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Landing by Ava Grauls (Duncan of Jordanstone College of Art & Design).
Oil and watercolour on Japanese shōji (障子) paper. 413 x 244cm

Landing is about location, ownership, shifting land and shifting borders. The painting was conceived after talking to academics 
about the space between Britain and Europe, and asking the question: ‘How do you paint a forgotten landscape?’ Landing was 

made to travel and interact with different environments and can be folded up and packed away into four boxes.
Ava Grauls 11/08/2021
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Chapter 3

A description of palaeolandscape features  
in the southern North Sea

Simon Fitch, Vincent Gaffney, Rachel Harding, James Walker, Richard Bates,  
Martin Bates and Andrew Fraser

Introduction

The northwest European continental shelf retains, 
arguably, the most comprehensive record of a late 
Quaternary and Holocene landscape in Europe. The 
landscape was extensively populated by prehistoric 
communities and may have been a core habitat during 
several periods of prehistory, but was finally and rapidly 
inundated during the Mesolithic as a consequence of 
rising sea levels (Mithen 2003: 154-157; Walker et al. 
this volume). In response to the lack of a substantive 
archaeological context for the period of inundation, the 
North Sea Palaeolandscape Project (NSPP) undertook 
extensive mapping of the southern sector of the North 
Sea in 2007 (Fitch et al. 2005; Gaffney et al. 2007). This 
project derived mapping from seismic geophysical data 
rather than the bathymetric mapping used by earlier 
studies. As such, the results reflected the presence of 
buried landscape features which were not necessarily 
expressed within the current seabed surface (Fitch et 
al. 2005). In 2011 funding was provided by the National 
Oceanographic and Atmospheric Administration 
(NOAA) to undertake research on the Dutch sector of 
the North Sea, using a mega-merge dataset provided 
by PGS UK Ltd. Combined, these surveys covered c. 
57,000km2, located over some of the longest-lived areas 
of the Mesolithic landscape. Building on this research, 
the Europe’s Lost Frontiers Project study area now 
includes a larger proportion of the southern North Sea, 
from Northern England across to Denmark in the north 
and the Dover Strait in the south. This represents an 
area of over 188,000km2 (Figure 3.1).

Background

Before considering the results of mapping within the area 
in detail, it is useful to examine some of the background 
regarding the nature of the deposits associated with the 
landscape. Within the Europe’s Lost Frontiers study area, 
the Holocene deposits under discussion are on average 
located between 40 and 80 milliseconds (ms) within the 
seismic data, with the deepest incised fluvial systems 
being located c. 30m below the seabed. However, it is 
also important to note that there are more substantial 
features associated with major fluvial systems and/
or reused glacial tunnel valleys within the data. For 

example, within Figure 3.2 a Holocene channel can 
clearly be seen to cut into late Pleistocene deposits 
(Dogger Bank Formation) to a local depth of 75ms. For 
the purposes of this project, analysis generally did not 
include features or deposits which were not directly 
relevant to the project goals. For example, the Outer 
Silver Pit Formation (Lower Pleistocene) may be up to 
80m deep locally, whilst the Markham’s Hole Formation 
achieves 150m (Cameron et al. 1992; Lumsden 1986). 
For this reason, the Lost Frontier’s dataset slices are 
usually derived from between 40ms to 72ms. Additional 
slices, between 60ms and 72ms, were used specifically 
to visualise local features with deeper incision but 
were not generally applied for the purposes of broader 
landscape interpretation.

Validation of this approach can be demonstrated 
through the integration of 2D data within the 3D 
framework and associated core data. For example, in 
the north of the study area, data from the Gauss survey 
(e.g. Salomonsen and Jensen 1994) was cross-correlated 
with the 3D survey data. The palaeochannels visualised 
in the Salomonsen and Jensen’s (1994) survey were 
cored, dated and determined to be of Holocene date. 
More recently work by the BRITICE project, working to 
constrain the extents of the last glaciation, has recovered 
cores and materials which have also provided evidence 
for the Holocene landscape (Roberts et al. 2018). 
Dates of 9934 +/- 188 cal BP (SUERC-72886) obtained 
by BRITICE core 176VC (Roberts et al. 2018) evidence 
the emergence of the landscape during the Holocene 
and the presence of channel activity within the area 
of Doggerland. The information derived from recent 
work is consistent with previous mapping of Holocene 
formations (e.g. Cameron et al. 1992). Consequently, 
there can be confidence that the derived landscape   
mapping reflects data relating to the Holocene.

Broad area description of the southern North Sea

Here we will provide broad descriptions for the mapped 
area of the southern North Sea (Figure 3.3). These 
supplement the published data for the English sector of 
the southern North Sea provided in Gaffney et al. 2007, 
and, where overlaps exist, the version here represents 
a revision beyond that previously published. Further 
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Figure 3.1 GIS Mapping of the features recorded by the Europe’s Lost Frontiers project.
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Figure 3.2 Seismic line from ‘Gauss 159B’ survey acquired in 1990 by the RGD and BGS over the Dogger Bank. A Holocene channel 
can clearly be seen to be incised into the underlying late Pleistocene deposits (Dogger Bank Formation).

detail on the areas studied by Europe’s Lost Frontiers will 
be presented in later project publications.

Area 1 – Northern Sector

The landscape of the Area 1 displays the influence of the 
underlying late Pleistocene deposits which create an 
area of higher relief that gently descends into the lower 
lying areas surrounding the Outer Silver Pit (Figure 3.1). 

On the northwest and central area of the Dogger Bank, 
the predominant trend of the early Holocene fluvial 
systems is to the south/southeast (Figure 3.8, Shotton 
River and A), converging on a major channel system 
running east/west towards the Outer Silver Pit (Figure 
3.6 and Figure 3.8, B). The north/south orientation of 
the channels on the Dogger Bank is thought to be a relic 
of the late Pleistocene drainage systems of the area 
(Emery 2020). In the extreme north of the Dogger Bank, 
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Figure 3.3 Areas divisions of landscape features within the study area.

however, one main channel runs north (Figure 3.8, C), 
and it is suggested that this may be a later feature with 
a watershed being located on the top of the Dogger 
Bank (Figure 3.1).

In the northeast of the Dogger Bank, the drainage 
directions changes. Here the channels drain from west 
to east into the Elbe palaeovalley. Running east of the 
Dogger Bank and west of Denmark, the Elbe channel 
was clearly a significant feature in this landscape. It has 
a width of 1.5km and 15m depth and can be seen clearly 
on seismic lines that cross the region (Hjelstuen et al. 
2017). Smaller channels in the area were recorded by 
Andresen et al. 2019, and the wider Europe’s Lost Frontiers 
data reveals these channels to be lesser tributaries 
of the Elbe (Figure 3.8, D). Andresen notes that these 
channels were formed during the Last Glacial Maximum 
and later morphed into sub-aerial channels. A few small 
channels can also be seen on the eastern side of the Elbe 
palaeovalley (Figure 3.18, E). These channel fragments 
flow to the west and towards the Elbe palaeovalley, 
although no data currently exists that could allow a 
visualisation of any junction between these channels 
and the Elbe itself. The exact age of these features is 
undetermined but, given the shallow nature of these 
features, they are thought to be late Pleistocene to 
early Holocene. As inundation progressed, these small 
channels would have turned into tidal channels before 
finally being submerged.

The Holocene fluvial features on the Dogger Bank incise 
the underlying late Pleistocene deposits (see Figure 3.4) 
and suggest that the earlier channels were active during 
the late Pleistocene or early Holocene, and post-date 
glacial activity in this area. Channel activity during this 
period can be divided into three main phases of activity. 
The first stage is seen in the formation of relatively 
linear channel features and is often associated with 
the larger features in the area. These features are of 
late Pleistocene age, associated with deglaciation and 
represent pro-glacial channels (c. 24,000 to 23,000 
BP). These indicate the first stage of channel activity 
and end with the removal of meltwater as a source 
following glacial retreat. This, coupled with aridity 
during the period 23,000 to 17,000 BP, low temperatures 
and tundra conditions, caused the channels to become 
relict.

The second stage of channel activity in the area occurs, 
initially, with the reuse of earlier pro-glacial channel 
structures. These smaller channel systems are incised 
into the topographic lows associated with pre-existing 
structures (Figure 3.5). Aside from channel reactivation, 
the development of new feeders and the formation of 
new channel systems occurs during this period. These 
channels (c. 17,000 to 10,000 BP) represent an increase 
in channel activity due to rising precipitation after the 
end of glaciation (Emery 2020).
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Figure 3.4 Cross section across the southern flank of the Dogger Bank. The Holocene features can be seen to incise into the 
underlying late Pleistocene deposits.

The geographic location of the fluvial systems on the 
topographic high of the Dogger Bank suggests they were 
sub-aerially exposed for a longer period than is evident 
for most of the survey area, and consequently that the 
systems are better developed. Roberts et al. 2018 suggests 
that the ice had retreated from this area by 23,000 BP and 
despite aridity during the period, a period of c. 11,000 
years was available for channel development before they 
were inundated c. 8000 BP (Emery 2020). Most of the 
channels are sinuous systems with a high stream order. 
The channels on the Dogger Bank flow down south into 
a major east to west flowing channel of considerable 
size, located within the Oyster ground (see Figure 3.6). 
A vibrocore, fortuitously taken from one of the feeder 
tributaries of this system by the BRITICE project, 
provided a date of (12,629 +/- 90 cal BP SUERC-72883, 
Roberts et al. 2018: 195) which confirms the period of 
activity for this channel.

A third phase of channel development is evident in 
the area marked ‘A’ in Figure 3.6. Although separation 
of the features is difficult within the seismic data, it 
is clear that these later channels directly overlie the 
channels of the previous two stages. In addition, later 
channels are linked to a coastline which is related to 
the submergence of the landscape at around 8000 BP 
(Emery 2020; Shennan and Horton 2002), and therefore 
likely to have been formed as a response to the break-
up of the landscape and a change in river base levels. 
Given that the channel (Figure 3.6, A) drains the top of 
the Dogger Bank, later channels are therefore likely to 
be associated with the final stages of the emergence 
of the Dogger Bank itself (see Figure 3.8). Zones of 
‘mottling’ in the seismic data are associated with the 
flooding of the landscape and are thought to relate to 
peat formation (Emery 2020; Hepp et al.2017). These 
correspond to a different seismic response in the areas 
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Figure 3.5 Example of the later Holocene reuse of pro-glacial channels. This is evidenced by smaller (black) channels cut within 
the main valley and the formation of dendritic feeders on the side of the valley.
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between the channels (Figure 3.7). This is indicative 
of intertidal/wetland deposits associated with 
inundation in this area (Hepp et al. 2017). The deposits 
are therefore likely to comprise organic muds and 
silts similar to deposits in the offshore Humber area 
(Gearey et al. 2017; Tappin et al. 2011), and thought to 
be of a similar Holocene age to those features dated 
by the Humber REC (Fitch et al. 2011). Within the 
sector, the Elbe flowed through a valley that extended 
across Doggerland, and is substantial enough to retain 
a bathymetric expression to the present day, cutting 
through the high ground formed by the Dogger Bank 
and Danish shelf. At the extreme northeast of the 
sector, the mouth of the Elbe palaeovalley valley can 
be seen clearly (Figure 3.8, F).

Seismic lines acquired across this feature show 
the channel relating to the Holocene to be incised 
some 15m below the seabed with a channel width 
of 3km (Hjelstuen 2017). A study by Özmaral (2017) 
demonstrates that the Elbe palaeovalley was almost 
completely devoid of pre-transgressional deposits, 
with the exception of sediments from a south/north 
trending channel network within the valley. The seismic 
profiles from this south/north trending channel is 
comparable to some of the larger channels studied by 
Europe’s Lost Frontiers and suggests a similar sequence. 
Given the mouth of the Elbe palaeovalley is at a depth 
of c. 56m, which is similar to the late Pleistocene/early 
Holocene sea level, it is highly likely that parts of this 

area of the valley were starting to be flooded at that 
time (Vink et al. 2007) and that these channel sediments 
relate to the brief period following deglaciation and 
immediately prior to submergence. Özmaral (2017) 
demonstrates that after inundation was initiated, the 
valley experienced at least three phases of sedimentary 
infill due to changes in sea level. This is supported by 
research in the Palaeo-Ems, which fed into the Elbe 
Palaeovalley (Hepp et al. 2019), which also records these 
three phases and suggests the onset of fully marine 
conditions after 9300 cal BP. This, therefore, provides 
a date at which the majority of the associated Elbe 
palaeovalley would have also been submerged.

Area 2 – Eastern Sector

There is significant striping evident in the 3D seismic 
data from the southeast of Area 2. Data quality is, 
however, reasonable elsewhere, and 2D seismic is 
available to supplement the 3D data. Analysis reveals 
the area is largely a gently sloping, emergent plain, 
cut by the Elbe palaeovalley. This landscape reflects 
the presence of deep, late Pleistocene sediments which 
effectively mask any topographic expression from 
geological movement, such as salt swells (Holford et al. 
2007). A topographic high is evident near the modern 
Dutch coastline, descending towards the lower plain 
of the Oyster Ground, to the south of the Dogger Bank 
(Figure 3.9, A). However, the dominant feature in the 
area is the topographic low associated with the Elbe 

1
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0 30km

Main channel at the base
of the Dogger Bank, flowing

in a westerly direction.
Channel 

draining the 
Dogger Bank

3

Figure 3.6 The main drainage channels of the Dogger Bank drain south into a major channel located at the foot of the bank and 
in the area of the Oyster Ground, eventually flowing to the west and into the Outer Silver Pit.
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palaeovalley, which forms a significant depression in 
the north-eastern quarter of Area 2 (Figure 3.9, B).

The majority of the fluvial features within the Oyster 
Ground are oriented to the west, towards the Outer 
Silver Pit depression and across the large and relatively 
flat plain (Figure 3.10). The seismic signal generates a 
‘mottled’ appearance (Figure 3.10), the origin of which 
is uncertain but is thought to relate to peat formation 
in wetlands prior to inundation (Hepp et al. 2017). 
Several small fluvial channels can be observed within 
this mottled zone (Figure 3.9, C). Although data striping 
prevents detailed description of these features, they 
can be seen to flow into a larger channel system which 
runs along the base of the Dogger Bank. High resolution 

2D seismic survey, undertaken as part of the BRITICE 
project (Roberts et al. 2018; 190), crosses this channel 
and reveals it to be incised up to 20m below the seabed 
(Figure 3.11). 3D analysis of this channel was undertaken 
by the authors and TNO staff (Fitch 2011; Van Heteren et 
al. 2014). These revealed phases of development, which 
are broadly similar to the sequence outlined by Emery 
(2020: 113 and 165). Proglacial channels are formed, 
then abandoned and eventually evolve dendritic 
tributaries as meltwater is replaced by precipitation. 
They are then transgressed as sea levels rise during the 
Holocene.

Analysis further reveals the presence of a large channel 
valley containing evidence for reuse by a small channel 

0 5km

Figure 3.7 Mottling of the seismic data within the Oyster ground can clearly be seen in this image. A number of small 
palaeochannels can also be seen through the mottling.
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Figure 3.8 Area 1, early Holocene features of the Dogger Bank. The main watersheds are shown as dashed black lines, the features 
in the southwest of Area 1, including the Shotton River, would have been the longest-lived structures on the Dogger Bank.

(Fitch this volume: Figure 3.5 and 3.9, E). This may 
suggest such features are the product of proglacial 
drainage at c. 23,000 BP, after the retreat of the ice 
sheets, and then modified and reused by fluvial channels 
between c. 17,000 to 9000 BP. Later modification is 
indicated by the formation of tributaries and peat 
deposits associated with the channels. Dates acquired 
from nearby cores taken by the BRITICE project (e.g. 
175VC Roberts et al. 2018) provided early Holocene 
dates (c. 9900 to 9700 BP) but also reveal underlying peat 
deposits of late Pleistocene age (SUERC-72885, 20,190 
+/- 229 cal BP). Fortuitously, one BRITICE core, 147VC, 
sampled a peat from the Oyster Ground (Figure 3.10), 
near a likely tributary channel mapped by Europe’s Lost 
Frontiers. This provided a C14 date of 12,629 +/-90 cal 
BP (SUERC-72883) which clearly indicates the period 
during which this landscape feature was emergent.

Towards the east of the Oyster ground, a slight 
topographic high forms a watershed (Figure 3.9, D and 
Figure 3.12). Holocene palaeochannels flowing east of 
this rise can be seen in the Europe’s Lost Frontiers data. 
These have been independently verified by surveys 
undertaken in the German sector (Hepp et al. 2019) 
and the Danish Sector (Prins et al. 2019). As the Europe’s 
Lost Frontiers data extends beyond these datasets, these 

channels can be confirmed as flowing into the Elbe 
palaeovalley. The Elbe remains a significant feature in 
Area 2 and is represented by a major depression in the 
bathymetry extending up to the modern coastline and 
the modern river Elbe.

Small palaeochannels can be observed flowing into 
the Elbe on both the eastern and western sides of the 
valley (Hepp et al. 2019) and form a significant drainage 
system within the Doggerland landscape. A study 
by Papenmeier and Hass (2020), nearer the modern 
shore, shows this valley to be partially filled with 16m 
of sediments. In this section of the channel flooding 
started around 9600 BP and continued to be tidally 
dominated until c. 5000 BP (Papenmeir and Hass 2020).

The Elbe palaeovalley represents an additional c. 400km 
of river length which, combined with the modern Elbe 
would give the late Pleistocene/early Holocene river a 
total length of c. 1500km. This is, in comparison, greater 
than the modern length of the Rhine. The size of the 
valley also reflects the large volumes of water flowing 
through the extensive drainage system. The channel 
would have possessed an extremely large catchment, 
draining parts of Germany, Poland and the Czech 
Republic. If the submerged section is included, then 
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this drainage contains parts of Denmark, Netherlands 
and the Dogger Hills.

Previous researchers have proposed the existence of 
a palaeolake in the area of the Oyster Ground, formed 
following glacial melt at approximately 18,700 BP (e.g. 
Emery 2020; Hijma et al 2012; Hjelstuen 2017). This idea 
originates with Hjelstuen (2017) who suggested that 
the 12m deep and 3km wide incision at the northeast of 
the Dogger Bank formed the outflow of such a feature. 
Hjelstuen’s study, however, had no access to seismic 
data  from the area of the hypothesised lake or the 
Oyster Ground more generally. The suggestion relies on 
core data from the Ling Bank, which is many kilometres 
to the north, and well away from the Oyster Ground. 
Whilst Hjelstuen does acknowledged that there were 
significant issues in such an interpretation, his work 
remains the basis for later references to such a feature 
(e.g., Emery 2020: 119 Fig 4.11).

The 3D and 2D seismic data examined through Europe’s 
Lost Frontiers, along with published core data, provides 
an opportunity to resolve the Oyster ground lake 
issue. Whilst the data will be discussed in detail in a 
forthcoming Europe’s Lost Frontiers volume, no lake 
deposits were visible within the available seismic data 

in this area. It is also clear that there are considerable 
drainage systems present in the Oyster Ground that 
would have been able to provide drainage, and these 
trend to the west and into the Outer Silver Pit. The 
presence and direction of these channels strongly 
suggest that the hypothesis that a lake formed in this 
area, at least, is incorrect. Given that the Outer Silver 
Pit drains in a different direction, west as opposed to 
northern outflow proposed by Hjelstuen, it is therefore 
unlikely that the Oyster ground channels, nor the Outer 
Silver Pit outflow, is likely to be the source of the delta 
sediments at Ling Bank identified by Hjelstuen (2017). 
Indeed, given the presence of a ribbon lake between the 
ice and the northern edge of Dogger Bank at c. 23,000 
to 21,000 BP (Roberts et at. 2018), it is possible that 
this may be the source of the Ling Bank delta material, 
rather than the Oyster ground. Indeed, Hjelstuen (2017: 
16) notes that seismic correlation with sediments from 
the Ling Bank Delta and shallow bore holes (Hjelstuen 
2017: 16) suggests that it was related to the Last Glacial 
Maximum and therefore could be related to the 
drainage of the lake observed by Roberts et al. (2018: 
203) at c. 21,000 BP. It is important to note however that 
Hjelstuen provides no absolute dating for the Ling Bank 
sediments and thus the possibility of any correlation 
remains tentative.
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Figure 3.9 Map of the Eastern Sector/Area 2.
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Other explanations are available for these data. A 
bathymetric depression (near the area marked ‘F’ on 
Figure 3.8) is identified by Hjelstuen as the location of 
the outflowing of a meltwater burst. However, it must 
be recognised that this channel cut is the substantial 
channel associated with the Elbe palaeovalley. There 
may, therefore, be no need to invoke a lake outburst 
to explain this depression, indeed, the seismic line 
presented in the paper (Hjelstuen 2017: Figure 11a) 
shows the channel to be 15m deep and 3000m wide 
(Hjelstuen 2017: 14) which is consistent with nearer 
shore submerged sections of Elbe itself (Papenmeier 
and Hass 2020), which would not have been affected 
by a meltwater outburst. It should also be noted that 
these dimensions are also consistent with other major 
fluvially derived features within the projects study area 
that have been recorded by Europe’s Lost Frontiers.

Finally, it is also important to note that the link to 
an oxygen isotope anomaly in foraminifera on the 
Norwegian continental margin, which is dated to c. 
18,700 cal BP, and was used by Hjelstuen (2017) to infer 
the presence of a lake, only indicates the possibility of 
a meltwater plume near the Norwegian continental 
margin (Lekens et al. 2005). This information does not 
provide evidence of direction and is not sufficient to tie 
any possible plume to the Oyster ground area. Indeed, 

this plume has previously been identified as coming 
from the Norwegian Ice Sheet (Lekens et al. 2005). 
Consequently, there is little need to invoke a glacial 
meltwater palaeolake in the Oyster ground region.

Although the data on the Ling Bank sediments would 
benefit from further, detailed consideration and dating, 
the presence of the channel systems in the Oyster 
ground observed by Europe’s Lost Frontiers suggest that 
any palaeolake in the Oyster Grounds is substantially 
smaller and shallower than suggested, and thus not 
visible in the data available, or more probably is absent.

Area 3: Western Sector

This area is largely characterised as a relatively 
gentle plain sloping to the north and down from the 
modern British coastline (Figure 3.13). The dominant 
topographic feature within this area is the Outer 
Silver Pit, which forms a significant depression in the 
northwest of the area. The Outer Silver Pit is a distinct 
east-west trending bathymetric deep and is the largest 
of a series of depressions in the southern North Sea. 
This feature is up to 80m deep in places and is thought 
to result either from quaternary sub glacial processes 
(Praeg 2003), or a catastrophic drainage event 

Figure 3.10 The extent of wetland response is outlined within the red hashed area. The location of BRITICE core 147VC  
is marked in orange.
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(Wingfield 1990). This Outer Silver Pit dominates the 
landscape, with channels from the Oyster Ground (Area 
2) flowing into this feature.

The Outer Silver Pit was investigated by the NSPP 
and thought to have been modified during the Late 
Palaeolithic/Early Mesolithic by macro tidal processes 
during marine inundation (Briggs et al. 2007: Figure 
3.13, A). The Outer Silver Pit was eventually flooded by 
the sea around 10,000 BP (Shennan et al. 2000; Sturt et al. 
2013). A distinctive zone, characterised by a palimpsest 
of small channels which cross an area of 5823km2, can 
be seen adjacent to the Outer Silver Pit (Figure 3.13, B). 
In addition, the area contains several small depressions 
within which the seismic data is ‘mottled’. This mottled 
signal is thought to indicate peatland/wetland and, 
consequently, the area, along with the small channels, 
is thought to represent an extensive wetland area close 
to the edge of the Outer Silver Pit, which formed an 
estuary during this period (Briggs et al. 2007; Gaffney et 
al. 2007). It is assumed that this wetland environment 
was continuously active from the end of the Pleistocene 
until the early Holocene. Recent cores from the area, 
taken by the BRITICE project (Roberts et al. 2018), 
have recovered peat which dates to 9801 +/- 171 cal BP 
(SUERC-72162) supporting this hypothesis.

In the centre of Area 3 (Figure 3.13, C), are a series 
of large anastomosing channels flowing from the 
southeast and into the Outer Silver Pit. Several of the 
larger channel features have been associated with the 
Botney Cut formation and dated to the late Pleistocene 
to early Holocene (Cameron et al. 1992). Detailed survey 
during the Humber REC over one of the smaller features 
has revealed that these were active during the Holocene 
(Fitch this volume; Tappin et al. 2011) although coring 
failed to reach the base of the feature.

A significant outflow channel is partially visible in the 
southeast corner of the Outer Silver Pit (Figure 3.13, 
D). This appears to drain the Outer Silver Pit to the 
south and is of a sufficient size for the channel to have 
a contemporary bathymetric expression. Imaging this 
feature using 3D seismic data suggests that the channel 
must have been formed following a considerable 
outflow, and that it extends much further south than is 
visible on the bathymetry. Although no dating evidence 
from this feature is currently available, the presence of 
a small number of re-use channels suggests that the 
feature is of pre-Holocene age. The current models for 
the last glaciation suggest two possible points of origin 
for this feature (Roberts et al. 2018). The first requires 
an outflow from the lake in the Outer Silverpit (referred 
to as ‘Dogger Lake’ by Roberts et al. 2018: Fig 17), and 
which may have occurred a short time prior to 30,000 
BP. Roberts et al. (2018) note that sometime between 
30,000 to 25,000 BP, following an ice advance, a separate 
glacial lake was moved eastwards by the ice from the 
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Figure 3.13 Location of mapped features within Area 3.

area around the Outer Silver Pit to the northeast of the 
Dogger Bank. This water movement may have provided 
the opportunity to breach the Outer Silver Pit banks 
to the south and produce a meltwater outburst that 
could have, feasibly, created this feature. The second 
point arises during the 22,000 to 21,000 BP ice advance. 
Around 23,000 BP, a ribbon lake had formed to the north 
of the Dogger Bank (Roberts et al. 2018), and it is possible 
that this feature may have extended around the Dogger 
Bank into the Outer Silver Pit. Ice re-advance beginning 
at c. 22,000 BP may then have pushed into the area of 
the ribbon lake and induced an outburst from the lake 
creating this feature. Whilst it is impossible currently 
to provide an accurate date for origin of the channel, its 
size, position, and the evidence for later re-use suggest 
that it was a significant feature within the Holocene 
landscape, and that it was a route for flooding from the 
south during final inundation.

Slightly to the east of the outburst channel, close to the 
boarder with Area 2, is another large, deeply incised 
channel system (Figure 3.13, E). This is c. 1400m wide 
and appears to drain part of the Oyster Ground (Area 
2). It can be seen to flow southwest in the seismic data, 
before eventually meeting the large outflow channel 
south from the Outer Silver Pit. At this point the channel 
changes direction, re-uses the outflow channel, and 

flows south. This relationship suggests that the channel 
(Figure 3.13, E) is later than the outwash feature (Figure 
3.13, D), and dates from a period either post c. 30,000 BP 
or c. 21,000 BP.

The presence of this channel is also indicated in a 
map of the area by Emery (2020: 119 Figure 4.11), and 
the feature may drain some of the European rivers 
prior to the formation of the Elbe palaeovalley). 
However, Emery emphasises the speculative nature 
of this interpretation, and the seismic data is unable 
to provide sufficient evidence of any extension to the 
Elbe Palaeovalley channel to support this suggestion. 
As the channel links with dendritic feeders where it 
extends into Area 2, this suggests that the feature was 
sub-aerially exposed during the Holocene and thus 
remained a feature in the landscape throughout the 
late Pleistocene/Holocene period.

The southwards trend of this large feature is paralleled 
by several smaller channels (Figure 3.13, F), one of which 
was recorded by Preag who suggested a Holocene date for 
the feature (1997). The Europe’s Lost Frontiers 3D seismic 
interpretation suggests that this channel, and those 
nearby, have a well-developed, high sinuosity. The Europe’s 
Lost Frontiers data also reveals additional features related 
to these features, including floodplains, bars and oxbow 



49

A description of palaeolandscape features in the southern North Sea

lakes, which illustrate the development of this plain. Many 
of the channel features recorded are comparable to those 
seen in the Danish sector (Prins and Andersen 2019), and 
presumably form at a similar time and environment. It is 
apparent that several of the features are well preserved 
and within reach of future high resolution geophysical 
survey and environmental sampling.

The western part of this landscape includes a number 
of large depressions, including Markham’s Hole (Figure 
3.14), which are tunnel valleys and may have contained 
lacustrine features during the Mesolithic. The seismic 
data reveal that these features are much deeper than 
the bathymetry suggests and contain deposits that can 
be directly related to the late Pleistocene, Botney Cut 
Formation. The late Pleistocene sediments are then directly 
overlain by sediments of recent origin. The sedimentary 
relationships therefore suggest that the valleys date from 
the late Pleistocene. As these features would have formed 
topographic features in the Holocene landscape, it is likely 
that these depressions may have contained lakes during 
the Early Holocene. This interpretation is supported by 
the work of the British Geological Survey (Brown 1986), 
who records the presence of late Weichselian to Holocene 
glacio-lacustrine deposits in similar features in the British 
sector.

Area 4: Southern Sector

Although it is suspected that Area 4 (Figure 3.16) has 
significant information relating to the early Mesolithic 
landscape, data striping and noise in the 3D seismic 

data hindered interpretation. Fortunately, new 2D 
seismic data acquired during windfarm development, 
and research surveys undertaken as a collaboration 
between Europe’s Lost Frontiers and the Deep History 
Project, provides valuable supplementary information 
for the area (e.g., Messiaen et al 2020). The expansion 
of windfarms within this area will also offer future 
opportunities to significantly refine and improve the 
mapping for this area (Peeters et al. 2019).

A brief description of the area and the results of survey 
are provided here, more detail will be provided in a later 
volume (Fitch et al. forthcoming). Whilst the details of 
the majority of the channels observed are yet to be fully 
resolved, they do tend to be smaller in scale than those 
discussed in the other mapping areas of the study area.

The lack of palaeochannels within this area is striking 
(Figure 3.15). The central zone within Area 4 is totally 
devoid of these features (Figure 3.15, A). Those that 
do exist (e.g. the Southern River, Figure 3.15, B) are 
scattered toward the periphery of the area, but appear 
to flow towards the central axial area between East 
Anglia and the Netherlands (Figure 3.16) and seem 
to terminate at or near the 40m meter bathymetric 
contour. This dearth of landscape features in the central 
zone is probably explained by the presence of a large 
marine embayment infilling during the Mesolithic. 
Isostatic models (e.g. Sturt et al. 2013), and more recent 
models utilising improved core data from the region 
(Ch’ng et al. forthcoming), suggest that flooding of 
this area was initiated by 10,500 BP. This is supported 
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Figure 3.14 Topographic depressions southeast of the Outer Silver Pit (Area 3)
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by core data from the Belgian continental shelf which 
indicates marine influence in the area at 10,000 BP 
and possibly earlier (De Clercq 2018). A core (VC39), 
taken by the TNO in 2019 near the Brown Bank, also 
provides a sea-level index point at 10,280 +/- 77.5 cal BP 
(Busschers pers. comm.). This information, combined 
with radiocarbon dates from the estuary of Southern 
River (VC51: 8827 +/- 30 cal BP, SUERC-85716), strongly 
support the existence of a marine inlet in this area 
during the Mesolithic.

Of the palaeochannels that are visible, the majority are 
situated on the western flank on the East Anglian shelf 
(Figure 3.15, C and D). These channels are characterised 
by broad, but shallow, meanders, suggestive of a 
gentle water flow. The channels can be seen to widen 
as they progress towards the marine inlet, indicating 
the direction of flow. Mapping of these features 
suggest that the heads of the channels are filled with 
fine grained sediment and organic material (possibly 
peats) as the channels approach the contemporary 
coastline, the seismic signal suggests this material 
then progresses into silts and clays. This sequence of 
sediments is similar to those seen in other channels in 
the southern North Sea (e.g., Missiaien et al. 2020, Fitch 
et al. this volume) and a description is provided by the 
East Coast Regional Environmental Characterisation 

(ECREC, Limpenny et al. 2011). A single vibrocore 
acquired from one channel (Figure 3.15, C) recovered 
peats dated at 10,670-10,250 cal BC (SUERC 11978) at 
30.80m deep and 7530-7350 cal BC (SUERC 11975) at 
30.05m deep (Limpenny et al. 2011: 131). These dates 
are broadly comparable to those from near the Brown 
Bank on the eastern bank of the embayment (8,716-
8,566 cal BC (SUERC 89491)), and Southern River 
(ELF051 (2.84m): 7844-7606 cal BC (SUERC 85724), 
ELF051 (3.78m): 11,080-10,854 cal BC (SUERC 85725)). 
The termination of these palaeochannels at or near the 
c. 40m meter bathymetric contour, suggests a period 
of coastal stability. However, it may also be true that 
subsequent flooding did not result in erosive conditions 
comparable to those during the initial formation of the 
central marine inlet, possibly because the widening 
channel may have induced lower current speeds.

Fewer channels are observed within the available 3D 
seismic data on the eastern flank of the marine inlet. 
However, high resolution survey, undertaken as part 
of the Deep Sea History collective, combined with data 
from recent windfarm projects, has demonstrated that 
there are Holocene deposits in the region, and those 
channels which have been cored are sand filled, and 
often have organic rich and occasionally peat layers 
(Harding et al. forthcoming, Missiaen et al. 2020, Plets et 
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Figure 3.15 Early Holocene landscape features in Area 4.
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al. forthcoming, Thal 2019). Aside from palaeochannels, 
land surfaces are occasionally visible (Harding et al. 
forthcoming: Figure 3.15, E), which are overlain by 
organic layers, intertidal deposits and frequently buried 
under sandbanks. These surveys have also provided 
a clear, acoustically strong high amplitude signal in 
the seismic data which has been identified as the top 
of the Naaldwijk Formation and associated with the 
marine inundation of the area. Landsurfaces associated 
with the Naaldwijk Formation may provide responses 
characterised by a coherent negative, flat parallel 
reflection. These are often regarded as indicative of peat 
layers (e.g. Plets et al. 2007). These peats are thought 
to have formed as the post-glacial soils were impacted 
by higher levels of salinity, sedimentary accretion and 
flooding (Andrews et al. 2000). The base of the Naaldwijk 
Formation is poorly resolved further east, possibly 
due to a lack of signal penetration resulting from the 
increasing thickness of the overlying sand banks.

Any palaeochannels that may have existed in the 
central zone in the Late Palaeolithic (pre-10,000 BP) 
were presumably impacted by marine erosion following 
formation of a marine inlet. As the area of the inlet was 
inundated and exposed to marine erosion at a relatively 
early date, the chances of such features surviving is 
presumably significantly lower.

Area 2 also possesses significant surface topography 
and modern (less than 4000 BP) seafloor features 
including sand waves. These structures are imaged in the 
bathymetry as north-south-trending peaks and troughs. 
The modern sediments have an erosional contact with the 
Holocene. Several modern sandbanks also directly overly 
and preserve areas of Holocene landscape (e.g. the Brown 
Bank Missiaen et al 2020: Figure 3.15, E). Consequently, 
the modern bathymetry does not necessarily reflect 
the Holocene landscape morphology in this area. 
Additionally, the size of many of these sandbanks can 
render the underlying Holocene landscape relatively 
inaccessible to archaeological sampling. However, where 
topographic or erosional conditions allow, it is possible 
to recover sediment samples, as has been successfully 
demonstrated near Brown Bank (Missiaen et al 2020).

An archaeological narrative of landscape 
development from the Late Palaeolithic to the 
Mesolithic

Having provided a general description of landscape 
features identified during recent study, it is useful 
to support this with a summary chronological and 
archaeological overview.

At the end of the Late Palaeolithic, the northern edge 
of the current Dogger Bank essentially represented 
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Figure 3.16 Mapped palaeochannels in Area 2 flow towards the -40m bathymetric contour, below this line virtually no features 
are mapped. This supports the hypothesis that the axial area was a marine inlet during the Holocene/Mesolithic.
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the coastline of Doggerland (Figure 3.17). Although the 
Outer Silver Pit and the embayment to the south, near 
Brown Bank, had already started to flood, research by 
BRITICE suggests that the coastline north of Dogger 
Bank had existed from c. 21,000 BP Roberts et al. 2018). 
This coastline remained a relatively stable component 
of the landscape for approximately 11,000 years prior 
to the start of the Mesolithic. The implications of a 
relatively stable northern coastline are significant. The 
coastline, with its rich and varied resources must have 
been extremely important in economic and cultural 
terms to the human communities in the region.

As sea levels rose there would have been impacts 
affecting large areas away from this coastline. The 
Outer Silver Pit would been become a significant 
marine inlet, and an outlet for major drainage systems 
from the Dogger Bank and East Anglia (Figure 3.17). The 
other main drainage basin, associated with the Elbe 
palaeovalley, would have experienced flooding with a 
significant inlet forming on the north-eastern coastline 
of Doggerland. Whilst these areas flooded, the Elbe 
palaeovalley channel would have continued to drain 
areas in the east of Doggerland, as well as Denmark 
and Germany (Figure 3.17). Inundation would also have 
continued in the south of Doggerland. Here, flooding 
would have preceded from the area of the English 
Channel (Figure 3.17) and created a relatively shallow 
marine inlet between Britain and the Netherlands 
(Figure 3.18). Although low lying, most of the study area 
remained emergent during this time and the landscape 

Figure 3.17 Major features, Late Palaeolithic c. 11,500 BP.

could have provided a diversity of environments that 
would have made the area attractive for a range of 
subsistence activities. The extensive river systems 
would have provided excellent transport corridors for 
both human and animals, as well as providing wetland 
resources. Given the connectedness of the landscape, 
it is reasonable to surmise that groups from what 
are now the Netherlands and Britain were connected 
through Doggerland (Reyneir 2000 citing Verhart pers. 
comm.). Aside from connections across the land, the 
boat technology of the day must have supported travel 
(Pedersen et al. 1997), supporting trade and contact 
between communities who lived in or visited the region 
(Gaffney et al. 2009). A number of cultural indicators 
are suggestive of such links. These include the rare 
antler head dresses, found at Bedburg‐Konigshoven 
in Germany (Street 1989), through the Low Countries 
(Verhart 2008) and as far north as Star Carr (Clark 1972; 
Conneller 2004). Such linkages may suggest a ‘northern 
technocomplex’ centred on the great plains of the 
North Sea (David 2006: 139).

Between 10,000 BP and 8500 BP sea-level rise continued 
and large tracts of the landscape of central Doggerland 
must have been inundated, initially through the three 
main inlets in the landscape (Figure 3.18). The area 
around the Outer Silver Pit was submerged, allowing the 
inundation of large parts of the centre of Doggerland 
including the relatively low-lying area of the Oyster 
Ground.



53

A description of palaeolandscape features in the southern North Sea

0 100km

0 100km

Figure 3.18 Coastlines of early Mesolithic Doggerland c. 10,000 BP.

Figure 3.19 Coastlines of Mesolithic Doggerland c. 8500 BP.
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It is during this period that the Dogger Bank became 
an island (Figure 3.19). Its links to the east was cut 
as waters flooded the Elbe palaeovalley. Additionally, 
with the coastline retreating from the south and into 
the central part of Doggerland, the terrestrial linkage 
between Britain and Europe would have rapidly reduced 
to a strip and was eventually breached. These relatively 
rapid changes presumably had an impact on the 
Mesolithic communities inhabiting the new coastlines. 
Not all change was bad. New coastlines may would have 
provided access to marine resources and enhanced the 
subsistence base for coastal communities, who may have 
also taken advantage of the new marine inlets for travel.

As the landscape fragmented and terrestrial 
interconnectivity reduced (Figures 3.18 and 3.19), 
it is possible that the groups living in this area may 
have found maintaining traditional links increasingly 
difficult. It is possible that connections were severed 
even before the inundation of the final land linkages.

By about 7000 BP, the emergent landscape of 
Doggerland was largely lost to the sea (Figure 3.20). 

0 100km

Figure 3.20 Coastlines of the earliest Neolithic c. 7000 BP.

During this period, Britain and Europe were separated 
by a considerable body of water and the Dogger Island 
would have been flooded. However, areas of landscape 
would still have existed as extensions of East Anglian 
and the European coastlines at the end of the Mesolithic 
and into the Neolithic (Figure 3.20). Continuing sea-
level rise and loss of landscape would have remained 
noticeable to contemporary communities and was 
likely to have influenced the cultural development of 
these regions.

Conclusions

Europe’s Lost Frontiers and its preceding projects have 
enabled a significant advance in our understanding 
of the emergent landscape of the southern North 
Sea and provided first pass mapping of an area of 
prehistoric landscape of c. 188,000km2. The full 
archaeological implications of this work will be 
explored in later project volumes but will also act 
as a springboard for future researchers studying 
climate, sea-level history, palaeogeography, geology 
as well as archaeology.
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