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Landing is about location, ownership, shifting land and shifting borders. The painting was conceived after talking to academics
about the space between Britain and Europe, and asking the question: ‘How do you paint a forgotten landscape?’ Landing was
made to travel and interact with different environments and can be folded up and packed away into four boxes.
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Chapter 12

Constructing sediment chronologies for Doggerland

Tim Kinnaird, Martin Bates, Rebecca Bateman and Aayush Srivastava

Introduction

Luminescence dating is an important tool for
constraining sediment ages and depositional processes
in many Quaternary environments. This chapter
provides examples of how optically stimulated
luminescence, or OSL, has been applied to late
Pleistocene to Holocene deposits recovered from core
in the southern North Sea, to establish a chronology
and define sedimentation histories. These sediment
chronologies contribute to the palaeo-environmental
reconstructions of Doggerland discussed elsewhere in
this volume. Doggerland exhibits a complex palaeo-
geography, with sediments deposited in diverse
terrestrial, littoral and marine settings (see Bates et
al. this volume), which presents some challenges to
dating these sediments. The chapter begins with a brief
consideration of the principles of luminescence dating,
followed by a discussion of its application in the context
of the North Sea. Then, the ‘challenges’ associated with
OSL are discussed with reference to Doggerland, prior to
outlining some potential solutions. Finally, the methods
and protocols used in dating Doggerland sediments are
discussed, illustrated with the example of establishing
a sediment chronology for core ELFO01A.

The luminescence dating technique exploits the
energy retained in certain minerals, typically quartz
and feldspar, which accumulate as a consequence of
naturally occurring ionising radiation in both the
sample and its environment. These signals are depleted,
or reset, when the minerals are exposed to either heat
or daylight. ‘Zeroing’ can be achieved during daylight
exposure in phases of erosion or transport. After burial,
or deposition, luminescence will grow in situ in response
to the radioactivity of the surrounding sediment and
cosmic rays. This is quantified as the equivalent dose
(abbreviated to De), which is determined by calibrating
the intensity of the OSL signal against the response to
known laboratory-administered radiation doses (in
Gray, abbreviated to Gy). To calculate an age, it is also
necessary to measure the rate of radioactivity delivered
to the sample from the surrounding sediment matrix,
and this is called the environmental dose rate. A
luminescence age is derived using the equation below:

Age (ka) = Burial dose (Gy)/Total environmental dose rate
(Gy ka)
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OSL is routinely used to date sediments in terrestrial
environments, as recently reviewed by Smedley (2018)
and Rittenour (2018). Marine sediments were first dated
by thermoluminescence in 1979 (Wintle and Huntley
1979), and using OSL techniques in 2003 (Stokes et al.
2003). Wintle and Huntley (1979; 1980) developed TL
dating procedures to date marine sediments, extracted
from deep cores in the Antarctic and North Pacific
oceans. The ages were stratigraphically coherent, but
issues including time-dependent dose rate calculations,
anomalous fading in feldspars and large uncertainties,
discouraged further applications of TL dating to marine
sediments. After a long hiatus, Stokes et al. (2003)
revisited luminescence dating of marine sediments
and applied a single aliquot, regenerative dose (SAR)
OSL technique to silt-sized quartz from cores extracted
from the Arabian Sea. The authors reported ages that
had low standard errors and showed agreements with
independent chronometric control. They used thin
source alpha spectrometry to examine the uranium
(U) and thorium (Th) decay series for time-dependent
changes in dose rate.

Since 2003, studies have applied various luminescence
dating techniques to a range of different types of coastal
and marine deposits, involving a variety of depositional
processes and environments (e.g. Armitage 2015; Jacobs
2008; Jakobsson et al. 2003; Sanderson and Kinnaird
2019; Tappin et al. 2011): establishing OSL dating as a
suitable method to determine timing of depositional
events in nearshore and offshore marine environments.
Bateman (2015) provides a comprehensive review of
luminescence dating applied in coastal and marine
contexts.

In the North Sea region, there are relatively few
comparative studies: Alappet et al. (2010) constructed
chronologies for shallow terrestrial and marine deposits
in the southern North Sea, south east of Dogger Bank.
They obtained late Weichselian and early Holocene
ages for glacio-fluvial and lacustrine sediments 2.0 to
0.5m beneath the terrestrial-to-marine transition that
attested to sedimentation in a predominantly periglacial,
fluvial environment. The authors noted significant
scatter in the equivalent dose distributions of quartz
due to heterogeneous bleaching. Further north and
west, offshore the Humber Estuary, Tappin et al. (2011)
applied a combination of OSL and radiocarbon dating
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to re-interpret the geological evolution of the area over
the last 21,000 years, from when the region was glaciated
and the Brown Bank Formation was laid down to marine
transgression. Madsen et al. (2005) showed that it is
possible to date young, fine-grained estuarine deposits
by OSL: they obtained OSL sediment ages for a length
of core through tidal mudflats in Ho Bugt, ranging from
7.0 £ 1.5 (near surface) to 305 + 16 years (at 68cm depth),
concordant with 2°Pb ages back to c. 1975. Moreover, an
average OSL age of 9 + 3 years for the surface mixing zone
showed that in this setting the OSL signal of the quartz
grains was well-zeroed at deposition.

22 of the 78 sedimentary cores recovered from the
Outer Dowsing Deep region of the southern North Sea
were investigated in the context of OSL dating and four
are referenced within this chapter (Figure 12.1). The
objectives of this chapter are, therefore, threefold:

This will be the reference to all OSL depositional ages
reported in this, and subsequent volumes, in the
Europe’s Lost Frontiers (ELF) monograph series.

‘Challenges’ to dating the sediments of Doggerland
Challenge 1: Partial bleaching of sediments

It is a clear requirement of the technique that the
sedimentary grains used as the luminescence dosimeter
are exposed to adequate light at deposition to bleach,
or zero, the luminescence signals. Where the mineral
grains are not exposed to sufficient daylight, we observe
a phenomenon known as partial bleaching, which can
contribute to significant scatter in determined De
values and hence determined ages (Duller 2008; Olley
et al. 1998). Poor ‘zeroing’ at deposition leading to large
overestimations in age.

1.  to evaluate the potential of OSL for establishing ~ The resetting of the luminescence signals during
a chronology and sedimentation history of late  transportation and deposition is a function of
Pleistocene to Holocene deposits at Dogger Bank  environmental conditions and luminescence behaviour

2. todiscussthechallengesassociatedwithOSL,with  (Figure 12.2).
reference to the submerged Doggerland palaeo-
environments; partial bleaching, mineralogical  In the littoral zone, the optimum depositional
variations with varied luminescence response,  environment is commonly considered to be coastal
stable dose rate conditions and disequilibrium  dunes, because aeolian transport (particularly,
in the uranium decay series saltation) provides a very high probability of daylight

3. to review these challenges and design a  exposure prior to burial. Whereas, in intertidal, marsh
methodology to date the submerged Doggerland ~ and lagoonal settings, exposure to daylight prior to
marine, nearshore and terrestrial deposits burial is less certain, with diminished light penetration

200000 300000 400000 500000 600000 700000
6100000

6000000

5900000

Figure 12.1 Locations of cores mentioned in text.
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Figure 12.2 For successful OSL dating, both environmental

and mineral characteristics are important: zeroing during

transport and deposition is a function of environmental
conditions and luminescence behaviour.

through the water column, and mixing of suspended
sediment with sediments deposited from singular or
episodic events (Bateman 2015).

Challenge 2: Post-depositional sediment mixing

Post-depositional mixing can be due to bioturbation or
geomorphic processes (e.g. sediment slumping). Either
phenomena could contribute to further scatter in
determined De values and determined ages. Bioturbated
sample may exhibit multi-modal De distributions, but
unlike poorly bleached sediments, these distributions
may contain De that tend to both higher and lower
apparent doses, obscuring the true burial age (Bateman
et al. 2007). In the context of Doggerland, this issue is
important as bioturbation is a ubiquitous process in
shallow marine and estuarine environments (Madsen
et al. 2010; Reed et al. 2006).

Challenge 3: Mineralogical variations

Luminescence response is variable between mineral
systems, and between minerals of the same system:
quartzes and feldspars are characterised by variable
brightness and stability of signals. This is quantified
as luminescence sensitivity - a measurement of
luminescence per unit dose. In the context of
Doggerland, this issue is important as mineral response
will vary within, and between cores, varying with
(and not restricted to) mineral provenance, erosional
and depositional histories, and post-depositional
diagenesis.
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Challenge 4: Stable dose rate conditions and
disequilibrium in uranium decay series
In routine luminescence applications, secular

equilibrium in the decay chains of U and Th through
time are assumed, as is ‘closed system’ behaviour.
In ‘closed systems’, each decay chain tends towards
radioactive equilibrium; whereas in ‘open systems’
exchange of radionuclides, by a variety of physical
and chemical processes such as dissolution, sorption
and precipitation, can lead to disequilibrium in the
decay series, more so for the decay series of uranium
(see discussion in Degering and Degering 2020). In
many terrestrial settings, it is valid to assume secular
equilibrium, and closed system behaviour; but, in
marine and near-shore settings this should be not
assumed. Surficial deep-sea sediments are known
to contain an excess of #°Th over the series parent
287 (Armitage and Pinder 2017; Jakobsson et al. 2003;
Sanderson and Kinnaird 2019), this can decay with
depth, and introduce a time dependent component into
the dose rate.

Therefore, in the context of Doggerland, in evaluating
dose rates to the full range of terrestrial, littoral and
marine deposits, anomalies in the concentrations of
uranium and/or thorium need to be identified, such
that excess activity is quantified and incorporated into
dose rate calculations. Moreover, temporal variations in
burial conditions need consideration, as the thickness
of overburden has implications for the cosmic dose,
and fluctuating moisture contents in the sediments will
attenuate the external dose.

In addition to the challenges discussed above, there
are important, practical considerations when sampling
from core materials: a.) there is potential for some
light exposure during core retrieval and storage; b.)
there is potential for barrel smearing, which could
cause additional mixing of sediments (and contributing
to further scatter in determined De values) and c.)
smaller sample quantities that are obtained from
core, compared to sampling from terrestrial sections,
necessitate more careful sample preparation and
increased counting times. Nelson et al. (2019) and
Sanderson and Kinnaird (2019) discuss these issues
in detail and provide recommendations for secure
sampling of subsurface deposits from core in terrestrial
and marine settings, respectively.

Our methodological approach

‘Solutions’ to challenges 1-3

Anumber of OSL screening methods have been developed
to provide insights into the luminescence properties of

sediment and to interpret the depositional mechanisms
and zeroing processes. These range from methodological
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developments such as standardised growth curves
(Roberts and Duller 2004), range-finder ages (Durcan
et al. 2010; Roberts et al. 2009) and laboratory profiling
(Burbidge et al. 2007; Kinnaird et al. 2017a; Kinnaird et al.
2017b) to instrumentation developments, such as the
portable OSL equipment developed at SUERC (Munyikwa
et al. 2020; Sanderson and Murphy 2010).

In this research, a combination of these approaches
was employed: at the time of sampling, luminescence
stratigraphies were generated from proxy luminescence
data generated with portable OSL equipment (Sanderson
and Kinnaird 2019: stage 1). These stratigraphies were
‘calibrated’, by subjecting sub-samples to laboratory
luminescence  screening and  characterisation
measurements, and constructing apparent dose-depth
and sensitivity-depth profiles for each core (stage 2).
Finally, targeted samples were taken forward to full
quantitative quartz SAR OSL dating (stage 3). This
approach has several advantages: first, by characterising
the ‘depositional’ sequences for the full length of the
core, sampling is better informed and more effective.
Second, by generating relative sediment ‘chronologies’
for the entirety of each core, direct comparisons of
sedimentary units down, and between, cores is possible.
This provides a means to relate discrete events (e.g.
peat inception, inundation) across cores. Moreover, the
‘chronology’ is not reliant on a small number of dates
from arbitrary selected points.

Figure 12.3 illustrates this approach. The examples
shown are:

ELFO5B, a length of core 2m long, penetrating
¢. 50cm of grey, laminated silts representing
saltmarsh, then brackish mudflats, then c. 50cm of
grey, fine sands, occasionally speckled with black
organic material, attributed to wetland deposition,
culminating in peat formation, then tidal access; at
115cm depth in core, till is encountered

ELF012, a 4m long core of structureless, mid-
brown to greyish brown medium- to fine- sands,
with common shell fragments and occasional
black mottling; there was some debate ahead of
sampling as to whether these sediments should
be attributed to the Botney Cut Formation
(Stoker et al. 2011) or if they were a modern sand
bank

ELF022, 6m of alternating medium- and fine-
sands, frequently with clay silt laminations, and
occasional shell fragments

ELF054, a length of core 3.8m long, penetrating
2.6m of grey clay silt, with phytal ostracod and
clinging foraminiferal fauna suggesting marine-
algae and/or seagrass, in a brackish lagoon, then
1.1m of silts (10cm thick) interbedded with dark
brown fibrous peats (c. 50cm thick)
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Figure 12.3a shows how breaks, or step changes, in IRSL
and OSL net signal intensities might indicate where
discontinuities, or unconformities, are present in the
core stratigraphies. This was observed when sampling
ELF005B: net signal intensities drop off through units
5B-3, -4 and -5, approaching the transition from
brackish lagoon to wetland deposition. (The inverted
signal-depth progression through 50 to 64cm tracks a
reduction in grain size through the same interval, and
an increased prevalence of wavy, sub-parallel clay-
silt laminations). Across the 5B-5/-6 transition, there
is a substantial step-change in intensities, across an
order of magnitude, which attests to this boundary
representing a considerable amount of time. The
subsequent calibrated laboratory analyses provide
some quantification to this: the break corresponds to
20Gy.

Figures 12.3b and 12.3c show how signal-depth
progressions can provide insights on rates of
sedimentation: consistent signal intensities with depth
might indicate high rates of sedimentation (Figure
12.3b), whereas, slow, steady signal-depth progression
likely represents a slow rate of sedimentation (Figure
12.3¢). The range in intensities across these progressions
provides the relative rate of sedimentation. With
ELF012, we concluded during sampling that the range
in signal intensities observed across the 6m length
of core suggested that these sands had accumulated
rapidly. Moreover, as there was no distinction between
the signal intensities at the very top of the core (i.e.
modern sands) and those at 6m depth, that these sands
are modern and represent a sand bank on the seabed.
In contrast, in ELF022, between 50 and 80cm depth in
core, there is a steady increase in signal intensities
with depth, implying a slower and more steady
sedimentation across this interval.

Finally, Figure 12.3d, illustrates how the amalgamation
of all proxy luminescence data (together with
sedimentological observations, and when available
other environmental proxies (e.g. Allaby et al. this
volume; Bates et al. this volume) provides temporal
(and spatial) frameworks to aid interpretation of the
depositional sequences and histories. It demonstrates
that: a.) the marine sands encountered through 0.00
and 0.88m depth in core are stratified, with some
chronology, which led to re-appraisal of this unit, and
the recognition that this was more than a recent sand
wave; b.) through 0.88 to 1.25m, and then 1.25 to 1.45m,
IRSL and OSL signal intensities track a reduction in
silicate content, with implications for reconstructing
dosimetry; c.) through 1.45 to 2.60m, intensities
increase with depth, which notwithstanding b.) implies
a considerable chronology across this interval on the
order of x2-5; and d.) that the till encountered at 2.85m
was reworked to a depth of 15-20cm, during deposition
of the overlying unit.
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A. Stratigraphic breaks / discontinuties
ELFO5B

B. Short chronology / rapid sedimentatic
ELFO12

C. Long chronology / slow sedimentatio
ELF022

D. Multiple palaeo-environments
cyclicity, stratigraphic progressions,
temporal breaks

ELFO51

Figure 12.3 Illustrative luminescence-
depth plots for the Doggerland cores:
illustrating, (A., ELFO5B) stratigraphic breaks
and temporal discontinuities, (B., ELF012)
rapid sedimentation and short chronology,
(C., ELF022) slow sedimentation and long
chronology, (D., ELF051) stratigraphic breaks,
stratigraphic progressions and cyclicity.



TIM KINNAIRD, MARTIN BATES, REBECCA BATEMAN AND AAYUSH SRIVASTAVA

Therefore, only samples with promise are selected for
luminescence dating, maximising the chances of success
for dating. When more challenging samples were
sampled, and partial bleaching or post-depositional
sediment mixing were identified as issues, statistical
techniques examining the degree of over-dispersion
in De and the measure of skewness and kurtosis in De
distribution were examined (Galbraith et al. 1999; Olley
etal. 1998).

Application to the Europe’s Lost Frontiers Project

Europe’s Lost Frontiers is investigating the submerged
landscape of Doggerland, reconstructing it’s
palaecenvironments  through extensive marine
survey and sediment coring (Gaffney and Fitch this
volume); with the sediment cores subjected to detailed
sedimentological, palacoenvironmental (Bates et al. this
volume), geochemical (Bensharada et al. this volume;
Finlay et al. this volume) and sedimentary ancient DNA
(Allaby et al. this volume) analysis.

OSL and radiocarbon dating (Hamilton et al. this volume)
provide the chronologies to underpin these studies.

78 cores from 60 locations have been collected, of which
40 have material of interest; 22 of these have been
sampled for OSL profiling and dating. The recovered
materials in these cores are from a range of palaeo-
environments, including marine sands, intertidal muds,
brackish lagoons, peats (from a few centimetres thick to
1.8m), lakes, rivers and palaeosols (Figure 12.2).

The methods and protocols employed in luminescence
dating, as applied in the Europe’s Lost Frontiers project, are
illustrated with reference to core ELFO01A. Core ELFO01A
is significant to palaeo-environmental reconstructions
of Doggerland, as its sedimentary sequences preserve a
proxy record of final submergence of Doggerland, and
potentially encloses materials related to the Storegga
Tsunami (Gaffney et al. 2020).

Borehole ELF001A is located at the head of a palaeo-river
system near the Outer Dowsing Deep (the Southern
River, Fitch et al. this volume: Chapter 6). Prior to
final submergence, with the majority of the landscape
already lost to sea-level rise, the surviving land would
have been low lying and close to sea level. This landscape
would have been vulnerable to catastrophic flooding
events. A key regional event during this period was
the Storegga Tsunami, which occurred in response to
a series of underwater landslides off of the Norwegian
coasts 8.15 thousand years before present. This tsunami
hit the eastern Scottish and English coastlines, and
likely reached the southern North Sea. Some workers
(Bondevik et al. 2012; Fruergaard et al. 2015; Weninger
et al. 2008) have suggested the Storegga Tsunami led
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to the final abandonment of the island by Mesolithic
communities.

Seven lithological units were identified within this
core: units 1A-1 to 1A-3, consist of sands or sandy
gravels with marine shells; units 1A-4, well-laminated
fine-grained sandy silts; unit 1A-5, a thin sequence of
silty sands with broken shell fragments; unit 1A-6, well-
laminated sands and silts, overlain by poorly sorted
sands and shell detritus; unit 1A-7, well-laminated fine-
grained sandy silts. Modern or recent mobile bottom
sands are represented by units 1A-1 to 1A-3 and have
not been sampled or considered in any detail.

Estuarine mudflat conditions are represented in the
core in units 1A-4 and 1A-7, which are interrupted by
coarse poorly sorted shelly gravel (1A-5/1A-6). The
mixture of marine and brackish material alongside
broken and fragmentary shell remains, and common
small clasts, suggests these sediment units represent a
high-energy event intruding into otherwise sheltered
mudflat environments Further multi-proxy data from
ELF001A, as reported in Gaffney et al. (2020), provided
evidence to suggest that these units were the deposits
of the Storegga Tsunami.

Methodological details
Stage 1 - Preliminary OSL screening of cores

For the subset of sedimentary cores selected for OSL
investigation, the sedimentological and geophysical
evidence were reviewed, and the key stratigraphic
intervals and depths of interest noted. Cores were
split under subdued light conditions at the University
at Warwick, with one half retained there for sedaDNA
analyses, and the other transferred to the University
of Wales Trinity Saint David, Lampeter campus, for
sedimentological and luminescence investigation. At
Lampeter, the cores were subsampled for luminescence
screening using portable OSL equipment (Munyikwa et
al. 2020).

The protocol adopted throughout the study was as
follows:

through each core, sediment was extracted at
regular 10cm intervals, with tighter resolution
sampling at stratigraphic and lithological
boundaries (and if available, prominent breaks
in the geochemical data; Figure 12.4)

these sub-samples were immediately measured
using a SUERC portable OSL reader, using an
interleaved sequence of system dark-count, IRSL
and OSL (cf. Sanderson and Kinnaird, 2019)
from this, IRSL and OSL net signal intensities and
IRSL and OSL depletion indices were calculated
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Figure 12.4 Sampling strategy for ELF cores - illustrated with core ELFO01A: (a) core, with sub-units identified; (b) core, with
sampling positions indicated; (c) removal of sediment for OSL profiling, OSL dating and dosimetry.

for all samples, and luminescence-depth profiles  counts; and excluding the more organic rich horizons in
generated for each core (Figures 12.3 and 12.5) ELF002, 005B, 034, 051, 054, from 5160 counts. Peats and
4, this, in combination with sedimentological  very-organic rich silts were not sampled for OSL. OSL
observations and the expectations of dating, signal intensities range from 1440 to 1.57 x 10° counts;
were used to position samples for quantitative  and excluding the more organic rich horizons, from
quartz OSL dating 2.29 x 10" counts. IRSL and OSL depletion indices range
5.  for the positions in the core selected for dating, ~ between 1.09 and 3.03, and 1.09 and 3.17, respectively.
larger samples were taken from between the  The dynamic range in IRSL signal intensities observed
profiling samples, and associated samples  down individual cores is at least one order of magnitude
collected for dosimetry (41% of investigated cores), and commonly more (2
orders, 36%; 3 orders, 18%; 4+ orders, 5%); similar
Using this approach, the 22 investigated cores were  dynamic ranges were observed in OSL net signal
appraised through more than a thousand samples, intensities (1 x 10, 32%; 2, 45%; 3, 18%; 4+, 5%).
which permitted the construction of high-resolution
luminescence ‘stratigraphies’. IRSL and OSL signals  Luminescence responses, therefore, vary down core,
were readily detectable in all cores, confirming that  and clearly record mineralogical, luminescence age,
phases suitable for luminescence dating were present.  sensitivity and dosimetry variations.
IRSL signal intensities range from 120 to 1.83 x 10’
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Figure 12.5 Illustrative luminescence-depth plots for ELFO01A: on the left, IRSL and OSL net signal intensities and depletion
indices; on the right, apparent dose and sensitivity distributions.

To illustrate this, we use the example of ELF001A. Figure 12.5a shows the proxy luminescence stratigraphies
relative to the lithostratigraphy of the core, through units 1A-1 to 1A-7. Observations, and inferences from these,
are tabulated in supplementary data. From 0 to 21cm depth, the sands are characterised by fluctuating OSL
signal intensities in the range 1.75 to 5.30 x 10° counts, with no stratigraphic coherence, and low depletion indices,
<1.3. Together, this data suggests that these sands are modern and mobile. The trend in fluctuating OSL signal
intensities with depth continues through 21 to 67cm, although across a greater range, 7.08 x 10° to 1.44 x 10°
counts. From 67 to 90cm depth, there is a slight signal-depth progression from 6.01 x 10° to 9.26 x 10° counts, and
depletion indices are higher than observed in unit 1A-1. The step change in OSL intensities across the unit 1A-1/
1A-2 boundary, then the signal-depth progression in unit 1A-3, all suggest that units 1A-2 and 1A-3 record some
chronology and stratigraphy is preserved.

From 90 to 109cm, unit 1A-4, there is an inverted signal-depth progression from 5.71 to 4.96 x 10° counts, and the
lowest depletion indices observed in the core aside from unit 1A-1. The step-change in OSL intensities across
the unit 1A-3 / 1A-4 boundary implies that the sediment has a difference provenance. The low depletion indices
suggest that this material is poorly bleached, and that the composite OSL signals include residuals.
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Between 109 and 151cm depth, units 1A-5 and 1A-6, the luminescence profiles are more complex: with ‘couplets’
on the scale of 4 to 5¢cm, characterised by both normal and inverted signal-depth progressions. Interestingly, in
each ‘couplet’ the lower signal intensities correlate with higher depletion indices. The ‘cyclicity’ in OSL intensities
and depletion indices is interpreted here as reflecting deposition from multiple waves: the first influx of sediment
is characterised by low OSL intensity and high depletion index; then, higher intensities and lower depletion
indices. The first wave is well-bleached and characterised by low intensities and high depletion indices, then the
subsequent waves, are only partially bleached and characterised by high intensities and low depletion indices.
It is notable that across the ‘couplets’, signal intensities vary over a similar magnitude and range, suggesting a
common provendance.

From 155 to 180cm, signal intensities drop from 1.24 x 10° to 5.78 x 10° counts, before increasing with depth through
the interval 180 to 200cm, from 5.78 x 10° to 1.16 x 10° counts, from 200cm to depth, signal intensities remain
relatively consistent at approximately 1.59 x 10° counts. This implies that unit 1A-7 should be further sub-divided
into two sub-units 1A-7a and 1A-7b and illustrates for this interval that screening at sampling can identify

crypto-stratigraphic boundaries.

Having shown that there are readily measureable
IRSL and OSL signals, and that these signals vary with
stratigraphy down core, the investigations progressed
to laboratory analysis, first to calibrated luminescence
screening and characterisation (stage 2), then to
full quartz SAR OSL dating. The ‘calibrated’ profiles
as obtained in stage 2 (below), remove some of the
ambiguity in interpreting the relative ‘luminescence
stratigraphies’, relating to bulk mineral properties
(mineralogy, grain size, sensitivity, colour etc).

Stage 2 - OSL calibration and characterisation of cores

Sample preparation and laboratory analyses were
undertaken in the luminescence laboratories of the
School of Earth and Environmental Sciences (SEES),
University of St Andrews. This stage in the methodology
is to characterise a sub-set of the profiling samples in
the laboratory, to provide a first approximation of the
magnitude and range in luminescence sensitivities
and apparent (or burial) doses. OSL measurements
were carried out using Risg TL/OSL DA-15 and DA-20
automated dating systems. Full technical details of the
SEES instruments are provided in Garcia et al. (2019).

The protocol adopted here, was as follows:

1. sub-samples from the initial luminescence
profiling were subjected to simplified mineral
separation procedures (cf. Sanderson and
Kinnaird 2019: supplementary data)

2. paired aliquots of HF-etched from each sub-
sample were subjected to a simplified SAR
OSL protocol for a preliminary assessment of
apparent dose (cf. Sanderson and Kinnaird 2019);
The readout cycle consisted of: a.) a preheat
at 220°C, held for 10s; b.) OSL at 125°C for 60s,
c.) a test-dose of 1Gy, d.) a preheat of 220°C, e.)
OSL at 125°C for 60s, f.) then, repeats of steps a.)
to e.) following regenerative doses of nominal
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doses of 10, 30, 60Gy (extended to 120Gy, when
necessary) and 0Gy. The zero dose was omitted
from the readout cycles of ELF003, 005B and
ELFO031A. A recycling dose of 10Gy was added to
the readout cycles of at least one length of core
from ELFO01A, 007, 019, 022, 027, 034, 039, 054
and 059

3. from this, the distributions in sensitivities and
apparent dose were calculated, and plotted vs
depth in core

4. these plots were used to test the assumptions
made during initial profiling and to re-appraise
the most promising targets for dating

906 of the 1104 preliminary samples were taken forward
to further laboratory analyses (this equates to 82% of
the dataset).

From this, we obtained the first indication of bulk
mineral / luminescence behaviour, which were
promising: OSL sensitivities ranged from 110 to 1.48 x 10°
counts Gy-1. 81% of aliquots returned an OSL sensitivity
>1000 counts Gy and, 91% of aliquots, a sensitivity >500
counts Gy, Recuperation was, in general, low with a
mean value of 6.7 + 11.0 % (error expressed here, and
elsewhere, as standard deviation); 66% of aliquots
returned a recuperation value <5%. Recycling ratios
were, in general, good with a mean of 1.04 + 0.35; with
82% of aliquots returning recycling ratios within + 0.1
error of unity. By substituting the 1st regenerative dose
for the natural dose in each dependent SAR curve, and
comparing this nominal normalised value to the known
given dose, pseudo-dose recovery ‘ratios’ are obtained
for each sample. The mean value for pseudo-dose
recovery was 1.07 = 0.26.

OSL apparent doses ranged from 0.1 to >100Gy; relatively
few aliquots returned apparent doses in the sub-Gy
region (<4%), and <7% returned apparent doses in excess
of 60Gy. With the exception of ELF012, the dynamic
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range in apparent doses down core is in the range of 10?
to 10%, which attests to long sediment chronologies and
moreover the preservation of stratigraphy in these cores
(which partly addresses challenge 2: post-deposition
sediment mixing). These analyses suggest the cores,
and/or parts of the cores, where apparent doses are low
and likely to return early Holocene depositional ages,
and where apparent doses are high, which in a low dose
rate environment would correspond to late Pleistocene
and earlier dates. Earlier, with reference to the
luminescence stratigraphies shown in Figure 12.3, we
suggested the parts of cores ELF012 and ELF022, where

we might expect sedimentation to be slow and gradual,
or episodic and rapid. Both these trends are reproduced
in the calibrated laboratory dataset. Across the 6m
length of core in ELF012, the progression in apparent
doses is from 4 to 5Gy; whereas for the 20cm thickness
of unit 22-4 in ELF022, apparent doses increase from 6
to 22Gy. With any estimate of environmental dose rate,
this implies that the sediments in ELF012 represent a
short chronology (and rapid deposition), whereas, a
considerable chronology (and slow sedimentation) is
represented in ELF022.

The detail in this is illustrated using the example of ELF001A. All 61 samples from this core were taken forward to
preliminary laboratory characterisation. As before, key observations, and inferences from these, are tabulated in

supplementary data.

Unit 1A-1 is characterised by variable OSL apparent doses in the range 0.7 to 1.7Gy (with one high dose outlier,
trending to in excess of 20Gy), with poor paired reproducibility between aliquots, and no stratigraphic coherence.
The sensitivity distribution is also heterogeneous, varying across two orders of magnitude.

In contrast, units 1A-2 and 1A-3 show a progression in OSL apparent doses with depth, through 21 to 90cm,
from 1.7Gy to 5.7Gy. The paired reproducibility between aliquots is good: apparent doses reproduce within error
between 30 and 55cm and 70 and 85cm. The sensitivity distribution is less heterogeneous, varying across a single
order of magnitude. This supports the hypothesis raised at sampling: unit 1A-1 is modern and mobile, units 1A-2
and 1A-3 record some chronology and stratigraphy is preserved.

Across the unit 1A-3 / 1A-4 boundary, there is a step increase in OSL apparent doses, from 5.7Gy to in excess of
10Gy. Even withstanding large variations in environmental dose rate across this boundary, this attests to a large
temporal break between these units. From 90 to 109cm, apparent dose estimates are inverted, from c. 14 to 10Gy.
The fine-grained sandy silts of unit 1A-4 are characterised by lower luminescence sensitivities than the coarser-
grained sands of units 1A-1 to 1A-3. In the original interpretation, it had been assumed that the step-change
in net signal intensities across the boundary reflected a change in provenance; but the lower signal intensities
returned from unit 1A-4 reflect in part the lower sensitivities of these sediments.

The sensitivity and apparent dose distributions for units 1A-5 and 1A-6 are complex, varying on the 5 to 10cm
scale: between 109 and 119cm, apparent dose values are consistent at c. 10Gy, with good paired reproducibility;
from 121 to 129cm, apparent doses show a normal dose-depth progression, from 9.5-10Gy to >12Gy, with poor
reproducibility between aliquots; from 136 to 146cm, some scatter is noted in apparent doses, which vary between
6 and 13Gy; from 150 to 155cm, apparent dose values are consistent at c. 8Gy. Paired reproducibility is variable:
although the lower doses in each couplet show better paired reproducibility (varying within 10%), and the higher
dose outliers in each, poorer reproducibility (diverging by up to 50%). There are several interpretations to this,
successive waves may have entrained more ‘old’ sediment as they moved inland, or alternatively, ‘old’ buried and
un-zeroed sediment from deeper water and/or beach were sequentially cut into and entrained by later waves. In
either scenario, zeroing of the luminescence signals during tsunami-transport was variable, from partial to good.

Across the unit 1A-6 / 1A-7 boundary, there is a step increase in apparent dose values to 10 to 13Gy, consistent
with a temporal break. From 200cm depth in core, there is another step-increase in apparent doses to values
fluctuating around 14.5Gy. This corroborates the hypothesis raised at sampling of a lithostratigraphic division in
unit 1A-7 that must correspond to a change in depositional conditions.
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This stage of the investigations provided the further
temporal (and spatial) frameworks for each of
the investigated cores, providing insights on the
depositional histories, and indicating the parts of the
cores, and units, amenable for OSL dating. Subsequent
to this, the luminescence stratigraphies were reviewed,
dating priorities discussed with colleagues in the
Europe’s Lost Frontiers team, and targets/sedimentary
units identified for OSL dating.

Stage 3 - Quantitative quartz SAR OSL dating

Dating priorities differ from core to core, covering
deposits from a range of palaco-environments from
mudflats, estuarine mudflats to terrestrial shorelines
and fluvial deposits (Figure 12.2).

In regard to reporting luminescence ages in this,
and subsequent volumes in the Europe’s Lost Frontiers
monograph series, the data generated during all
stages will be appended to the relevant chapter.
The supplementary data will be reported in the
following format: 1. luminescence stratigraphies; 2.
representative decay and dose response curves; 2.
equivalent dose determinations/distributions; 4. dose
rate determinations; and 5. OSL depositional ages, with
a commentary on geomorphological and/or palaeo-
environmental significance.

Equivalent dose determinations

Standard mineral preparation procedures as routinely
used in OSL dating were used to extract sand-sized
quartz from each sample (cf. Kinnaird et al. 2017a,2017b).
Further technical details are provided in supplementary
data. Variable quartz yields necessitated the need to
explore several grain size fractions, typically 90-150
and 150-250um.

Equivalent doses (De) were determined by OSL using a
single aliquot regenerative dose (SAR) OSL protocol (cf.
Murray and Wintle 2000; Sanderson and Kinnaird 2019:
supplementary data).

Quartz from the Europe’s Lost Frontiers cores was
characterised by arange of responses, reflecting regional
variations in lithofacies, mineralogy and depositional
setting. As standard in the SAR OSL protocol, individual
aliquots, or equivalent doses were only taken forward
to analysis if they passed strict SAR acceptance criteria:
a.) Sensitivities had to exceed >1000 counts per Gy; b.)
Recuperation had to be < 10% of the natural signal (it
was typically < 5%); c.) Recycling ratios had to be within
10% of unity; d.) pseudo-dose recovery ratios had to be
within 10% of unity and/or e.) aliquots had to show no
significant IRSL response associated with anomalous
equivalent doses.
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In general - and as observed in the exploratory
laboratory dataset - the Europe’s Lost Frontiers quartz was
responsive to SAR OSL; approximately 70% of measured
aliquots passed SAR acceptance criteria. Mean
sensitivities were in the range 3400 * 260 and 3650 + 520
counts Gy, for the 150-250um and 90-150pm grain size
fractions, respectively. Recuperation remained low, 6.2
+5.3 and 4.2 + 2.2 %. Recycling ratios were within error
of unity, 1.02 + 0.02 and 1.02 + 0.03, as were pseudo-dose
recovery ratios, 0.99 £ 0.02 and 1.00 £ 0.03. IRSL response
was variable, with mean responses of 17.4 + 20.0 and
18.4 + 28.1%, but equivalent dose varied independently
of IRSL response.

Unsurprisingly, equivalent dose distributions were
variable, with depositional setting and bleaching
potential, contributing to dispersion in De values.
Discrete equivalent dose distributions were appraised
for homogeneity, and, where stratigraphic associations
are established, different combinations of merged
datasets explored. Average values of over-dispersion
were 30.9 + 17.5 and 32.3 + 20.3 % for the 150-250 and
90-150um fractions respectively.

Dose rate determinations

Activity concentrations of potassium, uranium and
thorium were estimated from high-resolution gamma
spectrometry (HRGS) measurements, conducted at the
Environmental Radioactivity Laboratory at the School
of Biological and Environmental Sciences, University
of stirling, and inductively-coupled plasma mass
spectrometry (ICPMS), at the StAiG laboratories at the
School of Earth and Environmental Sciences, University
of St Andrews and at Activation Laboratories, Canada.
For a number of cores, semi-quantitative element
concentrations of K, U and Th as obtained by X-ray
Fluorescence core scanning where available down-core.
Core scanning by X-ray Fluorescence was undertaken
at Aberystwyth University.

These data were used to determine infinite matrix
dose rates for alpha, beta and gamma radiation, using
the conversion factors of Guérin et al. (2011), grain-size
attenuation factors of Mejdahl (1979) and attenuated
for moisture content. ‘Fractional water’ values, ranged
between approximately 8 and 40% of dried weight
(mean, 23 + 7%; n= 129), and ‘saturated’ values, between
12 and 50% of dried weight (mean, 30 + 11%).

The Doggerland samples had, in general, low activity
with K, U and Th concentrations ranging between
0.2 and 3.1%, 0.2 and 8.4ppm and 0.6 and 15.40ppm,
respectively (with mean values of 1.5 + 0.6 % K, 1.7 *
1.2ppm U and 5.6  3.5ppm Th; n = 132). The ratio of Th:U
ranged between 1.07 and 7.05, with a mean of 3.4 + 0.9;
approximately 80 % of the samples measured returned
typical Th:U ratios, 3.2 + 0.5 (n = 103). For the 29 samples
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with atypical Th:U ratios, further investigations
have been instigated to explore disequilibrium in the
uranium decay series and determine time-dependent
dose rates. These samples have not been taken forward
to dating and are excluded from further discussion.

Beta dose rates from HRGS were in the range 0.9 to
1.1mGy a’%; and from ICPMS, 0.4 to 2.5mGy a’, with a
mean estimate of 1.2 + 0.5mGy a’. Wet gamma from
HRGS were in 0.5 to 1.0mGy a*; and from ICPMS, 0.2 to
1.6mGy a’!, with a mean estimate of 0.6 + 0.3mGy a’..

The contributions from the cosmic dose were modelled
after Sanderson and Kinnaird (2019), by combining
latitude and altitude specific dose rates (0.17 + 0.01mGy
a'), with time-dependent corrections for water
depth and overburden (for the period the terrestrial
sediments accumulated). Consideration was given
to the palaeo-environment(s) of deposition: a.) for
sediments sampled from shallow-marine to offshore
deposits, the depth of water above the deposit would
have attenuated the cosmic dose contribution to a few
percent of the total dose; b.) similarly, for the shoreline
and nearshore deposits rapidly flooded in inundation
(100s of years), the contribution as percent would be
low; c.) it is only for the terrestrial deposits, that the
cosmic dose contribution needed to be modelled.

Total environmental dose rates to the 90-150um, HF-
etched quartz were in the range 0.7 to 3.3mGy a*!, with
a mean estimate of 1.8 + 0.7mGy a’.

Age determinations

Depositional ages were calculated for discrete depths
in each core using standard micro-dosimetric models,

with uncertainties that combined measurement
and fitting errors from the SAR OSL analysis, dose
rate evaluation uncertainties, and allowance for the
calibration uncertainties of the sources and reference
materials.

In each core, consideration was given to:

1. the luminescence stratigraphies generated at
sampling, and the stratigraphic progressions
and/or temporal breaks implied

2. the sensitivity and apparent dose distributions
determined during preliminary laboratory
analysis

3. the equivalent dose distributions obtained
at discrete depths, which were appraised for
homogeneity

4, the combined distributions from across
lithostratigraphic units, which were appraised
forhomogeneity, when the luminescence profiles
suggested stratigraphic coherence. Different
permutations of the assimilation of equivalent
doses to obtain the burial dose were also
considered, including weighted combinations
and statistical dose models (Guérin et al. 2017)

5. the variations in radionuclide concentrations
down core, the gradients and/or breaks in
dosimetry, and in estimating environmental
dose rates to the positions of the dating samples

6. depositional ages, which were calculated for
discrete units, and when considerations 1 to 5
suggested stratigraphic coherence, conventional
statistical and/or Bayesian approaches used to
assimilate depositional ages for stratigraphic
units and/or events

To illustrate this, we return to the example of core ELFO01A. The dating priorities identified in this core were: 1.)
the top of unit 1A-7 (at 155cm depth), well-laminated fine-grained sandy silts deposited under estuarine mudflat
conditions; 2.) the base of unit 1A-6, the ‘tsunami’ deposit (at 151cm); 3.) the base of unit 1A-4, well-laminated
fine-grained sandy silts deposited under more open marine estuarine mudflat conditions (at 108cm).

Thirteen sub-samples from across these stratigraphic units were taken forward to dating: four of these were from
the top of unit 1A-7 at depths in core of 155, 160, 170 and 190cm; a further four were taken through unit 1A-6 at
depths of 136, 140, 146 and 150cm; two from unit 1A-5 at depths of 110 and 117cm; and four from unit 1A-4 at

depths of 95, 100, 100 and 105cm.

Figure 12.6 presents the equivalent dose distributions as Abanico plots for units 1A-4, -5, -6 and -7. Given the
evolving depositional environment from estuarine mudflat to high-energy marine, to estuarine mudflat, a range
of responses were expected: but fortuitously, the equivalent dose distributions showed reasonable homogeneity,
and good internal consistency. Values of overdispersion ranged between 10.3 and 37.3 %, with a mean of 20.5 + 8.3
%. The samples with the most pronounced heterogeneity, were those located close to lithological boundaries and /
or transitions in palaeo-environments (i.e. top of unit 1A-7, immediately beneath tsunami deposit = 37.3 %; base of
unit 1A-5 = 33.7%). Table 12.1 lists the apparent dose estimates (90-150um) determined for discrete depths down-
core in ELF001A (these were calculated using a central dose model in the R package luminescence). The apparent
dose estimates for the 90-150 and 150-250um fractions are shown relative to each other in Figure 12.7.
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The apparent dose values correlate well with the apparent dose-depth profile obtained for ELFO01A (R? = 0.943).

Down-core variations in radionuclide concentrations for ELFO01A are shown in Figure 12.8, together with the
estimates of the environmental dose rate to the HF-etched, 90-150um quartz fractions. Unsurprising given the
contrasting lithologies and diverse environmental conditions, radionuclide concentrations vary with position in
core: the highest concentrations observed in K, Th and U are from the estuarine mudflats, both at the base of unit
4 and the top of unit 7 (> 1.5 % K, >3.5 Th ppm, > 1.7 U ppm); concentrations drop off through unit 5 of the tsunami
deposit (from 1.3 to 0.8 % K, 5.6 to 4.3ppm Th, 1.8 to 1.2 U ppm); and are lowest in unit 6 of the same deposit (min
0.8 % K, 2.5 Th ppm, 0.8 U ppm). K, U and Th concentrations are most variable in unit 6. Throughout, Th:U ratios
remain typical at 3.2 £ 0.7.

Total environmental dose rates vary down core: unit 4, comprising the estuarine mudflats with open marine
dffinities, is characterised by dose rates in the range 1.5 to 2.7mGy a’’; unit 5 of the tsunami deposit by dose rates
in the range 1.0 to 1.4mGy a’; unit 6 of the same deposit, 1.0 to 1.5mGy a’’; and unit 7, 1.8 to 2.2mGy a’’.

Individual sediment ages range from 9.2 +1.4 ka at the top of unit 1A-7, to between 8.3 1.1 ka to 7.9 #0.5 ka within
units 1A-5 and -6, to 7.2 +0.5 ka immediately above (base of unit 1A-4); with statistical combinations suggesting
depositional ages for units 1A-5 and -6 between 8.0 to 8.2 ka (Table 12.2). The combined age of 8.14 £ 0.29 ka for
units 1A-5/-6 is consistent with the hypothesis suggested above that these are tsunami deposits related to the
Storegga Slide. Final inundation of Doggerland in the position of this core did not occur to 7.16 + 0.50 ka, and
together with the multi-proxy evidence from ELF001A, this shows that the landscape temporarily recovered after
the Storegga tsunami.
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Figure 12.6 De distributions for ELF001A, 90-150um, shown relative to the stratigraphy of the core.
Units for ELFO01A as discussed in the text.
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CERSAID | Depth /cm Unit Apparent
dose / Gy
Q
114/20 95 k= 8.36 + 0.53
S 2
114/21 100 =g 15.60 £ 1.07
[O s e]
114/22 100 < g 12.74 + 0.40
=
=}
114/23 105 o) 12.55+0.72
114/24 110 11.45 £ 0.32
[Te)
114/25 117 10.66 + 0.89
114/29 136 § 13.34£0.99
=
114/30 140 it 2 | 719031
=
114/31 146 = 7.48 £ 0.66
114/32 150 8.30 +0.35
114/33 155 7, EM-RM 15.14 +1.81

Table 12.1 Stored dose estimates for the 90-150um quartz
fractions from ELF001A (lab code, CERSA114).

Discussion

Asdemonstratedthrough core ELF001A, workprogressed
successively through a three-staged approach, from
initial screening of the core stratigraphies at sampling
(stage 1), through calibrated characterisation of these
stratigraphies in the laboratory (stage 2), towards
final quartz SAR OSL dating (stage 3). Through
OSL, a chronology and sedimentation history were
established for early to mid-Holocene deposits in this
core, providing a temporal framework to pin palaeo-
environmental interpretations and reconstructions.

This demonstrates the potential of OSL for dating the
ELF core sediments. It also illustrates the added value in
contextualising the luminescence stratigraphy across
theentirety of the core,and how stratigraphicbreaksand
progressions aid in interpreting depositional sequences
and histories. At the broad scale, the calibrated datasets
show the cores, and/or parts of cores, where apparent
doses are low, suggesting that for these units/intervals,
the sediment is likely to return later Holocene dates.
Larger apparent dose estimates, which in a low dose
rate environment would correspond with substantially
older dates, potentially record late Pleistocene ages. At
a higher resolution, intricate fluctuations in apparent
doses and sensitivities with depth: 1.) inform on
sedimentation rates, 2.) suggest the chronology to the
unconformities and hiatuses identified in the cores,
and 3.) provide temporal (and spatial) frameworks
to aid sedimentological and palaeoenvironmental
interpretations. Through, a critique of this data, we are
able to select the units and/or parts of the cores which
hold most promise for dating, mitigating the challenges
associated with partial bleaching, bioturbation, and
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Figure 12.7 Stored dose estimates for the 90-150um and
150-250pum quartz fractions.

other depositional and environmental conditions
(challenges 1 to 4 above).

In further justification of this approach, the apparent
doses obtained through preliminary laboratory
characterisation broadly correlate with the apparent
dose estimates obtained in full quartz SAR OSL dating
(Figure 12.9a). There is a degree of variability down-
core, and also between cores, but this is unsurprising
given the range of lithologies sampled.

The final phase of OSL investigations on the ELF cores
from Doggerland is still ongoing. At the time of print,
103 samples have been subjected to full quantitative
quartz SAR OSL, providing temporal constraints on final
inundation of Doggerland, and the early Holocene and
late Pleistocene palaeo- environments and geographies
(Figure 12.9b). This includes new constraints on
inundation: at the position of core ELFO01A, inundation
was complete by 7.16 = 0.50 ka; at ELF003, inundation
is dated to between 7.93 + 1.11 to 7.21 + 0.98 ka, most
probably at 7.71 £ 0.51 ka; and at ELF022, between 8.33
+ 0.91 and 7.37 + 0.73 ka, with weighted combinations
suggesting inundation by 7.84 + 0.42 ka. For ELF045,
a terminus post quem is provided by the end of tidal
mudflat accumulation at 8.19 + 0.96 ka.

The sediment chronologies for Doggerland extend
back to approximately 14,000 to 15,000 years (Figure
12.9b), providing the temporal framework to interpret
the late post-glacial landscape. From the onset of the
freshwater sequence in core ELF034 to 12.67 + 0.93 ka,
to constraining the open estuary environment in core
ELF045 to at least 13.39 + 0.85 ka (bottom of unit not
encountered), and shoreline deposits at the base of
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Figure 12.8 Dosimetry of core ELFO01A: semi-quantitative and absolute down-core variations in radionuclide concentrations.

Unit no. Description / context from samples Age [ ka
1A-4 laminated fine sands and silts; estuarine mudflats - open marine |114/21, 114/22 6.03 £0.22
114/23 7.16 +0.50

1A-5  |grey silty fine sands, with shells; tsunami deposit 114/24,114/25 8.22 £0.43

1A-6 grey medium sands, v common shell fragments, small stones;|114/29,114/30, 114/31,114/32 | 8.04£0.43
tsunami deposit

1A-5and 6 114/24,114/25, 8.14 £0.29
114/29,114/30,114/31,114/32

Table 12.2 Weighted combinations of OSL depositional ages for ELFOO1A.
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Figure 12.9 (left) Apparent vs stored dose estimates for discrete depths in core across a subset of sampled cores, encompassing
terrestrial, littoral and marine deposits; (right) Quartz SAR OSL depositional ages shown relative to depth in core for the same
subset of cores.

ELF003 to between 13.82 + 1.68 ka to 10.20 + 1.33 ka, with
the weighted combination at 11.21 + 1.04 ka.

OSL is also contributing to reconstructions for the
period 14-7 ka, which is the period the seais encroaching
Doggerland, and palaeo-environments and geographies
are rapidly evolving. Dating the development of
strandlines at the Silver Pit, as preserved in core
ELF027 between approximately 0.6 and 6.4m depth
to 10.63 * 0.74 ka. Providing temporal constraints for
transgressions and regressions, such as ‘dating’ the
transition from a littoral to more open marine, tidal
mudflat setting at 4.3-4.4m depth in core ELF047 to
after 9.11 +- 0.23 ka, or ‘bracketing’ the open estuarine
environment in ELF045 to between 13.39 + 0.85 ka to at
least 10.97 + 0.53 ka. OSL is also providing constraints on
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the terrestrial environments identified in core i.e. core
ELF020, records the development of a wetland on a late-
glacial landscape. The base of the wetland sequence
is dated to 13.02 = 1.26 ka, near contemporaneous,
with disturbance to the underlying till, 37cm beneath
palaeo-surface on which wetlands developed at 13.26 +
1.10 ka.

Conclusions

Luminescence investigations of the Europe’s Lost Frontiers
sedimentary cores from Dogger Bank are contributing
to a high-resolution chronological framework for the
terrestrial, near-shore and off-shore environments of
Doggerland.
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