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Landing is about location, ownership, shifting land and shifting borders. The painting was conceived after talking to academics
about the space between Britain and Europe, and asking the question: ‘How do you paint a forgotten landscape?’ Landing was
made to travel and interact with different environments and can be folded up and packed away into four boxes.
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Chapter 10

Applying chemostratigraphic techniques to shallow bore holes:
Lessons and case studies from Europe’s lost Frontiers

Alexander Finlay, Richard Bates, Mohammed Bensharada and Sarah Davies

Introduction

The range of applications of analytical geochemistry in
the geosciences extends from hydrocarbon studies to
forensic investigations with samples from billion year
old material formed deep within the earth to material
from contemporary environments (Poulton et al.
2010). Within archaeological and palaeoenvironmental
research, elementary geochemistry can also provide an
excellent analytical tool for the investigator. There are
numerous examples of these techniques being applied,
from the provenance and identification of manufacture
of anthropogenic material (e.g. Finlay et al. 2012)
through to palaeoenvironmental studies e.g. Croudacre
and Rothwell (2015). This chapter will demonstrate how
geochemical and chemostratigraphic techniques have
been applied within the Europe’s Lost Frontiers project.
A review of commonly utilised analytical techniques
in archaeological and paleoenvironmental studies is
first presented, followed by details on the methods of
data collection, quality control and interpretation. Key
cores are used as case studies to demonstrate particular
aspects of the method.

Case study 1 demonstrates how geochemical analysis
can be utilised to characterise a core into a series of
chemostratigraphic zones (chemo zones), assign these
to geochemical facies (chemo facies) reflecting their
depositional environment and then validate these chemo
facies by integrating them with other ecological datasets.

Case study 2 demonstrates how a comparison of chemo
zones and facies from multiple cores within a study area
can be used to produce a regional chemostratigraphic
correlation, and so aid palaeolandscape reconstruction.

Case study 3 demonstrates the integration of
chemostratigraphy with other methods such as seismic
interpretation through the production of chemical
modelled density profiles to link to the seismic data. This
in turn is utilised for a greater understanding of the spatial
coverage of the chemo zones and interpreted facies.

The chapter concludes with an overview of other
applications of geochemical analysis that may be
applied to future studies using unconsolidated sediment
cores and palaeoenvironmental reconstruction.

EUROPE’S LOST FRONTIERS (ARCHAEOPRESS 2022): 137-153

Elemental analysis
Quantitative methods

The range of geochemical analysis techniques
available for sediment quantitative elemental data
include inductively coupled plasma-optical emission
spectrometer (ICP-OES), inductively coupled plasma
mass spectrometry (ICP-MS) and X-ray fluorescence
(XRF Figure 10.1 e.g. Jarvis and Jarvis 1992; Ratcliffe
et al 2012). ICP-MS and ICP-OES are laboratory
based elemental tools requiring significant sample
preparation including microwave, flux fusion or acid
digest processes in order to place the sample into
a solution prior to analysis (Olesik 1991). The ICP-
MS detects the mass of the ions hitting its detector
and provides a mass spectrum for the sample, with
the intensity of each mass peak in the spectrum
being directly proportional to the concentration of
an element of the same mass within the sample. The
mass is quantified by comparing the intensities of the
mass spectrum to known calibration standards (Tyler
and Jobin Yvon 1995). The ICP-OES differs in that it
measures the effect of the ions on the sample on the
plasma itself. When the sample solution is introduced
to the plasma the elements contained within loose
electrons and give off radiation with wavelengths
characteristic to the element itself. The optical
spectrometer detects this radiated energy, and through
comparison with the intensities of known calibration
standards the elemental abundance can be quantified
within the sample (Jarvis and Jarvis 1992; Olesik 1991;
Tyler and Jobin Yvon 1995). The combined use of both
ICP-MS and ICP-OES enable the quantification of major
elements (greater than one weight percent of the
sample) and trace elements (typically down to parts per
billion level; Jarvis and Jarvis 1992).

X-ray fluorescence (XRF) is the emission of characteristic
‘secondary’ (or fluorescent) X-rays from a material
that has been excited by being bombarded with high-
energy X-rays. Analytical tools vary from laboratory-
based techniques that can produce analysis similar
to ICP instruments to highly portable handheld tools
that can be used in the field. Dependant on lithology it
provides data for ten major and approximately twenty
trace elements, importantly including both chlorine
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Wavelength dispersive
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(ED- XRF) and held X-ray

fluorescence
(HH-XRF)

Figure 10.1 A summary of the benefits of typical analytical tools utilised in chemostratigraphic studies and their acronyms.

and sulphur making it the ideal tool for analysing
saline samples. Handheld X-Ray Fluorescence is
capable of providing rapid elemental data (Hennekam
and de Lange 2012; Schmidt et al. 2018). The tool is
non-destructive and capable of high spatial resolution
analysis thus making it ideal for use in core scanning
(Schmidt et al. 2018). However, it does not have the
same limits of detection that more powerful x-ray tools
possess.

Qualitative methods - Scanning/Micro XRF

An ITrax X-Ray Fluorescence core scanner (Cox
Analytical Systems), based at Aberystwyth University,
was used in Europe’s Lost Frontiers project. The ITrax is a
laboratory XRF scanner capable of very high resolution,
continuous environmental core scanning at a relatively
rapid automated rate (Croudacre and Rothewell 2015).
While the data it collects is quantitative there are
currently no standard reference materials for the
technique and thus results are more appropriate to
analysis of relative changes in elemental abundance
rather than absolute elemental values reported by
techniques such as ICP-MS. In Europe’s Lost Frontiers,
the ITRAX provided data at a resolution of 0.5mm thus
allowing for chemical fingerprints of very short-lived
climatic, depositional, and environmental changes. An
additional benefit of the ITrax is its ability to record
the incoherent (Compton) and coherent (Rayleigh)
scattering caused by the XRF interaction with the core,
enabling key information such as core density to be
calculated (e.g. Fortin et al. 2013; Gaffney et al. 2020).
Calculation of core density enables a comparison to be
made of the geochemistry with other regional remote
sensing techniques such as seismic analysis.
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Data acquisition, quality control, data processing

A single data quality control and interpretation method
was developed and utilised for all cores in the Europe’s
Lost Frontiers project in order to ensure that, as much as
possible, data from different cores collected at different
times was comparable.

The cores were initially split lengthwise, and the
exposed surface scraped to ensure a smooth and flat
surface. The scanner was typically set for a resolution
of 0.5mm along core-interval and a dwell time of 15
seconds with the x-ray tube at 30kV and 50mA. For
the individual core sections, the scanning line was
adjusted to avoid sampling holes. All reported data was
smoothed using a + 4mm moving average filter applied
to the data in order to remove any ‘nugget’ effect caused
by clasts of a specific elemental composition leading to
an overestimate of those elements compared to that of
the core (e.g. Croudace and Rothwell 2015; Gaffney et
al. 2020).

To test the validity of the recorded data, distance to
sample surface, total counts and Argon (as the Ar
signal is derived from the excitation of argon in air
between the sample and X-ray source, rather than the
sample) was plotted by core depth (below surface) and
compared to the ITrax chemical data. A fall in total
counts that coincides with a peak in Ar, suggest that any
changes in chemical data at these depths may be caused
by physical damage or irregularities in the core surface
rather than elemental variations in the core (Croudace
and Rothwell 2015). If these conditions were met, then
the elemental data from these depths was not utilized
in this study. Furthermore, any data that were outside
two standard deviations of the mean depth to sample
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Element | Symbol |Common mineralogical control |Common interpretations
Aluminium Al |Clays Depositional energy/Grain size
Bromine Br  |Organic material Productivity/Salinity/marine influence
Calcium Ca |Calcite Evaporite or marine signal
Iron Fe |Heavy and/or clay minerals Detrital input
Potassium K [Clay minerals Detrital input and depositional energy
Magnesium | Mg |Dolomite Dolomitisation
Sodium Na |Halite Salinity
Phosphorus P |Apatite and phosphates Heavy minerals or Nutrient enrichment
Sulphur Organic material/Gypsum Productivity/Salinity/marine influence/palaeosoils
Silica Si  |Quartz Depositional energy/Grain size
Strontium Sr  |Aragonite Shell material/marine signal
Thorium Th |Heavy minerals Depositional energy/Grain size. Link with gamma ray logs
Titanium Ti  |Heavy and/or clay minerals Detrital input
Uranium U |Heavy minerals or anoxia Il?;fi)()s;tsional energy/Grain size. Organic content. Link with gamma
Zirconium Zr Heavy minerals Depositional energy/Grain size

Table 10.1 Elements commonly utilised for archaeological and paleoenvironmental research (summarised from Davies et al. 2015
and Chemostrat multiclient report NE118).

surface, thus indicating an irregular surface, were also
treated with caution.

Three methods are proposed to ensure confidence in
using ITrax derived identification of mineralogical
or deposition drivers for variations in elemental
chemistry. Where possible, additional quantitative
mineralogical analysis (e.g. X-ray Diffractions/Raman
minerology or SEM-EDS techniques) on a subset of
samples can be made for comparison of the sediment
chemistry with the minerology. If additional data is
not available, a comparison with observed changes in
the core from more traditional methods such as colour,
shell fragments and grain size can be made. Finally, the
data can be analysed using statistical methods such as
principal component analysis (PCA).

Principal Component Analysis (PCA) is a mature
statistical technique that is widely used for identifying
patterns in data of multiple dimensions. PCA finds
a set of orthogonal dimensions, which account for
the variance in a specific dataset, by reducing the
dimensionality of a complex system of correlations into
a smaller number of dimensions. The first principal
component accounts for as much data variance as
possible and each subsequent principal component
accounts for remaining data variance (Michoux 2020).
For example, in a hypothetical interbedded sand/
mud section that transitions from marine to fluvial
control, PCA1 would likely be controlled by a variation
in elements associated with the sand (e.g. Si and Zr)
and clay fractions (e.g. Al, Rb and K), whereas PC2 may
be marked by the variation between these detrital
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minerals and elements associated with marine settings
(Caand sr).

An in-depth review of possible controls in elemental
data are reported by Rothwell and Croudace (2015) for
marine sediments and Davies et al. (2015) for fluvial
sediments. Table 10.1 lists the common drivers of
elemental variation within sedimentary units. However,
it is stressed that sediments are complex mixtures of
natural materials and so this may not always be true.

Case study 1 Chemostratigraphic  zonation,
chemostratigraphic  facies and integration with
sedimentological and ecological data to establish the
depositional environment of Core ELF19

Introduction

Case study 1 comprises a comparison of elemental
data to microfossil analysis and observed variations
in minerology within core ELF19. This was collected
off the East Anglian coast in the Europe’s Lost Frontiers
study area (Figure 10.2) and measures ~4.3 meters
long. Microfossil analysis shows that it contains three
depositional settings:

0.18-1.34m depth - estuarine mudflats latterly
with some algae; initially an eroded peat, with
onset of tidal access

1.46-4.01m depth - river or lake with some cool/
deep water, latterly with hint of low salinity as
tidal access approaches with sea-level rise
4.27-4.29m depth - till
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Figure 10.2 Location map of cores referred to in this paper. Bathymetric data is derived from the EMODnet Bathymetry portal -
http://www.emodnet-bathymetry.eu. Topographic data derived from the NOAA ETOPO1 dataset, courtesy of the NCEI - https://
www.ngdc.noaa.gov/mgg/global/

The top ~3m of core underwent elemental analysis and
the data produced was used for chemostratigraphic
interpretation. Chemostratigraphy (chemical
stratigraphy) is the application of whole rock or
sediment geochemistry to understand the depositional
history, correlation and palaeoenvironment of a core.
It involves building a chemostratigraphic zonation
(chemo zone) of the analysed material, assigning each
zone facies information based on its chemistry (chemo
facies) and where there is the need, correlating similar
chemo zones between different cores and/or outcrops
and so producing a chemostratigraphic correlation
(Ellwood et al. 2008).

The chemo zones produced in ELF19 were driven by
variations in detrital grain size, carbonate, clay, organic
material and salinity. These variations enabled the core
to be subdivided into six chemo zones, each ascribed
a chemo facies description. These chemo facies were
then compared to available sedimentological and
biostratigraphic information to produce a set of
integrated core facies.

Elemental data and controls

Core ELF19 was scanned from a depth of ~18.5cm
to ~296cm at a 0.05cm resolution. Reported data
underwent the quality control methods outlined above,
and eleven elements passed the test (Table 10.1). These
elements were subject to PCA analysis (Figures 10.3a
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and 10.3b) to establish the dominant mineralogical
controls on elemental variation (Table 10.2).

Chemostratigraphic zones

To establish a chemostratigraphic zonation, the
dominant element from each principal component
cluster in Table 10.2 were ratioed and plotted for each
reported depth down the length of the core. Using
ratios to compare elemental data is preferred as this
removes any dilution effect caused by variations in
other elements analysed at that depth (Weltje et al. 2015
and references inter alia). These elemental ratios likely
reflect down core variations in:

e Si/Rb:  quartz/clay - changes in detrital
grain size
e Ca/Rb: carbonate/quartz - marine/fine

terrestrial sediment
S/Rb: organic material/clay
Br/Ti: salinity (De Boer et al. 2014)

Visual comparison of the results of the analysis enabled
the core to be split into five chemo zones (numbered
top down; Figure 10.4; Table 10.3).

Chemo facies

It is possible to assign likely chemo facies to the above
chemo zones based on their observed chemistry and
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PC2 and 3 control

Element | Symbol | PC1 and 2 control cluster cluster Likely mineralogical control
Silicon Si Quartz
Detrital minerals
Zirconium Zr Detrital Zircon
Rubidium Rb
. . Clay minerals

Potassium K Detrital minerals

Titanium Ti Heavy Minerals/Clay minerals/Oxides?

Sulphur S Organic material

Bromine Br Salinity? Organic material/Salinity?

Calcium Ca Carbonate minerals and Carbonate minerals (Calcite)
Strontium Sr salinity Carbonate minerals Carbonate (Aragonite)
Chlorine cl Uncertain - Sea water chemistry?

Table 10.2 Likely elemental affinities for core ELF19.

Detrital Grain Size Carbonate/Clay Organic/Clay Salinity in wetlands
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Figure 10.4 Chemostratigraphic zonation of core ELF19. Si/Rb likely reflects variations in grain size with higher values being
more Sand (Quartz) rich and higher Rb being more Clay rich. Ca/Rb likely reflects variations in carbonate (Ca) compared
to clay material. S/Rb likely reflects variations in organic material (S) to clay. Br/Ti is a proxy for salinity in wetlands
(see text for references).

the hypothesised mineralogical controls on chemical (Ca/Br); the finer horizons are more organic
data (Table 10.2):

rich (Si/Rb troughs correlate with S/Rb peaks)
and more saline (Si/Rb troughs correlate with

e Chemo zone C1: interbedded sandy/silt and Br/Ti peaks)
silty/clay horizons (Si/Rb variations) likely of a o Chemo zone C2: massive clay rich unit (very low
more saline depositional setting (moderate Br/ Si/Rb values) with decreasing downhole organic
Ti values) and some shell/carbonate material (S/Rb) content; a higher level of salinity (Br/
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Si/Rb Ca/Rb S/Rb Br/Ti
Chemo Zone| Depth (~Organi ial ~Salinity:
5 5 ganic material/ (~salinity; (De Boer et al.
(~Quartz/Clay) (~Carbonate/Clay) Clay) 2014)
Variable, ranging
Highly variable, ranging f.ro.m ~10to 5. .
From vales of,~ 11%o Variations occur over | Moderate (~0.06) with
Cc1 ) a similar scale to Si/ | three peaks at ~0.36, 0.6 Moderate to low
~0.01 over ~10cm of b and hs i 4 depth
stratigraphy Rb and troughs in Ca/ and 0.7m depth.
Rb correlate with Si/
Rb peaks
Boundary Sharp fall Sharp rise Sharp rise Sharp rise
Moderate to low (~17 High ?t top of unit (0.§)
Constantly very low ; dropping to moderate in
C2 at top dropping to ~8 Ay Moderate
(~0.025) at base of zone) centre (~0.08), rising to
high again at base (0.5)
Boundary Sharp increase Sharp increase Sharp increase -
Rising to a very high Rising to a very high Rising to a very high peak Rising to a very high peak
C3 peak in the centre of | peak in the centre of |  in the centre of zone in the centre of zone (~6.4)
zone (~1.9) zone (up to ~575) (~2.8) ’
Boundary Trough Decrease Decrease Decrease
Varlablg but decreasing| Moderate at top‘of Moderate at top of zone | Moderate at top of zone
% from high (~1.6) at top | zone (~23) dropping : .
c4 (~0.19) dropping to low at | (~0.8) dropping to low at
of the zone to moderate | to low at base of zone base of zone (~0.08) base of zone (~0.25)
at base (~0.8) (~1.7) ’ ’
Boundary Drop - Plateauing Plateauing
c5 Very low/low (0.3) Low (10.5) Low (0.04) Low (0.2)
Boundary Increase - Decrease Decrease
Cé Moderate (0.5) with a Low (10.5) Low (~0.01) Low (0.2) to very low (0.2)

gradual down hole rise.

down hole

* Based on the variations in data over the unit it may be possible to split zone C4 into two sub zones.

Table 10.3 Chemical definition of Chemo Zones and boundaries for core ELF19.

Ti) than zone C1 some shell/carbonate material .
(Ca/Br)

e Chemo zone C3: the coarsest unit in the core (Si/
Rb) that also contains a large carbonate content .

(Ca/Rb), organic material (S/Rb) and salinities

(Br/Ti)

e Chemo zone C4: a coarse unit (Si/Rb) with low
carbonate content (Ca/Rb), decreasing organic
material (S/Rb) and low salinity (Ti/Rb)
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Chemo zone C5: a clay rich unit (Si/Rb) with low
carbonate content (Ca/Rb), moderate to low
organic content (S/Rb) and low salinity (Br/Ti)

Chemo zone Cé6: a silty unit (Ca/Rb) with low
carbonate content (Ca/Rb), low to very low
organic content (S/Rb) and low to very low

salinity (Br/Ti)
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Integration of chemo zones with sedimentological and
ecological data

Without any other data the chemo zones presented in
section 3.3 are only hypothesised. However, the results
can be compared to other geotechnical information
such as grain size, shell content and biostratigraphy. A
reasonable comparison is achieved between the Si/Rb
values and observed sand content as is the comparison
of Ca/Rb values with shell contents (Figure 10.5).

When ecological facies, derived from the biostratigraphic
data, are compared to chemistry (Figure 10.6) there is also
a good coincidence between the ecological boundaries
and the chemo zone boundaries. Chemo zones C1 and C2
have Br/Ti values of ~0.4 and S/Rb values of ~0.1 whereas
chemo zones C4, C5 and C6 have lower Br/Ti values of
~0.2 and S/Rb values of ~0.05 demonstrating a drop in
salinity and organic content down core. Consequently,
C1 and C2 are both interpreted as representing estuarine
mudflats, whereas, C4-Cé6 are interpreted as river or lake
sediments. Unit C3, shows greater complexity. Based on
initial chemistry it is expected this would be a coarse
marine bed. The ecological facies data also suggests that
this is a course unit, however the lack of marine fossils
suggest it is deposited in a freshwater setting.

Conclusions

The chemostratigraphic zonation of ELF19 based on an
interpretation of the chemical, grain size and ecological
analysis is summarised in Table 10.4 below.

Case study 2 - Chemostratigraphic correlation of chemo
zones within Holeocene shallow cores.

Introduction

Case study 2 seeks to demonstrate how
chemostratigraphic zonations can be used to produce
a chemostratigraphic correlation for multiple cores
across a palaeolandscape for further understanding of
palaeotopography, geography and depositional setting.

Chemostratigraphic correlation is a stratigraphic
technique that is commonly used in both the petroleum

and minerals industries to correlate core and drill
cuttings. This can be undertaken at a variety of different
scales from regional scale (Ratcliffe et al. 2012), quarry
or oil field scale (e.g. Pearce et al. 2010) through to field
outcrop scale (Ellwood et al. 2008). Generally, the more
localised the study area the more detailed a correlation
is possible.

Chemostratigraphic ~ correlation  involves  the
characterisation, correlation or differentiation of
sedimentary rock successions based on stratigraphic
variations in the elemental geochemical data. This
geochemical data is influenced by changes in the
mineralogical and organic content of the rock, and
in particular by changes in clay mineralogy and the
heavy mineral content. Mineral and organic changes
are often a manifestation of changes in palaeoclimate,
palaeoenvironment, sediment provenance and
both weathering or diagenesis. The dependence of
chemostratigraphy techniques on minerals means that
it can be used on any lithology, including those that are
barren of biostratigraphy. For example, mapping the
concentrations of elements such as Zr, Nb and Ti can
display changes in heavy mineral abundance, which
can provide insight into sediment dispersal patterns
and changes in provenance. Mapping elements such
as U and Mo reflect the presence and abundance of
organic matter that, together with biostratigraphic
information, enable the reconstruction of depositional
environments.

Chemostratigraphic correlation

At the time of writing, work within Europe’s Lost Frontiers
had not progressed to the point that project data could
demonstrate the use of chemostratigraphy to correlate
unconsolidated cores, therefore a case study has been
produced from data collected from cores sourced from
Orkney (Figure 10.7). Three approximately 2 to 3m cores
(Core A, B and C), spaced over approximately 300m,
were collected from the same sub-basin and underwent
geochemical analysis and data interpretation to identify
three key elemental ratios:

e Sr/Br - shell material (aragonite)/organic
content

Chemo Zone | Top depth (m) |Ecological facies Integrated interpretation
C1 0.19 Estuarine mudflats Interbedded estuarine sandy silts and silty clays
C2 1.03 Estuarine mudflats Estuarine clay
C3 1.33 Freshwater channel in a fluvial system |Coarse sediment of an uncertain marine/fluvial system
c4 1.52 River or lake Freshwater sands
c5 1.82 River or lake Freshwater clays with some organic content
Cé 2.08 River or lake Freshwater silts

Table 10.4 Integrated chemical and ecological results for core ELF19.
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Figure 10.6 This figure demonstrates an excellent match in the chemostratigraphic zonation of core ELF19 and ecological
biostratigraphic data.

Sr/Rb - shell material (aragonite)/clay
e Si/Br - sand (quartz)/organic content

These key ratios were used to establish a
chemostratigraphic zonation comprising four chemo
zones (C1-C4), furthermore, chemo zone C2 was
split into four sub zones (C2-1 to C2-4) in core B and
C. Not all zones were present in all cores and so a
composite core has been produced to illustrate the full
chemostratigraphic zonation (Figure 10.8).

As in case study 1, chemo facies information was
produced for each chemo zone. Core B had undergone
biostratigraphic analysis and cores A and B had
undergone sedimentological analysis and therefore it
was possible to ‘ground truth’ the chemo zonation with
other data to produce confident facies descriptions for
each chemo zone (Table 10.5).

and

Chemostratigraphic zonation, correlation

palaeolandscape interpretation

The presence and absence of the chemo zones in each
core enables the chemo zones and subzones to be
correlated across the cores (Figure 10.9 and 10.10).

To the authors knowledge, this represents the first
attempt to correlate shallow Holocene cores using
chemostratigraphy. Based on this chemostratigraphy,
the following depositional history is hypothesised for
the study area (further work is currently ongoing to
confirm this):
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e Chemo zone C1 is found across all three cores,
suggesting the carbonate sands blanket the
study area

Chemo zone C2 is only found in cores B and C
and thickens from core B to core C; this suggests
that this silty unit with differing levels of organic
material was either infilling existing topography
that deepens towards core C or it has been
differentially eroded from the surface - the fact
that all subzones within unit C2 thicken towards
core C suggest the former is the more likely
Chemo zone C3 is not found in core B and is
underlain by peat in zone C4 - this suggests that
core C may have been a sub-aerial peat when
the possibly lacustrine C4 sediment was being
deposited around it; the lacustrine C3 sediment
is also much thicker in core C than A suggesting
greater accommodation space formed by
palaeotopography

The peat zone C4 has not been penetrated in core
C; in core A it is found below the thin lacustrine
C2 unit and so may be present at depth

Due to the high resolution of the scanning XRF, the
chemostratigraphic zonation is able to record the exact
point at which major palaeoenvironmental changes
occurred and the chemostratigraphic correlation
map these boundaries spatially (Figure 10.9 and
10.10). Furthermore, the highly precise placement
of these palaeoenvironmental changes means that
future point sampling (e.g. geochronology, SedaDNA
and biostratigraphy) can be carried out at the exact
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Figure 10.8 The elemental variations utilised to define the chemostratigraphic zonation in the study area. Sr/Br likely reflects
variations in shell material (Sr - aragonite) and organic material (Br). Sr/Rb likely reflects variations in shell material (Sr -
aragonite) and Clay (Rb). Si/Br likely reflects variations in sand (Si - Quartz) and organic material (Br).

Chemo Chemical interpretation Sedimentology ]::nv1ronmer}tal Integrated facies
Zone interpretation
C1 Shelly sand Sand, Sand and Mud, Freshwater Shell rich sand
y Sand and Weed
Silt with some shell
material. Sub zones C2.1
and €23 mgrked by more . Fresh to brackish silt with some
C2 organic rich material, Mud Brackish/ Freshwater oreanic rich beds
where as subzone C2.2 g
and 2.4 are more shelly
and sandy.
c3 Carbonate rich - Freshwater Freshwater carbonatfz rich
sediment - Lacustrine?
ca Low levgls Qf all elgments Peat . peat
- organic rich sediment?

Table 10.5 Chemical, sedimentological and environmental interpretation of chemo zones and integrated facies identification.

point these changes take place, removing the need to
interpolate between data.

Case study 3 integrating chemostratigraphy with
seismic studies

Introduction

This case study seeks to demonstrate how, in
addition to producing chemostratigraphic zonations

and correlations from elemental data, incoherent
(Compton) and coherent (Rayleigh) scattering caused
by the XRF interaction with the core and recorded by the
ITrax scanning XRF can be used to calculate a relative
density profile for the analysed core. The variations in
density can be utilized to link geochemistry to seismic
geophysical data and by so doing enable interpretation
of palaeo-depositional/environmental scenarios. This
can both aid seismic interpretation and be used to
extrapolate the chemical analysis away from the core
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Figure 10.10 Chemostratigraphic correlation of chemo sub zones in wells A, B and C.

locations. This case study utilizes elemental and seismic
data published in Gaffney et al. (2020) from core ELF1A,
which was collected approximately 20 miles north east
of core ELF19 (Figure 10.2).

Chemo zones and facies
Project core ELF1A has undergone chemostratigraphic

zonation with the goal of identifying key geochemical
signatures that could result from a tsunami event.
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Details of the investigation have been previously
presented in Gaffney et al. (2020). Using the same
method as that outlined in Case study 1, the chemical
analysis was used to divide the core into six chemo
zones (Figure 10.11) based on variations in:

Sr - a proxy for shell material
Rb - a proxy for clay

Si - a proxy for quartz

Zr - a proxy for detrital zircon
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Figure 10.11 Chemostratigraphic zonation of core ELF1A (from Gaffney et al. 2020). Sr likely reflects the amount of shell material
(aragonite) Rb likely reflects the amount of clay, Si likely reflects the amount of sand (Quartz) and Zr the amount of detrital

zircon in

These chemo zones have been interpreted to represent
a series of chemostratigraphic facies (Chemo facies)
which can be used to understand the depositional

environments shown in Table 10.

2020 supplementary information).

6 (see Gaffney et al.

the core.

Chemo zone C5 had been hypothesized to contain
a Storegga tsunami deposit, and so a more detailed
investigation of this zone was undertaken (Gaffney et
al. 2020). This enabled the zone to be divided into eight
separate sub zones based on changes in:

- Shell/Clay

105

- Terrestrial/Shell

-Grain size (Quartz/Clay)

1056
~ Clay cap

110

®a
115 O(Empty)

[Sr_5mm] / [Rb_5mm]

Peak marine (shell)
influence. Higher on inland
wave than seaward wave.

e

Wave 3 d travel
=— Wave 3
B
s
- =t
° i — “ Wave 2 seaward travel |
'§135-§i --------------- ---735---;;'"""' """""" R I~ e ~— Wave 2
g . 55 .
3 _—=» _»+— Wave 2inland travel _J
Wave 1 d travel
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............................................................................. } |n|t|a| sea
level fall
165 165 160
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Peak terrestrial (heavy
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— Increasing energy (base of wave)
—— Peak energy — Flow velocity stagnation

» Decreasing energy (top of wave)

Figure 10.12 Chemostratigraphic zonation of the Stroregga tsunami deposit preserved in core ELF1A (from Gaffney et al. 2020).
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Chemo zone |Chemo facies

2 A clean high energy sand with little to no shell/marine material or marine influence. Several beds display
high Zr/Sr values suggesting increased terrestrial derived heavy mineral sand beds.

C3 A high energy interbedded terrestrial sand and marine/shell dominated deposit.
A clay/silt environment similar to that seen in units C5 and 6 with no shell material, however the moderate

C4 . 1 .
Zr/Sr values suggest a more terrestrial input compared to units C5 and 6.
High energy/coarse material including shell/marine material. The large variation in data within C5 does
suggest there is an internal stratigraphy (see Gaffney et al. 2020). The top of this unit shows a grading change

c5 back to values similar to those in units C6 and 7. These observations suggest this may either be a tsunami
or surge deposit; an erosive base, high energy deposit bringing distal marine sediment into a previously
terrestrially dominated low energy environment topped by a gradational decrease of energy.

6 The lowest energy unit in ELFO01A is dominated by clay material, little shell material and a constant balanced
marine/terrestrial influence.

7 A clay/silty unit with interbedded siltier horizons (marked by increases in Si/Rb). Little shell material and a
constant balanced marine/terrestrial influence.

Table 10.6 Chemo facies identified in core ELF1A (see Gaffney et al. 2020 supplementary information for full discussion).

¢ Sr/Rb - marine signature reflecting the chemical
proxy for aragonite as shell content vs clay
content

Zr/Sr - aterrestrial vs marine sediment chemical
proxy based on the input of terrestrial detrital
zircons compared to a marine shell signal.

Si/Rb - grain size proxy reflecting the chemical
proxy for quartz (coarser sand grain) vs clay
content; the coarser-grained sediment indicates
a higher depositional energy than the finer clay-
sized grains

The eight chemo subzones were interpreted to
represent an initial fall in sea level, overlain by deposits
associated with three pulses each comprising an initial
inland wave identified by its marine depositional
signal, topped by a seaward wave characterized by its
terrestrial signal (Gaffney et al. 2020). The final chemo
subzone represented a clay cap, likely reflecting the
post tsunami deposition of suspended fine material
(Figure 10.12; reproduced from Gaffney et al. 2020).

This use of elemental geochemistry enabled the
identification of the tsunami deposit which was dated
using both C14 and OSL methods. It was postulate that
the deposits were associated with the Storegga slide
event (Gaffney et al. 2020) and represented the furthest
south in the North Sea such deposits have thus far been
recognised.

Linking geochemistry to seismic

Several studies have demonstrated that the ratio of the
Compton and Rayleigh scattered intensity, recorded by
scanning XRF tools, are affected by the average atomic
number of the sample, mineralogical composition,
water, organic carbon content and therefore density
(Fortin et al. 2012, Croudace et al. 2006). Seismic
reflection strength is also a function of the impedance
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contrast in velocity, in turn based on elastic moduli,
and density, based on lithology/mineralogy, porosity,
saturation and organic content of a material. Thus, as
the acoustic impedance that produce seismic reflectors
are the product of density and velocity so the Compton
scattering too is a function of density and there should
be a correlation between both.

Core ELF1A has both the interpreted seismic and
geochemical data necessary to test this method (see
Gaffney etal. 2020). There is a large downhole increase in
density from approximately 2.6 to 3.2 chemical density
units at c. 1.55m depth that corresponds to the base of
chemo zone C5 and the tsunami deposit (Gaffney et al.
2020). When this is compared to the published seismic
(Gaffney et al. 2020, Figure 10.12) this Is the same depth
as the tsunami seismic reflector, suggesting that this
method is valid.

Within the XRF data, there are two density changes
visible at ~0.8, ~1.15 and ~2m depth. The 0.8 and 1.15m
density changes occur at a similar depth to two large
amplitude shallow seafloor reflectors in the seismic data
(1[green] and 11 [purple] in Figure 10.13). The ~2m depth
density change also coincides with a lower amplitude
reflector (IV [black dashed], Figure 10.13). Therefore,
we can use the seismic to understand the spatial extend
of the chemo zones (Table 10.7). Importantly, this show
how spatially limited the Storegga tsunami deposit is
within the study area.

Future geochemical applications to Europe’s Lost
Frontiers type studies

This chapter has demonstrated how elemental
chemistry can be used to recreate palaeoenvironments
within the Europe’s Lost Frontiers project. It has been
shown how geochemistry can be utilised to identify
variations in sediment cores (often not visible to the



ALEXANDER FINLAY, RICHARD BATES, MOHAMMED BENSHARADA AND SARAH DAVIES

*(0z0z Jp 72 Asujyes WoJj) BIep JIWSIas pajaidiajul a3 03 elep JYX WOJJ paje[no[ed Y119 2102 Jo AJIsuap aarje[al a3 jo uostreduro) ¢1°01 231y

_‘ n "

ds

wuwig~oyy
se €10 gg
00
082
092
oz
0zz
ha y
.' y J L Y >_ =002
Apq §0/90 @ oseg iweuns) E
— ata 091
Ty 1] =
L : : ' ! .w,._... = ovl
Al R = Sy : _ = S
_ —. ~ N I
n. W > . 004
AN __. - - . S = 08
- i i
J‘l‘.‘.ﬁ = -4 .__pb.ll.rh s v v
oy ucn_.f-..u o - r F
g AKdwas 09
4 9%
: 99+
790 or
N
auoz jessowsyn oe
Aq anojon oyy [edlway

(wo) yydap aysodwod

152



APPLYING CHEMOSTRATIGRAPHIC TECHNIQUES TO SHALLOW BORE HOLES

Density change |Chemo zone |Chemo facies variation Spatial extent on seismic line

a down hole change from (C2) to sand and )

I C2-C3 Bdy shell (C3) material - laterally continuous
The transition between high energy tsunami |Only found locally to ELF19 - suggests only a

I Upper C5 . . . .
sediments and the low energy clay cap. small preservation of Tsunami deposit

111 C5-C6 Bdy Base of Storegga Tsunami deposit laterally continuous

v C6-C7Bdy  |A down hole transition to a clay rich (C7) unit |hard to tell, maybe only local preservation?

Table 10.7 A summary interpretation of geochemical and seismic datasets.

eye) and to chemostratigraphically divide the core
into separate chemo zones. It has been shown how the
causes of these variations can be understood through
statistical methods enabling chemo zones and facies
to be assigned and thus in turn aid understanding of
the depositional environments. The differentiation
and chemostratigraphic correlation of multiple
cores has then been undertaken, demonstrating how
palaeosurfaces can be identified and palaeolandscapes
recreated. There are of additional benefits for
conducting geochemical analysis to further the
understanding of palaeoenvironments that include:

e with the use of chemical signatures together
with stable isotope data to link changes
in paleoenvironment with changes in
palaeoclimate
identification of detrital zircon, heavy mineral
and chemical provenance signatures in the
cores; such studies are commonly utilised in the
Carboniferous-Permian hard rock basement,
below the Doggerland sediment, identifying if
a sediment is sourced from the south (Variscan
orogeny/bohemian massif) or north (Norway;
e,g, Cram et al. 2014) - it is highly probable that
this method could be of utility to provenance
sand filled channels around Doggerland
quantitative elemental chemistry is commonly
utilised to identify the provenance of clay (e.g.
Finlay et al. 2012) and geological materials (e.g.
Bevins et al. 2020) in archaeological studies -
could these methodsbe applied to lithic materials
dredged from Doggerland and so both establish
chemical families of lithics and potentially even
correlate them to known (Present day) onshore
sites?
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e the chemo zones presented in this study are all
linked to natural changes in the sediment record
- however, could some of them be signals of
human activities such as habitation? For example:
. within North Sea oil and gas studies,
the Si/Zr ratio is commonly utilised to
identify flints in chalks - could this ratio
be used to identify micro-debitage from
knapping sites?

phosphorus is commonly associated with
coprolite and hardgrounds - could it be
used to identify phosphates caused by
animal and human waste, vivianite or

bone beds?
J can Sr data be utilised to identify shell
middens?
Elemental geochemistry is a powerful tool for

archaeological and palaeoenvironmental studies. It can
be used to identify depositional changes in any fluvial,
lacustrine, marine or terrestrial setting, and correlate
them across study areas, revealing palaeo- surfaces and
landscapes. The wide range of modern analytical tools,
from portable closed source tools that can be deployed
in the field, through to lab-based scanning XRF tools that
are capable of recording high vertical resolution data
mean that geochemistry is a highly flexible tool suitable
for application to a wide variety of settings. Furthermore,
the ability to use geochemical tools to generate density
data means that the results are easily linked to other
investigative techniques, such as geophysics, and so aid
the integration of disparate analytical datasets. Therefore,
it is hoped that elemental geochemistry will become an
increasingly utilised tool for studies across archaeology,
palaeoenvironmental sciences and the humanities.
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