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Landing by Ava Grauls (Duncan of Jordanstone College of Art & Design).
Oil and watercolour on Japanese shōji (障子) paper. 413 x 244cm

Landing is about location, ownership, shifting land and shifting borders. The painting was conceived after talking to academics 
about the space between Britain and Europe, and asking the question: ‘How do you paint a forgotten landscape?’ Landing was 

made to travel and interact with different environments and can be folded up and packed away into four boxes.
Ava Grauls 11/08/2021
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Chapter 12

Constructing sediment chronologies for Doggerland

Tim Kinnaird, Martin Bates, Rebecca Bateman and Aayush Srivastava

Introduction

Luminescence dating is an important tool for 
constraining sediment ages and depositional processes 
in many Quaternary environments. This chapter 
provides examples of how optically stimulated 
luminescence, or OSL, has been applied to late 
Pleistocene to Holocene deposits recovered from core 
in the southern North Sea, to establish a chronology 
and define sedimentation histories. These sediment 
chronologies contribute to the palaeo-environmental 
reconstructions of Doggerland discussed elsewhere in 
this volume. Doggerland exhibits a complex palaeo-
geography, with sediments deposited in diverse 
terrestrial, littoral and marine settings (see Bates et 
al. this volume), which presents some challenges to 
dating these sediments. The chapter begins with a brief 
consideration of the principles of luminescence dating, 
followed by a discussion of its application in the context 
of the North Sea. Then, the ‘challenges’ associated with 
OSL are discussed with reference to Doggerland, prior to 
outlining some potential solutions. Finally, the methods 
and protocols used in dating Doggerland sediments are 
discussed, illustrated with the example of establishing 
a sediment chronology for core ELF001A.

The luminescence dating technique exploits the 
energy retained in certain minerals, typically quartz 
and feldspar, which accumulate as a consequence of 
naturally occurring ionising radiation in both the 
sample and its environment. These signals are depleted, 
or reset, when the minerals are exposed to either heat 
or daylight. ‘Zeroing’ can be achieved during daylight 
exposure in phases of erosion or transport. After burial, 
or deposition, luminescence will grow in situ in response 
to the radioactivity of the surrounding sediment and 
cosmic rays. This is quantified as the equivalent dose 
(abbreviated to De), which is determined by calibrating 
the intensity of the OSL signal against the response to 
known laboratory-administered radiation doses (in 
Gray, abbreviated to Gy). To calculate an age, it is also 
necessary to measure the rate of radioactivity delivered 
to the sample from the surrounding sediment matrix, 
and this is called the environmental dose rate. A 
luminescence age is derived using the equation below:

Age (ka) = Burial dose (Gy)/Total environmental dose rate 
(Gy ka-1)

OSL is routinely used to date sediments in terrestrial 
environments, as recently reviewed by Smedley (2018) 
and Rittenour (2018). Marine sediments were first dated 
by thermoluminescence in 1979 (Wintle and Huntley 
1979), and using OSL techniques in 2003 (Stokes et al. 
2003). Wintle and Huntley (1979; 1980) developed TL 
dating procedures to date marine sediments, extracted 
from deep cores in the Antarctic and North Pacific 
oceans. The ages were stratigraphically coherent, but 
issues including time-dependent dose rate calculations, 
anomalous fading in feldspars and large uncertainties, 
discouraged further applications of TL dating to marine 
sediments. After a long hiatus, Stokes et al. (2003) 
revisited luminescence dating of marine sediments 
and applied a single aliquot, regenerative dose (SAR) 
OSL technique to silt-sized quartz from cores extracted 
from the Arabian Sea. The authors reported ages that 
had low standard errors and showed agreements with 
independent chronometric control. They used thin 
source alpha spectrometry to examine the uranium 
(U) and thorium (Th) decay series for time-dependent 
changes in dose rate.

Since 2003, studies have applied various luminescence 
dating techniques to a range of different types of coastal 
and marine deposits, involving a variety of depositional 
processes and environments (e.g. Armitage 2015; Jacobs 
2008; Jakobsson et al. 2003; Sanderson and Kinnaird 
2019; Tappin et al. 2011): establishing OSL dating as a 
suitable method to determine timing of depositional 
events in nearshore and offshore marine environments. 
Bateman (2015) provides a comprehensive review of 
luminescence dating applied in coastal and marine 
contexts.

In the North Sea region, there are relatively few 
comparative studies: Alappet et al. (2010) constructed 
chronologies for shallow terrestrial and marine deposits 
in the southern North Sea, south east of Dogger Bank. 
They obtained late Weichselian and early Holocene 
ages for glacio-fluvial and lacustrine sediments 2.0 to 
0.5m beneath the terrestrial-to-marine transition that 
attested to sedimentation in a predominantly periglacial, 
fluvial environment. The authors noted significant 
scatter in the equivalent dose distributions of quartz 
due to heterogeneous bleaching. Further north and 
west, offshore the Humber Estuary, Tappin et al. (2011) 
applied a combination of OSL and radiocarbon dating 
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to re-interpret the geological evolution of the area over 
the last 21,000 years, from when the region was glaciated 
and the Brown Bank Formation was laid down to marine 
transgression. Madsen et al. (2005) showed that it is 
possible to date young, fine-grained estuarine deposits 
by OSL: they obtained OSL sediment ages for a length 
of core through tidal mudflats in Ho Bugt, ranging from 
7.0 ± 1.5 (near surface) to 305 ± 16 years (at 68cm depth), 
concordant with 210Pb ages back to c. 1975. Moreover, an 
average OSL age of 9 ± 3 years for the surface mixing zone 
showed that in this setting the OSL signal of the quartz 
grains was well-zeroed at deposition.

22 of the 78 sedimentary cores recovered from the 
Outer Dowsing Deep region of the southern North Sea 
were investigated in the context of OSL dating and four 
are referenced within this chapter (Figure 12.1). The 
objectives of this chapter are, therefore, threefold:

1. to evaluate the potential of OSL for establishing 
a chronology and sedimentation history of late 
Pleistocene to Holocene deposits at Dogger Bank

2. to discuss the challenges associated with OSL, with 
reference to the submerged Doggerland palaeo-
environments: partial bleaching, mineralogical 
variations with varied luminescence response, 
stable dose rate conditions and disequilibrium 
in the uranium decay series

3. to review these challenges and design a 
methodology to date the submerged Doggerland 
marine, nearshore and terrestrial deposits

This will be the reference to all OSL depositional ages 
reported in this, and subsequent volumes, in the 
Europe’s Lost Frontiers (ELF) monograph series.

‘Challenges’ to dating the sediments of Doggerland

Challenge 1: Partial bleaching of sediments

It is a clear requirement of the technique that the 
sedimentary grains used as the luminescence dosimeter 
are exposed to adequate light at deposition to bleach, 
or zero, the luminescence signals. Where the mineral 
grains are not exposed to sufficient daylight, we observe 
a phenomenon known as partial bleaching, which can 
contribute to significant scatter in determined De 
values and hence determined ages (Duller 2008; Olley 
et al. 1998). Poor ‘zeroing’ at deposition leading to large 
overestimations in age.

The resetting of the luminescence signals during 
transportation and deposition is a function of 
environmental conditions and luminescence behaviour 
(Figure 12.2).

In the littoral zone, the optimum depositional 
environment is commonly considered to be coastal 
dunes, because aeolian transport (particularly, 
saltation) provides a very high probability of daylight 
exposure prior to burial. Whereas, in intertidal, marsh 
and lagoonal settings, exposure to daylight prior to 
burial is less certain, with diminished light penetration 
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Figure 12.1 Locations of cores mentioned in text.
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through the water column, and mixing of suspended 
sediment with sediments deposited from singular or 
episodic events (Bateman 2015).

Challenge 2: Post-depositional sediment mixing

Post-depositional mixing can be due to bioturbation or 
geomorphic processes (e.g. sediment slumping). Either 
phenomena could contribute to further scatter in 
determined De values and determined ages. Bioturbated 
sample may exhibit multi-modal De distributions, but 
unlike poorly bleached sediments, these distributions 
may contain De that tend to both higher and lower 
apparent doses, obscuring the true burial age (Bateman 
et al. 2007). In the context of Doggerland, this issue is 
important as bioturbation is a ubiquitous process in 
shallow marine and estuarine environments (Madsen 
et al. 2010; Reed et al. 2006).

Challenge 3: Mineralogical variations

Luminescence response is variable between mineral 
systems, and between minerals of the same system: 
quartzes and feldspars are characterised by variable 
brightness and stability of signals. This is quantified 
as luminescence sensitivity – a measurement of 
luminescence per unit dose. In the context of 
Doggerland, this issue is important as mineral response 
will vary within, and between cores, varying with 
(and not restricted to) mineral provenance, erosional 
and depositional histories, and post-depositional 
diagenesis.

Challenge 4: Stable dose rate conditions and 
disequilibrium in uranium decay series

In routine luminescence applications, secular 
equilibrium in the decay chains of U and Th through 
time are assumed, as is ‘closed system’ behaviour. 
In ‘closed systems’, each decay chain tends towards 
radioactive equilibrium; whereas in ‘open systems’ 
exchange of radionuclides, by a variety of physical 
and chemical processes such as dissolution, sorption 
and precipitation, can lead to disequilibrium in the 
decay series, more so for the decay series of uranium 
(see discussion in Degering and Degering 2020). In 
many terrestrial settings, it is valid to assume secular 
equilibrium, and closed system behaviour; but, in 
marine and near-shore settings this should be not 
assumed. Surficial deep-sea sediments are known 
to contain an excess of 230Th over the series parent 
238U (Armitage and Pinder 2017; Jakobsson et al. 2003; 
Sanderson and Kinnaird 2019), this can decay with 
depth, and introduce a time dependent component into 
the dose rate.

Therefore, in the context of Doggerland, in evaluating 
dose rates to the full range of terrestrial, littoral and 
marine deposits, anomalies in the concentrations of 
uranium and/or thorium need to be identified, such 
that excess activity is quantified and incorporated into 
dose rate calculations. Moreover, temporal variations in 
burial conditions need consideration, as the thickness 
of overburden has implications for the cosmic dose, 
and fluctuating moisture contents in the sediments will 
attenuate the external dose.

In addition to the challenges discussed above, there 
are important, practical considerations when sampling 
from core materials: a.) there is potential for some 
light exposure during core retrieval and storage; b.) 
there is potential for barrel smearing, which could 
cause additional mixing of sediments (and contributing 
to further scatter in determined De values) and c.) 
smaller sample quantities that are obtained from 
core, compared to sampling from terrestrial sections, 
necessitate more careful sample preparation and 
increased counting times. Nelson et al. (2019) and 
Sanderson and Kinnaird (2019) discuss these issues 
in detail and provide recommendations for secure 
sampling of subsurface deposits from core in terrestrial 
and marine settings, respectively.

Our methodological approach

‘Solutions’ to challenges 1-3 

A number of OSL screening methods have been developed 
to provide insights into the luminescence properties of 
sediment and to interpret the depositional mechanisms 
and zeroing processes. These range from methodological 

Figure 12.2 For successful OSL dating, both environmental 
and mineral characteristics are important: zeroing during 
transport and deposition is a function of environmental 

conditions and luminescence behaviour.
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developments such as standardised growth curves 
(Roberts and Duller 2004), range-finder ages (Durcan 
et al. 2010; Roberts et al. 2009) and laboratory profiling 
(Burbidge et al. 2007; Kinnaird et al. 2017a; Kinnaird et al. 
2017b) to instrumentation developments, such as the 
portable OSL equipment developed at SUERC (Munyikwa 
et al. 2020; Sanderson and Murphy 2010).

In this research, a combination of these approaches 
was employed: at the time of sampling, luminescence 
stratigraphies were generated from proxy luminescence 
data generated with portable OSL equipment (Sanderson 
and Kinnaird 2019: stage 1). These stratigraphies were 
‘calibrated’, by subjecting sub-samples to laboratory 
luminescence screening and characterisation 
measurements, and constructing apparent dose-depth 
and sensitivity-depth profiles for each core (stage 2). 
Finally, targeted samples were taken forward to full 
quantitative quartz SAR OSL dating (stage 3). This 
approach has several advantages: first, by characterising 
the ‘depositional’ sequences for the full length of the 
core, sampling is better informed and more effective. 
Second, by generating relative sediment ‘chronologies’ 
for the entirety of each core, direct comparisons of 
sedimentary units down, and between, cores is possible. 
This provides a means to relate discrete events (e.g. 
peat inception, inundation) across cores. Moreover, the 
‘chronology’ is not reliant on a small number of dates 
from arbitrary selected points.

Figure 12.3 illustrates this approach. The examples 
shown are:

 • ELF05B, a length of core 2m long, penetrating 
c. 50cm of grey, laminated silts representing 
saltmarsh, then brackish mudflats, then c. 50cm of 
grey, fine sands, occasionally speckled with black 
organic material, attributed to wetland deposition, 
culminating in peat formation, then tidal access; at 
115cm depth in core, till is encountered

 • ELF012, a 4m long core of structureless, mid-
brown to greyish brown medium- to fine- sands, 
with common shell fragments and occasional 
black mottling; there was some debate ahead of 
sampling as to whether these sediments should 
be attributed to the Botney Cut Formation 
(Stoker et al. 2011) or if they were a modern sand 
bank

 • ELF022, 6m of alternating medium- and fine-
sands, frequently with clay silt laminations, and 
occasional shell fragments

 • ELF054, a length of core 3.8m long, penetrating 
2.6m of grey clay silt, with phytal ostracod and 
clinging foraminiferal fauna suggesting marine-
algae and/or seagrass, in a brackish lagoon, then 
1.1m of silts (10cm thick) interbedded with dark 
brown fibrous peats (c. 50cm thick)

Figure 12.3a shows how breaks, or step changes, in IRSL 
and OSL net signal intensities might indicate where 
discontinuities, or unconformities, are present in the 
core stratigraphies. This was observed when sampling 
ELF005B: net signal intensities drop off through units 
5B-3, -4 and -5, approaching the transition from 
brackish lagoon to wetland deposition. (The inverted 
signal-depth progression through 50 to 64cm tracks a 
reduction in grain size through the same interval, and 
an increased prevalence of wavy, sub-parallel clay-
silt laminations). Across the 5B-5/-6 transition, there 
is a substantial step-change in intensities, across an 
order of magnitude, which attests to this boundary 
representing a considerable amount of time. The 
subsequent calibrated laboratory analyses provide 
some quantification to this: the break corresponds to 
20Gy.

Figures 12.3b and 12.3c show how signal-depth 
progressions can provide insights on rates of 
sedimentation: consistent signal intensities with depth 
might indicate high rates of sedimentation (Figure 
12.3b), whereas, slow, steady signal-depth progression 
likely represents a slow rate of sedimentation (Figure 
12.3c). The range in intensities across these progressions 
provides the relative rate of sedimentation. With 
ELF012, we concluded during sampling that the range 
in signal intensities observed across the 6m length 
of core suggested that these sands had accumulated 
rapidly. Moreover, as there was no distinction between 
the signal intensities at the very top of the core (i.e. 
modern sands) and those at 6m depth, that these sands 
are modern and represent a sand bank on the seabed. 
In contrast, in ELF022, between 50 and 80cm depth in 
core, there is a steady increase in signal intensities 
with depth, implying a slower and more steady 
sedimentation across this interval.

Finally, Figure 12.3d, illustrates how the amalgamation 
of all proxy luminescence data (together with 
sedimentological observations, and when available 
other environmental proxies (e.g. Allaby et al. this 
volume; Bates et al. this volume) provides temporal 
(and spatial) frameworks to aid interpretation of the 
depositional sequences and histories. It demonstrates 
that: a.) the marine sands encountered through 0.00 
and 0.88m depth in core are stratified, with some 
chronology, which led to re-appraisal of this unit, and 
the recognition that this was more than a recent sand 
wave; b.) through 0.88 to 1.25m, and then 1.25 to 1.45m, 
IRSL and OSL signal intensities track a reduction in 
silicate content, with implications for reconstructing 
dosimetry; c.) through 1.45 to 2.60m, intensities 
increase with depth, which notwithstanding b.) implies 
a considerable chronology across this interval on the 
order of ×2-5; and d.) that the till encountered at 2.85m 
was reworked to a depth of 15-20cm, during deposition 
of the overlying unit.
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Figure 12.3 Illustrative luminescence-
depth plots for the Doggerland cores: 
illustrating, (A., ELF05B) stratigraphic breaks 
and temporal discontinuities, (B., ELF012) 
rapid sedimentation and short chronology, 
(C., ELF022) slow sedimentation and long 
chronology, (D., ELF051) stratigraphic breaks, 

stratigraphic progressions and cyclicity.
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Therefore, only samples with promise are selected for 
luminescence dating, maximising the chances of success 
for dating. When more challenging samples were 
sampled, and partial bleaching or post-depositional 
sediment mixing were identified as issues, statistical 
techniques examining the degree of over-dispersion 
in De and the measure of skewness and kurtosis in De 
distribution were examined (Galbraith et al. 1999; Olley 
et al. 1998).

Application to the Europe’s Lost Frontiers Project

Europe’s Lost Frontiers is investigating the submerged 
landscape of Doggerland, reconstructing it’s 
palaeoenvironments through extensive marine 
survey and sediment coring (Gaffney and Fitch this 
volume); with the sediment cores subjected to detailed 
sedimentological, palaeoenvironmental (Bates et al. this 
volume), geochemical (Bensharada et al. this volume; 
Finlay et al. this volume) and sedimentary ancient DNA 
(Allaby et al. this volume) analysis.

OSL and radiocarbon dating (Hamilton et al. this volume) 
provide the chronologies to underpin these studies.

78 cores from 60 locations have been collected, of which 
40 have material of interest; 22 of these have been 
sampled for OSL profiling and dating. The recovered 
materials in these cores are from a range of palaeo-
environments, including marine sands, intertidal muds, 
brackish lagoons, peats (from a few centimetres thick to 
1.8m), lakes, rivers and palaeosols (Figure 12.2).

The methods and protocols employed in luminescence 
dating, as applied in the Europe’s Lost Frontiers project, are 
illustrated with reference to core ELF001A. Core ELF001A 
is significant to palaeo-environmental reconstructions 
of Doggerland, as its sedimentary sequences preserve a 
proxy record of final submergence of Doggerland, and 
potentially encloses materials related to the Storegga 
Tsunami (Gaffney et al. 2020).

Borehole ELF001A is located at the head of a palaeo-river 
system near the Outer Dowsing Deep (the Southern 
River, Fitch et al. this volume: Chapter 6). Prior to 
final submergence, with the majority of the landscape 
already lost to sea-level rise, the surviving land would 
have been low lying and close to sea level. This landscape 
would have been vulnerable to catastrophic flooding 
events. A key regional event during this period was 
the Storegga Tsunami, which occurred in response to 
a series of underwater landslides off of the Norwegian 
coasts 8.15 thousand years before present. This tsunami 
hit the eastern Scottish and English coastlines, and 
likely reached the southern North Sea. Some workers 
(Bondevik et al. 2012; Fruergaard et al. 2015; Weninger 
et al. 2008) have suggested the Storegga Tsunami led 

to the final abandonment of the island by Mesolithic 
communities.

Seven lithological units were identified within this 
core: units 1A-1 to 1A-3, consist of sands or sandy 
gravels with marine shells; units 1A-4, well-laminated 
fine-grained sandy silts; unit 1A-5, a thin sequence of 
silty sands with broken shell fragments; unit 1A-6, well-
laminated sands and silts, overlain by poorly sorted 
sands and shell detritus; unit 1A-7, well-laminated fine-
grained sandy silts. Modern or recent mobile bottom 
sands are represented by units 1A-1 to 1A-3 and have 
not been sampled or considered in any detail.

Estuarine mudflat conditions are represented in the 
core in units 1A-4 and 1A-7, which are interrupted by 
coarse poorly sorted shelly gravel (1A-5/1A-6). The 
mixture of marine and brackish material alongside 
broken and fragmentary shell remains, and common 
small clasts, suggests these sediment units represent a 
high-energy event intruding into otherwise sheltered 
mudflat environments Further multi-proxy data from 
ELF001A, as reported in Gaffney et al. (2020), provided 
evidence to suggest that these units were the deposits 
of the Storegga Tsunami.

Methodological details

Stage 1 – Preliminary OSL screening of cores

For the subset of sedimentary cores selected for OSL 
investigation, the sedimentological and geophysical 
evidence were reviewed, and the key stratigraphic 
intervals and depths of interest noted. Cores were 
split under subdued light conditions at the University 
at Warwick, with one half retained there for sedaDNA 
analyses, and the other transferred to the University 
of Wales Trinity Saint David, Lampeter campus, for 
sedimentological and luminescence investigation. At 
Lampeter, the cores were subsampled for luminescence 
screening using portable OSL equipment (Munyikwa et 
al. 2020).

The protocol adopted throughout the study was as 
follows:

1. through each core, sediment was extracted at 
regular 10cm intervals, with tighter resolution 
sampling at stratigraphic and lithological 
boundaries (and if available, prominent breaks 
in the geochemical data; Figure 12.4)

2. these sub-samples were immediately measured 
using a SUERC portable OSL reader, using an 
interleaved sequence of system dark-count, IRSL 
and OSL (cf. Sanderson and Kinnaird, 2019)

3. from this, IRSL and OSL net signal intensities and 
IRSL and OSL depletion indices were calculated 
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for all samples, and luminescence-depth profiles 
generated for each core (Figures 12.3 and 12.5)

4. this, in combination with sedimentological 
observations and the expectations of dating, 
were used to position samples for quantitative 
quartz OSL dating 

5. for the positions in the core selected for dating, 
larger samples were taken from between the 
profiling samples, and associated samples 
collected for dosimetry

Using this approach, the 22 investigated cores were 
appraised through more than a thousand samples, 
which permitted the construction of high-resolution 
luminescence ‘stratigraphies’. IRSL and OSL signals 
were readily detectable in all cores, confirming that 
phases suitable for luminescence dating were present. 
IRSL signal intensities range from 120 to 1.83 × 107 

counts; and excluding the more organic rich horizons in 
ELF002, 005B, 034, 051, 054, from 5160 counts. Peats and 
very-organic rich silts were not sampled for OSL. OSL 
signal intensities range from 1440 to 1.57 × 108 counts; 
and excluding the more organic rich horizons, from 
2.29 × 104 counts. IRSL and OSL depletion indices range 
between 1.09 and 3.03, and 1.09 and 3.17, respectively. 
The dynamic range in IRSL signal intensities observed 
down individual cores is at least one order of magnitude 
(41% of investigated cores), and commonly more (2 
orders, 36%; 3 orders, 18%; 4+ orders, 5%); similar 
dynamic ranges were observed in OSL net signal 
intensities (1 × 10, 32%; 2, 45%; 3, 18%; 4+, 5%).

Luminescence responses, therefore, vary down core, 
and clearly record mineralogical, luminescence age, 
sensitivity and dosimetry variations.

Figure 12.4 Sampling strategy for ELF cores – illustrated with core ELF001A: (a) core, with sub-units identified; (b) core, with 
sampling positions indicated; (c) removal of sediment for OSL profiling, OSL dating and dosimetry.
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Figure 12.5 Illustrative luminescence-depth plots for ELF001A: on the left, IRSL and OSL net signal intensities and depletion 
indices; on the right, apparent dose and sensitivity distributions.

To illustrate this, we use the example of ELF001A. Figure 12.5a shows the proxy luminescence stratigraphies 
relative to the lithostratigraphy of the core, through units 1A-1 to 1A-7. Observations, and inferences from these, 
are tabulated in supplementary data. From 0 to 21cm depth, the sands are characterised by fluctuating OSL 
signal intensities in the range 1.75 to 5.30 × 105 counts, with no stratigraphic coherence, and low depletion indices, 
<1.3. Together, this data suggests that these sands are modern and mobile. The trend in fluctuating OSL signal 
intensities with depth continues through 21 to 67cm, although across a greater range, 7.08 × 105 to 1.44 × 106 
counts. From 67 to 90cm depth, there is a slight signal-depth progression from 6.01 × 105 to 9.26 × 106 counts, and 
depletion indices are higher than observed in unit 1A-1. The step change in OSL intensities across the unit 1A-1 / 
1A-2 boundary, then the signal-depth progression in unit 1A-3, all suggest that units 1A-2 and 1A-3 record some 
chronology and stratigraphy is preserved.

From 90 to 109cm, unit 1A-4, there is an inverted signal-depth progression from 5.71 to 4.96 × 106 counts, and the 
lowest depletion indices observed in the core aside from unit 1A-1. The step-change in OSL intensities across 
the unit 1A-3 / 1A-4 boundary implies that the sediment has a difference provenance. The low depletion indices 
suggest that this material is poorly bleached, and that the composite OSL signals include residuals.
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Having shown that there are readily measureable 
IRSL and OSL signals, and that these signals vary with 
stratigraphy down core, the investigations progressed 
to laboratory analysis, first to calibrated luminescence 
screening and characterisation (stage 2), then to 
full quartz SAR OSL dating. The ‘calibrated’ profiles 
as obtained in stage 2 (below), remove some of the 
ambiguity in interpreting the relative ‘luminescence 
stratigraphies’, relating to bulk mineral properties 
(mineralogy, grain size, sensitivity, colour etc).

Stage 2 – OSL calibration and characterisation of cores

Sample preparation and laboratory analyses were 
undertaken in the luminescence laboratories of the 
School of Earth and Environmental Sciences (SEES), 
University of St Andrews. This stage in the methodology 
is to characterise a sub-set of the profiling samples in 
the laboratory, to provide a first approximation of the 
magnitude and range in luminescence sensitivities 
and apparent (or burial) doses. OSL measurements 
were carried out using Risø TL/OSL DA-15 and DA-20 
automated dating systems. Full technical details of the 
SEES instruments are provided in García et al. (2019).

The protocol adopted here, was as follows:

1. sub-samples from the initial luminescence 
profiling were subjected to simplified mineral 
separation procedures (cf. Sanderson and 
Kinnaird 2019: supplementary data)

2. paired aliquots of HF-etched from each sub-
sample were subjected to a simplified SAR 
OSL protocol for a preliminary assessment of 
apparent dose (cf. Sanderson and Kinnaird 2019); 
The readout cycle consisted of: a.) a preheat 
at 220°C, held for 10s; b.) OSL at 125°C for 60s, 
c.) a test-dose of 1Gy, d.) a preheat of 220°C, e.) 
OSL at 125°C for 60s, f.) then, repeats of steps a.) 
to e.) following regenerative doses of nominal 

doses of 10, 30, 60Gy (extended to 120Gy, when 
necessary) and 0Gy. The zero dose was omitted 
from the readout cycles of ELF003, 005B and 
ELF031A. A recycling dose of 10Gy was added to 
the readout cycles of at least one length of core 
from ELF001A, 007, 019, 022, 027, 034, 039, 054 
and 059

3. from this, the distributions in sensitivities and 
apparent dose were calculated, and plotted vs 
depth in core

4. these plots were used to test the assumptions 
made during initial profiling and to re-appraise 
the most promising targets for dating

906 of the 1104 preliminary samples were taken forward 
to further laboratory analyses (this equates to 82% of 
the dataset).

From this, we obtained the first indication of bulk 
mineral / luminescence behaviour, which were 
promising: OSL sensitivities ranged from 110 to 1.48 × 106 
counts Gy-1. 81% of aliquots returned an OSL sensitivity 
>1000 counts Gy-1 and, 91% of aliquots, a sensitivity >500 
counts Gy-1. Recuperation was, in general, low with a 
mean value of 6.7 ± 11.0 % (error expressed here, and 
elsewhere, as standard deviation); 66% of aliquots 
returned a recuperation value <5%. Recycling ratios 
were, in general, good with a mean of 1.04 ± 0.35; with 
82% of aliquots returning recycling ratios within ± 0.1 
error of unity. By substituting the 1st regenerative dose 
for the natural dose in each dependent SAR curve, and 
comparing this nominal normalised value to the known 
given dose, pseudo-dose recovery ‘ratios’ are obtained 
for each sample. The mean value for pseudo-dose 
recovery was 1.07 ± 0.26.

OSL apparent doses ranged from 0.1 to >100Gy; relatively 
few aliquots returned apparent doses in the sub-Gy 
region (<4%), and <7% returned apparent doses in excess 
of 60Gy. With the exception of ELF012, the dynamic 

Between 109 and 151cm depth, units 1A-5 and 1A-6, the luminescence profiles are more complex: with ‘couplets’ 
on the scale of 4 to 5cm, characterised by both normal and inverted signal-depth progressions. Interestingly, in 
each ‘couplet’ the lower signal intensities correlate with higher depletion indices. The ‘cyclicity’ in OSL intensities 
and depletion indices is interpreted here as reflecting deposition from multiple waves: the first influx of sediment 
is characterised by low OSL intensity and high depletion index; then, higher intensities and lower depletion 
indices. The first wave is well-bleached and characterised by low intensities and high depletion indices, then the 
subsequent waves, are only partially bleached and characterised by high intensities and low depletion indices. 
It is notable that across the ‘couplets’, signal intensities vary over a similar magnitude and range, suggesting a 
common provenance.

From 155 to 180cm, signal intensities drop from 1.24 × 106 to 5.78 × 105 counts, before increasing with depth through 
the interval 180 to 200cm, from 5.78 × 105 to 1.16 × 106 counts, from 200cm to depth, signal intensities remain 
relatively consistent at approximately 1.59 × 106 counts. This implies that unit 1A-7 should be further sub-divided 
into two sub-units 1A-7a and 1A-7b and illustrates for this interval that screening at sampling can identify 
crypto-stratigraphic boundaries.
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range in apparent doses down core is in the range of 102 
to 103, which attests to long sediment chronologies and 
moreover the preservation of stratigraphy in these cores 
(which partly addresses challenge 2: post-deposition 
sediment mixing). These analyses suggest the cores, 
and/or parts of the cores, where apparent doses are low 
and likely to return early Holocene depositional ages, 
and where apparent doses are high, which in a low dose 
rate environment would correspond to late Pleistocene 
and earlier dates. Earlier, with reference to the 
luminescence stratigraphies shown in Figure 12.3, we 
suggested the parts of cores ELF012 and ELF022, where 

we might expect sedimentation to be slow and gradual, 
or episodic and rapid. Both these trends are reproduced 
in the calibrated laboratory dataset. Across the 6m 
length of core in ELF012, the progression in apparent 
doses is from 4 to 5Gy; whereas for the 20cm thickness 
of unit 22-4 in ELF022, apparent doses increase from 6 
to 22Gy. With any estimate of environmental dose rate, 
this implies that the sediments in ELF012 represent a 
short chronology (and rapid deposition), whereas, a 
considerable chronology (and slow sedimentation) is 
represented in ELF022.

The detail in this is illustrated using the example of ELF001A. All 61 samples from this core were taken forward to 
preliminary laboratory characterisation. As before, key observations, and inferences from these, are tabulated in 
supplementary data.

Unit 1A-1 is characterised by variable OSL apparent doses in the range 0.7 to 1.7Gy (with one high dose outlier, 
trending to in excess of 20Gy), with poor paired reproducibility between aliquots, and no stratigraphic coherence. 
The sensitivity distribution is also heterogeneous, varying across two orders of magnitude.

In contrast, units 1A-2 and 1A-3 show a progression in OSL apparent doses with depth, through 21 to 90cm, 
from 1.7Gy to 5.7Gy. The paired reproducibility between aliquots is good: apparent doses reproduce within error 
between 30 and 55cm and 70 and 85cm. The sensitivity distribution is less heterogeneous, varying across a single 
order of magnitude. This supports the hypothesis raised at sampling: unit 1A-1 is modern and mobile, units 1A-2 
and 1A-3 record some chronology and stratigraphy is preserved.

Across the unit 1A-3 / 1A-4 boundary, there is a step increase in OSL apparent doses, from 5.7Gy to in excess of 
10Gy. Even withstanding large variations in environmental dose rate across this boundary, this attests to a large 
temporal break between these units. From 90 to 109cm, apparent dose estimates are inverted, from c. 14 to 10Gy. 
The fine-grained sandy silts of unit 1A-4 are characterised by lower luminescence sensitivities than the coarser-
grained sands of units 1A-1 to 1A-3. In the original interpretation, it had been assumed that the step-change 
in net signal intensities across the boundary reflected a change in provenance; but the lower signal intensities 
returned from unit 1A-4 reflect in part the lower sensitivities of these sediments.

The sensitivity and apparent dose distributions for units 1A-5 and 1A-6 are complex, varying on the 5 to 10cm 
scale: between 109 and 119cm, apparent dose values are consistent at c. 10Gy, with good paired reproducibility; 
from 121 to 129cm, apparent doses show a normal dose-depth progression, from 9.5-10Gy to >12Gy, with poor 
reproducibility between aliquots; from 136 to 146cm, some scatter is noted in apparent doses, which vary between 
6 and 13Gy; from 150 to 155cm, apparent dose values are consistent at c. 8Gy. Paired reproducibility is variable: 
although the lower doses in each couplet show better paired reproducibility (varying within 10%), and the higher 
dose outliers in each, poorer reproducibility (diverging by up to 50%). There are several interpretations to this, 
successive waves may have entrained more ‘old’ sediment as they moved inland, or alternatively, ‘old’ buried and 
un-zeroed sediment from deeper water and/or beach were sequentially cut into and entrained by later waves. In 
either scenario, zeroing of the luminescence signals during tsunami-transport was variable, from partial to good.

Across the unit 1A-6 / 1A-7 boundary, there is a step increase in apparent dose values to 10 to 13Gy, consistent 
with a temporal break. From 200cm depth in core, there is another step-increase in apparent doses to values 
fluctuating around 14.5Gy. This corroborates the hypothesis raised at sampling of a lithostratigraphic division in 
unit 1A-7 that must correspond to a change in depositional conditions.
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This stage of the investigations provided the further 
temporal (and spatial) frameworks for each of 
the investigated cores, providing insights on the 
depositional histories, and indicating the parts of the 
cores, and units, amenable for OSL dating. Subsequent 
to this, the luminescence stratigraphies were reviewed, 
dating priorities discussed with colleagues in the 
Europe’s Lost Frontiers team, and targets/sedimentary 
units identified for OSL dating.

Stage 3 – Quantitative quartz SAR OSL dating

Dating priorities differ from core to core, covering 
deposits from a range of palaeo-environments from 
mudflats, estuarine mudflats to terrestrial shorelines 
and fluvial deposits (Figure 12.2).

In regard to reporting luminescence ages in this, 
and subsequent volumes in the Europe’s Lost Frontiers 
monograph series, the data generated during all 
stages will be appended to the relevant chapter. 
The supplementary data will be reported in the 
following format: 1. luminescence stratigraphies; 2. 
representative decay and dose response curves; 2. 
equivalent dose determinations/distributions; 4. dose 
rate determinations; and 5. OSL depositional ages, with 
a commentary on geomorphological and/or palaeo-
environmental significance.

Equivalent dose determinations 

Standard mineral preparation procedures as routinely 
used in OSL dating were used to extract sand-sized 
quartz from each sample (cf. Kinnaird et al. 2017a, 2017b). 
Further technical details are provided in supplementary 
data. Variable quartz yields necessitated the need to 
explore several grain size fractions, typically 90-150 
and 150-250µm.

Equivalent doses (De) were determined by OSL using a 
single aliquot regenerative dose (SAR) OSL protocol (cf. 
Murray and Wintle 2000; Sanderson and Kinnaird 2019: 
supplementary data).

Quartz from the Europe’s Lost Frontiers cores was 
characterised by a range of responses, reflecting regional 
variations in lithofacies, mineralogy and depositional 
setting. As standard in the SAR OSL protocol, individual 
aliquots, or equivalent doses were only taken forward 
to analysis if they passed strict SAR acceptance criteria: 
a.) Sensitivities had to exceed >1000 counts per Gy; b.) 
Recuperation had to be < 10% of the natural signal (it 
was typically < 5%); c.) Recycling ratios had to be within 
10% of unity; d.) pseudo-dose recovery ratios had to be 
within 10% of unity and/or e.) aliquots had to show no 
significant IRSL response associated with anomalous 
equivalent doses.

In general - and as observed in the exploratory 
laboratory dataset - the Europe’s Lost Frontiers quartz was 
responsive to SAR OSL: approximately 70% of measured 
aliquots passed SAR acceptance criteria. Mean 
sensitivities were in the range 3400 ± 260 and 3650 ± 520 
counts Gy-1, for the 150-250µm and 90-150µm grain size 
fractions, respectively. Recuperation remained low, 6.2 
± 5.3 and 4.2 ± 2.2 %. Recycling ratios were within error 
of unity, 1.02 ± 0.02 and 1.02 ± 0.03, as were pseudo-dose 
recovery ratios, 0.99 ± 0.02 and 1.00 ± 0.03. IRSL response 
was variable, with mean responses of 17.4 ± 20.0 and 
18.4 ± 28.1%, but equivalent dose varied independently 
of IRSL response.

Unsurprisingly, equivalent dose distributions were 
variable, with depositional setting and bleaching 
potential, contributing to dispersion in De values. 
Discrete equivalent dose distributions were appraised 
for homogeneity, and, where stratigraphic associations 
are established, different combinations of merged 
datasets explored. Average values of over-dispersion 
were 30.9 ± 17.5 and 32.3 ± 20.3 % for the 150-250 and 
90-150µm fractions respectively.

Dose rate determinations

Activity concentrations of potassium, uranium and 
thorium were estimated from high-resolution gamma 
spectrometry (HRGS) measurements, conducted at the 
Environmental Radioactivity Laboratory at the School 
of Biological and Environmental Sciences, University 
of Stirling, and inductively-coupled plasma mass 
spectrometry (ICPMS), at the StAiG laboratories at the 
School of Earth and Environmental Sciences, University 
of St Andrews and at Activation Laboratories, Canada. 
For a number of cores, semi-quantitative element 
concentrations of K, U and Th as obtained by X-ray 
Fluorescence core scanning where available down-core. 
Core scanning by X-ray Fluorescence was undertaken 
at Aberystwyth University.

These data were used to determine infinite matrix 
dose rates for alpha, beta and gamma radiation, using 
the conversion factors of Guérin et al. (2011), grain-size 
attenuation factors of Mejdahl (1979) and attenuated 
for moisture content. ‘Fractional water’ values, ranged 
between approximately 8 and 40% of dried weight 
(mean, 23 ± 7%; n= 129), and ‘saturated’ values, between 
12 and 50% of dried weight (mean, 30 ± 11%).

The Doggerland samples had, in general, low activity 
with K, U and Th concentrations ranging between 
0.2 and 3.1%, 0.2 and 8.4ppm and 0.6 and 15.40ppm, 
respectively (with mean values of 1.5 ± 0.6 % K, 1.7 ± 
1.2ppm U and 5.6 ± 3.5ppm Th; n = 132). The ratio of Th:U 
ranged between 1.07 and 7.05, with a mean of 3.4 ± 0.9; 
approximately 80 % of the samples measured returned 
typical Th:U ratios, 3.2 ± 0.5 (n = 103). For the 29 samples 
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with atypical Th:U ratios, further investigations 
have been instigated to explore disequilibrium in the 
uranium decay series and determine time-dependent 
dose rates. These samples have not been taken forward 
to dating and are excluded from further discussion.

Beta dose rates from HRGS were in the range 0.9 to 
1.1mGy a-1; and from ICPMS, 0.4 to 2.5mGy a-1, with a 
mean estimate of 1.2 ± 0.5mGy a-1. Wet gamma from 
HRGS were in 0.5 to 1.0mGy a-1; and from ICPMS, 0.2 to 
1.6mGy a-1, with a mean estimate of 0.6 ± 0.3mGy a-1.

The contributions from the cosmic dose were modelled 
after Sanderson and Kinnaird (2019), by combining 
latitude and altitude specific dose rates (0.17 ± 0.01mGy 
a−1), with time-dependent corrections for water 
depth and overburden (for the period the terrestrial 
sediments accumulated). Consideration was given 
to the palaeo-environment(s) of deposition: a.) for 
sediments sampled from shallow-marine to offshore 
deposits, the depth of water above the deposit would 
have attenuated the cosmic dose contribution to a few 
percent of the total dose; b.) similarly, for the shoreline 
and nearshore deposits rapidly flooded in inundation 
(100s of years), the contribution as percent would be 
low; c.) it is only for the terrestrial deposits, that the 
cosmic dose contribution needed to be modelled.

Total environmental dose rates to the 90-150µm, HF-
etched quartz were in the range 0.7 to 3.3mGy a-1, with 
a mean estimate of 1.8 ± 0.7mGy a-1.

Age determinations

Depositional ages were calculated for discrete depths 
in each core using standard micro-dosimetric models, 

with uncertainties that combined measurement 
and fitting errors from the SAR OSL analysis, dose 
rate evaluation uncertainties, and allowance for the 
calibration uncertainties of the sources and reference 
materials.

In each core, consideration was given to:

1. the luminescence stratigraphies generated at 
sampling, and the stratigraphic progressions 
and/or temporal breaks implied

2. the sensitivity and apparent dose distributions 
determined during preliminary laboratory 
analysis

3. the equivalent dose distributions obtained 
at discrete depths, which were appraised for 
homogeneity

4. the combined distributions from across 
lithostratigraphic units, which were appraised 
for homogeneity, when the luminescence profiles 
suggested stratigraphic coherence. Different 
permutations of the assimilation of equivalent 
doses to obtain the burial dose were also 
considered, including weighted combinations 
and statistical dose models (Guérin et al. 2017)

5. the variations in radionuclide concentrations 
down core, the gradients and/or breaks in 
dosimetry, and in estimating environmental 
dose rates to the positions of the dating samples

6. depositional ages, which were calculated for 
discrete units, and when considerations 1 to 5 
suggested stratigraphic coherence, conventional 
statistical and/or Bayesian approaches used to 
assimilate depositional ages for stratigraphic 
units and/or events

To illustrate this, we return to the example of core ELF001A. The dating priorities identified in this core were: 1.) 
the top of unit 1A-7 (at 155cm depth), well-laminated fine-grained sandy silts deposited under estuarine mudflat 
conditions; 2.) the base of unit 1A-6, the ‘tsunami’ deposit (at 151cm); 3.) the base of unit 1A-4, well-laminated 
fine-grained sandy silts deposited under more open marine estuarine mudflat conditions (at 108cm).

Thirteen sub-samples from across these stratigraphic units were taken forward to dating: four of these were from 
the top of unit 1A-7 at depths in core of 155, 160, 170 and 190cm; a further four were taken through unit 1A-6 at 
depths of 136, 140, 146 and 150cm; two from unit 1A-5 at depths of 110 and 117cm; and four from unit 1A-4 at 
depths of 95, 100, 100 and 105cm.

Figure 12.6 presents the equivalent dose distributions as Abanico plots for units 1A-4, -5, -6 and -7. Given the 
evolving depositional environment from estuarine mudflat to high-energy marine, to estuarine mudflat, a range 
of responses were expected: but fortuitously, the equivalent dose distributions showed reasonable homogeneity, 
and good internal consistency. Values of overdispersion ranged between 10.3 and 37.3 %, with a mean of 20.5 ± 8.3 
%. The samples with the most pronounced heterogeneity, were those located close to lithological boundaries and / 
or transitions in palaeo-environments (i.e. top of unit 1A-7, immediately beneath tsunami deposit = 37.3 %; base of 
unit 1A-5 = 33.7%). Table 12.1 lists the apparent dose estimates (90-150µm) determined for discrete depths down-
core in ELF001A (these were calculated using a central dose model in the R package luminescence). The apparent 
dose estimates for the 90-150 and 150-250µm fractions are shown relative to each other in Figure 12.7.
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The apparent dose values correlate well with the apparent dose-depth profile obtained for ELF001A (R2 = 0.943).

Down-core variations in radionuclide concentrations for ELF001A are shown in Figure 12.8, together with the 
estimates of the environmental dose rate to the HF-etched, 90-150µm quartz fractions. Unsurprising given the 
contrasting lithologies and diverse environmental conditions, radionuclide concentrations vary with position in 
core: the highest concentrations observed in K, Th and U are from the estuarine mudflats, both at the base of unit 
4 and the top of unit 7 (> 1.5 % K, >3.5 Th ppm, > 1.7 U ppm); concentrations drop off through unit 5 of the tsunami 
deposit (from 1.3 to 0.8 % K, 5.6 to 4.3ppm Th, 1.8 to 1.2 U ppm); and are lowest in unit 6 of the same deposit (min 
0.8 % K, 2.5 Th ppm, 0.8 U ppm). K, U and Th concentrations are most variable in unit 6. Throughout, Th:U ratios 
remain typical at 3.2 ± 0.7.

Total environmental dose rates vary down core: unit 4, comprising the estuarine mudflats with open marine 
affinities, is characterised by dose rates in the range 1.5 to 2.7mGy a-1; unit 5 of the tsunami deposit by dose rates 
in the range 1.0 to 1.4mGy a-1; unit 6 of the same deposit, 1.0 to 1.5mGy a-1; and unit 7, 1.8 to 2.2mGy a-1.

Individual sediment ages range from 9.2 ±1.4 ka at the top of unit 1A-7, to between 8.3 ±1.1 ka to 7.9 ±0.5 ka within 
units 1A-5 and -6, to 7.2 ±0.5 ka immediately above (base of unit 1A-4); with statistical combinations suggesting 
depositional ages for units 1A-5 and -6 between 8.0 to 8.2 ka (Table 12.2). The combined age of 8.14 ± 0.29 ka for 
units 1A-5/-6 is consistent with the hypothesis suggested above that these are tsunami deposits related to the 
Storegga Slide. Final inundation of Doggerland in the position of this core did not occur to 7.16 ± 0.50 ka, and 
together with the multi-proxy evidence from ELF001A, this shows that the landscape temporarily recovered after 
the Storegga tsunami.

Figure 12.6 De distributions for ELF001A, 90-150µm, shown relative to the stratigraphy of the core.  
Units for ELF001A as discussed in the text.
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Discussion

As demonstrated through core ELF001A, work progressed 
successively through a three-staged approach, from 
initial screening of the core stratigraphies at sampling 
(stage 1), through calibrated characterisation of these 
stratigraphies in the laboratory (stage 2), towards 
final quartz SAR OSL dating (stage 3). Through 
OSL, a chronology and sedimentation history were 
established for early to mid-Holocene deposits in this 
core, providing a temporal framework to pin palaeo-
environmental interpretations and reconstructions.

This demonstrates the potential of OSL for dating the 
ELF core sediments. It also illustrates the added value in 
contextualising the luminescence stratigraphy across 
the entirety of the core, and how stratigraphic breaks and 
progressions aid in interpreting depositional sequences 
and histories. At the broad scale, the calibrated datasets 
show the cores, and/or parts of cores, where apparent 
doses are low, suggesting that for these units/intervals, 
the sediment is likely to return later Holocene dates. 
Larger apparent dose estimates, which in a low dose 
rate environment would correspond with substantially 
older dates, potentially record late Pleistocene ages. At 
a higher resolution, intricate fluctuations in apparent 
doses and sensitivities with depth: 1.) inform on 
sedimentation rates, 2.) suggest the chronology to the 
unconformities and hiatuses identified in the cores, 
and 3.) provide temporal (and spatial) frameworks 
to aid sedimentological and palaeoenvironmental 
interpretations. Through, a critique of this data, we are 
able to select the units and/or parts of the cores which 
hold most promise for dating, mitigating the challenges 
associated with partial bleaching, bioturbation, and 
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114/21 100 15.60 ± 1.07

114/22 100 12.74 ± 0.40

114/23 105 12.55 ± 0.72
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11.45 ± 0.32

114/25 117 10.66 ± 0.89

114/29 136
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t 6

13.34 ± 0.99

114/30 140 7.19 ± 0.31

114/31 146 7.48 ± 0.66

114/32 150 8.30 ± 0.35

114/33 155 7, EM-RM 15.14 ± 1.81

Table 12.1 Stored dose estimates for the 90-150µm quartz 
fractions from ELF001A (lab code, CERSA114).

Figure 12.7 Stored dose estimates for the 90-150µm and 
150-250µm quartz fractions. 

other depositional and environmental conditions 
(challenges 1 to 4 above).

In further justification of this approach, the apparent 
doses obtained through preliminary laboratory 
characterisation broadly correlate with the apparent 
dose estimates obtained in full quartz SAR OSL dating 
(Figure 12.9a). There is a degree of variability down-
core, and also between cores, but this is unsurprising 
given the range of lithologies sampled. 

The final phase of OSL investigations on the ELF cores 
from Doggerland is still ongoing. At the time of print, 
103 samples have been subjected to full quantitative 
quartz SAR OSL, providing temporal constraints on final 
inundation of Doggerland, and the early Holocene and 
late Pleistocene palaeo- environments and geographies 
(Figure 12.9b). This includes new constraints on 
inundation: at the position of core ELF001A, inundation 
was complete by 7.16 ± 0.50 ka; at ELF003, inundation 
is dated to between 7.93 ± 1.11 to 7.21 ± 0.98 ka, most 
probably at 7.71 ± 0.51 ka; and at ELF022, between 8.33 
± 0.91 and 7.37 ± 0.73 ka, with weighted combinations 
suggesting inundation by 7.84 ± 0.42 ka. For ELF045, 
a terminus post quem is provided by the end of tidal 
mudflat accumulation at 8.19 ± 0.96 ka.

The sediment chronologies for Doggerland extend 
back to approximately 14,000 to 15,000 years (Figure 
12.9b), providing the temporal framework to interpret 
the late post-glacial landscape. From the onset of the 
freshwater sequence in core ELF034 to 12.67 ± 0.93 ka, 
to constraining the open estuary environment in core 
ELF045 to at least 13.39 ± 0.85 ka (bottom of unit not 
encountered), and shoreline deposits at the base of 
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Unit no. Description / context from samples Age / ka

1A-4 laminated fine sands and silts; estuarine mudflats – open marine 114/21, 114/22 6.03 ±0.22

114/23 7.16 ±0.50
1A-5 grey silty fine sands, with shells; tsunami deposit 114/24, 114/25 8.22 ±0.43

1A-6 grey medium sands, v common shell fragments, small stones; 
tsunami deposit

114/29, 114/30, 114/31, 114/32 8.04 ±0.43

1A-5 and 6   114/24, 114/25, 8.14 ±0.29

114/29, 114/30, 114/31, 114/32

Figure 12.8 Dosimetry of core ELF001A: semi-quantitative and absolute down-core variations in radionuclide concentrations.

Table 12.2 Weighted combinations of OSL depositional ages for ELF001A.
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Figure 12.9 (left) Apparent vs stored dose estimates for discrete depths in core across a subset of sampled cores, encompassing 
terrestrial, littoral and marine deposits; (right) Quartz SAR OSL depositional ages shown relative to depth in core for the same 

subset of cores.

ELF003 to between 13.82 ± 1.68 ka to 10.20 ± 1.33 ka, with 
the weighted combination at 11.21 ± 1.04 ka.

OSL is also contributing to reconstructions for the 
period 14-7 ka, which is the period the sea is encroaching 
Doggerland, and palaeo-environments and geographies 
are rapidly evolving. Dating the development of 
strandlines at the Silver Pit, as preserved in core 
ELF027 between approximately 0.6 and 6.4m depth 
to 10.63 ± 0.74 ka. Providing temporal constraints for 
transgressions and regressions, such as ‘dating’ the 
transition from a littoral to more open marine, tidal 
mudflat setting at 4.3-4.4m depth in core ELF047 to 
after 9.11 +- 0.23 ka, or ‘bracketing’ the open estuarine 
environment in ELF045 to between 13.39 ± 0.85 ka to at 
least 10.97 ± 0.53 ka. OSL is also providing constraints on 

the terrestrial environments identified in core i.e. core 
ELF020, records the development of a wetland on a late-
glacial landscape. The base of the wetland sequence 
is dated to 13.02 ± 1.26 ka, near contemporaneous, 
with disturbance to the underlying till, 37cm beneath 
palaeo-surface on which wetlands developed at 13.26 ± 
1.10 ka.

Conclusions

Luminescence investigations of the Europe’s Lost Frontiers 
sedimentary cores from Dogger Bank are contributing 
to a high-resolution chronological framework for the 
terrestrial, near-shore and off-shore environments of 
Doggerland.
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