
Citation: Aitken, R.A.; Campbell,

A.H.; Fletcher, C.E.; Slawin, A.M.Z.

2,2′-Trisulfanediyldibenzoyl

Chloride. Molbank 2023, 2023, M1731.

https://doi.org/10.3390/M1731

Academic Editor: Rodrigo Abonia

Received: 8 August 2023

Revised: 17 September 2023

Accepted: 19 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molbank

Short Note

2,2′-Trisulfanediyldibenzoyl Chloride
R. Alan Aitken * , Alexandra H. Campbell, Chloé E. Fletcher and Alexandra M. Z. Slawin

EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK;
cef20@st-and.ac.uk (C.E.F.)
* Correspondence: raa@st-and.ac.uk; Tel.: +44-1334-463865

Abstract: The X-ray structure of the title compound, formed at low conversion in the reaction of
thiosalicylic acid with thionyl chloride, has been determined. The acid chloride groups are oriented
to permit an attractive non-bonding O. . .S interaction. Mechanisms are suggested for the formation
of this unexpected product. 1H and 13C NMR data are also reported for the first time for the major
reaction product, 2-mercaptobenzoyl chloride.
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1. Introduction

Although 2-mercaptobenzoyl chloride 1 (Scheme 1) was first described in 1946 [1],
with further reports in 1965 [2] and 1972 [3], it has only been characterised by its melting
and boiling points, and no spectroscopic data have ever been documented. Even in recent
papers, where it has been used to prepare compounds with medicinal [4] and material [5]
applications, 2-mercaptobenzoyl chloride is generated and used directly, with no character-
isation. We have investigated this problem and found that the treatment of thiosalicylic
acid 2 with thionyl chloride gives various mixtures of products, including 1, for which
NMR data could be obtained for the first time. However, in one experiment, a by-product
formed in very low yield was identified by X-ray diffraction as an unusual diaryltrisulfane
(trisulfide), the structure and mechanism of formation of which are discussed herein.

Molbank 2023, 2023, x FOR PEER REVIEW 2 of 7 
 

 
Scheme 1. Products obtained from the reaction of 2 with SOCl2. 

2. Results 
The reaction of thiosalicylic acid 2 with thionyl chloride under a variety of different 

reaction conditions gave mixtures of moisture-sensitive products, which were subjected 
to separation by distillation or recrystallisation. Whilst it was difficult to achieve complete 
separation, comparison of the spectra obtained for varying mixtures allowed the unam-
biguous assignment of 1H and 13C NMR spectra for 2-mercaptobenzoyl chloride 1, 2,2′-
dithiodibenzoyl chloride 3 and benzo[c][1,2]dithiol-3-one 4. The treatment of 2 with thio-
nyl chloride, either in the presence or absence of CH2Cl2, followed by evaporation and 
vacuum distillation, gave mixtures of 1 and 4 and left the less volatile dichloride 3 as a 
residue. Further distillation resulted in enrichment in 1 as compared to 4 and the final 
mixture, obtained in 54% overall yield from 2, consisted of 80% 1 and 20% 4 allowing the 
required NMR data to be obtained. The data for 3 [6,7] and 4 [8] were in agreement with 
reported values, and the new data for 1 are given in the Experimental section (see Supple-
mentary Materials). 

In the hope of being able to determine the structure of 1 by X-ray diffraction, small 
crystals obtained in a separate experiment, by cooling a saturated solution of 2 in thionyl 
chloride, were examined and, quite unexpectedly, these proved to be the symmetrical tri-
sulfane: 2,2′-trisulfanyldibenzoyl chloride 5 (Figure 1). It should be noted that this com-
pound was obtained in very low yield, meaning that no physical or spectroscopic data 
could be recorded, but the structure obtained shows some interesting features. 

 
Figure 1. The molecular structure of 5, showing anisotropic displacement ellipsoids drawn at a 
50% probability level, and the numbering system used. 

Only a few symmetrical trisulfanes appear to have been crystallographically charac-
terised before (Figure 2), and a summary of the key geometric parameters (Table 1) shows 
that both the S–S bond length and angles at sulfur in compound 5 are in good agreement 
with the previously reported structures of 6–12 [9–15]. 
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Scheme 1. Products obtained from the reaction of 2 with SOCl2.

2. Results

The reaction of thiosalicylic acid 2 with thionyl chloride under a variety of different
reaction conditions gave mixtures of moisture-sensitive products, which were subjected
to separation by distillation or recrystallisation. Whilst it was difficult to achieve com-
plete separation, comparison of the spectra obtained for varying mixtures allowed the
unambiguous assignment of 1H and 13C NMR spectra for 2-mercaptobenzoyl chloride 1,
2,2′-dithiodibenzoyl chloride 3 and benzo[c][1,2]dithiol-3-one 4. The treatment of 2 with
thionyl chloride, either in the presence or absence of CH2Cl2, followed by evaporation
and vacuum distillation, gave mixtures of 1 and 4 and left the less volatile dichloride 3 as
a residue. Further distillation resulted in enrichment in 1 as compared to 4 and the final
mixture, obtained in 54% overall yield from 2, consisted of 80% 1 and 20% 4 allowing
the required NMR data to be obtained. The data for 3 [6,7] and 4 [8] were in agreement
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with reported values, and the new data for 1 are given in the Experimental section (see
Supplementary Materials).

In the hope of being able to determine the structure of 1 by X-ray diffraction, small
crystals obtained in a separate experiment, by cooling a saturated solution of 2 in thionyl
chloride, were examined and, quite unexpectedly, these proved to be the symmetrical
trisulfane: 2,2′-trisulfanyldibenzoyl chloride 5 (Figure 1). It should be noted that this
compound was obtained in very low yield, meaning that no physical or spectroscopic data
could be recorded, but the structure obtained shows some interesting features.
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Figure 1. The molecular structure of 5, showing anisotropic displacement ellipsoids drawn at a 50%
probability level, and the numbering system used.

Only a few symmetrical trisulfanes appear to have been crystallographically charac-
terised before (Figure 2), and a summary of the key geometric parameters (Table 1) shows
that both the S–S bond length and angles at sulfur in compound 5 are in good agreement
with the previously reported structures of 6–12 [9–15].

Table 1. Comparison of selected geometric parameters for symmetrical trisulfanes R–S–S–S–R.

Compd CSD Refcode S–S Length (Å) S–S–S Angle (◦) C–S–S angle (◦) Ref

5 — 2.047(1) 107.39(7) 104.8(1) This work
6 LEBFOP 2.058(2) 105.3(1) 103.85(14) [9]
7 NUBYIV 2.023(4), 2.021(4) 106.9(1) 103.5(3), 103.3(3) [10]
8 PEKYOT 2.066(1), 2.057(1) 112.54(3) 112.05(7), 111.15(7) [11]

9 * XOSBEM 2.0503(5), 2.0426(5) 107.64(2) 103.63(5), 101.82(5) [12]
9 * XOSBEM 2.0513(5), 2.0418(6) 107.99(2) 103.61(5), 101.41(5) [12]
10 RIKXIS 2.0412 106.75 99.93 [13]
11 UBIVUW 2.047(1), 2.039(2) 110.53(5) 107.1(1), 105.6(1) [14]
12 CAFFAQ 2.0159, 2.0304 107.58 104.30, 102.07 § [15]

* Two independent molecules. § Ge–S–S.

The molecular structure of 5 is perfectly symmetrical and the two acid chloride groups
are oriented to allow significant non-bonding (peripheral) S. . .O (carbonyl) interactions
(Figure 3). In fact this is in excellent agreement with the pattern observed in structures of
3 and the monosulfide 13 over 40 years ago [16].

As shown in Figure 4 and Table 2, the structures of both 5 and 3 have short O. . .S
distances (sum of Van der Waals radii: 3.32 Å) and O. . .S–S angles of almost 180◦. In the
case of the sulfide 13, it is only geometrically possible for one of the two acid chloride
groups to be oriented in this way, and the ring bearing the other is almost orthogonal,
leading to a much weaker interaction with sulfur.
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Figure 2. Examples of previously reported structurally characterised symmetrical trisulfanes with
CSD Refcodes.
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light grey–hydrogen, red–oxygen, yellow–sulfur, green–chlorine).
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As described in a recent review [17], these interactions can be considered as partial
sulfur–oxygen bonds and are comparable to those observed in thioindirubin 14 [18] and
the acyliminothiadiazoline 15 [19].
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Table 2. O. . .S interactions in compounds 5, 3 and 13–15.

O. . .S Distance O. . .S–X Angles CSD Refcode Ref

5 2.641(3) 173.46 — This work
3 * 2.653(3), 2.664(3) 171.78(8), 173.99(8) VEPDAV [16]
3 * 2.654(3) 177.19(8) VEPDAV [16]
13 2.941(4) 2.727(3) 77.1(1), 173.7(2) VEPCUO [16]
14 2.700(1) 169.65(6) TAJFIV [18]
15 2.670(4) 160.0(2) SIPTEQ [19]

* Two independent molecules.

Despite its low yield, the mechanism by which compound 5 was formed is of some
interest. We have been able to find two literature precedents for such a process. In the most
similar case, 1,2-dihydro-2-thioxopyridine-3-carboxylic acid (which can be formulated as
2-mercaptopyridine-3-carboxylic acid and is, thus, the direct aza analogue of 2) reacts with
thionyl chloride to give a mixture of di- and tri-sulfanediyldiacid chlorides [20]. In the
other, a range of substituted thiophenols react with thionyldiimidazole to give mixtures of
diaryl disulfides and diaryl trisulfides [21]. With these processes in mind, we suggest that
the formation of 5 may involve either oxidative coupling of 1 under the influence of thionyl
chloride to give 3 and sulfur dichloride, which then reacts with 1 to give 5 (Figure 5); or,
alternatively, it may proceed via stepwise formation of the trisulfane 2-oxide, which is then
deoxygenated with concomitant formation of chlorine.
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3. Experimental

NMR spectra were obtained for 1H at 400 MHz and for 13C at 125 MHz, using Bruker
AV-II and AV-III instruments, respectively (Bruker, Billerica, MA, USA). Spectra were run at
25 ◦C on solutions in CDCl3 with internal Me4Si as the reference. Chemical shifts are reported
in ppm to high frequency of the reference, and coupling constants J are in Hz. The HRMS
measurement was performed using a Micromass instrument via electrospray ionisation.
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3.1. Preparation of 2-Mercaptobenzoyl Chloride to Obtain NMR Data

A mixture of thiosalicylic acid (4.0 g, 26 mmol) and thionyl chloride (9.2 mL, 15.1 g,
127 mmol) was heated under reflux under nitrogen for 3.5 h. The excess of thionyl chloride
was evaporated under reduced pressure, and the residue was Kugelrohr distilled twice
under reduced pressure to give a solid (2.4 g, 54%) that was a 1:4 mixture of benzo[c][1,2-
dithiol-3-one 4 and 2-mercaptobenzoyl chloride 1.

Benzo[c][1,2]-dithiol-3-one 4: dH (400 MHz) 7.95 (1H, ddd, J 8.0, 1.2, 0.8), 7.67–7.62 (2H,
m) and 7.41 (1H, ddd, J 6.4, 6.4, 1.6); dC (125 MHz) 193.6 (C=O), 148.2 (C), 133.5 (CH), 129.1
(C), 127.3 (CH), 125.6 (CH) and 124.6 (CH). Good agreement with the literature [8].

2-Mercaptobenzoyl chloride 1: dH (400 MHz) 8.33 (1H, ddd, J 8.0, 1.6, 0.4), 7.92 (1H,
ddd, J 8.0, 1.0, 0.4), 7.76 (1H, ddd, J 8.4, 7.6, 1.6) and 7.42 (1H, ddd, J 8.4, 7.6, 1.0); dC
(125 MHz) 169.5 (C=O), 146.0 (C), 135.8 (CH), 134.6 (CH), 127.3 (C), 125.8 (CH) and
124.4 (CH). HSQC showed the following correlations: 8.33—134.6; 7.92–124.4; 7.76–135.8;
7.42–125.8. HRMS (ESI+): found 170.9666. C7H4ClOS (M–H) requires 170.9671.

Prior to distillation, additional signals were present in both the 1H and 13C NMR
spectra, indicating the presence of 2,2′-dithiodibenzoyl chloride 3 [6,7].

3.2. Formation and X-ray Structure Determination of 2,2′-Trisulfanediyldibenzoyl Chloride 5

Thiosalicylic acid (2-mercaptobenzoic acid) was added under a nitrogen atmosphere
to hot thionyl chloride (5 mL), until no more dissolved. The solution was cooled to room
temperature and filtered quickly under vacuum through a sintered glass funnel, then placed
in a freezer at –30 ◦C. A crystal selected from the resulting solid was suitable for X-ray
diffraction. The structure was determined using a Rigaku XtalLAB P200 diffractometer,
using graphite monochromated Mo Kα radiation λ = 0.71073 Å.

Crystal data for C14H8Cl2O2S3, M = 375.30 g mol–1, colourless plate, crystal dimen-
sions 0.12 × 0.02 × 0.01 mm, orthorhombic, space group Fdd2 (No. 43), a = 15.1011(10),
b = 48.312(3), c = 4.2805(4) Å, V = 3122.9(4) Å3, Z = 8, Dcalc = 1.596 g cm–3, T = 93 K,
R1 = 0.0281, Rw2 = 0.0705 for 1475 reflections with I > 2σ(I), and 96 variables, Rint 0.0611,
goodness of fit on F2 0.924. Data have been deposited at the Cambridge Crystallographic
Data Centre as CCDC 2240737. The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures. The struc-
ture was solved using direct methods and refined by full-matrix least-squares against F2

(SHELXL Version 2018/3 [22]).

Supplementary Materials: The following are available online, the 1H, 13C, and HSQC NMR spectra
of 1, and cif and check-cif files for 5.
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