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Landing by Ava Grauls (Duncan of Jordanstone College of Art & Design).
Oil and watercolour on Japanese shōji (障子) paper. 413 x 244cm

Landing is about location, ownership, shifting land and shifting borders. The painting was conceived after talking to academics 
about the space between Britain and Europe, and asking the question: ‘How do you paint a forgotten landscape?’ Landing was 

made to travel and interact with different environments and can be folded up and packed away into four boxes.
Ava Grauls 11/08/2021
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Chapter 10

Applying chemostratigraphic techniques to shallow bore holes:
 Lessons and case studies from Europe’s lost Frontiers

Alexander Finlay, Richard Bates, Mohammed Bensharada and Sarah Davies

Introduction

The range of applications of analytical geochemistry in 
the geosciences extends from hydrocarbon studies to 
forensic investigations with samples from billion year 
old material formed deep within the earth to material 
from contemporary environments (Poulton et al. 
2010). Within archaeological and palaeoenvironmental 
research, elementary geochemistry can also provide an 
excellent analytical tool for the investigator. There are 
numerous examples of these techniques being applied, 
from the provenance and identification of manufacture 
of anthropogenic material (e.g. Finlay et al. 2012) 
through to palaeoenvironmental studies e.g. Croudacre 
and Rothwell (2015). This chapter will demonstrate how 
geochemical and chemostratigraphic techniques have 
been applied within the Europe’s Lost Frontiers project. 
A review of commonly utilised analytical techniques 
in archaeological and paleoenvironmental studies is 
first presented, followed by details on the methods of 
data collection, quality control and interpretation. Key 
cores are used as case studies to demonstrate particular 
aspects of the method.

Case study 1 demonstrates how geochemical analysis 
can be utilised to characterise a core into a series of 
chemostratigraphic zones (chemo zones), assign these 
to geochemical facies (chemo facies) reflecting their 
depositional environment and then validate these chemo 
facies by integrating them with other ecological datasets.

Case study 2 demonstrates how a comparison of chemo 
zones and facies from multiple cores within a study area 
can be used to produce a regional chemostratigraphic 
correlation, and so aid palaeolandscape reconstruction.

Case study 3 demonstrates the integration of 
chemostratigraphy with other methods such as seismic 
interpretation through the production of chemical 
modelled density profiles to link to the seismic data. This 
in turn is utilised for a greater understanding of the spatial 
coverage of the chemo zones and interpreted facies.

The chapter concludes with an overview of other 
applications of geochemical analysis that may be 
applied to future studies using unconsolidated sediment 
cores and palaeoenvironmental reconstruction.

Elemental analysis

Quantitative methods

The range of geochemical analysis techniques 
available for sediment quantitative elemental data 
include inductively coupled plasma-optical emission 
spectrometer (ICP-OES), inductively coupled plasma 
mass spectrometry (ICP-MS) and X-ray fluorescence 
(XRF Figure 10.1 e.g. Jarvis and Jarvis 1992; Ratcliffe 
et al 2012). ICP-MS and ICP-OES are laboratory 
based elemental tools requiring significant sample 
preparation including microwave, flux fusion or acid 
digest processes in order to place the sample into 
a solution prior to analysis (Olesik 1991). The ICP-
MS detects the mass of the ions hitting its detector 
and provides a mass spectrum for the sample, with 
the intensity of each mass peak in the spectrum 
being directly proportional to the concentration of 
an element of the same mass within the sample. The 
mass is quantified by comparing the intensities of the 
mass spectrum to known calibration standards (Tyler 
and Jobin Yvon 1995). The ICP-OES differs in that it 
measures the effect of the ions on the sample on the 
plasma itself. When the sample solution is introduced 
to the plasma the elements contained within loose 
electrons and give off radiation with wavelengths 
characteristic to the element itself. The optical 
spectrometer detects this radiated energy, and through 
comparison with the intensities of known calibration 
standards the elemental abundance can be quantified 
within the sample (Jarvis and Jarvis 1992; Olesik 1991; 
Tyler and Jobin Yvon 1995). The combined use of both 
ICP-MS and ICP-OES enable the quantification of major 
elements (greater than one weight percent of the 
sample) and trace elements (typically down to parts per 
billion level; Jarvis and Jarvis 1992).

X-ray fluorescence (XRF) is the emission of characteristic 
‘secondary’ (or fluorescent) X-rays from a material 
that has been excited by being bombarded with high-
energy X-rays. Analytical tools vary from laboratory-
based techniques that can produce analysis similar 
to ICP instruments to highly portable handheld tools 
that can be used in the field. Dependant on lithology it 
provides data for ten major and approximately twenty 
trace elements, importantly including both chlorine 
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and sulphur making it the ideal tool for analysing 
saline samples. Handheld X-Ray Fluorescence is 
capable of providing rapid elemental data (Hennekam 
and de Lange 2012; Schmidt et al. 2018). The tool is 
non-destructive and capable of high spatial resolution 
analysis thus making it ideal for use in core scanning 
(Schmidt et al. 2018). However, it does not have the 
same limits of detection that more powerful x-ray tools 
possess.

Qualitative methods – Scanning/Micro XRF

An ITrax X-Ray Fluorescence core scanner (Cox 
Analytical Systems), based at Aberystwyth University, 
was used in Europe’s Lost Frontiers project. The ITrax is a 
laboratory XRF scanner capable of very high resolution, 
continuous environmental core scanning at a relatively 
rapid automated rate (Croudacre and Rothewell 2015). 
While the data it collects is quantitative there are 
currently no standard reference materials for the 
technique and thus results are more appropriate to 
analysis of relative changes in elemental abundance 
rather than absolute elemental values reported by 
techniques such as ICP-MS. In Europe’s Lost Frontiers, 
the ITRAX provided data at a resolution of 0.5mm thus 
allowing for chemical fingerprints of very short-lived 
climatic, depositional, and environmental changes. An 
additional benefit of the ITrax is its ability to record 
the incoherent (Compton) and coherent (Rayleigh) 
scattering caused by the XRF interaction with the core, 
enabling key information such as core density to be 
calculated (e.g. Fortin et al. 2013; Gaffney et al. 2020). 
Calculation of core density enables a comparison to be 
made of the geochemistry with other regional remote 
sensing techniques such as seismic analysis.

Data acquisition, quality control, data processing

A single data quality control and interpretation method 
was developed and utilised for all cores in the Europe’s 
Lost Frontiers project in order to ensure that, as much as 
possible, data from different cores collected at different 
times was comparable.

The cores were initially split lengthwise, and the 
exposed surface scraped to ensure a smooth and flat 
surface. The scanner was typically set for a resolution 
of 0.5mm along core-interval and a dwell time of 15 
seconds with the x-ray tube at 30kV and 50mA. For 
the individual core sections, the scanning line was 
adjusted to avoid sampling holes. All reported data was 
smoothed using a ± 4mm moving average filter applied 
to the data in order to remove any ‘nugget’ effect caused 
by clasts of a specific elemental composition leading to 
an overestimate of those elements compared to that of 
the core (e.g. Croudace and Rothwell 2015; Gaffney et 
al. 2020).

To test the validity of the recorded data, distance to 
sample surface, total counts and Argon (as the Ar 
signal is derived from the excitation of argon in air 
between the sample and X-ray source, rather than the 
sample) was plotted by core depth (below surface) and 
compared to the ITrax chemical data. A fall in total 
counts that coincides with a peak in Ar, suggest that any 
changes in chemical data at these depths may be caused 
by physical damage or irregularities in the core surface 
rather than elemental variations in the core (Croudace 
and Rothwell 2015). If these conditions were met, then 
the elemental data from these depths was not utilized 
in this study. Furthermore, any data that were outside 
two standard deviations of the mean depth to sample 

Figure 10.1 A summary of the benefits of typical analytical tools utilised in chemostratigraphic studies and their acronyms.
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surface, thus indicating an irregular surface, were also 
treated with caution.

Three methods are proposed to ensure confidence in 
using ITrax derived identification of mineralogical 
or deposition drivers for variations in elemental 
chemistry. Where possible, additional quantitative 
mineralogical analysis (e.g. X-ray Diffractions/Raman 
minerology or SEM-EDS techniques) on a subset of 
samples can be made for comparison of the sediment 
chemistry with the minerology. If additional data is 
not available, a comparison with observed changes in 
the core from more traditional methods such as colour, 
shell fragments and grain size can be made. Finally, the 
data can be analysed using statistical methods such as 
principal component analysis (PCA).

Principal Component Analysis (PCA) is a mature 
statistical technique that is widely used for identifying 
patterns in data of multiple dimensions. PCA finds 
a set of orthogonal dimensions, which account for 
the variance in a specific dataset, by reducing the 
dimensionality of a complex system of correlations into 
a smaller number of dimensions. The first principal 
component accounts for as much data variance as 
possible and each subsequent principal component 
accounts for remaining data variance (Michoux 2020). 
For example, in a hypothetical interbedded sand/
mud section that transitions from marine to fluvial 
control, PCA1 would likely be controlled by a variation 
in elements associated with the sand (e.g. Si and Zr) 
and clay fractions (e.g. Al, Rb and K), whereas PC2 may 
be marked by the variation between these detrital 

minerals and elements associated with marine settings 
(Ca and Sr).

An in-depth review of possible controls in elemental 
data are reported by Rothwell and Croudace (2015) for 
marine sediments and Davies et al. (2015) for fluvial 
sediments. Table 10.1 lists the common drivers of 
elemental variation within sedimentary units. However, 
it is stressed that sediments are complex mixtures of 
natural materials and so this may not always be true.

Case study 1 – Chemostratigraphic zonation, 
chemostratigraphic facies and integration with 
sedimentological and ecological data to establish the 
depositional environment of Core ELF19

Introduction

Case study 1 comprises a comparison of elemental 
data to microfossil analysis and observed variations 
in minerology within core ELF19. This was collected 
off the East Anglian coast in the Europe’s Lost Frontiers 
study area (Figure 10.2) and measures ~4.3 meters 
long. Microfossil analysis shows that it contains three 
depositional settings:

 • 0.18-1.34m depth – estuarine mudflats latterly 
with some algae; initially an eroded peat, with 
onset of tidal access

 • 1.46-4.01m depth – river or lake with some cool/
deep water, latterly with hint of low salinity as 
tidal access approaches with sea-level rise 

 • 4.27-4.29m depth – till

Element Symbol Common mineralogical control Common interpretations

Aluminium Al Clays Depositional energy/Grain size

Bromine Br Organic material Productivity/Salinity/marine influence

Calcium Ca Calcite Evaporite or marine signal

Iron Fe Heavy and/or clay minerals Detrital input

Potassium K Clay minerals Detrital input and depositional energy

Magnesium Mg Dolomite Dolomitisation

Sodium Na Halite Salinity

Phosphorus P Apatite and phosphates Heavy minerals or Nutrient enrichment

Sulphur S Organic material/Gypsum Productivity/Salinity/marine influence/palaeosoils

Silica Si Quartz Depositional energy/Grain size

Strontium Sr Aragonite Shell material/marine signal

Thorium Th Heavy minerals Depositional energy/Grain size. Link with gamma ray logs

Titanium Ti Heavy and/or clay minerals Detrital input

Uranium U Heavy minerals or anoxia Depositional energy/Grain size. Organic content. Link with gamma 
ray logs

Zirconium Zr Heavy minerals Depositional energy/Grain size

Table 10.1 Elements commonly utilised for archaeological and paleoenvironmental research (summarised from Davies et al. 2015 
and Chemostrat multiclient report NE118).
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The top ~3m of core underwent elemental analysis and 
the data produced was used for chemostratigraphic 
interpretation. Chemostratigraphy (chemical 
stratigraphy) is the application of whole rock or 
sediment geochemistry to understand the depositional 
history, correlation and palaeoenvironment of a core. 
It involves building a chemostratigraphic zonation 
(chemo zone) of the analysed material, assigning each 
zone facies information based on its chemistry (chemo 
facies) and where there is the need, correlating similar 
chemo zones between different cores and/or outcrops 
and so producing a chemostratigraphic correlation 
(Ellwood et al. 2008).

The chemo zones produced in ELF19 were driven by 
variations in detrital grain size, carbonate, clay, organic 
material and salinity. These variations enabled the core 
to be subdivided into six chemo zones, each ascribed 
a chemo facies description. These chemo facies were 
then compared to available sedimentological and 
biostratigraphic information to produce a set of 
integrated core facies.

Elemental data and controls

Core ELF19 was scanned from a depth of ~18.5cm 
to ~296cm at a 0.05cm resolution. Reported data 
underwent the quality control methods outlined above, 
and eleven elements passed the test (Table 10.1). These 
elements were subject to PCA analysis (Figures 10.3a 

and 10.3b) to establish the dominant mineralogical 
controls on elemental variation (Table 10.2).

Chemostratigraphic zones

To establish a chemostratigraphic zonation, the 
dominant element from each principal component 
cluster in Table 10.2 were ratioed and plotted for each 
reported depth down the length of the core. Using 
ratios to compare elemental data is preferred as this 
removes any dilution effect caused by variations in 
other elements analysed at that depth (Weltje et al. 2015 
and references inter alia). These elemental ratios likely 
reflect down core variations in:

 • Si/Rb: quartz/clay – changes in detrital 
grain size

 • Ca/Rb: carbonate/quartz – marine/fine 
terrestrial sediment

 • S/Rb: organic material/clay 
 • Br/Ti: salinity (De Boer et al. 2014)

Visual comparison of the results of the analysis enabled 
the core to be split into five chemo zones (numbered 
top down; Figure 10.4; Table 10.3).

Chemo facies

It is possible to assign likely chemo facies to the above 
chemo zones based on their observed chemistry and 

0 20km

5900000

400000

ELF019

ELF001A

313583

5855980

Figure 10.2 Location map of cores referred to in this paper. Bathymetric data is derived from the EMODnet Bathymetry portal - 
http://www.emodnet-bathymetry.eu. Topographic data derived from the NOAA ETOPO1 dataset, courtesy of the NCEI - https://

www.ngdc.noaa.gov/mgg/global/

http://www.emodnet-bathymetry.eu
https://www.ngdc.noaa.gov/mgg/global/
https://www.ngdc.noaa.gov/mgg/global/
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Figure 10.3 PCA of elemental data for core ELF19 showing the likely mineralogical and material drivers for variation in elemental 
compositions. a - component 1 and 2, b - component 2 and 3.
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Element Symbol PC1 and 2 control cluster PC2 and 3 control 
cluster Likely mineralogical control

Silicon Si

Detrital minerals

Detrital minerals
Quartz 

Zirconium Zr Detrital Zircon

Rubidium Rb
Clay minerals

Potassium K

Titanium Ti Heavy Minerals/Clay minerals/Oxides?

Sulphur S Organic material

Bromine Br

Carbonate minerals and 
salinity

Salinity? Organic material/Salinity?

Calcium Ca

Carbonate minerals

Carbonate minerals (Calcite)

Strontium Sr Carbonate (Aragonite)

Chlorine Cl Uncertain - Sea water chemistry?

Table 10.2 Likely elemental affinities for core ELF19.

Detrital Grain Size Carbonate/Clay Organic/Clay Salinity in wetlands
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Figure 10.4 Chemostratigraphic zonation of core ELF19. Si/Rb likely reflects variations in grain size with higher values being 
more Sand (Quartz) rich and higher Rb being more Clay rich. Ca/Rb likely reflects variations in carbonate (Ca) compared 
to clay material. S/Rb likely reflects variations in organic material (S) to clay. Br/Ti is a proxy for salinity in wetlands  

(see text for references).

the hypothesised mineralogical controls on chemical 
data (Table 10.2):

 • Chemo zone C1: interbedded sandy/silt and 
silty/clay horizons (Si/Rb variations) likely of a 
more saline depositional setting (moderate Br/
Ti values) and some shell/carbonate material 

(Ca/Br); the finer horizons are more organic 
rich (Si/Rb troughs correlate with S/Rb peaks) 
and more saline (Si/Rb troughs correlate with 
Br/Ti peaks)

 • Chemo zone C2: massive clay rich unit (very low 
Si/Rb values) with decreasing downhole organic 
(S/Rb) content; a higher level of salinity (Br/
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 Chemo Zone Depth

Si/Rb Ca/Rb S/Rb Br/Ti

(~Quartz/Clay) (~Carbonate/Clay) (~Organic material/
Clay)

(~Salinity; (De Boer et al. 
2014)

C1  

Highly variable, ranging 
from vales of ~1.1 to 
~ 0.01 over ~10cm of 

stratigraphy

Variable, ranging 
from ~10 to ~5. 

Variations occur over 
a similar scale to Si/

Rb and troughs in Ca/
Rb correlate with Si/

Rb peaks

Moderate (~0.06) with 
three peaks at ~0.36, 0.6 

and 0.7m depth.
Moderate to low

Boundary   Sharp fall Sharp rise Sharp rise Sharp rise

C2   Constantly very low 
(~0.025)

Moderate to low (~17 
at top dropping to ~8 

at base of zone)

High at top of unit (0.8) 
dropping to moderate in 
centre (~0.08), rising to 
high again at base (0.5)

Moderate

Boundary   Sharp increase Sharp increase Sharp increase -

C3  
Rising to a very high 
peak in the centre of 

zone (~1.9)

Rising to a very high 
peak in the centre of 

zone (up to ~575)

Rising to a very high peak 
in the centre of zone 

(~2.8)

Rising to a very high peak 
in the centre of zone (~6.4)

Boundary   Trough Decrease Decrease Decrease

C4*  

Variable but decreasing 
from high (~1.6) at top 

of the zone to moderate 
at base (~0.8)

Moderate at top of 
zone (~23) dropping 

to low at base of zone 
(~1.7)

Moderate at top of zone 
(~0.19) dropping to low at 

base of zone (~0.08)

Moderate at top of zone 
(~0.8) dropping to low at 

base of zone (~0.25)

Boundary   Drop - Plateauing Plateauing

C5   Very low/low (0.3) Low (10.5) Low (0.04) Low (0.2)

Boundary   Increase - Decrease Decrease

C6   Moderate (0.5) with a 
gradual down hole rise. Low (10.5) Low (~0.01) Low (0.2) to very low (0.2) 

down hole

* Based on the variations in data over the unit it may be possible to split zone C4 into two sub zones.

Table 10.3  Chemical definition of Chemo Zones and boundaries for core ELF19.

Ti) than zone C1 some shell/carbonate material 
(Ca/Br)

 • Chemo zone C3: the coarsest unit in the core (Si/
Rb) that also contains a large carbonate content 
(Ca/Rb), organic material (S/Rb) and salinities 
(Br/Ti)

 • Chemo zone C4: a coarse unit (Si/Rb) with low 
carbonate content (Ca/Rb), decreasing organic 
material (S/Rb) and low salinity (Ti/Rb)

 • Chemo zone C5: a clay rich unit (Si/Rb) with low 
carbonate content (Ca/Rb), moderate to low 
organic content (S/Rb) and low salinity (Br/Ti)

 • Chemo zone C6: a silty unit (Ca/Rb) with low 
carbonate content (Ca/Rb), low to very low 
organic content (S/Rb) and low to very low 
salinity (Br/Ti)
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Integration of chemo zones with sedimentological and 
ecological data

Without any other data the chemo zones presented in 
section 3.3 are only hypothesised. However, the results 
can be compared to other geotechnical information 
such as grain size, shell content and biostratigraphy. A 
reasonable comparison is achieved between the Si/Rb 
values and observed sand content as is the comparison 
of Ca/Rb values with shell contents (Figure 10.5).

When ecological facies, derived from the biostratigraphic 
data, are compared to chemistry (Figure 10.6) there is also 
a good coincidence between the ecological boundaries 
and the chemo zone boundaries. Chemo zones C1 and C2 
have Br/Ti values of ~0.4 and S/Rb values of ~0.1 whereas 
chemo zones C4, C5 and C6 have lower Br/Ti values of 
~0.2 and S/Rb values of ~0.05 demonstrating a drop in 
salinity and organic content down core. Consequently, 
C1 and C2 are both interpreted as representing estuarine 
mudflats, whereas, C4-C6 are interpreted as river or lake 
sediments. Unit C3, shows greater complexity. Based on 
initial chemistry it is expected this would be a coarse 
marine bed. The ecological facies data also suggests that 
this is a course unit, however the lack of marine fossils 
suggest it is deposited in a freshwater setting.

Conclusions

The chemostratigraphic zonation of ELF19 based on an 
interpretation of the chemical, grain size and ecological 
analysis is summarised in Table 10.4 below.

Case study 2 – Chemostratigraphic correlation of chemo 
zones within Holeocene shallow cores.

Introduction

Case study 2 seeks to demonstrate how 
chemostratigraphic zonations can be used to produce 
a chemostratigraphic correlation for multiple cores 
across a palaeolandscape for further understanding of 
palaeotopography, geography and depositional setting.

Chemostratigraphic correlation is a stratigraphic 
technique that is commonly used in both the petroleum 

and minerals industries to correlate core and drill 
cuttings. This can be undertaken at a variety of different 
scales from regional scale (Ratcliffe et al. 2012), quarry 
or oil field scale (e.g. Pearce et al. 2010) through to field 
outcrop scale (Ellwood et al. 2008). Generally, the more 
localised the study area the more detailed a correlation 
is possible.

Chemostratigraphic correlation involves the 
characterisation, correlation or differentiation of 
sedimentary rock successions based on stratigraphic 
variations in the elemental geochemical data. This 
geochemical data is influenced by changes in the 
mineralogical and organic content of the rock, and 
in particular by changes in clay mineralogy and the 
heavy mineral content. Mineral and organic changes 
are often a manifestation of changes in palaeoclimate, 
palaeoenvironment, sediment provenance and 
both weathering or diagenesis. The dependence of 
chemostratigraphy techniques on minerals means that 
it can be used on any lithology, including those that are 
barren of biostratigraphy. For example, mapping the 
concentrations of elements such as Zr, Nb and Ti can 
display changes in heavy mineral abundance, which 
can provide insight into sediment dispersal patterns 
and changes in provenance. Mapping elements such 
as U and Mo reflect the presence and abundance of 
organic matter that, together with biostratigraphic 
information, enable the reconstruction of depositional 
environments.

Chemostratigraphic correlation

At the time of writing, work within Europe’s Lost Frontiers   
had not progressed to the point that project data could 
demonstrate the use of chemostratigraphy to correlate 
unconsolidated cores, therefore a case study has been 
produced from data collected from cores sourced from 
Orkney (Figure 10.7). Three approximately 2 to 3m cores 
(Core A, B and C), spaced over approximately 300m, 
were collected from the same sub-basin and underwent 
geochemical analysis and data interpretation to identify 
three key elemental ratios:

 • Sr/Br – shell material (aragonite)/organic 
content

Chemo Zone Top depth (m) Ecological facies Integrated interpretation

C1 0.19 Estuarine mudflats Interbedded estuarine sandy silts and silty clays

C2 1.03 Estuarine mudflats Estuarine clay

C3 1.33 Freshwater channel in a fluvial system Coarse sediment of an uncertain marine/fluvial system

C4 1.52 River or lake Freshwater sands

C5 1.82 River or lake Freshwater clays with some organic content

C6 2.08 River or lake Freshwater silts

Table 10.4 Integrated chemical and ecological results for core ELF19.
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 • Sr/Rb – shell material (aragonite)/clay
 • Si/Br – sand (quartz)/organic content

These key ratios were used to establish a 
chemostratigraphic zonation comprising four chemo 
zones (C1-C4), furthermore, chemo zone C2 was 
split into four sub zones (C2-1 to C2-4) in core B and 
C. Not all zones were present in all cores and so a 
composite core has been produced to illustrate the full 
chemostratigraphic zonation (Figure 10.8).

As in case study 1, chemo facies information was 
produced for each chemo zone. Core B had undergone 
biostratigraphic analysis and cores A and B had 
undergone sedimentological analysis and therefore it 
was possible to ‘ground truth’ the chemo zonation with 
other data to produce confident facies descriptions for 
each chemo zone (Table 10.5).

Chemostratigraphic zonation, correlation and 
palaeolandscape interpretation

The presence and absence of the chemo zones in each 
core enables the chemo zones and subzones to be 
correlated across the cores (Figure 10.9 and 10.10).

To the authors knowledge, this represents the first 
attempt to correlate shallow Holocene cores using 
chemostratigraphy. Based on this chemostratigraphy, 
the following depositional history is hypothesised for 
the study area (further work is currently ongoing to 
confirm this):

 • Chemo zone C1 is found across all three cores, 
suggesting the carbonate sands blanket the 
study area

 • Chemo zone C2 is only found in cores B and C 
and thickens from core B to core C; this suggests 
that this silty unit with differing levels of organic 
material was either infilling existing topography 
that deepens towards core C or it has been 
differentially eroded from the surface – the fact 
that all subzones within unit C2 thicken towards 
core C suggest the former is the more likely

 • Chemo zone C3 is not found in core B and is 
underlain by peat in zone C4 – this suggests that 
core C may have been a sub-aerial peat when 
the possibly lacustrine C4 sediment was being 
deposited around it; the lacustrine C3 sediment 
is also much thicker in core C than A suggesting 
greater accommodation space formed by 
palaeotopography

 • The peat zone C4 has not been penetrated in core 
C; in core A it is found below the thin lacustrine 
C2 unit and so may be present at depth

Due to the high resolution of the scanning XRF, the 
chemostratigraphic zonation is able to record the exact 
point at which major palaeoenvironmental changes 
occurred and the chemostratigraphic correlation 
map these boundaries spatially (Figure 10.9 and 
10.10). Furthermore, the highly precise placement 
of these palaeoenvironmental changes means that 
future point sampling (e.g. geochronology, SedaDNA 
and biostratigraphy) can be carried out at the exact 

Chemo ZoneDetrital Grain Size Carbonate/Clay Organic/Clay Salinity in wetlands
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Figure 10.6 This figure demonstrates an excellent match in the chemostratigraphic zonation of core ELF19 and ecological 
biostratigraphic data.
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Figure 10.8 The elemental variations utilised to define the chemostratigraphic zonation in the study area. Sr/Br likely reflects 
variations in shell material (Sr - aragonite) and organic material (Br). Sr/Rb likely reflects variations in shell material (Sr - 

aragonite) and Clay (Rb). Si/Br likely reflects variations in sand (Si - Quartz) and organic material (Br).

Chemo 
Zone Chemical interpretation Sedimentology Environmental 

interpretation Integrated facies

C1 Shelly sand Sand, Sand and Mud, 
Sand and Weed Freshwater Shell rich sand

C2

Silt with some shell 
material. Sub zones C2.1 

and C2.3 marked by more 
organic rich material, 
where as subzone C2.2 
and 2.4 are more shelly 

and sandy.

Mud Brackish/ Freshwater Fresh to brackish silt with some 
organic rich beds

C3 Carbonate rich - Freshwater Freshwater carbonate rich 
sediment – Lacustrine?

C4 Low levels of all elements 
- organic rich sediment? Peat - Peat

Table 10.5 Chemical, sedimentological and environmental interpretation of chemo zones and integrated facies identification.

point these changes take place, removing the need to 
interpolate between data.

Case study 3 integrating chemostratigraphy with 
seismic studies

Introduction

This case study seeks to demonstrate how, in 
addition to producing chemostratigraphic zonations 

and correlations from elemental data, incoherent 
(Compton) and coherent (Rayleigh) scattering caused 
by the XRF interaction with the core and recorded by the 
ITrax scanning XRF can be used to calculate a relative 
density profile for the analysed core. The variations in 
density can be utilized to link geochemistry to seismic 
geophysical data and by so doing enable interpretation 
of palaeo-depositional/environmental scenarios. This 
can both aid seismic interpretation and be used to 
extrapolate the chemical analysis away from the core 
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Figure 10.9 Chemostratigraphic correlation of chemo zones in wells A, B and C

Figure 10.10 Chemostratigraphic correlation of chemo sub zones in wells A, B and C.

locations. This case study utilizes elemental and seismic 
data published in Gaffney et al. (2020) from core ELF1A, 
which was collected approximately 20 miles north east 
of core ELF19 (Figure 10.2).

Chemo zones and facies

Project core ELF1A has undergone chemostratigraphic 
zonation with the goal of identifying key geochemical 
signatures that could result from a tsunami event. 

Details of the investigation have been previously 
presented in Gaffney et al. (2020). Using the same 
method as that outlined in Case study 1, the chemical 
analysis was used to divide the core into six chemo 
zones (Figure 10.11) based on variations in:

 • Sr – a proxy for shell material
 • Rb – a proxy for clay
 • Si – a proxy for quartz
 • Zr – a proxy for detrital zircon
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Figure 10.12 Chemostratigraphic zonation of the Stroregga tsunami deposit preserved in core ELF1A (from Gaffney et al. 2020).

Figure 10.11 Chemostratigraphic zonation of core ELF1A (from Gaffney et al. 2020). Sr likely reflects the amount of shell material 
(aragonite) Rb likely reflects the amount of clay, Si likely reflects the amount of sand (Quartz) and Zr the amount of detrital 

zircon in the core.
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These chemo zones have been interpreted to represent 
a series of chemostratigraphic facies (Chemo facies) 
which can be used to understand the depositional 
environments shown in Table 10.6 (see Gaffney et al. 
2020 supplementary information). 

Chemo zone C5 had been hypothesized to contain 
a Storegga tsunami deposit, and so a more detailed 
investigation of this zone was undertaken (Gaffney et 
al. 2020). This enabled the zone to be divided into eight 
separate sub zones based on changes in:
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 • Sr/Rb – marine signature reflecting the chemical 
proxy for aragonite as shell content vs clay 
content

 • Zr/Sr – a terrestrial vs marine sediment chemical 
proxy based on the input of terrestrial detrital 
zircons compared to a marine shell signal.

 • Si/Rb – grain size proxy reflecting the chemical 
proxy for quartz (coarser sand grain) vs clay 
content; the coarser-grained sediment indicates 
a higher depositional energy than the finer clay-
sized grains

The eight chemo subzones were interpreted to 
represent an initial fall in sea level, overlain by deposits 
associated with three pulses each comprising an initial 
inland wave identified by its marine depositional 
signal, topped by a seaward wave characterized by its 
terrestrial signal (Gaffney et al. 2020). The final chemo 
subzone represented a clay cap, likely reflecting the 
post tsunami deposition of suspended fine material 
(Figure 10.12; reproduced from Gaffney et al. 2020).

This use of elemental geochemistry enabled the 
identification of the tsunami deposit which was dated 
using both C14 and OSL methods. It was postulate that 
the deposits were associated with the Storegga slide 
event (Gaffney et al. 2020) and represented the furthest 
south in the North Sea such deposits have thus far been 
recognised.

Linking geochemistry to seismic

Several studies have demonstrated that the ratio of the 
Compton and Rayleigh scattered intensity, recorded by 
scanning XRF tools, are affected by the average atomic 
number of the sample, mineralogical composition, 
water, organic carbon content and therefore density 
(Fortin et al. 2012, Croudace et al. 2006). Seismic 
reflection strength is also a function of the impedance 

contrast in velocity, in turn based on elastic moduli, 
and density, based on lithology/mineralogy, porosity, 
saturation and organic content of a material. Thus, as 
the acoustic impedance that produce seismic reflectors 
are the product of density and velocity so the Compton 
scattering too is a function of density and there should 
be a correlation between both.

Core ELF1A has both the interpreted seismic and 
geochemical data necessary to test this method (see 
Gaffney et al. 2020). There is a large downhole increase in 
density from approximately 2.6 to 3.2 chemical density 
units at c. 1.55m depth that corresponds to the base of 
chemo zone C5 and the tsunami deposit (Gaffney et al. 
2020). When this is compared to the published seismic 
(Gaffney et al. 2020, Figure 10.12) this Is the same depth 
as the tsunami seismic reflector, suggesting that this 
method is valid.

Within the XRF data, there are two density changes 
visible at ~0.8, ~1.15 and ~2m depth. The 0.8 and 1.15m 
density changes occur at a similar depth to two large 
amplitude shallow sea floor reflectors in the seismic data 
(I [green] and II [purple] in Figure 10.13). The ~2m depth 
density change also coincides with a lower amplitude 
reflector (IV [black dashed], Figure 10.13). Therefore, 
we can use the seismic to understand the spatial extend 
of the chemo zones (Table 10.7). Importantly, this show 
how spatially limited the Storegga tsunami deposit is 
within the study area. 

Future geochemical applications to Europe’s Lost 
Frontiers type studies

This chapter has demonstrated how elemental 
chemistry can be used to recreate palaeoenvironments 
within the Europe’s Lost Frontiers project. It has been 
shown how geochemistry can be utilised to identify 
variations in sediment cores (often not visible to the 

Chemo zone Chemo facies

C2 A clean high energy sand with little to no shell/marine material or marine influence. Several beds display 
high Zr/Sr values suggesting increased terrestrial derived heavy mineral sand beds.

C3 A high energy interbedded terrestrial sand and marine/shell dominated deposit.

C4 A clay/silt environment similar to that seen in units C5 and 6 with no shell material, however the moderate 
Zr/Sr values suggest a more terrestrial input compared to units C5 and 6.

C5

High energy/coarse material including shell/marine material. The large variation in data within C5 does 
suggest there is an internal stratigraphy (see Gaffney et al. 2020). The top of this unit shows a grading change 
back to values similar to those in units C6 and 7. These observations suggest this may either be a tsunami 
or surge deposit; an erosive base, high energy deposit bringing distal marine sediment into a previously 
terrestrially dominated low energy environment topped by a gradational decrease of energy.

C6 The lowest energy unit in ELF001A is dominated by clay material, little shell material and a constant balanced 
marine/terrestrial influence.

C7 A clay/silty unit with interbedded siltier horizons (marked by increases in Si/Rb). Little shell material and a 
constant balanced marine/terrestrial influence.

Table 10.6 Chemo facies identified in core ELF1A (see Gaffney et al. 2020 supplementary information for full discussion).
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Density change Chemo zone Chemo facies variation Spatial extent on seismic line

I C2-C3 Bdy a down hole change from (C2) to sand and 
shell (C3) material - laterally continuous

II Upper C5 The transition between high energy tsunami 
sediments and the low energy clay cap.

Only found locally to ELF19 - suggests only a 
small preservation of Tsunami deposit

III C5-C6 Bdy Base of Storegga Tsunami deposit laterally continuous

IV C6-C7 Bdy A down hole transition to a clay rich (C7) unit hard to tell, maybe only local preservation?

Table 10.7 A summary interpretation of geochemical and seismic datasets.

eye) and to chemostratigraphically divide the core 
into separate chemo zones. It has been shown how the 
causes of these variations can be understood through 
statistical methods enabling chemo zones and facies 
to be assigned and thus in turn aid understanding of 
the depositional environments. The differentiation 
and chemostratigraphic correlation of multiple 
cores has then been undertaken, demonstrating how 
palaeosurfaces can be identified and palaeolandscapes 
recreated. There are of additional benefits for 
conducting geochemical analysis to further the 
understanding of palaeoenvironments that include:

 • with the use of chemical signatures together 
with stable isotope data to link changes 
in paleoenvironment with changes in 
palaeoclimate

 • identification of detrital zircon, heavy mineral 
and chemical provenance signatures in the 
cores; such studies are commonly utilised in the 
Carboniferous-Permian hard rock basement, 
below the Doggerland sediment, identifying if 
a sediment is sourced from the south (Variscan 
orogeny/bohemian massif) or north (Norway; 
e,g, Cram et al. 2014) – it is highly probable that 
this method could be of utility to provenance 
sand filled channels around Doggerland

 • quantitative elemental chemistry is commonly 
utilised to identify the provenance of clay (e.g. 
Finlay et al. 2012) and geological materials (e.g. 
Bevins et al. 2020) in archaeological studies – 
could these methods be applied to lithic materials 
dredged from Doggerland and so both establish 
chemical families of lithics and potentially even 
correlate them to known (Present day) onshore 
sites?

 • the chemo zones presented in this study are all 
linked to natural changes in the sediment record 
– however, could some of them be signals of 
human activities such as habitation? For example:

 • within North Sea oil and gas studies, 
the Si/Zr ratio is commonly utilised to 
identify flints in chalks – could this ratio 
be used to identify micro-debitage from 
knapping sites?

 • phosphorus is commonly associated with 
coprolite and hardgrounds – could it be 
used to identify phosphates caused by 
animal and human waste, vivianite or 
bone beds?

 • can Sr data be utilised to identify shell 
middens?

Elemental geochemistry is a powerful tool for 
archaeological and palaeoenvironmental studies. It can 
be used to identify depositional changes in any fluvial, 
lacustrine, marine or terrestrial setting, and correlate 
them across study areas, revealing palaeo- surfaces and 
landscapes. The wide range of modern analytical tools, 
from portable closed source tools that can be deployed 
in the field, through to lab-based scanning XRF tools that 
are capable of recording high vertical resolution data 
mean that geochemistry is a highly flexible tool suitable 
for application to a wide variety of settings. Furthermore, 
the ability to use geochemical tools to generate density 
data means that the results are easily linked to other 
investigative techniques, such as geophysics, and so aid 
the integration of disparate analytical datasets. Therefore, 
it is hoped that elemental geochemistry will become an 
increasingly utilised tool for studies across archaeology, 
palaeoenvironmental sciences and the humanities.
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