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Dimensions of Kleinian orbital sets

Thomas Bartlett and Jonathan M. Fraser

Abstract. Given a non-empty bounded subset of hyperbolic space and a Kleinian group acting
on that space, the orbital set is the orbit of the given set under the action of the group. We
may view orbital sets as bounded (often fractal) subsets of Euclidean space. We prove that the
upper box dimension of an orbital set is given by the maximum of three quantities: the upper
box dimension of the given set, the Poincaré exponent of the Kleinian group, and the upper box
dimension of the limit set of the Kleinian group. Since we do not make any assumptions about
the Kleinian group, none of the terms in the maximum can be removed in general. We show
by constructing an explicit example that our assumption that the given set is bounded (in the
hyperbolic metric) cannot be removed in general.

1. Kleinian orbital sets

1.1. Hyperbolic geometry, Kleinian groups, and orbital sets

Let n > 2 be an integer, and consider the Poincaré ball

Dn
D ¹z 2 RnW jzj < 1º

equipped with the hyperbolic metric d given by

jdsj D
2jdzj

1 � jzj2
:

This provides a model of n-dimensional hyperbolic space. The group of orientation
preserving isometries of .Dn; d / is the group of conformal automorphisms of Dn,
which we denote by conC.Dn/. A group � 6 conC.Dn/ is called Kleinian if it is a
discrete subset of conC.Dn/. Kleinian groups generate fractal limit sets living on the

2020 Mathematics Subject Classification. Primary 37F32; Secondary 30F40, 28A78, 28A80,
11J72.
Keywords. Orbital set, Kleinian group, Poincaré exponent, upper box dimension, limit set,
inhomogeneous attractor.

https://creativecommons.org/licenses/by/4.0/


T. Bartlett and J. M. Fraser 268

boundary Sn�1 as well as beautiful tessellations of hyperbolic space. Both of these
objects are defined via orbits. The limit set is defined by

L.�/ D �.0/ n �.0/;

where �.0/ D ¹g.0/W g 2 �º is the orbit of 0 under � and �.0/ is the Euclidean
closure of �.0/. On the other hand, hyperbolic tessellations arise by taking the orbit
of a fundamental domain for the group action.

The Poincaré exponent is a coarse measure of the rate of accumulation to the
boundary. It is defined as the exponent of convergence of the Poincaré series

P�.s/ D
X
g2�

exp.�sd.0; g.0/// D
X
g2�

�
1 � jg.0/j

1C jg.0/j

�s
for s > 0. That is, the Poincaré exponent is

ı.�/ D inf¹s > 0WP�.s/ <1º:

A Kleinian group is called non-elementary if its limit set contains at least 3 points, in
which case it is necessarily an uncountable perfect set. In the case n D 2, Kleinian
groups are more commonly referred to as Fuchsian groups. For more background on
hyperbolic geometry and Kleinian groups see [5, 16].

In this paper we introduce and study Kleinian orbital sets. In some sense these
provide a bridge between limit sets and hyperbolic tessellations. Fix a non-empty set
C � Dn and a Kleinian group � . The orbital set is defined to be

�.C / D
[
g2�

g.C /:

It is easy to see that if C is (the hyperbolic closure of) a fundamental domain, then
the orbital set is the whole space, that is, �.C / D Dn. Moreover, the limit set is
immediately contained in the Euclidean closure of any orbital set.

There is a celebrated connection between hyperbolic geometry (especially Fuch-
sian groups) and the artwork of M. C. Escher. Orbital sets fall very naturally into this
discussion since many of the memorable images from Escher’s work are orbital sets
(rather than tessellations). Here C could be a large central bat or fish, which is then
repeated many times on smaller and smaller scales towards the boundary of Dn.

1.2. Dimension theory

There has been a great deal of interest in estimating the fractal dimension of the limit
set of a Kleinian group. We write dimH, dimB to denote the Hausdorff and upper box
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dimension, respectively. We refer the reader to [10] for more background on dimen-
sion theory. Since we use the upper box dimension directly, we recall the definition.
Given a bounded set E in a metric space and a scale ı > 0, let Nı.E/ denote the
smallest number of sets of diameter ı required to cover E. (We say a collection of
sets ¹Uiºi covers E if E �

S
i Ui .) Then the upper box dimension of E is

dimBE D lim sup
ı!0

logNı.E/
� log ı

:

If we replace the lim sup above with lim inf, then we define the lower box dimension,
denoted by dimBE. If the upper and lower box dimension coincide, then we write
dimB E for the common value and simply refer to the box dimension. For all non-
empty bounded sets E � Rn,

0 6 dimH F 6 dimBE 6 dimBE 6 n:

For all non-elementary Kleinian groups,

ı.�/ 6 dimHL.�/ 6 dimBL.�/ 6 dimBL.�/;

and for non-elementary geometrically finite Kleinian groups,

ı.�/ D dimHL.�/ D dimBL.�/:

See [7, 15] for more details on geometric finiteness. These results go back to Patter-
son [18], Sullivan [23], Bishop and Jones [6] and Stratmann and Urbański [21]; see the
survey [22]. In the geometrically infinite case, it is possible that ı.�/ < dimH L.�/;
see [8, 19, 20]. Falk and Matsuzaki [11] characterise the upper box dimension of an
arbitrary non-elementary Kleinian group as the convex core entropy of the group,
denoted by hc.�/.

Orbital sets provide a new family of fractal sets associated with Kleinian group
actions. As such, it is a well-motivated problem to consider their dimension theory.
It is most natural to consider the dimensions of �.C / with respect to the Euclidean
metric on Rn. Since the Hausdorff dimension is countably stable and the maps g 2 �
are conformal, it is immediate that

dimH �.C / D dimH C: (1.1)

The upper box dimension fails to be countably stable in general, and so computing
the upper box dimension of an orbital set is potentially an interesting problem. Since
the upper box dimension is stable under taking closure, it is immediate that

dimB�.C / > dimBL.�/;

and so we already see that the expected analogue of (1.1) does not hold in general for
upper box dimension.
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1.3. Inhomogeneous attractors

The idea to study orbital sets is partially motivated by the theory of inhomogeneous
iterated function systems introduced by Barnsley and Demko [3]. This is also where
we took the name orbital set from. We refer the reader to [2, 3, 9, 12] for more details
but briefly outline the connection here. Consider an iterated function system (IFS),
which is a finite collection of contractions � D ¹Siºi of a compact metric space X
into itself. Fix a compact set C � X . A simple application of Banach’s contraction
mapping theorem yields that there exists a unique non-empty compact attractor FC
satisfying

FC D
[
S2�

S.FC / [ C:

Classical attractors of IFSs are when C D ; and we denote these by F;. See [10] for
more background on classical IFS theory. Let M be the monoid generated by � . It is
straightforward to see that FC is the closure of the orbital set M.C /. In particular, the
box dimensions of FC and M.C / coincide, but the Hausdorff dimensions may differ
since countable stability guarantees dimH M.C / D dimH C . The box dimensions of
FC have been studied in several contexts, e.g. [1,9,12,14,17]. If the IFS � consists of
similarity maps and satisfies the strong open set condition, then it was shown in [12]
that

dimBFC D max¹dimBF;; dimBC º: (1.2)

The lower box dimension does not behave so well, see [12], and the formula (1.2)
does not necessarily hold when the strong open set condition fails, see [1].

2. Main results

Our main result is a complete characterisation of the upper box dimension of Klein-
ian orbital sets with C bounded in the hyperbolic metric. This should be compared
with (1.2). It is perhaps noteworthy that we do not make any assumptions on the
Kleinian group. In particular, it does not have to be geometrically finite, and the res-
ult holds for elementary and non-elementary groups. We also do not require C to be
contained in a fundamental domain and so the images of C appearing in the orbital
set may overlap. We make essential use of the assumption that C is bounded (in the
hyperbolic metric) in the proof, and it turns out that this cannot be removed in general,
see Theorem 2.2. For clarity, we recall that we compute the dimension of the orbital
set with respect to the Euclidean metric on Rn.
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Theorem 2.1. Let � be a Kleinian group acting on Dn and C be a non-empty
bounded subset of Dn. Then

dimB�.C / D max
®
dimBL.�/; dimBC; ı.�/

¯
:

We defer the proof of Theorem 2.1 to Section 3. It is a new feature in the Kleinian
groups case that three distinct terms appear in the maximum, recall (1.2). We briefly
point out that all three terms are needed in general.

(1) Suppose � is geometrically infinite and satisfies ı.�/ < dimBL.�/ and C is
a single point. Then

dimBL.�/ > ı.�/ > 0 D dimBC:

(2) Suppose � is generated by a single hyperbolic element and C is a line seg-
ment. Then

dimBC D 1 > 0 D ı.�/ D dimBL.�/:

(3) Suppose � is generated by a single parabolic element and C is a single point.
Then

ı.�/ D 1=2 > 0 D dimBL.�/ D dimBC:

Interestingly, the assumption that C is a bounded subset of hyperbolic space Dn

cannot be removed in general. This was a surprise to us.

Theorem 2.2. There exists a non-empty set C � D2 and an (elementary) Fuchsian
group � acting on D2 such that

dimBL.�/ D dimBC D ı.�/ D 0

but
dimB�.C / D dimB�.C / D 1:

(Theorem 2.1 ensures that such a set C must be unbounded.)

We defer the proof of Theorem 2.2 to Section 4. If we make further assumptions
about � , then one of the terms in the maximum from Theorem 2.1 may be dropped.
The following two corollaries follow immediately from Theorem 2.1 together with
well-known results, see the discussion in Section 1.2.

Corollary 2.3. Let � be a geometrically finite, non-elementary Kleinian group acting
on Dn and C be a non-empty bounded subset of Dn. Then

dimB�.C / D max
®
dimBC; ı.�/

¯
:
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Corollary 2.4. Let � be a non-elementary Kleinian group acting on Dn and C be a
non-empty bounded subset of Dn. Then

dimB�.C / D max
®
dimBC; dimBL.�/

¯
D max

®
dimBC; hc.�/

¯
;

where hc.�/ is the convex core entropy of � .

Finally, we note that we obtain simple bounds for the lower box dimension of
�.C /. The upper bound uses the upper box dimension and the lower bound uses the
fact that the lower box dimension is monotonic and stable under closure. We get

max
®
dimBC; dimBL.�/

¯
6 dimB�.C / 6 max

®
dimBC; dimBL.�/

¯
:

This can be used to deduce that the box dimension of the orbital set exists in many
cases, for example, if the box dimension of C exists and � is non-elementary and
geometrically finite, then

dimB �.C / D max
®
dimB C; ı.�/

¯
:

It would be interesting to consider the lower box dimension in greater detail – or
the Assouad dimension – since both these dimensions are also not countably stable.
However, the lower box dimension is likely to behave very differently, based on [12],
in cases when the box dimension of C does not exist. The Assouad dimension of
geometrically finite Kleinian groups was studied in [13] and it generally behaves dif-
ferently from the upper box dimension in the case when there are parabolic elements.
The Assouad dimension of inhomogeneous self-similar sets was considered in [14].

3. Proof of Theorem 2.1

Throughout the proof we write A . B to mean there is a constant c > 0 such that
A 6 cB . Similarly, we write A & B if B . A and A� B if A . B and A & B . When
the constant c depends on a parameter � , we indicate this with a subscript (or multiple
subscripts), e.g. A .� B . The implicit constants will often depend on � , C and other
fixed parameters, but it will be crucial that they never depend on the covering scale
ı > 0 used to compute the box dimension or on a specific element g 2 � .

Throughout the proof B.x; R/ will denote the closed Euclidean ball with centre
x 2 Dn and radius R > 0. We also write jEj to denote the Euclidean diameter of a
non-empty set E.

3.1. Preliminary estimates and results from hyperbolic geometry

Since all g 2 conC.Dn/ are conformal, the Jacobian derivatives at z 2 Dn are given
by a strictly positive scalar times a rotation matrix. We write jg0.z/j to denote this
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scalar, and will frequently use the well-known estimate that for all g 2 conC.Dn/ and
z 2 Dn,

jg0.z/j �jzj 1 � jg.z/j (3.1)

with implicit constants independent of g. This estimate comes directly from the defin-
ition of the hyperbolic metric and that g is an isometry.

Lemma 3.1. For all r 2 .0; 1/, z 2 B.0; r/, and g 2 conC.Dn/,

jg0.z/j

jg0.0/j
.r 1:

Proof. By (3.1),

jg0.z/j

jg0.0/j
�r

1 � jg.z/j

1 � jg.0/j
� ed.0;g.0//�d.0;g.z// 6 ed.g.0/;g.z// D ed.0;z/ 6

1C r

1 � r

proving the claim.

Lemma 3.2. Fix a non-empty bounded set C � Dn. Then

Nı.g.C // .C Nı=jg0.0/j.C /

for all ı 2 .0; 1/ and g 2 conC.Dn/.

Proof. Let r 2 .0; 1/ be such that C is contained in B.0; r/. We can choose such an
r depending only on C since C is bounded (in the hyperbolic metric). Let ı 2 .0; 1/,
g 2 conC.Dn/, and ¹Uiºi be a minimal ı=jg0.0/j-cover of C . We may assume that
each Ui � B.0; r/. Then for each i

jg.Ui /j 6
ı

jg0.0/j
sup
z2Ui

jg0.z/j 6 ı sup
z2B.0;r/

jg0.z/j

jg0.0/j
.r ı

by Lemma 3.1. As such, ¹g.Ui /ºi provides a .C ı cover of g.C /, and the result
follows.

Lemma 3.3. Let r 2 .0; 1/ and ı 2 .0; 1/. Suppose � is a Kleinian group with a
loxodromic element. If g 2 � is such that jg.0/j> 1� ı, then g.B.0; r// is contained
in a .r;� ı neighbourhood of the limit set.

Proof. Let h 2 � be loxodromic. Loxodromic elements have precisely two fixed
points on the boundary at infinity. Let z 2 Dn be a point lying on the (doubly infinite)
geodesic ray joining the fixed points of h. We may assume that h and z are chosen to
minimise jzj, which means z depends only on � . Then g.z/ lies on the geodesic ray
joining the loxodromic fixed points of the loxodromic map ghg�1. These fixed points
are the images of the fixed points of h under g, and at least one of them must lie in the
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smallest Euclidean sphere passing through g.z/ and intersecting the boundary Sn�1

at right angles. By (3.1) and applying Lemma 3.1, the diameter of this sphere is

. 1 � jg.z/j .r;� 1 � jg.0/j 6 ı

and the result follows noting that the Euclidean diameter of the ball g.B.0; r// is
�r1 � jg.z/j. The dependency of the implicit constants on � comes from the fact
that in order to apply Lemma 3.1, we need to replace r by max¹r; jzjº.

3.2. Proof of Theorem 2.1

3.2.1. The lower bound. Since the upper box dimension is monotonic and stable
under taking closure, it is immediate that

dimB�.C / > max
®
dimBC; dimBL.�/

¯
:

Moreover, in the non-elementary case, dimBL.�/ > ı.�/, giving the desired lower
bound. In the elementary case, ı.�/ D 0 unless � is (freely) generated by finitely
many parabolic elements sharing a single fixed point. If this is the case, then ı.�/ D
k=2, where k is the rank of � . In this case, the lower bound dimB�.C /> k=2D ı.�/

follows since the orbit of a single point under � is an inverted k-dimensional lattice.
It is a simple exercise to show that an inverted k-dimensional lattice has upper box
dimension k=2. This completes the proof of the lower bound.

3.2.2. The upper bound. Let t > max¹dimBC;dimBL.�/; ı.�/º. Let ı 2 .0; 1/. We
decompose the orbital set depending on how close the images g.C / are to the bound-
ary. Images g.C / which are close to the boundary will be small with respect to the
Euclidean metric, and images g.C / which are far from the boundary will be large.
We then cover the close images together, essentially just by covering the limit set, and
we cover the large images separately. More precisely,

Nı

�[
g2�

g.C /

�
6 Nı

� [
¹g2�Wjg.0/j61�ıº

g.C /

�
CNı

� [
¹g2�Wjg.0/j>1�ıº

g.C /

�
6

X
¹g2�Wjg.0/j61�ıº

Nı.g.C //CNı

� [
¹g2�Wjg.0/j>1�ıº

g.C /

�
:

Consider the first term coming from the above decomposition. First applying
Lemma 3.2 and then using t > dimBC , we getX
¹g2�Wjg.0/j61�ıº

Nı.g.C // .C
X

¹g2�Wjg.0/j61�ıº

Nı=jg0.0/j.C /

.t

X
¹g2�Wjg.0/j61�ıº

� ı

jg0.0/j

��t
6 ı�t

X
g2�

jg0.0/jt .t;� ı
�t
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since t > ı.�/ using (3.1). In order to obtain the second estimate in the above, it is
crucial that ı=jg0.0/j . 1 for the g we are summing over. This is needed to apply the
general box counting estimate for C . However, this follows immediately from basic
hyperbolic geometry since

jg0.0/j D 1 � jg.0/j2 > 1 � jg.0/j > ı:

We now consider the second term in the original decomposition. First, suppose
� contains a loxodromic element. Consider g 2 � such that jg.0/j > 1 � ı. By
Lemma 3.3, g.C / � g.B.0; r// is within .C;� ı of L.�/. It follows that[

¹g2�Wjg.0/j>1�ıº

g.C /

lies within a .C;� ı neighbourhood of L.�/ and, therefore,

Nı

 [
¹g2�Wjg.0/j>1�ıº

g.C /

!
.t;C;� ı

�t

since t > dimBL.�/. This, combined with the estimate for the first term in the original
decomposition, proves the upper bound in Theorem 2.1 in the case when � contains
a loxodromic element. If � does not contain a loxodromic element, then either it is a
finite group and dimB�.C / D dimBC is immediate, or � is (freely) generated by k
parabolic elements with a common fixed point. In this case, it remains to establish

dimB�.C / 6 max¹dimBC; k=2º:

This can be achieved by a direct covering argument, but we present a slicker alternat-
ive. It is known that ı.� 0/ > k=2 for a non-elementary geometrically finite Kleinian
group � 0 which contains a free abelian subgroup of rank k stabilising a parabolic
fixed point, see [4,22]. Moreover, this lower bound is sharp. Therefore, we may find a
sequence of geometrically finite non-elementary groups �n (n 2 N) each containing
� and with ı.�n/! k=2. Then for all n the above argument gives

dimB�.C / 6 dimB�n.C / D max¹dimBC; ı.�n/º;

and the result follows. One can even explicitly construct �n by choosing �n D h�;hni
where h is a loxodromic element which does not fix the common parabolic fixed point
of � and n is sufficiently large.
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4. Proof of Theorem 2.2

The set C and the group � are very simple. The work is in proving that the orbital set
has large dimension, and this relies on some number theory. Let ˛ > 1 and ˇ 2 .0; 1/
be such that log ˛ and log ˇ are rationally independent. Here and throughout log is
the natural logarithm. For example, ˛ D 2 and ˇ D 1=3 suffices. Let

C D ¹1 � ˇnWn 2 Nº � D2;

noting that C is unbounded in .D2; d /. Let h 2 conC.D2/ be the hyperbolic element
with repelling fixed point � 1 and attracting fixed point 1 given by

h.z/ D
.˛ C 1/z C .˛ � 1/

.˛ � 1/z C .˛ C 1/
:

Let � D hhi be the elementary Fuchsian group generated by h. By construction

dimBL.�/ D dimBC D ı.�/ D 0:

In order to prove that dimB�.C / D dimB�.C / D 1, we show that �.C / is dense in
.�1; 1/ � D2, recalling that the box dimensions are stable under taking closure. This
shows that the box dimensions are at least 1, but the orbital set is contained in .�1; 1/
and so they are also at most 1. The orbital set has a straightforward description due to
the simplicity of � and C .

�.C / D ¹hm.1 � ˇn/Wm 2 Z; n 2 Nº

D

²
.˛m C 1/.1 � ˇn/C .˛m � 1/

.˛m � 1/.1 � ˇn/C .˛m C 1/
Wm 2 Z; n 2 N

³
D

²
2 � ˛mˇn � ˇn

2C ˛mˇn � ˇn
Wm 2 Z; n 2 N

³
;

noting that we switch the role ofm and �m in the final expression, which is fine since
m 2 Z. Let y 2 .0;1/ be such that log y 2 Q. Since log ˛= logˇ … Q, we can find
sequences mk 2 Z, nk 2 N such that ˛mkˇnk ! y as k !1. This is a standard
application of Dirichlet’s approximation theorem. Moreover, since log˛ and logˇ are
rationally independent, we necessarily have nk !1 as k !1. Therefore,

2 � ˛mkˇnk � ˇnk

2C ˛mkˇnk � ˇnk
!

2 � y

2C y

as k !1. The set ²
2 � y

2C y
Wy 2 .0;1/ and logy 2 Q

³
is dense in .�1; 1/ and the density of �.C / in .�1; 1/ follows.
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