4.3.3 An example and a first application

We use Proposition 3.2.10 from page 57 and a result of Burrell, Falconer and Fraser to
give an application of Theorem 4.3.4 to orthogonal projections. Dimension theory of

95



orthogonal projections has a long history in fractal geometry, see [FFJ; Shm1]. There has
been particular interest in orthogonal projections of dynamically defined sets, where one can
often obtain more precise information than is provided by the general projection theorems,
see [HS; Shm1]. The following example falls into this category. Recall the definition

Gp,d := {x/||x||2 : x ∈ {1p, 2p, 3p, . . . }d }.

Example 4.3.7. Let p > 0 and consider a set of contracting similarity maps on R2 with
fixed points lying in the set Gp,2 from Proposition 3.2.10, with no two maps having the
same fixed point. Assume the contraction ratios are small enough that the system forms a
CIFS, with limit set F , say, and small enough that dimH F < 1. Then by Theorem 4.3.4
and Corollary 4.3.5,

dimθ F = max

{
dimH F,

2θ

p+ θ

}
,

which is continuous at θ = 0. Therefore by Burrell, Falconer and Fraser’s Theorem 1.4.3
from page 15 there exists c < 1 such that dimBπ(F ) ⩽ c for every orthogonal projection
π : R2 → R, and dimBπ(F ) = c for almost every orthogonal projection π (with respect to
the natural measure on projective space). This conclusion is perhaps most interesting when
p is very close to 0 (and so dimB F is very close to 2) and dimH F is very close to 1.

More generally, if 1 ⩽ k < d are integers and the contraction ratios lie on Gp,d and
dimH F < k, then dimBπ(F ) < k for every orthogonal projection π : Rd → Rk.

4.4 Continued fraction sets

4.4.1 Real continued fractions

In this section we apply Theorem 4.3.4 to give information about sets of irrational numbers
whose continued fractions have restricted entries, as in the following definition.

Definition 4.4.1. For a non-empty, proper subset I ⊂ N, define

FI :=




z ∈ (0, 1) \Q : z =

1

b1 +
1

b2+
1

...

, bn ∈ I for all n ∈ N




.

The following lemma shows why our general results can be applied in this setting.

Lemma 4.4.2. Working in R, letting X := [0, 1] and V := (−1/8, 9/8),

(i) If 1 /∈ I then {Sb(x) := 1/(b+ x) : b ∈ I } is a CIFS with limit set FI .

(ii) If 1 ∈ I then {Sb(x) := 1/(b + x) : b ∈ I, b ̸= 1 } ∪
{
S1b(x) :=

1
b+ 1

1+x

: b ∈ I

}
is a

CIFS with limit set FI .
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Proof. (i) is verified in [MU2, page 4997], and (ii) can be verified similarly, noting that
when 1 ∈ I the different CIFS is needed to ensure that the system is uniformly contractive,
because the derivative of x→ 1/(1 + x) at x = 0 is −1.

It follows from [MU1, Theorem 3.15] that dimH FI = h; the Hausdorff dimension of
such limit sets has been studied in [CLU; HU2; Ing; KZ; MU2] and other works. It follows
from [MU2, Theorem 2.11] that dimBFI = max{h,dimB{ 1/b : b ∈ I }}. In Theorem 4.4.3
we apply Theorem 4.3.4 to give information about the intermediate dimensions of FI .

Theorem 4.4.3. Using the notation in Definition 4.4.1, for all non-empty proper I ⊂ N,

(i) For all θ ∈ [0, 1],

dimθFI = max{h,dimθ{ 1/b : b ∈ I }};
max{h,dimθ{ 1/b : b ∈ I }} ⩽ dimθFI ⩽ max{h,dimθ{ 1/b : b ∈ I }}.

(ii) The maps θ 7→ dimθFI and θ 7→ dimθFI are continuous at θ = 0.

Proof. (i) Case 1: Assume 1 /∈ A. Then the result follows from Theorem 4.3.4 (ii) and
Corollary 4.3.5 (ii) if we take P = {Sb(0) : b ∈ I } = { 1/b : b ∈ I }.

Case 2: Assume 1 ∈ A. Since the map x 7→ 1/(1 + x) is bi-Lipschitz on [0, 1] and dimθ

is stable under bi-Lipschitz maps,

dimθ

{
1

1 + 1
b

}
= dimθ{ 1/b : b ∈ I }.

Since the removal of finitely many points from a set does not change its dimension,

dimθ{ 1/b : b ∈ I, b ̸= 1 } = dimθ{ 1/b : b ∈ I }.

It is clear from the definition that dimθ is finitely stable, so the equality for dimθFI follows
from Theorem 4.3.4 (ii) if we take

P :=

{
1

1 + 1
b

}
∪ { 1/b : b ∈ I, b ̸= 1 }.

The lower bound holds since

max{h,dimθ{ 1/b : b ∈ I }} = max{dimH FI ,dimθ{ 1/b : b ∈ I, b ̸= 1 }} ⩽ dimθFI

by [MU1, Theorem 3.15].
(ii) For all θ ∈ (0, 1],

dimθFI = max{h,dimθ{ 1/b : b ∈ I }} by (i)

⩽ max{h,dimθ{ 1/b : b ∈ N }}
= max{h, θ/(1 + θ)} by [FFK2, Proposition 3.1]

−−−−→
θ→0+

max{h, 0} = h = dimH FI = dim0FI by [MU1, Theorem 3.15],

so θ 7→ dimθFI is continuous at θ = 0. Since dimH FI ⩽ dimθFI ⩽ dimθFI for all θ ∈ [0, 1]

it follows that θ 7→ dimθFI is also continuous at θ = 0.
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The following example is similar to [MU2, Theorem 6.2]; we consider a nice family of
subsets I which result in the upper and lower intermediate dimensions coinciding.

Corollary 4.4.4. Fix p > 1 and for l ∈ N, l ⩾ 2 define

Ip,l := { ⌊np⌋ : n ⩾ l}.

Then the intermediate dimensions of the continued fraction set exist and are given by

dimθ FIp,l = max

{
dimH FIp,l ,

θ

p+ θ

}
. (4.4.1)

Moreover, there exists q ∈ N such that for all l ⩾ q we have

dimH FIp,l < dimB FIp,l =
1

p+ 1
.

Proof. Since Ip,l is bi-Lipschitz equivalent to a cofinite subset of { i−p : i ∈ N }, [FFK2,
Proposition 3.1] gives

dimθ{ 1/b : b ∈ Ip,l } = dimθ{ i−p : i ∈ N } =
θ

p+ θ

for θ ∈ [0, 1]. Therefore the bounds in Theorem 4.4.3 (i) coincide and (4.4.1) holds. It was
shown in [MU1, Section 3] that θS = inf{ t > 0 : ψ1(t) <∞}. But there exists C ⩾ 1 such
that 1/(Cb2) ⩽ ||S′

b|| ⩽ C/b2 for all b ∈ N. Therefore, since

∞∑

n=1

((np)−2)1/(2p) =
∞∑

n=1

n−1 = ∞;

∞∑

n=1

((np)−2)s =
∞∑

n=1

n−2p/s <∞ for all s > 1/(2p),

it follows that the finiteness parameter θIp,l = 1/(2p) and so dimH FIp,l > 1/(2p). But
in [MU2, Theorem 1.5] Mauldin and Urbański showed that θIp,l is the infimum of the
Hausdorff dimension of cofinite subsystems, so dimH FIp,l → 1/(2p) as l → ∞. Since
1/(2p) < 1/(p+ 1) = dimB{ 1/b : b ∈ Ip,l }, for all sufficiently large l we have dimH FIp,l <

dimB FIp,l = 1/(p+ 1).

The graph of the intermediate dimensions of the continued fraction set from Corol-
lary 4.4.4 in the case p = 2 and l large enough that 1/4 < dimH FIp,l < dimB FIp,l = 1/3 is
the black curve in Figure 4.2. Note that the intermediate dimensions of the graph of the
popcorn function in Figure 3.3 on page 62 has a similar form.

Recall the discussion in Section 1.4.2. Example 4.4.5 shows that the intermediate
dimensions can give better information about Hölder exponents than either the Hausdorff
or box dimensions.

Example 4.4.5. Let p, q be such that 1 < p < q < 2p− 1 <∞. As in Corollary 4.4.4 there
exists l ∈ N large enough so that if Ip,l := { ⌊np⌋ : n ⩾ l} then

1/(2p) < hp < 1/(q + 1) < 1/(p+ 1)
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where hp is the Hausdorff dimension of the continued fraction set dimH FIp,l, and then

dimθ FIp,l = max
{
hp,

θ
p+θ

}
. Similarly, if Iq is a subset of N whose symmetric difference

with { ⌊nq⌋ : n ∈ N} is finite then dimθ FIq = max
{
hq,

θ
q+θ

}
, where hq := dimH FIq . If

Iq is also such that hq ∈
(

php
q−qhp+php ,

1
q+1

)
and f : FIq → R is an α-Hölder map such that

f(FIq) ⊇ FIp,l then (1.4.7) gives the best upper bound for α when θ =
qhq
1−hq , when

α−1hq = α−1 dimθ FIq ⩾ dimθf(FIq) ⩾ dimθ FIp,l =
θ

p+ θ
=

qhq
p− phq + qhq

,

and so
α ⩽

p− phq + qhq
q

.

Using the Hausdorff dimension merely gives that α ⩽ hq/hp, and the box dimension merely
gives α ⩽ p+1

q+1 . The intermediate dimensions of the two sets and the upper bound with a
certain choice of parameters are plotted in Figure 4.2.

Figure 4.2: Graph of the intermediate dimensions of the real continued fraction sets in
Example 4.4.5 and the upper bound for α against θ in the case p = 2, q = 2.9, hp ≈ 0.26,
hq ≈ 0.22.

In the following corollary of Theorem 4.4.3 we apply results of Burrell [Bur2] to give
some consequences of the continuity of the intermediate dimensions of continued fraction
sets for dimensions of images of FI under index-α fractional Brownian motion. Perhaps the
most interesting part of Corollary 4.4.6 is the sufficiency of the condition α > h for the
upper box dimension of the image to be strictly less than 1; this is an example of how the
intermediate dimensions can be used to obtain information about the box dimension of sets.
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Corollary 4.4.6. Let α ∈ (0, 1) and let Bα : R → R denote index-α fractional Brownian
motion. Then for all non-empty, proper subsets I ⊂ N, recalling that h = dimH FI ,

(i) The maps θ 7→ dimθBα(FI) and θ 7→ dimθBα(FI) are almost surely continuous at
θ = 0.

(ii) If α > h then almost surely

h/α = dimHBα(FI) ⩽ dimBBα(FI) < 1.

(iii) If α ⩽ h then almost surely

dimHBα(FI) = dimBBα(FI) = 1.

Proof. (i). follows immediately from Theorem 4.4.3 (ii) and Burrell [Bur2, Corollary 3.5].
(ii). The set FI is the limit set of a CIFS so it is Borel (see the discussion after

Lemma 4.2.10), so Kahane’s general results [Kah, Chapter 18] give h/α = dimHBα(FI)

almost surely. The middle inequality is a general property of the dimensions, and
dimBBα(FI) < 1 almost surely by Theorem 4.4.3 (ii) and Burrell [Bur2, Corollary 3.7].

(iii) follows from Kahane [Kah, Chapter 18] since FI is Borel.

Note that since dimPBα(FI), dimBBα(FI) ∈ (dimHBα(FI),dimBBα(FI)), if α > h

then almost surely dimPBα(FI) < 1 and dimBBα(FI) < 1. On the other hand, if α ⩽ h

then almost surely dimPBα(FI) = dimBBα(FI) = 1.

4.4.2 Complex continued fractions

In this section we study sets of complex numbers which have a complex continued fraction
expansion with restricted entries. For a non-empty I ⊆ {m+ ni : m ∈ N, n ∈ Z }, define

FI :=




z ∈ C : z =

1

b1 +
1

b2+
1

...

, bn ∈ I for all n ∈ N




.

If 1 /∈ I then it can be verified, as in [MU1, Section 6], that if 1 /∈ I then {Sb(z) :=

1/(b+ z) : b ∈ I } is a CIFS with limit set FI , with X ⊂ C being the closed disc centred at
1/2 with radius 1/2, and V = B(1/2, 3/4). If 1 ∈ I then S1 is not uniformly contracting
but it is straightforward to verify that

{Sb(z) := 1/(b+ z) : b ∈ I,b ̸= 1 } ∪
{
S1b(z) :=

1

b+ 1
1+z

: b ∈ I

}

is a CIFS with the same limit set. By [MU1, Theorem 3.15], the Hausdorff dimension can
be determined by the topological pressure function, and has been studied in [HU1] with
estimates given in [MU1, Section 6] and [FN; GM; Ing; Pri].
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Theorem 4.4.7. Using the notation above, for all θ ∈ [0, 1],

(i) For all θ ∈ [0, 1],

dimθFI = max{h,dimθ{ 1/b : b ∈ I }};
max{h,dimθ{ 1/b : b ∈ I }} ⩽ dimθFI ⩽ max{h,dimθ{ 1/b : b ∈ I }}.

(ii) The maps θ 7→ dimθFI and θ 7→ dimθFI are continuous at θ = 0.

Proof. We sketch the proof as it is similar to the proof of Theorem 4.4.3.
(i). follows from Theorem 4.3.4.
(ii). follows from (i) since { 1/b : b ∈ I } is the disjoint union of bi-Lipschitz copies of two

subsets of G1,2, whose intermediate dimensions are continuous by Proposition 3.2.10.

Corollary 4.4.8. For p ∈ (1,∞) and R ∈ [0,∞) let

Ip,R := { ⌊mp⌋+ ⌊np⌋i : n,m ∈ N } \B(0, R).

Then
dimθ FIp,R = max

{
dimH FIp,R ,

2θ

p+ θ

}
, (4.4.2)

and for all R sufficiently large, dimH FIp,R < dimB FIp,R = 2/(p+ 1).

Proof. The set { 1/b : b ∈ I } is bi-Lipschitz equivalent to a cofinite subset of the set Gp,2
from Proposition 3.2.10, so

dimθ{ 1/b : b ∈ I } = dimθGp,2 =
2θ

p+ θ
.

Therefore the bounds in Theorem 4.4.7 (i) coincide and (4.4.2) holds. For all t ⩾ 0, writing
≃ to mean up to multiplication by a positive, finite function of t, p and R and/or addition
by a real-valued function of t, p and R, and using the convention that a∞ = ∞+ c = ∞
for a ∈ (0,∞) and c ∈ R, we have

ψ1(t) =
∑

b∈Ip,R
||Sb||t

≃
∑

b∈Ip,R
|b|−2t (Koebe distortion theorem)

=

∞∑

n=0

∑

b∈Ip,R
2n⩽|b|<2n+1

|b|−2t

≃
∞∑

n=0

#{ b ∈ Ip,R : 2n ⩽ |b| < 2n+1 }(2n)−2t

≃
∞∑

n=0

(2n/p)2(2n)−2t

=

∞∑

n=0

4n(p
−1−t).
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Therefore the finiteness parameter θIp,R = 1/p. By [MU2, Theorem 1.5],

dimH FIp,R −−−−→
R→∞

1

p
<

2

p+ 1
,

as required.

Again there are consequences for fractional Brownian images.

Corollary 4.4.9. Let α ∈ (0, 1) and let Bα : C → C denote index-α fractional Brownian
motion (identifying C with R2). Then for all non-empty I ⊆ {m+ ni : m ∈ N, n ∈ Z },

(i) The maps θ 7→ dimθBα(FI) and θ 7→ dimθBα(FI) are almost surely continuous at
θ = 0.

(ii) If α > (dimH FI)/2 then almost surely

(dimH FI)/α = dimHBα(FI) ⩽ dimBBα(FI) < 2.

(iii) If α ⩽ (dimH FI)/2 then almost surely dimHBα(FI) = dimBBα(FI) = 2.

Proof. This follows from Theorem 4.4.7 in a similar way to how Corollary 4.4.6 follows
from Theorem 4.4.3.

Since dimPBα(FI), dimBBα(FI) ∈ (dimHBα(FI), dimBBα(FI)), if α > (dimH FI)/2

then almost surely dimPBα(FI) < 2 and dimBBα(FI) < 2, whereas if α ⩽ (dimH FI)/2

then almost surely dimPBα(FI) = dimBBα(FI) = 2.

4.5 Generic attractors

4.5.1 Background and motivation

Often, and especially in non-conformal settings and in the presence of overlaps, it is difficult
to compute the dimension of a particular IFS attractor. In a seminal paper from 1988 [Fal2]
Falconer introduced the idea of studying the generic dimension of a (finitely generated)
self-affine set by fixing a set of matrices and then randomising the translations in a suitable
way. It turns out that, for Lebesgue almost every choice of translations, the Hausdorff
and box dimension of the associated self-affine set are given by the affinity dimension: a
dimension formula depending only on the matrices.

Käenmäki and Reeve [KR] extended Falconer’s approach to the theory of infinitely
generated self-affine sets. Here one needs to randomise infinitely many translations, and do
so in a manner which outputs a bounded set. As such, the natural space to draw from is V N

for some bounded set V ⊆ Rd with positive d-dimensional Lebesgue measure Ld(V ) > 0.
For convenience from now on we assume V = [0, 1)d. The space V N carries a natural infinite
product probability measure

µ =
∏

i∈N
Ld|V .
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Käenmäki and Reeve proved that if one fixes an infinite collection of strictly contracting
matrices on Rd and randomises the translations according to µ, then the Hausdorff dimension
of the associated attractor is almost surely given by the natural extension of the affinity
dimension to the infinite case. In comparison with Falconer’s result, this notably omits
the box dimension. There is good reason for this since the box dimension of an infinitely
generated attractor depends much more sensitively on the translations themselves, as we
have seen above.

We show here that almost surely the box dimension is d, that is, the ambient spatial
dimension. In fact we show more. We show that for an arbitrary IIFS (not necessarily
consisting of affine maps), the associated attractor is generically somewhere dense, and
therefore the box and intermediate dimensions are all generically equal to d. Moreover,
generically can refer to either µ-almost surely, or for a comeagre set of translates (topolo-
gically generic). If one equips V N with a topological group structure as the infinite product
of the group V under addition mod 1 with the product topology, then being prevalent in
the sense of [Chr; EN; HSY; OY] is the same as holding µ-almost surely.

4.5.2 Results

Fix an IIFS {Si}i∈N defined on [0, 2]d with the property that Si([0, 2]d) ⊆ [0, 1]d for all
i ∈ N. For t = (t1, t2, . . . ) ∈ V N let Ft denote the attractor of the IIFS {Si + ti}i∈N with
Si + ti defined on [0, 2]d by (Si + ti)(x) = Si(x) + ti. We assume throughout that the
contraction ratios of the maps Si only accumulate at zero. The assumption that [0, 2]d

maps into [0, 1]d is to ensure the maps can be composed with translations in a well-defined
way.

Write fix(g) to denote the unique fixed point of a contraction g on [0, 2]d. We use the
following simple lemma to relate random translations to random fixed points. Fixed points
are useful because they necessarily belong to the attractor.

Lemma 4.5.1. Let u ∈ V , g be a contraction on [0, 2]d with g([0, 2]d) ⊆ [0, 1]d, q ∈ [0, 2]d,
and δ > 0. Then

fix(g + u) ∈ B(q, δ) ⇔ u ∈ B(q − g(fix(g + u)), δ).

Proof. By the definition of a fixed point,

fix(g + u) ∈ B(q, δ) ⇔ ||fix(g + u)− q|| < δ

⇔ ||g(fix(g + u)) + u− q|| < δ

⇔ u ∈ B(q − g(fix(g + u)), δ),

as required.

Theorem 4.5.2. For µ-almost all t ∈ V N, the attractor Ft is somewhere dense in [0, 2]d,
so for all θ ∈ (0, 1],

dimθ Ft = dimB Ft = d.
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Proof. Let z ∈ [0, 1]d be an accumulation point of the set {fix(Si)}i. We prove that Ft is
almost surely dense in the explicit (unit) square V + z. The idea is that for infinitely many
i ∈ N the fixed point of Si will be close to z and the contraction ratio of Si will be small,
so if the fixed point of Si + ti is far away from a given point q ∈ V + z then ti must be far
away from q − z, which we use to bound the measure. We have
{
t ∈ V N : Ft is nowhere dense

}
⊆
{
t ∈ V N : Ft is not dense in V + z

}

⊆
⋃

q∈(V+z)∩Qd

⋃

δ∈Q+

{
t ∈ V N : ∀i ∈ N, fix(Si + ti) /∈ B(q, δ)

}

=
⋃

q∈(V+z)∩Qd

⋃

δ∈Q+

{
t ∈ V N : ∀i ∈ N, ti /∈ B(q − Si(fix(Si + ti)), δ)

}
(Lemma 4.5.1)

=
⋃

q∈(V+z)∩Qd

⋃

δ∈Q+

∞⋂

N=1

Tq,δ,N

where for N ∈ N,

Tq,δ,N :=

(
N∏

i=1

{ t ∈ V : ||q − Si(fix(Si + t))− t|| ⩾ δ }
)

×




∞∏

j=N+1

V


 .

For each i ∈ N, { t ∈ V : ||q−Si(fix(Si+ t))− t|| ⩾ δ } is a Borel set as it is the preimage
of [δ,∞) by a continuous function, so each Tq,δ,N is µ-measurable. By definition of z we
can find infinitely many i ∈ N such that the maximum of ||fix(Si)− z|| and the contraction
ratio of Si is less than δ/10. For all such i ∈ N, if t ∈ B(q − z, δ/2) ∩ V then

||q − Si(fix(Si + t))− t|| ⩽ ||q − z − t||+ ||z − fix(Si)||+ ||fix(Si)− Si(fix(Si + t))||

<
δ

2
+

δ

10
+ 2

δ

10

< δ.

Therefore for infinitely many i ∈ N,

Ld
(
{t ∈ V : ||q − Si(fix(Si + t))− t|| ⩾ δ}

)
⩽ 1− 2−d

(
min{δ, 1/2}

2

)d
kd < 1,

where kd is the d-dimensional Lebesgue measure of a ball in Rd of unit radius. This uniform
bound away from 1 is independent of i, so for all q and δ, µ(Tq,δ,N ) → 0 as N → ∞,
so
⋂∞
i=1 Tq,δ,N is µ-measurable (as the countable intersection of µ-measurable sets) with

µ (
⋂∞
i=1 Tq,δ,N ) = 0. Therefore

⋃

q∈(V+z)∩Qd

⋃

δ∈Q+

∞⋂

i=1

Tq,δ,N

is a countable union of µ-measurable sets with µ-measure 0, so it is itself µ-measurable
with µ-measure 0, which proves the result.
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Next, we establish a topological result. We endow V N with the Hilbert cube metric

d(t, s) =

( ∞∑

i=1

||ti − si||2
i2

)1/2

,

noting that this generates the product topology on V N. Recall that a subset of V N is called
residual or comeagre (topologically generic) if it contains a countable intersection of open
dense sets. Note that V is homeomorphic to the separable complete metric space [0,∞),
so V is a Polish space, hence the countable product V N is also a Polish space. The Baire
Category Theorem therefore implies that V N is a Baire space, meaning that residual subsets
are dense.

Theorem 4.5.3. For a residual set of t ∈ V N, the attractor Ft is somewhere dense in
[0, 2]d, so for all θ ∈ (0, 1],

dimθ Ft = dimB Ft = d.

Proof. Let z ∈ [0, 1]d be as in the proof of Theorem 4.5.2. Then
{
t ∈ V N : Ft is somewhere dense

}

⊇
{
t ∈ V N : Ft is dense in V + z

}

=
⋂

q∈(V+z)∩Qd

⋂

δ∈Q+

{
t ∈ V N : ∃i ∈ N, fix(Si + ti) ∈ B(q, δ)

}

=
⋂

q∈(V+z)∩Qd

⋂

δ∈Q+

{
t ∈ V N : ∃i ∈ N, ti ∈ B(q − Si(fix(Si + ti)), δ)

}
(Lemma 4.5.1)

=:
⋂

q∈(V+z)∩Qd

⋂

δ∈Q+

Tq,δ.

Fix q ∈ (V + z) ∩ Qd and δ ∈ Q+. The set Tq,δ is immediately seen to be open since
fix(Si + ti) is continuous in ti and we use open balls. Moreover, it is also dense since an
element t ∈ V N may be approximated arbitrarily well in the metric d within the set Tq,δ by
replacing ti with q − z for sufficiently large i.

Remark 4.5.4. In the above setting, all the contraction ratios were bounded above by 1/2,
but we can easily avoid this. Indeed, fix any c > 0 and fix any IIFS {Si}i∈N of contractions
defined on [0, 1 + c]d satisfying Si([0, 1 + c]d) ⊆ [0, 1]d for all i ∈ N. Then the contraction
ratios are bounded above by 1

1−c and we assume they accumulate only at 0. We can let
V := [0, c)d, and again V N can be equipped with a natural probability measure by taking
the infinite product of the Lebesgue measure on V and then normalising. Moreover, V N

can be equipped with a topological group structure by taking the infinite product (with the
product topology) of the group V under addition mod c on each of the d coordinates. If
t = (t1, t2, . . . ) ∈ V N then {Si + ti}i∈N is an IIFS of contractions on [0, 1 + c]d, with
limit set Ft, say. Similar proofs show that under the assumptions of either Theorem 4.5.2
or Theorem 4.5.3, Ft is somewhere dense in [0, 1 + c]d, so the same conclusions about
dimensions hold.
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Under the assumptions of either Theorem 4.5.2 or Theorem 4.5.3, either in the setting of
those theorems or in the more general setting of Remark 4.5.4, the attractor Ft is somewhere
dense. This means that if dim is any notion of dimension which is stable under closure, for
example any of the Φ-intermediate or Assouad type dimensions, then dimFt = d. If all of
the Si are bi-Lipschitz, then by a result of Mauldin and Urbański [MU1, Theorem 3.1] the
upper box and packing dimensions of the attractor coincide, so under the assumptions of
Theorem 4.5.2 or 4.5.3, it holds that dimP Ft = d.
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Chapter 5

Bedford–McMullen carpets

5.1 Introduction

5.1.1 Self-affine carpets

In this chapter, which is based on [BK1] (joint with I. Kolossváry), we consider self-affine
sets, which are the attractors of IFSs consisting of affine contractions. The dimension theory
of self-affine sets (surveyed in [Fal5]) is broadly divided into two strands of research. The
former is concerned with verifying that in many ‘generic’ situations the Hausdorff and box
dimensions coincide with Falconer’s affinity dimension [BHR; Fal2]. This chapter, however,
is concerned with the exceptional theory, where the dimensions can take different values,
and the intermediate dimensions are therefore relevant. In particular, self-affine sets in
the plane for which the matrices of the defining contractions are diagonal are often called
‘carpets,’ and various models with different levels of generality have been studied [Bar1;
Bed; FW; KP1; LG; McM]. The three-dimensional versions are often called sponges, and
surprisingly a class of such sets appear in the paper [DS1] as the first examples of expanding
repellers whose Hausdorff dimension is not attained as the Hausdorff dimension of any
ergodic invariant measure; it is not known whether a repeller with this property exists in
the plane. There are many interesting open problems about self-affine sets, such as whether
the box dimension of every self-affine set exists.

In this chapter, we work with the simplest model of self-affine carpets, which were
originally introduced independently by Bedford [Bed] and McMullen [McM]. A Bedford–
McMullen carpet Λ is a subset of the plane, but can also be viewed as an invariant subset
of the 2-torus [0, 1)2 under the toral endomorphism (x, y) 7→ (mx mod 1, ny mod 1).
Figure 5.1 shows a simple example of a Bedford–McMullen carpet with distinct Hausdorff
and box dimension. The three shaded rectangles show the image of [0, 1]2 under the three
maps in the IFS, and the attractor is also shown. For this carpet, dimHΛ ≈ 1.34968 <

1.36907 ≈ dimBΛ. These carpets can be realised as cross-sections of invariant sets of
discrete dynamical systems given by iterating three-dimensional horseshoe maps, showing
that dynamically invariant sets can have distinct Hausdorff and box dimensions. We refer
the interested reader to the survey [Fra4] for background on the dimension theory of these
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carpets. Our main objective is to determine a formula for the intermediate dimensions of all
Bedford–McMullen carpets. In the process, we uncover new interesting features about the
form of the intermediate dimensions and make an unexpected connection to multifractal
analysis and bi-Lipschitz equivalence of these carpets.

Figure 5.1: A Bedford–McMullen carpet with non-uniform fibres. The images of [0, 1]2

under the iterated function system generating the carpet are shaded.

These carpets are constructed by splitting [0, 1]2 into m columns of equal width and n
rows of equal height for some integers n > m ⩾ 2 and considering maps of the form

f(i,j)(x) :=

(
1/m 0

0 1/n

)(
x

y

)
+

(
(i− 1)/m

(j − 1)/n

)

for the index set (i, j) ∈ A ⊆ {1, . . . ,m} × {1, . . . , n}. The attractor

Λ =
⋃

(i,j)∈A
f(i,j)(Λ)

of the IFS F = {f(i,j)}(i,j)∈A is called a Bedford–McMullen carpet. Fix notation

γ :=
log n

logm
> 1.

For the remainder of the chapter, we index the maps of F by i ∈ {1, . . . , N}. Let 1 < M ⩽ m

denote the number of non-empty columns and N := (N1, . . . , NM ), where Nȷ̂ is the number
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Figure 5.2: The graph of the intermediate dimensions of the Bedford–McMullen carpet from
Figure 5.1 is plotted in blue, using the formula obtained in this chapter. Note that there
are countably many phase transitions (one at each negative integer power of γ, the first
three of which are labelled). Certain bounds which were obtained previously are plotted in
orange.

of maps fi that map [0, 1]2 to the ȷ̂-th non-empty column. Observe that N = N1+ · · ·+NM .
Let PM denote the set of probability vectors on {1, . . . ,M}. The entropy of q ∈ PM is

H(q) = −
M∑

ȷ̂=1

qȷ̂ log qȷ̂,

where we use the convention that 0 log 0 = 0. We introduce

P = (P1, . . . , PM ) :=

(
N1

N
, . . . ,

NM

N

)
and Q :=

(
1

M
, . . . ,

1

M

)
.

For q ∈ PM , it holds that H(q) ⩽ logM with equality if and only if q = Q. For the entire
chapter, we also introduce

t :=
1

M

M∑

ȷ̂=1

logNȷ̂ and t := logN −H(P). (5.1.1)

We say that Λ has uniform (vertical) fibres if and only if P = Q, in other words each
non-empty column has the same number of maps. Bedford and McMullen showed that the
Hausdorff and box dimensions of Λ are equal to

dimH Λ =
1

logm
log

(
M∑

ȷ̂=1

N
logm/ logn
ȷ̂

)
, (5.1.2)

dimB Λ =
logN

log n
+

(
1− logm

log n

)
logM

logm
. (5.1.3)
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In particular, dimH Λ = dimB Λ if and only if Λ has uniform fibres, meaning that Nȷ̂ takes
the same value for each ȷ̂ ∈ {1, . . . ,M}. In this case, θ 7→ dimθ Λ is just a constant function.
Therefore, we assume throughout that the carpet has non-uniform fibres, in which case the
appropriate dimensional Hausdorff measure of Λ is infinite [Per]. Using the concavity of the
logarithm function, an immediate consequence of non-uniform fibres is that t < log(N/M).
Carpets with uniform and non-uniform fibres are shown in [Fra4, Figure 15.1].

5.1.2 Previous results

Previous papers on the topic [FFK2; Fra4; Kol1] have established crude bounds for
the intermediate dimensions and speculated about the possible form. The question of
determining the intermediate dimensions of all Bedford–McMullen carpets was explicitly
asked in [Fal8; FFK2; Fra4; Kol1]. Loosely speaking, the results of Falconer, Fraser and
Kempton [FFK2] concentrate on the behaviour of dimθ Λ for θ close to 0, while the results
of Kolossváry [Kol1] concentrate on the behaviour for θ ⩾ γ−1.

A linear lower bound for the intermediate dimensions of Bedford–McMullen carpets
with non-uniform fibres was obtained in [FFK2] which shows that dimθΛ > dimHΛ for
every θ ∈ (0, 1]. For many carpets, but not all, a lower bound in [Kol1] performs better
than the linear bound and general bounds such as Corollary 3.2.9 from page 56 for large
values of θ. The lower bound depicted in Figure 5.2 is the best combination of these results.
Falconer, Fraser and Kempton [FFK2, Proposition 4.1] show an upper bound of the form
dimθΛ ⩽ dimH Λ + c/(− log θ) for an explicit c > 0 and θ sufficiently small. In particular,
this implies that θ 7→ dimθΛ and θ 7→ dimθΛ are continuous also at θ = 0. Hence, the
results of Burrell, Falconer and Fraser [BFF1, Section 6] and Burrell [Bur2, Section 3] can
be applied. For example, if dimH Λ < 1 then dimBπ(Λ) < 1 for every orthogonal projection
π from R2 onto a 1-dimensional subspace, regardless of the value of dimBΛ. For almost
every projection, dimθπ(Λ) and dimθπ(Λ) are continuous at θ = 0, and if γ /∈ Q then this
holds for every orthogonal projection. Furthermore, if Bh : R2 → R2 is index-h fractional
Brownian motion, then θ 7→ dimθBh(Λ) and θ 7→ dimθBh(Λ) are almost surely continuous,
and if h > (dimH Λ)/2 then almost surely dimBBh(Λ) < 2.

A cover of Λ is constructed in [Kol1] using just the two extreme scales to obtain an
explicit upper bound of the form dimθΛ ⩽ dimBΛ −∆(θ) for θ ⩾ γ−1, where ∆(θ) ↘ 0

as θ → 1 and has a strictly positive derivative at θ = 1. This bound was used to show
that dimθΛ is not concave for the whole range of θ in general, already hinting at richer
behaviour than previously witnessed in other examples. Figure 5.2 shows this upper bound.

5.1.3 Summary of results

The formal statements are presented in Section 5.2. In Theorem 5.2.1 we state an explicit
formula for dimθΛ = dimθΛ for all θ, thus fully resolving the problem of calculating the
intermediate dimensions of all Bedford–McMullen carpets Λ. For illustration see Figure 5.2,
where θ 7→ dimθ Λ is plotted for the carpet from Figure 5.1. Central to the formula is a large
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deviations rate function for which we give three additional equivalent characterisations in
Proposition 5.2.11: one in terms of a pressure-like function, another as a certain probability
vector with an entropy maximising property, and finally a relationship to the multifractal
spectrum of the uniform self-affine measure on Λ. In the proof of Theorem 5.2.1, we
construct a cover of Λ that uses an increasing number of different scales in the permissible
range as θ → 0. We also show in Corollary 5.2.2 that using more than two scales is
necessary.

In Corollary 5.2.3, we prove all the features suggested by the plot in Figure 5.2 about
the form of the intermediate dimensions for all carpets. Namely, θ 7→ dimθ Λ is strictly
increasing and has phase transitions at all negative integer powers of γ. Between consecutive
phase transitions the intermediate dimensions are analytic and strictly concave. Moreover,
for θ small enough dimθ Λ behaves like dimH Λ+ c(log θ)−2. In particular, the derivative
tends to +∞ as θ → 0. No previous family of sets has shown such rich and complex
behaviour. Some illustrative examples are presented in Section 5.2.5.

We show in Theorem 5.2.5 that two different carpets with non-uniform fibres have equal
intermediate dimensions for every θ ∈ [0, 1] if and only if the multifractal spectra of the
uniform Bernoulli measure on the two carpets are equal. If, in addition, it is assumed that
the two carpets are defined on the same grid, then Theorem 5.2.5 provides further equivalent
conditions for their intermediate dimensions to be the same: a certain condition on the
rate functions appearing in the formula or certain relationships between the parameters
of the carpets, or the equality of the intermediate dimensions on any one open interval
of [γ−1, 1]. Our main application relates to bi-Lipschitz equivalence. It is known [RYZ,
Corollary 1.1] that the equality of these multifractal spectra is necessary for two carpets to
be bi-Lipschitz equivalent if it is assumed that the two carpets are defined on the same grid
and are totally disconnected. Since bi-Lipschitz maps preserve intermediate dimensions,
Theorem 5.2.5 implies that both of these assumptions can be dropped, see Corollary 5.2.10.
In Proposition 5.2.14 we construct two carpets which are not bi-Lipschitz equivalent by
Corollary 5.2.10, but where this does not follow from [RYZ]. This is the first instance where
intermediate dimensions are used to show that two sets are not bi-Lipschitz equivalent,
but where this fact does not follow from any other notion of dimension or existing result.
For this example, we also use the intermediate dimensions to give estimates on the Hölder
distortion of the two carpets.

For comparison, we mention that the calculation of the Assouad spectrum of Bedford–
McMullen carpets [FY1] is not as involved as the proof of Theorem 5.2.1 for the intermediate
dimensions. Indeed, the intermediate dimensions are more subtle in that they depend on
all the Ni individually, as does the Hausdorff dimension. This is in contrast to the Assouad
spectrum (and indeed the lower spectrum and the box, packing, Assouad, quasi-Assouad,
lower and quasi-lower dimensions) which depend only on m,n,N,M,max1⩽ı̂⩽M Nı̂ and
min1⩽ı̂⩽M Nı̂, see [Fra4]. The Assouad spectrum also has just one phase transition at
θ = γ−1, which occurs when the spectrum reaches the Assouad dimension and thus is
constant for θ ∈ (γ−1, 1).
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5.2 Results and examples

5.2.1 Main result: formula for intermediate dimensions

Recalling (5.1.1), let t ∈ (t, t). This is a non-empty interval because non-uniform fibres
implies that t < log(N/M) < t. Let X1, X2, . . . , XJ , . . . be a sequence of independent and
identically distributed random variables taking values in the set {logN1, . . . , logNM}, with

P(X1 = logNı̂) =
1

M
·#{ ȷ̂ ∈ {1, . . . ,M} : Nȷ̂ = Nı̂ }. (5.2.1)

Then t is the expectation of X1. The large deviations rate function of the average 1
J

∑J
i=1Xi

is

I(t) = sup
λ∈R

{
λt− log

(
1

M

M∑

ȷ̂=1

Nλ
ȷ̂

)}
, (5.2.2)

noting that 1
M

∑M
ȷ̂=1N

λ
ȷ̂ is the expectation of eλX1 . For t ∈ [t,max1⩽ı̂⩽M logNı̂), differenti-

ating shows that the supremum in the definition of I(t) is attained at the unique λ ⩾ 0

satisfying t =
∑M

ı̂=1
Nλ

ı̂∑M
ȷ̂=1N

λ
ȷ̂

logNı̂. This allows I(t) to be calculated numerically. On this

interval, I(t) is real analytic (as the Legendre transform of an analytic function). The
derivative I ′(t) > 0 is the value of λ at which the supremum is attained and I(t) is strictly
increasing for t ∈ [t,max logNı̂]. Moreover, I ′′(t) > 0, so the function is strictly convex on
this interval. Some particular values of interest are

I(t) = 0, I ′(t) = 0,

I(t) = logM −H(P), I ′(t) = 1,

see [DZ, Lemma 2.2.5]. Moreover,

I( max
1⩽ı̂⩽M

logNı̂) = logM − log#{ ȷ̂ ∈ {1, . . . ,M} : Nȷ̂ = max
1⩽k̂⩽M

Nk̂ },

and
I ′(t) → ∞ as t→ ( max

1⩽ı̂⩽M
logNı̂)

−.

For s ∈ R, we define the function Ts : R → R by

Ts(t) :=

(
s− logM

logm

)
log n+ γI(t). (5.2.3)

For ℓ ∈ N we denote the composition by T ℓs := Ts ◦ · · · ◦ Ts︸ ︷︷ ︸
ℓ times

, and T 0
s denotes the identity

function. We use the sequences (tℓ)
∞
ℓ=1 = (tℓ(s))

∞
ℓ=1 defined by

tℓ(s) := T ℓ−1
s

((
s− logM

logm

)
log n

)
. (5.2.4)

Note that these depend only on s and the carpet, but not on θ. Observe that Ts(t) = t1(s)

for all s ∈ R. We are now ready to state the main result of this chapter (see Section 5.4 for
the rather involved proof).
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Theorem 5.2.1. Let Λ be a Bedford–McMullen carpet with non-uniform fibres. For
all θ ∈ (0, 1), dimθ Λ exists and is given in the following way. For fixed θ ∈ (0, 1) let
L = L(θ) := 1 + ⌊− log θ

log γ ⌋, so γ−L < θ ⩽ γ−(L−1). Then there exists a unique solution
s = s(θ) ∈ (dimH Λ,dimB Λ) to the equation

γLθ logN − (γLθ − 1)tL(s) + γ(1− γL−1θ)(logM − I(tL(s)))− s log n = 0, (5.2.5)

and s(θ) = dimθ Λ.

In the case L = 1 the formula (5.2.5) simplifies to

dimB Λ− 1

log n

(
1

θ
− 1

)
I(t1(s))− s = 0.

If θ = γ−(L−1) for some L ∈ N with L ⩾ 2, then it becomes

dimB Λ− 1

logm

(
1− 1

γ

)
I(tL−1(s))− s = 0.

Theorem 5.2.1 and Corollary 5.2.3 below fully resolve [Fra4, Problem 15.8.1] and the
questions about Bedford–McMullen carpets in Falconer’s survey paper [Fal8, Section 14.8],
and indeed provide more information. In particular, this is the first time it has been
shown that the intermediate dimensions of Bedford–McMullen carpets exist for θ ∈ (0, 1).
Tools used in the proof include the method of types (see [Kol2]) and a variant of a mass
distribution principle for the intermediate dimensions, see Proposition 1.4.2 from page 13.
The proof of the upper bound involves the construction of an explicit cover using scales
δ, δγ , δγ

2
, . . . , δγ

L−1 and δ1/θ, δ1/(γθ), . . . , δ1/(γ
L−1θ). This cover consists of approximate

squares, which we define in Section 5.4.1. We decide which parts of each approximate square
to cover at which scale depending on how the different parts of the symbolic representation
of the approximate square relate to each other. The proof simplifies when θ ⩾ 1/γ (where
we just use the smallest and largest permissible scales), and when θ = γ−k for k ∈ N (where
we use scales δ, δ2, . . . , δγk due to scales ‘lining up’). Note that the cover jumps from using
2k scales when θ ∈ (γ−k, γ−(k−1)) to using 2k + 2 scales when θ ∈ (γ−(k+1), γ−k) (and uses
only k scales when θ = δ−k), which gives an indication of why one might expect a phase
transition at θ = γ−k.

For sets whose intermediate dimensions have previously been calculated such as spir-
als [BFF2], sequences [FFK2, Section 3.1], and concentric spheres and topologist’s sine
curves [Tan], only the two extreme scales were used in the cover. Several of the results in
this thesis, however, use many different scales to obtain the upper bound. In particular, we
see from (4.3.2) on page 90 that many different scales in the interval [δ, δθ] are generally
used in the construction of the cover for infinitely generated self-similar sets. Moreover, it
is clear from the construction in Theorem 3.3.11 on page 73 that there are inhomogeneous
Moran sets for which every cover approximating the intermediate dimensions arbitrarily
closely would require an unbounded number of scales as δ tends to zero. This answers a
question of Falconer [Fal8, Section 14.8]. Corollary 5.2.2, which we prove in Section 5.5,
shows that for Bedford–McMullen carpets with non-uniform fibres, more than two scales
are needed when θ is small.
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Corollary 5.2.2. Let Λ be a Bedford–McMullen carpet with non-uniform fibres. There
exist θ0, ε, δ0 > 0 such that for all θ ∈ (0, θ0) and all covers {Ui} of Λ that uses at most two
scales, both of which are less than δ0, we have

∑
i |Ui|dimθ Λ+ε ⩾ 1.

We now continue with corollaries of Theorem 5.2.1 about the form of the graph of the
function θ 7→ dimθ Λ that do not follow from the general theory, a rather unexpected con-
nection to multifractal analysis and bi-Lipschitz equivalence of two carpets, and equivalent
formulations of the rate function I(t).

5.2.2 Form of the intermediate dimensions

We assume that the carpet has non-uniform fibres, otherwise, θ 7→ dimθ Λ is just a constant
function. We denote the left and right derivatives at θ by

∂− dimθ Λ := lim
h→0+

dimθ Λ− dimθ−h Λ
h

and ∂+ dimθ Λ := lim
h→0+

dimθ+h Λ− dimθ Λ

h
.

Corollary 5.2.3. Let Λ be a Bedford–McMullen carpet with non-uniform fibres. Then the
function θ 7→ dimθ Λ has the following properties:

(i) it is real analytic on the interval (γ−L, γ−(L−1)) for all L ∈ N;

(ii) ∂− dimθ Λ exists at every θ ∈ (0, 1] and ∂+ dimθ Λ exists at every θ ∈ (0, 1);

(iii) it is strictly increasing and has phase transitions at every negative integer power of γ.
More precisely, there exists C0 > 0 depending only on Λ such that for all θ ∈ (0, 1),

C0 < ∂− dimθ Λ ⩽ ∂+ dimθ Λ

with equality if and only if for all L ∈ N we have θ ̸= γ−L. Moreover,
∂+ dim

γ−L Λ

∂− dim
γ−L Λ

converges to a constant in (1,∞) as L→ ∞;

(iv) there exist C ∈ [1,∞) and θ0 > 0 depending only on Λ such that for all θ ∈ (0, θ0],

dimH Λ +
C−1

(log θ)2
⩽ dimθ Λ ⩽ dimH Λ +

C

(log θ)2
;

(v) it is strictly concave on the interval [γ−L, γ−(L−1)] for all L ∈ N.

In [FFK2, Proposition 4.1] for small enough θ the upper bound dimθΛ ⩽ dimHΛ +

c(− log θ)−1 was proved for a constant c depending only on Λ. Corollary 5.2.3 (iv) shows
that although this bound is not sharp, we do indeed have that dimθ Λ−dimH Λ

θ → ∞ as
θ → 0+.
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5.2.3 Multifractal analysis and bi-Lipschitz equivalence

In this section, and in Section 5.5.3 where we prove the results in this section, it is convenient
to change notation. Here, the parameters (M0, N1, . . . , NM0 , R1, . . . , RM0) will define a
Bedford–McMullen carpet. Now M0 denotes the number of different values that the number
of maps in a non-empty column can take. Note that M0 ⩾ 2, since M0 = 1 corresponds
to the uniform fibre case. We write N1, . . . , NM0 for the actual values that the number
of maps in a non-empty column can take, and we order them as N1 > N2 > · · · > NM0 .
For each ı̂ ∈ {1, . . . ,M0}, we write Rı̂ for the number of columns containing exactly Nı̂

maps. As with the previous notation, we write M =
∑M0

ı̂=1Rı̂ for the number of non-empty
columns, and N =

∑M0
ı̂=1Rı̂Nı̂ for the total number of maps. For example, for the carpet

in Figure 5.1, the number of maps in a non-empty column is either 1 or 2, so N1 = 2 and
N2 = 1. Each corresponds to just one column, so R1 = R2 = 1, and M0 = #{1, 2} = 2.

A central problem in multifractal analysis is to examine the way a Borel measure µ
is spread over its support suppµ. For a survey of this topic, we refer the reader to [Fal6,
Chapter 17]. The local dimension of µ at x is

dimloc(µ, x) = lim
r→0

logµ(B(x, r))

log r

if the limit exists, which approximately measures the rate of decay of µ(B(x, r)) as a power
law rα. The measure µ is exact dimensional if dimloc(µ, x) is equal to a specific α for
µ-almost all x. However, dimloc(µ, x) can still potentially take up a whole spectrum of
different α. This motivates the definition of the fine or Hausdorff multifractal spectra

fµ(α) := dimH{x ∈ suppµ : dimloc(µ, x) = α }.

Concentrating on the self-affine setting, given a self-affine iterated function system
S = {S1, . . . , SN}, meaning that all Si : Rd → Rd are contracting affine maps, and a
probability vector p with strictly positive entries, the self-affine measure µp is the unique
probability measure supported on the attractor of S satisfying

µp(A) =
N∑

i=1

piµp(S
−1
i A) for all Borel sets A ⊂ Rd.

It is known that all self-affine measures are exact dimensional [BK2; Fen1]; this was resolved
earlier in [KP1] for those supported on Bedford–McMullen carpets. Moreover, the dimension
satisfies a Ledrappier–Young type formula, as per the strand of research initiated in [LY1;
LY2]. The fine multifractal spectrum of self-affine measures on Bedford–McMullen carpets
is also known [BM; JR; Kin] and (under the separation condition assumed in [Kin]) has
been generalised to higher dimensions in [Ols2]. When p = (1/N, . . . , 1/N) is the uniform
vector, we simply write ν = µp and call it the uniform self-affine measure. In this case,
define the function βν(ξ) for ξ ⩾ 0 by

m−βν(ξ)N−ξ
M0∑

ı̂=1

Rı̂N
γ−1+(1−γ−1)ξ
ı̂ = 1. (5.2.6)
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Note that because of the minus sign before βν(ξ) (which in some papers is erroneously
omitted), βν(ξ) is a convex function. Define

αmin :=
logN

logm
− 1− γ−1

logm
logN1; αmax :=

logN

logm
− 1− γ−1

logm
logNM0 .

Then by [JR, Theorem 1], the multifractal spectrum is

fν(α) = inf
ξ
(αξ + βν(ξ)) = −β∗ν(−α) for all α ∈ (αmin, αmax), (5.2.7)

where β∗ν(α′) := supξ′(α
′ξ′ − βν(ξ

′)) is the Legendre transform of βν (defined in the same
way as for the rate function in (5.2.2)).

Another quantity that is closely related to the multifractal spectrum is the Lq spectrum
of a measure µ (see [Fal3, Chapter 11]). It is a function Tµ : R → R which quantifies the
global fluctuation of µ, and its value at q = 0 describes the box dimension of the support of
the measure. The Lq spectrum of a measure can be defined by

Tµ(q) := lim
δ→0+

log Tδ(µ, q)

− log δ
(5.2.8)

if the limit exists, where

Tδ(µ, q) := sup

{∑

i

(µ(Bi))
q : Bi disjoint balls of radius δ centred in supp(µ)

}
.

The Lq spectrum of self-similar measures has been studied in [CM], [Fal3, Chapter 11],
and more recently (under the exponential separation condition) in Shmerkin’s ground-
breaking paper [Shm2]. For self-similar measures satisfying the open set condition, the
limit (5.2.8) exists and the multifractal formalism is satisfied, meaning that the Legendre
transform of the Lq spectrum equals the multifractal spectrum [Ols1]. Now let ν be the
uniform self-affine measure on a Bedford–McMullen carpet with non-uniform fibres, and
let νx be the measure obtained by projecting ν orthogonally onto the x-axis. Note that νx
is a homogeneous self-similar measure with all contraction ratios equal to 1/m, satisfying
the open set condition. For 1 ⩽ ı̂ ⩽ M0, the weight Nı̂/N occurs with multiplicity Rı̂.
Therefore for q in an open neighbourhood of 1, Tνx(q) satisfies

M0∑

ı̂=1

Rı̂

(
Nı̂

N

)q ( 1

m

)Tνx (q)
= 1.

A direct calculation shows that

Tνx(q) = − logN

logm
q +

log
∑M0

ı̂=0Rı̂(Nı̂)
q

logm
.

The Lq dimensions of self-affine measures have been studied in [Fal4; FW; Kol2]. For
self-affine measures supported on Bedford–McMullen carpets, the limit in (5.2.8) still exists
but the multifractal formalism does not generally hold. Applying a result of Feng and
Wang [FW, Theorem 2] shows that Tν(q) satisfies

N ·N−qm−Tνx (q)n−(Tν(q)−Tνx (q)) = 1.
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A direct manipulation shows that for q in an open neighbourhood of 1,

Tν(q) =
logN

log n
− q

logN

logm
+

(
1− logm

log n

)
log
∑M0

ı̂=1Rı̂(Nı̂)
q

logm

=

(
1− logm

log n

)
βν

(
log(nq/m)

log(n/m)

)
.

(5.2.9)

Before describing the connection between the multifractal spectra and the intermediate
dimensions, we observe that the grid on which a carpet can be defined is not unique, and
in fact by iterating the IFS one can see that every carpet can be defined on infinitely many
grids. For example, by iterating the IFS, the carpet from Figure 5.1 can be defined on a
2 × 3 grid or on a 4 × 9 grid (though of course many carpets on a 4 × 9 grid cannot be
realised on a 2× 3 grid). Theorem 5.2.4 gives information about the grids on which a carpet
can be defined, and is proved in Section 5.5.3. It demonstrates for example that since 2

and 3 are multiplicatively independent, a carpet with non-uniform fibres defined on a 2× 4

grid cannot be defined on a 3× 9 grid (even though log 4/ log 2 = log 9/ log 3).

Theorem 5.2.4. (i) If a Bedford–McMullen carpet Λ with non-uniform fibres can be
defined on both a m× n grid and on a m′ × n′ grid, then log n/ logm = log n′/ logm′

and log n/ log n′ ∈ Q.

(ii) Consider two carpets Λ1 and Λ2 with non-uniform fibres which are defined by IFSs S1

and S2 on grids of size m1 × n1 and m2 × n2 respectively. Then they can be realised
on the same grid if and only if

log n1
log n2

=
logm1

logm2
∈ Q .

In fact, we will see below that if two carpets with non-uniform fibres are bi-Lipschitz
equivalent then they can be defined on the same grid. The same is true even if we merely
assume the carpets have the same intermediate dimensions, or support uniform Bernoulli
measures with equal multifractal spectra.

We make some remarks about part (ii). The reverse implication is immediate. Indeed,
if log n1/ log n2 = logm1/ logm2 = a/b ∈ Q, then the b-th iterate of S1 and the a-th
iterate of S2 are both defined on the same grid of size mb

1 × nb1. It is straightforward to see
that the rate function I(t) of S1 and the rate function I(b)(t) of the b-th iterate of S1 are
related by I(b)(bt) = bI(t). Geometric quantities such as the intermediate dimensions and
multifractal spectra of course do not change by taking an iterate of the system. For the
reverse implication, if both carpets can be realised on the same grid, then the fact that
log n1/ logm1 = log n2/ logm2 was noted by Fraser and Yu using the Assouad spectrum
in [FY1, Theorem 3.3], and also follows from the intermediate dimension formula. The
fact that n and n′ must be multiplicatively dependent (as must m and m′) follows from
Lemma 5.5.3 on page 160, and is related to work of Meiri and Peres [MP, Theorem 1.2].
This is in turn related to Furstenberg’s ×2,×3 principle, which suggests that expansions in
different bases should have no common structure. Other work along these lines includes [Fur;
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Shm2; Wu], but there are many challenging open problems, such as whether there exists a
non-atomic measure on the torus that is ×2- and ×3-invariant but not Lebesgue.

Our next result, which we prove in Section 5.5.3 using Theorem 5.2.1, gives a direct
connection between the intermediate dimensions and the multifractal and Lq spectra of the
uniform self-affine measure.

Theorem 5.2.5. Let Λ and Λ′ be two Bedford–McMullen carpets with non-uniform fibres,
and denote the corresponding uniform self-affine measures by ν and ν ′. Then the following
are equivalent:

(i) dimθ Λ = dimθ Λ
′ for every θ ∈ [0, 1];

(ii) fν(α) = fν′(α) for all α ∈ (αmin, αmax).

Moreover, if (i), (ii) hold, then both carpets can be defined on the same grid.
Now assume that Λ and Λ′ are defined on the same m× n grid to begin with, with para-

meters {M0, N1, . . . , NM0 , R1, . . . , RM0} and {M ′
0, N

′
1, . . . , N

′
M ′

0
, R′

1, . . . , R
′
M ′

0
}, respectively.

Denote the corresponding rate functions defined in (5.2.2) by I(t) and I ′(t). Let t and t be
as defined previously, for the carpet Λ. Let (a, b) ⊂ (γ−1, 1) be a (non-empty) open interval.
Then each of (i), (ii) is equivalent to each of the following:

(iii) dimθ Λ = dimθ Λ
′ for every θ ∈ (a, b);

(iv) Tν(q) = Tν′(q) for all q ∈ R.

(v) I(t) = I ′(t− γ log(M ′/M)) for all t ∈ (t, t);

(vi) M0 =M ′
0, furthermore, Nı̂/N

′
ı̂ = (R′

ı̂/Rı̂)
γ = (M ′/M)γ for all ı̂ = 1, . . . ,M0.

We make several comments about Theorem 5.2.5.

Remark 5.2.6. 1. For carpets defined on the same grid, the equivalence of (ii) and the
explicit condition (vi) was proved by Rao, Yang and Zhang in [RYZ, Theorem 1.2],
using [JR].

2. In Step 4 of the proof of Proposition 5.2.11 in Section 5.3, we use scaling properties
of Legendre transforms to establish a direct link between the multifractal spectrum of
the uniform Bernoulli measure and the rate function I(t). Since I(t) appears in the
intermediate dimension formula, this indicates why the link between the intermediate
dimensions and multifractal spectrum in Theorem 5.2.5 is to be expected.

3. For carpets defined on the same grid with M = M ′, (vi) is simply saying that the
column sequence of one carpet is a permutation of the column sequence of the other.

4. Equality of the Lq dimensions and the coarse multifractal spectra can be added to the
above equivalences in Theorem 5.2.5 if the carpets are defined on the same grid, since
these quantities can be obtained from the Lq spectrum by dividing by 1− q or taking
the Legendre transform respectively.
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5. If (iv) holds then other notions of dimension of ν and ν ′ which can be deduced from
their Lq spectra must be equal, such as exact (Hausdorff/packing/entropy) dimension,
correlation dimension (Rényi entropy), Frostman dimension, and box dimension (in
the sense of [FFK1]).

6. The formulae in [Fra4] and (vi) can be used to show that equality of intermediate
dimensions implies equality of other notions of dimensions of sets such as packing,
Assouad, quasi-Assouad, lower, quasi-lower or modified lower dimensions, or the
Assouad spectrum or lower spectrum for any fixed θ ∈ (0, 1).

7. Since the multifractal spectrum is analytic (as the Legendre transform of an analytic
function), if I ⊆ (αmin, αmax) is an open interval, then (ii) holds for all α ∈ I if and
only if it holds for all α ∈ (αmin, αmax). Similarly, if J ⊆ (t, t) is an open interval
then (v) holds for all t ∈ J if and only if it holds for all t ∈ (t, t).

Question 5.2.7. In the statement of Theorem 5.2.5, can (a, b) be taken to be an arbitrary
non-empty open subinterval of (0, 1)?

Since the proof strategy of Lemma 5.5.3 on page 160 does not seem to work under the
assumption that the Lq spectra are equal, we ask the following question.

Question 5.2.8. Do there exist two Bedford–McMullen carpets with non-uniform fibres
which cannot be realised on the same grid but whose uniform Bernoulli measures have the
same Lq spectra?

Turning now to bi-Lipschitz equivalence, recall that two metric spaces (X, dX) and
(Y, dY ) are bi-Lipschitz equivalent if there is a bi-Lipschitz map f : X → Y . In our setting
X and Y are two Bedford–McMullen carpets with the Euclidean distance. The following
open problem seems challenging:

Question 5.2.9. Find an explicit necessary and sufficient condition that determines, given
two iterated function systems each generating a Bedford–McMullen carpet, whether or not
the two carpets are bi-Lipschitz equivalent.

Partial progress towards Question 5.2.9 has been made in [LLM; RYZ; YZ], all of which
assume some disconnectivity property. Fraser and Yu [FY1] used the Assouad spectrum to
show that γ is a bi-Lipschitz invariant within the class of Bedford–McMullen carpets, a fact
which is also evident from observing the form of the intermediate dimensions. Moreover,
the gap sequence of a set is a topological quantity which has been shown to be bi-Lipschitz
invariant [RRY], and which is known for Bedford–McMullen carpets [LMR; MXX]. Using
the fact that the intermediate dimensions are stable under bi-Lipschitz maps, we obtain
the following necessary condition for bi-Lipschitz equivalence as an immediate corollary of
Theorem 5.2.5.

Corollary 5.2.10. Let Λ and Λ′ be two Bedford–McMullen carpets with non-uniform fibres
which are bi-Lipschitz equivalent, and let ν and ν ′ be the corresponding uniform Bernoulli
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measures. Then fν(α) = fν′(α) for all α ∈ (αmin, αmax) and Tν(q) = Tν′(q) for all q ∈ R,
and both carpets can be defined on the same m×n grid, on which condition (vi) above holds.

This strengthens [RYZ, Corollary 1.1], where it is assumed that Λ and Λ′ are totally
disconnected and defined on the same grid. In Proposition 5.2.14, we construct two
carpets which we know are not bi-Lipschitz equivalent by Corollary 5.2.10, but where [RYZ,
Corollary 1.1] does not apply. Corollary 5.2.10 also shows in particular that if two carpets
defined on the same grid with the same number of non-empty columns are bi-Lipschitz
equivalent then the column sequence of one must be a permutation of the column sequence
of the other (though we are not able to draw this conclusion if the number of non-empty
columns is different, see Example 5.2.16).

One natural question would be to investigate the intermediate dimensions of self-affine
carpets of Lalley–Gatzouras [LG] or Barański [Bar1], or higher-dimensional self-affine
sponges. We expect this to be challenging, not least because there is no clear single
analogue of the important quantity γ, and this is not something which we will explore in
this thesis. We remark, however, that Huang, Rao, Wen and Xu [HRWX] have introduced
so-called box-counting measures of metric spaces and shown that Bedford–McMullen and
generalised Lalley–Gatzouras type sponges and Barański carpets admit such measures.
Indeed, for Bedford–McMullen carpets, these are simply the uniform Bernoulli measures.
After the paper [BK1] on which this chapter is based appeared on arXiv, Huang et al.
proved without any connectivity assumption that the multifractal spectrum of box-counting
measures is a bi-Lipschitz invariant; this was proved directly, without using the intermediate
dimensions. Their result therefore generalises both the result from [RYZ] and our result
that the multifractal spectrum of uniform Bernoulli measures on Bedford–McMullen carpets
with non-uniform fibres is bi-Lipschitz invariant. Huang et al. also ask in [HRWX, Open
problem 1] whether two generalised Lalley–Gatzouras or Barański sponges have the same
intermediate dimensions if and only if their corresponding box-counting measures have the
same multifractal spectra.

5.2.4 Equivalent forms of the rate function

In this section we provide equivalent formulations of the rate function I(t) in terms of a
pressure-like function, a certain probability vector with an entropy maximising property,
and the multifractal spectra fν(α) defined in (5.2.7). As a result, our main formula (5.2.5)
for dimθ Λ can be expressed with any of these quantities.

We begin by defining the pressure-like function. For ı = (i1, . . . , iJ) ∈ {1, . . . ,M}J and
k ∈ {0, 1, . . . , J}, we introduce

ψı|k(s) :=Mkγ · n−sk ·
k∏

ℓ=1

Niℓ . (5.2.10)

In particular, for k = 0, ψı|0(s) ≡ 1. The interpretation of ψı|k(s) later is that it gives the
s-cost of a set in the cover with diameter related to k, see Remark 5.4.12. Moreover, we
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define the sum
ΨJ(s) :=

∑

ı∈{1,...,M}J
min

k∈{0,1,...,J}
ψı|k(s).

This is connected to the total s-cost of the optimal cover, see Remark 5.4.12 for additional
explanation. To determine the critical exponent it is natural to define a pressure-like
quantity as the exponential growth rate of ΨJ(s), more formally,

P (s) := lim inf
J→∞

1

J
logΨJ(s) and P (s) := lim sup

J→∞

1

J
logΨJ(s). (5.2.11)

The probability vector Q∗
t ∈ PM is defined by

H(Q∗
t ) = sup

{
H(p) : p ∈ PM such that

M∑

ȷ̂=1

pȷ̂ logNȷ̂ = t
}
. (5.2.12)

It is well defined, see Lemma 5.3.2. Moreover, H(Q∗
t ) < logM since t > t.

We regularly relate the arguments s and t to each other via the transformation

t = t1(s) =

(
s− logM

logm

)
log n, or equivalently s =

t

log n
+

logM

logm
. (5.2.13)

We do so to ensure that

ψı|J(s) ⩽ 1 ⇐⇒ 1

J

J∑

ℓ=1

logNiℓ ⩽
(
s− logM

logm

)
· log n = t, (5.2.14)

which now follows from (5.2.10) and straightforward algebraic manipulations. Now, us-
ing (5.1.2) and (5.1.3), t maps to

s := dimH Λ− 1

log n


 log n

logm
log

(
1

M

M∑

ȷ̂=1

N
logm
logn

ȷ̂

)
− t


 , (5.2.15)

while t maps to

s := dimB Λ +
logM −H(P)

log n
. (5.2.16)

Observe that by Jensen’s inequality and non-uniform fibres, s < dimH Λ < dimB Λ < s. In
Proposition 5.2.11, the key technical result of Section 5.2.4, we make a clear connection
between (5.2.11), (5.2.12), (5.2.2) and (5.2.7) for pairs of (s, t) related by (5.2.13). The
proof is non-trivial and is given in Section 5.3.

Proposition 5.2.11. Assume s ∈ (s, s). Then P (s) = P (s). Let P (s) denote this common
value. Furthermore, for every pair (s, t) related by (5.2.13),

logM − I(t) = P (s) = H(Q∗
t ) = (logm)fν

(
logN

logm
−
(

1

logm
− 1

log n

)
t

)
− t

γ
.

Note also that by (5.2.9) and standard properties of Legendre transforms, fν and I can
be written in terms of the Legendre transform of Tν .
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5.2.5 Illustrative examples

A simple example of a carpet with non-uniform fibres is shown in Figure 5.1. The examples
in this section show additional interesting behaviour.

Remark 5.2.12. All figures of the graphs in this chapter were created using Wolfram
Mathematica 12.3, keeping simple implementation in mind rather than efficiency. For a
fixed θ ∈ (0, 1), the value of dimθ Λ was approximated by taking 225 equally spaced points in
the interval (dimH Λ, dimB Λ) and choosing the point s(θ) for which the expression in (5.2.5)
was closest to 0.

Remark 5.2.13. It was first observed in [Kol1] that the graph θ 7→ dimθ Λ can approach
dimB Λ from below the straight line ℓ(θ) = dimH Λ+ θ(dimB Λ− dimH Λ), indicating that it
is possible for dimθ Λ not to be concave on the whole range of θ. From Corollary 5.2.3 it
follows that in this case the graph θ 7→ dimθ Λ must intersect ℓ(θ). In fact, there are even
carpets where the graph intersects ℓ(θ) twice, as shown on the left of Figure 5.3. For the
carpets in this figure, all parameters remain the same except for m, which causes different
behaviour for larger values of θ as it changes. For m ⩽ 25, the graph stays above ℓ(θ) for
all θ.

Figure 5.3: Parameters n = 100 and N = (51, 50, 50, 50, 50, 50) are the same in each
example, only m varies from 30 on left to 50 on right.

Fraser and Yu [FY1, Proposition 3.4] proved a similar result to Proposition 5.2.14 for
the Assouad spectrum.

Proposition 5.2.14. Consider the two Bedford–McMullen carpets Λ and Λ′ with m =

M = 32 and n = 243 and the following parameters:

Λ: M0 = 3, {N1, N2, N3} = {27, 3, 1} and {R1, R2, R3} = {2, 11, 19},
Λ′ : M ′

0 = 3, {N ′
1, N

′
2, N

′
3} = {27, 9, 1} and {R′

1, R
′
2, R

′
3} = {1, 6, 25}.

There exists θ ∈ (0, 1) with dimθ Λ ̸= dimθ Λ
′, so Λ and Λ′ are not bi-Lipschitz equivalent.

However, dimΛ = dimΛ′ where dim can be Hausdorff or box dimension or any of the
notions of dimensions mentioned in part 6 of Remark 5.2.6.
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Proof. Since all Rı̂/R′
ı̂ are different, it follows from part (vi) of Theorem 5.2.5 that there

exists θ ∈ (0, 1) with dimθ Λ ̸= dimθ Λ
′. Since N = 106, max1⩽i⩽3Ni = max1⩽i⩽3N

′
i = 27,

and min1⩽i⩽M Ni = min1⩽i⩽M N ′
i = 1, we can use (5.1.2) and [Fra4, Corollary 15.5.3] to

show that the Hausdorff and modified lower dimensions are equal, and the formulae in [Fra4]
to show that the other dimensions are equal.

Figure 5.4 shows the plots of dimθ Λ and dimθ Λ
′ from Proposition 5.2.14 side-by-side on

the left, and the ratio dimθ Λ
′/ dimθ Λ on the right. Note that the fact that Λ and Λ′ from

are not bi-Lipschitz equivalent is revealed only by the intermediate dimensions, not by any
of the other dimensions mentioned above. If all the rectangles are chosen in a specific row,
then neither Λ nor Λ′ is totally disconnected, so [RYZ, Corollary 1.1] does not apply. We
can use Hölder distortion to obtain a quantitative improvement of the assertion that Λ and
Λ′ are not bi-Lipschitz equivalent. Indeed, assume f : Λ′ → R2 is α-Hölder with f(Λ′) ⊇ Λ.

Then the optimal value of θ to consider is θ = γ−2 =
(
log 2
log 3

)2
≈ 0.40. By (1.4.7),

α ⩽
dimγ−2 Λ′

dimγ−2 f(Λ′)
⩽

dimγ−2 Λ′

dimγ−2 Λ
< 0.9995,

with the last inequality computed numerically using Theorem 5.2.1.

Figure 5.4: Left: plot of dimθ Λ (blue) and dimθ Λ
′ (orange) from Proposition 5.2.14. Right:

ratio of dimθ Λ
′/ dimθ Λ for θ ⩾ γ−35.

Proposition 5.2.15. For any carpet with just two column types, meaning that M0 = 2 using
notation from Section 5.2.3, the rate function can be given explicitly by I(t) = logM−H(Q∗

t ),
where

H(Q∗
t ) =

−1

log(N1/N2)

(
(t− logN2) log

t− logN2

R1 log(N1/N2)
+ (logN1 − t) log

logN1 − t

R2 log(N1/N2)

)
.

Proof. Let q = (q1, . . . , qM0) ∈ PM0 . Entropy is increased the more uniform a vector is, so
it is enough to consider vectors p ∈ PM satisfying (5.2.12) of the form

pı̂ = qj/Rj , if the ı̂-th non-empty column has Nj maps, (5.2.17)
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in other words measure is distributed uniformly amongst columns with the same number of
maps. As a result, the linear constraints in (5.2.12) can be rewritten as

1 =

M0∑

j=1

qj and t =

M0∑

j=1

qj logNj . (5.2.18)

In particular, since M0 = 2, there is a single vector (q∗1, q
∗
2) which satisfies (5.2.18), namely

q∗1 =
t− logN2

log(N1/N2)
and q∗2 =

logN1 − t

log(N1/N2)
,

recalling N1 > N2. Using (5.2.17), we can calculate the entropy of the entropy-maximising
vector,

H(Q∗
t ) = −

M0∑

j=1

q∗j log(q
∗
j /Rj),

and conclude from Proposition 5.2.11 that I(t) = logM −H(Q∗
t ), as required.

Example 5.2.16 (using the parameters from Example 1.2 of Rao, Yang and Zhang [RYZ]).
Consider two Bedford–McMullen carpets defined on the same grid with m = 8, n = 27 and
the following parameters:

Λ : M0 = 2, {N1, N2} = {6, 3} and {R1, R2} = {1, 1},
Λ′ : M ′

0 = 2, {N ′
1, N

′
2} = {2, 1} and {R′

1, R
′
2} = {2, 2}.

Then condition (vi) from Theorem 5.2.5 holds, so dimθ Λ = dimθ Λ
′ for all θ ∈ [0, 1], despite

the fact that the carpets are defined on the same grid with different parameters. This is only
possible because the number of non-empty columns is different.

It is shown in [RYZ] that the carpets in Example 5.2.16 are not bi-Lipschitz equivalent.
Therefore equality of the intermediate dimensions is not a sufficient condition for two
carpets with non-uniform fibres to be bi-Lipschitz equivalent, even if they are assumed to
be defined on the same grid and totally disconnected. This raises the following question.

Question 5.2.17. Suppose two Bedford–McMullen carpets both have non-uniform fibres,
are defined on the same grid, and are bi-Lipschitz equivalent. Does it follow that both carpets
must have identical parameters (M0, N1, . . . , NM0 , R1, . . . , RM0)?

Example 5.2.18. Consider the two carpets Λ and Λ′ with parameters

Λ : n = 36, m = 6, M =M0 = 2, {N1, N2} = {9, 6} and {R1, R2} = {1, 1}
Λ′ : n = 36, m = 4, M =M0 = 2, {N1, N2} = {6, 4} and {R1, R2} = {1, 1}.

Then it can be checked from Theorem 5.2.1 that dimθ Λ = dimθ Λ
′ for all θ ∈ [1/2, 1], but

not for the whole range of θ; by Theorem 5.2.5 this is only possible because the carpets are
defined on different grids. By Corollary 5.2.3, the graph of dimθ Λ has a phase transition at
θ = 1/2 but the graph of dimθ Λ

′ does not, see Figure 5.5.
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Figure 5.5: Plots of the intermediate dimensions of carpets in Example 5.2.18.

5.3 Proof of equivalent forms of the rate function

In this section we will prove Proposition 5.2.11. Recall notation from Section 5.2, and
assume that s ∈ (s, s) and that (s, t) are related by (5.2.13). We will prove Proposition 5.2.11
in four steps.

Step 1 H(Q∗
t ) = logM − I(t)

Step 2 P (s) ⩽ H(Q∗
t )

Step 3 H(Q∗
t ) ⩽ P (s)

Step 4 I(t) = −(logm)fν

(
logN
logm −

(
1

logm − 1
logn

)
t
)
+ t

γ + logM

We will prove the steps in separate subsections, which will also contain some auxiliary
results which are important in their own right in the proof of Theorem 5.2.1.

5.3.1 Preliminaries

First, we need some preliminaries, in particular to describe the probability vectors P∗
t and

Q∗
t which have certain optimising properties, and to recall some facts from the method of

types. If k, k1, k2 ∈ N satisfy 0 ⩽ k1 < k2 ⩽ k, and ı̂ ∈ {1, . . . ,M}k, then we define the
average

τ (̂ı, k1, k2) := max

{
t,

1

k2 − k1

k2∑

j=k1+1

logNı̂j

}
. (5.3.1)

Recall, PM denotes the set of probability vectors on [M ] = {1, . . . ,M} and we introduced
two distinguished probability vectors P := (N1/N, . . . , NM/N) and Q := (1/M, . . . , 1/M).
Recall that the Kullback–Leibler divergence, also known as the relative entropy of p ∈ PM
with respect to q ∈ PM is

H(p∥q) :=
M∑

ı̂=1

pı̂ log

(
pı̂
qı̂

)
= −H(p)−

M∑

ı̂=1

pı̂ log qı̂,
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where we again use the convention 0 log 0 = 0. It is asymmetric and H(p∥q) ⩾ 0 with
equality if and only if p = q. In particular,

H(p∥P) = logN −H(p)−
M∑

ı̂=1

pı̂ logNı̂ and H(p∥Q) = logM −H(p). (5.3.2)

Recall that t := 1
M

∑M
ȷ̂=1 logNȷ̂ and t := logN −H(P), and let t ∈ (t, t). We divide the

set PM into two parts:

Gt :=
{
p ∈ PM :

M∑

ı̂=1

pı̂ logNı̂ ⩽ t

}
and Ft :=

{
p ∈ PM :

M∑

ı̂=1

pı̂ logNı̂ ⩾ t

}
, (5.3.3)

so that Et := Gt∩Ft =
{
p ∈ PM :

∑
ı̂ pı̂ logNı̂ = t

}
. The reason for doing this will become

clear in (5.3.9) in the proof of Step 2. Since t > t, it follows that Q ∈ Gt \ Et, whereas
P ∈ Ft \ Et because t < t =

∑M
ı̂=1 Pı̂ logNı̂.

Lemma 5.3.1. Assume t ∈ (t, t) and p ∈ Et. Then

H(p∥P) = H(p∥Q) + log(N/M)− t.

Proof. Let p ∈ Et. Assume N ′
1 < N ′

2 < · · · < N ′
M0

denote the different values that the set
{N1, . . . , NM} takes. For 1 ⩽ j ⩽ M0 let Ij := { ı̂ ∈ [M ] : Nı̂ = N ′

j } and qj :=
∑

ı̂∈Ij pı̂.
Then,

1 =
M∑

ı̂=1

pı̂ =

M0∑

j=1

qj and t =
M∑

ı̂=1

pı̂ logNı̂ =

M0∑

j=1

qj logN
′
j .

This is a linear system of equations for {qj}M0
j=1. Straightforward Gaussian elimination

yields

[
1 . . . 1 1

logN ′
1 . . . logN ′

M0
t

]
∼


1 1 1 . . . 1 1

0 1
log(N ′

3/N
′
1)

log(N ′
2/N

′
1)

. . .
log(N ′

M0
/N ′

1)

log(N ′
2/N

′
1)

t−logN ′
1

log(N ′
2/N

′
1)


 .

Thus, for every solution (q1, . . . , qM0), we see that q3, . . . , qM0 are free variables, and
moreover

q2 =
1

log(N ′
2/N

′
1)

(
t−

M0∑

j=3

qj logN
′
j −

(
1−

M0∑

j=3

qj

)
logN ′

1

)

and q1 = 1 − q2 − ∑M0
j=3 qj . It now follows by a straightforward calculation that∑M0

j=1 qj logN
′
j = t. By (5.3.2), the result follows.

Let us introduce P∗
t ∈ Gt, Q∗

t ∈ Ft defined by

H(P∗
t ∥P) = inf

p∈Gt

H(p∥P) and H(Q∗
t ∥Q) = inf

q∈Ft

H(q∥Q). (5.3.4)

Due to (5.3.2) and Lemma 5.3.2, this definition of Q∗
t is equivalent to (5.2.12).
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Lemma 5.3.2. Assume t ∈ (t, t). Then both P∗
t and Q∗

t are well defined and unique, with
P∗
t ,Q

∗
t ∈ Et. Moreover,

H(P∗
t ∥P) = H(Q∗

t ∥Q) + log(N/M)− t. (5.3.5)

Proof. Both H(· ∥P) and H(· ∥Q) are continuous on the domain PM , and Gt and Ft are
compact, so both infima are attained.

We will proceed to differentiate the relative entropy (with respect to a fixed vector q

in the interior of PM ) along straight lines in PM . Fix p,q ∈ PM , and assume that all
entries of q are positive. Fix v ∈ RM \ {0} satisfying

∑M
ı̂=1 vı̂ = 0. Let [−t−, t+] denote the

maximal interval (containing the origin) such that H(p+ tv∥q) ∈ PM for all t ∈ [−t−, t+].
Then for all t ∈ (−t−, t+), a direct computation gives

d

dt
H(p+ tv∥q) =

∑
vı̂ log

(
pı̂ + tvı̂
qı̂

)
;

d2

dt2
H(p+ tv∥q) =

∑ v2ı̂
pı̂ + tvı̂

> 0,

where the sums are taken over all indices 1 ⩽ ı̂ ⩽ M for which pı̂ + tvı̂ > 0 for all
t ∈ (−t−, t+). Therefore t 7→ H(p+ tv∥q) is strictly convex, and has at most one minimum
in [−t−, t+]. In particular, the uniqueness of P∗

t and Q∗
t follows from the convexity of Gt

and Ft respectively. Note also that for all t ∈ (0, t+),

d

dt
H(q+ tv∥q) =

M∑

ı̂=1

vı̂ log

(
1 +

vı̂
qı̂
t

)
> 0,

so t 7→ H(q+ tv∥q) is strictly increasing on (0, t+). Applying this with q taken to be P or
Q respectively gives that P∗

t ,Q
∗
t ∈ Et.

To conclude, Lemma 5.3.1 gives that

H(Q∗
t ∥P) = H(Q∗

t ∥Q) + log(N/M)− t ⩽ H(P∗
t ∥Q) + log(N/M)− t = H(P∗

t ∥P)

⩽ H(Q∗
t ∥P),

so there is equality throughout.

The importance of choosing t to lie in the interval (t, t) (or equivalently s ∈ (s, s)) is
that in this case the hyperplane Et separates P and Q. Otherwise, either H(P∗

t ∥P) = 0 or
H(Q∗

t ∥Q) = 0, and (5.3.5) does not necessarily hold.

5.3.2 Method of types

The method of types is an elementary tool developed to study discrete memoryless systems
in information theory. It has since found applications in hypothesis testing, combinatorics
and large deviations (see [Csi] for some background). Kolossváry used it to calculate the
box dimension of Lalley–Gatzouras and Barański sponges in Rd [Kol2].

Let [M ] = {1, . . . ,M} denote a finite alphabet and assume ı = (i1, . . . , iJ) ∈ [M ]J . For
J ′ ⩽ J , the type of ı at level J ′ is the empirical probability vector

τ JJ ′(ı) =
1

J ′
(
#{ 1 ⩽ ℓ ⩽ J ′ : iℓ = j }

)
j∈[M ]

∈ [0, 1]M .

127



When J ′ = J , we simply write τJ(ı) := τ JJ (ı). The set of all possible types of [M ]J is

TJ =
{
p ∈ PM : there exists ı ∈ [M ]J such that p = τJ(ı)

}
,

and for J ′ ⩽ J , the type class of p ∈ TJ ′ amongst [M ]J is the set

T JJ ′(p) =
{
ı ∈ [M ]J : τ JJ ′(ı) = p

}
.

Similarly, TJ(p) := T JJ (p).
We use the following two simple facts:

#TJ ⩽ (J + 1)M (5.3.6)

and for every type class

(
J + 1

)−M
eJ ·H(p) ⩽ #TJ(p) ⩽ eJ ·H(p), (5.3.7)

see [DZ, Lemmas 2.1.2 and 2.1.8]. The importance of (5.3.6) is that #TJ grows only
polynomially in J , on the other hand, the exponential terms in (5.3.7) are the same in both
the lower and upper bounds. Since we are looking for critical exponents, sub-exponential
multiplicative terms do not influence our calculations. To simplify notation, we write
f(J) ≍ g(J) if the exponential rates of growth of f(J) > 0 and g(J) > 0 exist and are
equal to each other, so

f(J) ≍ g(J) ⇐⇒ lim
J→∞

1

J
log f(J) = lim

J→∞
1

J
log g(J).

In particular, if f(J) is sub-exponential in J , then f(J) ≍ 1.
The set TJ is a discrete set with polynomially many points which becomes dense in PM

as J → ∞. For p ∈ PM let pJ denote the ‘best approximation’ of p in TJ , in the sense
that ∥p− pJ∥ = minq∈TJ ∥p− q∥, where we can take any norm. If there are many such
pJ then we can choose the one with smallest coordinates when ordered lexicographically.
For large enough J , ∥p− pJ∥ is arbitrarily small. In particular, property (5.3.7) and the
continuity of the entropy imply that #TJ(pJ) ≍ eJ ·H(p).

5.3.3 Proof of Step 1

This is a standard argument in large deviations theory, and in fact holds for all t ∈
(t,max1⩽i⩽M logNi). We include a sketch of it for the convenience of the reader. An
alternative approach would be to use Lagrange multipliers.

Let I = I1, I2, . . . be an infinite sequence of independent and identically distributed
random variables on the set {1, . . . ,M} according to q ∈ PM . Let Pq := qN denote the
product measure corresponding to the distribution of the sequence I. Then τJ(I), the type
of (I1, . . . , IJ), is a vector-valued random variable. For all p ∈ TJ ,

(J + 1)−Me−J ·H(p∥q) ⩽ Pq(τJ(I) = p) ⩽ e−J ·H(p∥q),
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see [DZ, Lemma 2.1.9]. Sanov’s theorem [DZ, Theorem 2.1.10] shows that the family of
laws Pq(τJ(I) ∈ ·) satisfies a large deviations principle with the rate function H(·∥q). In
particular, for q = Q = (1/M, . . . , 1/M) and the subset Ft:

PQ(τJ(I) ∈ Ft) ≍ e−J infq∈Ft H(q∥Q) = e−JH(Q∗
t ∥Q).

Now define the random variable Xℓ := logNIℓ and the averages YJ := 1
J

∑J
ℓ=1Xℓ. Then

YJ =

M∑

ı̂=1

τJ,̂ı(I) · logNı̂

is a continuous function of τJ(I). Hence, by the ‘contraction principle’ [DZ, Section 4.2.1],
the rate function I(t) of PQ(YJ ∈ ·) is equal to

I(t) = inf
{
H(q∥Q) :

M∑

ı̂=1

qı̂ logNı̂ = t
}
.

In particular, Lemma 5.3.2 implies that

I(t) = inf
q∈Et

H(q∥Q)
(5.3.4)
= H(Q∗

t ∥Q)
(5.3.2)
= logM −H(Q∗

t ).

5.3.4 Proof of Step 2

Since mink∈{0,1,...,J} ψı|k(s) ⩽ min{1, ψı|J(s)}, recall definition of ψı|k(s) from (5.2.10),

ΨJ(s) ⩽ #
{
ı ∈ [M ]J : 1 < ψı|J(s)

}
+

∑

ı∈[M ]J :ψı|J (s)⩽1

ψı|J(s). (5.3.8)

Lemma 5.3.3. Assume t ∈ (t,max1⩽i⩽N logNi) and (s, t) are related by (5.2.13). Then

#
{
ı ∈ [M ]J : 1 < ψı|J(s)

}
≍ eJ ·H(Q∗

t ).

Proof. For any given word ı ∈ [M ]J , the average of the logNiℓ does not depend on the
particular order of the symbols in ı, just on the relative frequency of each symbol. In other
words, only the type τJ(ı) = (τJ,1(ı), . . . , τJ,M (ı)) of ı matters, and (recalling (5.2.14))

ψı|J(s) ⩽ 1 ⇐⇒
M∑

ı̂=1

τJ,̂ı(ı) logNı̂ ⩽ t.

This reduces the problem back to a condition on probability vectors p ∈ PM . This is the
reason why we introduced Gt and Ft the way we did in (5.3.3); we now see that

ψı|J(s) ⩽ 1 ⇐⇒ τJ(ı) ∈ Gt. (5.3.9)

We are now ready to determine the exponential rate of growth of the two terms in (5.3.8)
separately by grouping together words according to type class. Let Q∗

t,J ∈ (Ft ∩ TJ) be the
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type for which H(Q∗
t,J) = maxq∈(Ft∩TJ )H(q) (if there is more than one such vector then

we can choose the smallest lexicographically). Then

(J + 1)−MeJ ·H(Q∗
t,J ) ⩽ #

{
ı ∈ [M ]J : 1 < ψı|J(s)

}
=

∑

q∈(Ft∩TJ )
#TJ(q) ⩽ #TJ · eJ ·H(Q∗

t,J ),

where we used (5.3.7) for the two inequalities. As J → ∞, the set TJ becomes dense in
PM , as a result, ∥Q∗

t,J − Q∗
t ∥ → 0, in particular, H(Q∗

t,J) → H(Q∗
t ). Hence, it follows

from (5.3.6) that #
{
ı ∈ [M ]J : 1 < ψı|J(s)

}
≍ eJ ·H(Q∗

t ).
An alternative way to see this would be to let X1, X2, . . . , XJ , . . . be a sequence of i.i.d.

random variables defined by (5.2.1). Then

#
{
ı ∈ [M ]J : 1 < ψı|J(s)

}
=MJP

(
J∑

i=1

Xi > tJ

)
≍MJe−J ·I(t) = eJ ·H(Q∗

t ),

where we used (5.2.14) for the first equality, Cramér’s theorem from large deviations theory
for the asymptotic equality, and Step 1 for the final equality.

Lemma 5.3.4. Assume s ∈ (s, s) and (s, t) are related by (5.2.13). Then
∑

ı∈[M ]J :ψı|J (s)⩽1

ψı|J(s) ≍ eJ ·H(Q∗
t ).

Proof. If ı ∈ TJ(p), then

ψı|J(s) =MJ logm nn−sJ ·
M∏

ı̂=1

Npı̂J
ı̂ = e

J
((

logM
logm

−s
)
·logn+∑

ı̂ pı̂ logNı̂

)
= eJ(−t+

∑
ı̂ pı̂ logNı̂).

(5.3.10)
Using (5.3.7) and (5.3.2),

#TJ(p) · ψı|J(s) ≍ eJ(−t+
∑

ı̂ pı̂ logNı̂+H(p)) = eJ(−t+logN−H(p∥P)).

Similarly to Q∗
t,J , let P∗

t,J ∈ (Gt ∩ TJ) satisfy H(P∗
t,J∥P) = minp∈(Gt∩TJ )H(p∥P). We have

H(P∗
t,J∥P) → H(P∗

t ∥P) as J → ∞. Then

∑

ı∈[M ]J :ψı|J (s)⩽1

ψı|J(s) =
∑

p∈(Gt∩TJ )

∑

ı∈TJ (p)
ψı|J(s) ≍ eJ(−t+logN−H(P∗

t,J∥P)).

Using (5.3.5) and (5.3.2) in the exponent, −t+ logN −H(P∗
t ∥P) = logM −H(Q∗

t ∥Q) =

H(Q∗
t ), and the assertion follows.

Note the importance of the assumption t < t in the proof of Lemma 5.3.4. Lemmas 5.3.3
and 5.3.4 and (5.3.8) immediately imply that P (s) ⩽ H(Q∗

t ).
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5.3.5 Proof of Step 3

This in fact holds for all t ∈ (t,max1⩽i⩽N logNi). Assume (s, t) are related by (5.2.13). Fix
R ∈ N. For J ∈ N, if l ∈ {0, 1, . . . , R− 1}, let Jl,R := ⌊(l+1)J/R⌋− ⌊lJ/R⌋. We introduce

St,J,R :=
{
ı = (i1, . . . , iJ) ∈ [M ]J :(i⌊lJ/R⌋+1, . . . , i⌊(l+1)J/R⌋) ∈ TJl,R(Q

∗
t,Jl,R

)

for all l ∈ {0, 1, . . . , R− 1}
}
.

(5.3.11)

Then

#St,J,R =
R−1∏

l=0

#TJl,R(Q
∗
t,Jl,R

)
(5.3.7)≍

R−1∏

l=0

e
Jl,R·H(Q∗

t,Jl,R
) ≍ eJ ·H(Q∗

t ) = eJ(logM−I(t))

(5.3.12)
as J → ∞, using Step 1 of Proposition 5.2.11 in the last step.

Suppose (i1, . . . , iJ) ∈ St,J,R. For all l ∈ {0, 1, . . . , R − 1}, Q∗
t,Jl,R

→ Q∗
t ∈ Et, so

ψ(i⌊lJ/R⌋+1,...,i⌊(l+1)J/R⌋)|Jl,R(s) ≍ 1 as J → ∞ by (5.2.14). Let J ′ ∈ N be large enough that
for all J ⩾ J ′ and l ∈ {0, 1, . . . , R− 1}, ψ(i⌊lJ/R⌋+1,...,i⌊(l+1)J/R⌋)|Jl,R(s) ⩾ e−tJl,R/R. Assume
J ⩾ J ′. For each k ∈ {1, . . . , J} let p(k) denote the type class of (i1, . . . , ik) and let
l ∈ {0, 1, . . . , R− 1} be such that ⌊lJ/R⌋ < k ⩽ ⌊(l + 1)J/R⌋. Then

ψ(i1,...,ik)|k(s)
(5.3.10)
= ek(−t+

∑
ı̂ pı̂(k) logNı̂) ⩾ e⌊lJ/R⌋(−t+∑

ı̂ pı̂(⌊lJ/R⌋) logNı̂)e(⌊lJ/R⌋−k)t

⩾ ψ(i1,...,i⌊lJ/R⌋)|⌊lJ/R⌋(s)e
−2tJ/R

⩾ e−3tJ/R, (5.3.13)

where in the last step we use that by (5.2.10),

ψ(i1,...,iA,iA+1,...,iA+A′ )|A+A′(s) = ψ(i1,...,iA)|A(s)ψ(iA+1,...,iA+A′ )|A′(s).

Therefore

P (s) = lim inf
J→∞

1

J
logΨJ(s) ⩾ lim inf

J→∞
1

J
log

∑

ı∈St,J,R

min
k∈{0,1,...,J}

ψı|k(s) ⩾ H(Q∗
t )− 3t/R.

Since R ∈ N was arbitrary, the assertion P (s) ⩾ H(Q∗
t ) follows.

5.3.6 Proof of Step 4

This is an application of [JR, Theorem 1], and in fact holds for all

t ∈
(

min
1⩽i⩽M

logNi, max
1⩽i⩽M

logNi

)
.

Indeed, by (5.2.6), for all λ,

(logm)

(
βν

(
λ− γ−1

(logm)( 1
logm − 1

logn)

)
+

(λ− γ−1) logNlogm

(logm)( 1
logm − 1

logn)

)
− logM

= log

(
1

M

M∑

ı̂=1

Nλ
i

)
.

Taking the Legendre transform of each side and using standard properties of Legendre trans-
forms and (5.2.2) and (5.2.7) proves Step 4. This completes the proof of Proposition 5.2.11.
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5.4 Proof of the intermediate dimensions formula

In this section, we prove Theorem 5.2.1. We begin by collecting some notation and facts used
in the proof. Throughout the section, Λ is a Bedford–McMullen carpet with non-uniform
fibres.

5.4.1 Approximate squares

Let F = {fi}Ni=1 be an IFS generating a Bedford–McMullen carpet Λ with M non-empty
columns. Recall, [N ] = {1, 2, . . . , N} and [M ] = {1, 2, . . . ,M}. To keep track of which
column fi maps to, we introduce the function

ϕ : [N ] → [M ], ϕ(i) := ı̂ if fi maps to column ı̂. (5.4.1)

We define the symbolic spaces Σ = [N ]N and ΣH = [M ]N with elements i = i1i2 · · · ∈ Σ

and ı̂ = ı̂1ı̂2 · · · ∈ ΣH. We use the convention that indices i corresponding to maps have
a ‘dot’ while the indices ı̂ corresponding to columns have a ‘hat’ on top. To truncate i

(respectively ı̂) at the first n symbols we write i|n = i1i2 · · · in (respectively ı̂|n). The
longest common prefix of i and j is denoted by i∧j: its length is |i∧j| = min{ k : ik ̸= jk }−1.
The function ϕ naturally induces the map Φ: Σ → ΣH defined by

Φ(i) := ı̂ = ϕ(i1)ϕ(i2) · · · .

Slightly abusing notation, Φ is also defined on finite words: Φ(i1 · · · in) = ϕ(i1) · · ·ϕ(in).
For compositions of maps, we use the standard notation fi1···in := fi1 ◦ fi2 ◦ · · · ◦ fin .

The n-th level cylinder corresponding to i is Cn(i) := fi|n([0, 1]2). The sets {Cn(i)}∞n=1 form
a nested sequence of compact sets with diameter tending to zero, hence their intersection is
a unique point x ∈ Λ. This defines the natural projection Π: Σ → Λ,

Π(i) := lim
n→∞

∞⋂

n=1

Cn(i) = lim
n→∞

fi|n(0).

The coding of a point x ∈ Λ is not necessarily unique, but Π is finite-to-one.
It is not efficient to cover cylinder sets separately, instead they are grouped together to

form ‘approximate squares’ which play the role of balls in a cover of the attractor. Recall,
γ = logm n and for ℓ,K ∈ N let

γℓ(K) := ⌊γℓ ·K⌋.

In particular, we write γ(K) = γ1(K), and n−K ⩽ m−γ(K) < n−(K−1). A level-K
approximate square is

BK(i) :=
{
Cγ(K)(ȷ) : ȷ ∈ [N ]γ(K), ȷ|K = i|K, Φ(ȷ) = Φ(i|γ(K))

}
.

It is a collection of level-γ(K) cylinder sets that lie in the same level-γ(K) column of a
specific level-K cylinder set. In other words, Π(j) ∈ BK(i) if and only if |i ∧ j| ⩾ K and
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|Φ(i) ∧ Φ(j)| ⩾ γ(K). Hence, abusing notation slightly, we identify BK(i) with the single
sequence

BK(i) = (i1, . . . , iK , ϕ(iK+1), . . . , ϕ(iγ(K))) = (i1, . . . , iK , ı̂K+1, . . . , ı̂γ(K)).

The choice of γ(K) implies that there exists C ⩾ 1 independent of K and i such that
C−1n−K ⩽ |BK(i)| ⩽ Cn−K . The constant C does not influence the behaviour of the
s-cost of any cover with approximate squares. It is easy to see that two approximate squares
are either disjoint, completely agree or intersect just on the boundary. Hence, the set of
all level-K approximate squares, denoted by BK , gives an efficient n−K-cover of Λ with
cardinality

#BK = NK ·Mγ(K)−K (5.1.3)
= nK dimB Λ.

5.4.2 Two lemmas

Recall that Ts(t) =
(
s − logM

logm

)
log n+ γI(t). Since I(t) is strictly convex, there exists a

unique t′ such that I ′(t′) = γ−1.

Lemma 5.4.1. For each fixed s ∈ R, the function Ts(t) is strictly convex with a minimum
at t, and satisfies T ′

s(t
′) = 1. Moreover, for all s ⩾ dimHΛ and t ∈ R we have Ts(t) ⩾ t

with equality if and only if s = dimH Λ and t = t′.

Proof. Since I(t) is strictly convex with a minimum at t, the same is true of Ts(t) for each
fixed s ∈ R, and the definition of t′ implies that T ′

s(t
′) = 1. Using the formula (5.1.2) for

dimH Λ and then that

I(t′) = γ−1t′ − log

(
1

M

M∑

ı̂=1

Nγ−1

ı̂

)
,

one gets TdimH Λ(t
′) = t′ after simplifications. Note that Ts(t′) > TdimH Λ(t

′) = t′ for all
s > dimH Λ, which is enough to complete the proof.

Since I(t) is strictly increasing, let t∗ denote the unique solution to the equation

dimH Λ = dimB Λ−
(
1− γ−1

) I(t∗)
logm

. (5.4.2)

Recall the notation for tℓ(s) from (5.2.4).

Lemma 5.4.2. We have t1(dimH Λ) < t′ < t∗.

Proof. Since I(t) = 0, we have t1(dimH Λ) = TdimH Λ(t). Also I ′(t) < γ−1 = I ′(t′) and I is
strictly convex, so t < t′. But TdimH Λ is strictly increasing, so

t1(dimH Λ) = TdimH Λ(t) < TdimH Λ(t
′) = t′,

where the last equality is by Lemma 5.4.1.
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To prove t′ < t∗, for z ∈ R define

f(z) := log n logM − log n log

M∑

ı̂=1

N
z

logn

ı̂ +log n log(N/M)− (log n− z)
∑M

k̂=1
N

z
logn

k̂
logNk̂

∑M
ȷ̂=1N

z
logn

ȷ̂

.

Then after some algebraic manipulations,

f ′(z) = −
(
1− z

log n

)
∑

ı̂

N
z

logn

ı̂
∑

ȷ̂N
z

logn

ȷ̂

(logNı̂)
2 −

(∑

k̂

N
z

logn

k̂
∑

ℓ̂N
z

logn

ℓ̂

logNk̂

)2

 < 0

for all z ∈ [logm, log n) by Jensen’s inequality, using that Λ has non-uniform fibres.
Moreover, f is continuous on R, so f(logm) > f(log n) = 0, so

0 <
f(logm)

log(n/m)

=
d

dλ

(
λ
((

dimH Λ− logM

logm

)
log n+ γ(dimB Λ− dimH Λ)

logm

1− γ−1

)

− log

(
1

M

M∑

ȷ̂=1

Nλ
ȷ̂

))∣∣∣
λ=γ−1

(5.4.3)

=
d

dλ


λTdimH Λ(t

∗)− log

(
1

M

M∑

ȷ̂=1

Nλ
ȷ̂

)

∣∣∣
λ=γ−1

, (5.4.4)

where (5.4.3) is by (5.1.2) and (5.1.3), and (5.4.4) is by (5.4.2) and (5.2.3). This means
that the value of λ at which the supremum in the definition of I(TdimH Λ(t

∗)) in (5.2.2) is
attained is greater than γ−1. Equivalently, I ′(TdimH Λ(t

∗)) > γ−1. By the definition of t′,
this means that TdimH Λ(t

∗) > t′. By Lemma 5.4.1, it follows that t′ < t∗.

5.4.3 Upper bound for θ = γ−(L−1)

In Lemma 5.4.4 we construct a cover in the case when θ = γ−(L−1) in order to establish
certain relations which are crucial in bounding the s-cost of the more complicated general
cover in Section 5.4.5. In Section 5.4.4 we will establish the matching lower bound. Recall,
for θ ∈ (0, 1) we defined L := 1 + ⌊− log θ

log γ ⌋ so that γ−L < θ ⩽ γ−(L−1), and for δ > 0 we
define K := ⌊− log δ

logn ⌋. Figure 5.6 is a diagram representing some approximate squares of
levels K, γ(K) and γ2(K). The proof strategy is to keep a level-K approximate square
at level K if and only if τ (̂ı,K, γ(K)) exceeds a constant τ1 which remains unspecified for
now (recalling notation from (5.3.1)). Of those which we subdivide, we keep them at level
γ(K) if and only if τ (̂ı, γ(K), γ2(K)) ⩾ τ2. Continuing this process gives a cover of Λ using
approximate squares at levels K, γ(K), . . . , γL−1(K) = ⌊K/θ⌋. This means that, up to
some constant, all covering sets have diameter in the correct range [δ, δ1/θ]. In Lemma 5.4.4
we calculate the s-cost of this cover for an arbitrary tuple, which will allow us to prove in
Lemma 5.4.5 that the relevant ti(s) are bounded above by t, so results from Section 5.3 will
apply. At the end we will optimise the thresholds so that the exponential rate of growth of
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δ

δγ δγ
2

Figure 5.6: Approximate squares of size δγ and δγ2 inside an approximate square of size δ.

each part is the same. The unique s for which this can be done gives us the upper bound
for dimθΛ.

Lemma 5.4.3 will be used to calculate the cost of the cover in Lemma 5.4.4. Lemma 5.4.3
is rather similar to Lemma 5.3.4, and is also proved using the method of types. For a
probability vector p we write tp :=

∑
ı̂ pı̂ logNı̂. For a word (i1, . . . , iJ) ∈ [N ]J , we write

ı̂ = (̂ı1, . . . , ı̂J) = (ϕ(i1), . . . , ϕ(iJ)) ∈ [M ]J , recall (5.4.1).

Lemma 5.4.3. For all t ∈ [t,max1⩽ı̂⩽M logNı̂),

#{ (i1, . . . , iJ) ∈ [N ]J : τ (̂ı, 0, J) ⩽ t } ≍ e(min{t,t}+logM−I(min{t,t}))J .

If, on the other hand, t ∈ (min1⩽ı̂⩽M logNı̂, t), then

lim sup
J→∞

1

J
log#

{
(i1, . . . , iJ) ∈ [N ]J :

J∑

j=1

logNı̂j ⩽ tJ
}
⩽ t+ logM < t+ logM.

Proof. The second part of the statement holds simply by the fact that there are MJ strings
of length J on the alphabet [M ], so we only prove the first part of the statement. The
strategy for the upper bound is to work with an arbitrary type class and then use the
fact that there are only polynomially many type classes. Note that if p ∈ TJ and ȷ is any
representative of the type class TJ(p) then

#{ i ∈ [N ]J : ı̂ = ȷ } =

M∏

k̂=1

N
pk̂J

k̂
.

Therefore

#{ (i1, . . . , iJ) ∈ [N ]J : τ (̂ı, 0, J) ⩽ t } =
∑

p∈TJ :tp⩽t
#TJ(p) ·

M∏

k̂=1

N
pk̂J

k̂

⩽
∑

p∈TJ :tp⩽t

M∏

k̂=1

N
pk̂J

k̂
·#
{
ı̂ ∈ [M ]J :

1

J

J∑

ℓ=1

logNı̂ℓ ⩾ tp

}
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≍
∑

p∈TJ :tp⩽t
etpJe

J ·H(Q∗
tp

) by Lemma 5.3.3

≍
∑

p∈TJ :tp⩽t
eJ(tp+logM−I(tp)) by Step 1 of Proposition 5.2.11

⩽ #TJ · e(min{t,t}+logM−I(min{t,t}))J since 0<I′(τ)<1 if τ∈(t,t],
I′(τ)>1 if τ∈(t,max1⩽ı̂⩽M logNı̂)

≍ e(min{t,t}+logM−I(min{t,t}))J by the upper bound of (5.3.7).

For the lower bound, if q is the closest approximation in TJ to Q∗
min{t,t} for which tq ⩽ t,

then

#{ (i1, . . . , iJ) ∈ [N ]J : τ (̂ı, 0, J) ⩽ t } ⩾ #TJ(q) ·
M∏

k̂=1

N
qk̂J

k̂

⩾ etqJ(J + 1)−MeJ ·H(q) by the lower bound of (5.3.7)

≍ e
(min{t,t}+H(Q∗

min{t,t}))J since q→Q∗
min{t,t}∈Emin{t,t} by Lemma 5.3.2

and since H is continuous

≍ e(min{t,t}+logM−I(min{t,t}))J by Step 1 of Proposition 5.2.11.

Therefore the first part of the statement of Lemma 5.4.3 holds.

In order to calculate the s-cost of the cover we construct in the proof of Lemma 5.4.4,
for τ = (τ1, . . . , τL−1) ∈ (t, t)L−1 and s ∈ [dimH Λ,dimB Λ] we introduce

Gτ
1 (s) :=

logN

log n
+ γL−1

(
1− γ−1

) logM
logm

− γL−1s

+
γ − 1

log n

L−2∑

i=0

γi(τL−1−i + logM − I(τL−1−i))

and

Gτ
ℓ (s) :=

logN

log n
+
γ − 1

log n

(
γL−ℓ(logM − I(τℓ−1)) +

L−1−ℓ∑

i=0

γi(τL−1−i + logM − I(τL−1−i))
)

− γL−ℓs

for ℓ = 2, 3, . . . , L. In particular, when ℓ = L the sum is empty and

Gτ
L(s) = dimB Λ− (1− γ−1)

I(τL−1)

logm
− s

(note the similarity with (5.4.2)). Recall from (1.4.5) on page 12 that

Ssδ,θ(Λ) = inf
{ ∑

i

|Ui|s : {Ui}i is a cover of Λ such that δ1/θ ⩽ |Ui| ⩽ δ for all i
}
.

Lemma 5.4.4. For all L ⩾ 2, all tuples τ = (τ1, . . . , τL−1) ∈ (t, t)L−1, and all s ∈
[dimH Λ,dimB Λ],

lim sup
δ↘0

logSs
δ,γ−(L−1)(Λ)

− log δ
⩽ max

1⩽ℓ⩽L
Gτ
ℓ (s).
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Proof. We construct a cover of Λ as follows. For ℓ ∈ N, let Jℓ := γℓ(K)− γℓ−1(K). Define

Uτ
1 :=

{
BγL−1(K)(i) ∈ BγL−1(K) : τ (̂ı, γ

k(K), γk+1(K)) ⩽ τL−1−k for k = 0, . . . , L− 2
}
.

For ℓ ∈ {2, 3, . . . , L− 1}, define Uτ
ℓ to be the set of level-γL−ℓ(K) approximate squares

BγL−ℓ(K)(i) for which

τ (̂ı, γk(K), γk+1(K)) ⩽ τL−k−1 for k = 0, . . . , L− ℓ− 1,

and τ (̂ı, γL−ℓ(K), γL−ℓ+1(K)) > τℓ−1.

Define Uτ
L :=

{
BK(i) ∈ BK : τ (̂ı,K, γ(K)) > τL−1

}
. By construction this is a cover:

Λ ⊆
L⋃

ℓ=1

Uτ
ℓ .

Observe that for all 0 ⩽ k < ℓ ⩽ L− 1, if B ∈ Uk and B′ ∈ Uℓ then they are either disjoint
or intersect on their boundary, but it can never happen that B ∩B′ = B′.

For ℓ ∈ {2, 3, . . . , L}, the symbolic representation of a level-γL−ℓ(K) approximate square
BγL−ℓ(K)(i) ∈ Uτ

ℓ is

( i1, . . . , iK︸ ︷︷ ︸
∈[N ] freely

, iK+1, . . . , iγ(K)︸ ︷︷ ︸
τ(ı̂,K,γ(K))⩽τL−1

, · · · , iγL−ℓ−1(K)+1, . . . , iγL−ℓ(K)︸ ︷︷ ︸
τ(ı̂,γL−ℓ−1(K),γL−ℓ(K))⩽τℓ

, ı̂γL−ℓ(K)+1, . . . , ı̂γL−l+1(K)︸ ︷︷ ︸
τ(ı̂,γL−ℓ(K),γL−l+1(K))>τℓ−1

).

Therefore the s-cost of Uτ
ℓ is

∑

U∈Uτ
ℓ

|U |s ≍ #Uτ
ℓ · n−γL−ℓKs

≍ NK
L−ℓ−1∏

k=0

#{ i ∈ [N ]Jk+1 : τ (̂ı, 0, Jk+1) ⩽ τL−k−1 }

×#{ ȷ̂ ∈ [M ]JL−ℓ+1 : τ(ȷ̂, 0, JL−ℓ+1) > τℓ−1 } · n−γ
L−ℓKs

≍ NK
L−ℓ−1∏

k=0

e(τL−k−1+logM−I(τL−k−1))Jk+1 · e(logM−I(τℓ−1))JL−l+1n−γ
L−ℓKs

≍ nK·Gτ
ℓ (s), (5.4.5)

by Lemmas 5.4.3 and 5.3.3 and algebraic manipulations. In the case l = L we used the
convention that the empty product equals 1.

The symbolic representation of BγL−1(K)(i) ∈ Uτ
1 is

( i1, . . . , iK︸ ︷︷ ︸
∈[N ] freely

, iK+1, . . . , iγ(K)︸ ︷︷ ︸
τ(ı̂,K,γ(K))⩽τL−1

, · · · , iγL−2(K)+1, . . . , iγL−1(K)︸ ︷︷ ︸
τ(ı̂,γL−2(K),γL−1(K))⩽τ1

, ı̂γL−1(K)+1, . . . , ı̂γL(K)︸ ︷︷ ︸
∈[M ] freely

).

Therefore, as in (5.4.5),

∑

U∈Uτ
1

|U |s ≍ NK
L−2∏

k=0

e(τL−k−1+logM−I(τL−k−1))Jk+1 ·MγLK−γL−1Kn−γ
L−1Ks ≍ nK·Gτ

1 (s).

(5.4.6)
We have bounded the s-cost of each part of the cover, so the proof is complete.
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In (5.4.5) and (5.4.6) it was crucial that each τi ∈ (t, t) when using Lemma 5.4.3.
Lemma 5.4.4 tells us the exponential growth rate of the cover for all tuples τ , but motivated
by (1.4.6), of particular interest is the case when

Gτ
1 (s) = · · · = Gτ

L(s) = 0.

A tuple τ = (τ1, . . . , τL−1) ∈ (t, t)L−1 satisfies Gτ
1 (s) = · · · = Gτ

L(s) if and only if τ1 = t1(s)

(from Gτ
1 (s) = Gτ

2 (s)) and τk = Ts(τk−1) for k = 2, 3, . . . L (from Gτ
k (s) = Gτ

k+1(s)).
Equivalently, τk = tk(s) for k = 1, 2, . . . , L − 1. The next lemma ensures that each of
t1(s), . . . , tL(s) lies in the correct range (t, t). In particular, writing t := (t1(s), . . . , tL−1(s)),
we can then apply Lemma 5.4.4 to obtain the upper bound

lim sup
δ↘0

logSs
δ,γ−(L−1)(Λ)

− log δ
⩽ Gt

L(s) = dimB Λ− (1− γ−1)
I(tL−1(s))

logm
− s.

Lemma 5.4.5. Let θ ∈ (0, 1), L = L(θ) := 1 + ⌊− log θ
log γ ⌋ and s ∈ (dimHΛ,dimγ−(L−1) Λ].

Then, using notation from (5.2.4) and (5.4.2),

t < t1(dimH Λ) < t1(s) < t2(s) < · · · < tL(s) ⩽ tL(dimγ−(L−1)Λ) < TdimH Λ(t
∗) < t.

Proof. Recall from (5.2.15) and (5.2.16) that s < dimHΛ < s. It is therefore immediate
that

t = t1(s) < t1(dimH Λ) < t1(s).

It follows from Lemma 5.4.1 that t1(s) < t2(s) < · · · < tL(s) for all s > dimHΛ. Since
s ⩽ dimγ−(L−1)Λ we have tL(s) ⩽ tL(dimγ−(L−1)Λ).

We now prove TdimH Λ(t
∗) < t. To do so, we define, for every fixed p ∈ PM , the function

fp : (0,∞) → R by

fp(z) := log n · log
M∑

ı̂=1

p
z/ logn
ı̂ − (log n− z)H(p).

Recall that Q = (1/M, . . . , 1/M) and P = (N1/N, . . . , NM/N). Clearly, fp(log n) = 0 for
all p and fQ(z) = 0 for every z. The derivative of fp(z) with respect to z is

f ′p(z) = H(p) +

M∑

ı̂=1

p
z/ logn
ı̂∑M

ȷ̂=1 p
z/ logn
ȷ̂

log pı̂,

while after some algebraic manipulations, we obtain that

f ′′p(z) =
1

log n




M∑

ı̂=1

p
z/ logn
ı̂∑M

ȷ̂=1 p
z/ logn
ȷ̂

(log pı̂)
2 −

(
M∑

ı̂=1

p
z/ logn
ı̂∑M

ȷ̂=1 p
z/ logn
ȷ̂

log pı̂

)2

 ⩾ 0

by Jensen’s inequality with equality if and only if p = Q (here we use that p has strictly
positive entries). Hence, for p ̸= Q, fp(z) is a strictly convex function for all z > 0,
and also f ′p(log n) = 0, so fp(z) has a global minimum at z = log n. In particular, since
m ≠ n and P ̸= Q as we assume the carpet has non-uniform fibres, fP(logm) > 0. Using
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formulae (5.1.2) and (5.1.3) for dimHΛ and dimBΛ, algebraic manipulations show that
fP(logm) > 0 is equivalent to

(
dimH Λ− logM

logm

)
log n+ γ

logm

1− γ−1
(dimB Λ− dimH Λ) < logN −H(P).

But we can express I(t∗) from (5.4.2) and use the definition t := logN −H(P) to show
that this is equivalent to the assertion TdimH Λ(t

∗) < t, as required.
It remains to prove tL(dimγ−(L−1)Λ) < TdimH Λ(t

∗). To do so, we first prove the weaker
claim tL−1(dimγ−(L−1)Λ) < t∗ using the fact that Lemma 5.4.4 holds for an arbitrary
tuple τ . Assume for a contradiction that tL−1(dimγ−(L−1)Λ) ⩾ t∗. We define a tuple
τ = (τ1, . . . , τL−1) ∈ (t, t)L−1 as follows. If t1(dimγ−(L−1)Λ) ⩾ t∗, then define τl := t∗

for all l ∈ {1, 2, . . . , L − 1}, noting that t < t∗ ⩽ TdimH Λ(t
∗) < t. If, on the other hand,

t1(dimγ−(L−1)Λ) < t∗, then define

l∗ := max{ l ∈ {1, 2, . . . , L− 2} : tl(dimγ−(L−1)Λ) < t∗ }.

For l ∈ {1, 2, . . . , l∗} let τl := tl(dimγ−(L−1)Λ). For l ∈ {l∗ + 1, l∗ + 2, . . . , L − 1} let
τl := tl∗ +

l−l∗
L−1−l∗ (t

∗ − tl∗(s)), so

t < t1(dimH Λ) < t1(dimγ−(L−1)Λ) = τ1 < τ2 < · · · < τL−2 < τL−1 = t∗ ⩽ TdimH Λ(t
∗) < t.

In either case, τ1 ⩽ t1(dimγ−(L−1)Λ) and τl+1 ⩽ Tdim
γ−(L−1)Λ

(τl) for all l ∈ {1, 2, . . . , L− 2},
so

Gτ
1 (dimγ−(L−1)Λ) ⩽ Gτ

2 (dimγ−(L−1)Λ) ⩽ · · · ⩽ Gτ
L(dimγ−(L−1)Λ).

Therefore by Lemma 5.4.4,

0 = lim sup
δ↘0

logS
dim

γ−(L−1)Λ

δ,γ−(L−1) (Λ)

− log δ
⩽ max

1⩽ℓ⩽L
Gτ
ℓ (dimγ−(L−1)Λ) = Gτ

L(dimγ−(L−1)Λ) < 0

(the last inequality holds since τL−1 = t∗ and dimγ−(L−1)Λ > dimH Λ, see [FFK2, Section 4]),
a contradiction. Thus tL−1(dimγ−(L−1)Λ) < t∗ ⩽ TdimH Λ(t

∗) < t (using Lemma 5.4.1).
To complete the proof that tL(dimγ−(L−1)Λ) < TdimH Λ(t

∗), we apply Lemma 5.4.4 again
but this time with the optimal tuple t := (t1(dimγ−(L−1)Λ), . . . , tL−1(dimγ−(L−1)Λ)) which
we now know lies in the correct range:

0 = lim sup
δ↘0

logS
dim

γ−(L−1)Λ

δ,γ−(L−1) (Λ)

− log δ

⩽ max
1⩽ℓ⩽L

Gt
ℓ(dimγ−(L−1)Λ)

= Gt
L(dimγ−(L−1)Λ)

= dimB Λ− (1− γ−1)
I
(
tL−1(dimγ−(L−1)Λ)

)

logm
− dimγ−(L−1)Λ, (5.4.7)

noting that all terms in the maximum are in fact equal by the definition of t. Therefore

tL(dimγ−(L−1)Λ) = Tdim
γ−(L−1)Λ

(tL−1(dimγ−(L−1)Λ)) (5.4.8)
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⩽

(
dimγ−(L−1)Λ− logM

logm

)
log n+ γ

logm

1− γ−1
(dimB Λ− dimγ−(L−1)Λ)

(5.4.9)

<

(
dimH Λ− logM

logm

)
log n+ γ

logm

1− γ−1
(dimB Λ− dimH Λ) (5.4.10)

= TdimH Λ(t
∗), (5.4.11)

where (5.4.8) is by (5.2.4); (5.4.9) is by (5.2.3) and (5.4.7); (5.4.10) is since dimγ−(L−1)Λ >

dimH Λ; and (5.4.11) is by (5.2.3) and (5.4.2). This completes the proof.

5.4.4 Lower bound

For θ ∈ (0, 1), s ∈ (dimHΛ, dimγ−(L−1)Λ], sufficiently small δ, and R ∈ N, we define a
measure µ = µδ,s,θ,R which we will use to apply the mass distribution principle. Recall
that K = K(δ) = ⌊− log δ

logn ⌋. The measure will be defined by putting point masses on some
carefully chosen level-⌊K/θ⌋ approximate squares (corresponding to the very smallest scale
δ1/θ.

If k ∈ N and Bk is a level-k approximate square in Bk, we can choose a point ΛBk
∈ Λ

in the interior of Bk. We can make this choice explicitly by choosing the image of a
distinguished point in Λ inside the top-most (in the plane) level-γ(k) cylinder within Bk.
Let δΛBk

denote a unit point mass at ΛBk
. For l ∈ N define

Jl := γl(K)− ⌊K/(γL−lθ)⌋; J ′
l := ⌊K/(γL−lθ)⌋ − γl−1(K). (5.4.12)

Using notation from (5.3.11), define CK,s,θ,R to be the set of level-⌊K/θ⌋ approximate
squares (i1, . . . , i⌊K/θ⌋, ı̂⌊K/θ⌋+1, . . . , ı̂γ(⌊K/θ⌋)) ∈ B⌊K/θ⌋ for which

(̂ı⌊K/(γL−lθ)⌋+1, . . . , ı̂γl(K)) ∈ StL−l(s),Jl,R for l ∈ {1, 2, . . . , L− 1}. (5.4.13)

and

(̂ıγl−1(K)+1, . . . , ı̂⌊K/(γL−lθ)⌋) ∈ StL−l+1(s),J
′
l ,R

for l ∈ {1, 2, . . . , L}. (5.4.14)

Note that when θ = γ−(L−1) we do not impose the condition (5.4.14). Now we define the
measure

µ = µδ,s,θ,R :=
∑

B⌊K/θ⌋∈CK,s,θ,R

n−Ks/θδΛB⌊K/θ⌋
. (5.4.15)

This is clearly supported on Λ.
For the remainder of this section, for

k ∈ {K,K + 1, . . . , ⌊K/θ⌋},

Bk will denote an arbitrary level-k approximate square in Bk ∩ supp(µ). By the definition
of the St,J,R sets, µ(Bk) depends on k, δ, s, θ, R and the carpet, but if k = γl(K) or k =

⌊K/γjθ⌋ for some j ∈ {0, . . . , L− 1}, then µ(Bk) = µ(B′
k) for all Bk, B′

k ∈ B(k) ∩ supp(µ).
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Lemma 5.4.6. Fix θ ∈ (0, 1), s ∈ (dimHΛ,dimθΛ], and R ∈ N as above. For all
l = 0, 1, . . . , L− 1, as K → ∞, the following two asymptotic equalities hold:

µδ,s,θ,R(Bγl(K)) ≍ n−γ
lKs, (5.4.16)

µδ,s,θ,R

(
B⌊

K

θ·γL−l−1

⌋) ≍ n
− Ks

θ·γL−l−1 . (5.4.17)

Proof. The proof is an induction argument, starting with the smaller scales. Note
that (5.4.17) holds for l = L−1 by the definition of µ. We first use this to prove (5.4.16) for
l = L− 1. Indeed, consider an approximate square BγL−1(K)(i) ∈ BγL−1(K) and assume it
intersects supp(µ). Because of the way µ is defined, the mass of all such squares will be the
same. To calculate this mass, we need to count up the number of level-⌊K/θ⌋ approximate
squares B⌊K/θ⌋(j) which lie inside the level-γL−1(K) square (so B⌊K/θ⌋(j) ⊂ BγL−1(K)(i)),
and which also carry mass.

To count the number of such smaller squares, it is helpful to compare the symbolic
representation of any such square B⌊K/θ⌋(j) with that of BγL−1(K)(i):

BγL−1(K)(i) : (i1, . . . , iγL−1(K),

∈St1(s),J′
L

,R︷ ︸︸ ︷
ı̂γL−1(K)+1, . . . , ı̂⌊K/θ⌋, ı̂⌊K/θ⌋+1, . . . , ı̂γL(K))

B⌊K/θ⌋(j) : (j1, . . . , jγL−1(K)︸ ︷︷ ︸
equal

, jγL−1(K)+1, . . . , j⌊K/θ⌋︸ ︷︷ ︸
same column

, ȷ̂⌊K/θ⌋+1, . . . , ȷ̂γL(K)︸ ︷︷ ︸
equal

, ȷ̂γL(K)+1, . . . , ȷ̂γ(⌊K/θ⌋)︸ ︷︷ ︸
∈[M ] freely

)

For t ∈ (t, t), J ∈ N, R ∈ N, let p(t, J,R) = (p1(t, J,R), . . . , pM (t, J,R)) be the type class
of every element of St,J,R. Then p(t, J,R) −−−→

J→∞
Q∗
t ∈ Et by Lemma 5.3.2. Therefore

µ(BγL−1(K)(i)) ≍
M∏

ı̂=1

N
pı̂(t1(s),J

′
L,R)·J ′

L
ı̂ MγK/θ−γLKn−Ks/θ

= et1(s)J
′
L+K((γ/θ−γL) logM−(s logn)/θ)

≍ n−γ
L−1Ks,

using (5.4.12) and the definition of t1(s) in (5.2.4). Therefore (5.4.16) holds for l = L− 1.
We now use this to prove (5.4.17) for l = L− 2. If BγL−1(K)(j) ⊂ B⌊K/(γθ)⌋(i), then

(i1, . . . , i⌊K/(γθ)⌋,

∈St1(s),JL−1,R︷ ︸︸ ︷
ı̂⌊K/(γθ)⌋+1, . . . , ı̂γL−1(K), ı̂γL−1(K)+1, . . . , ı̂⌊K/θ⌋)

(j1, . . . , j⌊K/(γθ)⌋︸ ︷︷ ︸
equal

, j⌊K/(γθ)⌋+1, . . . , jγL−1(K)︸ ︷︷ ︸
same column

, ȷ̂γL−1(K)+1, . . . , ȷ̂⌊K/θ⌋︸ ︷︷ ︸
equal

, ȷ̂⌊K/θ⌋+1, . . . , ȷ̂γL(K)︸ ︷︷ ︸
∈[M ] freely

).

Therefore by Lemma 5.3.2, case l = L− 1 of (5.4.16), (5.4.12), and (5.2.4),

µ(B⌊K/(γθ)⌋(i)) ≍ et1(s)JL−1MγLK−K/θn−γ
L−1Ks ≍ n−Ks/(γθ),

so (5.4.17) holds for l = L− 2.
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Now fix any l ∈ {0, 1, . . . , L− 2} and assume that (5.4.17) holds for l. We show that
this implies that (5.4.16) holds for l. Indeed, if B⌊ K

θ·γL−l−1 ⌋
(j) ⊂ Bγl(K)(i), then

(i1, . . . , iγl(K),

∈StL−l(s),J
′
l+1

,R

︷ ︸︸ ︷
ı̂γl(K)+1, . . . , ı̂

⌊
K

γL−l−1·θ

⌋, ı̂⌊ K

γL−l−1·θ

⌋
+1
, . . . , ı̂γl+1(K))

(j1, . . . , jγl(K)︸ ︷︷ ︸
equal

, jγl(K)+1, . . . , j
⌊

K

γL−l−1·θ

⌋
︸ ︷︷ ︸

same column

, ȷ̂⌊ K

γL−l−1·θ

⌋
+1
, . . . , ȷ̂γl+1(K)

︸ ︷︷ ︸
equal

, ȷ̂γl+1(K)+1, . . . , ȷ̂
⌊

K

γL−l−2·θ

⌋
︸ ︷︷ ︸

∈StL−l−1(s),J′
l+2

,R

).

Therefore

µ(Bγl(K)(i)) ≍ etL−l(s)J
′
l+1 ·#StL−l−1(s),J

′
l+2,R

· n−Ksγl+1−Lθ−1 by Lemma 5.3.2
and case l of (5.4.17)

≍ etL−l(s)J
′
l+1 · e(logM−I(tL−l−1(s)))J

′
l+2n−Ksγ

l+1−Lθ−1
by (5.3.12)

≍ n−γ
lKs by (5.4.12) and (5.2.4),

so indeed (5.4.16) holds for l.
Finally, fix any l ∈ {0, 1, . . . , L− 3} and assume (5.4.16) holds for l + 1. We now show

that this implies that (5.4.17) holds for l. Indeed, if Bγl+1(K)(j) ⊂ B⌊
K

γL−l−1θ

⌋(i), then

(i1, . . . , i⌊ K
γL−l−1θ

⌋,
∈StL−l−1(s),Jl+1,R︷ ︸︸ ︷

ı̂⌊
K

γL−l−1θ

⌋
+1

, . . . , ı̂γl+1(K), ı̂γl+1(K)+1, . . . , ı̂
⌊

K
γL−l−2θ

⌋)
(j1, . . . , j⌊ K

γL−l−1θ

⌋
︸ ︷︷ ︸

equal

, j⌊
K

γL−l−1θ

⌋
+1

, . . . , jγl+1(K)︸ ︷︷ ︸
same column

, ȷ̂γl+1(K)+1, . . . , ȷ̂
⌊

K
γL−l−2θ

⌋
︸ ︷︷ ︸

equal

, ȷ̂⌊
K

γL−l−2θ

⌋
+1

, . . . , ȷ̂γl+2(K)︸ ︷︷ ︸
∈StL−l−2(s),Jl+2,R

).

As above,

µ

(
B⌊

K

γL−l−1θ

⌋(i)
)

≍ etL−l−1(s)Jl+1 · e(logM−I(tL−l−2(s)))Jl+2n−γ
l+1Ks ≍ n

− Ks

γL−l−1θ ,

so indeed (5.4.17) holds for l. The proof is complete by induction.

In Lemma 5.4.7 we prove that if we make R large enough then the mass is sufficiently
evenly distributed for us to apply the mass distribution principle Proposition 1.4.2 from
page 13 in Section 5.4.6.

Lemma 5.4.7. Let θ ∈ (0, 1) and s ∈ (dimHΛ,dimθΛ]. For all s′ < s there exists
δ0 ∈ (0, 1) and R ∈ N depending on s, s′, θ and the carpet such that for all δ ∈ (0, δ0) and
k ∈ {K,K+1, . . . , ⌊K/θ⌋}, if bk is any level-k approximate square then µδ,s,θ,R(bk) < n−ks

′ .

Proof. Fix θ ∈ (0, 1), s ∈ (dimHΛ,dimθΛ] and R ∈ N. The idea is that for each scale k,
we will choose from the finitely many scales considered in Lemma 5.4.6 the one which
corresponds to the largest size that is smaller than n−k. We will then bound the number of
approximate squares of this level which are contained in each level-k approximate square
which carries mass, and use Lemma 5.4.6 to bound the mass of the level-k approximate
square.
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Let J ′ ∈ N be large enough that for each t ∈ {t1(s), . . . , tL−1(s)} and (st, t) related
by (5.2.13), (5.3.13) holds for all J ⩾ J ′ and k′ ∈ {1, . . . , J}. By Lemma 5.3.2, we may
increase J ′ to assume further that if ı ∈ St,J,R then

∏J
j=1Nı̂j ⩽ e(t+1/R)J . Then

J∏

j=k′

Nı̂j =

∏J
j=1Nı̂j∏k′−1
j′=1 Nı̂j′

⩽
e(t+1/R)J

ψ(ı̂1,...,̂ık′ )|k′(st)n
k′stM−k′γ ⩽ e(1+3t)J/RetJn−k

′stMγk′

= e(1+3t)J/R+(J−k′)t.

(5.4.18)

We may increase J ′ to ensure that for all J ⩾ J ′ and k′ ∈ {1, . . . , J}, letting l′ ∈
{0, 1, . . . , R− 1} be such that ⌊l′J/R⌋ < k′ ⩽ ⌊(l′ + 1)J/R⌋, if (ȷ̂1, . . . , ȷ̂k′) ∈ [M ]k

′ then

#{ (̂ı1, . . . , ı̂J) ∈ St,J,R : ı̂p = ȷ̂p for p ∈ {1, . . . , k′} } ⩽ e(J−⌊l′J/R⌋)(H(Q∗
t )+1/R)

⩽ e(J−k
′)(logM−I(t))+3J(1+H(Q∗

t ))/R.

(5.4.19)

Let δ0 > 0 be small enough that for all δ ∈ (0, δ0), J ′ < J1 ⩽ J2 ⩽ J3 ⩽ · · · and, if
θ ̸= γ−(L−1), J ′ < J ′

1 ⩽ J ′
2 ⩽ J ′

3 ⩽ · · · . By decreasing δ0 further we may assume by
Lemma 5.4.6 that for all l ∈ {0, 1, . . . , L− 1},

µδ,s,θ,R(Bγl(K)) ⩽ nγ
lK(−s+1/R) and µδ,s,θ,R

(
B⌊

K

γL−l−1θ

⌋) ⩽ n
K

γL−l−1θ
(−s+1/R)

.

(5.4.20)
We now consider symbolic representations of approximate squares in a similar way to

Lemma 5.4.6.
Case 1: Suppose l ∈ {0, 1, . . . , L− 2} and

k ∈ {γl(K) + 1, γl(K) + 2, . . . , ⌊Kγl+1−Lθ−1⌋ − 1}.

The symbolic representations of approximate squares B⌊Kγl+1−Lθ−1⌋(j) ⊂ Bk(i) are as
follows (broken onto two lines because they do not fit onto one line):

(i1, . . . , iγl(K),

∈StL−l(s),J
′
l+1

,R

︷ ︸︸ ︷
iγl(K)+1, . . . , ik, ı̂k+1, . . . , ı̂⌊ K

γL−l−1θ

⌋,
(j1, . . . , jγl(K), jγl(K)+1, . . . , jk︸ ︷︷ ︸

equal

, jk+1, . . . , j⌊ K

γL−l−1θ

⌋
︸ ︷︷ ︸

same column

,

and continuing

ı̂⌊ K

γL−l−1θ

⌋
+1
, . . . , ı̂γl+1(K), ı̂γl+1(K)+1, . . . , ı̂γ(k))

︸ ︷︷ ︸
equal

ȷ̂⌊ K

γL−l−1θ

⌋
+1
, . . . , ȷ̂γl+1(K), ȷ̂γl+1(K)+1, . . . , ȷ̂γ(k), ȷ̂γ(k)+1, . . . , ȷ̂

⌊
K

γL−l−2θ

⌋
︸ ︷︷ ︸

∈StL−l−1(s),J
′
l+2

,R

).
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Therefore we can bound the mass

µ(Bk(i)) ⩽ C

⌊
K

γL−l−1θ

⌋
∏

y=k+1

Nı̂ye

(
K

γL−l−2θ
−γk

)
(logM−I(tL−l−1(s)))+3J ′

l+2(1+H(Q∗
tL−l−1(s)

))/R

× n
K

γL−l−1θ
(−s+1/R) (5.4.21)

⩽ Ce

(
K

γL−l−1θ
−k

)
tL−l(s)+(1+3t)J ′

l+1/Re

(
K

γL−l−2θ
−γk

)
(logM−I(tL−l−1(s)))

× e
3J ′

l+2(1+H(Q∗
tL−l−1(s)

))/R
n

K

γL−l−1θ
(−s+1/R) (5.4.22)

⩽ Cn
−ks+

(
(1+3t)J ′

l+1/(logn)+3J ′
l+2(1+H(Q∗

tL−l−1(s)
))/(logn)+ K

γL−l−1θ

)
/R

(5.4.23)

⩽ Cn

(
−s+

(1+3t)+3(1+H(Q∗
tL−l−1(s)

))+logn

Rθ logn

)
k
, (5.4.24)

where C is a constant depending only on the carpet, (5.4.21) is by (5.4.19) and (5.4.20);
(5.4.22) is by (5.4.18); (5.4.23) is by (5.2.4) and algebraic manipulations; and (5.4.24) is
since max

{
J ′
l+1, J

′
l+2,

K
γL−l−1θ

}
⩽ K/θ < k/θ.

Case 2: Suppose l ∈ {0, 1, . . . , L− 3} and k ∈ {⌊Kγl+1−Lθ−1⌋+ 1, . . . , γl+1(K)− 1}.
If Bγl+1(K)(j) ⊂ Bk(i), then

(i1, . . . , i⌊ K

γL−l−1θ

⌋,
∈StL−l−1(s),Jl+1,R︷ ︸︸ ︷

i⌊ K

γL−l−1θ

⌋
+1
, . . . , ik, ı̂k+1, . . . , ı̂γl+1(K),

(j1, . . . , j⌊ K

γL−l−1θ

⌋, j⌊ K

γL−l−1θ

⌋
+1
, . . . , jk

︸ ︷︷ ︸
equal

, jk+1, . . . , jγl+1(K)︸ ︷︷ ︸
same column

,

continuing

ı̂γl+1(K)+1, . . . , ı̂
⌊

K

γL−l−2θ

⌋, ı̂⌊ K

γL−l−2θ

⌋
+1
, . . . , ı̂γ(k))

︸ ︷︷ ︸
equal

ȷ̂γl+1(K)+1, . . . , ȷ̂
⌊

K

γL−l−2θ

⌋, ȷ̂⌊ K

γL−l−2θ

⌋
+1
, . . . , ȷ̂γ(k), ȷ̂γ(k)+1, . . . , ȷ̂γl+2(K)

︸ ︷︷ ︸
∈StL−l−2(s),Jl+2,R

).

Therefore there is a constant C > 0 such that

µ(Bk(i)) ⩽ Ce(γ
l+1K−k)tL−l−1(s)+(1+3t)Jl+1/Re(γ

l+2K−γk)(logM−I(tL−l−2(s)))

× e
3Jl+2(1+H(Q∗

tL−l−2(s)
))/R

nγ
l+1K(−s+1/R)

⩽ Cn

(
−s+

(1+3t)+3(1+H(Q∗
tL−l−2(s)

))+logn

Rθ logn

)
k
.

Case 3: If k ∈ {⌊K/(γθ)⌋+ 1, . . . , γL−1(K)− 1} and BγL−1(K)(j) ⊂ Bk(i), then

(i1, . . . , i⌊ K
γθ

⌋,
∈St1(s),JL−1,R︷ ︸︸ ︷

i⌊ K
γθ

⌋
+1
, . . . , ik, ı̂k+1, . . . , ı̂γL−1(K),

(j1, . . . , j⌊ K
γθ

⌋, j⌊ K
γθ

⌋
+1
, . . . , jk

︸ ︷︷ ︸
equal

, jk+1, . . . , jγL−1(K)︸ ︷︷ ︸
same column

,
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continuing

ı̂γL−1(K)+1, . . . , ı̂⌊K/θ⌋, ı̂⌊K/θ⌋+1, . . . , ı̂γ(k))

ȷ̂γL−1(K)+1, . . . , ȷ̂⌊K/θ⌋, ȷ̂⌊K/θ⌋+1, . . . , ȷ̂γ(k)︸ ︷︷ ︸
equal

, ȷ̂γ(k)+1, . . . , ȷ̂γL(K)︸ ︷︷ ︸
∈[M ] freely

).

Therefore by the definition of t1(s) in (5.2.4) there is a constant C > 0 such that

µ(Bk(i)) ⩽ Ce(γ
L−1K−k)t1(s)+(1+3t)JL−1/RMγLK−γknγ

L−1K(−s+1/R) ⩽ Cn

(
−s+ 1+3t+logn

Rθ logn

)
k
.

Case 4: Finally, if k ∈ γL−1(K) + 1, . . . , ⌊K/θ⌋ − 1 and B⌊K/θ⌋(j) ⊂ Bk(i) then

(i1, . . . , iγL−1(K),

∈St1(s),J
′
L
,R︷ ︸︸ ︷

iγL−1(K)+1, . . . , ik, ı̂k+1, . . . , ı̂⌊K/θ⌋

(j1, . . . , jγL−1(K), jγL−1(K)+1, . . . , jk︸ ︷︷ ︸
equal

, jk+1, . . . , j⌊K/θ⌋︸ ︷︷ ︸
same column

,

continuing

ı̂⌊K/θ⌋+1, . . . , ı̂γL(K), ı̂γL(K)+1, . . . , ı̂γ(k))

ȷ̂⌊K/θ⌋+1, . . . , ȷ̂γL(K), ȷ̂γL(K)+1, . . . , ȷ̂γ(k)︸ ︷︷ ︸
equal

, ȷ̂γ(k)+1, . . . , ȷ̂γ(K/θ)︸ ︷︷ ︸
∈[M ] freely

).

Therefore by the definition of t1(s) there exists a constant C > 0 such that

µ(Bk(i)) ⩽ Ce(K/θ−k)t1(s)+(1+3t)J ′
L/RMγK/θ−γkn−Ks/θ ⩽ Cn(−s+(1+3t)/R)k.

Therefore the result follows (using Lemma 5.4.6 if k ∈ {K, γ(K), . . . , γL−1(K)}) if we take
R large enough depending on s, s′, θ, C and the carpet.

We write

G(θ, s) := γLθ logN − (γLθ− 1)tL(s) + γ(1− γL−1θ)(logM − I(tL(s)))− s log n. (5.4.25)

Lemma 5.4.8. Fix θ ∈ (0, 1), s ∈ (dimH Λ,dimγ−(L−1)Λ], and R ∈ N. The total mass

µδ,s,θ,R(Λ) ≍ eK·G(θ,s)/(γLθ) as K → ∞.

Proof. The symbolic representation of a level-K approximate square BK(i) ∈ BK ∩ supp(µ)

is
( i1, . . . , iK︸ ︷︷ ︸
∈[N ] freely

, ı̂K+1, . . . , ı̂⌊Kγ−(L−1)θ−1⌋︸ ︷︷ ︸
∈StL(s),J′

1,R

, ı̂⌊Kγ−(L−1)θ−1⌋+1, . . . , ı̂γ(K)︸ ︷︷ ︸
∈StL−1(s),J1,R

).

Therefore

µ(Λ) ≍ #(BK ∩ supp(µ)) · n−Ks by case l = 0 of (5.4.16)

≍ NKe(logM−I(tL(s)))J ′
1e(logM−I(tL−1(s)))J1n−Ks by (5.3.12)

≍ eK·G(θ,s)/(γLθ) by (5.4.12),(5.2.4),(5.4.25),

completing the proof.

We have now proved enough to give Theorem 5.2.1 in the case when θ is a negative
integer power of γ, see Section 5.4.6.
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5.4.5 Upper bound for general θ

Suppose L ∈ N, θ ∈ (γ−L, γ−(L−1)), s ∈ (dimH Λ,dimγ−(L−1)Λ] and 0 < δ ≪ 1. We define a
cover {Vj}j of Λ (depending on θ, s and δ) as follows. Every level-K cylinder will be covered
in the same way, and the cover will consist of approximate squares (i1, . . . , ik, ı̂k+1, . . . , ı̂γ(k))

of different levels k ∈ {K,K+1, . . . , ⌊K/θ⌋}. This means that the diameter of each element
of the cover will, up to an irrelevant multiplicative constant depending only on the carpet,
lie in the interval [δ1/θ, δ]. In fact, we will use only the scales γl(K) and ⌊K/(γlθ)⌋ for
l ∈ {0, 1, 2, . . . , L− 1}. Figure 5.7 provides a diagram which may help the reader follow the
construction of the cover.

tL tL−1 tL−l tL−l tL−l−1 t1 t1

J′1 J1 Jl J′l+1
Jl+1 JL−1 J′L

K
⌊

K
γL−1θ

⌋
γl(K)

⌊
K

γL−l−1θ

⌋
γL−1(K) bKθ c

U0,L

U0

U0,L−1
U ′0,L−1

Ul,L−1
Ul

U0,L−l−1, . . . ,Ul−1,L−l−1
Ul,L−l−1
U ′l,L−l−1 UL−1,1

U0,0, . . . ,UL−2,0
UL−1,0

Figure 5.7: Visualising the cover in (5.4.33) for L ⩾ 3. Here, l denotes an arbitrary
number in {1, 2, . . . , L − 2}. The indices of the symbolic representation and the lengths
of the different parts are in black. Above the scales explicitly written out are the sets
(in blue) which make up the part of the cover consisting of approximate squares of the
corresponding level. The ‘critical’ thresholds for the averages of the different parts of the
symbolic representation are in red. Recall that the ti depend on s, and the sets that make
up the cover depend on s and θ.

Recall that L := 1+⌊− log θ
log γ ⌋, and ı̂ = (̂ı1, . . . , ı̂k, ı̂k+1, . . . , ı̂γ(k)), and we use the notation

from (5.3.1). We define UL−1,1 to be the set of level-γL−1(K) approximate squares for
which (5.4.26) and (5.4.27) below hold for all j ∈ {1, 2, . . . , L− 1}, and (5.4.28) holds:

τ (̂ı, ⌊K/(γL−jθ)⌋, γj(K)) < tL−j(s); (5.4.26)

τ (̂ı, γj−1(K), ⌊K/(γL−jθ)⌋) < γj − (γL−jθ)−1

(γL−jθ)−1 − γj−1

(
tL−j(s)− τ (̂ı, ⌊K/(γL−jθ)⌋, γj(K))

)

+ tL−j+1(s); (5.4.27)

τ (̂ı, γL−1(K), ⌊K/θ⌋) ⩾ t1(s). (5.4.28)

Note that when defining UL−1,1 we imposed no restriction on ı̂⌊K/θ⌋+1, . . . , ı̂γL(K), or
on i1, . . . , iK−1. Define UL−1,0 to be the set of level-⌊K/θ⌋ approximate squares for
which (5.4.26) and (5.4.27) hold for all j ∈ {1, 2, . . . , L − 1}, and (5.4.28) does not hold
(no restriction on ı̂⌊K/θ⌋+1, . . . , ı̂γ(⌊K/θ⌋)). If L = 1 then our cover is simply U0,0 ∪ U0,1, so
for the rest of the construction of the cover we assume that L > 1.

For l = 0, 1, . . . , L − 2 we define Ul to be the set of level-γl(K) approximate squares
which satisfy condition (5.4.26) for all j ∈ {1, 2, . . . , l + 1}, and which satisfy (5.4.27) for
all j ∈ {1, 2, . . . , l} but do not satisfy (5.4.27) for j = l + 1. For l = 0, 1, . . . , L − 2 we
define Ul,L−l to be the set of level-γl(K) approximate squares for which (5.4.26) holds
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for all j ∈ {1, 2, . . . , l} but not for j = l + 1, and (5.4.27) holds for all j ∈ {1, 2, . . . , l},
and (5.4.29) holds:

τ (̂ı, γl(K),⌊K/(γL−l−1θ)⌋) ⩾

Ts

(
max

{
t,

1

(γL−l−2θ)−1 − γl+1

(( 1

γL−l−2θ
− 1

γL−l−1θ

)
tL−l−1(s)

−
(
γl+1 − (γL−l−1θ)−1

)
τ (̂ı, ⌊K/(γL−l−1θ)⌋, γl+1(K))

)})
.

(5.4.29)

For l = 0, 1, . . . , L− 2 define U ′
l,L−l−1 to be the set of level-⌊K/(γL−l−1θ)⌋ approximate

squares for which (5.4.26) and (5.4.27) hold for all j ∈ {1, 2, . . . , l}, and (5.4.29) does not
hold, and (5.4.30) holds:

τ (̂ı,⌊K/(γL−l−1θ)⌋, γl+1(K)) ⩾

1

γl+1 − (γL−l−1θ)−1

(( 1

γL−l−2θ
− 1

γL−l−1θ

)
tL−l−1(s)− ((γL−l−2θ)−1 − γl+1)t

)
.

(5.4.30)

Note that (5.4.30) means that (5.4.26) does not hold for j = l + 1, and that the maximum
in (5.4.29) equals t (since tL−l−1(s) > t). Note also that we imposed no restriction on
(̂ıγl+1(K)+1, . . . , ı̂⌊K/(γL−l−2θ))⌋). For l = 0, 1, . . . , L − 2 define Ul,L−l−1 to be the set of
level-⌊K/(γL−l−1θ)⌋ approximate squares for which (5.4.26) holds for all j ∈ {1, 2, . . . , l}
but not for j = l+ 1, and (5.4.27) holds for all j ∈ {1, 2, . . . , l}, and (5.4.29) does not hold,
and (5.4.30) does not hold, and (5.4.31) holds:

τ (̂ı, γl+1(K), ⌊K/(γL−l−2θ)⌋) ⩾ 1

(γL−l−2θ)−1 − γl+1

(( 1

γL−l−2θ
− 1

γL−l−1θ

)
tL−l−1(s)

− (γl+1 − (γL−l−1θ)−1)τ (̂ı, ⌊K/(γL−l−1θ)⌋, γl+1(K))
)
.

(5.4.31)

For l = 0, 1, . . . , L− 2 define Ul,0 to be the set of level-⌊K/θ⌋ approximate squares for
which (5.4.26) holds for all j ∈ {1, 2, . . . , l} but not for j = l + 1, and (5.4.27) holds for all
j ∈ {1, 2, . . . , l}, and (5.4.29) does not hold, and (5.4.30) does not hold, and (5.4.31) does
not hold, and (5.4.32) holds for all j ∈ {1, 2, . . . , L− l − 2}:

τ (̂ı, ⌊K/(γjθ)⌋, ⌊K/(γj−1θ)⌋) < tj(s). (5.4.32)

Note that we imposed no restriction on ı̂⌊K/θ⌋+1, . . . , ı̂γ(⌊K/θ⌋), and in the case l = L− 2 we
did not require the extra condition (5.4.32). If L = 2 then we have constructed the cover

Λ ⊆ U0 ∪ U0,0 ∪ U0,1 ∪ U ′
0,1 ∪ U0,2 ∪ U1,0 ∪ U1,1.

If L > 2, then for l = 0, 1, . . . , L − 3 and k = 1, 2, . . . , L − l − 2 define Ul,k to be the
set of level-⌊K/(γkθ)⌋ approximate squares for which (5.4.26) holds for all j ∈ {1, 2, . . . , l}
but not for j = l + 1, and (5.4.27) holds for all j ∈ {1, 2, . . . , l}, and (5.4.29) does not

147



hold, and (5.4.30) does not hold, and (5.4.31) does not hold, and (5.4.32) holds for all
j ∈ {k+1, k+2, . . . , L− l− 2} but not for j = k. We have finally constructed a cover of Λ:

Λ ⊆ UL−1,0 ∪ UL−1,1 ∪
L−2⋃

l=0

(
Ul ∪ U ′

l,L−l−1 ∪
L−l⋃

k=0

Ul,k
)
. (5.4.33)

For simplicity, we denote the cover by {Vj}j . Observe that any two elements of this cover
are either disjoint or intersect on their boundary; it can never happen that one is contained
within the other. Figure 5.7 depicts the different parts of the cover in the most complicated
case, namely when γ−L < θ < γ−(L−1) for some natural number L ⩾ 3.

We will bound the s-cost of this cover in Lemma 5.4.11. For this, we need Lem-
mas 5.4.3, 5.4.9 and 5.4.10, which we prove using the method of types. The inequalities in
Lemma 5.4.9 mimic (5.4.26) and (5.4.27).

Lemma 5.4.9. Suppose c ∈ (0, 1), t > t1 > t2 > t and J ∈ N. Then as J → ∞,

(i)
#{ ı̂ ∈ [M ]J : τ (̂ı, ⌊cJ⌋, J) ⩽ t2, τ (̂ı, 0, ⌊cJ⌋) ⩾ t1 + ((1− c)/c)(t2 − τ (̂ı, ⌊cJ⌋, J)) }

≍ eJ(c(logM−I(t1))+(1−c)(logM−I(t2)));

(ii)
#{ i ∈ [N ]J : τ (̂ı, ⌊cJ⌋, J) ⩽ t2, τ (̂ı, 0, ⌊cJ⌋) ⩽ t1 + ((1− c)/c)(t2 − τ (̂ı, ⌊cJ⌋, J)) }

≍ eJ(c(t1+logM−I(t1))+(1−c)(t2+logM−I(t2))).

Proof. The lower bounds for the asymptotic growth follow from considering those strings
for which ı̂⌊cJ⌋+1, . . . , ı̂J and ı̂1, . . . , ı̂⌊cJ⌋ are the best approximations to Q∗

t and Q∗
Ts(t)

respectively in TJ−⌊cJ⌋ and T⌊cJ⌋ for which the required inequalities hold. The strategy for
the upper bounds is to fix arbitrary type classes for the different parts of the string which
satisfy the desired inequalities and then use the fact that there are only polynomially many
type classes.

(i). Fix p ∈ T⌊cJ⌋ and q ∈ TJ−⌊cJ⌋ such that tq ⩽ t2 and tp ⩾ t1 + ((1− c)/c)(t2 − tq),
recalling that tp =

∑
ı̂ pı̂ logNı̂. Then

#T⌊cJ⌋(p) ·#TJ−⌊cJ⌋(q) ⩽ eJ(c(logM−I(tp))+(1−c)(logM−I(max{tq,t}))) (5.4.34)

⩽ eJ(c(logM−I(t1+((1−c)/c)(t2−max{tq,t})))+(1−c)(logM−I(max{tq,t})))

(5.4.35)

⩽ eJ(c(logM−I(t1))+(1−c)(logM−I(t2))). (5.4.36)

In (5.4.34) we used (5.3.7) and Step 1 of Proposition 5.2.11. In (5.4.35) we used that the
rate function is increasing. In (5.4.36) we used the convexity of the rate function. Therefore
using (5.3.6) we can bound the cardinality of the set in the statement of (i) from above by

(⌊cJ⌋+ 1)M (J − ⌊cJ⌋+ 1)MeJ(c(logM−I(t1))+(1−c)(logM−I(t2))).
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(ii). Similarly, fix p ∈ T⌊cJ⌋ and q ∈ TJ−⌊cJ⌋ such that tq ⩽ t2 and tp ⩽ t1 +

((1− c)/c)(t2 − tq). Then

#{ i ∈ [N ]⌊cJ⌋ : ı̂ ∈ T⌊cJ⌋(p) } ·#{ j ∈ [N ]J−⌊cJ⌋ : ȷ̂ ∈ TJ−⌊cJ⌋(q) }
⩽ eJ(c(max{tp,t}+logM−I(max{tp,t}))+(1−c)(max{tq,t}+logM−I(max{tq,t})))

⩽ eJc(min{t1+ 1−c
c

(t2−max{tq,t}),t}+logM−I(min{t1+ 1−c
c

(t2−max{tq,t}),t}))

× eJ(1−c)(max{tq,t,t2− c
1−c

(t−t1)}+logM−I(max{tq,t,t2− c
1−c

(t−t1)})) (5.4.37)

⩽ eJ(c(t1+logM−I(t1))+(1−c)(t2+logM−I(t2))). (5.4.38)

In (5.4.37) we used the fact that I ′(t) < 1 if t ∈ (t, t) and I ′(t) > 1 if t ∈
(t,max1⩽i⩽M logNi). In (5.4.38) we used the convexity of the rate function. In light
of (5.3.6), the result follows.

The inequalities in Lemma 5.4.10 mimic (5.4.26), (5.4.30), (5.4.29) and (5.4.31).

Lemma 5.4.10. Suppose s ∈ (dimHΛ, dimBΛ), c ∈ (0, 1), t < t < Ts(t) < t and J ∈ N.
Then as J → ∞,

(i)
#{ ı̂ ∈ [M ]J : τ (̂ı, ⌊cJ⌋, J) ⩾ t

and τ (̂ı, 0, ⌊cJ⌋) ⩾ Ts(max{t, (1− c+ γc)t/(γc)− (1− c)τ (̂ı, ⌊cJ⌋, J)/(γc)}) }
≍ eJ(c(logM−I(Ts(t)))+(1−c)(logM−I(t)));

(ii)
#{ (i1, . . . , i⌊cJ⌋, ı̂⌊cJ⌋+1, . . . , ı̂J , ı̂J+1, . . . , ı̂⌊(1+γc)J⌋ ∈ [N ]⌊cJ⌋ × [M ]⌊(1+γc)J⌋−⌊cJ⌋) :

t ⩽ τ (̂ı, ⌊cJ⌋, J) ⩽ ((1− c+ γc)t− γct)/(1− c)

and τ (̂ı, 0, ⌊cJ⌋) ⩽ Ts(((1− c+ γc)t− (1− c)τ (̂ı, ⌊cJ⌋, J))/(γc))
and τ (̂ı, J, ⌊(1 + γc)J⌋) ⩾ ((1− c+ γc)t− (1− c)τ (̂ı, ⌊cJ⌋, J))/(γc) }
≍ eJ(c(Ts(t)+logM−I(Ts(t)))+(1−c+γc)(logM−I(t)));

(iii)
#{ i ∈ [N ]⌊(1+γc)J⌋ : t ⩽ τ (̂ı, ⌊cJ⌋, J) ⩽ ((1− c+ γc)t− γct)/(1− c)

and τ (̂ı, 0, ⌊cJ⌋) ⩽ Ts(((1− c+ γc)t− (1− c)τ (̂ı, ⌊cJ⌋, J))/(γc))
and τ (̂ı, J, ⌊(γc+ 1)J⌋) ⩽ ((1− c+ γc)t− (1− c)τ (̂ı, ⌊cJ⌋, J))/(γc) }
≍ eJ(c(Ts(t)+logM−I(Ts(t)))+(1−c+γc)(t+logM−I(t))).

Proof. The proof strategy is rather similar to that of Lemma 5.4.9. The lower bounds
follow from considering those strings for which ı̂⌊cJ⌋+1, . . . , ı̂J and ı̂1, . . . , ı̂⌊cJ⌋ are the best
approximations to Q∗

t and Q∗
Ts(t)

respectively in TJ−⌊cJ⌋ and T⌊cJ⌋, and (for (ii) and (iii))
ı̂J+1, . . . , ı̂⌊γcJ⌋ is the best approximation to Q∗

t in T⌊(1+γc)J⌋−J , for which the required
inequalities hold. The upper bounds follow from the following estimates and (5.3.6):

(i). Fix p ∈ T⌊cJ⌋ and q ∈ TJ−⌊cJ⌋ such that tq ⩾ t and

tp ⩾ Ts(max{t, (1− c+ γc)t/(γc)− (1− c)tq/(γc).
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Then

#T⌊cJ⌋(p) ·#TJ−⌊cJ⌋(q) ⩽ eJc(logM−I(Ts(max{t,(1−c+γc)t/(γc)−(1−c)tq/(γc)})))

× eJ(1−c)(logM−I(min{tq,((1−c+γc)t−γct)/(1−c)})))

⩽ eJ(c(logM−I(Ts(t)))+(1−c)(logM−I(t))).

The final step holds since

((1− c+ γc)t− γct)/(1− c) ⩽ t ⩽ tq;

Ts
(
((1− c+ γc)t− γct)/(1− c)

)
⩽ Ts(t) < t,

so using standard properties of the rate function, the derivative of the exponent with respect
to tq is negative.

(ii). Now fix p ∈ T⌊cJ⌋, q ∈ TJ−⌊cJ⌋ and r ∈ T⌊(1+γc)J⌋−J such that t ⩽ tq ⩽

((1− c+ γc)t− γct)/(1− c), tp ⩽ Ts(((1− c+ γc)t− (1− c)tq)/(γc)) and tr ⩾ ((1− c+

γc)t− (1− c)tq)/(γc). Then

#{ i ∈ [N ]⌊cJ⌋ : ı̂ ∈ T⌊cJ⌋(p) } ·#TJ−⌊cJ⌋(q) ·#T⌊(1+γc)J⌋−J(r)
⩽ eJ(c(Ts(((1−c+γc)t−(1−c)tq)/(γc))+logM−I(Ts(((1−c+γc)t−(1−c)tq)/(γc))))+(1−c)(logM−I(tq)))

× eJ(γc(logM−I(((1−c+γc)t−(1−c)tq)/(γc))))

⩽ eJ(c(Ts(t)+logM−I(Ts(t)))+(1−c+γc)(logM−I(t)))

since the derivative of the exponent with respect to tq is negative.
(iii). Now fix p ∈ T⌊cJ⌋, q ∈ TJ−⌊cJ⌋ and r ∈ T⌊(1+γc)J⌋−J such that t ⩽ tq ⩽

((1− c+ γc)t− γct)/(1− c), tp ⩽ Ts(((1− c+ γc)t− (1− c)tq)/(γc)) and tr ⩽ ((1− c+

γc)t− (1− c)tq)/(γc). Then

#{ i ∈ [N ]⌊cJ⌋ : ı̂ ∈ T⌊cJ⌋(p) } ·#{ j ∈ [N ]J−⌊cJ⌋ : ȷ̂ ∈ TJ−⌊cJ⌋(q) }
×#{k ∈ [N ]⌊(1+γc)J⌋−J : k̂ ∈ T⌊(1+γc)J⌋−J(r) }

⩽ eJc(Ts(((1−c+γc)t−(1−c)tq)/(γc))+logM−I(Ts(((1−c+γc)t−(1−c)tq)/(γc)))) (5.4.39)

× eJ(1−c)(min{tq,t}+logM−I(min{tq,t}))

× eJγc(((1−c+γc)t−(1−c)tq)/(γc)+logM−I(((1−c+γc)t−(1−c)tq)/(γc)))

⩽ eJc(Ts(((1−c+γc)t−(1−c)min{tq,t})/(γc))+logM−I(Ts(((1−c+γc)t−(1−c)min{tq,t})/(γc))))

× eJ(1−c)(min{tq,t}+logM−I(min{tq,t}))

× eJγc(((1−c+γc)t−(1−c)min{tq,t})/(γc)+logM−I(((1−c+γc)t−(1−c)min{tq,t})/(γc))) (5.4.40)

⩽ eJ(c(Ts(t)+logM−I(Ts(t)))+(1−c+γc)(t+logM−I(t))). (5.4.41)

We have (5.4.40) because t ⩽ tq ⩽ ((1− c+ γc)t− γct)/(1− c), so

t ⩽ ((1− c+ γc)t− (1− c)tq)/(γc) ⩽ Ts
(
((1− c+ γc)t− (1− c)tq)/(γc)

)
⩽ Ts(t) < t,

so the derivative of the rate function here is between 0 and 1. We have (5.4.41) since the
derivative of the exponent in (5.4.40) with respect to tq is negative. In light of (5.3.6), this
completes the proof.
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We are now ready to prove an upper bound for the s-cost of the cover that we have
constructed. Recall that G(θ, s) is defined in (5.4.25).

Lemma 5.4.11. For L ∈ N, θ ∈ (γ−L, γ−(L−1)), s ∈ (dimH Λ,dimγ−(L−1) Λ] and 0 < δ ≪ 1,
let {Vj}j be the cover of Λ defined in (5.4.33). Then as K = K(δ) → ∞,

∑

j

|Vj |s ≍ eK·G(θ,s)/(γLθ).

Proof. The strategy is to bound the s-costs of the different parts of the cover separately
using Lemmas 5.4.3, 5.4.9 and 5.4.10, which can be applied since the ti(s) lie in the right
range by Lemma 5.4.5. We use the convention that an empty product equals 1. In the
following, as above, R ∈ N will be fixed and arbitrary. We first consider the s-cost of Ul for
l ∈ {0, 1, . . . , L− 2}:

∑

U∈Ul

|U |s ≍ #Ul · n−γ
lKs

≍ NK
l∏

j=1

eK(tL−j(s)+logM−I(tL−j(s)))(γ
j−γ−(L−j)θ−1)

× eK(tL−j+1(s)+logM−I(tL−j+1(s)))(γ
−(L−j)θ−1−γj−1))

× eK((logM−I(tL−l−1(s)))(γ
l+1−γ−(L−l−1)θ−1)+(logM−I(tL−l))(γ

−(L−l−1)θ−1−γl))

× n−γ
lKs by Lemma 5.4.9 (i) and (ii)

≍ #(Bγl(K) ∩ supp(µδ,s,θ,R)) · n−γ
lKs by (5.3.12)

and Proposition 5.2.11, Step 1

≍ µδ,s,θ,R(Λ) by (5.4.15) and Lemma 5.4.6

≍ eK·G(θ,s)/(γLθ) by Lemma 5.4.8. (5.4.42)

The s-costs of Ul,0 are equal for all l ∈ {0, 1, . . . , L− 1}:
∑

U∈Ul,0

|U |s ≍ #UL−1,0 · n−Ks/θ

≍
L−1∏

j=1

eK(tL−j(s)+logM−I(tL−j(s)))(γ
j−γ−(L−j)θ−1)

× eK(tL−j+1(s)+logM−I(tL−j+1(s)))(γ
−(L−j)θ−1−γj−1))

×NKe(t1(s)+logM−I(t1(s)))(1/θ−γL−1)KM (γ−1)K/θ

× n−Ks/θ by Lemmas 5.4.3, 5.4.9 (ii)
and (when l<L−1) Lemma 5.4.10 (iii)

≍ #(B⌊K/θ⌋ ∩ supp(µδ,s,θ,R)) · n−Ks/θ ≍ µδ,s,θ,R(Λ) ≍ eK·G(θ,s)/(γLθ).

To bound the s-cost of Ul,L−l when l ∈ {0, 1, . . . , L− 2}, note that by Lemma 5.3.3 and
Step 1 of Proposition 5.2.11,

#
{
ı̂ ∈ [M ]γ

l+1(K)−γl(K) : τ (̂ı, ⌊K/(γL−l−1θ)⌋ − γl(K), γl+1(K)− γl(K))

⩾
1

(γl+1 − (γL−l−1θ)−1)

(( 1

γL−l−2θ
− 1

γL−l−1θ

)
tL−l−1(s)− ((γL−l−2θ)−1 − γl+1)t

)
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and τ (̂ı, 0, ⌊K/(γL−l−1θ)⌋ − γl(K)) ⩾ Ts(t)
}

≍ e
−K(γl+1−γl+1−Lθ)I

(
1

(γl+1−(γL−l−1θ)−1)

((
1

γL−l−2θ
− 1

γL−l−1θ

)
tL−l−1(s)−((γL−l−2θ)−1−γl+1)t

))
× eKγ

l+1−γl+1−Lθ) logM · eK(γl+1−Lθ−γl)(logM−I(Ts(t))))

⩽ eK((γ
l+1−γl+1−Lθ−1)(logM−I(tL−l−1(s)))+(γl+1−Lθ−1−γl)(logM−I(tL−l(s)))), (5.4.43)

where the last step follows from the case tq = ((1−c+γc)t−γct)/(1−c) of Lemma 5.4.10 (i).
Now, for l ∈ {0, 1, . . . , L− 1},

∑

U∈Ul,L−l

|U |s ≍ NK
l∏

j=1

eK(tL−j(s)+logM−I(tL−j(s)))(γ
j−γ−(L−j)θ−1)

× eK(tL−j+1(s)+logM−I(tL−j+1(s)))(γ
−(L−j)θ−1−γj−1))

× eK((logM−I(tL−l−1(s)))(γ
l+1−γ−(L−l−1)θ−1)+(logM−I(tL−l))(γ

−(L−l−1)θ−1−γl))

× n−γ
lKs

≍ #(Bγl(K) ∩ supp(µδ,s,θ,R)) · n−γ
lKs ≍ µδ,s,θ,R(Λ) ≍ eK·G(θ,s)/(γLθ).

In the case l = L − 1 we used Lemma 5.4.9 (ii) and Lemma 5.3.3 and Step 1 of Propos-
ition 5.2.11. In the case l < L − 1 we used Lemma 5.4.9 (ii) and (in the case when the
maximum in (5.4.29) does not take the value t, or equivalently when (5.4.30) does not
hold) Lemma 5.4.10 (i), and (in the case when the maximum does take the value t) we
used (5.4.43).

Now, for l ∈ {0, 1, . . . , L− 2},

∑

U∈U ′
l,L−l−1

|U |s ≍ NK
l∏

j=1

eK(tL−j(s)+logM−I(tL−j(s)))(γ
j−γ−(L−j)θ−1)

× eK(tL−j+1(s)+logM−I(tL−j+1(s)))(γ
−(L−j)θ−1−γj−1) · eK(γl+1−γl+1−Lθ−1)

× e
−K(γl+1−γl+1−Lθ−1)I

(
1

γl+1−(γL−l−1θ)−1

((
1

γL−l−2θ
− 1

γL−l−1θ

)
tL−l−1(s)−((γL−l−2θ)−1−γl+1)t

))
× eK(γl+1−Lθ−1−γl)(Ts(t)+logM−I(Ts(t))) ·MK(γl+2−Lθ−1−γl+1) · nK/(γL−l−1θ)

⩽ NK
l∏

j=1

eK(tL−j(s)+logM−I(tL−j(s)))(γ
j−γ−(L−j)θ−1)

× eK(tL−j+1(s)+logM−I(tL−j+1(s)))(γ
−(L−j)θ−1−γj−1)

× eK(γl+2−Lθ−1−γl+1−Lθ−1)(logM−I(tL−l−1(s))

× eK(γl+1−Lθ−1−γl)(tL−l(s)+logM−I(tL−l(s)))) · nK/(γL−l−1θ)

≍ #(B⌊K/(γL−l−1θ)⌋ ∩ supp(µδ,s,θ,R)) · nK/(γ
L−l−1θ) ≍ µδ,s,θ,R(Λ)

≍ eK·G(θ,s)/(γLθ),

where the inequality follows from the case tq = ((1− c+ γc)t− γct)/(1− c) of the proof of
Lemma 5.4.10 (ii).
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For l ∈ {0, 1, . . . , L− 2}, using Lemma 5.4.10 (ii) (and Lemma 5.4.9 (ii)),

∑

U∈Ul,L−l−1

|U |s ≍ NK
l∏

j=1

eK(tL−j(s)+logM−I(tL−j(s)))(γ
j−γ−(L−j)θ−1)

× eK(tL−j+1(s)+logM−I(tL−j+1(s)))(γ
−(L−j)θ−1−γj−1)

× eK(γl+2−Lθ−1−γl+1−Lθ−1)(logM−I(tL−l−1(s))

× eK(γl+1−Lθ−1−γl)(tL−l(s)+logM−I(tL−l(s))))nK/(γ
L−l−1θ)

≍ #(B⌊K/(γL−l−1θ)⌋ ∩ supp(µδ,s,θ,R)) · nK/(γ
L−l−1θ)

≍ µδ,s,θ,R(Λ) ≍ eK·G(θ,s)/(γLθ).

Finally, if L ⩾ 3, l ∈ {0, 1, . . . , L− 3} and k ∈ {1, 2, . . . , L− l − 2},

∑

U∈Ul,k

|U |s ≍ NK
L−k−1∏

j=1

eK(tL−j(s)+logM−I(tL−j(s)))(γ
j−γ−(L−j)θ−1)

× eK(tL−j+1(s)+logM−I(tL−j+1(s)))(γ
−(L−j)θ−1−γj−1)

× eK(γ−kθ−1−γL−k−1)(tL−k−1(s)+logM−I(tL−k−1))

× eK(γ−(k+1)θ−1−γ−kθ−1)(logM−I(tL−k−2(s))) · n−Ks/(γkθ)

≍ #B⌊K/(γkθ)⌋ ∩ supp(µδ,s,θ,R) · n−Ks/(γ
kθ) ≍ µδ,s,θ,R(Λ) ≍ eK·G(θ,s)/(γLθ),

using Lemma 5.4.10 (iii) (and Lemma 5.4.9 (ii) and Lemmas 5.4.3, 5.3.3 and 5.4.8). We
have now bounded the s-cost of each part of the cover, so the proof is complete.

Note that when we applied Lemma 5.4.9, in the proof of Lemma 5.4.11 (for example
in (5.4.42)), we used that tL(s) < t for all s ∈ [dimγ−L Λ, dimγ−(L−1) Λ], see Lemma 5.4.5.
We needed Section 5.4.3 to establish the inequality tL(s) < t before Section 5.4.5.

5.4.6 Conclusion and discussion of the proof

We now conclude the proof of Theorem 5.2.1 by combining the upper bounds in Sections 5.4.3
and 5.4.5 and a lower bound from the mass distribution principle Proposition 1.4.2 on
page 13, which can be applied by virtue of the results in Section 5.4.4.

Proof of Theorem 5.2.1. Fix θ ∈ (0, 1) and s ∈ (dimH Λ, dimγ−(L−1)Λ]. Then

lim sup
δ↘0

logSsδ,θ(Λ)

− log δ
⩽

G(θ, s)

γLθ log n
.

This follows from Lemma 5.4.5 and Lemma 5.4.4 with τ = (t1(s), . . . , tL−1(s)) in the case
θ = γ−(L−1), and from Lemma 5.4.11 in the case γ−L < θ < γ−(L−1). If U ⊂ R2 is Borel
with |U | < 1 then the number of approximate squares of level ⌈− log |U |

logn ⌉ which U intersects
is at most an absolute constant depending only on the carpet. Therefore by Lemma 5.4.7,
for all s′ < s there exists δ0 > 0 and R ∈ N such that for all δ ∈ (0, δ0), if δ1/θ ⩽ |U | ⩽ δ
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then µδ,s,θ,R(U) < |U |s′ . This means that we can use Lemma 5.4.8 and apply the mass
distribution principle Proposition 1.4.2 and deduce that

lim inf
δ↘0

logSs
′
δ,θ(Λ)

− log δ
⩾

G(θ, s)

γLθ log n
.

Since s′ < s was arbitrary and lim infδ↘0
logSs′

δ,θ(Λ)

− log δ is continuous in s′ by [BFF1, Lemma 2.1],

lim infδ↘0
logSs

δ,θ(Λ)

− log δ ⩾ G(θ, s)/(γLθ log n). Thus

logSsδ,θ(Λ)

− log δ
→ G(θ, s)

γLθ log n
as δ ↘ 0.

Therefore by (1.4.6), dimθ Λ exists and G(θ,dimθ Λ) = 0. By induction t1(s), t2(s), . . . , tL(s)
are strictly increasing functions of s. Thus for fixed θ, G(θ, s) is strictly decreasing in s, so
s = dimθ Λ is the only solution s ∈ [dimH Λ, dimB Λ] to the equation G(θ, s) = 0.

Remark 5.4.12. The significance of the pressure function can be illustrated by the simple
case θ ⩾ γ−1. Indeed, in this case the optimal cover which gives the smallest possible s-cost
(up to absolute multiplicative constants depending only on the carpet) involves subdividing
a level-K approximate square to a level k ∈ {K,K + 1, . . . , ⌊K/θ⌋} which minimises
ψ(ı̂K+1,...,̂ı⌊K/θ⌋)|k(s). By considering the symbolic representation of the approximate squares
in such a cover, the s-cost is, up to multiplicative constants,

NKΨ⌊K/θ⌋−K(s)Mγ(K)−⌊K/θ⌋n−Ks ≍ eK(logN+(θ−1−1)P (s)−θ−1 logM−s logn)

≍ eK((dimB Λ) logn−(θ−1−1)I(t)−s logn)

by Proposition 5.2.11, where (s, t) are related by (5.2.13). Therefore the exponential growth
rate of this s-cost is in fact the same as that of the cover constructed in Section 5.4.5 using
just the two extreme scales K and ⌊K/θ⌋.

5.5 Proof of corollaries and applications

In this section we prove the corollaries and consequences of Theorem 5.2.1.

5.5.1 Proof of Corollary 5.2.3

Proof of part (i). For

(θ, s) ∈ (γ−L, γ−(L−1))× (dimH Λ,dimB Λ) := D ⊂ R2,

define G(θ, s) by (5.4.25). Then G(θ, s) has continuous partial derivatives of all orders, so
is C∞, on D. Moreover, the rate function I is analytic (as the Legendre transform of an
analytic function) and compositions of analytic functions are analytic. It follows that for
all (θ, s) ∈ D and (θ1, s1) ∈ R2 there exists r = r(θ, s, θ1, s1) > 0 such that the function
λ 7→ G(θ + λθ1, s + λs1) is real analytic for λ ∈ (−r, r). Therefore by a result of Siciak
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[Sic, Theorem 1], G(θ, s) is jointly analytic in (θ, s) ∈ D. Thus by the analytic implicit
function theorem, the function θ 7→ dimθ Λ (describing the zero set of G(θ, s)) is analytic
for θ ∈ (γ−L, γ−(L−1)).

The next lemma gives a formula for the derivative. Recall, if θ ∈ (γ−L, γ−(L−1)] then
the formula for the intermediate dimension s(θ) = dimθ Λ is

γLθ logN−(γLθ−1)tL(s(θ))+γ(1−γL−1θ)
(
logM−I(tL(s(θ)))

)
−s(θ) log n = 0. (5.5.1)

Lemma 5.5.1. For all L ∈ N and θ ∈ (γ−L, γ−(L−1)), we have ∂− dimθ Λ = ∂+ dimθ Λ =

s′(θ), where

s′(θ) =
γL

log n
· logN − tL(s(θ))− logM + I

(
tL(s(θ))

)

1 +
(
γLθ − 1 + γ(1− γL−1θ)I ′

(
tL(s(θ))

))
·AL(θ)

,

where I ′ denotes the derivative of the rate function I and

AL(θ) =
L−1∑

ℓ=0

γℓ
ℓ∏

m=1

I ′
(
tL−m(s(θ))

)
,

with the empty product defined to be 1. It follows that for θ = γ−L

∂− dimγ−L Λ =
γL+1

log n
· logN − tL+1(s(γ

−L))− logM + I
(
tL+1(s(γ

−L))
)

1 + (γ − 1) ·AL+1(γ−L)
, (5.5.2)

∂+ dimγ−L Λ =
γL

log n
· logN − tL(s(γ

−L))− logM + I
(
tL(s(γ

−L))
)

1 + (γ − 1)I ′
(
tL(s(γ−L))

)
·AL(γ−L)

. (5.5.3)

Proof. We first show by induction on L that

d

dθ
tL(s(θ)) = s′(θ) · log n ·AL(θ). (5.5.4)

For L = 1, we have t1(s(θ)) =
(
s(θ) − logM

logm

)
log n and A1(θ) = 1, so the claim holds.

Assuming (5.5.4) for L− 1, we now prove for L:

d

dθ
tL(s(θ)) =

d

dθ
Ts(θ)

(
tL−1(s(θ))

)
= s′(θ) · log n+ γI ′

(
tL−1(s(θ))

)
· d

dθ
tL−1(s(θ))

= s′(θ) · log n+ γI ′
(
tL−1(s(θ))

)
· s′(θ) · log n ·AL−1(θ)

= s′(θ) · log n ·
(
1 +

L−2∑

ℓ=0

γℓ+1
ℓ∏

m=0

I ′
(
tL−1−m(s(θ))

))

= s′(θ) · log n ·AL(θ),

completing the proof of (5.5.4).
Differentiating (5.5.1) with respect to θ,

s′(θ) · log n = γL logN − γLtL(s(θ))− (γLθ − 1)
d

dθ
tL(s(θ))

− γL
(
logM − I

(
tL(s(θ))

))
− γ(1− γL−1θ)

d

dθ
I
(
tL(s(θ))

)
.

Using (5.5.4), after rearranging we obtain the formula for s′(θ). The claims for θ = γ−L

follow by analyticity.
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Proof of part (ii). Follows directly from Lemma 5.5.1.

The following lemma describes the behaviour of tL(θ)(dimθ Λ) for small θ.

Lemma 5.5.2. We have

• limL→∞ tL−1(dimγ−(L−1) Λ) = lim infθ→0+ tL(θ)(dimθ Λ) = t∗

• limL→∞ tL(dimγ−(L−1) Λ) = lim supθ→0+ tL(θ)(dimθ Λ) = TdimH Λ(t
∗)

Proof. By (5.4.2), the equation that dimγ−(L−1) Λ satisfies from Theorem 5.2.1, and
the fact that the intermediate dimensions and rate function are continuous, we have
tL−1(dimγ−(L−1) Λ) → t∗ as L → ∞. It follows that tL(dimγ−(L−1) Λ) → TdimH Λ(t

∗),
and that lim supθ→0+ tL(θ)(dimθ Λ) ⩾ TdimH Λ(t

∗). By considering θ > γ−L very close
to γ−L, we see that lim infθ→0+ tL(θ) dimθ Λ ⩽ t∗. If γ−L < θ ⩽ γ−(L−1) then
tL(dimγ−L Λ) < tL(dimθ Λ) ⩽ tL(dimγ−(L−1) Λ). Therefore

t∗ = lim
L→∞

tL(dimθ Λ) ⩽ lim inf
θ→0+

tL(θ)(dimθ Λ) ⩽ lim sup
θ→0+

tL(θ)(dimθ Λ)

⩽ lim
L→∞

tL(dimγ−(L−1) Λ)

= TdimH Λ(t
∗),

completing the proof.

Proof of part (iii). For brevity, let us write

s′(θ) =
γL

log n
· fL(θ)

1 + gL(θ)AL(θ)
. (5.5.5)

Lemma 5.4.5 ensures that t < t1(dimHΛ) < tℓ(s(θ)) < TdimH Λ(t
∗) < t for all 1 ⩽ ℓ ⩽ L.

Using that I is strictly increasing and convex, there exist constants c1, c′1, c2, c′2 > 0

independent of θ such that for all t1(dimH Λ) ⩽ t ⩽ TdimH Λ(t
∗),

0 < c1 < I(t) < c′1 < logM −H(P) and 0 < c2 < I ′(t) < c′2 < 1.

Hence, recalling that t := logN −H(P) and I(t) = logM −H(P), there exists c3 > 0 such
that the numerator

fL(θ) = t− tL(s(θ))−
(
I(t)− I

(
tL(s(θ))

))
⩾ c3 > 0.

Furthermore, there also exists c4 > 0 such that 0 < c4 ⩽ gL(θ) ⩽ c−1
4 <∞. Therefore,

s′(θ) ⩾
c3

log n
· γL

1 + c−1
4 AL(θ)

⩾
c3

log n
· γL

1 + c−1
4 · γL−1

γ−1

⩾
c3

log n
(
γ−1 +

c−1
4
γ−1

) =: C0 > 0.

Next we show that ∂− dimγ−L Λ < ∂+ dimγ−L Λ for all L ∈ N from (5.5.2) and (5.5.3).
We can divide both (5.5.2) and (5.5.3) by γL/ log n. We claim that

γ−1 ·AL+1(γ
−L)− I ′

(
tL(s(γ

−L))
)
·AL(γ−L) = γ−1,
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implying γ−1 · (1+ gL+1(γ
−L) ·AL+1(γ

−L)) = 1+ gL(γ
−L) ·AL(γ−L). Indeed, applying the

definition of AL+1(γ
−L) and AL(γ

−L), observe that it is a telescopic sum with only γ−1

not cancelling out. Since we also have

tL+1(s(γ
−L))− tL(s(γ

−L))−
(
I
(
tL+1(s(γ

−L))
)
− I
(
tL(s(γ

−L))
))
> 0

for the same reason that fL(θ) > 0, it follows that ∂− dimγ−L Λ < ∂+ dimγ−L Λ. Finally,
by Lemma 5.5.2,

∂+ dimγ−L Λ

∂− dimγ−L Λ
−−−−−→
(L→∞)

logN − t∗ − logM + I(t∗)
logN − TdimH Λ(t∗)− logM + I(TdimH Λ(t∗))

∈ (1,∞).

Proof of part (iv). The idea is to estimate L(θ) (which is the number of the ti(s(θ))) in
terms of s(θ) := dimθ Λ. We do this by using the fact that t′ is a neutral fixed point of the
function TdimH Λ, and

t1(s(θ)) −−−−→
θ→0+

(
dimH Λ− logM

logm

)
log n < t′

and lim infθ→0+ tL(θ)(s(θ)) > t′ by Lemmas 5.5.2 and 5.4.2, so most of the ti(s(θ)) lie close
to t′.

By Lemma 5.4.1 and Taylor’s theorem, since T ′
s(t

′) = 1 and T ′′
s (t

′) > 0, there exists
c ⩾ 1 such that for all t ∈ (t, t),

Ts(t
′) + T ′

s(t
′)(t− t′) + c−1(t− t′)2 ⩽ Ts(t) ⩽ Ts(t

′) + T ′
s(t

′)(t− t′) + c(t− t′)2;

t+ c−1(t− t′)2 ⩽ Ts(t) ⩽ t+ c(t− t′)2.
(5.5.6)

If L is large enough and kL :=
⌊
max

{
L/10, 2

log 2 log
(

t−t
L(s(θ)−dimH Λ) logn

)} ⌋
then

t′ − 2kL
L(s(θ)− dimH Λ) log n

4
< t and t′ + 2kL

L(s(θ)− dimH Λ) log n

4
> t.

Suppose k ∈ {1, 2, . . . , kL}. Then by (5.5.6),

#
{
i ∈ {1, 2, . . . , L(θ)} : t′ − 2k

L(s(θ)− dimH Λ) log n

4
< ti(s(θ))

⩽ 2k−1L(s(θ)− dimH Λ) log n

4

}

⩽ 1 +
16c

2kL(s(θ)− dimH Λ) log n
.

Summing up, it follows that

#

{
i : ti(s(θ)) ⩽ t′ − L(s(θ)− dimH Λ) log n

4

}
⩽ kL +

16c

L(s(θ)− dimH Λ) log n
,

and we similarly obtain the same bound for the number of ti(s) which are greater than
t′ + L(s(θ)+dimH Λ) logn

4 . But

#

{
i : t′ − L(s(θ)− dimH Λ) log n

4
< ti(s(θ)) ⩽ t′ +

L(s(θ)− dimH Λ) log n

4

}
⩽ 1 + L/2.
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Therefore for L sufficiently large,

L ⩽ 2kL +
32c

L(s(θ)− dimH Λ) log n
+ 1 +

L

2
⩽ 0.9L+

40c

L(s(θ)− dimH Λ) log n
.

Decreasing θ0 further if required, this tells us that for all θ < θ0,

s(θ) ⩽ dimH Λ +
400c

L2 log n
⩽ dimH Λ +

500c · (log γ)2
(log θ)2 log n

,

proving the upper bound. This shows in particular that L(s(θ) − dimHΛ) log n → 0 as
θ → 0+.

For the lower bound, we may decrease θ0 further to assume that for all θ < θ0,
t1(dimHΛ) < t1(s(θ)) < t′ − 3L(s(θ) − dimHΛ) log n and tL(s(θ)) > t′ by Lemmas 5.5.2
and 5.4.2. Then by (5.5.6), for large enough L,

L ⩾ #
{
i : t′ − 3L(s(θ)− dimH Λ) log n ⩽ ti(s(θ)) ⩽ t′ − L(s(θ)− dimH Λ) log n

}

⩾
2L(s(θ)− dimH Λ) log n

1.1((s(θ)− dimH Λ) log n+ c(3L(s(θ)− dimH Λ) log n)2)
.

Rearranging, for large enough L,

s(θ) ⩾ dimH Λ +
0.9

L2 · 9.9c log n ⩾ dimH Λ +
(log γ)2

20c log n(log θ)2
.

Proof of part (v). One can differentiate (5.5.5) to obtain

s′′(θ) =
γL ·

(
f ′L(θ)(1 + gL(θ)AL(θ))− fL(θ)(g

′
L(θ)AL(θ) + gL(θ)A

′
L(θ))

)

(1 + gL(θ)AL(θ))2 log n
.

The sign of s′′(θ) is determined by the sign of the term in parenthesis in the numerator.
We know that there exists c > 0 such that fL(θ), gL(θ), AL(θ) ⩾ c. There also exists c′ > 0

such that
f ′L(θ) =

(
I ′
(
tL(s(θ))

)
− 1
)

︸ ︷︷ ︸
⩽−c′<0

· d

dθ
tL(s(θ))

︸ ︷︷ ︸
⩾c′>0 by (5.5.4)

⩽ −(c′)2 < 0

and A′
L(θ) > c′ because all I ′

(
tℓ(s(θ))

)
and I ′′

(
tℓ(s(θ))

)
are uniformly positive. Finally,

g′L(θ) = γL
(
1− I ′

(
tL(s(θ))

))
︸ ︷︷ ︸

⩾c′>0

+γ (1− γL−1θ)︸ ︷︷ ︸
⩾0

I ′′
(
tL(s(θ))

)
︸ ︷︷ ︸

>0

· d

dθ
tL(s(θ))

︸ ︷︷ ︸
⩾c′>0

⩾ γLc′ > 0.

Hence, s′′(θ) ⩽ C < 0 for some uniform constant C > 0, implying that s(θ) is strictly
concave on every interval [γ−L, γ−(L−1)].

Note that s′′(θ) ⩽ C < 0 holds for a constant C that is independent of both L and θ.
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5.5.2 Proof of Corollary 5.2.2

We now use the fact that dimθ Λ is strictly increasing in θ to prove Corollary 5.2.2.

Proof of Corollary 5.2.2. Fix η > 0 small enough that dimH Λ+ η < dimB Λ. Since dimθ Λ

exists and is continuous in θ (see Theorem 5.2.1 and [FFK2, Proposition 4.1]), we can fix
θ1 < 1/γ small enough that dimθ1 Λ + η < dimB Λ. Let s ∈ (dimH Λ,dimθ1 Λ + η], and for
each δ ∈ (0, 1), let K = K(δ) ∈ N be such that n−K ⩽ δ < n−(K−1). For some string i, let
BK,i⌊K/θ⌋ denote the set of level-⌊K/θ⌋ approximate squares within the level-K approximate
square BK(i). For each BK(i) it is more cost efficient (in terms of s-cost, up to irrelevant
multiplicative constants depending only on Λ) to subdivide it into level-⌊K/θ⌋ approximate
squares if and only if

n−Ks ⩾ #BK,i⌊K/θ⌋ · n
−sK/θ. (5.5.7)

To determine #BK,i⌊K/θ⌋ for some θ < 1/γ, we compare the sequences that define BK(i)
and a level-⌊K/θ⌋ approximate square within it:

i1 · · · iK ı̂K+1 · · · ı̂γ(K)

j1 · · · jK︸ ︷︷ ︸
equal

jK+1 · · · jγ(K)︸ ︷︷ ︸
same column

jγ(K)+1 · · · j⌊K/θ⌋︸ ︷︷ ︸
∈[N ] freely

ȷ̂⌊K/θ⌋+1 · · · ȷ̂γ(K/θ)︸ ︷︷ ︸
∈[M ] freely

.

Thus, #BK,i⌊K/θ⌋ = N ⌊K/θ⌋−γ(K) · Mγ(K/θ)−⌊K/θ⌋ · ∏γ(K)
ℓ=K+1Nı̂ℓ . Substituting this back

into (5.5.7), we get after algebraic manipulations that it is more cost-efficient to sub-
divide if and only if

s ⩾
θ

(1− θ)

γ − 1

log n

(
1

γ(K)−K

γ(K)∑

ℓ=K+1

logNı̂ℓ

)
+

θ

1− θ
(1/θ − γ)

logN

log n
+
γ − 1

1− θ

logM

log n
.

But since s ⩽ dimθ1 Λ+ η, if is more cost-efficient to subdivide then the following condition
for the average must hold:

1

γ(K)−K

γ(K)∑

ℓ=K+1

logNı̂ℓ ⩽ log(N/M)−
(1
θ
− 1
) log n

γ − 1
(dimB Λ− dimθ1 Λ− η).

As θ → 0, the right-hand side tends to −∞, so there exists θ0 < θ1/2 small enough that
for all θ ⩽ 2θ0 it is more cost efficient not to subdivide any of the level-K approximate
squares, if using only scales δ and δ1/θ. Now, since dimθ Λ is strictly increasing in θ by
Corollary 5.2.3, there exists ε < η small enough that dimθ0 Λ + ε < dim2θ0 Λ. Then by the
definition of θ0 and since dimθ1 Λ+ η < dimB Λ, there exists δ1 < 1 such that if {Ui} is a
cover of Λ using just two scales δ and δ′ with δ′ ⩽ δ1/(2θ0) < δ ⩽ δ1, then for all θ ⩽ 2θ0,

∑

i

|Ui|dimθ Λ+ε ⩾
∑

i

|Ui|dimθ1
Λ+η ⩾ 1.

Since dimθ0 Λ + ε < dim2θ0 Λ, there exists δ0 < δ1 such that if {Ui} is a cover using
just two scales δ, δ′ with δ1/(2θ0) < δ′ ⩽ δ ⩽ δ0, then for all θ ⩽ θ0,

∑
i |Ui|dimθ Λ+ε ⩾∑

i |Ui|dimθ0
Λ+ε ⩾ 1, completing the proof.

159



5.5.3 Proof of Theorems 5.2.4 and 5.2.5

We use primes to denote the parameters of Λ′, and use notation from Section 5.2.3. In
particular, in this section only, I ′ will denote the rate function associated with Λ′, and not
the derivative of I.

Lemma 5.5.3. Let Λ and Λ′ be two Bedford–McMullen carpets with non-uniform fibres
defined on grids of size m × n and m′ × n′ respectively. If either of (i) or (ii) from
Theorem 5.2.5 hold, then logn

logn′ =
logm
logm′ ∈ Q.

Proof. First assume that (i) holds. Since the intermediate dimensions of Λ and Λ′ have
phase transitions at γ−1 and (γ′)−1 respectively (see Corollary 5.2.3), we must have γ = γ′.
To show that logn′

logn ∈ Q, note that Theorem 5.2.1 and the equality of the intermediate
dimensions for θ ∈ (γ−1, 1) tells us that for an open interval of s,

1

log n
I

((
s− logM

logm

)
log n

)
=

1

log n′
I ′
((

s− logM ′

logm′

)
log n′

)
.

Taking Legendre transforms of both sides and using scaling properties of Legendre transforms,
using (5.2.2), for all λ,

1

log n
log

(
1

M

M0∑

ı̂=1

Rı̂N
λ
ı̂

)
+ λ

logM

logm
=

1

log n′
log


 1

M ′

M ′
0∑

ȷ̂=1

R′
ȷ̂(N

′
ȷ̂)
λ


+ λ

logM ′

logm′ . (5.5.8)

Fix K ∈ N large enough that

N
logn′
logn

1 (N2/N1)
K < N ′

M ′
0
· (n′)

(
logM′
logm′ − logM

logm

)
.

Then exponentiating (5.5.8),

M
logn′
logn

M ′

M ′
0∑

ȷ̂=1

R′
ȷ̂

(
N ′
ȷ̂ · (n′)

(
logM′
logm′ − logM

logm

))λ
=

(
M0∑

ı̂=1

Rı̂N
λ
ı̂

) logn′
logn

= (R1N
λ
1 )

logn′
logn




K∑

k=0

logn′

logn

(
logn′

logn − 1
)
· · ·
(
logn′

logn − k + 1
)

k!

(
M0∑

ı̂=2

Rı̂
R1

(
Nı̂

N1

)λ)k



+O



(
N

logn′
logn

1

(
N2

N1

)K+1
)λ


as λ → +∞, by the generalised binomial theorem. This means that the coefficient of

N
logn′
logn

1 (N2/N1)
Kλ, which is a polynomial equation in logn′

logn with rational coefficients, must

be 0. So logn′

logn is algebraic. But n
logn′
logn = n′, so by the Gelfond–Schneider theorem, logn′

logn ∈ Q.

Now we assume only (ii). We first show that logm′

logm ∈ Q. Since the functions βν and βν′
are equal, using (5.2.6) with the change of variable λ := γ−1 + (1− γ−1)ξ,

λ−γ−1

1−γ−1 logN − log
∑M0

ı̂=1Rı̂N
λ
ı̂

logm
=

λ−γ−1

1−γ−1 logN
′ − log

∑M ′
0

ȷ̂=1Rȷ̂N
′
ȷ̂
(γ′)−1+(1−(γ′))−1 λ−γ−1

1−γ−1

logm′
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for all λ. A similar argument to the above using the generalised binomial theorem and
Gelfond–Schneider theorem now gives that logm′

logm ∈ Q. To show moreover that γ = γ′,
note that these quantities are bi-Lipschitz invariants which depend only on the respective
carpets, not the choice of iterated function system (see [FY1, Theorem 3.3]). So since m
and m′ are multiplicatively dependent, we can iterate the IFS to assume without loss of
generality that Λ is defined on an m× n grid, and Λ′ is defined on an m× n′ grid, for the
same m. Then by (5.2.6),

N−ξ
M0∑

ı̂=1

Rı̂N
γ−1+(1−γ−1)ξ
ı̂ = N ′−ξ

M ′
0∑

ȷ̂=1

Rȷ̂N
′
ȷ̂
(γ′)−1+(1−(γ′)−1)ξ (5.5.9)

for all ξ. So using a similar argument to the proof of [RYZ, Theorem 1.2], equating

exponential terms and coefficients gives M0 =M ′
0. Also, N

logm
logn

ı̂ = (N ′
ı̂)

logm
logn′ , so

N ′
ı̂ = N

logn′
logn

ı̂ for all ı̂ ∈ {1, . . . ,M0}. (5.5.10)

Equating corresponding exponential bases in (5.5.9), applying (5.5.10) and using that the
carpet has non-uniform fibres (so not all Nı̂ are equal) shows that n = n′. In particular,
logn′

logn ∈ Q, as required.

Proof of Theorem 5.2.4. (i) The equality log n/ logm = log n′/ logm′ follows from ob-
serving the phase transitions of the Assouad spectrum (see [FY1, Theorem 3.3]) or interme-
diate dimensions. The fact that log n/ log n′ ∈ Q follows from Lemma 5.5.3.

(ii) The forward implication follows from (i), and the backward implication holds by
iterating the IFSs (recalling the discussion after the statement of Theorem 5.2.4).

We now prove Theorem 5.2.5. Since the intermediate dimension and multifractal
spectra obviously do not depend on the grid on which the carpet is defined, in light of
Lemma 5.5.3 and Theorem 5.2.4 it suffices to assume henceforth that both carpets are
defined on the same m× n grid to begin with. We already mentioned that the equivalence
of (ii) and (vi) was proved in [RYZ, Theorem 1.2]. To complete the proof, we show that
(i) ⇒ (iii) ⇒ (v) ⇒ (vi) ⇒ (iv) ⇒ (vi) ⇒ (v) ⇒ (i). Of these, the implication (i) ⇒ (iii)

is obvious.

Proof of (iii) ⇒ (v). Assume dimθ Λ = dimθ Λ
′ on the open interval (a, b) ⊂ [γ−1, 1]. After

rearranging the formula in Theorem 5.2.1 for dimθ Λ in the case L = 1, we obtain that

dimθ Λ = dimB Λ−
(1
θ
− 1
)I
(
t1(dimθ Λ)

)

log n
.

By Corollary 5.2.3 part (i), dimθ Λ and dimθ Λ
′ are real analytic on (γ−1, 1), hence dimθ Λ =

dimθ Λ
′ on the whole interval [γ−1, 1]. In particular, dimB Λ = dimB Λ′, so

I
(
t1(dimθ Λ)

)
= I ′

(
t′1(dimθ Λ

′)
)

= I ′
((

dimθ Λ
′ − log(M ′M/M)

logm′

)
log n′

)
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= I ′
((

dimθ Λ− logM

logm

)
log n

︸ ︷︷ ︸
=t1(dimθ Λ)

−γ log(M ′/M)
)
.

Setting t = t1(dimθ Λ), we see that I(t) = I ′(t − γ log(M ′/M)) on the open interval
(t1(dima Λ), t1(dimb Λ)). Since the rate function is analytic, (v) follows.

Proof of (v) ⇒ (vi). Assume I(t) = I ′(t− γ log(M ′/M)) on an open interval of t. Without
loss of generality we assume that M ′ ⩾M . Using definition (5.2.2) of the rate function,

I ′(t− γ log(M ′/M)) = sup
λ∈R

{
λt− log

(
(M ′/M)γλ

M ′

M ′
0∑

ı̂=1

R′
ı̂(N

′
ı̂)
λ

)}
.

Since I and I ′ are convex functions, their Legendre transforms must agree on an open
interval, implying that

1

M

M0∑

ı̂=1

Rı̂N
λ
ı̂ =

1

M ′

M ′
0∑

ı̂=1

R′
ı̂

(
(M ′/M)γN ′

ı̂

)λ (5.5.11)

on an open interval of λ.
From here the proof follows the idea of the proof of [RYZ, Theorem 1.2]. Taking the

k-th derivative of both sides of (5.5.11) with respect to λ gives

1

M

M0∑

ı̂=1

Rı̂N
λ
ı̂ · (logNı̂)

k =
1

M ′

M ′
0∑

ı̂=1

R′
ı̂

(
(M ′/M)γN ′

ı̂

)λ ·
(
log((M ′/M)γN ′

ı̂)
)k
. (5.5.12)

Recall that the Nı̂ and N ′
ı̂ are ordered in decreasing order. Since (5.5.12) holds for all k,

the largest term on either side must be equal, so N1/N
′
1 = (M ′/M)γ , and also its coefficient

R1N
λ
1

M
=
R′

1

(
(M ′/M)γN ′

1

)λ

M ′ ⇐⇒ R′
1

R1
=
M ′

M
·
(
M

M ′

)γλ
·
(
N1

N ′
1

)λ
=
M ′

M
.

After subtracting these terms from both sides of (5.5.12), we repeat the argument for the
next largest term and so on. If M0 ̸= M ′

0 then after min{M0,M
′
0} steps one side would

be 0 and the other non-zero, a contradiction. Hence, we conclude that M0 = M ′
0 and

Nı̂/N
′
ı̂ = (R′

ı̂/Rı̂)
γ = (M ′/M)γ for all ı̂ = 1, . . . ,M0.

Proof of (vi) ⇒ (iv). If (vi) holds, then substituting R′
ı̂ = Rı̂M

′/M andN ′
ı̂ = Nı̂(M

′/M)−γ

gives N ′ = N(M ′/M)1−γ . Substituting into (5.2.9) gives Tν(q) = Tν′(q).

Proof of (iv) ⇒ (vi). Equating the constant term and coefficient of q from (5.2.9) gives
that

M ′
0∑

ı̂=1

R′
ı̂(N

′
ı̂)
q =

(
N ′

N

) logn−q logn
log(n/m)

M0∑

ı̂=1

Rı̂(Nı̂)
q.

By the same differentiation argument from [RYZ] that was used in the proof of (v) ⇒ (vi),

M0 =M ′
0 and Nı̂/N

′
ı̂ = (R′

ı̂/Rı̂)
γ = (N ′/N)

logn
log(n/m) for all ı̂. Now observing that

M ′

M
=

∑M0
ı̂=1R

′
ı̂∑M0

ȷ̂=1Rȷ̂
=

(
N ′

N

) logn
log(n/m)
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shows that (vi) holds.

Proof of (vi) ⇒ (v). Assume that M0 = M ′
0 and Nı̂/N

′
ı̂ = (R′

ı̂/Rı̂)
γ = (M ′/M)γ for all

ı̂ = 1, . . . ,M0. Then (5.5.11) holds for every λ ∈ R. Since both sides of (5.5.12) are strictly
positive for k = 2, both sides of (5.5.11) are convex functions of λ. Hence, their Legendre
transforms are also equal:

sup
λ∈R

{
λt− log

(
1

M

M0∑

ı̂=1

Rı̂N
λ
ı̂

)}
= sup

λ∈R

{
λt− log

(
(M ′/M)γλ

M ′

M ′
0∑

ı̂=1

R′
ı̂(N

′
ı̂)
λ

)}

for all t, which is precisely I(t) = I ′(t− γ log(M ′/M)).

Proof of (v) ⇒ (i). Assume I(t) = I ′(t− γ log(M ′/M)) for every t ∈ R. We claim that for
every s ∈ (dimH Λ,dimB Λ),

t′ℓ(s) = tℓ(s)− γ log

(
M ′

M

)
for every ℓ ∈ N. (5.5.13)

The proof goes by induction on ℓ. For ℓ = 1, t1(s) =
(
s − log(M ′M/M) logm

)
log n =

t1(s)− γ log(M ′/M). Assuming (5.5.13) for ℓ− 1, we prove for ℓ:

t′ℓ(s) = T ′
s(t

′
ℓ−1(s))

=

(
s− logM ′

logm

)
log n+ γI ′

(
tℓ−1(s)− γ log

(
M ′

M

))

(v)
=

(
s− log(M ′M/M)

logm

)
log n+ γI

(
tℓ−1(s)

)

= Ts(tℓ−1(s))− γ log

(
M ′

M

)
,

which completes the proof of (5.5.13) since Ts(tℓ−1(s)) = tℓ(s).
From (5.5.13) and assumption (v) it immediately follows that

I(tℓ(s)) = I ′(t′ℓ(s)). (5.5.14)

Assumption (v) also implies (vi), thus we know that

N ′ =
M ′

0∑

ı̂=1

R′
ı̂N

′
ı̂

(vi)
=

M0∑

ı̂=1

M ′Rı̂
M

·Nı̂

(
M

M ′

)γ
= N

(
M

M ′

)γ−1

. (5.5.15)

Writing s′θ = dimθ Λ
′, using (5.5.13), (5.5.14), (5.5.15) and algebraic manipulations, we

obtain

0 = −s′θ log n+ γLθ logN ′ − (γLθ − 1)t′L(s
′
θ) + γ(1− γL−1θ)(logM ′ − I ′(t′L(s

′
θ)))

= −s′θ log n+ γLθ logN − (γLθ − 1)tL(s
′
θ) + γ(1− γL−1θ)(logM − I(tL(s

′
θ))).

By Theorem 5.2.1, dimθ Λ is the unique solution to this equation, so dimθ Λ = dimθ Λ
′.

This completes the proof of Theorem 5.2.5.

163



References

[AHRS] T. C. Anderson, K. Hughes, J. Roos and A. Seeger. Lp → Lq bounds for spherical
maximal operators. Math. Z. 297 (2021), 1057–1074 (cit. on p. 8).

[Ass1] P. Assouad. ‘Espaces métriques, plongements, facteurs’. PhD thesis. 1977 (cit. on
p. 7).

[Ass2] P. Assouad. Étude d’une dimension métrique liée à la possibilité de plongements
dans Rn. C. R. Acad. Sci. Paris Sr. A-B 288 (1979), 731–734 (cit. on p. 7).

[Ass3] P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France 111
(1983), 429–448 (cit. on p. 7).

[Bak] S. Baker. Iterated function systems with super-exponentially close cylinders. Adv.
Math. 379 (2021), 107548 (cit. on p. 9).

[Ban1] A. Banaji. Metric spaces where geodesics are never unique. Amer. Math. Monthly
130 (2023), 747–754 (cit. on p. iii).

[Ban2] A. Banaji. Generalised intermediate dimensions. Monatsh. Math. (to appear).
arXiv: 2011.08613 [math.MG]. Preprint, 2020 (cit. on pp. iii, 3, 11, 17).

[BC] A. Banaji and H. Chen. Dimensions of popcorn-like pyramid sets. J. Fractal
Geom. 10 (2023), 151–168 (cit. on pp. iii, 4, 11, 59–61).

[BF1] A. Banaji and J. M. Fraser. Intermediate dimensions of infinitely generated
attractors. Trans. Amer. Math. Soc. 376 (2023), 2449–2479 (cit. on pp. iii, 4, 11,
79, 82).

[BF2] A. Banaji and J. M. Fraser. Assouad type dimensions of infinitely generated
self-conformal sets. Preprint, arXiv: 2207.11611v1 [math.DS]. 2022 (cit. on pp. iii,
4, 7, 79, 80, 95).

[BK1] A. Banaji and I. Kolossváry. Intermediate dimensions of Bedford-McMullen
carpets with applications to Lipschitz equivalence. Preprint, arXiv: 2111.05625v1
[math.DS]. 2021 (cit. on pp. iii, 4, 11, 107, 120).

[BR] A. Banaji and A. Rutar. Attainable forms of intermediate dimensions. Ann.
Fenn. Math. 47 (2022), 939–960 (cit. on pp. iii, 3, 11, 47, 49).

[BRT] A. Banaji, A. Rutar and S. Troscheit. Interpolating with generalized Assouad
dimensions. Preprint, arXiv: 2308.12975 [math.CA]. 2023 (cit. on pp. iii, 17, 25,
42).

164

http://arxiv.org/abs/2011.08613
http://arxiv.org/abs/2207.11611v1
http://arxiv.org/abs/2111.05625v1
http://arxiv.org/abs/2111.05625v1
http://arxiv.org/abs/2308.12975


[Bar1] K. Barański. Hausdorff dimension of the limit sets of some planar geometric
constructions. Adv. Math. 210 (2007), 215–245 (cit. on pp. 107, 120).

[BHR] B. Bárány, M. Hochman and A. Rapaport. Hausdorff dimension of planar self-
affine sets and measures. Invent. Math. 216 (2019), 601–659 (cit. on p. 107).

[BK2] B. Bárány and A. Käenmäki. Ledrappier–Young formula and exact dimensionality
of self-affine measures. Adv. Math. 318 (2017), 88–129 (cit. on p. 115).

[BK3] B. Bárány and A. Käenmäki. Super-exponential condensation without exact
overlaps. Adv. Math. 379 (2021), 107549 (cit. on p. 9).

[Bar2] M. F. Barnsley. Fractals Everywhere. 3rd ed. Dover Publications, 1988 (cit. on
p. 2).

[Bar3] M. F. Barnsley. Superfractals. Cambridge University Press, 2006 (cit. on p. 2).

[BM] J. Barral and M. Mensi. Gibbs measures on self-affine Sierpiński carpets and their
singularity spectrum. Ergodic Theory Dynam. Systems 27 (2007), 1419–1443
(cit. on p. 115).

[Bed] T. Bedford. ‘Crinkly curves, Markov partitions and box dimensions in self-similar
sets’. PhD thesis. University of Warwick, 1984 (cit. on p. 107).

[BT] A. S. Besicovitch and S. J. Taylor. On the complementary intervals of a linear
closed set of zero Lebesgue measure. J. Lond. Math. Soc. (1) 29 (1954), 449–459
(cit. on p. 12).

[Bou] G. Bouligand. Ensembles impropres et nombre dimensionnel. Bull. Math. Sci.
52 (1928), 320–344, 361–376 (cit. on p. 6).

[BV] E. Breuillard and P. P. Varjú. On the dimension of Bernoulli convolutions. Ann.
Probab. 47 (2019), 2582–2617 (cit. on p. 9).

[Bru] A. M. Bruckner. Differentiation of real functions. 2nd ed. CRM Monograph
Series, no. 5, American Mathematical Society, Providence, R.I, 1994 (cit. on
p. 50).

[Bur1] S. A. Burrell. ‘Coincidence and disparity of fractal dimensions’. PhD thesis.
University of St Andrews, 2021 (cit. on p. 11).

[Bur2] S. A. Burrell. Dimensions of fractional Brownian images. J. Theoret. Probab. 35
(2022), 2217–2238 (cit. on pp. 11, 14–16, 31, 61, 81, 99, 100, 110).

[BFF1] S. A. Burrell, K. J. Falconer and J. M. Fraser. Projection theorems for interme-
diate dimensions. J. Fractal Geom. 8 (2021), 95–116 (cit. on pp. 11, 12, 15, 16,
81, 110, 154).

[BFF2] S. A. Burrell, K. J. Falconer and J. M. Fraser. The fractal structure of elliptical
polynomial spirals. Monatsh. Math. 199 (2022), 1–22 (cit. on pp. 7, 11, 12, 14,
113).

165



[BG] P. Bylund and J. Gudayol. On the existence of doubling measures with certain
regularity properties. Proc. Amer. Math. Soc. 128 (2000), 3317–3327 (cit. on
p. 10).

[CHM] C. A. Cabrelli, K. E. Hare and U. M. Molter. Sums of Cantor sets. Ergodic
Theory Dynam. Systems 17 (1997), 1299–1313 (cit. on p. 49).

[Car] C. Carathéodory. Über das lineare Maß von Punktmengen–eine Verallgemeiner-
ung das Längenbegriffs. Nach. Ges. Wiss. Göttingen, 1914, 406–426 (cit. on
p. 5).

[CM] R. Cawley and R. D. Mauldin. Multifractal decompositions of Moran fractals.
Adv. Math. 92 (1992), 196–236 (cit. on p. 116).

[Che] H. Chen. Dimensions and spectra of the t-popcorn graphs. J. Math. Anal. Appl.
510 (2022), 126013 (cit. on pp. 59, 60).

[CFY] H. Chen, J. M. Fraser and H. Yu. Dimensions of the popcorn graph. Proc. Amer.
Math. Soc. 150 (2022), 4729–4742 (cit. on pp. 59, 60).

[CLU] V. Chousionis, D. Leykekhman and M. Urbański. On the dimension spectrum of
infinite subsystems of continued fractions. Trans. Amer. Math. Soc. 373 (2020),
1009–1042 (cit. on p. 97).

[Chr] J. P. R. Christensen. On sets of Haar measure zero in abelian Polish groups.
Israel J. Math. 13 (1973), 255–260 (cit. on p. 103).

[CN] C.-Y. Chu and S.-M. Ngai. Dimensions in infinite iterated function systems
consisting of bi-Lipschitz mappings. Dyn. Syst. 35 (2020), 549–583 (cit. on
pp. 79, 81).

[Čop] S. Čopar. Gaps in the fractional parts of square roots. Preprint, arXiv: 2012.14019
[math.NT]. 2020 (cit. on p. 58).

[Csi] I. Csiszár. The method of types [information theory]. IEEE Trans. Inform.
Theory 44 (1998), 2505–2523 (cit. on p. 127).

[DS1] T. Das and D. Simmons. The Hausdorff and dynamical dimensions of self-affine
sponges: a dimension gap result. Invent. Math. 210 (2019), 85–134 (cit. on
p. 107).

[Daw] L. Daw. ‘Fractal dimension and point-wise properties of trajectories of fractional
processes’. PhD thesis. Université Paris-Est Créteil, 2022 (cit. on p. 11).

[DK] L. Daw and G. Kerchev. Fractal dimensions of the Rosenblatt process. Stochastic
Process. Appl. 161 (2023), 544–571 (cit. on pp. 11, 15, 16).

[DZ] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Vol. 38.
Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg,
2010 (cit. on pp. 112, 128, 129).

[DS2] Z. Douzi and B. Selmi. Projection theorems for Hewitt–Stromberg and modified
intermediate dimensions. Results Math. 77 (2022), 158 (cit. on pp. 11, 14, 15).

166

http://arxiv.org/abs/2012.14019
http://arxiv.org/abs/2012.14019


[Egl] R. Eglash. African Fractals: Modern Computing and Indigenous Design. Rutgers
University Press, 1999 (cit. on p. 2).

[EN] M. Elekes and D. Nagy. Haar null and Haar meager sets: A survey and new
results. Bull. Lond. Math. Soc. 52 (2020), 561–619 (cit. on p. 103).

[Erd1] P. Erdős. On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61
(1939), 974–976 (cit. on p. 9).

[Erd2] P. Erdős. On the smoothness properties of a family of Bernoulli convolutions.
Amer. J. Math. 62 (1940), 180–186 (cit. on p. 9).

[Fal1] K. J. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985
(cit. on p. 6).

[Fal2] K. J. Falconer. The Hausdorff dimension of self-affine fractals. Math. Proc.
Cambridge Philos. Soc. 103 (1988), 339–350 (cit. on pp. 81, 102, 107).

[Fal3] K. J. Falconer. Techniques in Fractal Geometry. Wiley, 1997 (cit. on pp. 2, 12,
116).

[Fal4] K. J. Falconer. Generalized dimensions of measures on self-affine sets. Nonlinearity
12 (1999), 877 (cit. on p. 116).

[Fal5] K. J. Falconer. ‘Dimensions of self-affine sets: A survey’. In: Further Developments
in Fractals and Related Fields: Mathematical Foundations and Connections (eds.
B. Julien and S. Seuret). Birkhäuser, Boston, 2013, 115–134 (cit. on p. 107).

[Fal6] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications.
3rd ed. Wiley, 2014 (cit. on pp. 2, 3, 5–7, 9, 13, 31, 32, 40, 63, 115).

[Fal7] K. J. Falconer. A capacity approach to box and packing dimensions of projections
and other images. In: Analysis, Probability and Mathematical Physics on Fractals
(eds. P. A. Ruiz, J. P. Chen, L. G. Rogers and R. S. Strichartz). Fractals and
Dynamics in Mathematics, Science and the Arts: Theory and Applications. World
Scientific, 2020, 1–19 (cit. on p. 15).

[Fal8] K. J. Falconer. Intermediate dimensions: A survey. In: Thermodynamic Form-
alism (eds. M. Pollicott and S. Vaienti). Vol. 2290. Springer Lecture Notes in
Mathematics, 2021, 469–494 (cit. on pp. 11, 21, 31, 39, 48, 51, 55, 56, 110, 113).

[Fal9] K. J. Falconer. Intermediate dimension of images of sequences under fractional
Brownian motion. Statist. Probab. Lett. 182 (2022), 109300 (cit. on pp. 11, 16).

[FFJ] K. J. Falconer, J. M. Fraser and X. Jin. Sixty years of fractal projections. In:
Fractal Geometry and Stochastics V. Vol. 70. Birkhäuser, Progr. Probab., 2015,
3–25 (cit. on p. 96).

[FFK1] K. J. Falconer, J. M. Fraser and A. Käenmäki. Minkowski dimension for measures.
Proc. Amer. Math. Soc. 151 (2023), 779–794 (cit. on p. 119).

167



[FFK2] K. J. Falconer, J. M. Fraser and T. Kempton. Intermediate dimensions. Math. Z.
296 (2020), 813–830 (cit. on pp. 3, 11–13, 20, 21, 32–34, 36–38, 42, 46, 48, 51,
55–57, 95, 97, 98, 110, 113, 114, 139, 159).

[FFS] K. J. Falconer, J. M. Fraser and P. Shmerkin. Assouad dimension influences
the box and packing dimensions of orthogonal projections. J. Fractal Geom. 8
(2021), 247–259 (cit. on p. 7).

[FN] R. Falk and R. Nussbaum. A new approach to numerical computation of Haus-
dorff dimension of iterated function systems: applications to complex continued
fractions. Integral Equations Operator Theory 90 (2018) (cit. on p. 100).

[Fed] H. Federer. Geometric Measure Theory. Springer, 1998 (cit. on p. 6).

[Fen1] D.-J. Feng. Dimension of invariant measures for affine iterated function systems.
Duke Math. J. 172 (2023), 701–774 (cit. on p. 115).

[FW] D.-J. Feng and Y. Wang. A class of self-affine sets and self-affine measures. J.
Fourier Anal. Appl. 11 (2005), 107–124 (cit. on pp. 107, 116).

[Fen2] Z. Feng. Intermediate dimensions under self-affine codings. Preprint, arXiv:
2305.06991v1 [math.CA]. 2023 (cit. on pp. 11, 15, 16).

[Fra1] J. M. Fraser. Assouad Dimension and Fractal Geometry. Cambridge University
Press, Tracts in Mathematics Series, 222, 2020 (cit. on pp. 7–11, 14, 36, 95).

[Fra2] J. M. Fraser. Interpolating between dimensions. In: Fractal Geometry and
Stochastics VI (eds. U. Freiberg, B. Hambly, M. Hinz and S. Winter). Vol. 76.
Birkhäuser, Progr. Probab., 2021 (cit. on pp. 3, 11, 32).

[Fra3] J. M. Fraser. On Hölder solutions to the spiral winding problem. Nonlinearity
34 (2021), 3251–3270 (cit. on p. 15).

[Fra4] J. M. Fraser. Fractal geometry of Bedford-McMullen carpets. In: Thermodynamic
Formalism (eds. M. Pollicott and S. Vaienti). Vol. 2290. Springer Lecture Notes
in Mathematics, 495–516 (cit. on pp. 107, 110, 111, 113, 119, 123).

[FHHTY] J. M. Fraser, K. E. Hare, K. G. Hare, S. Troscheit and H. Yu. The Assouad
spectrum and the quasi-Assouad dimension: a tale of two spectra. Ann. Acad.
Sci. Fenn. Math. 44 (2019), 379–387 (cit. on pp. 8, 49, 55).

[FS] J. M. Fraser and L. Stuart. A new perspective on the Sullivan dictionary via
Assouad type dimensions and spectra. Bull. Amer. Math. Soc. (N.S.) (to appear).
arXiv: 2007.15493 [math.DS]. Preprint, 2020 (cit. on p. 7).

[FY1] J. M. Fraser and H. Yu. Assouad-type spectra for some fractal families. Indiana
Univ. Math. J. 67 (2018), 2005–2043 (cit. on pp. 7, 111, 117, 119, 122, 161).

[FY2] J. M. Fraser and H. Yu. New dimension spectra: Finer information on scaling
and homogeneity. Adv. Math. 329 (2018), 273–328 (cit. on pp. 7, 8, 17, 36, 55).

168

http://arxiv.org/abs/2305.06991v1
http://arxiv.org/abs/2007.15493


[Fur] H. Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem
in diophantine approximation. Math. Systems Theory 1 (1967), 1–49 (cit. on
p. 117).

[GH] I. García and K. E. Hare. Properties of quasi-Assouad dimension. Ann. Fenn.
Math. 46 (2021), 279–293 (cit. on p. 55).

[GHM1] I. García, K. E. Hare and F. Mendivil. Almost sure Assouad-like dimensions of
complementary sets. Math. Z. 298 (2021), 1201–1220 (cit. on pp. 17, 42).

[GHM2] I. García, K. E. Hare and F. Mendivil. Intermediate Assouad-like dimensions. J.
Fractal Geom. 8 (2021), 201–245 (cit. on p. 17).

[GM] R. J. Gardner and R. D. Mauldin. On the Hausdorff dimension of a set of complex
continued fractions. Illinois J. Math. 27 (1983), 334–345 (cit. on p. 100).

[GT] E. K. C. Garitsis and J. T. Tyson. Quasiconformal distortion of the Assouad
spectrum and classification of polynomial spirals. Bull. Lond. Math. Soc. 55
(2023), 282–307 (cit. on p. 8).

[GL] A. Gorodetski and A. Luna. Thomae’s function and the space of ergodic measures.
Dyn. Syst. 38 (2023), 268–274 (cit. on p. 58).

[GMW] S. Graf, R. D. Mauldin and S. C. Williams. The exact Hausdorff dimension
in random recursive constructions. Mem. Amer. Math. Soc. 71 (1988), 1–130
(cit. on p. 86).

[HU1] P. Hanus and M. Urbański. Complex continued fractions with restricted entries.
Electron. J. Differential Equations 27 (1998), 1–9 (cit. on p. 100).

[HH] K. E. Hare and K. G. Hare. Intermediate Assouad-like dimensions for measures.
Fractals 28 (2020), 2050143 (cit. on p. 17).

[HM1] K. E. Hare and F. Mendivil. Assouad-like dimensions of a class of random Moran
measures. J. Math. Anal. Appl. 508 (2022), 125912 (cit. on p. 17).

[HM2] K. E. Hare and F. Mendivil. Assouad-like dimensions of a class of random Moran
measures II – non-homogeneous Moran sets. J. Fractal Geom. (to appear). arXiv:
2207.14654 [math.CA]. Preprint, 2022 (cit. on p. 17).

[Hau] F. Hausdorff. Dimension und äußeres Maß. Math. Ann. 79 (1919), 157–179
(cit. on p. 5).

[HU2] S.-M. Heinemann and M. Urbański. Hausdorff dimension estimates for infinite
conformal IFSs. Nonlinearity 15 (2002), 727–734 (cit. on p. 97).

[Hei] J. Heinonen. Lectures on Analysis on Metric Spaces. Springer-Verlag, 2001 (cit.
on p. 10).

[Hoc] M. Hochman. On self-similar sets with overlaps and inverse theorems for entropy.
Ann. of Math. (2) 180 (2014), 773–822 (cit. on p. 9).

[HS] M. Hochman and P. Shmerkin. Local entropy averages and projections of fractal
measures. Ann. of Math. (2) 175 (2012), 1001–1059 (cit. on p. 96).

169

http://arxiv.org/abs/2207.14654


[How] J. D. Howroyd. On Hausdorff and packing dimension of product spaces. Math.
Proc. Cambridge Philos. Soc. 119 (1996), 715–727 (cit. on p. 36).

[htt1] https://publicdomainvectors.org/en/free-clipart/Sierpinski-carpet/63420.html.
Accessed 23 February 2023 (cit. on p. 1).

[htt2] https://stocksnap.io/photo/plant-green-XH1IME1TH4. Accessed 23 February
2023 (cit. on p. 1).

[HRWX] L.-y. Huang, H. Rao, Z. Wen and Y.-l. Xu. Box-counting measure of metric
spaces. Preprint, arXiv: 2111.00752v3 [math.MG]. 2022 (cit. on p. 120).

[HSY] B. R. Hunt, T. Sauer and J. A. Yorke. Prevalence: a translation-invariant “almost
every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. (N.S.) 27 (1992),
217–238 (cit. on p. 103).

[Hut] J. E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981),
713–747 (cit. on pp. 8, 9, 79, 83).

[HK] T. Hytönen and A. Kairema. Systems of dyadic cubes in a doubling metric space.
Colloq. Math. 126 (2010) (cit. on pp. 18, 33, 34).

[Ing] D. Ingebretson. Quantitative distortion and the Hausdorff dimension of continued
fractions. Preprint, arXiv: 2002.10232 [math.NT]. 2020 (cit. on pp. 97, 100).

[JR] T. Jordan and M. Rams. Multifractal analysis for Bedford–McMullen carpets.
Math. Proc. Cambridge Philos. Soc. 150 (2011), 147–156 (cit. on pp. 115, 116,
118, 131).

[KL] A. Käenmäki and J. Lehrbäck. Measures with predetermined regularity and
inhomogeneous self-similar sets. Ark. Mat. 55 (2017), 165–184 (cit. on p. 10).

[KLV] A. Käenmäki, J. Lehrbäck and M. Vuorinen. Dimensions, Whitney covers, and
tubular neighborhoods. Indiana Univ. Math. J. 62 (2013), 1861–1889 (cit. on
p. 10).

[KR] A. Käenmäki and H. W. J. Reeve. Multifractal analysis of Birkhoff averages for
typical infinitely generated self-affine sets. J. Fractal Geom. 1 (2014), 83–152
(cit. on pp. 79, 81, 102).

[Kah] J.-P. Kahane. Some Random Series of Functions. Cambridge University Press,
1985 (cit. on pp. 15, 61, 100).

[KT] N. H. Katz and T. Tao. Recent progress on the Kakeya conjecture. Publ. Mat.
[Proceedings of the 6th International Conference on Harmonic Analysis and
Partial Differential Equations, El Escorial (Madrid)] 46 (2002), 161–179 (cit. on
p. 2).

[KP1] R. Kenyon and Y. Peres. Measures of full dimension on affine-invariant sets.
Ergodic Theory Dynam. Systems 16 (1996), 307–323 (cit. on pp. 107, 115).

[KZ] M. Kesseböhmer and S. Zhu. Dimension sets for infinite IFSs: the Texan conjec-
ture. J. Number Theory 116 (2006), 230–246 (cit. on p. 97).

170

https://publicdomainvectors.org/en/free-clipart/Sierpinski-carpet/63420.html
https://stocksnap.io/photo/plant-green-XH1IME1TH4
http://arxiv.org/abs/2111.00752v3
http://arxiv.org/abs/2002.10232


[Kin] J. F. King. The singularity spectrum for general Sierpiński carpets. Adv. Math.
116 (1995), 1–11 (cit. on p. 115).

[Kol1] I. Kolossváry. An upper bound for the intermediate dimensions of Bedford-
McMullen carpets. J. Fractal Geom. 9 (2022), 151–169 (cit. on pp. 11, 110,
122).

[Kol2] I. Kolossváry. The Lq spectrum of self-affine measures on sponges. J. Lond. Math.
Soc. (2) 108 (2023), 666–701 (cit. on pp. 113, 116, 127).

[KP2] I. Kukavica and Y. Pei. An estimate on the parabolic fractal dimension of the
singular set for solutions of the Navier–Stokes system. Nonlinearity 25 (2012),
2775–2783 (cit. on p. 11).

[LG] S. P. Lalley and D. Gatzouras. Hausdorff and box dimensions of certain self-affine
fractals. Indiana Univ. Math. J. 41 (1992), 533–568 (cit. on pp. 107, 120).

[Lar] D. G. Larman. A new theory of dimension. Proc. Lond. Math. Soc. (3) 17 (1967),
178–192 (cit. on p. 7).

[LLR] E. Le Donne, S. Li and T. Rajala. Ahlfors-regular distances on the Heisenberg
group without biLipschitz pieces. Proc. Lond. Math. Soc. (3) 115 (2015) (cit. on
p. 10).

[LY1] F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms: Part I:
Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math.
(2) 122 (1985), 509–539 (cit. on p. 115).

[LY2] F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms: Part II:
Relations between entropy, exponents and dimension. Ann. of Math. (2) 122
(1985), 540–574 (cit. on p. 115).

[LLM] B. Li, W. Li and J. J. Miao. Lipschitz equivalence of McMullen sets. Fractals 21
(2013), 1350022 (cit. on p. 119).

[LMR] Z. Liang, J. J. Miao and H.-J. Ruan. Gap sequences and topological properties
of Bedford–McMullen sets. Nonlinearity 35 (2022), 4043 (cit. on p. 119).

[LX] F. Lü and L. Xi. Quasi-Assouad dimension of fractals. J. Fractal Geom. 3 (2016),
187–215 (cit. on p. 8).

[LS] J. Luukkainen and E. Saksman. Every complete doubling metric space carries a
doubling measure. Proc. Amer. Math. Soc. 126 (1998), 531–534 (cit. on p. 10).

[Man1] B. B. Mandelbrot. Fractals: Form, Chance, and Dimension. Freeman, 1977 (cit.
on p. 2).

[Man2] B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, 1982 (cit. on p. 2).

[MV] B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian motions, fractional
noises and applications. SIAM Rev. 10 (1968), 422–437 (cit. on p. 15).

[Mat] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge
University Press, 1995 (cit. on pp. 6, 7, 34).

171



[Mau] R. D. Mauldin. Infinite Iterated Function Systems: Theory and Applications. In:
Fractal Geometry and Stochastics (eds. C. Bandt, S. Graf and M. Zähle). Vol. 37.
Birkhäuser, Progr. Probab., 1995 (cit. on p. 79).

[MU1] R. D. Mauldin and M. Urbański. Dimensions and measures in infinite iterated
function systems. Proc. Lond. Math. Soc. (3) 73 (1996), 105–154 (cit. on pp. 79–
82, 85, 87–89, 93–95, 97, 98, 100, 106).

[MU2] R. D. Mauldin and M. Urbański. Conformal iterated function systems with
applications to the geometry of continued fractions. Trans. Amer. Math. Soc.
351 (1999), 4995–5025 (cit. on pp. 79–82, 86, 89, 91, 92, 94, 97, 98, 102).

[MU3] R. D. Mauldin and M. Urbański. Parabolic iterated function systems. Ergodic
Theory Dynam. Systems 20 (2000), 1423–1447 (cit. on p. 95).

[MU4] R. D. Mauldin and M. Urbański. Fractal measures for parabolic IFS. Adv. Math.
168 (2002), 225–253 (cit. on p. 95).

[McM] C. McMullen. The Hausdorff dimension of general Sierpiński carpets. Nagoya
Math. J. 96 (1984), 1–9 (cit. on p. 107).

[MP] D. Meiri and Y. Peres. Bi-invariant sets and measures have integer Hausdorff
dimension. Ergodic Theory Dynam. Systems 19 (1999), 523–534 (cit. on p. 117).

[MXX] J. J. Miao, L.-F. Xi and Y. Xiong. Gap sequences of McMullen sets. Proc. Amer.
Math. Soc. 145 (2017), 1629–1637 (cit. on p. 119).

[NT] S.-M. Ngai and J.-X. Tong. Infinite iterated function systems with overlaps.
Ergodic Theory Dynam. Systems 36 (2016), 890–907 (cit. on pp. 79, 81, 83).

[Ols1] L. Olsen. A multifractal formalism. Adv. Math. 116 (1995), 82–196 (cit. on
p. 116).

[Ols2] L. Olsen. Self-affine multifractal Sierpiński sponges in Rd. Pacific J. Math. 183
(1998), 143–199 (cit. on p. 115).

[ORS] E. J. Olson, J. C. Robinson and N. Sharples. Generalised Cantor sets and the
dimension of products. Math. Proc. Cambridge Philos. Soc. 160 (2016), 51–75
(cit. on p. 72).

[OY] W. Ott and J. A. Yorke. Prevalence. Bull. Amer. Math. Soc. (N.S.) 42 (2005),
263–290 (cit. on p. 103).

[Pan] P. Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces
symétriques de rang un. Ann. of Math. (2) 129 (1989), 1–60 (cit. on p. 10).

[PJS] H.-O. Peitgen, H. Jürgens and D. Saupe. Chaos and Fractals: New Frontiers of
Science. 2nd ed. Springer, 2004 (cit. on p. 2).

[Per] Y. Peres. The self-affine carpets of McMullen and Bedford have infinite Hausdorff
measure. Math. Proc. Cambridge Philos. Soc. 116 (1994), 513–526 (cit. on
p. 110).

172



[PS] L. Pontrjagin and L. Schnirelmann. Sur une propriété métrique de la dimension.
Ann. of Math. (2) 32 (1932), 156–162 (cit. on p. 6).

[Pri] A. Priyadarshi. Lower bound on the Hausdorff dimension of a set of complex
continued fractions. J. Math. Anal. Appl. 449 (2016) (cit. on p. 100).

[RRY] H. Rao, H.-J. Ruan and Y.-M. Yang. Gap sequence, Lipschitz equivalence and
box dimension of fractal sets. Nonlinearity 21 (2008), 1339–1347 (cit. on p. 119).

[RYZ] H. Rao, Y.-M. Yang and Y. Zhang. Invariance of multifractal spectrum of uniform
self-affine measures and its applications. Preprint, arXiv: 2005.07451v7 [math.DS].
2021 (cit. on pp. 111, 118–120, 123, 124, 161, 162).

[Rap] A. Rapaport. Proof of the exact overlaps conjecture for systems with algebraic
contractions. Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), 1357–1377 (cit. on p. 9).

[RV] A. Rapaport and P. P. Varjú. Self-similar measures associated to a homogeneous
system of three maps. Duke Math. J. (to appear). arXiv: 2010.01022 [math.DS].
Preprint, 2020 (cit. on p. 9).

[Ree] M. Reeder. Thomae’s function on a Lie group. Pacific J. Math. 322 (2023),
139–169 (cit. on p. 58).

[RS1] J. C. Robinson and N. Sharples. Strict inequality in the box-counting dimension
product formulas. Real Anal. Exchange 38 (2010), 95–119 (cit. on pp. 36, 37,
39).

[Rog] C. A. Rogers. Hausdorff Measures. 2nd ed. Cambridge University Press, 1998
(cit. on p. 6).

[RS2] J. Roos and A. Seeger. Spherical maximal functions and fractal dimensions
of dilation sets. Amer. J. Math. (to appear). eprint: 2004.00984 (math.CA).
Preprint, 2020 (cit. on p. 8).

[Rut] A. Rutar. Attainable forms of Assouad spectra. Indiana Univ. Math. J. (to
appear). Preprint, arXiv: 2206.06921 [math.CA]. 2022 (cit. on pp. 7, 49).

[Sem] S. Semmes. On the nonexistence of bi-Lipschitz parameterizations and geometric
problems about A∞-weights. Rev. Mat. Iberoamericana 12 (1996), 337–410 (cit.
on p. 10).

[Shm1] P. Shmerkin. Projections of self-similar and related fractals: A survey of recent
developments. In: Fractal Geometry and Stochastics V. Vol. 70. Birkhäuser, Progr.
Probab., 2015, 53–74 (cit. on p. 96).

[Shm2] P. Shmerkin. On Furstenberg’s intersection conjecture, self-similar measures, and
the Lq norms of convolutions. Ann. of Math. (2) 189 (2019), 319–391 (cit. on
pp. 116, 118).

[SW] P. Shmerkin and H. Wang. On the distance sets spanned by sets of dimension
d/2 in Rd. Preprint, arXiv: 2112.09044 [math.CA]. 2021 (cit. on p. 2).

173

http://arxiv.org/abs/2005.07451v7
http://arxiv.org/abs/2010.01022
2004.00984
http://arxiv.org/abs/2206.06921
http://arxiv.org/abs/2112.09044


[SM] K. Shu and M. Marcolli. Syntactic structures and code parameters. Math. Comput.
Sci. 11 (2017), 79–90 (cit. on p. 58).

[Sic] J. Siciak. A characterisation of analytic functions of n real variables. Studia
Math. 35 (1970), 293–297 (cit. on p. 155).

[Tan] J. T. Tan. On the intermediate dimensions of concentric spheres and related sets.
Preprint, eprint: 2008.10564 (math.MG). 2020 (cit. on pp. 11, 12, 113).

[Tri] C. Tricot. Two definitions of fractional dimension. Math. Proc. Cambridge Philos.
Soc. 91 (1982), 54–74 (cit. on p. 7).

[Tro] S. Troscheit. Assouad spectrum thresholds for some random constructions. Canad.
Math. Bull. 63 (2019), 434–453 (cit. on p. 17).

[Urb] M. Urbański. Parabolic Cantor sets. Fund. Math. 151 (1996), 241–277 (cit. on
p. 95).

[URM] M. Urbański, M. Roy and S. Munday. Non-Invertible Dynamical Systems, Volume
2: Finer Thermodynamic Formalism – Distance Expanding Maps and Countable
State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and
Fractal Geometry. De Gruyter, 2022 (cit. on p. 93).

[Var1] P. P. Varjú. Recent progress on Bernoulli convolutions. In: 7th European Congress
of Mathematics (eds. V. Mehrmann and M. Skutella). European Mathematical
Society, 2016, 847–867 (cit. on p. 9).

[Var2] P. P. Varjú. Absolute continuity of Bernoulli convolutions for algebraic parameters.
J. Amer. Math. Soc. 32 (2019), 351–397 (cit. on p. 9).

[Var3] P. P. Varjú. On the dimension of Bernoulli convolutions for all transcendental
parameters. Ann. of Math. (2) 189 (2019), 1001–1011 (cit. on p. 9).

[Var4] P. P. Varjú. Self-similar sets and measures on the line. Preprint, arXiv: 2109.10629
[math.CA]. 2021 (cit. on p. 9).

[VK] A. L. Vol’berg and S. V. Konyagin. On measures with the doubling condition.
Math. USSR-Izv. 30 (1988), 629–638 (cit. on p. 10).

[Wu] M. Wu. A proof of Furstenberg’s conjecture on the intersections of ×p- and
×q-invariant sets. Ann. of Math. (2) 189 (2019), 707–751 (cit. on p. 118).

[YZ] Y.-M. Yang and Y. Zhang. Lipschitz classification of Bedford-McMullen carpets
with uniform horizontal fibers. J. Math. Anal. Appl. 495 (2020), 124742 (cit. on
p. 119).

[Zah] Z. Zahorski. Sur l’ensemble des points de non-dérivabilité d’une fonction continue.
Bull. Soc. Math. France 2 (1946), 147–178 (cit. on p. 48).

174

2008.10564
http://arxiv.org/abs/2109.10629
http://arxiv.org/abs/2109.10629

	Acknowledgements
	Declarations
	Introduction
	Fractal geometry
	Structure of thesis
	Notation and preliminaries
	Intermediate dimensions

	Generalised intermediate dimensions
	Introduction
	General bounds
	Hölder and Lipschitz maps
	A mass distribution principle
	Recovering the interpolation

	Attainable forms of intermediate dimensions
	Introduction
	General bounds
	Moran sets

	Infinitely generated attractors
	Introduction
	Infinite IFSs and pressure functions
	Dimension results
	Continued fraction sets
	Generic attractors

	Bedford–McMullen carpets
	Introduction
	Results and examples
	Proof of equivalent forms of the rate function
	Proof of the intermediate dimensions formula
	Proof of corollaries and applications

	References

