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Landing is about location, ownership, shifting land and shifting borders. The painting was conceived after talking to academics
about the space between Britain and Europe, and asking the question: ‘How do you paint a forgotten landscape?’ Landing was
made to travel and interact with different environments and can be folded up and packed away into four boxes.
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Chapter 3

A description of palaeolandscape features
in the southern North Sea

Simon Fitch, Vincent Gaffney, Rachel Harding, James Walker, Richard Bates,
Martin Bates and Andrew Fraser

Introduction

The northwest European continental shelf retains,
arguably, the most comprehensive record of a late
Quaternary and Holocene landscape in Europe. The
landscape was extensively populated by prehistoric
communities and may have been a core habitat during
several periods of prehistory, but was finally and rapidly
inundated during the Mesolithic as a consequence of
rising sea levels (Mithen 2003: 154-157; Walker et al.
this volume). In response to the lack of a substantive
archaeological context for the period of inundation, the
North Sea Palaeolandscape Project (NSPP) undertook
extensive mapping of the southern sector of the North
Sea in 2007 (Fitch et al. 2005; Gaffney et al. 2007). This
project derived mapping from seismic geophysical data
rather than the bathymetric mapping used by earlier
studies. As such, the results reflected the presence of
buried landscape features which were not necessarily
expressed within the current seabed surface (Fitch et
al. 2005). In 2011 funding was provided by the National
Oceanographic and Atmospheric Administration
(NOAA) to undertake research on the Dutch sector of
the North Sea, using a mega-merge dataset provided
by PGS UK Ltd. Combined, these surveys covered c.
57,000km?, located over some of the longest-lived areas
of the Mesolithic landscape. Building on this research,
the Europe’s Lost Frontiers Project study area now
includes a larger proportion of the southern North Sea,
from Northern England across to Denmark in the north
and the Dover Strait in the south. This represents an
area of over 188,000km? (Figure 3.1).

Background

Before consideringtheresultsof mappingwithinthearea
in detail, it is useful to examine some of the background
regarding the nature of the deposits associated with the
landscape. Within the Europe’s Lost Frontiers study area,
the Holocene deposits under discussion are on average
located between 40 and 80 milliseconds (ms) within the
seismic data, with the deepest incised fluvial systems
being located c. 30m below the seabed. However, it is
also important to note that there are more substantial
features associated with major fluvial systems and/
or reused glacial tunnel valleys within the data. For
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example, within Figure 3.2 a Holocene channel can
clearly be seen to cut into late Pleistocene deposits
(Dogger Bank Formation) to a local depth of 75ms. For
the purposes of this project, analysis generally did not
include features or deposits which were not directly
relevant to the project goals. For example, the Outer
Silver Pit Formation (Lower Pleistocene) may be up to
80m deep locally, whilst the Markham’s Hole Formation
achieves 150m (Cameron et al. 1992; Lumsden 1986).
For this reason, the Lost Frontier’s dataset slices are
usually derived from between 40ms to 72ms, Additional
slices, between 60ms and 72ms, were used specifically
to visualise local features with deeper incision but
were not generally applied for the purposes of broader
landscape interpretation.

Validation of this approach can be demonstrated
through the integration of 2D data within the 3D
framework and associated core data. For example, in
the north of the study area, data from the Gauss survey
(e.g. Salomonsen and Jensen 1994) was cross-correlated
with the 3D survey data. The palaeochannels visualised
in the Salomonsen and Jensen’s (1994) survey were
cored, dated and determined to be of Holocene date.
More recently work by the BRITICE project, working to
constrainthe extents of the last glaciation, has recovered
cores and materials which have also provided evidence
for the Holocene landscape (Roberts et al. 2018).
Dates of 9934 +/- 188 cal BP (SUERC-72886) obtained
by BRITICE core 176VC (Roberts et al. 2018) evidence
the emergence of the landscape during the Holocene
and the presence of channel activity within the area
of Doggerland. The information derived from recent
work is consistent with previous mapping of Holocene
formations (e.g. Cameron et al. 1992). Consequently,
there can be confidence that the derived landscape
mapping reflects data relating to the Holocene.

Broad area description of the southern North Sea

Here we will provide broad descriptions for the mapped
area of the southern North Sea (Figure 3.3). These
supplement the published data for the English sector of
the southern North Sea provided in Gaffney et al. 2007,
and, where overlaps exist, the version here represents
a revision beyond that previously published. Further
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Figure 3.1 GIS Mapping of the features recorded by the Europe’s Lost Frontiers project.
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Figure 3.2 Seismic line from ‘Gauss 159B’ survey acquired in 1990 by the RGD and BGS over the Dogger Bank. A Holocene channel
can clearly be seen to be incised into the underlying late Pleistocene deposits (Dogger Bank Formation).

detail on the areas studied by Europe’s Lost Frontiers will
be presented in later project publications.

Area 1 - Northern Sector

The landscape of the Area 1 displays the influence of the
underlying late Pleistocene deposits which create an
area of higher relief that gently descends into the lower
lying areas surrounding the Outer Silver Pit (Figure 3.1).
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On the northwest and central area of the Dogger Barnk,
the predominant trend of the early Holocene fluvial
systems is to the south/southeast (Figure 3.8, Shotton
River and A), converging on a major channel system
running east/west towards the Outer Silver Pit (Figure
3.6 and Figure 3.8, B). The north/south orientation of
the channels on the Dogger Bank is thought to be a relic
of the late Pleistocene drainage systems of the area
(Emery 2020). In the extreme north of the Dogger Bank,



SIMON FITCH ET AL.

300000 400000 500000

100000 200000
L]
6200000

6100000

6000000

As.~ ’1\.//(/1‘:

2 \*P n

5900000

5800000 [ A

5700000

600000 700000 800000 900000 1000000

o

Figure 3.3 Areas divisions of landscape features within the study area.

however, one main channel runs north (Figure 3.8, C),
and it is suggested that this may be a later feature with
a watershed being located on the top of the Dogger
Bank (Figure 3.1).

In the northeast of the Dogger Bank, the drainage
directions changes. Here the channels drain from west
to east into the Elbe palaeovalley. Running east of the
Dogger Bank and west of Denmark, the Elbe channel
was clearly a significant feature in this landscape. It has
awidth of 1.5km and 15m depth and can be seen clearly
on seismic lines that cross the region (Hjelstuen et al.
2017). Smaller channels in the area were recorded by
Andresen et al. 2019, and the wider Europe’s Lost Frontiers
data reveals these channels to be lesser tributaries
of the Elbe (Figure 3.8, D). Andresen notes that these
channels were formed during the Last Glacial Maximum
and later morphed into sub-aerial channels. A few small
channels can also be seen on the eastern side of the Elbe
palaeovalley (Figure 3.18, E). These channel fragments
flow to the west and towards the Elbe palaeovalley,
although no data currently exists that could allow a
visualisation of any junction between these channels
and the Elbe itself. The exact age of these features is
undetermined but, given the shallow nature of these
features, they are thought to be late Pleistocene to
early Holocene. As inundation progressed, these small
channels would have turned into tidal channels before
finally being submerged.
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The Holocene fluvial features on the Dogger Bank incise
the underlying late Pleistocene deposits (see Figure 3.4)
and suggest that the earlier channels were active during
the late Pleistocene or early Holocene, and post-date
glacial activity in this area. Channel activity during this
period can be divided into three main phases of activity.
The first stage is seen in the formation of relatively
linear channel features and is often associated with
the larger features in the area. These features are of
late Pleistocene age, associated with deglaciation and
represent pro-glacial channels (c. 24,000 to 23,000
BP). These indicate the first stage of channel activity
and end with the removal of meltwater as a source
following glacial retreat. This, coupled with aridity
during the period 23,000 to 17,000 BP, low temperatures
and tundra conditions, caused the channels to become
relict.

The second stage of channel activity in the area occurs,
initially, with the reuse of earlier pro-glacial channel
structures. These smaller channel systems are incised
into the topographic lows associated with pre-existing
structures (Figure 3.5). Aside from channel reactivation,
the development of new feeders and the formation of
new channel systems occurs during this period. These
channels (c. 17,000 to 10,000 BP) represent an increase
in channel activity due to rising precipitation after the
end of glaciation (Emery 2020).
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Figure 3.4 Cross section across the southern flank of the Dogger Bank. The Holocene features can be seen to incise into the
underlying late Pleistocene deposits.

The geographic location of the fluvial systems on the
topographic high of the Dogger Bank suggests they were
sub-aerially exposed for a longer period than is evident
for most of the survey area, and consequently that the
systems are better developed. Roberts et al. 2018 suggests
that the ice had retreated from this area by 23,000 BP and
despite aridity during the period, a period of ¢. 11,000
years was available for channel development before they
were inundated c. 8000 BP (Emery 2020). Most of the
channels are sinuous systems with a high stream order.
The channels on the Dogger Bank flow down south into
a major east to west flowing channel of considerable
size, located within the Oyster ground (see Figure 3.6).
A vibrocore, fortuitously taken from one of the feeder
tributaries of this system by the BRITICE project,
provided a date of (12,629 +/- 90 cal BP SUERC-72883,
Roberts et al. 2018: 195) which confirms the period of
activity for this channel.
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A third phase of channel development is evident in
the area marked ‘A’ in Figure 3.6. Although separation
of the features is difficult within the seismic data, it
is clear that these later channels directly overlie the
channels of the previous two stages. In addition, later
channels are linked to a coastline which is related to
the submergence of the landscape at around 8000 BP
(Emery 2020; Shennan and Horton 2002), and therefore
likely to have been formed as a response to the break-
up of the landscape and a change in river base levels.
Given that the channel (Figure 3.6, A) drains the top of
the Dogger Bank, later channels are therefore likely to
be associated with the final stages of the emergence
of the Dogger Bank itself (see Figure 3.8). Zones of
‘mottling’ in the seismic data are associated with the
flooding of the landscape and are thought to relate to
peat formation (Emery 2020; Hepp et al.2017). These
correspond to a different seismic response in the areas
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Figure 3.5 Example of the later Holocene reuse of pro-glacial channels. This is evidenced by smaller (black) channels cut within
the main valley and the formation of dendritic feeders on the side of the valley.
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Figure 3.6 The main drainage channels of the Dogger Bank drain south into a major channel located at the foot of the bank and
in the area of the Oyster Ground, eventually flowing to the west and into the Outer Silver Pit.

between the channels (Figure 3.7). This is indicative  area of the valley were starting to be flooded at that
of intertidal/wetland deposits associated with  time (Vink et al. 2007) and that these channel sediments
inundation in this area (Hepp et al. 2017). The deposits  relate to the brief period following deglaciation and
are therefore likely to comprise organic muds and  immediately prior to submergence. Ozmaral (2017)
silts similar to deposits in the offshore Humber area ~ demonstrates that after inundation was initiated, the
(Gearey et al. 2017; Tappin et al. 2011), and thought to  valley experienced at least three phases of sedimentary
be of a similar Holocene age to those features dated  infill due to changes in sea level. This is supported by
by the Humber REC (Fitch et al. 2011). Within the  research in the Palaeo-Ems, which fed into the Elbe
sector, the Elbe flowed through a valley that extended  Palaeovalley (Hepp et al. 2019), which also records these
across Doggerland, and is substantial enough to retain  three phases and suggests the onset of fully marine
a bathymetric expression to the present day, cutting  conditions after 9300 cal BP. This, therefore, provides
through the high ground formed by the Dogger Bank  a date at which the majority of the associated Elbe
and Danish shelf. At the extreme northeast of the  palaeovalley would have also been submerged.

sector, the mouth of the Elbe palaeovalley valley can

be seen clearly (Figure 3.8, F). Area 2 - Eastern Sector

Seismic lines acquired across this feature show  There is significant striping evident in the 3D seismic
the channel relating to the Holocene to be incised  data from the southeast of Area 2. Data quality is,
some 15m below the seabed with a channel width  however, reasonable elsewhere, and 2D seismic is
of 3km (Hjelstuen 2017). A study by Ozmaral (2017)  available to supplement the 3D data. Analysis reveals
demonstrates that the Elbe palaeovalley was almost  the area is largely a gently sloping, emergent plain,
completely devoid of pre-transgressional deposits,  cut by the Elbe palaeovalley. This landscape reflects
with the exception of sediments from a south/north  the presence of deep, late Pleistocene sediments which
trending channel network within the valley. The seismic ~ effectively mask any topographic expression from
profiles from this south/north trending channel is  geological movement, such as salt swells (Holford et al.
comparable to some of the larger channels studied by ~ 2007). A topographic high is evident near the modern
Europe’s Lost Frontiers and suggests a similar sequence.  Dutch coastline, descending towards the lower plain
Given the mouth of the Elbe palaeovalley is at a depth  of the Oyster Ground, to the south of the Dogger Bank
of ¢. 56m, which is similar to the late Pleistocene/early ~ (Figure 3.9, A). However, the dominant feature in the
Holocene sea level, it is highly likely that parts of this  area is the topographic low associated with the Elbe

<& N
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Figure 3.7 Mottling of the seismic data within the Oyster ground can clearly be seen in this image. A number of small
palaeochannels can also be seen through the mottling.

palaeovalley, which forms a significant depression in
the north-eastern quarter of Area 2 (Figure 3.9, B).

The majority of the fluvial features within the Oyster
Ground are oriented to the west, towards the Outer
Silver Pit depression and across the large and relatively
flat plain (Figure 3.10). The seismic signal generates a
‘mottled’ appearance (Figure 3.10), the origin of which
is uncertain but is thought to relate to peat formation
in wetlands prior to inundation (Hepp et al. 2017).
Several small fluvial channels can be observed within
this mottled zone (Figure 3.9, C). Although data striping
prevents detailed description of these features, they
can be seen to flow into a larger channel system which
runs along the base of the Dogger Bank. High resolution

42

2D seismic survey, undertaken as part of the BRITICE
project (Roberts et al. 2018; 190), crosses this channel
and reveals it to be incised up to 20m below the seabed
(Figure 3.11). 3D analysis of this channel was undertaken
by the authors and TNO staff (Fitch 2011; Van Heteren et
al. 2014). These revealed phases of development, which
are broadly similar to the sequence outlined by Emery
(2020: 113 and 165). Proglacial channels are formed,
then abandoned and eventually evolve dendritic
tributaries as meltwater is replaced by precipitation.
They are then transgressed as sea levels rise during the
Holocene.

Analysis further reveals the presence of a large channel
valley containing evidence for reuse by a small channel
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Figure 3.8 Area 1, early Holocene features of the Dogger Bank. The main watersheds are shown as dashed black lines, the features
in the southwest of Area 1, including the Shotton River, would have been the longest-lived structures on the Dogger Bank.

(Fitch this volume: Figure 3.5 and 3.9, E). This may
suggest such features are the product of proglacial
drainage at c. 23,000 BP, after the retreat of the ice
sheets, and then modified and reused by fluvial channels
between c. 17,000 to 9000 BP. Later modification is
indicated by the formation of tributaries and peat
deposits associated with the channels. Dates acquired
from nearby cores taken by the BRITICE project (e.g.
175VC Roberts et al. 2018) provided early Holocene
dates (c. 9900 to 9700 BP) but also reveal underlying peat
deposits of late Pleistocene age (SUERC-72885, 20,190
+/- 229 cal BP). Fortuitously, one BRITICE core, 147VC,
sampled a peat from the Oyster Ground (Figure 3.10),
near a likely tributary channel mapped by Europe’s Lost
Frontiers. This provided a C14 date of 12,629 +/-90 cal
BP (SUERC-72883) which clearly indicates the period
during which this landscape feature was emergent.

Towards the east of the Oyster ground, a slight
topographic high forms a watershed (Figure 3.9, D and
Figure 3.12). Holocene palaeochannels flowing east of
this rise can be seen in the Europe’s Lost Frontiers data.
These have been independently verified by surveys
undertaken in the German sector (Hepp et al. 2019)
and the Danish Sector (Prins et al. 2019). As the Europe’s
Lost Frontiers data extends beyond these datasets, these
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channels can be confirmed as flowing into the Elbe
palaeovalley. The Elbe remains a significant feature in
Area 2 and is represented by a major depression in the
bathymetry extending up to the modern coastline and
the modern river Elbe.

Small palaeochannels can be observed flowing into
the Elbe on both the eastern and western sides of the
valley (Hepp et al. 2019) and form a significant drainage
system within the Doggerland landscape. A study
by Papenmeier and Hass (2020), nearer the modern
shore, shows this valley to be partially filled with 16m
of sediments. In this section of the channel flooding
started around 9600 BP and continued to be tidally
dominated until ¢. 5000 BP (Papenmeir and Hass 2020).

The Elbe palaeovalley represents an additional c. 400km
of river length which, combined with the modern Elbe
would give the late Pleistocene/early Holocene river a
total length of ¢. 1500km. This is, in comparison, greater
than the modern length of the Rhine. The size of the
valley also reflects the large volumes of water flowing
through the extensive drainage system. The channel
would have possessed an extremely large catchment,
draining parts of Germany, Poland and the Czech
Republic. If the submerged section is included, then
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Figure 3.9 Map of the Eastern Sector/Area 2.

this drainage contains parts of Denmark, Netherlands
and the Dogger Hills.

Previous researchers have proposed the existence of
a palaeolake in the area of the Oyster Ground, formed
following glacial melt at approximately 18,700 BP (e.g.
Emery 2020; Hijma et al 2012; Hjelstuen 2017). This idea
originates with Hjelstuen (2017) who suggested that
the 12m deep and 3km wide incision at the northeast of
the Dogger Bank formed the outflow of such a feature.
Hjelstuen’s study, however, had no access to seismic
data from the area of the hypothesised lake or the
Oyster Ground more generally. The suggestion relies on
core data from the Ling Bank, which is many kilometres
to the north, and well away from the Oyster Ground.
Whilst Hjelstuen does acknowledged that there were
significant issues in such an interpretation, his work
remains the basis for later references to such a feature
(e.g., Emery 2020: 119 Fig 4.11).

The 3D and 2D seismic data examined through Europe’s
Lost Frontiers, along with published core data, provides
an opportunity to resolve the Oyster ground lake
issue. Whilst the data will be discussed in detail in a
forthcoming Europe’s Lost Frontiers volume, no lake
deposits were visible within the available seismic data
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in this area. It is also clear that there are considerable
drainage systems present in the Oyster Ground that
would have been able to provide drainage, and these
trend to the west and into the Outer Silver Pit. The
presence and direction of these channels strongly
suggest that the hypothesis that a lake formed in this
area, at least, is incorrect. Given that the Outer Silver
Pit drains in a different direction, west as opposed to
northern outflow proposed by Hjelstuen, it is therefore
unlikely that the Oyster ground channels, nor the Outer
Silver Pit outflow, is likely to be the source of the delta
sediments at Ling Bank identified by Hjelstuen (2017).
Indeed, given the presence of a ribbon lake between the
ice and the northern edge of Dogger Bank at c. 23,000
to 21,000 BP (Roberts et at. 2018), it is possible that
this may be the source of the Ling Bank delta material,
rather than the Oyster ground. Indeed, Hjelstuen (2017:
16) notes that seismic correlation with sediments from
the Ling Bank Delta and shallow bore holes (Hjelstuen
2017: 16) suggests that it was related to the Last Glacial
Maximum and therefore could be related to the
drainage of the lake observed by Roberts et al. (2018:
203) at c. 21,000 BP. It is important to note however that
Hjelstuen provides no absolute dating for the Ling Bank
sediments and thus the possibility of any correlation
remains tentative.
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Figure 3.10 The extent of wetland response is outlined within the red hashed area. The location of BRITICE core 147VC
is marked in orange.

Other explanations are available for these data. A
bathymetric depression (near the area marked ‘F’ on
Figure 3.8) is identified by Hjelstuen as the location of
the outflowing of a meltwater burst. However, it must
be recognised that this channel cut is the substantial
channel associated with the Elbe palaeovalley. There
may, therefore, be no need to invoke a lake outburst
to explain this depression, indeed, the seismic line
presented in the paper (Hjelstuen 2017: Figure 11a)
shows the channel to be 15m deep and 3000m wide
(Hjelstuen 2017: 14) which is consistent with nearer
shore submerged sections of Elbe itself (Papenmeier
and Hass 2020), which would not have been affected
by a meltwater outburst. It should also be noted that
these dimensions are also consistent with other major
fluvially derived features within the projects study area
that have been recorded by Europe’s Lost Frontiers.

Finally, it is also important to note that the link to
an oxygen isotope anomaly in foraminifera on the
Norwegian continental margin, which is dated to c.
18,700 cal BP, and was used by Hjelstuen (2017) to infer
the presence of a lake, only indicates the possibility of
a meltwater plume near the Norwegian continental
margin (Lekens et al. 2005). This information does not
provide evidence of direction and is not sufficient to tie
any possible plume to the Oyster ground area. Indeed,
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this plume has previously been identified as coming
from the Norwegian Ice Sheet (Lekens et al. 2005).
Consequently, there is little need to invoke a glacial
meltwater palaeolake in the Oyster ground region.

Although the data on the Ling Bank sediments would
benefit from further, detailed consideration and dating,
the presence of the channel systems in the Oyster
ground observed by Europe’s Lost Frontiers suggest that
any palaeolake in the Oyster Grounds is substantially
smaller and shallower than suggested, and thus not
visible in the data available, or more probably is absent.

Area 3: Western Sector

This area is largely characterised as a relatively
gentle plain sloping to the north and down from the
modern British coastline (Figure 3.13). The dominant
topographic feature within this area is the Outer
Silver Pit, which forms a significant depression in the
northwest of the area. The Outer Silver Pit is a distinct
east-west trending bathymetric deep and is the largest
of a series of depressions in the southern North Sea.
This feature is up to 80m deep in places and is thought
to result either from quaternary sub glacial processes
(Praeg 2003), or a catastrophic drainage event
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Figure 3.11 Interpretation of a seismic line crossing the base of the Dogger Bank area (near the area marked B in Figure 3.8) clearly shows a large channel running at the base of Dogger Bank

(shown here as the DB5 unit between 141VC and 140VC) (Roberts et al. 2018: Figure 6).
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(Wingfield 1990). This Outer Silver Pit dominates the
landscape, with channels from the Oyster Ground (Area
2) flowing into this feature.

The Outer Silver Pit was investigated by the NSPP
and thought to have been modified during the Late
Palaeolithic/Early Mesolithic by macro tidal processes
during marine inundation (Briggs et al. 2007: Figure
3.13, A). The Outer Silver Pit was eventually flooded by
the sea around 10,000 BP (Shennan et al. 2000; Sturt et al.
2013). A distinctive zone, characterised by a palimpsest
of small channels which cross an area of 5823km?, can
be seen adjacent to the Outer Silver Pit (Figure 3.13, B).
In addition, the area contains several small depressions
within which the seismic data is ‘mottled’. This mottled
signal is thought to indicate peatland/wetland and,
consequently, the area, along with the small channels,
is thought to represent an extensive wetland area close
to the edge of the Outer Silver Pit, which formed an
estuary during this period (Briggs et al. 2007; Gaffney et
al. 2007). It is assumed that this wetland environment
was continuously active from the end of the Pleistocene
until the early Holocene. Recent cores from the area,
taken by the BRITICE project (Roberts et al. 2018),
have recovered peat which dates to 9801 +/- 171 cal BP
(SUERC-72162) supporting this hypothesis.

In the centre of Area 3 (Figure 3.13, C), are a series
of large anastomosing channels flowing from the
southeast and into the Outer Silver Pit. Several of the
larger channel features have been associated with the
Botney Cut formation and dated to the late Pleistocene
to early Holocene (Cameron et al. 1992). Detailed survey
during the Humber REC over one of the smaller features
has revealed that these were active during the Holocene
(Fitch this volume; Tappin et al. 2011) although coring
failed to reach the base of the feature.

A significant outflow channel is partially visible in the
southeast corner of the Outer Silver Pit (Figure 3.13,
D). This appears to drain the Outer Silver Pit to the
south and is of a sufficient size for the channel to have
a contemporary bathymetric expression. Imaging this
feature using 3D seismic data suggests that the channel
must have been formed following a considerable
outflow, and that it extends much further south than is
visible on the bathymetry. Although no dating evidence
from this feature is currently available, the presence of
a small number of re-use channels suggests that the
feature is of pre-Holocene age. The current models for
the last glaciation suggest two possible points of origin
for this feature (Roberts et al. 2018). The first requires
an outflow from the lake in the Outer Silverpit (referred
to as ‘Dogger Lake’ by Roberts et al. 2018: Fig 17), and
which may have occurred a short time prior to 30,000
BP. Roberts et al. (2018) note that sometime between
30,000 to 25,000 BP, following an ice advance, a separate
glacial lake was moved eastwards by the ice from the
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Figure 3.13 Location of mapped features within Area 3.

area around the Outer Silver Pit to the northeast of the
Dogger Bank. This water movement may have provided
the opportunity to breach the Outer Silver Pit banks
to the south and produce a meltwater outburst that
could have, feasibly, created this feature. The second
point arises during the 22,000 to 21,000 BP ice advance.
Around 23,000 BP, a ribbon lake had formed to the north
of the Dogger Bank (Roberts et al. 2018), and it is possible
that this feature may have extended around the Dogger
Bank into the Outer Silver Pit. Ice re-advance beginning
at c. 22,000 BP may then have pushed into the area of
the ribbon lake and induced an outburst from the lake
creating this feature. Whilst it is impossible currently
to provide an accurate date for origin of the channel, its
size, position, and the evidence for later re-use suggest
that it was a significant feature within the Holocene
landscape, and that it was a route for flooding from the
south during final inundation.

Slightly to the east of the outburst channel, close to the
boarder with Area 2, is another large, deeply incised
channel system (Figure 3.13, E). This is c. 1400m wide
and appears to drain part of the Oyster Ground (Area
2). It can be seen to flow southwest in the seismic data,
before eventually meeting the large outflow channel
south from the Outer Silver Pit. At this point the channel
changes direction, re-uses the outflow channel, and
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flows south. This relationship suggests that the channel
(Figure 3.13, E) is later than the outwash feature (Figure
3.13, D), and dates from a period either post c. 30,000 BP
or c. 21,000 BP.

The presence of this channel is also indicated in a
map of the area by Emery (2020: 119 Figure 4.11), and
the feature may drain some of the European rivers
prior to the formation of the Elbe palaeovalley).
However, Emery emphasises the speculative nature
of this interpretation, and the seismic data is unable
to provide sufficient evidence of any extension to the
Elbe Palaeovalley channel to support this suggestion.
As the channel links with dendritic feeders where it
extends into Area 2, this suggests that the feature was
sub-aerially exposed during the Holocene and thus
remained a feature in the landscape throughout the
late Pleistocene/Holocene period.

The southwards trend of this large feature is paralleled
by several smaller channels (Figure 3.13, F), one of which
was recorded by Preag who suggested a Holocene date for
the feature (1997). The Europe’s Lost Frontiers 3D seismic
interpretation suggests that this channel, and those
nearby, have a well-developed, high sinuosity. The Europe’s
Lost Frontiers data also reveals additional features related
to these features, including floodplains, bars and oxbow
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Figure 3.14 Topographic depressions southeast of the Outer Silver Pit (Area 3)

lakes, which illustrate the development of this plain. Many
of the channel features recorded are comparable to those
seen in the Danish sector (Prins and Andersen 2019), and
presumably form at a similar time and environment. It is
apparent that several of the features are well preserved
and within reach of future high resolution geophysical
survey and environmental sampling.

The western part of this landscape includes a number
of large depressions, including Markham’s Hole (Figure
3.14), which are tunnel valleys and may have contained
lacustrine features during the Mesolithic. The seismic
data reveal that these features are much deeper than
the bathymetry suggests and contain deposits that can
be directly related to the late Pleistocene, Botney Cut
Formation. The late Pleistocene sediments are then directly
overlain by sediments of recent origin. The sedimentary
relationships therefore suggest that the valleys date from
the late Pleistocene. As these features would have formed
topographic features in the Holocene landscape, it is likely
that these depressions may have contained lakes during
the Early Holocene. This interpretation is supported by
the work of the British Geological Survey (Brown 1986),
who records the presence of late Weichselian to Holocene
glacio-lacustrine deposits in similar features in the British
sector.

Area 4: Southern Sector
Although it is suspected that Area 4 (Figure 3.16) has

significant information relating to the early Mesolithic
landscape, data striping and noise in the 3D seismic
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data hindered interpretation. Fortunately, new 2D
seismic data acquired during windfarm development,
and research surveys undertaken as a collaboration
between Europe’s Lost Frontiers and the Deep History
Project, provides valuable supplementary information
for the area (e.g., Messiaen et al 2020). The expansion
of windfarms within this area will also offer future
opportunities to significantly refine and improve the
mapping for this area (Peeters et al. 2019).

A brief description of the area and the results of survey
are provided here, more detail will be provided in a later
volume (Fitch et al. forthcoming). Whilst the details of
the majority of the channels observed are yet to be fully
resolved, they do tend to be smaller in scale than those
discussed in the other mapping areas of the study area.

The lack of palaeochannels within this area is striking
(Figure 3.15). The central zone within Area 4 is totally
devoid of these features (Figure 3.15, A). Those that
do exist (e.g. the Southern River, Figure 3.15, B) are
scattered toward the periphery of the area, but appear
to flow towards the central axial area between East
Anglia and the Netherlands (Figure 3.16) and seem
to terminate at or near the 40m meter bathymetric
contour. This dearth of landscape features in the central
zone is probably explained by the presence of a large
marine embayment infilling during the Mesolithic.
Isostatic models (e.g. Sturt et al. 2013), and more recent
models utilising improved core data from the region
(Ch'ng et al. forthcoming), suggest that flooding of
this area was initiated by 10,500 BP. This is supported
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Figure 3.15 Early Holocene landscape features in Area 4.

by core data from the Belgian continental shelf which
indicates marine influence in the area at 10,000 BP
and possibly earlier (De Clercq 2018). A core (VC39),
taken by the TNO in 2019 near the Brown Bank, also
provides a sea-level index point at 10,280 +/- 77.5 cal BP
(Busschers pers. comm.). This information, combined
with radiocarbon dates from the estuary of Southern
River (VC51: 8827 +/- 30 cal BP, SUERC-85716), strongly
support the existence of a marine inlet in this area
during the Mesolithic.

Of the palaeochannels that are visible, the majority are
situated on the western flank on the East Anglian shelf
(Figure 3.15, C and D). These channels are characterised
by broad, but shallow, meanders, suggestive of a
gentle water flow. The channels can be seen to widen
as they progress towards the marine inlet, indicating
the direction of flow. Mapping of these features
suggest that the heads of the channels are filled with
fine grained sediment and organic material (possibly
peats) as the channels approach the contemporary
coastline, the seismic signal suggests this material
then progresses into silts and clays. This sequence of
sediments is similar to those seen in other channels in
the southern North Sea (e.g., Missiaien et al. 2020, Fitch
et al. this volume) and a description is provided by the
East Coast Regional Environmental Characterisation
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(ECREC, Limpenny et al. 2011). A single vibrocore
acquired from one channel (Figure 3.15, C) recovered
peats dated at 10,670-10,250 cal BC (SUERC 11978) at
30.80m deep and 7530-7350 cal BC (SUERC 11975) at
30.05m deep (Limpenny et al. 2011: 131). These dates
are broadly comparable to those from near the Brown
Bank on the eastern bank of the embayment (8,716~
8,566 cal BC (SUERC 89491)), and Southern River
(ELF051 (2.84m): 7844-7606 cal BC (SUERC 85724),
ELF051 (3.78m): 11,080-10,854 cal BC (SUERC 85725)).
The termination of these palaeochannels at or near the
c. 40m meter bathymetric contour, suggests a period
of coastal stability. However, it may also be true that
subsequent flooding did not result in erosive conditions
comparable to those during the initial formation of the
central marine inlet, possibly because the widening
channel may have induced lower current speeds.

Fewer channels are observed within the available 3D
seismic data on the eastern flank of the marine inlet.
However, high resolution survey, undertaken as part
of the Deep Sea History collective, combined with data
from recent windfarm projects, has demonstrated that
there are Holocene deposits in the region, and those
channels which have been cored are sand filled, and
often have organic rich and occasionally peat layers
(Harding et al. forthcoming, Missiaen et al. 2020, Plets et
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Figure 3.16 Mapped palaeochannels in Area 2 flow towards the -40m bathymetric contour, below this line virtually no features
are mapped. This supports the hypothesis that the axial area was a marine inlet during the Holocene/Mesolithic.

al. forthcoming, Thal 2019). Aside from palaeochannels,
land surfaces are occasionally visible (Harding et al.
forthcoming: Figure 3.15, E), which are overlain by
organic layers, intertidal deposits and frequently buried
under sandbanks. These surveys have also provided
a clear, acoustically strong high amplitude signal in
the seismic data which has been identified as the top
of the Naaldwijk Formation and associated with the
marine inundation of the area. Landsurfaces associated
with the Naaldwijk Formation may provide responses
characterised by a coherent negative, flat parallel
reflection. These are often regarded as indicative of peat
layers (e.g. Plets et al. 2007). These peats are thought
to have formed as the post-glacial soils were impacted
by higher levels of salinity, sedimentary accretion and
flooding (Andrews et al. 2000). The base of the Naaldwijk
Formation is poorly resolved further east, possibly
due to a lack of signal penetration resulting from the
increasing thickness of the overlying sand banks.

Any palaeochannels that may have existed in the
central zone in the Late Palaeolithic (pre-10,000 BP)
were presumably impacted by marine erosion following
formation of a marine inlet. As the area of the inlet was
inundated and exposed to marine erosion at a relatively
early date, the chances of such features surviving is
presumably significantly lower.
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Area 2 also possesses significant surface topography
and modern (less than 4000 BP) seafloor features
including sand waves. These structures are imaged in the
bathymetry as north-south-trending peaks and troughs.
The modern sediments have an erosional contact with the
Holocene. Several modern sandbanks also directly overly
and preserve areas of Holocene landscape (e.g. the Brown
Bank Missiaen et al 2020: Figure 3.15, E). Consequently,
the modern bathymetry does not necessarily reflect
the Holocene landscape morphology in this area.
Additionally, the size of many of these sandbanks can
render the underlying Holocene landscape relatively
inaccessible to archaeological sampling. However, where
topographic or erosional conditions allow, it is possible
to recover sediment samples, as has been successfully
demonstrated near Brown Bank (Missiaen et al 2020).

An archaeological narrative of landscape
development from the Late Palaeolithic to the
Mesolithic

Having provided a general description of landscape
features identified during recent study, it is useful
to support this with a summary chronological and
archaeological overview.

At the end of the Late Palaeolithic, the northern edge
of the current Dogger Bank essentially represented
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the coastline of Doggerland (Figure 3.17). Although the
Outer Silver Pit and the embayment to the south, near
Brown Bank, had already started to flood, research by
BRITICE suggests that the coastline north of Dogger
Bank had existed from c. 21,000 BP Roberts et al. 2018).
This coastline remained a relatively stable component
of the landscape for approximately 11,000 years prior
to the start of the Mesolithic. The implications of a
relatively stable northern coastline are significant. The
coastline, with its rich and varied resources must have
been extremely important in economic and cultural
terms to the human communities in the region.

As sea levels rose there would have been impacts
affecting large areas away from this coastline. The
Outer Silver Pit would been become a significant
marine inlet, and an outlet for major drainage systems
from the Dogger Bank and East Anglia (Figure 3.17). The
other main drainage basin, associated with the Elbe
palaeovalley, would have experienced flooding with a
significant inlet forming on the north-eastern coastline
of Doggerland. Whilst these areas flooded, the Elbe
palaeovalley channel would have continued to drain
areas in the east of Doggerland, as well as Denmark
and Germany (Figure 3.17). Inundation would also have
continued in the south of Doggerland. Here, flooding
would have preceded from the area of the English
Channel (Figure 3.17) and created a relatively shallow
marine inlet between Britain and the Netherlands
(Figure 3.18). Although low lying, most of the study area
remained emergent during this time and the landscape

200000 400000

Figure 3.17 Major features, Late Palaeolithic c.

52

could have provided a diversity of environments that
would have made the area attractive for a range of
subsistence activities. The extensive river systems
would have provided excellent transport corridors for
both human and animals, as well as providing wetland
resources. Given the connectedness of the landscape,
it is reasonable to surmise that groups from what
are now the Netherlands and Britain were connected
through Doggerland (Reyneir 2000 citing Verhart pers.
comm.). Aside from connections across the land, the
boat technology of the day must have supported travel
(Pedersen et al. 1997), supporting trade and contact
between communities who lived in or visited the region
(Gaffney et al. 2009). A number of cultural indicators
are suggestive of such links. These include the rare
antler head dresses, found at Bedburg-Konigshoven
in Germany (Street 1989), through the Low Countries
(Verhart 2008) and as far north as Star Carr (Clark 1972;
Conneller 2004). Such linkages may suggest a ‘northern
technocomplex’ centred on the great plains of the
North Sea (David 2006: 139).

Between 10,000 BP and 8500 BP sea-level rise continued
and large tracts of the landscape of central Doggerland
must have been inundated, initially through the three
main inlets in the landscape (Figure 3.18). The area
around the Outer Silver Pit was submerged, allowing the
inundation of large parts of the centre of Doggerland
including the relatively low-lying area of the Oyster
Ground.
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1000000

11,500 BP.
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Figure 3.18 Coastlines of early Mesolithic Doggerland c. 10,000 BP.
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Figure 3.19 Coastlines of Mesolithic Doggerland c. 8500 BP.
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Figure 3.20 Coastlines of the earliest Neolithic c. 7000 BP.

It is during this period that the Dogger Bank became
an island (Figure 3.19). Its links to the east was cut
as waters flooded the Elbe palaeovalley. Additionally,
with the coastline retreating from the south and into
the central part of Doggerland, the terrestrial linkage
between Britain and Europe would have rapidly reduced
to a strip and was eventually breached. These relatively
rapid changes presumably had an impact on the
Mesolithic communities inhabiting the new coastlines.
Not all change was bad. New coastlines may would have
provided access to marine resources and enhanced the
subsistence base for coastal communities, who may have
also taken advantage of the new marine inlets for travel.

As the landscape fragmented and terrestrial
interconnectivity reduced (Figures 3.18 and 3.19),
it is possible that the groups living in this area may
have found maintaining traditional links increasingly
difficult. It is possible that connections were severed
even before the inundation of the final land linkages.

By about 7000 BP, the emergent landscape of
Doggerland was largely lost to the sea (Figure 3.20).
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During this period, Britain and Europe were separated
by a considerable body of water and the Dogger Island
would have been flooded. However, areas of landscape
would still have existed as extensions of East Anglian
and the European coastlines at the end of the Mesolithic
and into the Neolithic (Figure 3.20). Continuing sea-
level rise and loss of landscape would have remained
noticeable to contemporary communities and was
likely to have influenced the cultural development of
these regions.

Conclusions

Europe’s Lost Frontiers and its preceding projects have
enabled a significant advance in our understanding
of the emergent landscape of the southern North
Sea and provided first pass mapping of an area of
prehistoric landscape of c¢. 188,000km? The full
archaeological implications of this work will be
explored in later project volumes but will also act
as a springboard for future researchers studying
climate, sea-level history, palaeogeography, geology
as well as archaeology.
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