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Landing by Ava Grauls (Duncan of Jordanstone College of Art & Design).
Oil and watercolour on Japanese shōji (障子) paper. 413 x 244cm

Landing is about location, ownership, shifting land and shifting borders. The painting was conceived after talking to academics 
about the space between Britain and Europe, and asking the question: ‘How do you paint a forgotten landscape?’ Landing was 

made to travel and interact with different environments and can be folded up and packed away into four boxes.
Ava Grauls 11/08/2021
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Chapter 6

The Southern River: methods for the investigation of submerged 
palaeochannel systems

Simon Fitch, Richard Bates and Rachel Harding

Introduction

The Humber Regional Environmental Characterisation 
(Humber REC) project (Tappin et al. 2011) identified 
an area in the southern North Sea that potentially 
preserved a late Mesolithic/early Neolithic landscape. 
The landscape contains river systems that were finally 
submerged at c. 6500 (±500) BP (Tappin et al. 2011: 215). 
This result appeared to contradict dates provided by 
previous GIA modelling for the area (e.g. Shennan 2000), 
which suggested the area had been inundated by this 
date. The Humber REC therefore revealed the possibility 
of the existence of a tract of land extending from the 
north shore of East Anglia that was exposed during 
the Late Mesolithic to Early Neolithic. The existence of 
a Neolithic Doggerland is rarely considered although, 
Bryony Coles (1999) did discuss the possibility. Following 
analysis of seismic data acquired by industry and the 
Humber REC, the area, now known as the Southern 
River, was subject to a detailed coring program. Cores 
were located along the length of the palaeoriver 
channel on the basis that the temporal sequence of 
the transect might provide detailed information on 
the timing, progress and eventual submergence of the 
river. The Southern River Valley is not only a key area 
within the Europe’s Lost Frontiers research programme, it 
provides an exemplar of the analysis of individual large 
channels within the project, and this chapter provides 
a preliminary description of methods and results of the 
seismic analysis in this valley.

Background geology of the Southern River Valley

The basement for this region consists of upper Palaeozoic 
through Mesozoic sediments including chalk, sandstone 
and siltstones. Regional structural patterns have been 
published in a number of oil and gas basin atlases, see 
for example Campbell (2013) and Cameron et al. (1992). 
These features provide the backbone of the landscape 
on which the overlying, more recent sediments are 
located. However, it is with the overlying, largely 
unconsolidated or partially consolidated geology that 
this study is mostly concerned.

During the Pleistocene, subsidence in the southern 
North Sea followed regional, underlying faulting 

patterns with an approximately northerly trend. The 
subsidence occurred at a rate of approximately 0.5m 
per thousand year (Stoker et al. 1985). During the 
Early Pleistocene (2.5 Ma to 774,000 BP), deposits in 
the area are derived from a series of deltaic deposits 
which Long et al. (1988) observed to be both thick and 
laterally extensive. The provision of sediment from the 
British Isles into this depositional system is related 
to restricted deposits in the region, but the overall 
deposition reflects the dominant European input of 
sediment which extended the Netherlands delta plain 
(Zagwijin 1989). This massive input of material caused 
rapid sedimentation in the Southern Bight, which 
conversely starved the northern sector of the North Sea 
of sediment (Cameron et al. 1992).

The Middle Pleistocene (774,000 to 125,000 BP) begins 
with the record of glacial ice extending into the 
southern North Sea. Large ‘scaphiform’ tunnel valleys 
were created at the base of the ice sheet (Ehlers et al. 
1984), and were subsequently infilled with glacial 
clay and later by lacustine and marine clays. The 
glacial material in this region likely was deposited 
predominantly during the Anglian glaciation (Gibbard 
et al. 1991), which also caused the eventual blocking 
of the Southern Bight, thus diverting fluvial activity, 
including glacial melt water, south through the English 
Channel (Gibbard et al. 1988; Hamblin et al. 1992).

The late Pleistocene (125,000 to 11,650 BP) within the 
southern North Sea basin contains several glacial and 
interglacial periods (Laraminie 1989b) characterized 
by transitions between glacial, terrestrial and marine 
environments. The end of the period is marked 
by glaciolacustrine and glaciomarine infill. These 
geographical changes ultimately created the landscape 
to the extent that it can be traced today (Eisma, 
1979). Whilst these terminal glacial deposits form the 
backbone of the recent geology within this region, 
later Holocene erosion and deposition has also been 
significant.

Holocene sediments dating from between 11,650 to 
6500 BP, attain a thickness of 1 to 5m within the region, 
and locally, deposits can reach thicknesses of between 
16 to 30m (Laraminie 1989a, Fitch et al. 2005). These 
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Holocene deposits record the history of the emergent 
landscape and its subsequent marine transgression and 
are of central interest to archaeologists and the Europe’s 
Lost Frontiers project. The Holocene sequence is divided 
into two formations, namely the Nieuwkoop, which 
consists of a freshwater peat and the Naaldwijk, which 
records tidal flats and salt marsh environments  (Rijsdijk 
et al. 2005). These have previously been described as the 
Elbow Formation (e.g. Cameron et al. 1992) but are now 
recognised as separate entities. Overlying these deposits 
are modern marine sediments including extensive sand 
banks of the Nieuw Zeeland Gronden member (Table 1 & 
Cameron et al. 1992).

Sturt et al. (2013) provide models of marine inundation 
across the southern North Sea which show that the 
inundation had started in this area at c. 10,000 BP. The 
models demonstrate that marine inundation continued 
across the area until fully flooded at c. 7000 BP.

The study area

The ‘Southern River’ is located approximately 22km 
offshore from the coast of East Anglia (Figure 6.1). The 
river channel runs for almost 260km2, with a mean water 
depth of 21m and localised deeps to -39m. The river 
feature has a bathymetric expression on the seafloor and 
thus has not been completely infilled. The origin of the 
channel follows a glacial meltwater outwash system, with 
the first part cut into the underlying deposits during the 
earlier Late Devensian (Dove et al. 2017). The Holocene 
aspect of this channel is extant through its re-use of this 
pre-existing channel, which is made visible via the later 
networks of sub-aerial feeder channels which must have 
formed between the late Pleistocene to early Holocene. 
The floodplain of the river is approximately 1.1km wide 
with an average channel width of c. 250m. The Holocene 
channel shows a typical river profile with two tributaries 
in the upper reaches and some additional minor dendric 

tributaries joining these. The river channel would have 
experienced several periods of infilling, including fluvial 
sedimentation, estuarine deposition during inundation 
and eventually marine sedimentation following 
inundation. Given the regional history of infilling, it was 
speculated that evidence of the marine transgression 
might be preserved and that a coring programme along 
the length of the channel might capture the sequential 
history of infilling.

The presence of Holocene deposits in this area were first 
indicated following recovery of peat within a gravity 
core taken by the BGS (then known as the Institute of 
Geological Sciences) in the 1970s. This core recovered 
a peat which was covered by a series of Holocene 
laminated silts and clays of intertidal origin (Cook 1991). 
This core was re-evaluated by the Humber REC project 
(Gearey et al. 2017) which showed the presence of fluvial 
material of a Holocene date. Further cores, acquired 
nearby in 2008 by the Humber REC project, revealed 
that the area contains a variety of terrestrial, estuarine 
and fluvial deposits as well as associated peat material. 
The cores, dated between 9000 to 8000 BP (Tappin et 
al. 2011: 197), suggested that conditions might be good 
for preservation of environmental deposits, although 
the Humber REC remit did not allow for an evaluation 
of the wider landscape and environment in this area. 
However, this material was sufficient to suggested that 
features in this area may contain in-situ sediments of 
early Holocene age (Tappin et al. 2011: 225) that would 
support the academic aims of Europe’s Lost Frontiers. 
Recently, nearby commercial development has revealed 
a similar Holocene environment on the Dungeon Wind 
Farm, c. 10km away from the study area (Brown et al. 
2018). Here freshwater deposits have been dated at 9755 
±52 BP (UBA-33301) with a thin upper peat covered by a 
shelly sand potentially representing final submergence 
dated at 8411-8331 cal BP (GU-34111).

Table 6.1 Geological deposits within the study area
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Methodology

An initial examination of the river channel was 
undertaken using bathymetric data from EMODNET. 
(https://www.emodnet-bathymetry.eu/). This data 
layer has a resolution of 115m and is suitable for 
displaying larger features which have a seabed 
expression. The bathymetric data indicates that 
the channel has a northwest-southeast orientation 
draining to the south and into a Holocene marine 
embayment (Figure 6.5).

Seismic interpretation of the data

The legacy seismic data available for this analysis 
was acquired by Gardline Surveys Ltd, using the 
vessel Vigilant equipped with a surface-towed 
boomer system (see Tappin et al. 2011: 73 for more 
details). This boomer system consisted of an 
Applied Acoustics 300 Plate powered by an Applied 
Acoustics CSP 1500 Pulse Generator and 12-element 
single channel hydrophone stream. The system 
was operated at a power level of 300 joules with a 
350-millisecond fire rate. Initial data inspection 
and preliminary processing was accomplished 
using Chesapeake SonarWiz and Coda GeoSurvey 
(Figure 6.2). Processing included swell filtering, 
where necessary, and application of a band pass 
filter between 1kHz and 8.4kHz (Figure 6.3). All 
data was reduced to the Lowest Astronomical Tide 
Datum using predicted tidal ranges from the nearest 

standard ports of Immingham and Cromer. Further 
processing utilising IHS Kingdom 2019 software was 
undertaken and included using a built-in running-
sum amplitude gain correction filter (Figure 6.4).

Initial examination of the data showed a number of 
different seismic characters that were divided into 
seven distinct seismic facies. The seismic facies, 
prefixed ‘SRF’ (Southern River Facies), were determined 
using the seismic attributes of amplitude, frequency 
and continuity. Additional features of interest that 
were mapped included major reflection terminations 
(e.g. erosional truncations).

Targeted vibracoring

The Europe’s Lost Frontiers vibrocores were acquired 
by Gardline, based on the project’s interpretation 
of legacy seismic data. A total of 35 cores were 
acquired in this paper’s study area, with a maximum 
penetration of 6m. Whilst it was noted that the 
6m length of the available corer would not allow 
penetration of the deepest/oldest parts of the 
channel feature, the use of a longer corer would 
have been cost prohibitive and reduced the number 
of cores that could be acquired. In most cases the 
cores that were recovered were sufficient to support 
the project’s goal of studying the early Holocene 
sequence. Core treatment followed the method 
outlined in Bates et al. (this volume).

0 20km

5900000

400000

Figure 6.1 The location of the Southern River is within the box on the main map.

https://www.emodnet-bathymetry.eu/
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Figure 6.2 The location of the 2D seismic data shown in Figures 6.3 and 6.4 is indicated by the black line (top). The lower image is 
an example of the original 2D Boomer dataset used for targeting the cores within the Southern River.
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Figure 6.4 2D Boomer data after amplitude and gain correction applied.
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Figure 6.3 2D Boomer data after bandpass filtering applied.



Simon Fitch, Richard Bates and Rachel Harding

94

Results: seismic facies

The seismic sequences of interest in Table 6.2 are 
described from the base of the sequence to the surface 
as seen in both the legacy industry 2D seismic and 
Humber REC seismic data. Data quality in the seismic 
dataset is highly variable due to differences in age 
(legacy data) and the inclement weather conditions 
during acquisition and the strength of seabed reflection 
(Humber REC). Boomer data was seen to have the best 
results in this area, and whilst maximum penetration 
depth of 50m was seen, the features were best resolved 
in the top 15m of the data.

SRF1

This is the deepest observable seismic facies in the 
boomer data and thus represents the seismic ‘basement’ 
for this study. The facies is characterised by having few 
internal reflections that are of high amplitude and 
low frequency. The internal reflections rarely extend 
laterally with opaque intervals of hundreds of metres. 
The unit is bound on its upper surface by a strong, 
regionally laterally continuous positive reflector.

SRF2

This is a geographically limited facies, being constrained 
to a small tunnel valley in the middle of the study area 
(Dove et al. 2017). The unit is moderately chaotic but 
has some internal discontinuous reflections that are of 
high amplitude and frequency. The unit fills the valley 
with an erosional truncation at its base that cuts into 
the SRF1 unit (Boundary SRB1). The unit is discordantly 
overlain by SRF6.

SRF3

This unit is geographically limited to both sides of the 
channel area. The facies is characterised by parallel 
internal reflection structures which are continuous 
within the unit. These parallel reflections are largely 
horizontal to sub-horizontal with a dip not exceeding 5 
degrees and are of alternating high/low amplitude. The 
base of the unit is defined by an erosional truncation 
and can be seen to overlie SRF1. The unit is also overlain 
unconformably by SRF7

SRF4

This facies shows a massively chaotic internal reflection 
character with discontinuous internal reflections 
of high amplitude. The facies is bound by clearly 
definable high amplitude, high frequency boundaries. 
The deposits are cleanly cut into facies SRF1 and are 
separated by the erosional boundary SRB2. The SRF4 
facies is overlain concordantly by SRF6 (Holocene age).

SRF5

This facies is shows little structure with few, moderate 
amplitude internal reflectors. The facies is bound 
by clear channel cut reflectors at the base of a high 
amplitude, low frequency character. The base of SRF5 
cuts down into the SRF1 deposits and is separated by 
the erosional boundary SRB3. Similar to other units 
in this area, the top of the facies is unconformably 
overlain by SRF6. Some opacity is seen in places, and 
this may relate to gas charging of the material.

SRF6

This unit is characterised by continuous, high amplitude 
internal parallel reflectors that are laterally continuous 
over tens of meters within the channel. The parallel 
reflectors are largely horizontal within the main body 
of the channel, but dip upwards to 30 degree with onlap 
at the channel margins. The base of the facies can be 
seen to unconformably overly SRF2, SRF4 and SRF5 and 
is separated at the base by an erosional unconformity 
(SRB4) with high seismic amplitude.

SRF7

The top surface of this facies is represented by a high 
frequency parallel reflector which can be seen overlying 
all deposits in this region. The internal reflections are 
chaotic in nature and the facies has some localised 
variations in thickness. This material is separated at 
the base from the other facies by an erosional boundary 
SRB4 which is of a high amplitude nature.

Erosional boundaries

SRB1

This erosional boundary is demonstrated by the 
erosional truncation made into SRF1 deposits. The 
truncation is U shaped in form, and the boundary is of 
very high amplitude, moderate frequency and located 
at 0.066s in the seismic section.

SRB2

These boundaries are channel shaped with an irregular 
base, represented in the seismic data with a boundary 
of high frequency and a moderate amplitude. It is most 
closely associated with an irregular surface which is 
present between 0.062s and 0.050s in the seismic data.

SRB3

This is erosional boundary is located between 0.053s 
to 0.037s. It is an irregular feature located above the 
SRB2 boundary and can be seen to separate SRF1 and 
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SRF5. The boundary is moderate frequency and high 
amplitude in nature.

SRB4

This is the latest erosional boundary in the seismic 
section. The boundary is located at 0.035s and 0.027s 
in the section. The boundary features high amplitudes 
and is of a moderately high frequency.

Discussion

New seismic reflection data has been divided into 
distinct units based on internal facies character and 
bounding contacts. Four major erosional boundaries 
(SRB1 to SRB4) have been identified that are 
consistently mapped across the survey area. The facies 
character and truncations can be interpreted to provide 
a sedimentological history consistent with the known 
regional patterns of geomorphological change during 
the Holocene.

The first phase of evolution mapped by seismics in 
this area, and the deepest recorded, starts with the 
formation of a glacial tunnel valley. Dove et al. (2017) 
suggest that the tunnel valleys likely correlate to the 
final position of ice in this area. This hypothesis finds 
support in recent investigations by Roberts et al. (2018). 
The base facies in this study (SRF1) shows identical 
acoustic characteristics to facies DB4 from Roberts et al. 
(2018: 193). Roberts correlates this material on the basis 
of cores taken by the BRITICE project to the Bolders Bank 
Formation, which is a sub glacial till located in complex 
sheet structures (Davies et al. 2011). The Bolders Bank 
formation was formed during the final major advance 
of the ice sheets and relates to ice front movements 
between 30,000 BP and 22,000 BP (Roberts et al. 2018). 
The SRF1 facies is cut into by the erosional boundary 
SRB1, whose character and overall shape match that 
for a typical glacial tunnel valley in the southern North 
Sea, and relates to glacial outwash.

Facies unit SRF2 partially fills the tunnel valley with 
onlap to the sides and an internal character that 
shows laterally discontinuous, bifurcating reflections. 
This character is consistent with an infilling of a 
channel by a fluvial system that is meandering across 
the accommodation space as a braided river system. 
An acoustic facies, DB5 was observed by the BRITICE 
project (Roberts et al. 2018), which possesses similar 
characteristics. The material was ascribed to the Botney 
Cut Formation, and Cotterill et al. (2017) suggests that 
the material may be related to pro-glacial drainage. The 
source of water for this fluvial activity was the outflow 
from glaciers to the north of region. The cold climate of 
the pro-glacial tundra provided ideal conditions for the 
formation of braided channels (Cotterill et al. 2017). The 
material SRF2 is thought to date to before the onset of 

aridity due to the periglacial climate in the area (from 
c. 23,000 BP, Emery 2021: 118), and therefore of late 
Devensian age.

Following this arid stage there is a further period of 
late Pleistocene fluvial activity. The phase of activity 
is closely associated with an irregular surface present 
between 0.072s and 0.050s in the seismic data, which 
represents the channel cuts. The material contained 
within these channels (SRF4) appears to be associated 
with channel migration features, and gravel bottoms 
which show as a strong chaotic signal at the base of 
the features within the seismic data. These channels 
overlie or crosscut previous material and thus are 
later than 23,000 BP. Unfortunately, it is not possible to 
correlate these channels to previous studies, but it is 
possible that comparable features were observed by the 
BRITICE survey (Roberts et al. 2018) near the Southern 
River. These (DB5 and SRF2) were ascribed to the late 
Pleistocene/early Holocene Botney Cut Formation. It 
is known that a period of channel incision occurred 
elsewhere in the North Sea during the period 17,000 to 
12,000 BP (Emery 2020). Given the channel stratigraphy 
seen in the seismic data, it is thought that the SRF4 
deposits are related to this latest Devensian age (17,000 
to 12,000 BP). OSL dates from ELF cores into these 
features have confirmed this association (see Kinnaird 
et al this volume and forthcoming Europe’s Lost Frontiers 
volumes for more details).

The third phase of fluvial activity relates to a reuse of 
earlier features and the full development of Holocene 
fluvial landscape through erosion and reuse of late 
Devensian structures (SRF3 & SRF5). The erosional 
boundary formed by this activity, SRB3, is located 
between 0.053s to 0.037s within the seismic data. These 
channels are smaller in size and form part of a sinuous 
dendritic river network that is visible within both the 
seismic data and bathymetry (Figure 6.5). The increase in 
sinuosity is thought to reflect the increased precipitation 
in the area and a warming climate. The smaller grain size 
of the material suggested in the seismic response of SRF5, 
reflects low sediment supply and source material from 
within the region. Similar channels were observed during 
the Humber REC and these were ascribed as Holocene 
fluvial systems (Tappin et al. 2011: 214). Europe’s Lost 
Frontiers project cores which penetrated these deposits 
returned a similar Holocene age and thus the facies seen 
are thought to be identical to those observed by Tappin 
et al. 2011 (Figure 6.6). As these cores penetrate features 
that are broadly of similar morphology and age, and that 
are in close proximity (within 5km) to each other, it is 
reasonable to assume the sediments they contain are 
from the same unit.

The final phase relates to the development of estuarine 
deposits in the channels formed in response to sea-
level rise in the early Holocene. These highly distinctive 
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0 10km

Figure 6.5 A combined Bathymetric and seismic data surface of the Southern River. The dendritic network is visible at the head 
of the river, whilst sinuousity increases as the river proceeds south towards the location of the Holocene coastline.
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laminated features (SRF6) are clearly visible in both the 
seismic data and core material recovered by Europe’s Lost 
Frontiers (e.g. ELF054 and ELF033, Figure 6.7). Located 
between 0.035s and 0.027s, these reflect the tidal erosion 
surface (SRB4), and the later infilling of this and earlier 
landscape features, with intertidal silts and muds by 
SRF6. This sequence can be seen, repeatedly, in many 
Europe’s Lost Frontiers cores along the southern river (see 
Bates et al. this volume and forthcoming Europe’s Lost 
Frontiers volumes), and similar deposits were recovered 
during the Humber REC (Tappin et al. 2011: 194). The 
Humber REC also recovered cores from the SRF6 facies 
which comprised intertidal laminated silts and clays 
which dated to the period 9000 to 8000 BP (Tappin et al. 
2011: 198). This material is therefore related to the final 
submergence of the Holocene landscape during the 
period 8500 to 8000 BP suggested by sea-level models 
(Shennan et al. 2000). It is, however, important to note 
that the Holocene channel cuts are in some parts of the 
study area not totally filled by this tidal silt and clay. This 
partial infilling, coupled with some modern erosion, 
has meant that some Holocene channel features have a 
reduced, but observable bathymetric expression on the 
current seabed.

The final facies within the dataset relates to modern 
sands (SRF7) which can be seen to overlay the entire 
study area and have been formed by more modern 
marine processes post 7000 BP.

Conclusions

The analysis presented here provides an example of 
the interpretative process carried out by Europe’s Lost 
Frontiers researchers with respect of one, important 
feature. The data indicates that the channel system 
under study clearly has its origin in the advance and 
retreat of the ice sheet (Dove et al. 2017; Emery et al. 
2019; Roberts et al. 2018). The channels cut the Bolders 
Bank formation till which, as observed by Roberts et 
al. (2018), is ‘a series of overlapping sheets’ relating 
to numerous ice front movements between 30,000 
BP and 22,000 BP. Despite this, by c. 23,000 BP the ice 
sheets had advanced and retreated for the final time 
and the boulder clay and tunnel valley were subaerially 
exposed. The meltwater from the retreating ice then 
flowed, initiating the formation of the valley which 
constrained the later Southern River channel.

The interpretation of the seismic data therefore 
suggests that there are three distinct phases of channel 
development present:

1. an initial phase of incision by fluvio-glacial 
channels (Late Devensian – prior to 23,000 BP)

2. a later reuse and new channel formation stage 
(Late Devensian – 17,000 to 12,000 BP)
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Figure 6.7 The distinctive laminated sediments (SRF6) that produce a clear signal in the seismic data are visible in these images 
of cores ELF033 and ELF054.

3. the final channel development (latest Pleistocene 
to early Holocene – 12,000 to 8000 BP)

The seismic data for this channel therefore records a 
history of landscape development after the ice. The 
data demonstrates not only the early phases of fluvial 
development, but also the responses of fluvial systems 

and the landscape to sea-level rise and eventual 
submergence over an entire catchment. A full history 
of this channel, including a detailed geomorphological 
and environmental assessment, based on the new 
surveys, the core transect, as well as the archaeological 
context will be presented in later Europe’s Lost Frontiers 
volumes.
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