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ABSTRACT 

With the drive to roll out digital pathology in the UK, implementation of Artificial 

intelligence (AI) tools for pathology is now a possibility, bringing with it the potential 
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to change how we work as a specialty. AI promises many benefits for working 

practices such as improved efficiency and consistency, financial and productivity 

gains and ultimately a better service for our patients. Gynaecological pathology is a 

diverse specialty with many potential avenues for algorithm development, yet there 

are relatively few nearing clinical validation compared to other pathology specialties. 

This article provides a summary of the current landscape of AI in pathology with a 

focus on applications in gynaecological pathology. We discuss the ways pathologists 

can be involved in algorithm development and draw on our significant experiences in 

a nationally- funded programme for AI development and research. Finally we look to 

what the future might hold.  
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Introduction 
There has been a recent drive to implement digital pathology in departments across 

the UK and as a result Artificial Intelligence (AI) integration is now a reality with some 

departments already using AI products or taking part in clinical validation of “close to 

market” products. There has been a significant increase in pathology AI models over 

the past few years, illustrated by the increasing number of publications in AI research 

and a small number of products achieving the necessary regulatory approvals to 

enter clinical workflows for validation. The potential benefits of AI in pathology are 

wide and include improving efficiency, patient safety and standardisation. Despite a 

wide range of AI tools being developed in both the research and commercial 

environments there is still a lack of translation into real world clinical use and as a 

result, pathology is perhaps slightly behind other healthcare settings such as 

radiology. For example, currently there are only 4 U.S Food & Drug Administration 

(FDA) approved pathology algorithms for clinical use in America whereas there are 

nearly 400 products in radiology1.  

 

Gynaecological pathology is a broad sub-specialty with a mixture of high volume, low 

complexity specimens such as endometrial and cervical biopsies, high complexity 

cancer work and cervical screening specimens, providing the perfect base for 

development of a wide range of pathology focused algorithms. Pathologist 

involvement in algorithm model development and translation into clinical practice is 

essential in order to ensure that any algorithm in clinical use is robust, clinically 

applicable and scalable.   

 

There has already been a detailed review on the basics of AI and machine learning 

in a previous Diagnostic Histopathology article2 and these concepts are therefore not 

being described in detail here. Instead, we outline our experiences with algorithm 

development including discussion of the infrastructure required for both research and 

clinical implementation and how a pathologist can get involved in these processes.  

We also provide some of our key learning points in developing a research platform 



for AI integration in our department and discuss some of the barriers to AI integration 

going forwards. This article also aims to provide an overview of the range of AI 

algorithms in pathology focusing primarily on applications that could be applied to 

gynaecological pathology or that have already been developed in this field. Finally 

we discuss some of the challenges for AI implementation and what the future might 

hold for gynaecological pathology.   

 

 

AI applications in gynaecological pathology  
 

Clinical deployment of AI in pathology is in its infancy, with very few products at 

clinical validation stage. This is most likely due to the variable roll out of digital 

pathology across the UK, which underpins deployment of algorithms into clinical 

workflows.  Gynaecological pathology as a subspecialty also has relatively few 

algorithms in the research development stages, though more are beginning to 

appear in the literature and some of these are described below. Part of this may be 

due to the largely commercial drive of AI development with many companies initially 

focusing on other higher volume subspecialities.  Figure 1 provides a summary of 

some of the current tools in pathology which could potentially be applied to 

gynaecological specimens.  

 

Laboratory quality control (QC) and workflow 

 

Digitisation of glass slides requires specific laboratory slide preparation steps in 

order to ensure tissue is appropriately mounted for tissue detection and subsequent 

high resolution scanning. Slides with quality issues such as air bubbles, tissue folds, 

pen marks, lens contamination or image blurring (out of focus) result in delays as the 

slides may need rescanned and/or recut. One example of an AI solution is HistoQC3, 

which is available open source but there are many other commercial products 

available, often as an integrated part of AI platforms. These products can automate 

the laborious process of manual slide QC following scanning and can be 

implemented during the scanning process to detect the above QC issues. Slides can 

be flagged for re-scanning before a case reaches the pathologist’s worklist. QC 

products can also automate colour balancing between different H&E stains and pre-

order ancillary tests on diagnostic slides. Potential applications in gyn path could be 

fungal stains in inflammatory vulval biopsies or immunohistochemistry for p53 and 

MMR in endometrial biopsies in cases with malignancy, thus reducing turnaround 

time for case reporting.   

 

Workflow prioritisation 

Workflow prioritisation is another area where AI could bring significant benefits to 

pathology departments in terms of triaging cases and distributing work to 

pathologists. Tools that can automatically triage cases according to clinical priority 

and ensure they are sent to the most appropriate pathologist’s digital worklist 

expediently, are of potential benefit in terms of turnaround time and reducing harm. 

One example already being rolled out for validation is a dermatopathology clinical 



prioritisation tool4. This type of ‘classification’ algorithm can review whole slide 

images (WSI) of skin lesions, classify these into subtypes such as melanoma, basal 

cell carcinoma and squamous cell carcinoma with high sensitivity. One potential 

application of this type of tool in gynaecological pathology would be in Cervical 

Screening Programme specimens where identifying high risk lesions such as 

invasive cancers or high grade dysplastic lesions such as CIN and CGIN could allow 

for prioritisation of reporting.  

 

Large scale pre-screening tools are emerging for high volume, low complexity 

samples where the ability to automatically ‘screen out’ normal samples from clinical 

work flow would result in a significant reduction in the volume of cases for reporting. 

This concept formed the basis of some of our project work in endometrial biopsy 

reporting as over 97% of our biopsy cases are benign (local audit data). We are 

currently what feels like a very long way from automated sign out of reports by AI but 

an initial read of a case could build confidence in algorithm performance and 

potentially reduce both the time to report and the number of second opinions 

required. An example of a large scale pre-screening algorithm in development is the 

COBIX work by Prof Snead and team in Warwick5 supported by PathLake. They 

have developed a weakly supervised pre-screening algorithm that can distinguish 

between normal and neoplastic colon biopsies with high validation accuracy and 

sensitivity. High sensitivity is important in screening algorithms in order to ensure 

that malignant cases are not missed. This initial pilot work has since resulted in an 

NIHR funded multicenter study across the UK.  

 

 

Morphological assessments 

An advertised benefit of AI tools in cancer assessment is improving consistency of 

pathological features which have notorious inter and intraobserver variability but are 

important for prognosis such as grading and histotyping. Current available products 

include invasive cancer detection algorithms, mitotic counts and quantification tools 

to calculate Ki67 index, some of which are already integrated into pathology 

management system platforms as ready to use software. The latter is described  by 

Flach et al6 who are evaluating a number of algorithms in their department in 

Utrecht, including integrated Ki67 calculation and a mitosis counter. These could 

have some, albeit limited, applications in tumours of gynaecological tract origin, such 

as smooth muscle or neuroendocrine tumours. As these are relatively uncommon, 

overall efficiency or financial gains from introducing these types of products are likely 

to be marginal.  

 

Gynaecological specific algorithms are very much in the development phase at 

present though more are appearing in the research landscape. One area of 

particular interest in terms of ‘grading’ is cervical intraepithelial neoplasia. Poor 

pathologist interobserver variability in grading CIN is well known7 and improvement 

of the consistency of grading would in turn allow for more accurate treatment and 

follow up. Cho et al8 trained a supervised deep learning model to classify 1106 

images as non neoplastic or CIN 1 to 3 with an accuracy of 89% which was 



comparable to pathologist performance of up to 93%.  Oliveria et al9 also recently 

described a weakly supervised model trained and validated on 600 samples which 

can grade cervical LLETZ specimens into four categories (low grade squamous 

intraepithelial lesion (LSIL), high grade squamous intraepithelial lesion (HSIL), non 

neoplastic and non representative) with a reasonable accuracy of 63.75% and 

sensitivity of 68.67%. With many of these studies, much larger prospective datasets 

with linked follow up data are required. Weakly supervised learning is the preferred 

avenue to gather large amounts of validation data without the need for detailed, time 

consuming annotations. Methods of deep learning and assigning ground truth are 

discussed in the section below on algorithm development.  

 

Tumour detection algorithms can identify invasive cancer, provide tumour 

quantification metrics, histological subtype and grading or presence of lymph node 

metastases purely from analysis of the WSI alone. These types of algorithms are 

particularly well developed in breast cancer and prostate cancer with some products 

in clinical validation stages. Detection of nodal metastases is one potential 

application in gynaecological pathology as a significant proportion of patients with 

endometrial, vulval and cervical cancers undergo pelvic or groin lymphadenectomy 

at primary surgery. Furthermore sentinel node assessment is costly and time 

consuming from a pathology perspective in terms of slide review, additional step 

H&E sections and IHC requirements. Breast nodal metastasis detection models have 

been shown to be comparable and in some cases more accurate than pathologist 

assessment alone10. There are no comparable algorithms for gynaecological 

cancers.  

 

In terms of histotyping, some models can predict histological subtype in ovarian and 

endometrial cancer. Both of these tumour types are known to have problems in 

interobserver reliability even when ancillary tests are used.  An example is a recent 

study by Farahani et al11 in which they trained a model using over 900 H&E WSIs. 

This model was able to classify ovarian carcinomas into the five commonest 

subtypes (high grade serous, low grade serous, endometrioid, mucinous and clear 

cell carcinoma) purely on digital features with an overall concordance of 80.97% 

(Cohen’s kappa 0.7547) in their external validation set. Interestingly they also 

assessed performance using multiple slides, which would be normal clinical practice, 

versus a single slide, the former of which showed a higher concordance rate 

(86.56% versus 81.38%) in their internal dataset. Furthermore the challenges with 

classification in these types of algorithm are often similar to the diagnostic 

challenges pathologists face in typing tumours. It is unlikely that any classification 

algorithm will function at 100% accuracy but could be employed as a diagnostic ‘aid’ 

or digital second opinion to improve consistency. 

 

  

Immunohistochemistry quantification 

 
As discussed above, a useful application of AI lies in areas of poor reproducibility or 
variation such as immunohistochemical scoring. A good example of this is 
Programmed Death Ligand 1 (PDL1) immunohistochemistry, an important test to 



determine patient eligibility for checkpoint inhibitor therapies such as nivolumab in a 
range of tumour types including advanced cervical cancer, lung cancer and upper GI 
cancer12. There are different scoring methods (Tumour Proportion Score: TPS and 
Combined Positive Score: CPS), PDL1 assays (22C3, 28.8 etc) and cut offs which 
determine treatment indication. Furthermore interpretation of staining can be 
challenging and time consuming even in the most experienced hands, particularly 
with cases close to the cut off values. Therefore inter and intraobserver correlation in 
scoring is poor, as clearly illustrated in a very recent paper by Robert et al showing 
poor to fair correlation coefficients for pathologists scoring upper GI PDL113.  
 
There are a number of companies with PDL1 AI products in validation stages or 
close to clinical deployment. For example, Baxi et al14developed a PDL1 evaluation 
model based on clinical trial datasets, which detected more positive cases than 
manual scoring and showed similar or more significant impact on trial outcome data. 
This model is now being developed commercially and assessed in a variety of real 
world settings for validation, with comparable performance to a consensus of 
experienced reporting pathologists regardless of clone. AI driven scoring for 
companion diagnostics for specific drugs has the potential to better identify which 
patients should receive treatments and perhaps more importantly who should not, 
which could have significant financial implications for the NHS.   
 
Another area of potential application in gyn path is interpretation of ER expression in 
endometrial cancer, which is prognostic in some specific subtypes15. AI supported 
interpretation could allow for more robust scoring for correlation with survival data. 
Mismatch Repair (MMR) immunohistochemistry is also the NICE16 recommended 
method for assessment of mismatch repair deficiency in endometrial carcinoma and 
IHC evaluation could potentially be performed by AI. However there are models 
which can predict molecular alterations based on digital imaging features alone that 
may supersede this, thus negating the need for IHC or molecular testing.  
 
 
 

WSI as a predictive biomarker  

 

A WSI can now be utilized as a digital biomarker for particular tumours and pre-

neoplastic conditions, where specific features in the digital image correlate with 

survival and treatment response. 

 

Using AI to predict prognosis and risk of progression in pre-neoplastic conditions is a 

potential novel area of development that would provide additional information over 

and above a standard pathology report. For example, hyperplasia with and without 

atypia is a challenging area of gynae pathology with poor reproducibility. Rewcastle 

et al17 recently developed an AI tool (ENDOAPP) to assess features within 

endometrial biopsies with a diagnosis of hyperplasia that correlated with prognosis 

and were able to assign a low risk versus high risk of progression score with a 

reasonable level of performance (accuracy of 88-91%), comparable to other 

classification schemes of hyperplasia such as EIN and WHO 2020.  

 



There are many studies assessing radiological imaging based chemotherapy 

response in high grade serous carcinoma (HGS) of tubo-ovarian origin, as around 

15-20% of patients will be resistant to platinum based therapies.  AI models are now 

being developed in pathology specimens that can predict chemo-responders purely 

from assessment of morphological features on WSI. This is again a potential novel 

area for enhancing pathology reporting, as prediction of outcome purely on 

pathologist assessment of HGS morphology is not reproducible. There is some 

evidence that HGS associated with BRCA mutation shows distinctive morphological 

patterns such as solid, pseudoendometrioid and transitional (‘SET’) morphologies. 

However these are not reproducible enough to introduce into routine reporting18. 

Despite the introduction of routine BRCA mutation and Homologous Recombination 

Deficiency (HRD) testing to identify patients who might respond to poly ADP ribose 

polymerase inhibitor (PARPi) therapy, prediction of response to treatment remains 

challenging. Laury et al19 describe development of an AI morphological assessment 

model to predict platinum based chemotherapy response using weakly supervised 

learning methods with high sensitivity (72%) and overall accuracy of 82%.  Prediction 

of outcome in a trial setting with robust follow up data and genomic results may 

provide the optimal environment for moving these studies towards clinical 

deployment.   

 
Current risk prediction in endometrial cancer is based on traditional pathological 
features such as tumour type, grade, stage and LVSI and further refined by 
molecular subtyping into p53 mutant, Mismatch repair (MMR) deficient, POLE 
ultramutant and No Specific Molecular Profile (NSMP) groups20. There are some 
pathological features associated with MMR deficiency such as endometrioid subtype, 
tumour infiltrating lymphocytes and mucinous differentiation but these are not reliably 
reproducible at a microscopic level. However analysis of WSI has the potential to 
unlock additional morphological information which is not necessarily apparent to the 
naked eye of a pathologist. There have only been a couple of studies to date using 
AI to predict molecular features in endometrial cancer, the most recent of which was 
developed on over 2000 cases including PORTEC trial datasets, with their 
associated clinical and molecular data. In this study21 it was possible to predict the 
four endometrial molecular subtypes without the need for specific molecular testing. 
Interestingly, there was some overlap in distinguishing MMRd and POLEmut groups, 
where there is known to be overlap in histological features such as immune infiltrates 
and solid growth patterns. Their image based molecular classification also showed 
similar stratification for outcome compared to the true molecular data in the PORTEC 
3 trial cohort, illustrating that prediction of the four classes is possible using this 
algorithm on HE scanned images alone. The real world benefit for these applications 
could be results available in minutes, as an adjunct to pathological reporting. 
However at present molecular testing is still the gold standard and any AI product 
would require molecular confirmation.  
 

One important aspect of any implementation of AI predictive models is the interplay 

with other branches of diagnostics providing similar information. In particular, 

genomics is a transforming field, with solid tumour testing moving to large panel 

sequencing or even whole genome sequencing. Therefore the real challenge for AI 

is moving from predictions on single markers to providing novel predictive 



information quickly that can complement or supersede other tumour testing 

modalities.   

 

Education and training  

The benefits of digital pathology for education and training were discussed more 

extensively in a previous article and are not covered in detail here. However there is 

potential for AI to complement this, transforming how we learn, contributing to 

continued professional development and also training our junior colleagues in the 

digital age. Examples could include algorithms for automated annotations, 

automated tagging and logging of training cases and digitally identifying any gaps in 

knowledge for trainees. Automated Quality Assurance may also be a possibility with 

reported cases automatically returned to the workflow without the pathologist 

knowing until the end of the report – thus providing a real life simulation of reporting 

and feedback.   

 

 

Pathologist involvement in algorithm development  

 
Pathologist involvement in AI is essential in order to ensure robust, clinically 

applicable algorithms for future use. Pathologists can assist with research projects or 

via the commercial sector, either at the initial model development stage or later in 

clinical validation. Some considerations are discussed below.  
 

1) Algorithm model design – pathologists are already reporting cases and have 

excellent knowledge of the clinical workflow and potential implications of a 

product. Therefore initial concepts of areas where AI could improve practice, 

reduce pathologist workload or completely replace existing mechanisms, are 

highly valuable.  

2) Education and training of development team – Pathologists can assist in 

model development by providing training on clinical workflow, implications of 

results and basic pathology interpretation. This can improve data scientists’ 

understanding of the problem and aid in finding potential solutions when there 

are errors or discordances in model development.  

3) Cohort curation - Curation of balanced datasets with appropriate metadata 

and anonymised linked clinical data underpin the success of any new model. 

Pathologists can be involved in identifying appropriate cases either retro or 

prospectively. They may also take part in expert pathology review as part of a 

consensus group in order to determine the ‘ground truth’ or the most likely 

correct diagnosis which the algorithm outputs will be compared to. Sets are 

usually split evenly into cases for training the algorithm, testing the algorithm 

and final validation.  

4) Weakly supervised and fully supervised learning – In fully supervised learning 

the algorithm is given the slide level output (overall diagnosis) and detailed 

annotations (drawings around areas of interest on the slide with labels). This 

process is generally used for classification type models. The annotation 



process can require a significant amount of pathologist time depending on the 

detail required and annotation drawings can be variable between pathologists. 

In weakly supervised learning, only the slide level and the output is provided 

with no annotations but this still requires establishing the ground truth of the 

slide first (explained above).  

5) Clinical validation – Following initial development and testing, algorithms 

should be validated on an external test set to ensure there is no bias towards 

the initial data the algorithm was trained on and that it is clinically usable in 

other settings. Pathologists could be involved in using the tools as part of 

normal clinical work flow in order to establish real world experience, safety 

and interoperability with other software products and platforms.  

 

Creation of a Scottish ‘living lab’ for AI development  
 
The work described in the next few sections is part of iCAIRD which is funded by 

Innovate UK on behalf of UK Research and Innovation (UKRI) - project number: 

104690 

 
 
The Industrial Centre for Artificial Intelligence Research in Digital Diagnostics 
(iCAIRD) is a joint national pathology and radiology centre of excellence based in 
Scotland. Working in partnership with iCAIRD, industry, eHealth and biorespository 
teams at NHSGGC, we’ve developed a new digital pathology ‘living laboratory’ 
(Figure 2).  This includes a research image management system that is isolated 
from our live clinical systems, a dedicated scanning facility, data extraction and de-
identification tools, and an AI integration and orchestration platform.   
 
We can import de-identified data from our live pathology system or use research-
only images that have been generated using our research scanning facility which 
can include linked data from the electronic patient record such as demographic 
information, diagnosis codes, medicines and medical history. 
 
AI is thus integrated in a realistic, near-clinical setting, for validation and evaluation.  
This allows us to go beyond mere technical performance evaluation and additionally 
examine workflow, usability, performance and potential scalability, as well as the 
value of AI which is essential for any future clinical roll out.  
 
This experience has provided us with several general learning points for successful 
AI research and evaluation in the NHS:  
 

1) Data storage: appropriate and secure storage to meet NHS code of practice. 

We split our data into live and archive, on fast and slower storage 

infrastructure.  Fast storage is expensive, and it wouldn’t have been 

sustainable for us to simply expand what we had – the costs running to 

several million pounds.  Whilst not strictly necessary, as our archive storage is 

on-premises, we felt the time was right to prepare for a future where we’d 

archive our data in the cloud, so splitting live and archive data made sense. 



2) Isolated research environment: Having a one-way interface from the clinical to 

the research environment protects the integrity of the clinical system whilst 

allowing use of real-world data in the research environment.  

3) Dedicated research scanning: This minimizes the impact on operational 

pathology infrastructure with capacity for clinical utilization in times of heavy 

clinical demand.  

4) De-identification: Ensuring the privacy of clinical information in research is 

paramount when sharing digitized data. The de-identification tool has allowed 

us to securely extract and anonymise data at scale for use by academic and 

industrial research partners, whilst maintaining patient privacy.  

5) Clinical simulation: Having a flexible method of integrating projects and 

products into the research environment, and returning results matched to the 

originating case, is critical for mimicking realistic clinical workflow. 

6) Partnership: Our living laboratory is a collaborative effort. It is only possible 

because pathologists and the wider laboratory medicine team work closely 

with colleagues in IT, research, innovation and information governance, in 

addition to partners in academia and industry.  
 

 

 

Development of endometrial and cervical cancer detection 

algorithms 

 
One of the project areas supported by iCAIRD (Scotland) is a proof of concept study 

in developing endometrial and cervical biopsy triage algorithms. These could 

potentially help with workflow by identifying urgent cases from backlogs. A summary 

of the workstrands are given below:  

 

Fully supervised learning in endometrial biopsies22 

 

We developed an AI algorithm trained and evaluated on nearly 300 endometrial 

biopsies which can automatically sort WSI into one of three categories, "malignant", 

"other or benign" or "insufficient", allowing prioritisation of malignant slides within the 

pathology workload and therefore reduce the time to diagnosis for patients with 

cancer. An explanation of the pipeline used for the fully supervised work is given in 

Figure 3. The final model shows reasonable performance metrics, accurately 

classifying 90% of all slides correctly and 97% of the malignant slides correctly. The 

output also includes segmentations of areas predicted as malignant in the form of 

heatmaps which could be used to guide pathologist’s attention. Figure 4 shows an 

example case with our algorithm result.  

 

 

 

Fully supervised learning in cervical cancer  

Similarly, we developed an AI algorithm, trained and evaluated on nearly 3000 

cervical biopsies which can automatically classify WSI into “normal/inflammatory”, 



“low grade CIN”, “high grade CIN” and “malignant”. Performance was promising with 

93.40% malignant sensitivity in the final test set (paper submitted for publication). 

Figure 5 shows an example of the algorithm in action.  

 

 

Weakly supervised learning in endometrial cancer23 

Fully supervised learning for WSI model development is problematic due to the 

requirement for costly and time-consuming manual pathologist annotation. Weakly 

supervised learning which utilises only slide-level labels during training is becoming 

more widespread for this reason. We developed such an algorithm to assess 

endometrial biopsies utilising only the WSI and pathologist slide level label (i.e. 

overall diagnosis). Performance was promising, showing an accuracy of 97.04% in 

the best model.  

 

 

 

Challenges, opportunities and future directions for AI in diagnostic 

pathology 
 
At present there is a small market for AI in pathology with developments driven in 
part by academia but largely by industry. Therefore products which are currently 
closest to clinical deployment are those with the most benefit in terms of scalability 
and financial gain such as in prostate cancer, lung cancer and breast cancer. At 
present, the UK is only just starting clinical validation studies in partnership with 
commercial vendors and some of the digital pathology and IT infrastructure required 
to support this will take time to be deployed. Furthermore, there is a huge amount of 
work required to develop the governance systems around AI deployment and 
monitoring, both at a local and national level.  There are many challenges to how we 
implement AI clinically and incorporate it into reports as, much like a trained 
pathologist, no tool can provide 100% accuracy and are an aide to the diagnostic 
process rather than a definitive solution.  

 
A recent position statement on AI from the Royal College of Pathologists24 

acknowledges the important role of pathologists in developing, evaluating and 

implementing AI tools. Guidelines are urgently needed on deployment, governance 

and standards in order to ensure safety and robustness of integration across multiple 

health boards and networks. They also acknowledge the importance of patient 

engagement in this process.  

 

There are also many ethical challenges to consider which were described in detail in 

a review article by McKay et al25 and include factors such as data protection and 

safeguarding, patient consent and environmental impact. Ultimately we must ensure 

that we support the development of safe and robust systems for clinical deployment 

that meet our obligations in providing high quality safe care for patients.  

 
Despite these challenges, we feel that the breadth and complexity of gynaecological 

pathology brings with it a great opportunity to be involved in the direction of algorithm 



development at an early stage. We have the chance to upskill as a profession and 

become comfortable with digital workflow including incorporation of AI tools. The 

future for AI development for gynaecological pathology will involve stepping beyond 

the current trend of replacing existing pathology tasks and identifying novel ways to 

provide additional prognostic and predictive information, resulting in significant 

benefits for patients. Furthermore, as more AI tools appear in other healthcare 

sectors, patients may also expect that the same is afforded to their pathology 

specimens.  
 

 

Conclusions 

 
Artificial intelligence has the potential to revolutionise how we work in pathology for 

the benefit of our patients and our own working practices. In this article we have 

provided an overview of the current landscape of algorithms in development and 

validation phases and how these are being applied in gyn pathology. We have 

discussed how pathologists can play an integral part in algorithm design and 

evaluation and have also discussed some of our experiences in rolling out the 

infrastructure required for AI integration in clinical services. The challenges going 

forwards initially are ensuring digital pathology rolls out equitably across the UK, 

engaging our supporting services such as IT, persuading management of financial 

gains as a result of roll out and developing standardized approaches to deployment. 

Gyn pathology AI development is in its infancy and as a result there are plenty of 

opportunities for engagement in development and validation. The future is digital and 

as a subspecialty we should embrace the changes to come with open arms.   
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Figure 1: AI applications in pathology. This figure shows the range of current 

applications in pathology, many of which can also be applied to gynaecological 

pathology.  

 
Figure 2: NHS Greater Glasgow and Clyde ‘living laboratory’: This shows our 
pathology digital architecture for integrating AI research and developments into our 
clinical workflow.  
 

Figure 3: Endometrial processing pipeline22: The WSI is pre-processed so that only 

areas that contain tissue are used. WSIs are typically orders of magnitude larger 

than the input sizes of deep learning neural networks, therefore the WSI is split into 

many smaller patches.  A CNN is trained to predict the probability of a patch being 

“malignant” or “other or benign”. The predictions for all the patches from a slide are 

then reassembled into a heatmap. A slide model is then trained to give an overall 

prediction for the slide. The slide model categorises the slide as either malignant, 

benign or insufficient.  

 

Figure 4 AI functionality – benign endometrium: This shows benign secretory 

endometrium on WSI (a). The algorithm heatmaps show strong benign prediction (b) 

with the corresponding tissue areas highlighted in white and no malignant predictions 

(c). The correct overall slide prediction is shown in (d) with benign tissue highlighted 

in red.  

 

Figure 5: AI functionality - high grade CIN. Below shows a cervical biopsy WSI 

showing high grade CIN (a). The heatmaps show strong prediction for high grade 

CIN highlighted in the white areas (b) and normal/inflammatory tissue highlighted in 

white in image (c). The final overlay (d) clearly shows prediction of high grade CIN 

areas highlighted in blue.  
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