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Abstract

This thesis explores various partial di↵erential equation (PDE) models of the spatiotem-

poral and evolutionary dynamics of cell populations in di↵erent problems in cancer and

development. In particular, these models are used to investigate: (i) the emergence of

intratumour phenotypic heterogeneity and the development of chemotherapeutic resis-

tance in vascularised tumours; (ii) the formation of endothelial progenitor cell clusters

during the early stages of vasculogenesis; (iii) mechanical pattern formation under dif-

ferent linear viscoelasticity assumptions for the extracellular matrix. The mathematical

models proposed for these problems are formulated as systems of nonlinear and nonlocal

PDEs, which provide a mean-field representation of the underlying cellular dynamics and

pose a series of interesting analytical and numerical challenges. These are tackled by

means of formal asymptotic methods, linear stability analyses and appropriate numer-

ical schemes preventing the emergence of spurious oscillations. Numerical simulations,

relying on parameter values drawn from the extant literature, complement the analytical

results and are employed for in silico investigations qualitatively testing the model as-

sumptions against empirical observations. The obtained results help us shed light on the

hidden mechanisms responsible for the emergence of the studied phenomena in biology

and medicine, suggesting promising research perspectives.



Contents

I Preface 1

II Modelling evolutionary dynamics in vascularised tumours 7

1 Biological and modelling background 9

1.1 Intratumour phenotypic heterogeneity in vascularised tumours . . . . . . 9

1.1.1 Cancer overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Therapeutic issues associated with cancer . . . . . . . . . . . . . 11

1.1.3 Intratumour phenotypic heterogeneity . . . . . . . . . . . . . . . 13

1.2 Mathematical models of phenotypic evolution in cancer . . . . . . . . . . 15

1.2.1 The ecological argument and evolutionary principles . . . . . . . . 15

1.2.2 Modelling the evolutionary dynamics of cancer . . . . . . . . . . . 18

1.2.3 Nonlocal PDE models of well-mixed phenotype-structured popula-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.4 Nonlocal PDE models of space- and phenotype-structured popula-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 A space- and phenotype-structured PDE model of the emergence of

intratumour phenotypic heterogeneity in vascularised tumours 26

2.1 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Dynamics of tumour cells . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Dynamics of abiotic factors . . . . . . . . . . . . . . . . . . . . . 33

2.2 Analytical investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Analytical results in the absence of spatial di↵usion . . . . . . . . 35

2.2.2 Formal results in the limit of small spatial di↵usion and rare phe-

notypic changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.3 Biological interpretation of analytical results . . . . . . . . . . . . 41

2.3 Numerical investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Set-up of numerical simulations and numerical methods . . . . . . 43

2.3.2 1D numerical results under stationary concentrations of oxygen and

chemotherapeutic agent . . . . . . . . . . . . . . . . . . . . . . . 47

i



2.3.3 2D numerical results under dynamical concentrations of oxygen and

chemotherapeutic agent . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.4 Numerical results assessing the impact of tumour tissue vasculari-

sation on intratumour phenotypic heterogeneity . . . . . . . . . . 54

3 Discussion and research perspectives 61

3.1 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 The emergence of intratumour phenotypic heterogeneity and the

development of chemotherapeutic resistance . . . . . . . . . . . . 62

3.1.2 Vascularisation and phenotypic heterogeneity . . . . . . . . . . . 63

3.1.3 The role of spatial di↵usion . . . . . . . . . . . . . . . . . . . . . 63

3.2 Research perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.1 Alternative temporal scales and stochasticity . . . . . . . . . . . . 64

3.2.2 Environmental fluctuations and additional abiotic factors . . . . . 65

3.2.3 Optimal therapeutic strategies . . . . . . . . . . . . . . . . . . . . 65

3.2.4 A nonlocal PDE model of metastatic spread . . . . . . . . . . . . 66

III Modelling cluster formation in vasculogenesis 67

4 Biological and modelling background 69

4.1 Endothelial progenitor cell cluster-based vasculogenesis . . . . . . . . . . 69

4.1.1 Homotypic and heterotypic interactions . . . . . . . . . . . . . . . 70

4.1.2 In vivo processes of vascular network formation . . . . . . . . . . 72

4.1.3 In vitro single-cell vasculogenesis . . . . . . . . . . . . . . . . . . 74

4.1.4 In vivo and in vitro cluster-based vasculogenesis . . . . . . . . . . 74

4.2 Mathematical models of vasculogenesis . . . . . . . . . . . . . . . . . . . 79

4.2.1 PDE models of single-cell vasculogenesis . . . . . . . . . . . . . . 79

4.2.2 Cellular Potts models of single-cell vasculogenesis . . . . . . . . . 81

4.2.3 Modelling the early stages cluster-based vasculogenesis . . . . . . 83

5 A novel nonlocal PDE model of endothelial progenitor cell cluster for-

mation 85

5.1 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Dynamics of endothelial progenitor cells . . . . . . . . . . . . . . 86

5.1.2 Dynamics of extracellular factors . . . . . . . . . . . . . . . . . . 88

5.1.3 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . 89

5.1.4 Nondimensional model . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Linear stability analysis results . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Numerical investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ii



5.3.1 Set-up of numerical simulations and numerical methods . . . . . . 93

5.3.2 Cluster formation under the baseline parameter set . . . . . . . . 96

5.3.3 Numerical investigation of cluster formation . . . . . . . . . . . . 98

5.3.4 Numerical investigation of cluster size . . . . . . . . . . . . . . . . 100

5.3.5 2D clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Discussion and research perspectives 109

6.1 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Chemotaxis, degradation and their link to hypoxia . . . . . . . . 109

6.1.2 Cell-to-cell adhesion and cluster stability . . . . . . . . . . . . . . 111

6.2 Research perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.2 Further analytical investigations . . . . . . . . . . . . . . . . . . . 112

6.2.3 The inclusion of persistence of motion . . . . . . . . . . . . . . . 113

6.2.4 Modelling the late-stages of cluster-based vasculogenesis . . . . . 113

IV Modelling the extracellular matrix in mechanical pattern
formation 115

7 Background and linear viscoelasticity models 117

7.1 PDE models of pattern formation . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Reaction-di↵usion models . . . . . . . . . . . . . . . . . . . . . . 117

7.1.2 Mechanochemical models . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.3 Linear viscoelasticity assumptions on the ECM . . . . . . . . . . 119

7.2 Essentials of viscoelastic materials and stress-strain constitutive equations 120

7.2.1 Essentials of viscoelastic materials . . . . . . . . . . . . . . . . . . 120

7.2.2 1D stress-strain constitutive equations . . . . . . . . . . . . . . . 121

7.2.3 2D stress-strain constitutive equations . . . . . . . . . . . . . . . 126

8 The role of stress-strain constitutive equations in mechanical models of

biological pattern formation 127

8.1 A mathematical model of mechanical pattern formation . . . . . . . . . . 128

8.1.1 Dynamics of the cells . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.1.2 Dynamics of the ECM . . . . . . . . . . . . . . . . . . . . . . . . 128

8.1.3 Force-balance equation for the cell-ECM system . . . . . . . . . . 129

8.1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.1.5 Extension to 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Linear stability analysis and dispersion relations . . . . . . . . . . . . . . 132

8.2.1 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . 132

iii



8.2.2 Dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Numerical investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3.1 Set-up of numerical simulations and numerical methods . . . . . . 143

8.3.2 1D patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3.3 2D patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Discussion and research perspectives 148

9.1 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.1.2 Empirically informed mechanical models . . . . . . . . . . . . . . 149

9.2 Research perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2.1 Model extensions, further analytical and numerical work . . . . . 149

9.2.2 Experimentally motivated studies . . . . . . . . . . . . . . . . . . 151

V Potential future directions 153

Appendices 157

A Analytical details 158

A.1 Proof of Proposition 1 in Chapter 2 . . . . . . . . . . . . . . . . . . . . . 158

A.2 Proof of Theorem 1 in Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 159

A.3 Formal analysis presented in Chapter 2 . . . . . . . . . . . . . . . . . . . 161

A.4 Linear stability analysis presented in Chapter 5 . . . . . . . . . . . . . . 164

A.4.1 Linear stability analysis of the 1D problem . . . . . . . . . . . . . 164

A.4.2 Linear stability analysis of the 2D problem . . . . . . . . . . . . . 170

A.5 Derivation of the constitutive equations of the models of linear viscoelas-

ticity in Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.5.1 Derivation of the 1D Kelvin-Voigt and Maxwell models . . . . . . 173

A.5.2 Derivation of the 2D Kelvin-Voigt and Maxwell models . . . . . . 174

A.6 Creep and stress relaxation tests on the constitutive equations of the

Kelvin-Voigt and Maxwell models in Chapter 7 . . . . . . . . . . . . . . 175

B Numerical details 178

B.1 Numerical schemes used in Chapter 2 . . . . . . . . . . . . . . . . . . . . 180

B.1.1 Numerical schemes for 1D spatial domains . . . . . . . . . . . . . 180

B.1.2 Numerical schemes for 2D spatial domains . . . . . . . . . . . . . 182

B.2 Numerical method used in Chapter 5 . . . . . . . . . . . . . . . . . . . . 184

B.3 Numerical schemes used in Chapter 7 . . . . . . . . . . . . . . . . . . . 186

B.3.1 Numerical schemes for the 1D problem . . . . . . . . . . . . . . . 186

iv



B.3.2 Numerical scheme for the 2D problem . . . . . . . . . . . . . . . . 190

C Parameter details 195

C.1 Parameter values used in Chapter 2 . . . . . . . . . . . . . . . . . . . . 195

C.2 Parameter values used in Chapter 5 . . . . . . . . . . . . . . . . . . . . . 197

C.3 Parameter values used in Chapter 7 . . . . . . . . . . . . . . . . . . . . 199

D Supplementary figures 202

Bibliography 209

v



Part I

Preface
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Mathematical modelling

Recent advances in many fields of biology and medicine, including cancer and devel-

opment, have been driven by a synergistic approach involving not only empirical ob-

servations and experiments, but also mathematical modelling (Servedio et al., 2014).

Experimental assays include in vitro and in vivo approaches, which can be used to ob-

tain empirical data in controlled and realistic settings respectively. Experimental studies,

however, can be expensive and time consuming. For this reason, mathematical models

have been increasingly used as theoretical tools to investigate the mechanisms at the ba-

sis of a variety of problems in biology and medicine by means of in silico investigations.

These models complement empirical research, serving as a proof of concept for newly de-

veloped theories, bridging the gap between in vitro and in vivo observations, and steering

experimental investigations towards the most promising research perspectives (Anderson

and Quaranta, 2008; Anderson and Maini, 2018; Tomlin and Axelrod, 2007; Servedio

et al., 2014). By integrating the model with empirical data, the model’s applicability to

empirical systems can be tested. This step is known as model validation as it provides a

means for testing the biological relevance of the model assumptions. Nonetheless, much

theoretical work can be conducted prior to the integration of empirical data to improve

model design (Vera et al., 2021): analytical and numerical results of the mathematical

models can be qualitatively compared with empirical observations for an initial selection

of model assumptions. Altogether, this supports the creation of new modelling frame-

works to address complex problems in biology and medicine, and improved mathematical

methods leading to better characterisations of the solution’s properties. This thesis is

concerned with such theoretical work, together with the analytical and numerical chal-

lenges posed by these models.

Each part of this thesis focusses on a di↵erent problem in cancer and development and

it is composed of three chapters: the first one provides relevant biological and modelling

background to inform the reader on the empirical evidence and previous studies moti-

vating the model assumptions; the second one is dedicated to the presentation of the

mathematical model together with analytical and numerical results; the final chapter is

dedicated to the discussion of the model and promising research perspectives, both in

terms of applicability to empirical systems and mathematical tractability.
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Modelling techniques

In this thesis we are interested in studying the spatiotemporal and adaptive (in Part II)

dynamics of populations of cells of di↵erent types. Cellular processes exhibit multiscale

properties, with relevant interactions occurring at di↵erent scales. In particular, intra-

cellular processes such as mutations and signalling pathways occur at the molecular scale

(nm-µm), extracellular interactions such as those with other cells or the extracellular

matrix (ECM) occur at the microscopic scale (µm-mm), and tissue level processes oc-

cur at the macroscopic scale (mm-cm) (Deisboeck et al., 2011). Note that these scales

are sometimes referred to, respectively, as microscopic, mesoscopic and macroscopic in-

stead (Scianna and Preziosi, 2013). The spatial scale at which the processes of interest

occur, together with the relevant timescale, can be used as criteria to select the most ap-

propriate modelling framework. Models of cell population spatiotemporal and adaptive

dynamics can involve discrete, continuum and hybrid techniques (Anderson and Quar-

anta, 2008; Durrett and Levin, 1994; Preziosi and Tosin, 2009).

Discrete modelling. Discrete models rely on an explicit representation of individual

cells in space and time, and are therefore known as individual-based (IB) models, or

agent-based models (Anderson et al., 2007; Metzcar et al., 2019; Scianna and Preziosi,

2013). These may be o↵ lattice or on lattice, in which case cells are placed on a grid and

either regarded as point particles which may (cellular automata) or may not (lattice gas

cellular automata) share the same grid position with other cells, or each occupy multiple

grid positions (cellular Potts). They are particularly suited to processes occurring at the

microscopic scale and over short timescales (minutes-hours) involving populations of low

cell numbers, particularly thanks to the possibility to easily incorporate the stochasticity

of the dynamics observed in these regimes. At the same time, IB models are generally

computationally expensive and less amenable to analytical investigations.

Continuum modelling. Continuum models give a macroscopic description of the sys-

tem under study, as the terms in the model equations provide a mean-field representation

of the underlying cellular dynamics (Altrock et al., 2015; Deisboeck et al., 2011). Contin-

uum macroscopic descriptions are particularly suited for dynamics involving populations

of large cell numbers, where the small scale stochastic e↵ects can be neglected. For this

reason models formulated as systems of partial di↵erential equations (PDEs) are par-

ticularly popular for tissue level spatiotemporal and evolutionary dynamics over longer

timescales (days-years). A range of asymptotic techniques have been developed and

used to derive several PDE models from their stochastic discrete counterpart – see for in-

stance (Baker et al., 2019; Byrne and Drasdo, 2009; Buttenschön et al., 2018; Champagnat
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et al., 2008, 2006; Lorenzi et al., 2020; Chaplain et al., 2020; Stevens and Othmer, 1997;

Stevens, 2000) and references therein. Such derivations ensure that the model equations

provide a faithful mean-field representation of the underlying cellular dynamics. More-

over, comparing the solution of a PDE model with that of the corresponding IB model,

one may observe that stochastic e↵ects are significant at low cell numbers, while the

solutions match well for high cell numbers – see for instance (Bubba et al., 2020; Lorenzi

et al., 2019; Macfarlane et al., 2020; Nardini et al., 2021; Simpson and Baker, 2011) and

references therein. A wide range of methods and techniques from di↵erent areas of math-

ematics may be harnessed to overcome the analytical and numerical challenges posed by

initial-boundary-value problems. For this reason, compared to IB models, PDE models

are generally more amenable to analytical investigation and may be less computationally

expensive, although their computational cost and analytical tractability do depend on

the complexity of the model, as will be discussed throughout this thesis.

Hybrid modelling. Since many biological systems involve processes spanning di↵erent

spatiotemporal scales, in the past twenty years many models combining discrete and con-

tinuum approaches have been proposed, known as hybrid or multiscale models (Deisboeck

et al., 2011; Scianna and Preziosi, 2013). For example, hybrid models using a discrete

stochastic approach for the cell dynamics, at low cell numbers, and a continuum deter-

ministic one for the molecular concentration of abiotic factors, are particularly popular.

Hybrid models, similarly to IB models, may still be computationally expensive and less

amenable to analytical investigations.

The biological processes studied in this thesis are concerned with spatial sorting of cell

populations at the tissue level, occur over longer timescales (days) and involve cell popu-

lations which are actively proliferating. For this reason the models presented henceforth

are of the continuum deterministic type. These are formulated as systems of nonlinear,

and at times nonlocal (Parts II and III), PDEs and they pose a series of analytical and

numerical challenges, which make them interesting mathematical objects per se.

Thesis structure and topics

This thesis is composed of three main parts (II-IV), each dedicated to a di↵erent appli-

cation in cancer and development, and a brief discussion of potential future directions

(Part V). The contents of Parts II-IV have been published in Villa et al. (2021a,b,c,

2022).
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Part II - Modelling evolutionary dynamics in vascularised tumours. Part II fo-

cusses on the emergence of intratumour phenotypic heterogeneity in vascularised tumours

and its consequences for the development of chemotherapeutic resistance, which is often

responsible for treatment failure and disease relapse. The problem is addressed in an

eco-evolutionary perspective, and studied by means of a nonlocal PDE model of a space-

and phenotype-structured population of cancer cells. Equations of this type – i.e. nonlo-

cal reaction-di↵usion equations of the Lotka-Volterra type – have attracted the attention

of the mathematical community and we will see how under simplifying assumptions we

can construct explicit solutions, while in more complex cases a formal Hamilton-Jacobi

approach can be used to obtain weak solutions in appropriate asymptotic limits. The

analytical results will be complemented with numerical simulations, based on an explicit

finite di↵erence scheme, employed for in silico investigations testing eco-evolutionary hy-

potheses against empirical evidence. While it is known that in vascularised tumours new

blood vessels may form, in this study we make the simplifying assumption of a fixed

vascular distribution in order to focus on the cancer cell evolutionary dynamics. Mathe-

matical modelling of neovascularisation processes, in fact, presents a series of challenges

which make it an interesting problem to address on its own, as we do in Part III.

Part III - Modelling cluster formation in vasculogenesis. Part III focusses on

a neovascularisation process referred to as cluster-based vasculogenesis, for which an un-

derlying mechanism has recently been proposed. This is characterised by the formation

of endothelial progenitor cell clusters during the early stages of the process, which allow

for an extensive vascular network to form, not only in tumours but also in embryos and

ischemic tissues. We theoretically investigate the determinants of cluster formation and

size by means of a novel nonlocal PDE model. The nonlocal nature of the PDE system in-

troduces significant analytical and numerical di�culties. We thus conduct linear stability

analysis of the system and a parametric analysis on the numerical simulations, obtained

using an implicit finite volume scheme developed by Alf Gerisch (TU Darmstadt), to

test modelling assumptions against experimental observations. In this study we ignore

mechanical interactions, which are negligible during the early stages of vasculogenesis,

but a series of mechanochemical models similar to that presented in Part IV have been

proposed and might provide an initial framework for the late-stage dynamics.

Part IV - Modelling the extracellular matrix in mechanical pattern formation.

Part IV focusses on mechanochemical models of pattern formation in biological tissues,

employed to study not only vasculogenesis but also a series of problems in development

and physiology. In these models the ECM is generally regarded as a linear viscoelastic

material and modelled using the Kelvin-Voigt model of linear viscoelasticity, but other

5



constitutive models exist which might be better suited to represent the ECM. We thus

present a study of the role that di↵erent constitutive equations have in the pattern forma-

tion potential of a generic mechanical model of this type, relying on a parametric analysis

of the dispersion relations obtained from a LSA and numerical simulations. The sti↵ PDE

system poses significant numerical challenges, and we construct numerical solutions with

an implicit mixed finite volume and finite di↵erence scheme.

Part V - Potential future directions. Part V concludes this thesis by briefly pre-

senting new modelling frameworks at the interface of adaptive dynamics and pattern

formation, with promising research perspectives that would combine the strengths and

complexities of the models presented in Parts II-IV.

List of acronyms

The following acronyms will be used in this document:

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

ATP Adenosine triphosphate

CAM Cell adhesion molecule

CP Cellular Potts

D-OCT Dynamic optical coherence tomography

EC Endothelial cell

ECFC Endothelial colony-forming cell

ECM Extracellular matrix

EMT Epithelial-to-mesenchymal transition

EPC Endothelial progenitor cell

eEPC Embryonic EPC

FWHM Full width at half maximum

HUVEC Human Umbilical Vein EC

IB Individual-based

LSA Linear stability analysis

MMPs Matrix-metalloproteases

ODE Ordinary di↵erential equations

PDE Partial di↵erential equations

PEC Persistence and Endogenous Chemotaxis

SLS Standard linear solid

VEGF Vascular Endothelial Growth Factor
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Part II

Modelling evolutionary dynamics in

vascularised tumours
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This part focusses on the evolutionary dynamics of cancer cells in vascularised tumours,

before and during chemotherapeutic treatment. Tumour vascularisation constitutes a

critical stage of cancer progression, supporting further tumour growth and metastasis.

Moreover, intratumoural vasculature supports the emergence of intratumour-phenotypic

heterogeneity and the development of therapeutic resistance, often responsible for treat-

ment failure and relapse. Previous empirical and theoretical works indicate that the

nonlinear interaction between abiotic factors and tumour cells can lead to the creation of

di↵erent ecological niches in which cells with di↵erent phenotypic characteristic can be

selected. Mathematical models of adaptive dynamics have been increasingly used in the

study of phenotypic evolution in cancer, with particular attention being given to nonlocal

PDE models of phenotype-structured populations. Despite the many insights provided by

works in the extant literature, we are still far from a complete and systematic understand-

ing of the evolutionary processes at the basis of the aforementioned phenomena. We here

present a mathematical study of the evolutionary dynamics of tumour cells in vascularised

tumours under chemotherapy. The model comprises a system of coupled spatially explicit

nonlocal PDEs for the phenotypic distribution of tumour cells, including terms modelling

spontaneous phenotypic changes and spatial movement, the concentration of oxygen and

the concentration of a chemotherapeutic agent, which undergo nonlinear interactions with

the tumour cells and are released from the intratumoural vascular network. The study

is based on both asymptotic analysis and numerical simulations of the system, where a

detailed quantitative characterisation of the long-time asymptotic behaviour of the so-

lutions is given. The results obtained provide a theoretical basis for empirical evidence

indicating that the phenotypic properties of tumour cells in vascularised tumours vary

with the distance from the blood vessels and establish a relation between the degree of

tumour tissue vascularisation and the level of pre-treatment intratumour phenotypic het-

erogeneity. Moreover, we demonstrate that lower oxygen levels may correlate with higher

levels of phenotypic variability, which suggests that the presence of hypoxic regions sup-

ports intratumour phenotypic heterogeneity. The results of the analysis put on a solid

mathematical basis the idea that hypoxia favours the selection for chemoresistant phe-

notypic variants prior to treatment, facilitating the development of resistance following

chemotherapy. The results of this study are in agreement with previous empirical and

theoretical works and lead to various promising research perspectives.

Part II is organised as follows: in Chapter 1 the related biological background is presented,

along with an overview of nonlocal PDE models of adaptive dynamics in the current

literature; in Chapter 2 a nonlocal PDE model of cancer cell evolutionary dynamics in

vascularised tumours is presented together with its analytical and numerical results; in

Chapter 3 these results are discussed, together with promising research perspectives.

The contents of Part II are based on the papers Villa et al. (2021b,c).
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Chapter 1

Biological and modelling

background

1.1 Intratumour phenotypic heterogeneity in vascu-

larised tumours

First, a brief overview of cancer biology is given in Section 1.1.1. This is followed by

a description of popular therapeutic strategies for tumours at di↵erent stages of cancer

progression and the associated development of resistance often responsible for treatment

failure in Section 1.1.2. Finally, in Section 1.1.3 evidence of the emergence of metabolic

phenotypic heterogeneity in tumours, deemed to be correlated with higher therapeutic

resistance, is presented along with open problems associated with heterogeneity in vas-

cularised tumours.

1.1.1 Cancer overview

Cancer is a disease, or collection of diseases, caused by uncontrolled division of abnormal

cells in a part of the body. Cancer research has been continuously expanding over the

years, particularly motivated by the high incidence and diversity of cancer (Sung et al.,

2021). While it was once thought to be a disease of genes, it is now recognised to be an

evolutionary disease (Chisholm et al., 2016a; Greaves and Maley, 2012). In particular,

tumours are seen as organ-like ecosystems, dynamically interacting with elements of their

surrounding microenvironment and capable of acquiring new malignant properties that

favour their survival and invasion of the host organism (Egeblad et al., 2010).
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The Hallmarks of cancer. Hanahan and Weinberg (2000) identified six characteris-

tics, known as the ‘Hallmarks of cancer’ (see Figure 1.1), that cancer cells can acquire in

order to progress through the di↵erent stages of cancer. These include the ability to sus-

tain proliferative signalling, evade growth suppressors, resist cell death, enable replicative

immortality, induce angiogenesis, and invade the local tissue or other parts of the host

(metastasis). Hanahan and Weinberg (2011) later recognised four additional hallmarks,

including the cells’ ability to avoid immune destruction, recruit immune cells to cause

tumour-promoting inflammation, mutate and alter their metabolic processes to avoid the

need for oxygen. The authors particularly highlight the crucial role played by the tu-

mour microenvironment in the acquisition of these hallmarks and, therefore, its impact

on tumour progression and development of malignancy.

Figure 1.1: The Hallmarks of cancer. Summary of the ten Hallmarks of cancer
and their potential treatment options. Reprinted from Cell, 144 (5), D. Hanahan, R. A.
Weinberg, Hallmarks of Cancer: The Next Generation, 646-674, Copyright (2011), with
permission from Elsevier (Hanahan and Weinberg, 2011, Figure 6).

The stages of cancer. Tumours form from the uncontrolled proliferation of abnormal

cells due to the accumulation of mutations (Hanahan and Weinberg, 2011; Weinberg,

2013). They initially grow as multicellular spheroids up to a size of approximately 1-

2 mm3 above which their metabolic demands are restricted due to the di↵usion limit

10



of oxygen and nutrients (Hillen and Gri�oen, 2007). Hypoxia, i.e. decreased oxygen

availability, is one of the first environmental stresses that cancer cells experience, and

it leads to a variety of cellular changes and biological processes initiated by the cells in

response to such stress. Among the cellular changes caused by hypoxia and by other en-

vironmental clues are a series of phenotypic changes based on metabolic reprogramming

(see Section 1.1.3) and what is known as epithelial-to-mesenchymal1 transition (EMT)

allowing the cancer cells to invade the local tissue (Friedl and Wolf, 2003). We note that

the term ‘cancer’ refers to malignant rather than benign tumours, where malignancy is

determined by the tumour cells’ potential to spread to other parts of the body. Moreover,

among the processes induced by hypoxia is the formation of new vasculature (Hillen and

Gri�oen, 2007) from pre-existing vessels (angiogenesis) or by recruiting endothelial pro-

genitor cells (see Chapter 4 for a more detailed overview of neovascularisation processes),

responsible for the development of vascularised tumours. Due to the new oxygen supply,

vascularised tumours can grow further and, because of the abnormal structure of the new

blood vessels (Magnussen and Mills, 2021) as well as EMT, cancer cells can intravasate

and leave the original site. If they manage to survive within the circulatory system, they

may eventually extravasate into a new site, undergo mesenchymal-to-epithelial transi-

tion and begin to proliferate uncontrollably again (Lambert et al., 2017). This last step

is known as metastatic spread and constitutes the culmination of tumour malignancy.

Moreover, cancer cells in metastatic sites may intravasate and create new metastases or

may travel back to the primary site and contribute to the further growth of the primary

tumour, a phenomenon known as secondary self-seeding (Leung and Brugge, 2009).

1.1.2 Therapeutic issues associated with cancer

As cancer progresses, acquiring more malignant traits and spreading to di↵erent parts of

the host body, it starts to disrupt the essential bodily processes performed by the a↵ected

organs. Various therapeutic strategies have been developed over the years, particularly

diversified to tackle tumours at di↵erent stages.

Therapeutic strategies. Benign tumours are generally treated locally via surgery or

radiotherapy2 (Chu and Sartorelli, 2004) or, if they appear stable, they might even be

left untouched and simply monitored via regular check ups. On the other hand, malig-

nant tumours are generally treated with a combination of di↵erent therapeutic strategies,

1
Epithelial-like cells are characterised by high E-cadherin expression which translates into static cells

collectively embedded via cell-cell adhesion bonds. Mesenchymal-like cells are characterised by a down-

regulation of membrane E-cadherin expression, associated with more motile and invasive behaviours.
2
Radiotherapy is a cancer treatment based on the use of high doses of radiation which damages the

DNA of cancerous cells leading to cell death.
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the most common one being chemotherapy. This treatment is based on the use of cy-

totoxic drugs which particularly damage highly proliferative cells by interfering with

mitosis (Chu and Sartorelli, 2004; Corrie, 2011). None of these treatments, however,

are without drawbacks: surgery can involve highly invasive procedures, radiotherapy

may damage healthy cells surrounding the targeted tumour, and chemotherapy tends to

damage healthy tissues throughout the whole body leading to many side e↵ects (Cor-

rie, 2011). New targeted therapies are increasingly being tested, aimed at damaging

cancer cells while leaving healthy ones una↵ected (Tsimberidou, 2015; Wu et al., 2006).

Immunotherapy, which aims at contrasting the cancer cell’s ability to avoid immune de-

struction by training the immune system, is becoming more and more popular (Mellman

et al., 2011). Various other therapies have been developed to specifically target each hall-

mark of cancer (Hanahan and Weinberg, 2011), as summarised in Figure 1.1. Moreover,

in vascularised tumours, vascular normalisation may be essential for optimal drug deliv-

ery or immune response (Magnussen and Mills, 2021). However, as previously mentioned,

these less aggressive therapeutic strategies are generally used in combination with more

aggressive ones.

Development of resistance. Despite the progress made in the formulation of thera-

peutic strategies for cancer, treatment failure still occurs, particularly due to the devel-

opment of drug resistance by the surviving cancer cell population. In particular, while

various types of therapeutic resistance may be encountered (Lavi et al., 2012), we here fo-

cus on drug-induced resistance that may be acquired during treatment. This therapeutic

issue is common in most cancers during both chemotherapy and radiotherapy, and even in

targeted therapies (Chisholm et al., 2016a; Corrie, 2011; Barker et al., 2015; Gillies et al.,

2012). During chemotherapy, for instance, less susceptible cells may still experience DNA

damage, yet to a lesser extent than highly susceptible cells and may therefore develop an

increased capability to repair DNA lesions (e.g. via reduced drug uptake or up-regulation

of DNA repairing enzymes) (Chu and Sartorelli, 2004; Corrie, 2011). After treatment, the

surviving cells, possibly owing their survival to the newly acquired resistance capabilities,

will resume proliferation and potentially lead to a resistant population. Treatment failure

is particularly common in metastatic cancer, not only because of the need to treat mul-

tiple tumours at di↵erent locations or because of the repopulating e↵ects of secondary

self-seeding, but also because therapeutic resistance capabilities acquired by cells in a

primary site may spread to metastatic sites (Lambert et al., 2017). The development of

resistance in tumours is particularly favoured by pre-treatment intratumour phenotypic

heterogeneity.
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1.1.3 Intratumour phenotypic heterogeneity

A phenotype is the set of observable characteristics of an individual, in this case a cancer

cell, resulting from the interaction of its genotype with the surrounding environment. In

this work, we focus on the metabolic phenotype of cancer cells as it plays an important

role in the development of resistance to chemotherapy.

Tumour metabolism. In order to proliferate, as well as to grow and maintain cell

homeostasis3, cells require energy which they can obtain via the fundamental process of

metabolism, during which they convert nutrients into adenosine triphosphate (ATP), the

energy-storing molecule. Several metabolic pathways exploiting di↵erent energy sources

exist, but the primary nutrients converted by cells are oxygen and glucose (Romero-Garcia

et al., 2011). Cells first convert glucose into a chemical compound known as pyruvate via

glycolysis, producing two ATP molecules and a proton. In anaerobic conditions, that is

in the absence of oxygen, pyruvate is turned into lactate and the cells rely only on the

energy stored in the ATP produced via anaerobic glycolysis. In aerobic conditions, on

the other hand, glycolysis is followed by oxidative phosphorylation, during which oxygen

and pyruvate transported to the mitochondria4 are converted into CO2, H2O and ATP.

This aerobic energy pathway leads to a net production of about 36 ATP molecules per

one glucose and five oxygen molecules (Vander Heiden et al., 2009), thus cells can rely

on much more energy than with anaerobic gycolysis to boost proliferation.

In normal tissues, hypoxia induces a higher expression of hypoxia-inducible factors5, such

as HIF-1, which favours a shift towards anaerobic energy pathways6 (Lee et al., 2004) and

inhibits cell proliferation (Huang, 2013a). In tumours, the presence of hypoxic regions

also induces a shift towards a glycolytic metabolic phenotype (Denko, 2008; Semenza,

2010) and cancer cells eventually switch to gycolysis even in aerobic conditions, a phe-

nomenon known as the Warburg e↵ect (Vander Heiden et al., 2009). Although this is

an ine�cient way to produce energy, it is associated with better cancer cell survival

and higher malignancy, particularly because lactate production increases acidity levels

in the local environment promoting more aggressive phenotypes (Robertson-Tessi et al.,

2015; Krtolica and Ludlow, 1996). Nevertheless, heterogeneity with respect to oxidative

phosphorylation, aerobic and anaerobic glycolysis is generally found in cancer cell popu-

3
Homeostasis is the state of steady internal, physical, and chemical conditions necessary for survival

of living systems.
4
Mitochondria are membrane-bound cell organelles responsible for the production of most of the

chemical energy, stored in ATP molecules, needed to power the cell’s biochemical reactions.
5
In normoxic conditions, HIF-1 is synthesised and made inactive due to the action of an oxygen-

dependent enzyme known as pVHL; in hypoxic conditions, HIF-1 levels increase within minutes as

pVHL cannot synthesise it.
6
HIF-1 promotes glycolysis by activating genes responsible for glucose transport and inhibits oxidative

phosphorylation in the mitochondria.
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lations (Chisholm et al., 2016a; Denko, 2008). Hypoxia and anaerobic glycolysis – and,

more generally, metabolic heterogeneity – in tumours are particularly associated with

higher resistance to therapy (Denko, 2008; Shannon et al., 2003; Strese et al., 2013; Zhao

et al., 2013). Given that they are associated with inhibition of cell proliferation (Kr-

tolica and Ludlow, 1996; Tannock, 1968), this is consistent with the notion that slowly

proliferating cells are less susceptible to chemotherapy and thus more likely to develop

resistance, as outlined in Section 1.1.2.

Spontaneous phenotypic changes. A shift in the metabolic phenotype of cancer

cells can be induced by environmental stress factors such as hypoxia, which can up-

regulate the transcription of genes like HIF-1 and induce a glycolytic switch in the span

of a few days (Baumann et al., 2007). However, phenotypic changes may also occur

spontaneously due to genetic and non-genetic instability. The former is associated with

mutations, which may occur on long timescales (Beerenwinkel et al., 2007) and result

in irreversible changes in the genome thus a↵ecting the cell phenotype. Nevertheless,

even in genetically homogeneous cell populations, great heterogeneity in gene expression

levels is observed (Chisholm et al., 2016a). Non-genetic instability is generally associated

with noise in gene expression particularly due to epimutations (Levine et al., 2020).

These are heritable and reversible phenotypic changes occurring over the lifespan of a

tumour cell due to, for instance, DNA methylation7 and histone8 modification (Hansen

et al., 2011; Sandoval and Esteller, 2012), which are responsible for changes in gene

transcription mechanisms (e.g. gene silencing) and are not induced by any selective

pressure (Huang, 2013b). It has been hypothesised that epigenetic modifications alone

can be responsible for the emergence of phenotypic diversity and drug resistance (Brown

et al., 2014; Chisholm et al., 2016a).

Intratumour phenotypic heterogeneity. A growing body of experimental and clin-

ical studies demonstrate that tumour cells with di↵erent phenotypic properties occupy

tumour regions which are characterised by di↵erent oxygen levels. In particular, hypoxic

parts of the tumour (i.e the inner areas – excluding the necrotic core – in avascular

tumours and the regions far from blood vessels in vascularised tumours) are mainly pop-

ulated by slow-dividing cells, which display higher levels of hypoxia-inducible factors,

such as HIF-1 (Carmona-Fontaine et al., 2017; Eales et al., 2016; Giatromanolaki et al.,

2001; Padhani et al., 2007; Semenza, 2003; Strese et al., 2013; Tannock, 1968). On

the other hand, fast-dividing cells with lower levels of expression of hypoxia-inducible

7
DNA methylation is a biological process by which methyl groups are added to the DNA molecule,

shutting o↵ some genes and activating others.
8
A histone is a protein providing structural support to a chromosome. In the nucleus, long DNA

molecules are wrapped around complexes of histone proteins
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factors, which typically correlate with higher levels of resistance to chemotherapy, are

primarily detected in well-oxygenated parts of the tumour tissue (i.e the tumour bor-

der in avascular tumours and the regions in the vicinity of blood vessels in vascularised

tumours) (Carmona-Fontaine et al., 2017; Eales et al., 2016; Dewhirst et al., 2008; Gi-

atromanolaki et al., 2001; Semenza, 2003; Tannock, 1968). This evidence, illustrated

in Figure 1.2B, indicates that spatial variability in the intratumoural concentration of

oxygen plays a pivotal role in the emergence and development of phenotypic hetero-

geneity among tumour cells (Alfarouk et al., 2013; Axelson et al., 2005; Gillies et al.,

2012; Marusyk et al., 2012; Molavian et al., 2009; Sun and Yu, 2015). This impinges

on anti-cancer treatment by making it impossible for single biopsies to exhaustively por-

tray the phenotypic composition of the whole tumour tissue (Burrell and Swanton, 2014;

Poleszczuk et al., 2015; Yap et al., 2012). This is particularly the case in vascularised

tumours, where the chaotic and abnormal vasculature leads to significant spatial gra-

dients in the oxygen distribution. While continuously improving non-invasive imaging

techniques allow for a clear mapping of the blood vessel distribution in vascularised tu-

mours (Upputuri et al., 2015; Schuh et al., 2017), this information is still insu�cient

to inform treatment design as no precise connection between blood vessel distribution

and intratumour phenotypic heterogeneity has yet been established. In fact, despite the

progress made in cancer research, we are still far from a systematic understanding of the

processes responsible for the emergence of intratumour phenotypic heterogeneity and of

the role this has in the development of chemotherapeutic resistance. Mathematical mod-

elling can provide a theoretical framework in which to investigate these open problems

in biology and medicine (Lavi et al., 2012).

1.2 Mathematical models of phenotypic evolution in

cancer

Evolutionary principles at the basis of the theoretical study of intratumour phenotypic

heterogeneity and therapeutic resistance are presented in Section 1.2.1. An overview of

mathematical models of cancer phenotypic evolution in the current literature is given

in Section 1.2.2, followed by a detailed review of nonlocal PDE models of phenotype-

structured cancer cell population dynamics in Sections 1.2.3 and 1.2.4.

1.2.1 The ecological argument and evolutionary principles

Since first proposed by Nowell (1976), the study of cancer as an eco-evolutionary process

has been widely accepted (Aktipis and Nesse, 2013; Basanta and Anderson, 2013; Crespi
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and Summers, 2005; Dujon et al., 2021; Gatenby and Gillies, 2008; Gatenby and Brown,

2017; Merlo et al., 2006). In particular, the tumour microenvironment can be viewed as

an ecological landscape in which cells evolve in response to the selective pressure of the

local environmental conditions. In the case of vascularised tumours, an analogy can be

drawn between cancer cells surrounding a blood vessel and riparian habitats within desert

landscapes, illustrated in Figure 1.2, as presented by Alfarouk et al. (2013) who proposed

the vascular network as a common and primary source of intratumour heterogeneity.

Rivers in deserts or semi-arid landscapes bring nutrients and resources to plants and carry

away toxic and waste products. Near the stream, the high water and nutrient availability

supports the growth of thick vegetation consisting of tall trees and mesic9 shrubs, which

results in intense competitive interactions between plants for space and resources, i.e. a

biotically harsh environment. Away from the stream, the level and availability of ground

water declines and, together with a rise in minerals and salts, results in the selection

of sparse xeric10 grasses, shrubs and cacti, which are able to survive the harsher abiotic

environment whilst experiencing little biotic competition. Analogously, in vascularised

tumours, it has been hypothesised that the nonlinear interplay between impaired oxygen

delivery caused by structural abnormalities present in the tumour vasculature (Dewhirst

et al., 2008; Fukumura et al., 2010; Jain, 1988; Jordan and Sonveaux, 2012; Padhani et al.,

2007; Vartanian et al., 2014; Vaupel et al., 1989), limited oxygen di↵usion and oxygen

consumption by tumour cells may lead to the creation of distinct ecological niches in

the tumour landscape, whereby tumour cells with di↵erent phenotypic characteristics

can be selected (Alfarouk et al., 2013; Casciari et al., 1992; Gatenby et al., 2007; Hockel

and Vaupel, 2001; Ibrahim-Hashim et al., 2017; Lloyd et al., 2016). This hypothesis

is supported by the growing body of experimental and clinical studies summarised in

Section 1.1.3, and it agrees with further empirical and theoretical work also suggesting

that spatial variation in oxygen levels can foster the emergence of intratumour phenotypic

heterogeneity (Gallaher and Anderson, 2013; Gay et al., 2016; Gillies et al., 2012; Kotler

and Brown, 2020; Loeb, 2001; Marusyk et al., 2012; Molavian et al., 2009; Sun and Yu,

2015).

Evolutionary principles of adaptive dynamics. The ecological analogy described

above relies on the principles of Darwinian selection of the fittest to local environmental

conditions following competition for space and resources. In this theoretic framework,

new phenotypic traits are generally assumed to emerge due to phenotypic stochasticity,

i.e. spontaneous and random phenotypic changes (e.g. in cancer due to mutations and

epimutations). We note that this is di↵erent to the concept of phenotypic plasticity,

that is the ability of an individual to undergo phenotypic changes in response to environ-

9
A mesic habitat (or plant) is characterised by (or requiring) a moderate amount of moisture.

10
A xeric habitat (or plant) is characterised by (or requiring only) a small amount of moisture.
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Figure 1.2: The analogy between riparian habitats and vascularised tumours.
(A) Riparian habitat in the Sonoran Desert of Arizona. Reprinted from Evolutionary
Applications, 6(1), K. O. Alfarouk, M. E. Ibrahim, R. E. Gatenby, J. S. Brown, Riparian
ecosystems in human cancers, 46-53, 2013, under Creative Commons licence https:
//creativecommons.org/licenses/by/3.0/ (Alfarouk et al., 2013, Figure 2). (B-C)
Hypoxic (white, PMO = hypoxia) and cellular (blue, Hoechst = cells) spatial gradients
in a vascularised tumour (red, CD31 = blood vessels). Reprinted from Proceedings of
the National Academy of Sciences, 114(11), C. Carmona-Fontaine, M. Deforet, L. Akkari,
C. B. Thompson, J. A. Joyce, J. B. Xavier, Metabolic origins of spatial organisation in
the tumour microenvironment, 2934-2939, 2017 (Carmona-Fontaine et al., 2017, Figure
1B-C).

mental stimuli (e.g. in cancer hypoxia-induced up-regulation of HIF-1 and subsequent

signalling cascade resulting in a metabolic switch) (Levine et al., 2020). The role of phe-

notypic stochasticity in cellular and organismal phenotypic evolution was first illustrated

by Waddington’s well-known epigenetic landscape (Waddington, 1957), reported in Fig-

ure 1.3a. In this metaphor, the cell is represented by a ball rolling down a landscape, the

shape of which is determined by the complex interaction between the cell’s genes and its

environment. The resulting landscape, however, is characterised by many bifurcations so

that the final trajectory of the ball will be determined by stochastic fluctuations in gene

expression (i.e. epimutations). Figures 1.3b-1.3c illustrate how the epigenetic landscape

of cancer cells might be expected to vary following treatment (Chisholm et al., 2016a).

While evolutionary theories have continuously progressed since then (Levine et al., 2020),

the notion that phenotypic fluctuations can lead to the emergence of new traits, which are

then subjected to Darwinian competition, has been particularly popular in mathematical

models of cancer evolutionary dynamics. Spontaneous phenotypic variation and disper-

sal, i.e. spatial movement, have been proposed to support phenotypic heterogeneity and

thus identified as bet-hedging, i.e. risk-spreading, strategies that allow species to survive

temporal changes in their environment (Villa Mart́ın et al., 2019). On top of this, spatial

17

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


heterogeneity in environmental conditions and habit selection are indicated as one of the

largest sources of biodiversity (Kotler and Brown, 2020).

Figure 1.3: Waddington epigenetic landscape. (a) Waddington epigenetic land-
scape (Waddington, 1957), and how this might di↵er (b) preceding and (c) following
treatment. Reprinted from Biochimica et Biophysica Acta (BBA) - General Subjects,
1860 (11), R. H. Chisholm, T. Lorenzi, J. Clairambault, Cell population heterogeneity
and evolution towards drug resistance in cancer: Biological and mathematical assessment,
theoretical treatment optimisation, 2627-2645, Copyright (2016), with permission from
Elsevier (Chisholm et al., 2016a, Figure 3.2).

1.2.2 Modelling the evolutionary dynamics of cancer

Various stochastic and deterministic approaches have been used to model phenotypic

evolution in cancer and development (Chisholm et al., 2016a).

Stochastic approaches. Probabilistic approaches in cancer include branching pro-

cesses, which capture evolution towards irreversible malignancy (Altrock et al., 2015;

Gardner, 2002; Komarova and Wodarz, 2005), IB or hybrid models, where the pheno-

typic evolution of each single cell is tracked allowing for reversible phenotypic changes.

In the latter a finite range of phenotypic states, and therefore of resistance levels, is gen-

erally represented (Chisholm et al., 2016b; Stace et al., 2020), although models represent-

ing heritable traits with continuous variables have also been proposed (Chisholm et al.,

2015; Robertson-Tessi et al., 2015). These works particularly focus on the emergence
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of metabolic phenotypic heterogeneity and its impact on treatment outcomes, yielding

analogous results to the models discussed in the next sections.

Evolutionary game theory. Another popular framework in which to study cancer

evolutionary dynamics is that of evolutionary game theory models, in which evolutionary

stable strategies are identified and employed in the study of the development of malig-

nancy and resistance (Wölfl et al., 2021). Various works, such as those of Basanta and

coworkers (Basanta et al., 2008, 2012a,b), track di↵erent populations each characterised

by an intrinsic phenotypic state, thus only a finite number of states can be represented,

as in deterministic ODE models with similar applications (Page and Nowak, 2002; Stiehl

et al., 2014). On the other hand, many studies consider the evolution in time of sensitive

and resistant populations, the latter depending on a continuous variable modelling what is

referred to as resistance strategy which satisfies its own evolution equation (Brown et al.,

2016; Gatenby and Vincent, 2003b,a; Gatenby and Gillies, 2008; Pressley et al., 2021;

Zhang et al., 2017). These frameworks have been used to investigate di↵erent strategies

in adaptive and evolutionary therapy, taking into account the cost of resistance, using

optimal control methods (Cunningham et al., 2018, 2020; Staňková et al., 2019).

The structured-population approach. Bürger (2000) first proposed a nonlocal PDE

model of mutation-selection dynamics of populations in which the phenotypic state of

each individual is described by a continuous structuring variable under fixed environmen-

tal conditions, the more complex problems of which can be analysed using the Hamil-

ton–Jacobi formalism advocated by Diekmann et al. (2005). In this framework, an evo-

lution equation of the fittest phenotypic state can be analytically derived, rather than be

imposed as in evolutionary game theory models. These works started a new branch of

adaptive dynamics investigating nonlocal PDE models of the evolutionary dynamics of

phenotype-structured populations, that has attracted the attention of the mathematical

community, as demonstrated by the reviews in Sections 1.2.3 and 1.2.4, for well-mixed

and spatially-structured populations, respectively. The possibility to capture phenotypic

variants on a continuum, together with the mathematical progress made in characterising

the solutions to these equations, have made these models particularly suited for the study

of cancer phenotypic evolution and the development of therapeutic resistance (Chisholm

et al., 2016a; Clairambault and Pouchol, 2019; Kuznetsov et al., 2021).
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1.2.3 Nonlocal PDE models of well-mixed phenotype-structured

populations

These models consider well-mixed populations n(t,y), where t � 0 indicates time, struc-

tured by some continuous trait y 2 Rd (d 2 N). The evolutionary dynamics of a pop-

ulation with phenotypic distribution n(t,y) can be modelled by a nonlocal version of

the classic Lotka-Volterra equation11 (cf. Clairambault and Pouchol (2019) and refer-

ences therein), where the growth dynamics of individuals in each subpopulation depend

on their phenotypic state y and their death is determined by nonlocal interactions. In

the field of adaptive dynamics, particular attention has been given to di↵usive nonlocal

Lotka-Volterra equations (Barles et al., 2009; Lorz et al., 2011; Perthame and Barles,

2008) in the form

8
>>><

>>>:

@tn� ��yn = R(y, ⇢(t))n y 2 Rd
, t � 0

⇢(t) =
R
Rd  (y)n(t,y) dy

n(0,y) = n
0(y) 2 L

1(Rd) , n
0 � 0

(1.1)

where the function  (y) can be seen, in analogy with the classic Lotka-Volterra equation,

as the ‘predation’ of individuals of trait y (Perthame and Barles, 2008), although it is

often set to  (y) ⌘ 1 to capture death due to intrapopulation competition for space and

resources within the fitness function R. The di↵usion term models spontaneous pheno-

typic variation at a rate � > 0, although more complex terms have been considered for

alternative forms of phenotypic changes – e.g. nonlocal terms modelling mutations at

birth (Carrillo et al., 2007; Desvillettes et al., 2008; Diekmann et al., 2005; Jabin and

Schram, 2016; Perthame, 2006), and advection terms modelling stress-induced epimuta-

tions (Chisholm et al., 2015, 2016c,b). These initial-value problems are often dealt with

by introducing an " parameterisation and time scaling. In the case of system (1.1), this

11
The classic Lotka-Volterra equations, also known as predator-prey equations, model the evolution

of population n1(t) (prey) and n2(t) (predator) as

(
ṅ1 = (r1 � d1n2)n1

ṅ2 = (r1n1 � d1)n2 .

When considering infinitely many subpopulations, each characterised by a trait y 2 Y ⇢ R, the dynamics

of n(t, y) will mirror those of the prey n1, where death can be induced by interactions with all other

supopulations, resulting in a nonlocal term. The equation may, for instance, be given by

@tn =
�
r(y)� d(y)

R
Y n dy

�
n ,

although it may take many alternative forms.
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results in 8
>>><

>>>:

"@tn" � "
2�yn" = R(y, ⇢"(t))n" y 2 Rd

, t � 0

⇢"(t) =
R
Rd  (y)n"(t,y) dy

n"(0,y) = n
0
"
(y) 2 L

1(Rd) , n
0
"
� 0

(1.2)

which takes a form which allows the study of the asymptotic behaviour of the solution in

the limit of rare phenotypic variation and long times, generally ideal to study evolution,

as "! 0. In such limit one may obtain weak-⇤ convergence

n"(t,y)
⇤��*

"!0
⇢(t) �

�
y � ȳ(t)

�
, (1.3)

in the sense of measures12, where ȳ(t) and ⇢(t) are obtained from a constrained Hamilton-

Jacobi equation (Barles et al., 2009; Lorz et al., 2011; Perthame and Barles, 2008). The

monomorphism result exemplified by (1.3) is dependent on the assumption of a unique

maximum of R such that R(ȳ(t), ⇢(t)) = 0 for ⇢(t) in (1.3), and R < 0 otherwise, while

polymorphism results may be obtained under alternative assumptions. Similar results

can be obtained in the absence of di↵usion, although in this case a uniform strict posi-

tivity assumption on n
0
"
is required otherwise extinction might occur (Clairambault and

Pouchol, 2019; Lorz et al., 2011; Perthame, 2006; Pouchol et al., 2018). On the other

hand, exact solutions to problems considering non-trivial di↵usion, i.e. problems in the

form (1.1), have also been constructed and take the form of Gaussian-like functions (Al-

faro and Carles, 2014; Alfaro and Veruete, 2019; Chisholm et al., 2016b; Lorenzi et al.,

2015). These models can be obtained in the continuum limit of stochastic IB models – see

for instance Champagnat et al. (2006, 2008); Champagnat and Méléard (2011). Nonlocal

PDE models of well-mixed phenotype-structured populations of cancer cells have been

used to elucidate a series of evolutionary mechanisms responsible for the emergence of in-

tratumour phenotypic heterogeneity and the development of therapeutic resistance.

Insights into the emergence of intratumour phenotypic heterogeneity. The

work of Lavi et al. (2013) indicates that levels of intratumour phenotypic heterogene-

ity increase under higher rates of phenotypic variation (e.g. epimutations), suggesting

that reducing the alteration rate as a first step in treatment may improve targeted ther-

apy. This motivated further studies which confirmed the correlation between intratumour

phenotypic heterogeneity levels and phenotypic variation rates (Cho and Levy, 2018b;

Greene et al., 2014; Lorenzi et al., 2015, 2016, 2019), further indicating that phenotypic

12
Consider n(y) 2 L1

(Y) as a sequence of functions n"(y) 2 L1
(Y), and these as elements of the bigger

space of Radon measures M1
(Ȳ). Then n is the weak-⇤ limit of n" if

R
Y n"'(y)dy ���!

"!0

R
Y n'(y)dy 8'(y) 2 C(Ȳ) .
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heterogeneity levels decrease under stronger environmental selective pressures. More-

over, harsher environments may lead the population to extinction, while in the case of

survival, in constant environments, the cell population size at equilibrium depends on the

maximum fitness and rate of death due to intrapopulation competition. On the other

hand, in temporally fluctuating environments, e.g. cycling hypoxia, we observe temporal

oscillations in the population size (Ardaševa et al., 2020b,c; Lorenzi et al., 2015). In

the framework of competing populations characterised by di↵erent rates of spontaneous

phenotypic variation, higher rates of phenotypic variation have been shown to provide

a competitive advantage in periodically fluctuating environments, while lower rates are

favourable in constant environments (Ardaševa et al., 2020b,c; Pouchol et al., 2018).

Ardaševa et al. (2020c) highlight this might be particularly significant in vascularised tu-

mours, where the environment transitions from normoxia to cycling and chronic hypoxia

as the distance from blood vessels increases.

Insights into the development of therapeutic resistance. The first works mod-

elling the evolutionary dynamics of cancer cells under therapy using a continuous variable

to capture the level of therapeutic resistance of the cells indicate that treatment acts as

a selective process and phenotypic variation as a di↵usive one (Greene et al., 2014; Lavi

et al., 2013; Lorz et al., 2013). In particular it has been shown, under constant concentra-

tions of cytotoxic drugs until equilibrium, that higher doses of cytotoxic drugs promote

a selective sweep towards weakly proliferating cells characterised by higher therapeu-

tic resistance, lowering the level of intratumoural phenotypic heterogeneity (Chisholm

et al., 2015; Lorenzi et al., 2016). However, harsher environments in combination with

higher rates of phenotypic variability may lead to population extinction and more ef-

fective chemotherapy (Lorenzi et al., 2016; Stace et al., 2020). Stace et al. (2020), in

particular, employ this result in the study of a combination therapeutic strategy relying

on chemotherapy and epigenetic treatment. Previous works, on the other hand, theoret-

ically assess the e�cacy of di↵erent therapeutic strategies, considering various multidrug

approaches and drug delivery schedules (Almeida et al., 2019; Cho and Levy, 2018b;

Lorenzi et al., 2016; Lorz et al., 2013; Pouchol et al., 2018) – e.g. cytotoxic and cyto-

static combination therapy, or continuous vs. on/o↵ drug delivery – some even including

healthy cells as a competing population to consider chemotherapeutic damage to healthy

tissue (Lorz et al., 2013; Pouchol et al., 2018). Optimal therapeutic control strategies

can be designed by applying optimal control methods to nonlocal PDEs of adaptive dy-

namics, and used to predict the qualitative behaviour of cancer cell populations under

di↵erent strategies (Chisholm et al., 2016a; Clairambault and Pouchol, 2019; Kuznetsov

et al., 2021). In this regard, the work of Almeida et al. (2019) indicates that continuous

administration of a relatively low dose of the chemotherapy performs more closely to the
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optimal dosing regimen to minimise the average number of tumour cells during the course

of treatment.

1.2.4 Nonlocal PDE models of space- and phenotype-structured

populations

Spatially explicit nonlocal PDE models of adaptive dynamics generally consider space-

and phenotype-structured populations n(t,x,y), where x 2 X ✓ Rd indicates the po-

sition in the d-dimensional spatial domain. The evolutionary dynamics of populations

undergoing explicit spatial movement can be modelled by nonlocal versions of the Fisher-

KPP model13. In this framework, individuals are assumed to undergo undirected random

movement which translates mathematically into a Fickian di↵usion term, as in the clas-

sic Fisher-KPP model (Fisher, 1937), and die due to competition for space and resources

against all other individuals present at their position resulting in a nonlocal reaction term

similarly to the nonlocal Fisher-KPP model (Berestycki et al., 2009).

Heterogeneous motility and homogeneous reaction terms. Particular attention

has been given to models in which the structuring variable indicates individual mobility

in order to investigate the mechanisms underlying the spatial spread and phenotypic evo-

lution of populations with heterogeneous motility (Arnold et al., 2012; Benichou et al.,

2012; Bouin and Calvez, 2014; Bouin et al., 2012), such as cane toad populations. These

models comprise variations of nonlocal Fisher-KKP equations where the di↵usion co-

e�cient is given as a function of the structuring variable, and phenotypic changes are

modelled via di↵erential or integral operators. Analytical investigations of these mod-

els – which at times rely on an " parameterisation and appropriate asymptotic limit –

have led to travelling front solutions, with the most motile individuals selected at the

edge of the invasion front in the case of bounded motility, and front acceleration in the

case of unbounded motility. Similar results have been obtained in the case of a nonlocal

advection-reaction-di↵usion equation where, instead of Fickian di↵usion, random move-

ment towards less crowded regions results in a nonlocal advection term with velocity

13
The classic 1D Fisher equation models the reaction-di↵usion dynamics of a population of density

n(t, x) as
@tn�D@2

xxn = rn(1� n) ,

and it is also known as the Fisher-KPP equation since the KPP equation, published in the same year by

mathematicians Kolmogorov, Petrovsky and Piskunov, takes a similar form with a more generic reaction

term F (n). In the case of a population n(t, x, y), structured also by a phenotypic variable y 2 Y, we

retrieve the nonlocal Fisher-KPP equation

@tn�D@2
xxn = rn

�
1�

R
Y ndy

�
.
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field given as a function of the local number density of individuals (Lorenzi et al., 2021).

The study of Lorenzi et al. (2021) also considers a heterogeneous reaction term, usually

included in models with homogeneous motility.

Homogeneous motility and heterogeneous reaction terms. Models with a con-

stant spatial di↵usion coe�cient and more complex reaction terms, defined as functions of

the spatial and phenotypic variables, have also been considered. Alfaro and coworkers con-

structed travelling wave solutions under specific assumptions on the reaction term mod-

elling an environmental cline, in order to study species adaptation to climate change (Al-

faro et al., 2013, 2017). Bouin and Mirrahimi (2015) generalised the method developed

for well-mixed populations (Barles et al., 2009; Lorz et al., 2011; Perthame and Barles,

2008) by considering the asymptotic limit of small spatial di↵usion and rare pheno-

typic changes of a spatially explicit di↵usive nonlocal Lotka-Volterra equation, retrieving

population monomorphism under strict concavity assumptions of the reaction term. Ex-

istence of solutions in the case of non-trivial spatial di↵usion and mutations, modelled

nonlocally, has been shown by Arnold et al. (2012) whose numerical solutions indicate

population polymorphism can arise for high enough spatial di↵usion. The role spatial

movement plays in the emergence of a polymorphic population has also been demon-

strated by the work of Mirrahimi who studied the evolutionary dynamics of well-mixed

populations in separate sites undergoing habitat-specific selection and transition between

the sites, both in the rare phenotypic variation limit (Mirrahimi, 2017) and under non-

trivial phenotypic variation (Mirrahimi and Gandon, 2020). Other nonlocal PDE models

of space- and phenotype-structured populations have been proposed in the study of cell

migration incorporating bound and available membrane receptor densities as structuring

variables (Domschke et al., 2017; Hodgkinson et al., 2018).

Nonlocal PDE models of space- and phenotype-structured cancer cell pop-

ulations. Lorz et al. (2015) proposed the first spatially explicit nonlocal PDE model

of cancer phenotypic evolution with continuous phenotypic structure. Their model com-

prises a nonlocal Lotka-Volterra equation similar to previous non-di↵usive ones proposed

for well-mixed populations (Clairambault and Pouchol, 2019; Lorz et al., 2011; Perthame,

2006; Pouchol et al., 2018), coupled with elliptic equations describing the dynamics of

abiotic factors. While their work solely relied on numerical solutions, it inspired fur-

ther analytical works in which the balance equation for the phenotypic distribution n

is coupled, through the reaction term, with elliptic equations describing the dynamics

of abiotic factors (Jabin and Schram, 2016; Mirrahimi and Perthame, 2015). The abi-

otic factors, taken at the quasi-stationary equilibrium, are assumed to undergo di↵usion

and consumption by the cells at rates dictated by the cell phenotypic state. Cho and
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Levy (2017) further included cell density-dependent drug permeability. Moreover, Cho

and Levy (2018a) include cell density-dependent pressure-driven movement of cells and

consider asymmetric tumour growth in a heterogeneous environment under combination

therapy, including competition with healthy cells in a later study (Cho and Levy, 2020).

On the other hand, Lorenzi et al. (2018) included an influx term in the abiotic factor con-

centration equation in order to model nutrient and drug inflow from either the boundary

of an avascular tumour or from the blood vessels of a vascularised one. In particular,

Lorenzi et al. (2018) perform numerical simulations on the 3D geometry of an in vivo

human hepatic tumour imaged using computerised tomography, on which they subse-

quently construct artificial blood vessels.

These works indicate that the presence of spatial gradients in the concentration of abiotic

factors, which can result from the nonlinear interplay with cancer cells, leads to the se-

lection of cells in di↵erent phenotypic states in di↵erent parts of the spatial domain. This

fosters the emergence of intratumour phenotypic heterogeneity, and it supports the pres-

ence of resistant cells prior to treatment. Moreover, numerical simulations point towards

the advantage of combination therapy (Cho and Levy, 2017, 2020; Lorz et al., 2015), in

agreement with studies conducted for well-mixed populations. The work presented in

Chapter 2 builds on the model of Lorenzi et al. (2018) including spatial di↵usion and

phenotypic variation in the PDE describing cell evolutionary dynamics, and systemati-

cally assessing the impact of tissue vascularisation on the level of intratumour phenotypic

heterogeneity. Fiandaca et al. (2021b) extended our modelling framework to numerically

investigate the emergence of resistance to both hypoxia and acidity at various distances

from a blood vessel, by including two phenotypic traits and multiple abiotic factors,

i.e. oxygen, glucose and lactate. Their work indicates, coherently with empirical evi-

dence, that cancer resistance to hypoxia may be developed first and resistance to acidity

later.

25



Chapter 2

A space- and phenotype-structured

PDE model of the emergence of

intratumour phenotypic

heterogeneity in vascularised

tumours

The empirical and theoretical work presented in Section 1.1 points towards a key role

played by spatial variability in the intratumoural concentration of oxygen in the emer-

gence of intratumour metabolic phenotypic heterogeneity. This a↵ects anti-cancer ther-

apy, on one hand because it supports the emergence of chemotherapeutic resistant pheno-

types, and on the other by making it impossible to exhaustively portray the phenotypic

composition of the whole tumour tissue from single biopsies. This issue is particularly

crucial in vascularised tumours, where the presence of intratumoural blood vessels results

in highly heterogeneous oxygen distributions. Moreover, it has been proposed that intra-

tumour phenotypic heterogeneity is fostered by higher rates of phenotypic variation, e.g.

due to non-genetic instability, and spatial dispersal.

In this chapter, we use a spatially explicit phenotype-structured model to elucidate the

eco-evolutionary dynamics that underpin the emergence of phenotypic heterogeneity in

vascularised tumours, and the development of resistance to chemotherapeutic agents.

Building upon the modelling framework developed by Lorenzi et al. (2018) and Lorz

et al. (2015), the model comprises a nonlocal PDE that governs the local phenotypic

distribution of cells within the tumour tissue, similar to equations that have received

increasing attention from the mathematical community as seen in Section 1.2. This

equation is coupled with a parabolic PDE that governs the local concentration of oxygen

26



and one for the chemotherapeutic agent, whereby a spatially heterogeneous source term

captures the presence of intratumoural blood vessels which bring oxygen and the drug

into the tumour tissue. Compared to previous related studies (Lorenzi et al., 2018; Lorz

et al., 2015), the main novelties of the work here presented are the following:

• The model takes into account the e↵ect of movement and phenotypic variation of

tumour cells and, in addition, it does not rely on a quasi-stationary equilibrium

assumption for the oxygen concentration;

• In the first instance, in the absence of spatial movement, no smallness assump-

tions are imposed on the rate at which phenotypic changes occur. In this more

general scenario, building upon a method of proof presented for well-mixed popula-

tions (Almeida et al., 2019; Ardaševa et al., 2020b; Chisholm et al., 2016b; Lorenzi

et al., 2015), an analytical study of evolutionary dynamics is carried out. In par-

ticular, explicit solutions to the equation for the phenotypic distribution of tumour

cells are constructed and, considering the case where the concentrations of oxygen

and chemotherapeutic agent are stationary, a detailed quantitative characterisation

of the long-time asymptotic behaviour of such solutions is given;

• Next, the model including both phenotypic variation and spatial movement is ad-

dressed. Building upon previous asymptotic methods proposed for simpler mod-

els (Bouin and Mirrahimi, 2015; Jabin and Schram, 2016; Mirrahimi and Perthame,

2015), a formal asymptotic analysis is conducted on the equation for the phenotypic

distribution of tumour cells, in the asymptotic limit of rare phenotypic changes, low

di↵usion and many cell generations, considering again the case where the concen-

trations of oxygen and chemotherapeutic agent are stationary, and the solutions are

compared with those obtained in the previous case;

• While previous studies are mainly focused on avascular tumours, in this chapter we

consider vascularised tumours. The analytical results obtained are integrated with

numerical simulations of a calibrated version of the model based on biologically

consistent parameter values, in order to further assess the impact of the dynamics

of oxygen and chemotherapeutic agent on the phenotypic evolution of tumour cells

in vascularied tumours;

• Di↵erent possible definitions of the source term in the PDEs governing the abiotic

factors are considered, including definitions that are derived from clinical images

obtained using dynamic optical coherence tomography (D-OCT) (Schuh et al., 2017)

– i.e. a non-invasive imaging technique that enables the visualisation of cutaneous

microvasculature in 2D tissue sections with a width of, and at a depth of, up to

several millimetres (Olsen et al., 2018);

• The numerical solutions are employed to systematically assess the impact of the

degree of tumour tissue vascularisation on the level of pre-treatment phenotypic

heterogeneity of tumour cells, which is mathematically quantified through suitable
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diversity indices.

Taken together, these elements of novelty widen considerably the range of application of

the results of this study, as will be discussed in Chapter 3, and support a more in-depth

theoretical understanding of the eco-evolutionary process which leads to the emergence

of phenotypic heterogeneity and the development of chemotherapeutic resistance in vas-

cularised tumours.

This chapter is organised as follows. In Section 2.1, the equations of the model and the

underlying modelling assumptions are introduced. In Section 2.2, the analytical results

of the study of evolutionary dynamics in the absence of spatial di↵usion are presented,

followed by those of the formal asymptotic analysis. In Section 2.3, numerical solutions

that confirm and extend the analytical results obtained are reported. A discussion of

these results, together with possible research perspectives, is given in Chapter 3.

2.1 The mathematical model

We model the evolution of tumour cells within a region of a vascularised tumour along

with the dynamical interactions that occur between tumour cells and both oxygen and a

chemotherapeutic agent, which are released from the intratumoural vascular network.

The tumour region is approximated as a bounded set ⌦ ⇢ Rd, with smooth boundary @⌦,

where d = 1, 2, 3 depending on the biological scenario under study. The spatial position

of tumour cells is described by a vector x 2 ⌦ and the phenotypic state of every cell is

modelled by a scalar variable y 2 R, which represents the rescaled level of a hypoxia-

inducible factor. Building upon the ideas presented in Lorenzi et al. (2016) and Pisco and

Huang (2015), we assume that there is a su�ciently high level of expression of the hypoxia-

inducible factor y
H conferring both the highest rate of cellular division via anaerobic

energy pathways and the highest level of resistance to chemotherapy, while there is a

su�ciently low level of expression of the hypoxia-inducible factor yL < y
H providing the

highest rate of cellular division via aerobic energy pathways. Without loss of generality,

we define yH := 1 and y
L := 0, so that values of y ! 1 correspond to phenotypic variants

with higher rates of cellular division via anaerobic energy pathways and higher levels of

chemoresistance (i.e. anaerobic and chemoresistant phenotypic variants), whereas values

of y ! 0 correspond to phenotypic variants with higher rates of cellular division via

aerobic energy pathways (i.e. aerobic phenotypic variants) – see Figure 2.1.

The phenotypic distribution of tumour cells at time t � 0 and position x is described by

the function n(t,x, y), while the functions s(t,x) and c(t,x) describe, respectively, the

oxygen concentration and the concentration of the chemotherapeutic agent at time t and

position x. Moreover, at each time t, we define the density of tumour cells at position x
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Figure 2.1: Assumptions on the phenotypic state. Summary of the modelling
assumptions on the phenotypic state y 2 R of each cancer cell.

as

⇢(t,x) :=

Z

R
n(t,x, y) dy, (2.1)

the local mean phenotypic state as

µ(t,x) :=
1

⇢(t,x)

Z

R
y n(t,x, y) dy (2.2)

and the related variance as

�
2(t,x) :=

1

⇢(t,x)

Z

R
y
2
n(t,x, y) dy � µ

2(t,x). (2.3)

We additionally define the total cell mass1 and the fraction of cells in the phenotypic

state y within the tumour, respectively, as

N(t) :=

Z

⌦

⇢(t,x) dx and F (t, y) :=
1

N(t)

Z

⌦

n(t,x, y) dx. (2.4)

2.1.1 Dynamics of tumour cells

Tumour cells divide, die, move randomly (i.e. undergo undirected, spontaneous migra-

tion) and undergo spontaneous phenotypic changes, that is, heritable phenotypic changes

that occur randomly due to non-genetic instability and are not induced by any selective

pressure (Huang, 2013b). The dynamic of the local cell phenotypic distribution of tumour

cells n(t,x, y) is governed by the following boundary value problem subject to a suitable

1
In the proposed framework, the cell mass N(t) is given in units of ‘cells’ so that it may be understood

as an approximate total cell number.
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initial condition
8
>>>>>>>>>><

>>>>>>>>>>:

@tn� � @
2
yy
n�Dn �xn = R

�
y, ⇢(t,x), s(t,x), c(t,x)

�
n in ⌦,

⇢(t,x) :=

Z

R
n(t,x, y) dy ,

rxn · û = 0 on @⌦ ,

(2.5)

where û is the unit normal to @⌦ that points outward from ⌦. The first di↵usion term on

the left-hand side of the nonlocal parabolic equation (2.5) describes the e↵ect of heritable

spontaneous phenotypic changes that occur randomly due to non-genetic instability and

are not induced by any selective pressure, which occur at rate � > 0. The second di↵usion

term models the e↵ect of cell random movement and the parameter Dn � 0 represents

the cell motility. The function R
�
y, ⇢(t,x), s(t,x), c(t,x)

�
represents the fitness of tumour

cells in the phenotypic state y at position x and time t under the local environmental

conditions given by the cell density ⇢(t,x), the oxygen concentration s(t,x) and the

concentration of chemotherapeutic agent c(t,x) (i.e. the phenotypic fitness landscape of

the tumour at position x and time t). In particular, we consider

R
�
y, ⇢, s, c

�
:= p(y, s)� ⇣ ⇢� k(y, c) (2.6)

with

p(y, s) := f(y) + g(y, s). (2.7)

Here, f(y) is a C2-function such that

arg max
y2R

f(y) = 1, f(1) > 0, @
2
yy
f < 0, (2.8)

g(y, s) is a C2-function of y and a C1-function of s that satisfies the following assump-

tions

arg max
y2R

g(y, s) = 0, g(0, s) > 0, @
2
yy
g(·, s) < 0 8 s 2 (0,1)

and lim
s!1

g(0, s) > f(1) ,
(2.9)

g(·, 0) = 0, @s|g(·, s)| � 0 8 s 2 (0,1), (2.10)

and k(y, c) is a C2-function of y and a C1-function of c that satisfies the following as-

sumptions

arg min
y2R

k(y, c) = 1, k(1, c) = 0, @
2
yy
k(·, c) > 0 8 c 2 (0,1), (2.11)
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k(·, 0) = 0, @ck(·, c) � 0 8 c 2 (0,1). (2.12)

Definition (2.6) along with assumptions (2.11) and (2.12) models a biological scenario

whereby the background fitness of tumour cells in the phenotypic state y at position x

and time t is given by a function p(y, s(t,x)), the value of which is reduced:

• Due to competition for limited space, by a certain amount which is the same for all

phenotypic variants and is proportional to ⇢(t,x), with a proportionality constant

⇣ > 0 that is related to the local carrying capacity of the tumour;

• Due to the cytotoxic action of the chemotherapeutic agent, by a certain amount

k(y, c) which increases monotonically with the concentration of the chemotherapeu-

tic agent c and is smaller for phenotypic variants with y ! 1, which are charac-

terised by higher levels of chemoresistance, and is null for the phenotypic variant

corresponding to y = 1, since such a phenotypic variant is assumed to be completely

resistant to the chemotherapeutic agent.

Definition (2.7) corresponds to the case where the background fitness p(y, s) is defined as

a linear combination of the background fitness associated with anaerobic energy pathways

f(y) and that associated with aerobic energy pathways g(y, s). In particular, assump-

tions (2.8)-(2.10) translate into mathematical terms the following biological ideas:

• The state y = 1 corresponds to the phenotypic variant with the maximal back-

ground fitness associated with anaerobic energy pathways, whereas the state y = 0

corresponds to the phenotypic variant with the maximal background fitness associ-

ated with aerobic energy pathways.

• Due to the fact that less fit phenotypic variants are driven to extinction by natu-

ral selection, the background fitness associated with anaerobic (or aerobic) energy

pathways can be negative for phenotypic variants with values of y su�ciently far

from 1 (or 0).

• Because of the fitness cost associated with a less e�cient anaerobic metabolism (Bas-

anta et al., 2008), the maximal background fitness of aerobic phenotypic variants

in well-oxygenated environments is larger than the maximal background fitness of

anaerobic phenotypic variants.

• The larger is the oxygen concentration, the stronger is the impact of the background

fitness associated with aerobic energy pathways g(y, s) on the background fitness

p(y, s).

In particular, following the modelling strategies presented by Lorenzi et al. (2018), here

we use the definitions

f(y) := '

h
1� (1� y)2

i
, g(y, s) := �s

s

↵s + s

�
1� y

2
�

(2.13)

and

k(y, c) := �c
c

↵c + c
(1� y)2 , (2.14)

31



where ' > 0 is the maximal background fitness of anaerobic phenotypic variants, �s > '

is the maximal background fitness of aerobic phenotypic variants, ↵s > 0 and ↵c > 0

are the Michaelis-Menten constants of oxygen and of chemotherapeutic agent respec-

tively, and �c > 0 is the maximal reduction of the background fitness due to the cy-

totoxic action of the chemotherapeutic agent. Definitions (2.13) and (2.14) satisfy as-

sumptions (2.8)-(2.12), ensure analytical tractability of the model and lead to a fitness

function R
�
y, ⇢, s, c

�
that is close to the approximate fitness landscapes which can be

inferred from experimental data through regression techniques – see, for instance, equa-

tion (1) in Otwinowski and Plotkin (2014). In fact, with these definitions, after a little

algebra, the di↵erence p(y, s)� k(y, c) in (2.6) can be rewritten as

p(y, s)� k(y, c) = a(s, c)� b(s, c) (y � h(s, c))2 (2.15)

where

a(s, c) := �s
s

↵s + s
� �c

c

↵c + c
+

✓
'+ �c

c

↵c + c

◆2

'+ �s
s

↵s + s
+ �c

c

↵c + c

, (2.16)

b(s, c) := '+ �s
s

↵s + s
+ �c

c

↵c + c
(2.17)

and

h(s, c) :=
'+ �c

c

↵c + c

'+ �s
s

↵s + s
+ �c

c

↵c + c

. (2.18)

Here, a(s, c) is the maximum fitness, h(s, c) is the fittest phenotypic state and b(s, c)

is the selection gradient under the environmental conditions corresponding to the oxy-

gen concentration s(t,x) and the concentration of chemotherapeutic agent c(t,x). We

remark that b(s, c) is a selection gradient in that it provides a measure of the strength

of the selective pressure exerted on tumour cells by oxygen and the chemotherapeutic

agent (Lande and Arnold, 1983). Notice that,

h : [0,1)⇥ [0,1) ! [0, 1], lim
s!0

h(s, ·) = 1, lim
s!1

h(s, 0) =
1

1 +
�s

'

,

and

lim
c!1

h(s, c) =
1

1 +
�s

'+ �c

s

↵s + s

8s 2 [0,1).

Hence, consistent with our modelling assumptions,

• For any concentrations of oxygen and chemotherapeutic agent, the fittest pheno-

typic state is between y = 0 (i.e. the state corresponding to the phenotypic variant

with the highest rate of cellular division via aerobic energy pathways) and y = 1
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(i.e. the state corresponding to the phenotypic variant with the highest rate of

cellular division via anaerobic energy pathways and the highest level of resistance

to chemotherapy);

• In hypoxic conditions (i.e. when s ! 0), the fittest phenotypic state is y = 1;

• When there is no chemotherapeutic agent (i.e. when c ⌘ 0), in well-oxygenated

environments (i.e. when s ! 1) the larger is the ratio between the maximal

background fitness of aerobic phenotypic variants �s and the maximal background

fitness of anaerobic phenotypic variants ', the closer the fittest phenotypic state

will be to y = 0;

• Under high-dose chemotherapy, the smaller is the ratio between the maximal back-

ground fitness of aerobic phenotypic variants �s and the maximal reduction of the

background fitness of aerobic phenotypic variants due to the cytotoxic action of the

chemotherapeutic agent �c, the closer the fittest phenotypic state will be to y = 1.

2.1.2 Dynamics of abiotic factors

We let the oxygen and the chemotherapeutic agent enter the tumour through intratu-

moural blood vessels, di↵use in space, decay over time and be consumed by tumour

cells which divide via aerobic pathways. In this scenario, the dynamic of the oxygen

concentration s(t,x) is governed by the following boundary value problem

8
>>>><

>>>>:

@ts�Ds �xs = �
Z

R
rs(y, s)n(t,x, y) dy � �ss+ qs(t,x) in ⌦,

rxs · û = 0 on @⌦ ,

(2.19)

while the dynamic of the chemotherapeutic agent concentration c(t,x) is governed by the

boundary value problem
8
>>>><

>>>>:

@tc�Dc �xc = �
Z

R
rc(y, c)n(t,x, y) dy � �cc+ qc(t,x) in ⌦,

rxc · û = 0 on @⌦ ,

(2.20)

both subject to a suitable initial condition and coupled to the nonlocal parabolic equa-

tion (2.5). In (2.19)1 and (2.20)1, the parameters Ds > 0 and Dc > 0 are the di↵usion

coe�cients of oxygen and of chemotherapeutic agent, the functions rs(y, s) and rc(y, c)

are the consumption rates of oxygen and of chemotherapeutic agent by tumour cells in

the phenotypic state y, the parameters �s > 0 and �c > 0 are the natural decay rates of

oxygen and of chemotherapeutic agent, and the source terms qs(t,x) and qc(t,x) model
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the influx of oxygen and of chemotherapeutic agent from the intratumoural blood vessels

at position x 2 ⌦ and at time t.

We assume that oxygen is consumed only by phenotypic variants corresponding to values

of y for which the fitness associated with aerobic energy pathways g(y, s) is positive and we

let oxygen consumption occur at a rate proportional to g(y, s). Moreover, we assume that

the chemotherapeutic agent is consumed by phenotypic variants corresponding to di↵erent

y at di↵erent rates proportional to the amount k(y, c) by which their background fitness

is reduced due to the cytotoxic action of the chemotherapeutic agent. In accordance with

these assumptions, we use the following definitions

rs(y, s) := ⌘s (g(y, s))+ and rc(y, s) := ⌘c k(y, c), (2.21)

where ⌘s > 0 and ⌘c > 0 are constants of proportionality and (·)+ denotes the positive

part of (·). We let ! ⇢ ⌦ be the set of points within the tumour tissue which are occupied

by blood vessels and, since we do not consider the formation of new blood vessels, we

assume ! to be given and remain constant in time. Therefore, we define the source terms

qs and qc as

qs(t,x) := is(t,x)1!(x) and qc(t,x) := ic(t,x)1!(x), (2.22)

where 1! is the indicator function of the set !, and is(t,x) and ic(t,x) are the rates of

inflow of oxygen and of chemotherapeutic agent through intratumoural blood vessels at

position x 2 ! and time t. In particular, we assume the rate of inflow of oxygen and

chemotherapeutic agent through intratumour blood vessels be constant in time and the

same for all vessels, i.e. we define the functions is(t,x) and ic(t,x) in (2.22) as

is(t,x) ⌘ Is and ic(t,x) ⌘ Ic , (2.23)

for given inflow rates Is > 0 and Ic > 0.

Remark 1. In this chapter, we do not take into account the e↵ect of mechanical in-

teractions between tumour cells and blood vessels and we do not allow tumour cells to

extravasate. Therefore, focussing on the case of intratumoural blood vessels of small size,

we implicitly make the following simplifying assumptions: (i) a point x can be simultane-

ously occupied by blood vessels and tumour cells; (ii) cell movement is not a↵ected by the

presence of blood vessels. Therefore, we do not impose any condition on n(t,x, y) in !.
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2.2 Analytical investigations

In order to disentangle and quantify the impact of di↵erent evolutionary parameters on

the emergence and development of intratumour phenotypic heterogeneity, in Section 2.2.1

we construct explicit solutions of (2.5) in the absence of spatial di↵usion and study the

long-time asymptotic behaviour of such solutions in the case where the concentrations of

oxygen and of chemotherapeutic agent are stationary, i.e. when, instead of being solutions

of (2.19) and (2.20), the functions s(t,x) and c(t,x) are given and satisfy the following

assumptions

s(t,x) ⌘ S(x) and c(t,x) ⌘ C(x), (2.24)

with S(x) and C(x) being given functions such that

S 2 C(⌦) with S : ⌦ ! R�0 and C 2 C(⌦) with C : ⌦ ! R�0. (2.25)

In Section 2.2.2 we consider system (2.5) in the presence of spatial di↵usion and consider

the following: typical values of the epimutation rate � are one or two orders of magnitude

larger than the rate of somatic DNA mutation (Doerfler and Böhm, 2006, p.45), which

is about 10�12 s�1 (Duesberg et al., 2000), and typical values of the cell di↵usivity Dn

are about 10�12 cm2s�1 (Smith et al., 2004; Wang et al., 2009). Hence, spontaneous

phenotypic changes and cell random movement occur on slower time scales compared

to cell division and death. To capture this fact, in Section 2.2.2 we introduce a small

parameter " > 0, assume both � := "
2 and Dn := "

2, and formally analyse the long-time

asymptotic behaviour of the solution to (2.5) in the asymptotic limit "! 0, again in the

case where the concentrations of oxygen and of chemotherapeutic agent are stationary,

i.e. under assumptions (2.24) and (2.25).

Under assumptions (2.24) and (2.25), we introduce the abridged notation

a ⌘ a(S(x), C(x)), b ⌘ b(S(x), C(x)), h ⌘ h(S(x), C(x)).

2.2.1 Analytical results in the absence of spatial di↵usion

We first focus on the case without spatial di↵usion of cells, i.e. the case in which Dn = 0.

Note that in this case equation (2.5)1 is posed on ⌦ and we do not require boundary

conditions (2.5)3. Under these assumptions, the system (2.5) reduces to

8
>>>><

>>>>:

@tn� � @
2
yy
n = R

�
y, ⇢(t,x), s(t,x), c(t,x)

�
n in ⌦,

⇢(t,x) :=

Z

R
n(t,x, y) dy .

(2.26)
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In this scenario, under assumptions (2.24) and (2.25), we construct explicit solutions

of (2.26) (cf. Proposition 1) and we study the asymptotic behaviour of such solutions for

t ! 1 (cf. Theorem 1).

Initial conditions. In agreement with much of the previous work on the mathematical

analysis of the evolutionary dynamics of continuously-structured populations (Perthame,

2006; Rice, 2004), we consider the case where at time t = 0 the local phenotypic distri-

bution of tumour cells is of the following Gaussian form

n(0,x, y) =
⇢0(x)p
2⇡�2

0(x)
exp


� 1

2�2
0(x)

(y � µ0(x))
2

�
, 8 x 2 ⌦ (2.27)

where

⇢0 2 C(⌦) with ⇢0 : ⌦ ! R>0, �
2
0 2 C(⌦) with �

2
0 : ⌦ ! R>0,

µ0 2 C(⌦) with µ0 : ⌦ ! R.
(2.28)

Proposition 1. Let assumptions (2.6), (2.15)-(2.18), (2.24) and (2.25) hold. Then,

(2.26) subject to (2.27) and (2.28) admits the exact solution

n(t,x, y) = ⇢(t,x)

r
v(t,x)

2⇡
exp


�v(t,x)

2
(y � µ(t,x))2

�
, 8 x 2 ⌦, (2.29)

with ⇢(t,x), µ(t,x) and v(t,x) := 1/�2(t,x) being solutions of the Cauchy problem

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

@tv = 2
�
b� �v

2
�
, v ⌘ v(t,x),

@tµ =
2 b

v
(h� µ) , µ ⌘ µ(t,x),

@t⇢ =

✓
a� b

v
� b (µ� h)2

◆
� ⇣⇢

�
⇢, ⇢ ⌘ ⇢(t,x),

v(0,x) = 1/�2
0(x), µ(0,x) = µ0(x), ⇢(0,x) = ⇢0(x),

in ⌦. (2.30)

Theorem 1. Let assumptions (2.6), (2.15)-(2.18), (2.24) and (2.25) hold. Then, the

solution of (2.26) subject to (2.27) and (2.28) is such that

⇢(t, ·) �! ⇢1(S,C), µ(t, ·) �! µ1(S,C), �
2(t, ·) �! �

2
1(S,C) as t ! 1, (2.31)

36



with

⇢1(S,C) = max

 
0,
a(S,C)�

p
� b(S,C)

⇣

!
, µ1(S,C) = h(S,C) ,

�
2
1(S,C) =

s
�

b(S,C)
.

(2.32)

Proof sketch. The proofs of Proposition 1 and Theorem 1 are reported in Appendix A.1

and Appendix A.2, respectively. Reported below are the key steps of these proofs.

• Proposition 1: Consider the nonlocal PDE (2.26) complemented with (2.27) and (2.28)

under assumptions (2.6) and (2.15)-(2.18). Substituting the Gaussian ansatz (2.29),

together with definitions (2.6) and (2.15), into (2.26) and equating terms of equal

order of y, one can retrieve the Cauchy problem (2.30). Note that this can be

obtained even if assumptions (2.24) and (2.25) are not satisfied, i.e. even for time-

dependent concentrations of abiotic factors.

• Theorem 1: Under assumptions (2.24) and (2.25), equation (2.30)1 can be solved

for v(t,x) and the asymptotic limit v1(x) as t ! 1 can be obtained. Similarly,

equations (2.30)2 and (2.30)3 can be respectively solved for µ(t,x) and ⇢(t,x), as

functions of v(t,x), and the corresponding asymptotic limit as t ! 1 can be thus

obtained exploiting v1(x). Using �2
1(x) = 1/v1(x), we retrieve results (2.31) and

(2.32).

The asymptotic results established by Theorem 1 provide a mathematical formalisation

of the idea that, when the concentrations of oxygen and of chemotherapeutic agent are

stationary (i.e. s(t,x) ⌘ S(x) and c(t,x) ⌘ C(x)), the tumour cell density ⇢(t,x),

the local mean phenotypic state µ(t,x) and the related variance �2(t,x) converge to

some equilibrium values ⇢1(x), µ1(x) and �
2
1(x), respectively, which are determined

by the concentration of oxygen and the concentration of chemotherapeutic agent – i.e.

⇢1(x) ⌘ ⇢1(S(x), C(x)), µ1(x) ⌘ µ1(S(x), C(x)) and �2
1(x) ⌘ �

2
1(S(x), C(x)). The

biological meaning behind the results of Theorem 1 are discussed in Section 2.2.3.

Remark 2. Under the assumptions of Theorem 1, in the case where (2.19)-(2.23) coupled

with (2.26) admits classical solutions s(t,x) and c(t,x) that converge, respectively, to some

limits s1(x) and c1(x) as t ! 1, we expect the long-time asymptotic limit of the local

phenotypic distribution of tumour cells n(t,x, y) to be of the Gaussian form

n1(x, y) =
⇢1(x)p
2⇡�2

1(x)
exp

"
� 1

2�2
1(x)

�
y � µ1(x)

�2
#

(2.33)
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where

⇢1(x) ⌘ ⇢1(s1(x), c1(x)) = max

 
0,

a(s1(x), c1(x))�
p
� b(s1(x), c1(x))

⇣

!
, (2.34)

µ1(x) ⌘ µ1(s1(x), c1(x)) = h(s1(x), c1(x)) (2.35)

and

�
2
1(x) ⌘ �

2
1(s1(x), c1(x)) =

s
�

b(s1(x), c1(x))
. (2.36)

2.2.2 Formal results in the limit of small spatial di↵usion and

rare phenotypic changes

We now focus on the case with spatial di↵usion, under the simplifying assumptions in-

troduced at the beginning of Section 2.2. That is, motivated by the small order of

magnitude of parameter values estimated in the literature for � and Dn (Doerfler and

Böhm, 2006; Duesberg et al., 2000; Smith et al., 2004; Wang et al., 2009), we introduce

a small parameter " > 0 and assume both � := "
2 and Dn := "

2.

Following previous studies on the long-time behaviour of nonlocal PDEs and integro-

di↵erential equations modelling the dynamics of continuously structured populations (Bar-

les et al., 2009; Chisholm et al., 2016c; Desvillettes et al., 2008; Diekmann et al., 2005;

Jabin and Schram, 2016; Lorz et al., 2011; Mirrahimi and Perthame, 2015; Perthame

and Barles, 2008), we use the time scaling t 7! t

"
in the balance equation (2.5)1. This

gives the following nonlocal PDE for the local cell phenotypic distribution n
�
t

"
,x, y

�
=

n"(t,x, y)

8
>>>>>>>>>><

>>>>>>>>>>:

" @tn" � "
2
@
2
yy
n" � "

2 �xn" = R
�
y, ⇢"(t,x), s(t,x), c(t,x)

�
n" in ⌦,

⇢"(t,x) :=

Z

R
n"(t,x, y) dy ,

rxn" · û = 0 on @⌦ ,

(2.37)

In this scenario, under assumptions (2.24) and (2.25), we formally derive weak solutions

to (2.37) by considering the asymptotic regime " ! 0, which is equivalent to studying

the behaviour of n"(t,x, y) over many cell generations and in the case where sponta-

neous phenotypic changes and random cell movement induce small changes in the local

phenotypic distribution.
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Initial conditions. In agreement with much of the previous work on the mathematical

analysis of the evolutionary dynamics of continuously-structured populations (Perthame,

2006), we consider the case where at time t = 0 tumour cells that occupy the same position

are mainly in the same phenotypic state, that is, at every position x the initial local cell

phenotypic distribution n"(0,x, y) is a sharp Gaussian-like function with mean value

ȳ
0(x) 2 C(⌦), where ȳ

0 : ⌦ ! R, and integral ⇢"(0,x) 2 C(⌦), where ⇢"(0, ·) : ⌦ ! R>0.

Hence, we assume

n"(0,x, y) = exp


u
0
"
(x, y)

"

�
(2.38)

with u
0
"
(x, y) being a smooth, uniformly concave function of y for every x 2 ⌦ such that

0 < ⇢"(0,x) < 1 and

exp


u
0
"
(x, y)

"

�
⇤��*

"!0
⇢(0,x) �

�
y � ȳ

0(x)
�

for all x 2 ⌦ (2.39)

in the sense of measures, where �
�
y � ȳ

0(x)
�
is the Dirac delta distribution centred at

ȳ
0(x). We assume the bounds on ⇢" still hold in the limit "! 0, i.e. we assume

0 < ⇢(0,x) < 1 . (2.40)

Formal analysis results. Building upon the method presented by Barles et al. (2009);

Diekmann et al. (2005); Lorz et al. (2011); Perthame (2006); Perthame and Barles (2008),

we make the real phase WKB2 ansatz (Barles et al., 1989; Evans and Souganidis, 1989;

Fleming and Souganidis, 1986)

n"(t,x, y) = exp


u"(t,x, y)

"

�
. (2.41)

Formal calculations, reported in Appendix A.3, lead to the following constrained Hamilton-

Jacobi equation for u(t,x, y), the leading order term of the asymptotic expansion of

u"(t,x, y), in the asymptotic regime "! 0

8
<

:
@tu = R(y, ⇢(t,x), S(x), C(x)) + (@yu)2 + |rxu|2 x 2 ⌦

max
y2R

u(t,x, y) = 0 x 2 supp(⇢) ✓ ⌦
(2.42)

where ⇢(t,x) is the leading order term of the asymptotic expansion of ⇢"(t,x). A canonical

equation for the time evolution of a nondegenerate maximum point of u, i.e. a point

ȳ(t,x) = arg max
y2R

u(t,x, y), can be obtained for x 2 supp(⇢). Studying the steady state

solution of such equation, we obtain equilibrium values of ⇢ and ȳ, say ⇢1(x) and ȳ1(x).

2
The WKB ansatz takes its name from physicists Wentzel–Kramers–Brillouin and it is sometimes

referred to as Hopf-Cole transformation.
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Moreover, under definitions (2.6), (2.13) and (2.14) we have a unique solution for ȳ1(x)

at each x 2 ⌦.

Taken together, these formal results indicate that, in the framework of the assumptions

considered in this section, we can expect the local cell phenotypic distribution at steady-

state n1(x, y) to be of the form

n1(x, y) = ⇢1(x) �
�
y � ȳ1(x)

�
, (2.43)

with the local cell density ⇢1(x) and the locally dominant phenotypic state ȳ1(x) given

by 8
>><

>>:

⇢1(x) ⌘ ⇢1(S,C) = max

✓
0,

a(S,C)

⇣

◆
x 2 ⌦ ,

ȳ1(x) ⌘ ȳ1(S,C) = h(S,C) x 2 supp(⇢1) .

(2.44)

This also implies that the local mean phenotypic state of the tumour cells at steady-state,

say µ1(x), coincides with ȳ1(x), that is,

µ1(x) :=
1

⇢1(x)

Z

R
y n1(x, y) dy = ȳ1(x). (2.45)

Remark 3. In analogy with Remark 2, under the assumptions introduced in Section 2.2.2,

in the case where (2.19)-(2.23) coupled with (2.37) admits classical solutions s(t,x) and

c(t,x) that converge to some limits s1(x) and c1(x) as t ! 1, we expect that, in

the asymptotic limit of low motility, rare phenotypic changes and long times, the local

phenotypic distribution of tumour cells n(t,x, y) will be of the weak form

n1(x, y) = ⇢1(x) �
�
y � µ1(x)

�
, (2.46)

where

⇢1(x) ⌘ ⇢1(s1(x), c1(x)) = max

 
0,

a(s1(x), c1(x))

⇣

!
, (2.47)

and

µ1(x) ⌘ µ1(s1(x), c1(x)) = h(s1(x), c1(x)). (2.48)

Remark 4. The formal results obtained as t ! 1 in the asymptotic regime Dn ! 0

and � ! 0, presented in Section 2.2.2, are consistent with the strong solutions obtained

as t ! 1 for Dn = 0 and � > 0, presented in Section 2.2.1. This can be observed, for

instance, by considering the limit of solution (2.33)-(2.36) as � ! 0 and comparing this
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limit to (2.46)-(2.48). As � ! 0: the local cell density ⇢1(x) in (2.34) converges to

⇢1(x) = max

 
0,

a(x)�
p
� b(x)

⇣

!
��!
�!0

max

✓
0,

a(x)

⇣

◆
,

which corresponds to (2.47); the mean phenotypic state µ1(x) in (2.35) does not depend

on �, thus remains unchanged in the limit and corresponds to (2.48); the variance �2
1(x)

in (2.36) converges to

�
2
1(x) =

s
�

b(x)
��!
�!0

0 ,

which is consistent with the fact that, in this limit, the local phenotypic distribution at equi-

librium n1(x, y) takes the form of a Dirac delta distribution (2.46) instead of a Gaussian-

like function (2.33).

Remark 5. While the results of the analysis of evolutionary dynamics presented in Sec-

tion 2.2.1 only hold for y 2 R, the results of the formal asymptotic analysis presented

in Section 2.2.2 still hold in the finite domain y 2 [0, 1], as we detailed in Villa et al.

(2021c).

2.2.3 Biological interpretation of analytical results

The analytical results presented in Sections 2.2.1 and 2.2.2 allow us to extrapolate quali-

tative and quantitative information about the expected phenotypic distribution of tumour

cells in the idealised biological scenario of a closed system, comprising tumour cells and

abiotic factors such as oxygen and a chemotherapeutic agent, reaching an equilibrium.

They provide a mathematical formalisation of the idea that, when the concentrations of

oxygen and of chemotherapeutic agent are stationary, the local phenotypic distribution of

tumour cells at equilibrium can be fully characterised by its moments, which are in turn

determined by the local concentration of oxygen and chemotherapeutic agent, according

to the specific scenario under study. In particular:

• In the absence of spatial movement, we expect the cell population at equilibrium

to have a Gaussian-like phenotypic distribution at each point in space, with the

most prevalent phenotypic state corresponding to the fittest one dictated by local

environmental conditions (Section 2.2.1);

• In the case of low cell mobility and rare phenotypic changes, we expect the cell

population at equilibrium to be monomorphic at each point in space, where the

dominant phenotypic state is the fittest one dictated by local environmental condi-

tions (Section 2.2.2).

Let us now further consider the quantitative information that can be extrapolated from
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the analytical results presented in Section 2.2.1, i.e. the case in which the cells do not

undergo spatial movement. Note that similar biological interpretations can be drawn

from the formal results presented in Section 2.2.2, in view of the consistency of solutions

highlighted in Remark 4.

The moments of n1. According to the asymptotic results established by Theorem 1,

under stationary concentrations of oxygen S(x) and of chemotherapeutic agent C(x), we

expect the equilibrium values of the tumour cell density ⇢1(x), the local mean pheno-

typic state µ1(x) and the related variance �2(t,x) to be determined by said stationary

concentrations S(x) and C(x). This is illustrated by the heat maps in Figure 2.2, which

show how, for the biologically consistent parameter values listed in Table 2.1 (Dn = 0,

� = 10�6), the values of ⇢1, µ1 and �
2
1 given by (2.34)-(2.36) vary as functions of S

and C. Notice that the parameter values in Table 2.1 are such that ⇢1 > 0.

Figure 2.2: Plots of ⇢1(S,C), µ1(S,C) and �2
1(S,C). Plots of the equilibrium

cell density ⇢1, the equilibrium local mean phenotypic state µ1 and the related variance
�
2
1 given by (2.32) as functions of the stationary concentrations of oxygen S and of

chemotherapeutic agent C. The plots refer to the parameter values listed in Table 2.1
(Dn = 0, � = 10�6). The cell density is in units of 108 and the concentrations of oxygen
and of chemotherapeutic agent are scaled by the reference values S0 and C0 given in
Table 2.1, respectively.

These results demonstrate that spatial variation of the oxygen concentration determines

spatial variation of the tumour cell density, of the local mean phenotypic state and of the

related variance. Specifically, under the parameter values listed in Table 2.1 (Dn = 0, � =

10�6), the tumour cell density ⇢1 is an increasing function of the oxygen concentration.

Moreover, the local mean phenotypic state µ1 decreases from values close to y = 1 (i.e.

the state corresponding to the phenotypic variant with the highest rate of cellular division

via anaerobic energy pathways) to values close to y = 0 (i.e. the state corresponding

to the phenotypic variant with the highest rate of cellular division via aerobic energy

pathways) for increasing values of the oxygen concentration. This suggests that aerobic

phenotypic variants are to be expected to colonise oxygenated regions of the tumour, while

anaerobic phenotypic variants are likely to populate poorly-oxygenated regions. Finally,
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the local phenotypic variance �2
1 is a decreasing function of the oxygen concentration,

which supports the idea that higher levels of phenotypic variability may occur in hypoxic

regions of the tumour.

On the other hand, larger values of the concentration of chemotherapeutic agent bring

about smaller values of the tumour cell density ⇢1, a shift of the local mean phenotypic

state µ1 from values closer to y = 0 to values closer to y = 1 (i.e. the state corresponding

to the anaerobic phenotypic variant with the highest level of resistance to chemotherapy),

and smaller values of the local phenotypic variance �2
1. This indicates that the selective

pressure exerted by the chemotherapeutic agent causes a population bottleneck in tu-

mour cells leading to a reduction in cell density coming along with the selection of more

chemoresistant phenotypic variants and lower levels of phenotypic variability.

2.3 Numerical investigations

In this section we construct numerical solutions to the problem given by (2.5), (2.19) and

(2.20), subject to suitable initial conditions. All simulations are carried out using the

parameter values listed in Table 2.1, which are chosen to be consistent with the existing

literature – see Appendix C.1 for details. In Section 2.3.1, we describe the set-up of

numerical simulations and the methods employed to construct numerical solutions. In

Section 2.3.2, we consider the case of a 1D spatial domain whereby the concentrations

of oxygen and of chemotherapeutic agent are stationary. In Section 2.3.3, we focus on

the case of a 2D spatial domain and let the dynamics of oxygen and of chemotherapeutic

agent be governed by (2.19) and (2.20). In particular, in these two sections we consider

the problem in the absence of spatial di↵usion and compare our results to the analytic

ones reported in Section 2.2.1. In Section 2.3.4, we first consider the case where the blood

vessel distribution is reconstructed from clinical images obtained via D-OCT, and then

assess the impact of tissue vascularisation on intratumour phenotypic heterogeneity in

the absence of a chemotherapeutic agent. There, we consider the problem under small

values of spatial di↵usion and phenotypic variability, briefly verifying consistency with

the results in Section 2.2.2. This choice was made in view of the monotonicity results in

Section 2.2.2, in order to avoid the global level of phenotypic heterogeneity being a↵ected

by local phenotypic variability.

2.3.1 Set-up of numerical simulations and numerical methods

Set-up of numerical simulations of Section 2.3.2. For the numerical simulations

we present in Section 2.3.2, we define ⌦ := (0, 0.05) and assume that increasing values of
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x ⌘ x correspond to increasing values of the distance from a blood vessel located in x = 0.

Under the parameter values listed in Table 2.1 (Dn = 0, � = 10�6), the values of x are

in units of cm. Coherently with assumptions (2.24) and (2.25), we let the concentrations

of oxygen and of chemotherapeutic agent be stationary and given by

s(t, x) ⌘ S(x) and c(t, x) ⌘ C(x),

with the functions S(x) and C(x) defined as shown by the plots in Figure 2.3. Here,

the oxygen concentration S(x) is defined in such a way as to match the experimental

oxygen distribution presented in (Helmlinger et al., 1997, Fig. 3). Furthermore, the

concentration of chemotherapeutic agent C(x) is defined in such a way as to have a

behaviour qualitatively similar to that of S(x) and the value of C(0) is chosen in agreement

with experimental data presented by Helmlinger et al. (1997). We complement (2.26) with

Figure 2.3: Stationary concentrations of oxygen and of chemotherapeutic
agent considered in Section 2.3.2. Plots of the oxygen concentration S(x) and of
the concentration of chemotherapeutic agent C(x) used to obtain the numerical results
of Figure 2.4 and Figure 2.5. The coloured dots highlight the values of S(x) and C(x)
corresponding to the lines of the same colours in Figure 2.4 and Figure 2.5 – i.e. S(x)
and C(x) at x = 0.007 (red), x = 0.015 (blue) and x = 0.035 (green). The space
variable x is in units of cm, while both S(x) and C(x) are in units of g cm�3. The
oxygen concentration S(x) is defined in such a way as to match the experimental pO2

profile presented in (Helmlinger et al., 1997, Fig. 3). The conversion from mmHg of pO2

to g cm�3 of oxygen concentration was performed using the conversion factor 1mmHg=
4.6 ⇥ 10�8 g cm�3, which was estimated using the ideal gas law. The concentration of
chemotherapeutic agent C(x) is defined in such a way as to have a behaviour which is
qualitatively similar to that of S(x) and the value of C(0) is chosen in agreement with
experimental data presented in Helmlinger et al. (1997).

the initial condition (2.27) and assume

�
2(0,x) ⌘ �

2
0 = 1 , µ(0,x) ⌘ µ0 = 0.5 and ⇢(0,x) ⌘ ⇢0 ⇡ 108. (2.49)

45



Assumptions (2.49) correspond to a biological scenario whereby at the initial time t = 0

tumour cells are uniformly distributed across the spatial domain ⌦ and are mainly found

in the phenotypic state y = 0.5.

Set-up of numerical simulations of Section 2.3.3. For the numerical simulations

we present in Section 2.3.3, we define ⌦ := (0, 0.5)⇥ (0, 0.5) in order to model the cross-

section of a vascularised tumour tissue. Under the parameter values listed in Table 2.1

(Dn = 0, � = 10�6), the values of x 2 ⌦ are in units of cm. We let the dynamics

of oxygen and of chemotherapeutic agent be governed by (2.19) and (2.20), together

with definitions (2.21)-(2.23). We complement (2.26) with the initial condition defined

via (2.27) and (2.49), while (2.19) and (2.20) are complemented with the following initial

conditions

s(0,x) = S0 1!(x) and c(0,x) = C0 1!(x), (2.50)

with the values of S0 and C0 being those given in Table 2.1. These initial conditions

correspond to a biological scenario whereby at the initial time t = 0 tumour cells are

uniformly distributed across the spatial domain ⌦ and are mainly found in the phenotypic

state y = 0.5, while the oxygen and the chemotherapeutic agent are solely present in the

blood vessels.

Set-up of numerical simulations of Section 2.3.4. For the numerical simulations

we present in Section 2.3.4, we again consider ⌦ := (0, 0.5) ⇥ (0, 0.5) in order to model

the cross-section of a vascularised tumour tissue. Under the parameter values listed in

Table 2.1 (Dn = � = 10�13), the values of x 2 ⌦ are in units of cm. We let the

dynamics of oxygen be governed by (2.19), together with definitions (2.21)-(2.23), and

initial condition (2.50). On the other hand, we let the concentration of chemotherapeutic

agent be stationary and given by c(t,x) ⌘ 0. We complement (2.5) with the initial

condition (2.27) and assume

�
2(0,x) ⌘ �

2
0 = 0.05 , µ(0,x) ⌘ µ0 = 0.5 and ⇢(0,x) ⌘ ⇢0 ⇡ 108. (2.51)

Assumptions (2.51) are similar to (2.49), with the exception of �2
0 which is much smaller

in (2.51). This choice is consistent with the initial conditions of Section 2.2.2 and helps to

numerically portray the biological scenario in which at each point in space the population

is monomorphic. For the numerical results presented in Section 2.3.4, we make use of the

indices of intratumour phenotypic heterogeneity defined at the end of this section.

Numerical methods. Numerical solutions are constructed using a uniform discretisa-

tion of the interval [0, 0.05] or the square [0, 0.5]⇥ [0, 0.5] as the computational domain of
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the independent variable x. Moreover, a uniform discretisation of the set [�L,L] is used

as the computational domain of the independent variable y, with L = 7. We consider

t 2 [0,T], with T > 0 being the final time of simulations. The final time T is cho-

sen su�ciently large so as to ensure that the numerical solutions are su�ciently close to

equilibrium at the end of simulations (the exact values of T are reported in the figure cap-

tions). We discretise the interval [0,T] with a uniform step. The method for solving (2.5)

numerically, as well as (2.26), subject to the zero-flux boundary conditions

@yn(·, ·,�L) = 0 and @yn(·, ·,L) = 0 , (2.52)

as well as equations (2.19) and (2.20), is based on an explicit finite di↵erence scheme

using second order central di↵erence approximations for the second order derivatives,

the composite trapezoidal rule for the nonlocal terms and first order forward di↵erence

approximations for the time derivatives (LeVeque, 2007). Finally, numerical solutions to

the Cauchy problem (2.30) are constructed using the explicit Euler method. All numerical

computations are performed in Matlab. Details of the numerical schemes are given in

Appendix B.1.

Indices of intratumour phenotypic heterogeneity. In order to systematically as-

sess the impact of tumour tissue vascularisation on the level of intratumour phenotypic

heterogeneity in Section 2.3.4, we require a metric of vascular density and appropriate

indices of intratumour phenotypic heterogeneity. We define the vascular density % as

% :=
|!|
|⌦| . (2.53)

We quantify the level of intratumour phenotypic heterogeneity through the following

continuum versions of the equitability index E(t) (defined as a rescaled Shannon diversity

index) and the Simpson diversity index D(t) (Shannon, 1948; Simpson, 1949)

E(t) := �
Z

R

F (t, y) logF (t, y)

logN(t)
dy and D(t) :=

✓Z

R
F

2(t, y) dy

◆�1

, (2.54)

where the total cell mass N(t) and the fraction F (t, y) of cells in the phenotypic state y

within the tumour are defined according to (2.4).

2.3.2 1D numerical results under stationary concentrations of

oxygen and chemotherapeutic agent

The sample of numerical results presented in Figure 2.4 refer to the case where the oxygen

concentration s(t, x) ⌘ S(x) and the concentration of cytotoxic agent c(t, x) ⌘ 0, while
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the results presented in Figure 2.5 refer to the case where s(t, x) ⌘ S(x) and c(t, x) ⌘
C(x), with S(x) and C(x) being defined as illustrated by the plots in Figure 2.3.

Agreement between analytical and numerical results. In agreement with the

results established by Proposition 1, the numerical results displayed in the top rows of

Figure 2.4 and Figure 2.5 show that there is a perfect match between the cell density

⇢(t, x), the local mean phenotypic state µ(t, x) and the related variance �2(t, x) computed

via numerical integration of the local cell phenotypic distribution n(t, x, y), which is ob-

tained by solving numerically (2.26) subject to the initial condition defined via (2.27)

and (2.49), and the corresponding quantities obtained by solving numerically the Cauchy

problem (2.30) complemented with (2.49). Similarly, the sample of numerical results

presented in the bottom rows of Figure 2.4 and Figure 2.5 show that the local cell phe-

notypic distribution n(t, x, y) matches the exact local cell phenotypic distribution (2.29).

Moreover, in accordance with the asymptotic results established by Theorem 1, the cell

density, the local mean phenotypic state and the related variance converge, respectively,

to the equilibrium values ⇢1(x), µ1(x) and �2
1(x) given by (2.32).

Tumour cell dynamics in the absence of chemotherapeutic agent. The numer-

ical results of Figure 2.4 show that, in the absence of chemotherapeutic agent, since the

stationary oxygen concentration S(x) decreases monotonically with the distance from the

blood vessel located at x = 0 (vid. Figure 2.3), the cell density ⇢(t, x) at equilibrium is

maximal in the vicinity of the blood vessel (cf. red line), where the oxygen concentration

is higher, and decreases monotonically as the distance from the vessel increases (cf. blue

and green lines). Accordingly, the local mean phenotypic state at equilibrium increases

from values closer to y = 0 (i.e. the state corresponding to the phenotypic variant with

the highest rate of cellular division via aerobic energy pathways) to values closer to y = 1

(i.e. the state corresponding to the phenotypic variant with the highest rate of cellular

division via anaerobic energy pathways) moving away from the blood vessel. Moreover,

the local phenotypic variance �2(t, x) at equilibrium is a monotonically increasing func-

tion of the distance from the blood vessel (i.e. local phenotypic variability increases with

the distance from the blood vessel).

Tumour cell dynamics in the presence of chemotherapeutic agent. A compar-

ison of the numerical results of Figure 2.4 and Figure 2.5 reveals that in the regions in

close proximity of the blood vessel (cf. red lines), where its concentration is higher, the

chemotherapeutic agent leads to the occurrence of a population bottleneck in tumour

cells, which results in: a reduction of the equilibrium value of the cell density ⇢(t, x); a

selective sweep toward more resistant phenotypic variants, as demonstrated by the fact
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Figure 2.4: 1D numerical results under stationary concentration of oxygen
and in the absence of chemotherapeutic agent. First row: Plots of the cell density
⇢(t, x) (left panel), the local mean phenotypic state µ(t, x) (central panel) and the related
variance �2(t, x) (right panel) at x = 0.007 (red, solid lines), x = 0.015 (blue, solid lines)
and x = 0.035 (green, solid lines) obtained by solving numerically (2.26) subject to
the initial condition defined via (2.27) and (2.49), under the stationary concentration
of oxygen s(t, x) ⌘ S(x) displayed in Figure 2.3 and the stationary concentration of
chemotherapeutic agent c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent). The
black, dashed lines highlight the corresponding quantities obtained by solving numerically
the Cauchy problem (2.30) complemented with (2.49). Second row: Plots of the local
cell phenotypic distribution n(t, x, y) obtained by solving numerically (2.26) subject to
the initial condition defined via (2.27) and (2.49), under the stationary concentration
of oxygen s(t, x) ⌘ S(x) displayed in Figure 2.3 and the stationary concentration of
chemotherapeutic agent c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent), at
x = 0.007 (left panel), x = 0.015 (central panel) and x = 0.035 (right panel). Di↵erent
solid, coloured lines correspond to di↵erent time instants t and the dashed lines highlight
the exact solution (2.29) with �2(t, x), µ(t, x) and ⇢(t, x) given by numerical solutions of
the Cauchy problem (2.30) complemented with (2.49). The bullets on the axis of abscissas
highlight the value of the mean phenotypic state µ(t, x) at t = 5. The time variable t is
in units of 104 s, the space variable x is in units of cm and the parameters values used
are those listed in Table 2.1 (Dn = 0, � = 10�6).

that the equilibrium value of the local mean phenotypic state µ(t, x) shifts from values

closer to y = 0 (i.e. the state corresponding to the phenotypic variant with the highest

rate of cellular division via aerobic energy pathways) to values closer to y = 1 (i.e. the

state corresponding to the anaerobic phenotypic variant with the highest level of resis-

tance to chemotherapy); a reduction of the equilibrium value of the local phenotypic

variance �2(t, x). Moreover, moving away from the blood vessel, since its concentration
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decreases, the chemotherapeutic agent has a weaker impact on the dynamics of tumour

cells (cf. blue lines). As a result, the evolution of tumour cells in regions distal to the

blood vessel is hardly a↵ected by the chemotherapeutic agent (cf. green lines).

Figure 2.5: 1D numerical results under stationary concentrations of oxygen
and chemotherapeutic agent. First row: Plots of the cell density ⇢(t, x) (left panel),
the local mean phenotypic state µ(t, x) (central panel) and the related variance �2(t, x)
(right panel) at x = 0.007 (red, solid lines), x = 0.015 (blue, solid lines) and x = 0.035
(green, solid lines) obtained by solving numerically (2.26) subject to the initial condition
defined via (2.27) and (2.49), and under the stationary concentrations of oxygen s(t, x) ⌘
S(x) and chemotherapeutic agent c(t, x) ⌘ C(x) displayed in Figure 2.3. The black,
dashed lines highlight the corresponding quantities obtained by solving numerically the
Cauchy problem (2.30) complemented with (2.49). Second row: Plots of the local cell
phenotypic distribution n(t, x, y) obtained by solving numerically (2.26) subject to the
initial condition defined via (2.27) and (2.49), and under the stationary concentrations
of oxygen S(x) and chemotherapeutic agent C(x) displayed in Figure 2.3, at x = 0.007
(left panel), x = 0.015 (central panel) and x = 0.035 (right panel). Di↵erent solid,
coloured lines correspond to di↵erent time instants t and the dashed lines highlight the
exact solution (2.29) with �

2(t, x), µ(t, x) and ⇢(t, x) given by numerical solutions of
the Cauchy problem (2.30) complemented with (2.49). The filled bullets on the axis of
abscissas highlight the value of the mean phenotypic state µ(t, x) at t = 5, while the
empty bullets highlight the corresponding values obtained in the case where c(t, x) ⌘ 0
(i.e. in the absence of chemotherapeutic agent). The time variable t is in units of 104 s,
the space variable x is in units of cm and the parameters values used are those listed in
Table 2.1 (Dn = 0, � = 10�6).
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Tumour cell dynamics for di↵erent delivered doses of chemotherapeutic agent.

The numerical results of Figure 2.6 reproduce a realistic scenario whereby variation in the

delivered dose of the chemotherapeutic agent leads to pronounced changes in the agent

concentration in close proximity of the blood vessel while leaving the concentration far

from the blood vessel almost unchanged (vid. the stationary distributions of chemother-

apeutic agent displayed in the first panel of Figure 2.6). These results indicate that

increasing the value of the delivered dose leads to a reduction in the number of tumour

cells at the cost of promoting a selective sweep toward more resistant phenotypic variants

in the vicinity of the blood vessel – i.e. for values of x su�ciently close to 0, the area

under the curve of the equilibrium local cell phenotypic distribution shrinks (vid. the

plots in the second and third panel of Figure 2.6) and the equilibrium value of the local

mean phenotypic state progressively shifts from values closer to y = 0 to values closer to

y = 1 (vid. the insets in the second and third panel of Figure 2.6). This supports the

idea that higher doses of chemotherapeutic agent removes the selective barrier limiting

the growth of less proliferative and more resistant phenotypic variants in vascularised

areas of the tumour.

Figure 2.6: 1D numerical results for di↵erent delivered doses of chemother-
apeutic agent. Plots of the local cell phenotypic distributions n(T, x, y) at x = 0.007
(second panel), x = 0.015 (third panel) and x = 0.035 (fourth panel) obtained by solving
numerically (2.26) subject to the initial condition defined via (2.27) and (2.49), under
the stationary concentration of oxygen S(x) displayed in Figure 2.3 and di↵erent sta-
tionary concentrations of chemotherapeutic agent. In particular, the three stationary
concentrations of chemotherapeutic agent displayed in the first panel are used, that is,
C1(x) = 0.5C(x) (dotted line), C2(x) = C(x) (dashed line) and C3(x) = 1.5C(x) (solid
line), where C(x) is the reference concentration of chemotherapeutic agent displayed in
Figure 2.3. In the second, third and fourth panels, the local cell phenotypic distributions
at t = T corresponding to C1 (dotted lines), C2 (dashed lines) and C3 (solid lines) are
displayed, and the markers on the axis of abscissas highlight the value of the mean phe-
notypic state µ(T, x) corresponding to C1 (square), C2 (bullet) and C3 (diamond). The
insets in the second and third panel display a close-up of the axis of abscissas. The space
variable x is in units of cm, T = 106 s and the parameters values used are those listed in
Table 2.1 (Dn = 0, � = 10�6).
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2.3.3 2D numerical results under dynamical concentrations of

oxygen and chemotherapeutic agent

The sample of numerical results presented in Figure 2.7 and Figure 2.8 refer to the

case where the oxygen concentration s(t,x) is governed by (2.19), subject to the initial

condition (2.50), while the concentration of chemotherapeutic agent c(t,x) ⌘ 0. On the

other hand, the results presented in Figure 2.9 and Figure 2.10 refer to the case where

s(t,x) and c(t,x) are governed by (2.19) and (2.20), respectively, subject to the initial

conditions (2.50). In both cases, the set of points within the tumour tissue which are

occupied by blood vessels (i.e. the set !) is defined as illustrated by the plots in the first

panels of Figure 2.7 and Figure 2.9.

Agreement between analytical and numerical results. The sample of numerical

results presented in Figure 2.7 and Figure 2.9 show that, in the case of constant influx from

intratumoural blood vessels, the concentration of oxygen s(t,x) and the concentration of

chemotherapeutic agent c(t,x) obtained by solving numerically (2.19) and (2.20), subject

to the initial conditions (2.50), converge to some equilibria s1(x) and c1(x). As a result,

in agreement with our expectation based on the results established by Theorem 1 (cf. Re-

mark 2), the cell density ⇢(t,x) and the local mean phenotypic state µ(t,x) computed via

numerical integration of the local cell phenotypic distribution n(t,x, y), which is obtained

by solving numerically (2.5) subject to the initial condition defined via (2.27) and (2.49),

converge to the equilibrium values ⇢1(x) and µ1(x) given by (2.34) and (2.35). More-

over, the sample of numerical results presented in Figure 2.8 and Figure 2.10 show that

the local phenotypic distribution of tumour cells n(t,x, y) converges to the equilibrium

phenotypic distribution n1(x, y) given by (2.33).

Emergence of spatial gradients of oxygen and chemotherapeutic agent. The

numerical results of Figure 2.7 and Figure 2.9 show that, as one would expect based on the

experimental results presented by Helmlinger et al. (1997), the equilibrium concentration

of oxygen s(T,x) and the equilibrium concentration of chemotherapeutic agent c(T,x) are

maximal in the vicinity of the blood vessels and decrease monotonically with the distance

from the blood vessels. Moreover, these results demonstrate that the nonlinear interplay

between the spatial distribution of the blood vessels, the reaction-di↵usion dynamics

of oxygen and chemotherapeutic agent, and their consumption by tumour cells leads

naturally to the emergence of spatial inhomogeneities in the equilibrium concentrations

of such abiotic factors.
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Figure 2.7: 2D numerical results under dynamical concentration of oxygen
and in the absence of chemotherapeutic agent. First row: Plots of the oxygen
concentration s(T,x) (second panel), the cell density ⇢(T,x) (third panel) and the local
mean phenotypic state µ(T,x) (fourth panel), with T = 5 ⇥ 105 s, obtained by solving
numerically (2.26) and (2.19) imposing the initial conditions defined via (2.27), (2.49)
and (2.50), and assuming c(t,x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent).
The set ! in (2.22) consists of the parts of ⌦ highlighted in red in the first panel. Sec-
ond row: Plots of the oxygen concentration s(T, x1, 0.4) (second panel), the cell density
⇢(T, x1, 0.4) (third panel, blue line) and the local mean phenotypic state µ(T, x1, 0.4)
(fourth panel, blue line). The plot of the oxygen concentration s(T,x) is displayed in
the first panel, where the white, dashed line highlights the 1D cross-section correspond-
ing to x2 = 0.4. The red lines in the third and fourth panels highlight ⇢1(x1, 0.4) and
µ1(x1, 0.4) computed through (2.34) and (2.35) with s1(x1, 0.4) := s(T, x1, 0.4) and
c1 ⌘ 0. Third row: Same as the second row but for x2 = 0.2. The space variables x1

and x2 are in units of cm, and the parameters values used are those listed in Table 2.1
(Dn = 0, � = 10�6).

Tumour cell dynamics. The plots in Figures 2.7-2.10 demonstrate that the qualitative

behaviour of the numerical results obtained under stationary concentrations of oxygen

and chemotherapeutic agents displayed in Figure 2.4 and Figure 2.5 remains unchanged

when dynamical concentrations of oxygen and chemotherapeutic agent are considered.

Specifically, in the absence of chemotherapy, when moving away from the blood vessels,

the equilibrium value of the cell density ⇢(t,x) decreases, the local mean phenotypic state

µ(t,x) at equilibrium increases from values close to y = 0 to values close to y = 1, and

the equilibrium value of the related variance �2(t,x) increases (vid. Figure 2.7 and Fig-

ure 2.8). When chemotherapy is administered, its e↵ect is more pronounced in the prox-
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imity of the blood vessels and consists in a reduction of the equilibrium value of ⇢(t,x), a

shift of the equilibrium value of µ(t,x) toward y = 1 and a reduction of the equilibrium

value of �2(t,x) compared to the case where the chemotherapeutic agent is not present.

Moreover, the evolutionary dynamics of tumour cells is weakly a↵ected by chemotherapy

in regions far from the blood vessels, where the concentration of chemotherapeutic agent

is lower (vid. Figure 2.9 and Figure 2.10).

Figure 2.8: 2D numerical results under dynamical concentration of oxygen
and in the absence of chemotherapeutic agent. Plots of the oxygen concentration
s(T,x) (first panel) and the local cell phenotypic distribution n(T,x, y) at x = (0.15, 0.4)
(second panel), x = (0.16, 0.4) (third panel) and x = (0.3, 0.4) (fourth panel), with
T = 5 ⇥ 105 s, obtained by solving numerically (2.26) and (2.19) imposing the initial
conditions defined via (2.27), (2.49) and (2.50), and assuming c(t,x) ⌘ 0 (i.e. in the
absence of chemotherapeutic agent). The set ! in (2.22) consists of the parts of ⌦
highlighted in red in the first panel of Figure 2.7. The white, dashed line in the first
panel highlights the 1D cross-section corresponding to x2 = 0.4 and the bullets highlight
the points (0.15, 0.4), (0.16, 0.4) and (0.3, 0.4). In the second, third and fourth panels,
the bullets on the axis of abscissas highlight the value of the local mean phenotypic state
µ(T,x) and the black, dashed lines highlight the asymptotic limit (2.33) with ⇢1(x),
µ1(x) and �2

1(x) computed through (2.34) and (2.35) with s1(x1, 0.4) := s(T, x1, 0.4)
and c1 ⌘ 0. The space variables x1 and x2 are in units of cm, and the parameters values
used are those listed in Table 2.1 (Dn = 0, � = 10�6).

2.3.4 Numerical results assessing the impact of tumour tissue

vascularisation on intratumour phenotypic heterogeneity

In this section, we first comment on the consistency of the numerical and analytical so-

lutions at equilibrium in the case of Dn = � = 10�13. Then, we illustrate how blood

vessel distributions from clinical images may be used along with our modelling frame-

work in order to recreate an in silico phenotypic landscape of a vascularised tumour.

Finally, we systematically assess the impact of tumour tissue vascularisation on the level

of intratumour phenotypic heterogeneity, with numerical simulations considering first in-

creasing numbers of regularly distributed blood vessels, which correspond to increasing

values of the vascular density % defined in (2.53), and then di↵erent random distributions
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Figure 2.9: 2D numerical results under dynamical concentrations of oxygen
and chemotherapeutic agent. First row: Plots of the oxygen concentration s(T,x)
(second panel), the concentration of chemotherapeutic agent c(T,x) (third panel), the cell
density ⇢(T,x) (fourth panel) and the local mean phenotypic state µ(T,x) (fifth panel),
with T = 5 ⇥ 105 s, obtained by solving numerically (2.26), (2.19) and (2.20) imposing
the initial conditions defined via (2.27), (2.49) and (2.50). The set ! in (2.22) consists
of the parts of ⌦ highlighted in red in the first panel. Second row: Plots of the oxygen
concentration s(T, x1, 0.4) (third panel, blue line), the concentration of chemotherapeutic
agent c(T, x1, 0.4) (third panel, orange line), the cell density ⇢(T, x1, 0.4) (fourth panel,
blue line) and the local mean phenotypic state µ(T, x1, 0.4) (fifth panel, blue line). The
plots of the oxygen concentration s(T,x) and the concentration of chemotherapeutic
agent c(T,x) are displayed in the first and second panels, where the white, dashed lines
highlight the 1D cross-section corresponding to x2 = 0.4. The red lines in the fourth and
fifth panels highlight ⇢1(x1, 0.4) and µ1(x1, 0.4) computed through (2.34) and (2.35)
with s1(x1, 0.4) := s(T, x1, 0.4) and c1(x1, 0.4) := c(T, x1, 0.4). Third row: Same as the
second row but for x2 = 0.2. The space variables x1 and x2 are in units of cm, and the
parameters values used are those listed in Table 2.1 (Dn = 0, � = 10�6).

of blood vessels characterised by increasing levels of vessel clustering for a fixed vascular

density. We quantify the level of intratumour phenotypic heterogeneity through the eq-

uitability index E(t) and the Simpson diversity index D(t) defined in (2.54). We ignore

the chemotherapeutic agent to focus on the assessment of pre-treatment intratumour

heterogeneity, thus in the following we always consider c(t,x) ⌘ 0.

Agreement between analytical and numerical results. Solving numerically (2.5)

and (2.19), subject to initial conditions (2.27), (2.49) and (2.50) under the parameter set

reported in Table 2.1 (Dn = � = 10�13), for an arbitrary distribution of blood vessels,
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Figure 2.10: 2D numerical results under dynamical concentrations of oxy-
gen and chemotherapeutic agent. Plots of the oxygen concentration s(T,x) (first
panel), the concentration of chemotherapeutic agent c(T,x) (second panel) and the lo-
cal phenotypic cell distribution n(T,x, y) at x ⌘ (x1, x2) = (0.15, 0.4) (third panel),
x ⌘ (x1, x2) = (0.16, 0.4) (fourth panel) and x ⌘ (x1, x2) = (0.3, 0.4) (fifth panel), with
T = 5 ⇥ 105 s, obtained by solving numerically (2.26), (2.19) and (2.20) imposing the
initial conditions defined via (2.27), (2.49) and (2.50). The set ! in (2.22) consists of the
parts of ⌦ highlighted in red in the first panel of Figure 2.9. The white, dashed lines
in the first and second panels highlight the 1D cross-section corresponding to x2 = 0.4
and the bullets highlight the points (0.15, 0.4), (0.16, 0.4) and (0.3, 0.4). In the third,
fourth and fifth panels, the filled bullets on the axis of abscissas highlight the value of the
mean phenotypic state µ(T,x), while the empty bullets highlight the corresponding val-
ues obtained in the case where c(t,x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent).
Moreover, the black, dashed lines highlight the asymptotic limit (2.33) with ⇢1(x), µ1(x)
and �

2
1(x) computed through (2.34) and (2.35) with s1(x1, 0.4) := s(T, x1, 0.4) and

c1(x1, 0.4) := c(T, x1, 0.4). The space variables x1 and x2 are in units of cm, and the
parameters values used are those listed in Table 2.1 (Dn = 0, � = 10�6).

yields similar results to those displayed in Figure 2.7 (vid. supplementary Figure D.1).

This is in agreement with the analytic results of Section 2.2.2, in particular with the

equilibrium solutions (2.47) and (2.48). Moreover, we verified that the mean phenotypic

state µ(T,x) and of the maximum point of n(T,x, y) at equilibrium correspond, thus

verifying numerically the results (2.44) and (2.45) of our formal analysis (cf. insets in the

fourth panels of supplementary Figure D.1).

Reconstruction of blood vessel distributions from clinical images. The plots

in Figure 2.11 demonstrate that the qualitative behaviour of the numerical results in

Figure D.1 remains unchanged when spatial distributions of the intratumour blood ves-

sels reconstructed from clinical images are considered. These are the plots of the oxygen

concentration s(T,x), the cell density ⇢(T,x) and the mean phenotypic state µ(T,x)

obtained by solving numerically the problem given by (2.5) and (2.19) subject to the

initial conditions (2.27), (2.51) and (2.50), with ! defined according to the distributions

of blood vessels provided by the clinical images displayed in the first column of the figure,

which were obtained via D-OCT and correspond to three cross-sections of a malignant

melanoma at a depth of 0.02 cm (top panel), 0.03 cm (central panel) and 0.04 cm (bottom

panel) from the surface of the epidermis (Schuh et al., 2017, Fig. 5). These results also
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indicate that increasing levels of tumour vascularisation (from top to bottom panel in

the first column) lead to a more homogeneous spatial distribution of oxygen (second col-

umn), which correlates with a more uniform cell density (third column) and a less diverse

mean phenotypic state (fourth column). This suggests the existence of a relationship be-

tween the level of tumour tissue vascularisation and the level of intratumour phenotypic

heterogeneity, which is systematically investigated in the next subsection.

The impact of blood vessel density. The results obtained varying the vascular

density % are summarised by the plots in Figure 2.12, which display the equitability

index and the Simpson diversity index at the end of numerical simulations as functions

of %. Both diversity indices are relatively low for small values of the vascular density,

increase and reach a maximum value for intermediate values of the vascular density –

notice that both E(T) and D(T) attain their maximum at the same value of % – and then

decrease again for high values of the vascular density. This is due to the fact that, as

shown by the insets in Figure 2.12: for low blood vessel densities the oxygen concentration

s(T,x) is uniformly low throughout ⌦ and, therefore, the mean phenotypic state µ(T,x)

is uniformly close to y = 1 (cf. the insets related to % = 0.4 ⇥ 10�3); for intermediate

blood vessel densities the oxygen concentration is more heterogeneously distributed and,

as a consequence, the mean phenotypic state is more diverse (cf. the insets related to

% = 2.5⇥10�3); for high blood vessel densities the oxygen concentration is relatively high

throughout the tumour tissue and the mean phenotypic state is on average close to y = 0

(cf. the insets related to % = 8.1⇥ 10�3).

The impact of blood vessel clusterisation. The results obtained varying the level

of blood vessel clustering for a fixed vascular density % are summarised by the plots in

Figure 2.13, which display the oxygen distribution s(T,x) and the mean phenotypic state

µ(T,x), along with the corresponding fraction of cells in each phenotypic state F (T, y)

and diversity indices E(T) and D(T). These results refer to an intermediate value of %

that corresponds to the maximum of the equitability index and the Simpson diversity

index displayed in Figure 2.12 (i.e. % = 25⇥10�4). Both diversity indices decrease as the

level of blood vessel clustering increases (cf. the values of E(T) and D(T) in the insets

of the panels in the third column of Figure 2.13). In fact, for lower levels of blood vessel

clustering the oxygen concentration s(T,x) is more heterogeneously distributed and, as a

consequence, the mean phenotypic state µ(T,x) is more diverse and the cell phenotypic

distribution across ⌦ given by F (T, y) is rather uniform (cf. the plots in the first row of

Figure 2.13). On the other hand, for higher levels of blood vessel clustering, the oxygen

concentration is relatively high in the regions in close proximity to the clusters of blood

vessels and relatively low throughout the rest of tumour tissue. As a result, the mean
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Figure 2.11: Numerical results for blood vessel distributions reconstructed
from clinical images. First row: Plots of the oxygen concentration s(T,x) (second
panel), the cell density ⇢(T,x) (third panel) and the mean phenotypic state µ(T,x)
(fourth panel), with T = 5 ⇥ 105 s, obtained by solving numerically the problem given
by (2.5) and (2.19) subject to the initial conditions defined via (2.27), (2.51) and (2.50).
The set ! is reconstructed from the blood vessel distribution provided by the clinical
image displayed in the first panel, where the intratumoural vascular network is highlighted
in red. Second and third row: Same as the first row but for a di↵erent clinical image.
Clinical images are taken from Dermatology and Therapy 7(2), S. Schuh, J. Holmes, M.
Ulrich, L. Themstrup, G. B. Jemec, N. De Carvalho, G. Pellecani, J. Welzel, Imaging
blood vessel morphology in skin: dynamics optical coherence tomography as a novel
potential diagnostic tool in dermatology, 187-202, 2017, under Creative Commons licence
https://creativecommons.org/licenses/by-nc/4.0/ (Schuh et al., 2017, Fig. 5(d-
f)). These images correspond to three cross sections of a malignant melanoma at a depth
of 0.02 cm (first row), 0.03 cm (second row) and 0.04 cm (third row) from the surface
of the epidermis. The oxygen concentration s(T,x) is in units of 10�7 g cm�2, the cell
density ⇢(T,x) is in units of 108 cells cm�2, and the spatial variables x1 and x2 are in
units of cm. The parameter values listed in Table 2.1 (Dn = � = 10�13) except for
⌘s = 2⇥ 10�10 g cell�1.

phenotypic state is mostly close to y = 1 with the exception of the regions near the

clusters of blood vessels where it is close to y = 0, and the cell phenotypic distribution

across the whole tumour is approximatively bimodal, with a high peak at y = 1 and a

low peak at y = 0 (cf. the plots in the third row of Figure 2.13).
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Figure 2.12: E↵ect of varying blood vessel density on the level of intratumour
phenotypic heterogeneity. Plots of the equitability index E(T) and the Simpson
diversity indexD(T), with T = 5⇥105 s, for di↵erent definitions of the set ! characterised
by di↵erent values of the vascular density % defined according to (2.53). The equitability
index and the Simpson diversity index are computed numerically through formulas (2.54)
using the numerical solutions of the problem given by (2.5) and (2.19) subject to the initial
conditions defined via (2.27), (2.51) and (2.50). The insets display sample plots of the
oxygen distributions s(T,x) (top panel) and the mean phenotypic state µ(T,x) (bottom
panel) corresponding to di↵erent values of %. The Simpson diversity index D(T) is in
units of 104, the vascular density % is in units of 10�4, the oxygen concentration s(T,x)
is in units of 10�7 g cm�2, the spatial variables x1 and x2 are in units of cm, and the
parameter values used are those listed in Table 2.1 (Dn = � = 10�13).
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Figure 2.13: E↵ect of varying blood vessel clusterisation on the level of
intratumour phenotypic heterogeneity. First row: Plots of the oxygen distribution
s(T,x) (first panel), mean phenotypic state µ(T,x) (second panel) and fraction of cells
in each phenotypic state F (T, y) defined via (2.4) (third panel), with T = 5 ⇥ 105 s,
obtained by solving numerically the problem given by (2.5) and (2.19) subject to the
initial conditions defined via (2.27), (2.49) and (2.50). The set ! is defined according to
a random distribution of blood vessels characterised by vascular density % = 25 ⇥ 10�4

and a low level of blood vessel clustering. The values of the corresponding equitability
index E(T) and Simpson diversity index D(T), which are computed numerically through
formulas (2.54), are provided in the inset of the third panel. Second and third row:
Same as the first row but for a definition of the set ! corresponding to an intermediate
level (second row) and a high level (third row) of blood vessel clustering. The oxygen
concentration s(T,x) is in units of 10�7 g cm�2, the spatial variables x1 and x2 are in
units of cm, the Simpson diversity index D(T) is in units of 104, and the parameter values
used are those listed in Table 2.1 (Dn = � = 10�13).
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Chapter 3

Discussion and research

perspectives

3.1 Summary and discussion

The theoretical works and empirical data presented in Chapter 1 demonstrate how in-

tratumour phenotypic heterogeneity supports the emergence of therapeutic resistance

and therefore poses a major obstacle to anti-cancer therapy (Burrell and Swanton, 2014;

Chisholm et al., 2015; Gillies et al., 2012; Lipinski et al., 2016; Michor and Polyak, 2010;

Shah and Schwartz, 2001). It has been hypothesised that the emergence of phenotypic

heterogeneity among cancer cells within malignant tumours is an eco-evolutionary pro-

cess driven by spatial variability in the distribution of abiotic factors, which supports the

creation of distinct ecological niches whereby cells with di↵erent phenotypic characteris-

tics can be selected (Alfarouk et al., 2013; Kaznatcheev et al., 2017; Marusyk et al., 2012;

Sun and Yu, 2015). In particular, oxygen is one of the key abiotic components of the tu-

mour microenvironment that are implicated in the emergence of intratumour phenotypic

heterogeneity (Gillies et al., 2012; Lorenzi et al., 2018; Sun and Yu, 2015).

In Chapter 2, we have undertaken a mathematical study of the eco-evolutionary dynamics

of tumour cells within vascularised tumours both pre-treatment and under chemotherapy.

The study is based on analysis and numerical simulations of a nonlocal PDE model

that describes the phenotypic evolution of tumour cells and their nonlinear dynamic

interactions with the oxygen and chemotherapeutic drug, which are released from the

intratumoural vascular network. In particular, following previous works in the growing

literature of mathematical models of adaptive dynamics of populations structured by

a continuous trait (cf. Chapter 1), the model relies on a nonlocal reaction-di↵usion

equation describing the spatiotemporal evolution of a space- and phenotype-structured

population. Under stationary concentrations of oxygen and chemotherapeutic agent and

in the absence of spatial di↵usion, exact solutions to system (2.5) have been obtained and
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verified numerically. In the presence of spatial di↵usion, under analogous assumptions on

the abiotic factor concentrations, formal asymptotic analysis has been employed to obtain

weak solutions which are consistent with the exact solution obtained in the previous case.

The analytical and numerical results elucidate the adaptive processes that underpin the

emergence of intratumour phenotypic heterogeneity and development of resistance to

chemotherapeutic agents.

3.1.1 The emergence of intratumour phenotypic heterogeneity

and the development of chemotherapeutic resistance

The results of the analysis of evolutionary dynamics recapitulate previous theoretical re-

sults (Alfarouk et al., 2013; Anderson et al., 2006; Ardaševa et al., 2020c; Gallaher and

Anderson, 2013; Gillies et al., 2012; Ibrahim-Hashim et al., 2017; Kaznatcheev et al., 2017;

Lorenzi et al., 2018; Lorz et al., 2015; Marusyk et al., 2012; Sun and Yu, 2015) and ex-

perimental data (Padhani et al., 2007; Semenza, 2003; Sun and Yu, 2015; Tannock, 1968)

by demonstrating that spatial inhomogeneities in the concentration of oxygen promote

the selection of di↵erent phenotypic variants at di↵erent positions within the tumour.

More specifically, the analytical results indicate that the tumour tissue in the vicinity of

blood vessels is to be expected to be densely populated by aerobic phenotypic variants,

while poorly oxygenated regions of the tumour are more likely to be sparsely populated

by anaerobic phenotypic variants. Furthermore, the analytical results obtained in the

absence of spatial di↵usion support the idea that higher levels of phenotypic variability

may occur in hypoxic regions of the tumour, which provides a theoretical basis for exper-

imental results such as those presented by Axelson et al. (2005).

Coherently with observations made in previous theoretical and experimental studies

(Adamski et al., 2013; Brown and Giaccia, 1998; Powathil et al., 2012b; Sullivan et al.,

2008; Wartenberg et al., 2003), the analytical results also suggest that hypoxia favours

the selection for chemoresistant phenotypic variants prior to treatment, which facilitates

the development of resistance following chemotherapy. Moreover, these results put on a

rigorous mathematical basis the idea, previously suggested by formal analysis and numer-

ical simulations (Lorenzi et al., 2018; Robertson-Tessi et al., 2015), that chemotherapy

removes the selective barrier limiting the growth of chemoresistant phenotypic variants

by killing aerobic phenotypic variants in well-oxygenated regions of the tumour.

The analytical results are corroborated by the numerical simulations. The numerical

results also indicate that gradients of oxygen and chemotherapeutic agents, which are

released from the intratumoural vascular network, naturally emerge in vascularised tu-

mours due to the nonlinear interplay between the spatial distribution of the blood vessels,

the reaction-di↵usion dynamics of oxygen and chemotherapeutic agents, and their con-
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sumption by tumour cells.

3.1.2 Vascularisation and phenotypic heterogeneity

The results of numerical simulations of the model further establish a relation between

the degree of tissue vascularisation and the level of intratumour phenotypic heterogeneity,

measured either as the equitability index or the Simpson diversity index, which may be

a↵ected by the level of clusterisation of blood vessels. This supports the idea that maps

of the intratumour vascular network, which can be reconstructed from clinical images

obtained via non-invasive imagine techniques, such as D-OCT (Laviña, 2016; Schuh et al.,

2017) and many others (Anderson et al., 2001; Fukumura et al., 2010; Grimes et al.,

2016; Nobre et al., 2018; Padhani et al., 2007), could be clinically relevant, as they

could be used to inform targeted anticancer therapy (Marusyk et al., 2012; Powathil

et al., 2012a,b; Vaupel, 2004). In view of the simplifying assumptions on blood vessel

morphology and inflow rates of abiotic factors from the vasculature made in Chapter 2,

the aforementioned results would be of particular clinical relevance in combination with

vascular normalisation treatments (Jain et al., 2007; Magnussen and Mills, 2021). Whilst

numerical simulations were carried out considering a region of tumour tissue of area

2.5 ⇥ 10�3 cm2, which was chosen in agreement with clinical images provided by Schuh

et al. (2017), and using parameter values that are derived from specific cancer datasets,

given the robustness and structural stability of the results of analysis presented here,

we expect the conclusions of this study about the emergence of substantial intratumour

phenotypic heterogeneity driven by eco-evolutionary processes at the cellular scale to hold

when larger tumour regions and di↵erent cancer datasets are considered.

3.1.3 The role of spatial di↵usion

The results of the formal asymptotic analysis presented in Section 2.2.2, in the case where

cell movement is modelled through Fick’s first law, indicate that the qualitative behaviour

of the results obtained in the absence of spatial di↵usion remain unchanged in the asymp-

totic regime where the rate of spontaneous phenotypic variation and the cell di↵usivity

tend to zero. In order to disentangle and quantify the impact of spatial movement on the

emergence and development of intratumour phenotypic heterogeneity, it would be useful

to have exact solutions of (2.5). However, further developments of the method of proof

employed here are required in order to carry out a similar analysis of evolutionary dynam-

ics in more general scenarios. In fact, some works suggest that more significant spatial

movement may result in the emergence of a polymorphic population (Arnold et al., 2012;

Mirrahimi, 2017; Mirrahimi and Gandon, 2020).
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3.2 Research perspectives

3.2.1 Alternative temporal scales and stochasticity

In order to further assess the clinical relevance of intratumoural phenotypic landscapes

that could be drawn from clinical images discussed in Section 3.1.2, the model should

be validated experimentally. The results presented in Chapter 2 rely on the assump-

tion of a fixed vasculature in order to obtain a steady state solution and the intratu-

moural blood vessel maps that can be obtained from clinical images illustrate only a

snapshot of a complex biological system undergoing spatiotemporal changes. Despite the

long-time asymptotics considered to characterise the phenotypic landscapes discussed in

Section 2.3.4, we expect the drawn conclusions to be comparable with empirical obser-

vations in evolving vascularised tumours, given the agreement between the model results

presented in Section 2.3.3 and the empirical observations on intratumour phenotypic het-

erogeneity reported in Section 1.1.3. Moreover, the realistic time-scale at which chemore-

sistant phenotypic variants are selected in hypoxic regions may be shorter in view of the

hypoxia-induced up-regulation of HIF-1 (Denko, 2008; Lee et al., 2004; Semenza, 2010)

and related glycolytic switch (Baumann et al., 2007). This could be tested by extending

the model here presented to include a phenotypic drift induced by environmental stress,

i.e. hypoxia, similarly to the one proposed by Chisholm and coworkers (Chisholm et al.,

2016b, 2015; Lorenzi et al., 2015).

Furthermore, although well suited to modelling the dynamics of large cell populations,

PDE models like that considered here cannot capture adaptive phenomena that are driven

by stochasticity in the evolutionary paths of single cells, particularly relevant in the com-

parison with empirical data. Therefore, it would also be interesting to complement the

results of our study with numerical simulations of corresponding IB models which track

the evolutionary trajectories of single cells across a space of discrete phenotypic states,

as similarly done by Ardaševa et al. (2020a); Chisholm et al. (2016b, 2015); Stace et al.

(2020). In such case, the dynamics of tumour cells would be described in terms of a

branching random walk, while the concentrations of oxygen and chemotherapeutic agent

would be governed by discrete balance equations. This would make it possible to have a

more precise description of the phenotypic evolution of tumour cells in cases where cell

numbers are relatively low and, therefore, stochastic fluctuations in single-cell phenotypic

properties will have a stronger impact on intratumour phenotypic heterogeneity. This

may, for instance, be the case for highly vascularised tumours, where distances between

capillaries may be so small that only few cells reside in the space between them.
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3.2.2 Environmental fluctuations and additional abiotic factors

Further investigations on a possible link between the tumour blood vessel distribution and

the level of intratumour phenotypic heterogeneity could be undertaken, along the lines

of Scott et al. (2016), and extended to post-treatment scenarios. It would also be interest-

ing to include the e↵ect of temporal variation in the spatial distribution of intratumoural

blood vessels, which would make it possible to explore the influence of angiogenesis on the

evolutionary dynamics of tumour cells in vascularised tumours. More complex models

would need to be formulated in order to include explicit vascular dynamics, as indicated

by the extensive literature addressing the experimental and theoretical study of neovas-

cularisation processes – see Part III. Moreover, building upon the ideas presented by

Ardaševa and coworkers (Ardaševa et al., 2020b,c), it would be interesting to study the

e↵ect on the evolutionary dynamics of tumour cells of fluctuations in the rate of oxygen

inflow, which are known to influence intratumour phenotypic heterogeneity (Gillies et al.,

2018; Marusyk et al., 2012; Robertson-Tessi et al., 2015). Finally, while the focus of this

work has been on the impact of spatial variability in the oxygen and chemotherapeutic

agent concentrations on the emergence of intratumour phenotypic heterogeneity, building

on Fiandaca et al. (2021b), it would be interesting to extend the modelling framework

used here to incorporate the e↵ect of nonlinear dynamic interactions between tumour

cells and other abiotic factors, such as glucose and lactate, that are known to influence

the levels of intratumour phenotypic heterogeneity (Gatenby et al., 2007; Gatenby and

Gillies, 2007; Gillies and Gatenby, 2007; Kaznatcheev et al., 2017; Manem et al., 2015;

Molavian et al., 2009; Robertson-Tessi et al., 2015; Zhao et al., 2013).

3.2.3 Optimal therapeutic strategies

As similarly done in Almeida et al. (2019) and Pouchol et al. (2018), it would be relevant

to address numerical optimal control of the model equations in order to identify possible

delivery schedules of the chemotherapeutic agent that make it possible to minimise the

number of tumour cells at the end of the treatment or the average number of tumour cells

during the course of treatment (Chisholm et al., 2016a; Clairambault and Pouchol, 2019).

In particular, it would be relevant to verify whether the results presented by Almeida

et al. (2019) for a spatially homogeneous model carry through when spatial reaction-

di↵usion dynamics of the chemotherapeutic agent are incorporated into the model. In

this regard, it would be interesting to assess the impact of molecular properties of the

chemotherapeutic agent (e.g. decay, di↵usion and cellular uptake rates) and structural

properties of the intratumoural vascular network (e.g. vascular density and blood vessels

distribution) on the optimal chemotherapy schedule.
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3.2.4 A nonlocal PDE model of metastatic spread

Finally, the model considered here could be extended to carry out a mathematical study

of the eco-evolutionary dynamics of tumour cells in metastatic tumours. In this respect, a

modelling approach analogous to the one presented by Franssen et al. (2019), whereby dif-

ferent metastatic sites are represented as distinct compartments and the metastatisation

process is modelled by allowing tumour cells to transition from one site to another through

the intratumour blood vessels seen as entry/exit locations, may prove useful.

Building on Mirrahimi (2017) and Mirrahimi and Gandon (2020), insights on the eco-

evolutionary dynamics of metastatic cancers could first be gained considering a simpler

modelling framework. Consider the evolutionary dynamics of N 2 N cancer cell popula-

tions residing in N di↵erent sites of the body, each characterised by its local environment,

some of which may be connected. In particular, we label the primary tumour site as site

i = 1, while sites i = 2, .., N represent the N � 1 metastatic ones, as illustrated in Fig-

ure 3.1A. Proliferation, death and spontaneous phenotypic changes of population ni(t, y)

(i = 1, ..., N) is determined locally as in the model presented in Chapter 2. Moreover,

cells can transition between sites at a rate ⌫ij(y) which depends on site connectivity and

the cell phenotypic state, i.e. we have
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subject to suitable initial conditions. This model could be employed to disentangle the

evolutionary determinants of metastatic spread (e.g. the seed-and-soil hypothesis, sec-

ondary seeding), by investigating the conditions under which di↵erent solutions are ob-

served (cf. Figure 3.1B).

Figure 3.1: Modelling metastatic spread. (A) Schematic illustration of intercon-
nected metastatic sites modelled by system (3.1). (B) Example solutions of system (3.1).
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Part III

Modelling cluster formation in

vasculogenesis
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This part focusses on modelling the formation of clusters during the early stages of vascu-

logenesis. The formation of new vascular networks is essential for tissue development and

regeneration, in addition to playing a key role in pathological settings such as ischemia

and tumour development. Experimental findings in the past two decades have led to

the identification of a new mechanism of neovascularisation, known as cluster-based vas-

culogenesis, during which endothelial progenitor cells (EPCs) mobilised from the bone

marrow are capable of bridging distant vascular beds in a variety of hypoxic settings in

vivo. This process is characterised by the formation of EPC clusters during its early stages

and, while much progress has been made in identifying various mechanisms underlying

cluster formation, we are still far from a comprehensive description of such spatiotem-

poral dynamics. In addition, a systematic mathematical description of the determinants

of cluster formation and size may help unlock its full therapeutic potential. In order to

achieve this, we propose a novel mathematical model of the early stages of cluster-based

vasculogenesis, comprising a system of PDEs including key mechanisms such as endoge-

nous chemotaxis, matrix degradation, cell proliferation and nonlocal cell-to-cell adhesion.

We conduct a LSA on the system and solve the equations numerically, employing the nu-

merical solutions to investigate the determinants of cluster formation and cluster size.

The results, which qualitatively compare with data from in vitro experiments, elucidate

the complementary role played by endogenous chemotaxis and matrix degradation in

the formation of clusters, suggesting chemotaxis is responsible for the clusters’ structure

while matrix degradation is responsible for the speed of cluster formation. Our results

also indicate that the nonlocal cell-to-cell adhesion term in our model, even though it ini-

tially causes cells to aggregate, is not su�cient to ensure clusters are stable over long time

periods. Consequently, new modelling strategies for cell-to-cell adhesion are required to

stabilise in silico clusters. The results of the proposed model are compared with related

findings in the extant literature and various promising future research perspectives are

identified.

Part III is organised as follows: in Chapter 4 the biological background leading to relevant

in vitro studies of cluster-based vasculogenesis is presented together with an overview of

the mathematical models of vasculogenesis proposed in the literature; in Chapter 5 a

nonlocal PDE model of EPC cluster formation during the early stages of vasculogenesis

is presented together with its analytical and numerical results; in Chapter 6 a thorough

discussion of the results is given together with promising research perspectives.

The contents of Part III are based on the paper Villa et al. (2022).
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Chapter 4

Biological and modelling

background

4.1 Endothelial progenitor cell cluster-based vascu-

logenesis

Blood vessels are tubular structures of various sizes – with diameters varying between 5µm

(capillaries) and 2cm (aorta) – which carry blood throughout the body and they are part

of the circulatory system (Gartner, 2020). Capillaries, the smallest type of blood vessel,

are composed of a layer of mature endothelial cells (ECs), called endothelium, covered by

what is known as the basement membrane, separating it from the surrounding connective

tissue1. Arteries and veins have a more laminated structure, composed of a thick outer

layer (tunica externa or adventina) made up of connective tissue, an even thicker middle

layer (tunica media) made up of circularly arranged elastic fibers and smooth muscle cells,

and a thin inner layer (tunica intima) of endothelium supported by a subendothelial layer.

The void area in which the blood flows is known as the lumen.

The formation of new vascular networks is essential for tissue development and regenera-

tion, since a functional vasculature is critical for tissue homeostasis. It is responsible for

the delivery of oxygen and nutrients as well as the disposal of waste products. In addition,

neovascularisation of local tissue is critical in a variety of pathological processes, among

which are retynopathy, wound healing, soft-tissue ischemia2 and tumour growth (Ramos

et al., 2018). As seen in Section 1.1.1, the development of a vascular network in localised

solid tumours is particularly well-known to promote further tumour growth and metas-

1
Connective tissue supports, protects, and gives structure to other tissues and organs in the body; it

is made up of cells, fibers and a gel-like substance (interstitial matrix).
2
Ischemia is a restriction in blood supply, causing a shortage of oxygen and nutrients needed for cellular

metabolism and inadequate removal of metabolic waste, resulting in tissue damage or dysfunction.
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tases. Therefore a better understanding of the mechanisms governing neovascularisation

can help improve current therapeutic strategies, as well as identify new ones.

New blood vessels may form from pre-existing ones through the neovascularisation process

known as angiogenesis. Vasculogenesis, on the other hand, is the de novo formation of

blood vessels, during which endothelial progenitor cells (EPCs) reorganise into networks

and subsequently di↵erentiate into mature ECs, as summarised in Figure 4.1. This is an

important distinction since EPCs are highly proliferative cells, unlike mature ECs (Asa-

hara et al., 1997; Blatchley et al., 2019; Kukumberg et al., 2021; Vajkoczy et al., 2003;

Zhang et al., 2014). Once a new network-like pattern of mature ECs has formed, lumen

formation occurs along EC cords due to a series of complex molecular mechanisms in-

volving cell shape changes (Lammert and Axnick, 2012). Di↵erent biological, chemical

and mechanical processes are at the basis of EC and EPC reorganisation into networks,

and they involve a variety of homotypic and heterotypic interactions3.

Figure 4.1: Neovascularisation processes. Visual summary of vascular network
formation via vasculogenesis (EPCs, de novo) and angiogenesis (mature ECs, from pre-
existing vessels). Figure produced by editing illustrations by L. Govi, with permission
from the artist.

4.1.1 Homotypic and heterotypic interactions

Cells are equipped with membrane receptors, usually transmembrane proteins, which

mediate signal transduction for cellular responses to extracellular stimuli (Yeagle, 2016).

The receptors can bind to extracellular molecules – e.g. nutrients, growth factors, cell

adhesion molecules (CAM) – on one side of the membrane and the binding induces a

cascade of chemical changes thus transmitting information to the other side of it.

Chemotaxis. A key growth factor for blood vessel formation is the Vascular Endothe-

lial Growth Factor (VEGF), which may stimulate EC proliferation during angiogenesis

3
Cell interactions with cells of the same type are called homotypic, while those with other cell types

or extracellular components are called heterotypic.
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and EPC di↵erentiation into mature ECs (Heloterä and Alitalo, 2007; Weinberg, 2013).

VEGF is also a well-known chemoattractant, inducing cell migration towards areas of

high VEGF densities. When the chemoattractant’s source is external, we refer to this

type of migration as exogeneous chemotaxis, while we use the term endogenous chemo-

taxis when the chemoattractant is being secreted by cells within the same population. In

fact, ECs and EPCs can themselves secrete VEGF (Heloterä and Alitalo, 2007).

Adhesion. Cells may adhere to other cells or extracellular components due to CAMs

(Roberts et al., 2002), which provide anchorage, cues for migration, and signals for growth

and di↵erentiation. In particular, ECs and EPCs are the only cell types expressing vascu-

lar endothelial cadherin (VE-cadherin), which allows them to create cell-to-cell adhesion

bonds (Blatchley et al., 2019; Vestweber et al., 2009). On the other hand, cells may

also adhere to components of what is known as the extracellular matrix (ECM) due to a

family of CAMs called integrins (Bachmann et al., 2019; Ruoslahti et al., 1991).

Extracellular matrix. The ECM is the non-cellular component of tissues and organs

in which the cells are embedded, providing essential sca↵olding for the cells as well as

a series of biochemical and biomechanical cues required for tissue morphogeneis, dif-

ferentiation and homeostasis (Frantz et al., 2010; Ingber, 2003; Khalilgharibi and Mao,

2021; Kular et al., 2014; Wolf and Friedl, 2011). It is made up of fibrous proteins and

macromolecules, partly produced by the cells embedded in it, generally made of polymer

chains4 or long filaments, which are interconnected via cross-linkers5, while the remain-

ing space is occupied by interstitial fluid6. The most abundant structural proteins in the

ECM are collagen and elastin. Collagen is arranged into fibrils, structures which confer

to connective tissues the tensile strength required to withstand mechanical stresses (e.g.

tension, shear stresses, pressure), while elastin confers to the ECM the ability to recover

from continuous stretching. Non-structural proteins of the ECM, such as fibronectin and

laminin, are linked to integrins and therefore play a key role in cell adhesion. We can

distinguish between two forms of ECM:

1. The basement membrane: a thin and dense ECM layer between epithelial cells7 and

other cell types which can be found in blood vessels and epithelial and endothelial

tissues, mostly made up of collagen, laminin and fibronectin;

4
Polymer chains are macromolecules formed by the chemical bonding of large numbers of smaller

molecules, or repeating units, called monomers.
5
A cross-link is a bond or short sequence of bonds linking one polymer chain to another.

6
The interstitial fluid is mostly made up of water and proteoglycans (extremely hydrophylic

molecules), with space-filling and lubricating functions.
7
Epithelial cells are a type of cell that covers internal and external body surfaces; endothelial cells

are a specialised type of epithelial cells that only line the internal surfaces of the components of the

circulatory system.
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2. The interstitial matrix: the porous 3D ECM lattice found in connective tissue,

mostly made up of collagen, elastin and fibronectin, with the latter being responsible

for the organisation of the matrix structure.

During in vitro studies for tissue engineering applications di↵erent types of ECM sca↵olds

can be used, such as natural ECM (e.g. collagen), other biomaterials (e.g. fibrin), ex vivo

decellularised ECM (e.g. Matrigel) or syntetic ECM (e.g. hydrogels) (Brafman, 2013;

Hoshiba and Yamaoka, 2019; Kular et al., 2014; Wolf and Friedl, 2011).

Cell-matrix interactions. Cellular adhesion to the ECM via integrins leads to a great

variety of heterotypic interactions (Espina et al., 2021; Harris Jr, 1984; Khalilgharibi and

Mao, 2021; Kular et al., 2014; Rau↵ et al., 2019; Wolf and Friedl, 2011). First of all cells

can exploit such adhesion bonds to move within the extracellular environment, which

they can sense and scout using thin membrane protrusions called filopodia. In this re-

gard, cells have a tendency to move towards areas of higher ECM density (haptotaxis)

or higher ECM sti↵ness (durotaxis), as these areas provide, respectively, more and more

solid structural support for the cells. The ECM sti↵ness is a mechanical property quan-

tifying its resistance to deform under stress, and it is generally linked with the number of

cross-links between collagen fibers. Via transduction and mechanotransduction (respec-

tively, the transmission of chemical signals and mechanical forces via cell adhesion bonds),

ECM sti↵ness can a↵ect the cell cytoskeletal structure8 and sti↵ness, with important con-

sequences on cell morphology and movement. On the other hand, cells adhering to the

ECM and pulling on it in order to migrate may generate considerable traction forces ca-

pable of deforming the ECM. In addition, high ECM density may impose serious physical

limits of cell migration, which can be overcome by the cells secreting matrix degrading

enzymes such as matrix-metalloproteases (MMPs), which may be membrane-bound or

di↵usible, and are responsible for proteolytic degradation of the ECM.

4.1.2 In vivo processes of vascular network formation

Embryonic vasculogenesis. The first occurrence of formation of new vasculature in

living organisms is embryonic vasculogenesis, as the cardiovascular system is the first func-

tional organ system to develop in the embryo. This process takes place in the mesoderm9,

in which reside EPCs called angioblasts. These assemble into a vascular pattern by cell

migration and cohesion (Poole et al., 2001). In particular, together with hematopoietic

precursor cells10, they aggregate to form blood islands. After aggregation, angioblasts

8
The cytoskeleton is a cellular structure made up of filamentous proteins, from microtubules to actin

microfilaments, responsible for structural support, substance transport and movement of the cell.
9
The mesoderm is the middle of the three embryonic germ layers (between ectoderm and endoderm).

10
Hematopoietic precursor cells are stem cells capable of di↵erentiating into blood cells.
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di↵erentiation into ECs occurs, an event followed by lumen formation and basal lamina11

production. The growth and fusion of multiple blood islands results in a primitive cap-

illary network (Kolte et al., 2016; Risau and Flamme, 1995), from which an extended

vascular network can form via angiogenesis.

Angiogenesis. New blood vessels may form from pre-existing ones through two types

of angiogenesis (Adair and Montani, 2010):

(i) Intussusceptive angiogenesis, or splitting angiogenesis, during which elements of

interstitial tissues invade existing vessels due to the extension of the vessel wall into

the lumen causing a single vessel to split in two;

(ii) Sprouting angiogenesis, during which new sprouts composed of ECs grow from

existing blood vessels towards areas devoid of blood vessels.

In the embryo, as often in local tissue of the adult organism, angiogenesis is driven by

angiogenic stimuli activated by hypoxia. Low oxygen levels stimulate HIF-↵-mediated

gene expression of pro-angiogenic factors, such as VEGF, in parenchymal12 cells (Rahimi,

2012). In sprouting angiogenesis, the pro-angiogenic factors induce blood vessel’ basement

membrane degradation, proliferation of ECs and migration towards the origin of the

angiogenic stimuli, i.e. exogenous chemotaxis. This is followed by tube formation and

remodelling before maturation of the new blood vessels (Kolte et al., 2016), and in order

for blood to circulate in the new vasculature anastomosis may need to occur, that is, the

fusion of vessel segments to eliminate dead ends (Diaz-Santana et al., 2015).

Postnatal vasculogenesis. The distinction between blood vessels that originated by

cell di↵erentiation in situ (vasculogenesis) and those which developed from pre-existing

vessels (angiogenesis) has been clear since the early days of the field of study of early

vascular development (Sabin, 1917). On the other hand, for a long time the term vasculo-

genesis has only been associated with the early embryonic vasculogenesis described above,

while blood vessel formation in adult organisms was believed to be formed predominantly,

if not exclusively, via angiogenesis (Risau and Flamme, 1995). This understanding of neo-

vascularisation, constraining vasculogenesis to only occur during embryonic development,

has quickly changed over the past two decades. Asahara et al. (1997) first isolated puta-

tive EPCs from human peripheral blood, which were shown to di↵erentiate in vitro into

ECs and be incorporated in active angiogenic sites in ischemic tissue. These circulating

EPCs were then found to be recruited from the bone marrow and mobilised to the periph-

eral circulation to reach angiogenic sites in vivo (Asahara et al., 1999; Shi et al., 1998).

11
The basal lamina is a layer of ECM secreted by the epithelial cells, on which the epithelium sits; it

constitutes a portion of the basement membrane.
12
Parenchymal cells are those contributing to the functional parts (the parenchyma) of organs or

structures such as tumours, as opposed to the structural parts (the stroma, e.g. connective tissue).
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Since these discoveries, much progress has been made in recognising the origin and role

of EPCs – both in animals and humans – in neovascularisation of developing tumours,

wound healing, ischemia and physiological neovascularisation (Asahara and Kawamoto,

2004; Asahara et al., 1999)introducing the notion of postnatal vasculogenesis.

4.1.3 In vitro single-cell vasculogenesis

We have seen that mature ECs reside in the endothelium of blood vessels and thus

only participate in in vivo neovascularisation through angiogenesis. Despite this, many

in vitro studies of vasculogenesis actually investigate the direct reorganisation into a

vascular network of sparse single ECs. Di↵erent types of ECs have been considered, the

most popular one being human umbilical vein endothelial cells (HUVECs), and cultured

mostly in fibrin gels and Matrigel (Ambrosi et al., 2005; Morin and Tranquillo, 2013;

Sasaki et al., 2017; Serini et al., 2003). We will henceforth refer to this process as “single-

cell” vasculogenesis. The work of Serini et al. (2003) has particularly caught the attention

of the mathematical community – see Section 4.2.1.

Serini et al. (2003) investigated single-cell vasculogenesis in Matrigel. During the early

stages of this process, ECs were observed to undergo rapid motion, during which they

maintained a round shape, until collision with their closest neighbours (3-6 hours). They

then proceeded to reorganise into a continuous multicellular network, which can be repre-

sented as a collection of nodes connected by capillary cords (of mean length ` ⇡ 200µm),

exhibiting a more elongated morphology, until network stabilisation (9-15 hours). The

authors observed that EC trajectories have a high degree of directional persistence and

undergo endogenous chemotaxis following VEGF-A. Moreover, they observed the forma-

tion of groups of disconnected structures, instead of a single connected network, below a

critical density of 100 cells/mm2. Increasing the cell density above 200 cells/mm2 resulted

in increased cord thickness eventually leading to a cell monolayer with void areas called

lacunae, that is, a “Swiss-cheese” pattern.

Investigation of single-cell vasculogenesis in fibrin gels indicated that vessel formation is

inhibited by low cell numbers, similarly to what is observed in Matrigel, and a high gel

density, while it is fostered by exogenous chemotaxis (Morin and Tranquillo, 2013).

4.1.4 In vivo and in vitro cluster-based vasculogenesis

With increased attention being given to circulating EPCs and postnatal vasculogene-

sis came a deeper understanding of the mechanisms behind de novo vascularisation. In

particular, a new vasculogenic mechanism has been identified, characterised by EPC
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cluster formation during the early-stages of this process and thus referred to as cluster-

based vasculogenesis. This neovascularisation process has been documented in animal

models, specifically in hypoxic settings in vivo, such as in ischemia and tumour vasculari-

sation (Blatchley et al., 2019; Tepper et al., 2005; Vajkoczy et al., 2003). As indicated by

Tepper et al. (2005), prior to these experiments there had not been any direct evidence for

true in situ vasculogenesis in adult physiology. Nevertheless, as described in Section 4.1.2,

previous embryonic vasculogenesis studies anticipated the ability of EPCs to organise into

clusters – specifically blood islands – from which to extend projections and form vascular

networks. Cluster-based vasculogenesis has also been observed in embryos, such as during

cranial vasculature formation in zebrafish embryos (Proulx et al., 2010), in a later stage

than that of the formation of the primary vascular plexus. Recall that, as anticipated

in Section 4.1.2, prior to the discovery of circulating EPCs and cluster-based vasculoge-

nesis, the term vasculogenesis was used to indicate embryonic vasculogenesis – i.e. the

formation of the primary vascular plexus. Many works in the literature still consider this

definition, such as Vajkoczy et al. (2003) who have proposed the term “angiomorphosis”

(from the Greek words “angio” for blood vessel and “morphosis” to give shape, to form)

for the neovascularisation process under study, to distinguish it from angiogenesis and

vasculogenesis. Nowadays, the term vasculogenesis is more often used to indicate any de

novo vascular formation that does not originate from pre-existing blood vessels. For this

reason, we here choose to use the term “cluster-based” vasculogenesis, first introduced

by Blatchley et al. (2019), for the process under study as it quickly summarises its key

di↵erence with single-cell vasculogenesis. Below we report the main findings of in vivo

studies in which this mechanisms was first described.

In vivo cluster-based vasculogenesis. Vajkoczy et al. (2003) conducted an ani-

mal model study of the contribution of ex vivo–expanded embryonic EPCs (eEPCs) to

tumour-induced blood vessel growth in the adult, and mention similar experiments on

tissue ischemia models. Tepper et al. (2005) and Blatchley et al. (2019) also studied post-

natal vasculogenesis in ischemic tissue in vivo. All of these authors observed cluster-based

vasculogenesis, occurring through the following steps:

(i) Circulating EPCs are mobilised and home into hypoxic and ischemic sites (e.g.

through growth factors and oxygen gradients);

(ii) Recruited EPCs attach to the local endothelium (via integrins and intercellular

adhesion molecules);

(iii) EPCs extravasate to the interstitial tissue, actively proliferate and form clusters;

(iv) EPC clusters undergo sprouting and anastomose with existing blood vessels, revas-

cularising the local microenvironment.

The final network formed was reported to be larger than previously observed ones formed

via angiogenesis or single-cell vasculogenesis (Blatchley et al., 2019). In fact, EPC clus-
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ters form in regions far from pre-existing blood vessels and, after sprouting, function

as a bridge for distant vascular beds, allowing for neovascularisation in physiological

and pathological settings in which angiogenesis alone would not have su�ced. Vajkoczy

et al. (2003) specifically report that recruitment, extravasation, survival and incorpora-

tion into functional tumour blood vessels of eEPCs within a few days (⇠ 4 days) was

tumour-specific, by comparison with control experiments. Interestingly, they detected no

significant e↵ect of eEPC incorporation in the local vasculature on the total vessel density

and tumour size. This suggests that eEPCs may be used to regulate tumour vasculature

and hence optimise drug delivery to treat tumours without stimulating tumour growth.

In tissue ischemia models, recruitment, adhesion to the local endothelium, localised mi-

gration and proliferation of recruited EPCs were significantly increased in severe hypoxia

(⇠ 0.5% O2 tension). Tepper et al. (2005) report that, by day 14, cord-like structures

along ischemic gradients had formed – i.e. blood vessels entirely made of EPCs – which

canalised and connected with existing vasculature. Contrary to observations in tumour

vascularisation, in ischemic tissues this process resulted in increased vessel density, blood

flow levels and tissue function.

In vitro cluster-based vasculogenesis. Akita et al. (2003) reported that EPC dif-

ferentiation, secretion of pro-angiogenic factors, such as VEGF, and migration were en-

hanced by hypoxic conditioning (i.e. exposition to hypoxia for an extended period of

time), resulting in increased EPC cluster formation in hypoxia in vitro. While the re-

cruitment of circulating EPCs to regions of hypoxia and ischemia has been well defined,

it is not yet understood how clusters form and what drives subsequent vascular sprouting.

This was further investigated by Blatchley et al. (2019) who, thanks to oxygen controllable

hydrogels, reproduced hypoxic gradients in vitro (hypoxia defined by <5% O2 tension),

see Figure 4.2A, in which they deposited a high concentration of a subtype of EPCs,

known as endothelial colony-forming cells (ECFCs). Cluster formation was eventually

observed in highly hypoxic conditions (⇠ 1% O2), while not in non-hypoxic ones – see

Figure 4.2B. In particular, cluster formation started 6-12 hours after encapsulation, by

which time an oxygen gradient was present. Cluster sizes increased up to 24 hours, while

the number of single cells decreased, and stayed at a consistent level up to 48 hours, sug-

gesting clusters reached their maximum natural size at the 24 hour mark, with diameters

in the range 100-400µm. After 24 hours increased cell-to-matrix interactions were ob-

served with extensive sprouting from the clusters taking place after 48 hours. Within 72

hours a network up to 500µm in length had formed, much larger than single-cell vasculo-

genesis derived networks. In the course of the experiment, high matrix-degrading activity

was recorded in hypoxic regions, starting at the 6 hour mark with a significant increase
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Figure 4.2: In vitro cluster-based vasculogenesis. (A) Illustration summarising
the 3D in vitro experimental set ups considered by Blatchley et al. (2019) to study EPC
cluster formation in hypoxic gradients (bottom) and in control nonhypoxic environments
(top). (B) Corresponding experimental images displaying cluster formation after 48 hours
in hypoxic environments (bottom), while no clusters formed in nonhypoxic conditions
(top). (C) Time-lapse microscopy and (E) subsequent quantification of number of cells
in clusters (top) and single cells (bottom) observed over time at di↵erent heights in the
3D hypoxic hydrogel. Figures reproduced from (Blatchley et al., 2019, Figure 1) under
Creative Commons licence https://creativecommons.org/licenses/by-nc/4.0/.

by 18 and 24 hours, thanks to the employment of DQ-gelatin13. This suggests protease-

mediated matrix degradation, up-regulated in hypoxic conditions, may be responsible

for cluster formation. This was supported by further experimental observations indicat-

ing MMP-1 was significantly more prevalent under hypoxic conditions than non-hypoxic

ones, and that a high concentration of MMP inhibitor hindered cluster formation. Upon

13
DQ-gelatin is a fluorogenic substrate that can be used to detect protease activity in vitro.
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cluster formation, clusters are stabilised by CAM, such as VE-cadherin, and cells at the

cluster periphery extend filopodia towards the outside ready to sprout. The increased

cell-ECM interaction plays a big role in the extensive sprouting from clusters and network

formation. In particular, vascular networks extended below the clusters, suggesting the

extensive matrix degradation needed for cluster formation may inhibit vascular network

formation. In addition, an increase in matrix sti↵ness was observed to speed up sprouting

and lead to extensive vascular network formation. Figure 4.3 provides a summary of the

cluster-based vasculogenesis mechanism proposed by Blatchley et al. (2019).

While the findings reported in this section are significant steps forward in the understand-

ing of cluster-based vasculogenesis, much further work is required to reach an exhaustive

comprehension of the process, as well as to unlock its full potential in therapeutic interven-

tions in a variety of pathological conditions. In this regard, mathematical modelling can

help elucidate the mechanisms behind cluster and network formation, as demonstrated

by previous works investigating single-cell vasculogenesis, discussed in Section 4.2.

Figure 4.3: Cluster-based vasculogenesis steps. Summary of the steps of cluster-
based vasculogenesis: (A) EPCs in the bone-marrow enter the circulation and reach the
hypoxic site; (B) local hypoxia fosters EPC production of matrix degrading enzymes
(MMP-1) and chemotactic agents (VEGF); (C) clusters form and are stabilised by cell-
adhesion molecules (CAM); (D) cell-matrix interactions increase, sprouting from clusters
occurs and a vascular network forms.
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4.2 Mathematical models of vasculogenesis

While the mathematical model we will present in Chapter 5 is the first one formulated

to study cluster-based vasculogenesis, many have been proposed to investigate in vitro

single-cell vasculogenesis. With the exception of Sasaki et al. (2017), whose model of

EC network formation in fibrin gels showed that random searching of ECs and cell-to-

cell adhesion were su�cient to generate a network in such a medium, most models in

the literature refer back to the work of Serini et al. (2003), presented in Section 4.1.3,

who investigated single-cell vasculogenesis in Matrigel. We first review key single-cell

vasculogenesis models in the literature, referring the interested reader to detailed reviews

by Ambrosi et al. (2005); Boas et al. (2018); Czirok (2013); Scianna et al. (2013), and

then discuss model requirements to study cluster-based vasculogenesis.

4.2.1 PDE models of single-cell vasculogenesis

Continuum deterministic models in the extant literature can be categorised as Persistence

and Endogenous Chemotaxis (PEC) models (Ambrosi et al., 2004; Coniglio et al., 2004;

Gamba et al., 2003; Kowalczyk et al., 2004; Liu et al., 2021; Serini et al., 2003), modelling

the early stages of single-cell vasculogenesis, and mechanochemical models (Manoussaki,

2003; Murray, 1993, 2003; Namy et al., 2004), better suited to describe the late stages

of the process, with the exception of the work by Tosin et al. (2006) who proposed a

comprehensive model.

PEC models of single-cell vasculogenesis. First introduced by Serini and cowork-

ers (Gamba et al., 2003; Serini et al., 2003), PEC models consist of a conservation equa-

tion for the EC density, a momentum equation describing changes in the EC velocity

and a reaction-di↵usion equation describing VEGF dynamics. In particular ECs are as-

sumed to undergo persistent motion, that is movement characterised by inertia in the

velocity field, and this movement is modulated by friction between cells and substrate,

density-dependent pressure and chemotaxis, with the VEGF being secreted by the cells

themselves. Ambrosi et al. (2004) also considered network formation in anisotropic con-

ditions, by including a constant velocity field in the transport equation for the VEGF

concentration. The solution of PEC models in 3D was recently analysed (Liu et al., 2021),

and various interesting analytical insights for the 2D model have been presented over the

years. Such models have so far helped to extrapolate information underlying the origin

and structure of newly formed vascular networks, for instance relating the characteristic

cord length ` to the VEGF di↵usion coe�cient Dc and decay rate �c with the formula

` =
p

Dc(�c)�1 (Ambrosi et al., 2004, 2005; Gamba et al., 2003; Serini et al., 2003), or
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investigating the minimum – and maximum – initial cell density required for network

assembly (Ambrosi et al., 2005; Coniglio et al., 2004; Gamba et al., 2003; Kowalczyk

et al., 2004; Serini et al., 2003). In particular, Gamba et al. (2003) and Coniglio et al.

(2004) analysed in detail the transition from a phase in which several disconnected struc-

tures appear to one in which a single connected structure appears, a phenomenon known

as percolative transition, as the initial cell density increases, identifying the critical EC

density at which we observe this phenomenon to be around 100 cells/mm2, in agreement

with the work of Serini et al. (2003). PEC models have also been used to investigate

the mechanisms at the basis of the Swiss-cheese transition, leading to the formation of

lacunae as cell density increases. Studying the linear stability properties of PEC models,

chemotaxis was found to be the key destabilising force for lacunae fomation and pressure

to be the main stabilising one, and suitable conditions on the density-dependent pressure

function to avoid blow up of the solution in finite time were derived (Kowalczyk, 2005;

Kowalczyk et al., 2004). As a result of the presence of the pressure term, the Swiss-cheese

transition can be predicted by PEC models to occur about the critical initial cell density

of 300 cells/mm2 (Ambrosi et al., 2005).

Mechanochemical models of single-cell vasculogenesis. Mechanochemical mod-

els of vasculogenesis, on the other hand, placed special emphasis on the role played by

cell traction forces, and are therefore particularly suited for the later stages of vasculo-

genesis during which the mechanical interaction between the ECs and the ECM cannot

be neglected. Mechanical models or vasculogenesis, following the work of Murray et al.

(1983), consist of a conservation equation for the EC density and one for the ECM

density, a force-balance equation to describe changes in the cell-ECM displacement as

cells pull on the ECM and, in the case of mechanochemical models, additional reaction-

di↵usion equations for chemical factors, such as the VEGF concentration (Ambrosi et al.,

2005). Both ECs and ECM are assumed to be advected according to changes in the

cell-ECM displacement, and ECs are also assumed to undergo strain-dependent move-

ment (Manoussaki, 2003; Murray, 2003; Namy et al., 2004), haptotaxis (Namy et al.,

2004) and chemotaxis (Manoussaki, 2003). Note that while sometimes these models

include reaction terms, modelling EC proliferation (Holmes and Sleeman, 2000; Manous-

saki, 2003) and ECM degradation (Holmes and Sleeman, 2000; Tranqui and Tracqui,

2000), such cases are considered in relation to angiogenesis rather than de novo vascu-

logenesis. In the force-balance equation ECs and ECM, itself modelled as linear elastic

or viscoelastic material, are assumed to be connected in parallel and the overall stress

of the system is in equilibrium with external restoring forces, such as viscous drag or

elastic forces depending on the assumed external substratuum. Cell traction is assumed

to grow linearly at low cell densities and go to zero for large densities, with the exception
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of Namy et al. (2004) and Tranqui and Tracqui (2000) whose cell traction term becomes

negative at large densities, thus modelling the e↵ect of density-dependent pressure. LSA

predicts instability of the homogeneous steady state, and in general lacunae formation, if

the cell traction coe�cient is high enough or the ECM Young modulus is low enough, and

if the initial cell density is below a threshold value, dependent on the way cell traction

is modelled (Ambrosi et al., 2005). Haptotaxis was also indicated to have a destabilising

e↵ect (Namy et al., 2004; Tranqui and Tracqui, 2000), while the restoring forces and

long range e↵ects have a stabilising e↵ect (Ambrosi et al., 2005). Note that while these

models may predict cluster formation in the case of very high cell traction or very low

ECM sti↵ness, such modelling frameworks are not compatible with the application here

considered as they do not include any of the key mechanisms of early-stage cluster-based

vasculogenesis.

A comprehensive model of single-cell vasculogenesis. The only model considering

both early-stages dynamics and cell-ECM mechanical interactions was proposed by Tosin

et al. (2006). Their model resembles those proposed for PEC, with the addition of an

external drag force in the momentum equation, which models the fact that EC movement

is slowed down by cell adhesion to the ECM as they move over it. The same drag force

appears as an external restoring force in the force-balance equation for the ECM, where

the ECM is modelled as a linear elastic material. In this framework, cells and ECM

are modelled as separate layers influencing each other by generating external forces at

their interface, and we only keep track of the ECM displacement, not the ECM density

itself. The model indicated that cell adhesiveness to the substratum plays a key role in

network formation, with excessive adhesiveness resulting in no network and insu�cient

adhesiveness a↵ecting the stability of cords so that cells would eventually clusterise due

to chemotaxis.

4.2.2 Cellular Potts models of single-cell vasculogenesis

Despite their lower analytical tractability, Cellular Potts (CP) models have been widely

used to study single-cell vasculogenesis over the years (Boas et al., 2018; Scianna et al.,

2013). These are lattice-based models, with simulations obtained via a Monte-Carlo

method following energy minimisation principles, which track cell and ECM dynamics at

the mesoscale. They are therefore particularly suited to investigate mechanisms occurring

at the cell level, such as cell shape and cell-to-cell adhesion, which are di�cult to describe

with continuum models of macroscale dynamics and which may be crucial for single-cell

vasculogenesis as the process involves few cells (Merks et al., 2006). In fact, it is standard

to omit cell proliferation and death when considering in vitro dynamics of mature ECs
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on a relatively short timescale (9-15 hours).

CP models ignoring active cell traction. Palm and Merks (2013) showed that

elongated, adhesive cells can self-organised into vascular structures. Extending the model

to include endogenous chemotaxis results in a faster pattern formation process and the

stabilisation of the network (Merks et al., 2006). This framework confirmed a correlation

between the characteristic cord length, and thus size of lacunae, and the VEGF di↵usion

rate, as previously predicted with PEC models. In the absence of elongation, network

formation is compromised and cells form islands, whether elongation is imposed as a

constraint (Merks et al., 2006) or is a consequence of strong cell-to-cell adhesion (Merks

et al., 2004). Similar results were obtained when considering cell adhesion-mediated

saturation of chemotaxis instead of cell elongation, as this motility inhibition still led to

cell polarisation and, in the absence of such an e↵ect, clusters were observed (Merks and

Glazier, 2005; Merks et al., 2008; Singh et al., 2015). Overall the work of Merks and

coworkers pointed towards cell elongation, or polarisation, and endogenous chemotaxis

being essential for network formation, just like persistence of motion and endogenous

chemotaxis in PEC models. In fact, we might expect cell elongation to result in more

persistent motion at the macroscale. Alternatively, Szabo and coworkers suggested that

a preferential attraction of cells to elongated structure is su�cient for vascular network

formation (Szabo et al., 2007), particularly highlighting the role this plays in cell sprouting

from clusters which would otherwise remain stable due to cell-to-cell adhesion (Szabo

et al., 2008; Szabó and Czirók, 2010).

CP models investigating active cell traction. Cell elongation has also been pro-

posed to result from the mechanical interaction of ECs with the ECM (van Oers et al.,

2014; Ramos et al., 2018). Van Oers et al. (2014) proposed a CP model which included

cell-to-cell adhesion, active cell traction on the ECM and durotaxis, the preferential

movement of cells up ECM sti↵ness gradients. They further assumed that the ECM

would sti↵en under strain, generated by the ECs’ pulling action which, in combination

with durotaxis, resulted in EC elongation. Note that these dynamics may result in cell

traction and strain-dependent movement at the macroscale, which are key factors of

mechanochemical models. The model was further analysed by Ramos et al. (2018), who

predicted network formation for high enough cell traction compared to the ECM Young

modulus, just like in mechanochemical models, with cell alignment and polarisation still

playing an important role, while cell-to-cell adhesion was indicated to be responsible for

network configuration.
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4.2.3 Modelling the early stages cluster-based vasculogenesis

We are interested in investigating the determinants of cluster formation and cluster size

with a model of the early stages cluster-based vasculogenesis. While much work has

been conducted in order to better understand the mechanisms at the basis of single-cell

vasculogenesis, many of which are relevant to cluster-based vasculogenesis, recent ex-

perimental observations (Blatchley et al., 2019) suggest that other processes need to be

considered when studying EPC cluster formation. While CP models may be preferred

when studying a system comprising a few cells, EPCs actively proliferate and we therefore

choose to study this process through the lense of a continuum deterministic model. The

model should include endogenous chemotaxis, MMP-mediated ECM degradation, cell-to-

cell adhesion, EPC random movement, proliferation and death, together with annexed

ECM, VEGF and MMP dynamics. Note that while cell proliferation and ECM degrada-

tion have been included in previous models of vascular network formation (Boas et al.,

2018; Daub and Merks, 2013; Holmes and Sleeman, 2000; Manoussaki, 2003; Tranqui and

Tracqui, 2000), these have been formulated to study angiogenesis rather than vasculoge-

nesis, which require di↵erent initial conditions and exogenous, rather than endogenous,

chemotaxis.

Modelling chemotaxis. PECmodels included chemotaxis in the momentum equation,

but this implies that cells accelerate in chemical gradients, an assumption that might be

unrealistic given the highly viscous, non-inertial environment of the ECM (Merks et al.,

2006, 2008). We thus choose to follow standard modelling of chemotaxis in the flux term

of the EPC density mass-balance equation, as done in mechanochemical models (Am-

brosi et al., 2005; Manoussaki, 2003), following the classic Patlak–Keller–Segel model of

di↵usion and chemotaxis (Keller and Segel, 1970; Painter, 2019). As the PKS model

is well-known for having solutions that blow up in finite time, a number of variations

have been proposed in the literature (Bubba et al., 2019; Kowalczyk, 2005; Painter,

2019), and we will hereby consider a modified version of the forms proposed by Hillen

and Painter (Hillen and Painter, 2001; Painter and Hillen, 2002) whereby chemotaxis is

saturated in a tightly packed environment. While this results in a local description of

chemotaxis, various nonlocal ones have also been proposed over the years, reviewed for

instance by Chen et al. (2020); Hillen and Painter (2009); Painter et al. (2015).

Modelling cell-to-cell adhesion. While CP models allowed for a mesoscopic descrip-

tion of cell-to-cell adhesion, during the development of PEC and mechanochemical models

this biological process had not yet been explicitly modelled at the macroscopic scale. Arm-

strong et al. (2006) proposed, in their seminal paper, a continuum nonlocal description
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of intrapopulation and interpopulation cell adhesion. This was later adapted by Gerisch

and Chaplain (2008) to account for cell-to-cell and cell-to-matrix adhesion. The model

relies on the presence of an advective flux of the cell density at position x, calculated

nonlocally by scouting for availability of adhesion sites in a sensing region centered in

x. This has become a popular continuum description of cell adhesion, with a number of

variations proposed to study tumour invasion and cell movement across the ECM (Bit-

souni et al., 2017; Buttenschön et al., 2018; Chaplain et al., 2011; Domschke et al., 2014;

Gerisch and Painter, 2010; Painter et al., 2010; Sherratt et al., 2009), development and

cell-sorting dynamics (Armstrong et al., 2009; Carrillo et al., 2019; Gerisch and Painter,

2010; Painter et al., 2015). Attention has also been given over the years to variations

of the nonlocal modelling of adhesion by considering di↵erent ways to enforce limits on

the cell density and to include nonlinear cross di↵usion, that is substituting linear di↵u-

sion modelling random movement with nonlinear di↵usion modelling movement of cells

down a density-dependent pressure gradient, into the overall model (Burger et al., 2020;

Carrillo et al., 2019; Madzvamuse et al., 2017; Murakawa and Togashi, 2015). These

modifications principally lead to sharper interfaces between the densities of di↵erent cell

types, or the ECM, or can even lead to strict segregation of them. Since such e↵ects are

not part of the primary dynamics which we will focus on in our model of the early stages

of cluster-based vasculogenesis, we will not include these variations here.
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Chapter 5

A novel nonlocal PDE model of

endothelial progenitor cell cluster

formation

We present a continuum deterministic model of EPC cluster formation during the early

stages of cluster-based vasculogenesis, during which mechanical interactions between

EPCs and the ECM can be neglected. The model comprises a system of PDEs modelling

dynamics such as endogenous chemotaxis, MMP-mediated ECM degradation, nonlocal

cell-to-cell and cell-to-matrix adhesion, EPC random movement, proliferation and death,

together with annexed ECM, VEGF and MMP dynamics. The model provides a theoreti-

cal basis for a comprehensive description of the mechanisms underlying cluster formation.

In this study we seek to clarify the role played by di↵erent dynamics and elucidate the

determinants of cluster size, by introducing appropriate metrics for cluster width and

compactness. We investigate this in primis by means of a LSA and numerical simula-

tions relying on a baseline parameter set drawn from the literature. We then proceed to

provide a first overview of potential model behaviour to gain insight into the importance

of various parameters or processes in the pattern formation potential of the system. We

do this by simulating the model using the baseline parameter set as well as by varying

parameters, one at a time, with values in a suitable range identified from existing litera-

ture (parametric analysis). The mathematical model is described in detail in Section 5.1.

The key results of a LSA are summaried in Section 5.2, followed by numerical results

in Section 5.3. In particular, the numerical investigations on the determinants of cluster

formation and cluster size are presented for the 1D and 2D problems, and the results are

qualitatively compared with the experimental findings of Blatchley et al. (2019) presented

in Section 4.1.4.
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5.1 The mathematical model

Let t � 0 indicate time and x 2 R2 a position in space. We will consider the dynamics in

a 2D spatial domain ⌦ ⇢ R2, as well as the corresponding 1D problem, for which we make

use of the notation x 2 R to indicate space. Unless indicated otherwise, all definitions

introduced in this section for the 2D problem hold for the corresponding 1D one. The

density of EPCs at time t and position x is given by n(t,x), in units of cell cm�31, and

the ECM density by ⇢(t,x), in units of nM. Similarly we indicate the concentration of a

matrix-degrading enzyme, such as MMP-1, by m(t,x), in units of µg cm�3, and that of a

chemotactic agent, such as VEGF-A, by c(t,x), in units of ng cm�3. We also introduce the

vector of reddependent variables v(t,x) :=
�
n(t,x), ⇢(t,x),m(t,x), c(t,x)

�|
. Our model

then consists of a system of mass-balance equations, one for each dependent variable

introduced.

5.1.1 Dynamics of endothelial progenitor cells

The mass-balance equation for the density of EPCs is of the form:

@tn+r · [Jd(n) + Jc(n, c) + Ja(v)] = pn(1� #1n� #2⇢) , (5.1)

where Jd(n) models spatial di↵usion to account for random movement of cells, Jc(n, c)

indicates the chemotactic flux in response to VEGF gradients and Ja(v) the advective

flux due to cell-to-cell and cell-to-matrix adhesion, while the term on the right-hand side

of the equation models cell proliferation and death. In particular, we consider a modified

version of the standard logistic growth, as proposed by Gerisch and Chaplain (2008), in

which EPCs proliferate at rate p � 0 and die due to competition for space – occupied

by both cells and ECM – and resources. Parameters #1 > 0 and #2 > 0 indicate the

fraction of one unit volume of physical space occupied by EPCs at unit density and by

ECM at unit density respectively, such that (#1n + #2⇢) indicates the total fraction of

locally occupied space.

Spatial di↵usion and chemotaxis. Following the motivations introduced in Sec-

tion 4.2.3, we make use of the following definitions for the di↵usive and chemotactic flux

terms:

Jd(n) = �Dnrn , Jc(n, c) = � f(n, ⇢)nrc . (5.2)

In definitions (5.2) spatial di↵usion follows Fick’s law, with di↵usivity Dn � 0, while

1
The proposed modelling framework is meant to provide a 2D approximation of a 3D problem, and

the units of measurement for the dependent variables are chosen accordingly.
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chemotaxis is modelled as an advective flux of cells up the gradient of the chemotactic

agent concentration c, modulated by the chemotactic sensitivity of cells. This is propor-

tional to the chemotactic sensitivity coe�cient � � 0 and the function f(n, ⇢), which

accounts for volume exclusion. This is given by

f(n, ⇢) = (1� #1n� #2⇢)+ (5.3)

where we have used (·)+ := max(0, ·) – see also Gerisch and Chaplain (2008); Hillen and

Painter (2001); Painter and Hillen (2002). According to definition (5.3), the chemotactic

sensitivity of the cells is proportional to the locally available space. If the local space is

overcrowded, cells will struggle to sense the chemotactic gradient, to the extent that if

the space is locally full no chemotaxis can occur.

Cell-to-cell and cell-to-matrix adhesion. Following the motivations introduced in

Section 4.2.3, we model cell-to-cell and cell-to-matrix adhesion in the continuous form

proposed by Gerisch and Chaplain (2008). The advective flux of the EPC density n due

to cell-to-cell and cell-to-matrix adhesion in (5.1) is therefore given by

Ja(v) = nA[v(t, ·)] (5.4)

where A[v(t, ·)] is the adhesion velocity at some point x, that is the velocity of cells at

x due to adhesive interactions with their environment, which is an operator acting on

v(t, ·) defined as a function of x. For problems in 1D this is defined as

A[v(t, ·)](x) := 1

R

Z
R

0

1X

j=0

⌘(j)�(r)g
�
v(t, x+ r⌘(j))

�
dr , (5.5)

while for problems in 2D it is defined as

A[v(t, ·)](x) := 1

R

Z
R

0

r

Z 2⇡

0

⌘(✓)�(r)g
�
v(t,x+ r⌘(✓))

�
d✓ dr . (5.6)

In equation (5.5) ⌘(j) = (�1)j with j = 0, 1 indicates the 1D right and left unit outer

normal vector, while in equation (5.6) the 2D unit outer normal vector corresponding to

angle ✓ is given by ⌘(✓) = (cos ✓, sin ✓)|. In definitions (5.5) and (5.6), we have that the

sensing region of cells at position x 2 Rd (d = 1, 2) is the d-dimensional ball centred in x

with radius R > 0, called the sensing radius. Then �(r) is the radial dependency function,

indicating how strongly the adhesion velocity at a point x is influenced by points at a

distance r  R from the centre x of the sensing region. Since this should not alter the
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magnitude itself of the adhesion velocity, �(r) must satisfy

Z
R

0

2�(r) dr = 1 and

Z
R

0

2⇡r �(r) dr = 1 (5.7)

in the 1D and 2D problems respectively, i.e. in equations (5.5) and (5.6) respectively.

Assuming �(r) decays linearly with r to be zero at the boundary of the sensing region,

we here make use of the forms proposed by Gerisch and Chaplain (2008)

�(r) =
1

R

⇣
1� r

R

⌘
and �(r) =

3

⇡R2

⇣
1� r

R

⌘
(5.8)

in the 1D and 2D problems respectively, chosen so that (5.7) is satisfied. Finally, in both

(5.5) and (5.6) the term g(v(t, ·)) represents the nonlocal impact of the system’s state at

some point within the sensing region at x on the velocity of the cells at x due to adhesion

to other cells or the ECM in the sensing region at x. This is given by

g(v) := g(n, ⇢) = (Snnn+ Sn⇢⇢) f(n, ⇢) , (5.9)

in which Snn � 0 and Sn⇢ � 0 are the cell-to-cell and cell-to-matrix adhesion coe�cients

respectively, while the function f(n, ⇢) is defined in (5.3). Under definition (5.9), the

velocity of cells at position x in the direction of a point – say – y in the sensing region

of x due to cell-to-cell adhesion is directly proportional to the cell density n at y, and

that due to cell-to-matrix adhesion is directly proportional to the ECM density ⇢ at y.

This is because a higher cell or ECM density correlates with a higher number of adhesion

sites. Meanwhile, under definitions (5.9) and (5.3), the velocity is also proportional to

the available space at position y. This accounts for volume exclusion, as cells will be

unable to sense adhesive sites at spatial locations with high densities of EPCs and/or

ECM and, hence, will not migrate in those directions.

5.1.2 Dynamics of extracellular factors

Dynamics of ECM. We let the ECM be degraded by matrix-degrading enzymes at a

rate � � 0 and account for ECM remodelling at a rate µ � 0, resulting in the following

mass-balance equation for the ECM density:

@t⇢ = ��⇢m+ µ(1� #1n� #2⇢)+ , (5.10)

where the parameters #1 and #2 have already been introduced in Section 5.1.1, indicating

ECM remodelling is here understood as a restructuring phenomenon that only occurs if

space is available (Domschke et al., 2014). This is assumed to be independent of the cell
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density n as ECM remodelling in vivo is generally mediated by other cell types present in

the tissue, such as mesenchymal stem cells, fibrocytes and fibroblast (Bellini and Mattoli,

2007; Bianchetti et al., 2012; Diaz-Flores et al., 2014; McAnulty, 2007; Stenmark et al.,

2002), which we do not include in our modelling framework.

Dynamics of MMPs. We let the matrix-degrading enzyme (MMP) be produced by

the EPCs at a rate ↵m � 0, undergo Fickian di↵usion with di↵usivity Dm � 0, and decay

at rate �m � 0. Then the MMP concentration m(t,x) satisfies:

@tm�Dm�m = ↵mn� �mm. (5.11)

Dynamics of VEGFs. Similarly to the matrix-degrading enzyme, we let the chemo-

tactic agent (VEGF) be produced by the EPCs at a rate ↵c � 0, undergo Fickian di↵usion

with di↵usivity Dc � 0, and decay at rate �c � 0. This results in the following mass-

balance equation for the VEGF concentration c(t,x):

@tc�Dc�c = ↵cn� �cc . (5.12)

5.1.3 Boundary and initial conditions

Boundary conditions. While equation (5.10) describes the dynamics of the ECM in

the closed spatial domain ⌦̄ = ⌦[@⌦, equations (5.1), (5.11) and (5.12) are posed on the

open set ⌦, and are complemented with zero-flux boundary conditions. These boundary

conditions imply that no mass is exchanged with the outside of the spatial domain, i.e.

we have a closed system. For the nonlocal terms (5.5) and (5.6) this means that they

cannot sense the system’s state outside of the spatial domain ⌦. We thus impose that in

these terms the function g(v(t, ·)) equals zero if it is to be evaluated for a point outside

of ⌦ (Domschke et al., 2014) and thus obtain well-defined nonlocal terms (5.5) and (5.6)

throughout the spatial domain.

Initial conditions. As proposed by Serini et al. (2003), we construct the initial condi-

tions to mimic sparsely distributed cells on the ECM. In particular, the initial cell density

is given by the sum of K 2 N randomly distributed bell-shaped bumps. In particular, we

construct these bumps as Gaussian-like functions with maximum height and full width

at half maximum (FWHM) both equal to the size of an average cell diameter a > 0. We

let the initial ECM density be constant and the initial MMP and VEGF concentrations
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be null. Thus we have

n(t,x) =
KX

i=1

Gi(x; a) , ⇢(0,x) = ⇢0 > 0 , m(0,x) = c(0,x) = 0 , (5.13)

where Gi(x; a) indicates the Gaussian-like function centered at the (randomly selected)

x(i) 2 ⌦ and is given by

Gi(x; a) := a exp


� 4 ln 2

a2
|x� x(i)|2

�
. (5.14)

In equation (5.14) we have used the formula FWHM= 2
p
2 ln 2� where � is the standard

deviation of the Gaussian.

5.1.4 Nondimensional model

We nondimensionalise the system of equations (5.1) and (5.10)-(5.12), together with

definitions (5.2)-(5.9), (5.13) and (5.14), by letting

t̂ =
t

⌧
, x̂ =

x

L
, n̂ =

n

N
, ⇢̂ =

⇢

P
, m̂ =

m

M
, ĉ =

c

C
.

We use L = 0.1 cm as characteristic length scale, in accordance with previous vascu-

logenesis works (Manoussaki, 2003; Serini et al., 2003) and for easy visual comparison

with the experimental results reported by Blatchley et al. (2019). We then take reference

time scale ⌧ := L
2
/D, where D is a characteristic cell di↵usion coe�cient D ⇠ 10�6

cm2s�1 (Bray, 2000), resulting in a reference time scale ⌧ = 104s. The reference cell

density is chosen to be N := nM = #
�1
1 and we take #1 = 10�9 cm3/cell, the average

volume occupied by an endothelial cell Rubin et al. (1989). We use a reference ECM

density of P = 10�1 nM (Anderson, 2005; Anderson et al., 2000; Terranova et al., 1985)

and define the parameter #2 := P
�1. We take the reference VEGF density to be C = 20

ng cm�3, in the range of values generally considered in in vitro set ups (Hanjaya-Putra

and Gerecht, 2009; Lee et al., 2007; Serini et al., 2003). Finally, Blatchley et al. (2019)

reported concentrations of MMP-1 in the range 1� 100µg ml�1, so we take the interme-

diate concentration as reference MMP density, i.e. M = 10µg cm�3. Let us introduce

the following nondimensional parameters:

D̂n =
Dn

D
, �̂ =

�C

D
, R̂ =

R

L
, Ŝnn =

Snn

D#1
, Ŝn⇢ =

Sn⇢

D#2
, p̂ = p⌧ , �̂ = �M⌧ , µ̂ = µ⌧#2 ,

D̂m =
Dm

D
, ↵̂m =

↵m⌧

M#1
, �̂m = �m⌧ , D̂c =

Dc

D
, ↵̂c =

↵c⌧

C#1
, �̂c = �c⌧ , â =

a

L
, ⇢̂0 =

⇢0

P
.
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Then the overall nondimensionalised system becomes, dropping hats for convenience,
8
>>>>>>>>>><

>>>>>>>>>>:

@tn = Dn�n� �r ·
�
n f(n, ⇢)rc

�
�r ·

�
nA[v(t, ·)]

�
+ pn(1� n� ⇢)

@t⇢ = ��⇢m+ µ(1� n� ⇢)+

@tm = Dm�m+ ↵mn� �mm

@tc = Dc�c+ ↵cn� �cc

(5.15)

where (5.15)1, (5.15)3 and (5.15)4 are posed on (t,x) 2 (0,1)⇥⌦ and are complemented

by zero-flux boundary conditions on @⌦, while (5.15)3 is posed on (t,x) 2 (0,1)⇥ ⌦̄. In

equation (5.15)1 the operator A[v(t, ·)] takes the form (5.5) in 1D and (5.6) in 2D, with

�(r) still defined as in (5.8), and g(v) is given as in (5.9) with f(n, ⇢) now given by

f(n, ⇢) = (1� n� ⇢)+ . (5.16)

The parameters R, Snn and Sn⇢ are the nondimensional ones introduced above, and

the system (5.15) is complemented with initial conditions (5.13)-(5.14), in which the

parameters a and ⇢0 now corresponds to the nondimensional ones introduced above.

5.2 Linear stability analysis results

Linear stability analysis steps. We perform a LSA on the spatially homogeneous

steady states, say, v̄ of the nondimensional system (5.15)-(5.16), together with the rele-

vant definitions for the 1D and 2D problems, in order to gain insights into the destabilising

processes that might lead to cluster formation. During the LSA we first introduce a small

spatially homogeneous perturbation v = v̄ + ṽ(t), with |ṽ| ⌧ 1, in (5.15) and linearise.

By assuming the small perturbation is proportional to exp ( t), we derive a characteristic

equation for  , analogous to that satisfied by the eigenvalues  i (i = 1, ..., 4) of the Jaco-

bian matrix of the spatially homogeneous system. We distinguish between the following

options:

(i) If all eigenvalues (solutions to the characteristic equation)  i (i = 1, ..., 4) are such

that Re( i) < 0, the steady state is stable under spatially homogeneous perturba-

tions;

(ii) If at least one eigenvalue  i (for some i 2 {1, 2, 3, 4}) is such that Re( i) > 0, the

steady state is unstable under spatially homogeneous perturbations;

(iii) If all eigenvalues  i (i = 1, ..., 4) are such that Re( i)  0 with at least one zero

eigenvalue, the LSA is inconclusive and the steady state is said to be ‘degenerate’.
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In the latter case, the linear stability of the spatially homogeneous steady state under

spatially homogeneous perturbations is investigated numerically. We then repeat these

steps under a small spatially inhomogeneous perturbation v = v̄+ ṽ(t,x), with |ṽ| ⌧ 1,

assuming it is proportional to ṽ(t,x) / exp ( t+ ik · x). Once we obtain a dispersion

relation  (k2), where k
2 = |k|2, we study the conditions under which Re( (k2)) > 0 for

some k
2, as in such regimes we expect spatially inhomogeneous perturbations to grow

in time and patterns to arise. We conduct this analysis both in 1D and 2D for the

model (5.15)-(5.16), as well as for the corresponding problem in the absence of volume

exclusion, i.e. substituting definition (5.16) for f(n, ⇢) with

f(n, ⇢) = 1 . (5.17)

The analytical details are reported in Appendix A.4.

Linear stability analysis results. The two spatially homogeneous steady states v̄ of

system (5.15) are such that either the whole domain is solely occupied by cells (n̄ = 1

and ⇢̄ = 0, the ‘cell-full’ steady state) or solely occupied by ECM (n̄ = 0 and ⇢̄ = 1,

the ‘cell-free’ steady state). The cell-full steady state is the biologically relevant one and

LSA indicates that:

• The cell-full steady state is stable under spatially homogeneous perturbations;

• In the presence of volume exclusion saturating e↵ects, i.e. under definition (5.16),

it is also stable under spatially inhomogeneous perturbations;

• In the absence of volume exclusion saturating e↵ects, i.e. under definition (5.17),

chemotaxis and cell-to-cell adhesion may drive it unstable under spatially inhomo-

geneous perturbations.

These results suggest that patterns may arise when cell-to-cell adhesions and chemotactic

mechanisms dominate the dynamics. This may occur, for instance, when the domain is

not too densely packed with cells and ECM.

Remark 6. LSA indicated that the cell-free steady state, which is not biologically relevant

per se, is a degenerate steady state. However, while LSA is inconclusive on the linear

stability of the cell-free steady state under spatially homogeneous perturbations, numeri-

cal simulations indicate instability in the case of perturbations with ñ > 0 (i.e. if some

cells appear in the system), in which case the solution eventually converges to the cell-full

steady state. Moreover, further observations indicate cell proliferation and matrix degra-

dation by the cells play important roles in its instability under small spatially homogeneous

perturbations. These results suggest that cell proliferation and matrix degradation might

have an important destabilising e↵ect when the initial conditions with low cell density

satisfy volume filling conditions.
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5.3 Numerical investigations

In this section we construct numerical solutions of the nondimensional system (5.15)-

(5.16), together with the appropriate definitions in 1D and 2D, with zero-flux boundary

conditions and initial conditions (5.13)-(5.14). We use these numerical solutions to pro-

vide an overview of potential model behaviours under one-at-a-time perturbations from

the baseline parameter set. This, together with the corresponding nondimensional (ND)

parameter values according to the choices presented in Section 5.1.4, is reported in Ta-

ble 5.1 – see Appendix C.2 for details. In Section 5.3.1, we describe the set-up of numerical

simulations and the methods employed to construct numerical solutions. In Section 5.3.2

we report the results of the 1D model under the baseline parameter set and qualitatively

investigate the determinants of cluster formation in Section 5.3.3. In Section 5.3.4 we

report the results of the parametric analysis conducted to elucidate the determinants of

cluster size in 1D. In Section 5.3.5 we report the results of the 2D model.

5.3.1 Set-up of numerical simulations and numerical methods

Set-up of numerical simulations of Sections 5.3.2-5.3.5. For the numerical sim-

ulations we present in Sections 5.3.2-5.3.4, we define ⌦ = (0, 1) and solve system (5.15)-

(5.16) under definition (5.5) and the 1D version of definitions (5.8) and (5.9), i.e. for

x ⌘ x, with zero-flux boundary conditions and the 1D version of initial conditions (5.13)-

(5.14). For the parametric analysis reported in Section 5.3.4, we make use of the metrics

of cluster size defined at the end of this section. For the numerical simulations we present

in Section 5.3.5, we define ⌦ = (0, 1)⇥ (0, 1) in order to model a (nondimensional) hori-

zontal cross-section of a 3D in vitro vasculogenesis assay. We solve system (5.15)-(5.16)

under definition (5.6) and the 2D version of definitions (5.8) and (5.9), with zero-flux

boundary conditions and the 2D version of initial conditions (5.13)-(5.14).

Numerical method. Numerical solutions are constructed via a numerical scheme that

follows the method of lines by first discretising the nonlocal model in space (with 1000

grid cells in 1D and 100 ⇥ 100 grid cells in 2D), yielding an initial value problem for

a large system of ODEs. This system is then solved using the time integration scheme

ROWMAP (Weiner et al., 1997), implemented in a Fortran subroutine and called from

Matlab. For the discretisation in space a second-order finite volume approach which

makes use of flux-limiting for an accurate discretisation of the taxis and adhesion terms is

employed. All numerical simulations have been performed inMatlab. See Appendix B.2

for more details on the numerical scheme.
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Cluster size metrics. In order to gain insight into the role played by di↵erent biolog-

ical, chemical and mechanical factors in dictating the cluster size, we define two di↵erent

measures of cluster size with complementary information, as similarly done in Palmer

et al. (2003). We define these for the nondimensional 1D problem, but analogous defini-

tions can be considered for the 2D problem. Assume that Q 2 N clusters have formed at

time t = T and let ! ⇢ ⌦ be the subdomain supporting these clusters, i.e.

! := suppn(T, x) . (5.18)

Then ! can be partitioned into Q subdomains !1, ..., !Q, i.e. we have

Q[

i=1

!i = ! and !i

\
!j = ; for i, j = 1, ..., Q , i 6= j , (5.19)

where each !i (i = 1, ..., Q) corresponds to the support of a cluster. We let the average

cluster width W and average cluster compactness C be defined by

W :=
1

Q

QX

i=1

Wi , where Wi := |!i| i = 1, ..., Q , (5.20)

C :=
1

Q

QX

i=1

Ci , where Ci =

R
!i
n(T, x) dx

Wi

i = 1, ..., Q . (5.21)

Under definitions (5.18)-(5.20), the width Wi (i = 1, ..., Q) of each cluster is a measure of

the length of its support, which may be understood as an indicator of the diameter of the

cluster assuming the 1D case is reflective of the corresponding 2D problem. Note that the

analogous 2D definition to (5.20) would inform us on the area covered by each cluster,

from which the average cluster diameter could be calculated. However, this would need to

be complemented with an additional metric for cluster elongation (e.g. the ratio between

the diameter of the circle circumscribing !i and that of the one inscribed in !i), in order

to obtain an exhaustive description of the clusters structure. Under definition (5.21),

in which n(T, x) is the nondimensional cell density, the compactness Ci (i = 1, ..., Q) of

each cluster is a measure of the average cell density within cluster i. Cluster compactness

allows us to distinguish between simple cell aggregates and well-defined clusters, identified

as such only if C is higher than 0.5, corresponding to at least half the local volume being

occupied by cells. Under the choices of nondimensionalisation and of spatial domain for

the numerical simulations, we expect 0  Wi  1 and – under cell incompressibility

assumptions – 0  Ci  1 for all i = 1, .., Q. Figure 5.1 summarises the biological

interpretation of possible combinations of W and C. In practice, the cluster domains !i
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used to calculate W and C are identified via image segmentation by thresholding, with

a threshold value for the cell density set to be 10�4 – though smaller values have also

been considered which do not remarkably a↵ect the results presented henceforth – below

which n(t, x) is approximated to zero.

Figure 5.1: Biological interpretation of cluster width and compactness. Bi-
ological interpretation of possible combinations of cluster width W (5.20) and cluster
compactness C (5.21): high W and low C capture the scenario in which few cells are
widely spread across the domain (top left region of the C-W plane); low W and low C

capture the presence of loose cell aggregates, (bottom left region); low W and high C

capture the presence of clusters (bottom right region); high W and high C capture the
scenario in which many cells are widely spread across the domain, corresponding to the
case of tissue invasion in which no clusters can be identified (top right region).

5.3.2 Cluster formation under the baseline parameter set

We report in Figure 5.2 the cell density n(t, x) obtained from numerical simulations of the

1D model under the baseline parameter set and in Figure 5.3 the corresponding cluster

width W and compactness C measured. The plots displayed in these figures indicate that

our model predicts three stages of cluster formation in 1D. First EPCs form aggregates

which reach a minimum cluster width of about W = 0.2 around t = 17 (cf. left panel

in Figure 5.2 and Figure 5.3). Then the cells in these aggregates continue to proliferate,

increasing their compactness, while keeping the cluster width unchanged up to about

t = 50 (cf. central panel in Figure 5.2 and Figure 5.3). Finally, the cells continue to

proliferate until the whole domain is occupied by cells (cf. right panel in Figure 5.2 and

Figure 5.3).

The simulated dynamics of cluster formation nicely match the experimentally observed

ones by Blatchley et al. (2019), see Figure 4.2, although in our simulations they occur on
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Figure 5.2: 1D numerical results under the baseline parameter set. Plots of the
cell density n(t, x) obtained solving the system (5.15), together with definitions (5.5), (5.8)
and (5.16), initial conditions (5.13) and (5.14)1, complemented with zero-flux boundary
conditions, under the baseline parameter set in Table 5.1. The solution is plotted in the
time intervals t = [0, 17] (left panel), t = [17, 50] (central panel) and t = [50, 400] (right
panel).

a slightly slower timescale. In fact in Blatchley et al. (2019) the minimum cluster size was

reached around 24 hours (about nondimensional time t = 8.7) and kept unchanged while

clusters increased compactness up to 48 hours (t = 17.3) before late stage dynamics kick

in. The numerically obtained cluster width corresponds to about 200µm, which is within

the range of cluster diameters observed by Blatchley et al. (2019). Finally, after t = 50

we observe the equivalent of whole tissue invasion, suggesting our modelling framework

cannot properly capture cluster stabilisation in the long run, at least in the 1D case.

Figure 5.3: Cluster width and compactness of 1D numerical results under
the baseline parameter set. Average cluster width W (5.20) and cluster compactness
C (5.21) (left panel) measured over time on the cell density n(t, x) (right panel) obtained
solving the system (5.15), together with definitions (5.5), (5.8) and (5.16), initial con-
ditions (5.13) and (5.14)1, complemented with zero-flux boundary conditions, under the
baseline parameter set in Table 5.1, reported in Figure 5.2.

97



5.3.3 Numerical investigation of cluster formation

In view of the results reported in Section 5.3.2, we now investigate the role played by

chemotaxis, ECM degradation and cell-to-cell adhesion in cluster formation by varying

the relevant parameter values and observing changes in the solution up until t = 50,

starting from the same initial conditions considered in the previous section. The long-

time dynamics (up to t = 400) of the solutions plot in Figure 5.4 are reported in the

supplementary Figure D.2.

The primary role of chemotaxis and ECM degradation The plots reported in

the second row of Figure 5.4 reveal the role of chemotaxis and ECM degradation in

cluster formation, according to the dynamics described in Section 5.1. Under the baseline

parameter set we observe cluster formation (cf. first plot in second row of Figure 5.4),

as discussed in the previous paragraph and summarised in Figure 5.2. In the absence of

ECM degradation, even though cell aggregates of the same width form, the maximum

cell density remains below 0.3 (cf. second plot in second row of Figure 5.4) and actually

decays over longer periods of time (see supplementary Figure D.2). On the other hand, in

the absence of chemotaxis, no cell aggregation occurs and we either observe total invasion

of the domain by the cells (cf. third plot in second row of Figure 5.4) or, in the absence

of ECM degradation, a simple spatial redistribution of the cells (cf. fourth plot in second

row of Figure 5.4). These results indicate that chemotaxis and ECM degradation are

both crucial to cluster formation, with chemotaxis playing a key role in cell aggregation,

and ECM degradation being responsible for these aggregates growing into well-defined

and compact clusters.

The secondary role of cell-to-cell adhesion Let us now compare the plots in the

second row of Figure 5.4 with those in the rest of the figure, which have been obtained

by varying the cell-to-cell adhesion coe�cient Snn, the value of which was chosen a priori

due to lack of proper estimates in the current literature. We immediately observe that

for small values Snn  0.1, under the baseline parameter set, cell-to-cell adhesion does

not play any particular role in cluster formation, as demonstrated by the fact that the

simulations in the absence of cell-to-cell adhesion closely resembles those with Snn = 0.1

(cf. first and second row of Figure 5.4). On the other hand, increasing the order of

magnitude of the cell-to-cell adhesion coe�cient results in the initial formation of small-

scale aggregates. Moreover, the maximum density reached by these aggregates increases

as Snn increases (cf. third and fourth row of Figure 5.4). This, however, does not seem to

a↵ect the long-time dynamics of the solution, which remain analogous to those described

in the previous paragraph. For instance, under the baseline parameter set except for
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Snn = 1, the initial aggregates merge – likely due to chemotaxis – into wider clusters

and then proceed to invade the whole tissue (cf. first plot in third row of Figure 5.4

and of Figure D.2). For Snn = 10 we do not yet observe small aggregates merging into

larger clusters at t = 50 – likely due to cell-to-cell adhesion overpowering chemotaxis –

and tissue invasion is simply delayed (cf. first plot in fourth row of Figure 5.4 and of

Figure D.2). Overall these results suggest that the continuum nonlocal description of

cell-to-cell adhesion considered in our model, while it may capture the aggregating e↵ect

of cell-to-cell adhesion for Snn high enough, does not capture the stabilising e↵ect that

we are seeking in this modelling framework.

Figure 5.4: 1D numerical results under the baseline parameter set with
changes to parameters Snn, � and � as detailed. First row: Plots of the cell
density n(t, x) up to t = 50 obtained solving the system (5.15), together with defini-
tions (5.5), (5.8) and (5.16), initial conditions (5.13) and (5.14)1, complemented with
zero-flux boundary conditions, in the absence of cell-to-cell adhesion, i.e for Snn = 0:
under the baseline parameter set (first column), in the absence of ECM degradation, i.e.
for � = 0 (second column), in the absence of chemotaxis, i.e. � = 0 (third column), and
in the absence of both chemotaxis and ECM degradation, i.e. � = � = 0 (fourth col-
umn). Second, third and fourth rows: Same as first row but in the presence of cell-to-cell
adhesion, with Snn = 0.1 (second row), Snn = 1 (third row) and Snn = 10 (fourth row)
respectively.
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5.3.4 Numerical investigation of cluster size

We study changes in the measures W and C, defined according to (5.20) and (5.21),

at t = 50 under alternative values of each parameter in the baseline parameter set. In

particular, we consider the e↵ect of halving and doubling the magnitude of each param-

eter in equations (5.15)1 and (5.15)2 in Figure 5.5, and those in equations (5.15)3 and

(5.15)4 in Figure 5.6. Each boxplot had been obtained using data from 100 simulations

under the same parameter set, starting from randomised initial conditions as in (5.13)

and (5.14)1. The cluster width W measured over 100 simulations under the baseline

parameter width ranges between 0.15 and 0.41 with median (and mean) around 0.23, as

portrayed in Figures 5.5 and 5.6 (central boxplot in each W plot). This nondimensional

width corresponds to a diameter in the range 150� 410µm, which is consistent with the

experimentally observed cluster size in Blatchley et al. (2019) (cf. Figure 4.2).

The role of chemotaxis Boxplots of the width W and compactness C of clusters for

di↵erent values of the chemotactic sensitivity � are displayed in Figure 5.5b. While higher

values of � correlate with slightly smaller clusters, yet maintaining a mean width around

0.2, lowering the magnitude of � seems to result in a wider range of values of W with

much higher median, as well as higher compactness C. This supports the notion that

lowering the chemotactic sensitivity of the cells hinders cluster formation and – assuming

all other dynamics are present – fosters tissue invasion, which is in line with the results

presented in Section 5.3.3.

The role of ECM degradation Boxplots of the width W and compactness C of clus-

ters for di↵erent values of the ECM degradation rate � are displayed in Figure 5.5f. Notice

that, while the median width W is maintained around 0.2, increasing the magnitude of �

results in a smaller range of values measured for both W and C, as well as higher values

of cluster compactness. In addition, this trend suggests that further decreasing � will

lead to higher values of W and lower values of C (see supplementary Figure D.3c), which

is in line with the observed dynamics in the absence of ECM degradation in Section 5.3.3

(cf. Figure 5.4, second and fourth columns). Overall, this highlights the key role ECM

degradation has in cluster formation, establishing a relation between the rate � and the

cluster compactness C.

The role of matrix remodelling We see in Figure 5.5g that increasing the magnitude

of the matrix remodelling rate µ yields opposing e↵ects to those obtained increasing its

degradation rate � (vid. Figure 5.5f), which is coherent with the opposite nature of these

dynamics.
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The role of cell-to-cell adhesion The plots in Figure 5.5c confirm that small changes

in the cell-to-cell adhesion coe�cient Snn do not influence the size of clusters, as expected

from the results in Section 5.3.3. Additional numerical tests considering di↵erent orders

of magnitude of Snn (see supplementary Figure D.3b) revealed a slight increase in the

median W , probably due to the initial presence of smaller clusters (cf. Figure 5.4, third

row) which at t = 50 may still be in the process of merging depending on their spatial

distribution. These results suggest that cell-to-cell adhesion is not a key mechanism in

determining cluster structure.

The role of cell di↵usion and cell-matrix interactions The boxplots of W and C

of clusters for di↵erent values of the cell di↵usion coe�cient Dn, displayed in Figure 5.5a,

show that changing the magnitude of Dn has very little e↵ect on the cluster compactness

C and median width W . There is, however, an increasing range of values of W measured

as Dn increases, indicating that low di↵usivity correlates with more precisely defined

clusters, while high di↵usivity results in more variability in cluster size. Moreover, this

variability allows for larger values of W to be measured, suggesting that much higher

di↵usivity may result in tissue invasion (see supplementary Figure D.3a). The same

observations can be conducted on the boxplots in Figure 5.5d, obtained by varying the

magnitude of the cell-to-matrix adhesion coe�cient. This is in line with the notion that

lower cell-matrix interactions facilitate cluster formation, while much higher cell-matrix

interactions promote tissue invasion.

The role of cell proliferation In Figure 5.5e we see that slower proliferation – i.e.

lower p – correlates with a wide range of lower values of cluster compactness C, while

the median width is maintained around 0.2. On the other hand, faster proliferation

– i.e. higher p – results in a wide range of higher values of cluster width W and a

small range of high values of compactness C. Note that these data portray di↵erent

stages of the cluster formation process, as demonstrated in Figure 5.3 (central panel):

initially aggregates form without being very condensed (low-to-medium W and C), then

they increase their compactness while keeping steady width (low W and high C), and

eventually grow further invading the surrounding space (medium-to-high W and high C).

This suggests that the rate of proliferation of EPCs might play a key role in determining

the speed of the cluster formation process.

The role of initial ECM density The plots in Figure 5.5h indicate that changes in

the initial ECM density ⇢0 do not a↵ect the long-time spatiotemporal dynamics. In fact,

while di↵erent values of ⇢0 results in slightly di↵erent values of the median width and
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compactness of clusters observed at t = 50, these values still capture the same biological

scenario (i.e. cluster are recognisable at t = 50).

The role of VEGF dynamics Figure 5.6e displays changes in cluster width W and

compactness C as the rate production of VEGF, ↵c, varies. Note that these results well

mirror those obtained by varying chemotactic sensitivity (cf. Figures 5.5b and 5.6e),

which is coherent with the notion that higher VEGF production rates correlate with

stronger chemotactic dynamics, already established to play a key role in cluster formation.

In addition, the size of clusters seems to be proportional to the VEGF di↵usion coe�cient

Dc, as demonstrated by the plots in Figure 5.6d in which we see that increasing the

magnitude of Dc results in higher W and C. This trend, however, suggests that much

higher values of Dc may result in tissue invasion, rather than cluster formation (see

supplementary Figure D.3e). Finally, as suggested by Figure 5.6f, changes in the VEGF

decay rate �c do not seem to particularly e↵ect cluster size, over the range of parameter

values considered.

The role of MMP dynamics Figure 5.6b displays changes in cluster width W and

compactness C as the rate production of MMP, ↵m, varies. Similarly to what was ob-

served for ↵c in relation to �, we see that these boxplots closely resemble those obtained

varying � (cf. Figures 5.5f and 5.6b), which is coherent with the notion that higher MMP

production rates correlate with stronger degrading dynamics, already established to be

responsible for turning aggregates into clusters – that is, increasing their compactness.

In addition, we see in Figure 5.6c that increasing the magnitude of the MMP decay

rate �m yields opposite e↵ects to those obtained increasing their production ↵m, further

confirming the role MMP-mediated ECM degradation has in cluster formation. On the

other hand, changes in the MMP di↵usivity Dm do not seem to a↵ect cluster size, as

demonstrated in Figure 5.6a – verified under di↵erent orders of magnitude of Dm (see

supplementary Figure D.3d). This suggests not much will be gained by distinguishing

between membrane-bound and di↵usive MMPs, at least in this modelling framework and

within the range of parameter values considered.

5.3.5 2D clusters

Let us now consider the 2D problem. In this section we focus on the most interesting

results obtained in Section 5.3.4 and investigate the role played by chemotaxis, ECM

degradation and cell proliferation in the formation of 2D clusters. We also consider the

results in the absence of ECM remodelling, discussing its biological interpretation in

relation to in vitro and in vivo assays.
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(a) Varying cell di↵usion Dn

(b) Varying chemotactic sensitivity �

(c) Varying cell-to-cell adhesion coe�cient Snn

(d) Varying cell-to-matrix adhesion coe�cient

Sn⇢

(e) Varying cell proliferation rate p

(f) Varying ECM degradation rate �

(g) Varying ECM remodelling rate µ

(h) Varying initial ECM density ⇢0

Figure 5.5: Parametric analysis of cluster width and compactness (part 1).
Cluster width W and compactness C, defined in (5.20) and (5.21), under deviations from
the baseline parameter set (BPS), in Table 5.1, of each parameter in equations (5.15)1
and (5.15)2. In (a) we have boxplots of W and C measured on the numerical solution
of the system (5.15) at t = 50, for Dn taking its value in the BPS (center), half (left)
and double (right) its value in the BPS. Each boxplot collects data from 100 simulations
under randomised initial conditions (5.13)-(5.14)1. In (b)-(g) we have the same as in (a)
but varying parameters � (b), Snn (c), Sn⇢ (d), p (e), � (f), µ (g) and ⇢0 (h).
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(a) Varying MMP di↵usion Dm

(b) Varying MMP production rate ↵m

(c) Varying MMP decay rate �m

(d) Varying VEGF di↵usion Dc

(e) Varying VEGF production rate ↵c

(f) Varying VEGF decay rate �c

Figure 5.6: Parametric analysis of cluster width and compactness (part 2).
Cluster width W and compactness C, defined in (5.20) and (5.21), under deviations
from the baseline parameter set in Table 5.1 of each parameter in equations (5.15)3 and
(5.15)4. In (a) we have boxplots of W and C measured on the numerical solution of
the system (5.15) at t = 50, for Dm taking its value in the BPS (center), half (left)
and double (right) its value in the BPS. Each boxplot collects data from 100 simulations
under randomised initial conditions (5.13)-(5.14)1. In (b)-(f) we have the same as in (a)
but varying parameters ↵m (b), �m (c), Dc (d), ↵c (e) and �c (f).

2D clusters under the baseline parameter set. Under the baseline parameter

set reported in Table 5.1, 2D cluster formation follows slightly di↵erent spatiotemporal

dynamics to those observed in the 1D case, as demonstrated by the plots in the second

row of Figures 5.7, 5.8 and 5.9. At t = 20, the cell density has already reached maximum

local compactness in some regions, while aggregation dynamics are still at their early

stages (cf. first panel in second row of Figures 5.7, 5.8 or 5.9), and the minimum cluster

size is observed no earlier than t = 140 (cf. fourth panel in second row of Figures 5.7, 5.8
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or 5.9). The cluster observed at this stage has a nondimensional diameter of about 0.2,

which perfectly agrees with the results in 1D and is also consistent with experimental

observations reported by Blatchley et al. (2019). After the cluster has formed, no tissue

invasion is observed – see supplementary Figure D.4.

The role of ECM degradation in 2D. The plots reported in Figure 5.7 demonstrate

that ECM degradation promotes the formation of 2D clusters, as predicted by the results

of the 1D model presented in Sections 5.3.3 and 5.3.4. Lower ECM degradation rates

correlate with slower aggregation dynamics and lower compactness of such aggregates

(cf. first row of Figure 5.7) – to the extent that in the absence of ECM degradation

no clusters form (see supplementary Figure D.5) – and higher ECM degradation rates

correlate with faster cluster formation with well-defined and compact clusters observed

at much earlier times (cf. third row of Figure 5.7). As for the 1D model, we obtain the

same results under analogous changes of the MMP secretion rate ↵m (see supplementary

Figure D.6).

Figure 5.7: 2D numerical results under di↵erent matrix degradation rates.
First row: Plots of the cell density n(t,x) obtained solving the system (5.15), together
with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14)2, complemented
with zero-flux boundary conditions, under the parameter choices reported in Table 5.1,
except for � = 0.02. The solution is plotted at time t = 20 (first panel), t = 40 (second
panel), t = 80 (third panel) and t = 140 (fourth panel). Second and third row: Same as
first row, except for � = 0.2 (second row) and � = 2 (third row).
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The role of chemotaxis in 2D. The plots reported in Figure 5.8 demonstrate that

endogenous chemotaxis promotes aggregation dynamics, as predicted by the results of

the 1D model presented in Sections 5.3.3 and 5.3.4, and reveal that chemotaxis is an im-

portant determinant of 2D cluster structure. Lower values of the chemotactic sensitivity

� correlate with slower and weaker aggregation dynamics, so that no well-defined clusters

can be observed (cf. first row of Figure 5.8). Higher values of � correlate with faster and

stronger aggregation dynamics, with well-defined clusters observed at earlier times (cf.

third row of Figure 5.8) and cluster diameter – once the clusters have reached minimum

size – smaller than that observed with lower values of � (cf. last panel in the second

row and last panel in the third row of Figure 5.8). As for the 1D model, we obtain the

same results under analogous changes of the VEGF secretion rate ↵c (see supplementary

Figure D.7).

Figure 5.8: 2D numerical results under di↵erent chemotactic coe�cients.
First row: Plots of the cell density n(t,x) obtained solving the system (5.15), together
with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14)2, complemented
with zero-flux boundary conditions, under the parameter choices reported in Table 5.1,
except for � = 1.4. The solution is plotted at time t = 20 (first panel), t = 40 (second
panel), t = 80 (third panel) and t = 140 (fourth panel). Second and third row: Same as
first row, except for � = 2.8 (second row) and � = 5.6 (third row).

The role of cell proliferation in 2D. While the results of the 1D model presented in

Section 5.3.4 seemed to suggest that the speed of the cluster formation process is propor-

tional to the cell proliferation rate p, the plots reported in Figure 5.9 in a 2D framework
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indicate otherwise. While the rate of cell proliferation may influence how the cells re-

spond to spatial gradients at the beginning of the cluster formation process (cf. plots

in the second column of Figure 5.9), it does not seem a↵ect the overall spatiotemporal

dynamics of 2D cluster formation. Upon these considerations, the results displayed in

Figure 5.5e may simply be a 1D projection of the 2D dynamics occurring around the

same time – consider for instance a 1D cross-section (e.g. x1 = 0.5) of the plots in the

second column of Figure 5.9.

Figure 5.9: 2D numerical results under di↵erent proliferation rates. First
row: Plots of the cell density n(t,x) obtained solving the system (5.15), together with
definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14)2, complemented
with zero-flux boundary conditions, under the parameter choices reported in Table 5.1,
except for p = 0.5. The solution is plotted at time t = 20 (first panel), t = 40 (second
panel), t = 80 (third panel) and t = 140 (fourth panel). Second and third row: Same as
first row, except for p = 1 (second row) and p = 2 (third row).

The role of matrix remodelling and its relation to in vitro studies. While ma-

trix remodelling naturally occurs in vivo thanks to the presence of other cells in biological

tissue, this is not generally observed in in vitro assays, which occur in isolated environ-

ments. Thus, in order to compare our results with those of in vitro studies, we chose to

set the ECM remodelling rate µ = 0, and present the results in Figure 5.10. We observe

that clusters still form in the absence of ECM remodelling, however they are smaller than

in the baseline parameter set (cf. last panel in the second row of Figures 5.7-5.9 and that

of Figure 5.10). The smaller cluster size may result from the more dominant role played
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by cell-to-cell adhesion following ECM degradation: in the absence of ECM remodelling,

volume exclusion is less likely to a↵ect the cell dynamics and, at the cell boundaries,

cell-matrix interactions become negligible compared with cell-cell interactions. We would

then expect to observe clusters of a smaller diameter but higher maximum density, but

because of death due to competition for space we instead observe a loss of cell mass.

While these results are mathematically consistent with our model set up, the observed

cluster size under the baseline parameter set was more coherent with in vitro experimen-

tal observations in Blatchley et al. (2019) than that observed for µ = 0. This could be

explained by considering that our 2D set up is meant to reflect dynamics occurring in a

2D horizontal cross section of the 3D experimental domain reported in Blatchley et al.

(2019), illustrated in Figure 4.2. As the cells degraded the matrix and reorganised into

clusters, they also fell towards the bottom of the hydrogel, as illustrated by the exper-

imental data reported in Figure 4.2D, in regions where it was not yet degraded. Thus,

following the horizontal plane intersecting the cluster’s centre, we would indeed observe

cell-independent matrix remodelling.

Figure 5.10: 2D numerical results in the absence of matrix remodelling.
Plots of the cell density n(t,x) obtained solving the system (5.15), together with defi-
nitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14)2, complemented with
zero-flux boundary conditions, under the parameter choices reported in Table 5.1, except
for µ = 0. The solution is plotted at time t = 20 (first panel), t = 40 (second panel),
t = 80 (third panel) and t = 140 (fourth panel).
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Chapter 6

Discussion and research

perspectives

6.1 Summary and discussion

Despite the great progress made in the past 20 years in understanding the mechanisms

behind EPC cluster-based vasculogenesis, much more needs to be achieved in order to

unlock its full therapeutic potential. Mathematical modelling provides theoretical means

to shed light on the otherwise hidden role played by underlying dynamics in the origin and

structure of the emergent vascular network, as previously achieved in the study of mature

EC vascular network formation (single-cell vasculogenesis). We therefore formulated a

nonlocal PDE model of EPC cluster formation during the early stages of vasculogenesis,

including mechanisms such as ECM degradation, cell proliferation and cell-to-cell adhe-

sion, which were recently found to distinguish cluster-based vasculogenesis from single-

cell vasculogenesis (Blatchley et al., 2019). By introducing appropriate metrics of cluster

width and compactness, we investigated the role played by the underlying dynamics in

facilitating cluster formation, regulating the speed of the cluster-formation process and

the size of clusters – see Table 6.1 for a summary of the results of the parametric analysis

of the 1D problem. Furthermore, we verified that most of the key observations from the

parametric analysis for the 1D model still hold in a 2D framework.

6.1.1 Chemotaxis, degradation and their link to hypoxia

Our results confirmed the role played by matrix degradation in the formation of EPC

clusters in both the 1D and 2D models, providing additional theoretical support to the

mechanism of EPC cluster formation proposed by Blatchley et al. (2019). For example,

the in vitro experiments indicated that no clusters form in the absence of MMPs, which

is precisely what we discovered here. In addition, the investigation conducted in Sec-
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Table 6.1: Summary of the results of the parametric analysis of the 1D problem con-
ducted in Section 5.3.4. The biological meaning of each parameter is summarised in
Table 5.1. Cluster width W and compactness C are defined in Section 5.3.1. Better
defined clusters may correlate with: (i) smaller range of width W measured; (ii) higher
median compactness C measured. Less well defined clusters correlate with lower median
compactness C measured. Bigger clusters correlate with higher median width W and
compactness C measured.

Parameter Main e↵ect of increasing the parameter
value on cluster size

Ref. Figure

Dn Little e↵ect favouring tissue invasion 5.5a, D.3a
� Better defined clusters (i) 5.5b
Snn Little to no e↵ect 5.5c, D.3b
Sn⇢ Little e↵ect favouring tissue invasion 5.5d
p Increased cluster formation speed (refuted in 2D) 5.5e
� Better defined clusters (ii) 5.5f, D.3c
µ Less well defined clusters 5.5g
⇢0 Little to no e↵ect 5.5h
Dm Little to no e↵ect 5.6a, D.3d
↵m Better defined clusters (ii) 5.6b
�m Less well defined clusters (ii) 5.6c
Dc Bigger clusters 5.6d, D.3e
↵c Better defined clusters (i) 5.6e
�c Little to no e↵ect 5.6f

tions 5.3.4 and 5.3.5 indicate that the speed of cluster formation is proportional to the

rate of matrix degradation – and the rate of MMP secretion by the cells – which nicely

agrees with their experimental observations. Our numerical results further highlighted

that matrix degradation alone may not su�ce to explain the formation of clusters, as

endogenous chemotaxis was shown to be responsible for aggregation dynamics, without

which the cells would simply invade the whole tissue. In addition, the investigation con-

ducted in Sections 5.3.4 and 5.3.5 suggests that the size of clusters is (inversely) related

to the chemotactic sensitivity of the cells – and the rate of VEGF secretion by the cells –

indicating chemotaxis may be a key determinant of cluster topology. Note that, in view

of the experimental evidence presented by Blatchley et al. (2019) and Akita et al. (2003),

the MMP production rate ↵m and the VEGF production rate ↵c may be correlated with

the local level of hypoxia. It would therefore be interesting to let these production rates

be given as functions of the local oxygen concentration. The results here obtained sug-

gest that our model would then predict cluster formation to be fostered by higher levels

of hypoxia, indeed agreeing with the referenced experimental observations (Akita et al.,

2003; Blatchley et al., 2019).
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6.1.2 Cell-to-cell adhesion and cluster stability

Cell-to-cell adhesion, on the other hand, did not seem to play an important role in cluster

formation or cluster structure. While this may seem counter-intuitive considering previ-

ous single-cell vasculogenesis works (Boas et al., 2018; Merks et al., 2004; Ramos et al.,

2018; Scianna et al., 2013), these models did not include both chemotaxis and degradation

and thus did not predict cluster formation as an intermediate step in network formation.

In view of these works, however, we cannot exclude that the final network configura-

tion (e.g. cord thickness) depends on cell-to-cell adhesion. According to Blatchley et al.

(2019), cell-to-cell adhesion is not related to cluster structure, which is consistent with

our model predictions, but is responsible for cluster stability. The mathematical study

of cluster-based vasculogenesis would therefore benefit from a more suited description of

cell-to-cell adhesion, as we have seen in Section 5.3.3 that our modelling choice allows us

to capture the aggregative e↵ect of cell-to-cell adhesion, but not its role in cluster stabili-

sation. This could perhaps be achieved by, instead of modelling cell adhesion nonlocally,

modelling di↵usion nonlinearly1 (Carrillo et al., 2019; Murakawa and Togashi, 2015) to-

gether with volume exclusion, as done for chemotaxis (cf. definitions (5.2) and (5.3)).

This would implicitly account for the physical limits of migration imposed by adhesion

bonds. Alternatively, one could modify the volume exclusion term (i.e. definition (5.3))

to explicitly model cell adhesion molecules, which would additionally allow for the study

of the e↵ect of cell adhesion-mediated saturation of chemotaxis (Merks and Glazier, 2005;

Merks et al., 2008; Singh et al., 2015). Otherwise, the stabilising e↵ect of cell-to-cell adhe-

sion could be more easily achieved by adopting an IB or hybrid modelling approach (An-

derson, 2005; Singh et al., 2015; Turner and Sherratt, 2002; Turner et al., 2004), as done

in previous CP models of single-cell vasculogenesis (Boas et al., 2018; Merks et al., 2004,

2008; Ramos et al., 2018; Scianna et al., 2011, 2013; Szabo et al., 2008).

6.2 Research perspectives

6.2.1 Model validation

The results reported in Chapter 5 suggest that in order to gain a comprehensive under-

standing of EPC cluster formation during the early-stages of cluster-based vasculogenesis,

it is necessary to consider both ECM degradation and chemotaxis. So far these processes

have only been experimentally investigated separately (Akita et al., 2003; Blatchley et al.,

1
Nonlinear di↵usion might also prevent infinite speed of propagation predicted by linear di↵usion

theory (Andreu et al., 2007), which is per se unrealistic when modelling cellular movement. It might

therefore also prevent the strict positivity of cell density over the whole domain, which might make the

identification of the support of each cluster more straightforward, cf. Section 5.3.1.
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2019), but it would be interesting to examine them in both normoxic and hypoxic con-

ditions, in view of our in silico results (cf. Section 6.1.1). Model validation would also

allow for a more accurate baseline parameter set. In fact, while the role played by ma-

trix degradation and the size of clusters in our numerical simulations well matches the

experimental observations reported by Blatchley et al. (2019), this – and future – math-

ematical models would benefit from the estimation of parameter values by fitting the

model to experimental data in order to obtain a better match of the timescale of 2D

cluster formation. Note, for instance, that the ten-fold increase in ↵m which results in

the observation of well-defined clusters at t = 20 (see supplementary Figure D.6) might

be justified by the experimental conditions reported in Blatchley et al. (2019) (see Ap-

pendix C.2). In view of the results reported in Section 5.3.5 in the absence of matrix

remodelling, it would also be interesting to further investigate the role ECM remodelling

may play in cluster formation and cluster size. This could lead to interesting observations

regarding the empirical di↵erences of cluster-based vasculogenesis during in vitro and in

vivo studies, and suggest interesting focus points for therapeutic intervention. In order

to achieve this, however, alternative experimental set ups might need to be considered,

in order to avoid the remodelling-resembling e↵ects of cells falling towards the bottom of

the 3D hydrogel during the cluster-formation process.

6.2.2 Further analytical investigations

In Section 5.3 we have conducted a parametric analysis of the model in order to elucidate

potential model behaviour. Whereas this already gave meaningful information to discuss

the importance of the various processes involved in cluster-based vasculogenesis, there

are more advanced mathematical tools available for the analysis of the dependence of the

model outcome on the model parameters. In particular, once accurate ranges of parameter

values have been estimated from data spanning di↵erent levels of hypoxia, it would be of

significant interest to conduct a global sensitivity analysis (Marino et al., 2008; Qian and

Mahdi, 2020; Renardy et al., 2019) of the cluster width and compactness to parameter

variability. In fact, while the conducted parametric analysis highlighted the role played

by each single parameter as it deviates from its baseline value, the global sensitivity

analysis would provide a tool to investigate the e↵ect of combined changes in the value of

multiple or all parameters over ranges indicative of di↵erent levels of hypoxia. This global

approach is also significant given the nonlinear nature of the model (Saltelli and Annoni,

2010; Saltelli et al., 2019). Upon revision of the modelling strategy adopted to describe

cell-to-cell adhesion, a global sensitivity analysis could be conducted in 2D in relation to

the cluster compactness (C), area (W ) and elongation (see Section 5.3.1). Moreover, it

would be particularly interesting to conduct a weakly nonlinear analysis (Boonkorkuea
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et al., 2010; Cross and Greenside, 2009; Han et al., 2017; Hoyle and Hoyle, 2006) of the 2D

model for a quantitative description of how chemotaxis is responsible for cluster structure.

For instance, considering the results reported in Figure 5.8, there might be a threshold

value of the chemotactic sensitivity below which we do not observe 2D clusters.

6.2.3 The inclusion of persistence of motion

In addition to the modelling research perspectives discussed in Sections 6.1.1 and 6.1.2, in-

teresting investigations could be conducted by considering the possible interplay between

degradation and persistence of motion. Previous CP models of single-cell vasculogen-

esis predicted cluster formation in the absence of cell elongation (Merks et al., 2006),

due to chemotaxis. Despite their exclusion of ECM degradation and proliferation, we

expect such result to capture the role of elongation during cluster-based vasculogenesis,

given that EPC motion during the early stages of the process is mostly amoeboid-like,

and we observe cell polarisation only in the later stages (Blatchley et al., 2019). On

the other hand, persistence of motion, indicated to prevent cell clusterisation by PEC

models of single-cell vasculogenesis (Tosin et al., 2006), was observed to be enhanced

during amoeboid-like migration (Serini et al., 2003). It would therefore be interesting

to investigate whether clusters would still form in this modelling framework with the

inclusion of persistence of motion. In particular note that Tosin et al. (2006) included

in their momentum equation a drag force generated by cells moving on the ECM and

observed that lower cell-matrix adhesion resulted in cell clusterisation. We might thus

expect ECM degradation to play a key role in lowering cell adhesiveness to the ECM in

such modelling framework, thus leading to clusters.

6.2.4 Modelling the late-stages of cluster-based vasculogene-

sis

Future work should focus on the theoretical investigation of cluster-based vasculogenesis

at later stages of this process, during which EPCs increase their interaction with the ECM

and bridge clusters, forming the vascular network. In these stages the mechanical inter-

action between the cells and ECM becomes non-trivial and one might therefore consider

a mechanochemical model similar to those previously proposed to study the late stages of

single-cell vasculogenesis (Manoussaki, 2003; Murray, 2003; Tosin et al., 2006). Various

works in the current literature already address the formation of sprouts from existing

clusters (Boas et al., 2018; Merks et al., 2008; Szabo et al., 2008; Szabó and Czirók, 2010)

and prior single-cell vasculogenesis models investigating the formation of a vascular net-

work, rather than clusters, may still be relevant to these late stages. For instance, while
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cell-to-cell adhesion may saturate chemotaxis (Merks et al., 2008), VEGF gradients may

still be strongly perceived at the cluster boundaries. This is especially the case if ECM-

bound VEGF was the main signalling molecule, and in this case we would indeed expect

steep VEGF gradients to form at the cluster boundaries (Merks et al., 2006). Perhaps

such a scenario can explain the change in cell morphology. The role cell elongation plays

in the formation of a final well-defined network has already been extensively addressed

by CP models of single-cell vasculogenesis (Boas et al., 2018; Merks et al., 2004, 2006;

van Oers et al., 2014; Palm and Merks, 2013; Ramos et al., 2018; Scianna et al., 2013).

Blatchley et al. (2019) indeed reported an elongated cell morphology during sprouting, as

well as an increased mechanical interaction with the ECM. The combination of cell trac-

tion on the ECM and strain-dependent movement of cells would also su�ce in explaining

bridging between clusters (Ambrosi et al., 2005; Manoussaki, 2003; Murray, 2003; Namy

et al., 2004). Nevertheless mechanochemical models, as well as CP models including

cell traction (van Oers et al., 2014; Ramos et al., 2018), generally predict that higher

ECM sti↵ness inhibits network formation, which is in contradiction with the experimen-

tal observations presented by Blatchley et al. (2019). Existing single-cell vasculogenesis

models of late-stage dynamics, however, do not include ECM degradation, a key element

for the study of cluster-based vasculogenesis. On the other hand, ECM degradation has

been shown to have an important role during sprouting angiogenesis (Boas et al., 2018;

Daub and Merks, 2013; Holmes and Sleeman, 2000; Scianna et al., 2013; Tranqui and

Tracqui, 2000), a result which could very well translate into an active role in cluster-

based vasculogenesis, although the interplay between ECM degradation and cell-ECM

interactions may be particularly complex. Upon formulation of a mathematical model

which accurately predicts cluster-based vascular network assembly, this could be used to

investigate the determinants of network size and configuration. For instance, one might

explore whether the size of clusters or cell-to-cell adhesion (Merks et al., 2008; Ramos

et al., 2018) will a↵ect tube diameters, or whether VEGF di↵usion and decay rates de-

termine cord length (Ambrosi et al., 2004, 2005; Gamba et al., 2003; Serini et al., 2003),

and how these are a↵ected by matrix sti↵ness.

Modelling the ECM in mechanochemical models. During tissue engineering in

vitro studies di↵erent types of ECM sca↵olds can be used, see Section 4.1.1. Given the

complexity of cell-matrix interactions during many other developmental, physiological

and pathological processes, the investigation of the role ECM sti↵ness plays in the di↵er-

ent stages of cluster-based vasculogenesis may benefit from a more precise description of

the ECM viscoelastic properties that might di↵er between in vivo and in vitro studies.

In fact, we will see in Part IV that even simple changes in the ECM linear viscoelasticity

assumptions can a↵ect the pattern formation potential of classic mechanical models.
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Part IV

Modelling the extracellular matrix

in mechanical pattern formation
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Mechanical and mechanochemical models of pattern formation in biological tissues have

been used to study a variety of biomedical systems, particularly in developmental biology,

and describe the physical interactions between cells and their local surroundings. These

models, in their original form, consist of a balance equation for the cell density, a balance

equation for the density of the extracellular matrix (ECM), and a force-balance equation

describing the mechanical equilibrium of the cell-ECM system. Under the assumption

that the cell-ECM system can be regarded as an isotropic linear viscoelastic material, the

force-balance equation is often defined using the Kelvin-Voigt model of linear viscoelas-

ticity to represent the stress-strain relation of the ECM. However, due to the multifaceted

bio-physical nature of the ECM constituents, there are rheological aspects that cannot

be e↵ectively captured by this model and, therefore, depending on the pattern formation

process and the type of tissue considered, other constitutive models of linear viscoelastic-

ity may be better suited. Here, we systematically assess the pattern formation potential

of di↵erent stress-strain constitutive equations for the ECM within a mechanical model of

pattern formation in biological tissues. The results obtained through LSA and the disper-

sion relations derived therefrom support the idea that fluid-like constitutive models, such

as the Maxwell model and the Je↵rey model, have a pattern formation potential much

higher than solid-like models, such as the Kelvin-Voigt model and the standard linear

solid model. This is confirmed by the results of numerical simulations, which demonstrate

that, all else being equal, spatial patterns emerge in the case where the Maxwell model

is used to represent the stress-strain relation of the ECM, while no patterns are observed

when the Kelvin-Voigt model is employed. These findings suggest that further empirical

work is required to acquire detailed quantitative information on the mechanical properties

of components of the ECM in di↵erent biological tissues in order to furnish mechanical

and mechanochemical models of pattern formation with stress-strain constitutive equa-

tions for the ECM that provide a more faithful representation of the underlying tissue

rheology.

Part IV is organised as follows: in Chapter 7 background on mechanochemical models

is presented, along with constitutive models of linear viscoelasticity and the rheological

properties that they capture; in Chapter 8 a mechanical model of biological pattern

formation is presented, along with its analytical and numerical results; in Chapter 9 the

implications of this study are discussed, together with an overview of possible research

perspectives.

The contents of Part IV are based on the paper Villa et al. (2021a).
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Chapter 7

Background and linear

viscoelasticity models

7.1 PDE models of pattern formation

Pattern formation resulting from spatial organisation of cells is at the basis of a broad

spectrum of physiological and pathological processes in living tissues (Jernvall et al.,

2003). While the first formal exploration of pattern and form from a mathematical

(strictly speaking, geometrical) perspective goes back over a century to D’Arcy Thomp-

son’s “On Growth and Form” (Thompson, 1917), the modern development of mathemat-

ical models for this biological phenomenon started halfway through the twentieth cen-

tury to elucidate the mechanisms that underlie morphogenesis and embryogenesis (Maini,

2005). Since then, a number of mathematical models for the formation of cellular patterns

have been developed (Urdy, 2012). Amongst these, particular attention has been given

to reaction-di↵usion models and mechanochemical models of pattern formation (Murray,

2001).

7.1.1 Reaction-di↵usion models

Reaction-di↵usion models of pattern formation, first proposed by Turing in his seminal

1952 paper (Turing, 1952) and then further developed by Gierer and Meinhardt (Gierer

and Meinhardt, 1972; Meinhardt, 1982), apply to scenarios in which the heterogeneous

spatial distribution of some chemicals (i.e. morphogens) acts as a template (i.e. a pre-

pattern) according to which cells organise and arrange themselves in di↵erent sorts of

spatial patterns. These models are formulated as coupled systems of reaction-di↵usion

equations for the spatiotemporal dynamics of the concentrations of two morphogens, with

117



di↵erent reaction kinetics depending on the biological problem at stake. Such systems

exhibit di↵usion-driven instability whereby homogeneous steady states are driven unsta-

ble by di↵usion, resulting in the formation of pre-patterns, provided that the di↵usion

rate of one of the morphogens is su�ciently higher than the other (Maini et al., 1997;

Maini and Woolley, 2019; Maini et al., 2012; Murray, 1981).

7.1.2 Mechanochemical models

On the other hand, mechanochemical models of pattern formation, first proposed by Mur-

ray, Oster and coauthors in the 1980s (Murray and Oster, 1984a,b; Murray et al., 1983;

Oster et al., 1983), describe spatial organisation of cells driven by the mechanochemi-

cal interaction between cells and the ECM – i.e. the substratum composed of collagen

fibers and various macromolecules, partly produced by the cells themselves, in which cells

are embedded (Harris Jr, 1984; Harris et al., 1981). As introduced in Section 4.2.1 for

mechanochemical models of vasculogenesis, these models in their original form consist of

systems of PDEs comprising a balance equation for the cell density, a balance equation

for the ECM density, and a force-balance equation describing the mechanical equilibrium

of the cell-ECM system (Murray and Maini, 1989; Murray et al., 1988). When chemical

processes are neglected, these models reduce to mechanical models of pattern forma-

tion (Byrne and Chaplain, 1996; Murray and Maini, 1989; Murray et al., 1988).

The role of mechanical forces. While reaction-di↵usion models well explain the

emergence and characteristics of patterns arising during chemical reactions (Castets et al.,

1990; Maini et al., 1997; Maini and Woolley, 2019), as well as pigmentation patterns found

on shells (Meinhardt, 2009) or animal coatings (Kondo and Asai, 1995; Murray, 2001),

various observations seem to suggest they may not always be the most suited models to

study morphogenic pattern formation (Bard and Lauder, 1974; Brinkmann et al., 2018;

Maini and Woolley, 2019). For instance, experiments up to this day seem to fail in the

identification of appropriate morphogens and overall molecular interactions predicted by

Turing models in order for de novo patterns to emerge may be too complex. In addition,

unrealistic parameter values would be required in order to reproduce experimentally ob-

servable patterns and the models appear to be too sensitive to parameter changes, hence

lacking the robustness required to capture precise patterns. These considerations indicate

that other mechanisms, driven for instance by significant mechanical forces, should be

considered since solely chemical interactions may not su�ce in explaining the emergence

of patterns during morphogenesis. Hence mechanochemical models may be better suited.

Interestingly, this need to change modelling framework sometimes arises within the same

biological application as time progresses. For instance, supracellular organisation in the
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early stages of embryonic development closely follows morphogenic chemical patterns,

but further tissue-level organisation requires additional cooperation of osmotic pressures

and mechanical forces (Petrolli et al., 2019). Similarly, pattern formation during vascu-

logenesis is generally divided into an early stage highly driven by cell migration following

chemical cues, and a later one dominated by mechanical interactions between the cells and

the ECM (Ambrosi et al., 2005; Scianna et al., 2013; Tosin et al., 2006). Finally, purely

mechanical models are a useful tool for studying the isolated role of mechanical forces and

can capture observed phenomena without the inclusion of chemical cues (Petrolli et al.,

2019; Serra-Picamal et al., 2012; Tlili et al., 2018).

Applications of mechanochemical models. Over the years, mechanochemical and

mechanical models of pattern formation in biological tissues have been used to study a

variety of biomedical problems, including morphogenesis and embryogenesis (Brinkmann

et al., 2018; Cruywagen and Murray, 1992; Maini and Murray, 1988; Murray and Maini,

1986; Murray et al., 1988; Murray and Oster, 1984a,b; Murray et al., 1983; Oster et al.,

1983; Perelson et al., 1986), angiogenesis and vasculogenesis (Manoussaki, 2003; Scianna

et al., 2013; Tranqui and Tracqui, 2000), cytoskeleton reorganisation (Alonso et al., 2017;

Lewis and Murray, 1991), wound healing and contraction (Javierre et al., 2009; Maini

et al., 2002; Olsen et al., 1995; Tranquillo and Murray, 1992), and stretch marks (Gilmore

et al., 2012). These models have also been used to estimate the values of cell mechanical

parameters, with a particular focus on cell traction forces (Barocas et al., 1995; Barocas

and Tranquillo, 1994; Bentil and Murray, 1991; Ferrenq et al., 1997; Moon and Tranquillo,

1993; Perelson et al., 1986). The roles that di↵erent biological processes play in the

formation of cellular patterns can be disentangled via LSA of the homogeneous steady

states of the model equations – i.e. investigating what parameters of the model, and thus

what biological processes, can drive homogeneous steady states unstable and promote

the emergence of cell spatial organisation. Further insight into certain aspects of pattern

formation in biological tissues can also be provided by nonlinear stability analysis of

the homogeneous steady states (Cruywagen and Murray, 1992; Lewis and Murray, 1991;

Maini and Murray, 1988).

7.1.3 Linear viscoelasticity assumptions on the ECM

Mechanical and mechanochemical models usually rely on the assumption that the cell-

ECM system can be regarded as an isotropic linear viscoelastic material. This is clearly a

simplification due to the nonlinear viscoelasticity and anisotropy of soft tissues (Bischo↵

et al., 2004; Huang et al., 2005; Liu and Bilston, 2000; Nasseri et al., 2002; Snedeker et al.,

2005; Valtorta and Mazza, 2005; Verdier, 2003), a simplification that various rheological
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tests conducted on biological tissues have nonetheless shown to be justified in the regime

of small strains (Bilston et al., 1997; Liu and Bilston, 2000; Nasseri et al., 2002; Valtorta

and Mazza, 2005), which is the one usually of interest in the applications of such models.

Under this assumption, the force-balance equation for the cell-ECM system is often de-

fined using the Kelvin-Voigt model of linear viscoelasticity to represent the stress-strain

relation of the ECM (Byrne and Chaplain, 1996; Murray et al., 1988; Oster et al., 1983).

However, due to the multifaceted bio-physical nature of the ECM constituents, intro-

duced in Section 4.1.1, there are rheological aspects that cannot be e↵ectively captured

by the Kelvin-Voigt model and, therefore, depending on the pattern formation process

and the type of biological tissue considered, other constitutive models of linear viscoelas-

ticity may be better suited (Barocas and Tranquillo, 1994). In this regard, Byrne and

Chaplain (1996) demonstrated that, ceteris paribus, using the Maxwell model of linear

viscoelasticity to describe the stress-strain relation of the ECM in place of the Kelvin-

Voigt model can lead to di↵erent dispersion relations with a higher pattern formation

potential. This suggests that a more thorough investigation of the capability of di↵erent

stress-strain constitutive equations of producing spatial patterns is required.

7.2 Essentials of viscoelastic materials and stress-

strain constitutive equations

The main properties of viscoelastic materials are summarised in Section 7.2.1. Then,

the 1D stress-strain constitutive equations that are considered in Chapter 8 are briefly

presented, together with the main rheological properties of linear viscoelastic materials

that they capture, in Section 7.2.2. Finally, in Section 7.2.3 are reported the 2D consti-

tutive equations used in Chapter 8. Most of the contents of this section can be found in

standard textbooks, such as Findley et al. (1976) and Mase (1970), and are reported here

for the sake of completeness. Further considerations of and applications to living tissues

can be found in Fung (1993).

7.2.1 Essentials of viscoelastic materials

As the name suggests, viscoelastic materials exhibit both viscous and elastic characteris-

tics, and the interplay between them may result in a wide range of rheological properties

that can be examined through creep and stress relaxation tests. During a creep test,

a constant stress is first applied to a specimen of material and then removed, and the

time dynamic of the correspondent strain is tracked. During a stress relaxation test, a

constant strain is imposed on a specimen of material and the evolution in time of the
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induced stress is observed (Findley et al., 1976).

Here we list the main properties of viscoelastic materials that may be observed during

the first phase of a creep test (see properties 1a-1c), during the recovery phase, that is,

when the constant stress is removed from the specimen (see properties 2a-2c), and during

a stress relaxation test (see property 3).

1a Instantaneous elasticity. As soon as a stress is applied, an instantaneous corre-

sponding strain is observed.

1b Delayed elasticity. While the instantaneous elastic response to a stress is a purely

elastic behaviour, due to the viscous nature of the material a delayed elastic response

may also be observed. In this case, under constant stress the strain slowly and

continuously increases at decreasing rate.

1c Viscous flow. In some viscoelastic materials, under a constant stress, the strain

continues to grow within the viscoelastic regime (i.e. before plastic deformation).

In particular, viscous flow occurs when the strain increases linearly with time and

stops growing at removal of the stress only.

2a Instantaneous recovery. When the stress is removed, an instantaneous recovery (i.e.

an instantaneous strain decrease) is observed because of the elastic nature of the

material.

2b Delayed recovery. Upon removal of the stress, a delayed recovery (i.e. a continuous

decrease of the strain at decreasing rate) occurs.

2c Permanent set. While elastic strain is reversible, in viscoelastic materials a non-

zero strain, known as “permanent set” or “residual strain”, may persist even when

the stress is removed.

3 Stress relaxation. Under constant strain, gradual relaxation of the induced stress

occurs. In some cases, this may even culminate in total stress relaxation (i.e. the

stress decays to zero).

The subset of these properties exhibited by a viscoelastic material will depend on – and

hence define – the type of material being tested. Moreover, during each phase of the creep

test, more than one of the above properties may be observed. For instance, a Maxwell

material under constant stress will exhibit instantaneous elasticity followed by viscous

flow – see supplementary Figure A.3.

7.2.2 1D stress-strain constitutive equations

In this section, we briefly describe the di↵erent constitutive equations that are used in our

study to represent the stress-strain relation of the ECM. In general, these equations can

be used to predict how a viscoelastic material will react to di↵erent loading conditions,
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in one spatial dimension, and rely on the assumption that viscous and elastic character-

istics of the material can be modelled, respectively, via linear combinations of dashpots

and springs, as illustrated in Figure 7.1. Di↵erent stress-strain constitutive equations

correspond to di↵erent arrangements of these elements and capture di↵erent subsets of

the rheological properties summarised in the previous section (see Table 7.2). Rules of

derivation of the constitutive equations are detailed in Appendix A.5.1. In the remainder

of this section, we will denote the stress and the strain at position x and time t by �(t, x)

and "(t, x), respectively.

Figure 7.1: Models of linear viscoelasticity considered in Chapter 8. Combi-
nations of elastic springs and viscous dampers, together with the associated elastic (E,
E1, E2) and viscous moduli (⌘, ⌘1, ⌘2), for the models of linear viscoelasticity considered
in Chapter 8: the linear elastic model (a), the linear viscous model (b), the Kelvin-Voigt
model (c), the Maxwell model (d), the SLS model (e), and the Je↵rey model (f).

Linear elastic model. When viscous characteristics are neglected, a linear viscoelastic

material can be modelled as a purely elastic spring with elastic modulus (i.e. Young’s

modulus) E > 0, as illustrated in Figure 7.1a. In this case, the stress-strain constitutive

equation is given by Hooke’s spring law for continuous media, that is,

� = E" . (7.1)
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Linear viscous model. When elastic characteristics are neglected, a linear viscoelastic

material can be modelled as a purely viscous damper of viscosity ⌘ > 0, as illustrated in

Figure 7.1b. In this case, the stress-strain constitutive equation is given by Newton’s law

of viscosity, that is,

� = ⌘ @t" . (7.2)

Kelvin-Voigt model. The Kelvin-Voigt model, also known as the Voigt model, relies

on the assumption that viscous and elastic characteristics of a linear viscoelastic material

can simultaneously be captured by considering a purely elastic spring with elastic modulus

E > 0 and a purely viscous damper of viscosity ⌘ > 0 in parallel, as illustrated in

Figure 7.1c. The corresponding stress-strain constitutive equation is

� = E"+ ⌘ @t" . (7.3)

Maxwell model. The Maxwell model relies on the assumption that viscous and elastic

characteristics of a linear viscoelastic material can be captured by considering a purely

elastic spring with elastic modulus E > 0 and a purely viscous damper of viscosity

⌘ > 0 in series, as illustrated in Figure 7.1d. The corresponding stress-strain constitutive

equation is
1

E
@t� +

�

⌘
= @t" . (7.4)

Standard linear solid (SLS) model. The SLS model, also known as the Kelvin

model, relies on the assumption that viscous and elastic characteristics of a linear vis-

coelastic material can be captured by considering a Kelvin arm of elastic modulus E1 > 0

and viscosity ⌘ > 0 in series with a purely elastic spring of elastic modulus E2 > 0, as

illustrated in Figure 7.1e. The corresponding stress-strain constitutive equation is (Mase,

1970)
1

E2
@t� +

1

⌘

✓
1 +

E1

E2

◆
� = @t"+

E1

⌘
" . (7.5)

Je↵rey model. The Je↵rey model, also known as the Oldroyd-B or 3-parameter vis-

cous model, relies on the assumption that viscous and elastic characteristics of a linear

viscoelastic material can be captured by considering a Kelvin arm of elastic modulus

E > 0 and viscosity ⌘1 > 0 in series with a purely viscous damper of viscosity ⌘2 > 0, as

illustrated in Figure 7.1f. The corresponding stress-strain constitutive equation is
✓
1 +

⌘1

⌘2

◆
@t� +

E

⌘2
� = ⌘1@

2
tt
"+ E@t" . (7.6)
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Generic 4-parameter model. The following stress-strain constitutive equation en-

compasses all constitutive models of linear viscoelasticity whereby a combination of purely

elastic springs and purely viscous dampers, up to a total of four elements, and therefore

4 parameters, is considered

a2@
2
tt
� + a1@t� + a0� = b2@

2
tt
"+ b1@t"+ b0" . (7.7)

Here the non-negative, real parameters a0, a1, a2, b0, b1, b2 depend on the elastic moduli

and the viscosities of the underlying combinations of springs and dampers. For example, a

Kelvin-Voigt arm (elasticity E1 > 0 and viscosity ⌘1 > 0) and a Maxwell arm (elasticity

E2 > 0 and viscosity ⌘2 > 0) connected in series, representing what is known as the

Burger’s model, correspond to the constitutive equation

⌘1⌘2

E1E2
@
2
tt
� +

⇣
⌘1

E1
+
⌘2

E1
+
⌘2

E2

⌘
@t� + � =

⌘1⌘2

E1
@
2
tt
"+ ⌘2@t" .

When parameters a0, a1, a2, b0, b1, b2 are defined as in Table 7.1, the generic 4-parameter

constitutive model (7.7) reduces to the specific stress-strain constitutive equations (7.1)-

(7.6). For convenience of notation, we define the di↵erential operators

La := a2@
2
tt
+ a1@t + a0 and Lb := b2@

2
tt
+ b1@t + b0 (7.8)

so that the stress-strain constitutive equation (7.7) can be rewritten in the following

compact form

La[ � ] = Lb[ " ] . (7.9)

A summary of the rheological properties of linear viscoelastic materials listed in Sec-

tion 7.2.1 that are captured by the 1D stress-strain constitutive equations (7.1)-(7.6) is

provided in Table 7.2. These properties can be examined through mathematical proce-

dures that mimic creep and stress relaxation tests (Findley et al., 1976), of which examples

for the Kevin-Voigt and Maxwell models can be found in Appendix A.6. Notice that,

for all these constitutive models, instantaneous elasticity correlates with instantaneous

recovery, delayed elasticity correlates with delayed recovery, and viscous flow correlates

with permanent set. Materials are said to be more solid-like when their elastic response

dominates their viscous response, and more fluid-like in the opposite case (Nargess and

Yanlan, 2021). For this reason, models of linear viscoelasticity that capture viscous flow

and, as a consequence, permanent set – such as the Maxwell model and the Je↵rey model

– are classified as “fluid-like models”, while those which do not – such as the Kelvin-Voigt

model and the SLS model – are classified as “solid-like models”. In the remainder of the

paper we are going to include the linear viscous model in the fluid-like class and the linear

elastic model in the solid-like class, as they capture – or do not capture – the relevant

properties, even if they are not models of viscoelasticity per se.
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Table 7.1: Relations between the generic 4-parameter model (7.7) and the stress-strain
constitutive equations (7.1)-(7.6). *Burger’s model has been included for illustrative
purposes (cf. Section 9.2.1).

Generic 4-parameters model a2 a1 a0 b2 b1 b0

Linear elastic model 0 0 1 0 0 E

Linear viscous model 0 0 1 0 ⌘ 0

Kelvin-Voigt model 0 0 1 0 ⌘ E

Maxwell model 0 1
E

1
⌘

0 1 0

SLS model 0 1
E2

1
⌘

⇣
1 + E1

E2

⌘
0 1 E1

⌘

Je↵rey model 0 1 + ⌘1

⌘2

E

⌘2
⌘1 E 0

Burger’s model* ⌘1⌘2

E1E2

⇣
⌘1

E1
+ ⌘2

E1
+ ⌘2

E2

⌘
1 ⌘1⌘2

E1
⌘2 0

Table 7.2: Properties of linear viscoelastic materials captured by the stress-strain consti-
tutive equations (7.1)-(7.6). *Burger’s model has been included for illustrative purposes
(cf. Section 9.2.1). N.A.= not applicable (see Appendix A.6).

Model
Instantaneous
elasticity

Delayed
elasticity

Viscous
flow

Instantaneous
recovery

Delayed
recovery

Permanent
set

Stress
relaxation

Linear elastic X X

Linear viscous X X N. A.

Kelvin-Voigt X X

Maxwell X X X X X

SLS X X X X X

Je↵rey X X X X X

Burger’s* X X X X X X X
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7.2.3 2D stress-strain constitutive equations

Most of the study presented in Chapter 8 is conducted for the 1D case, but numerical

simulations of a 2D model, making use of the Kelvin-Voigt or the Maxwell model of

linear viscoelasticity for the ECM, are also considered. In analogy with equation (7.7),

we consider the following generic 2D constitutive equation

a1@t� + a0� = b1@t"+ b0"+ c1@t✓I + c0✓I . (7.10)

This, together with the associated parameter choices reported in Table 7.3, summarises

the 2D versions of the 1D Kelvin-Voigt (7.3) and the Maxwell model (7.4) used in Chap-

ter 8, which are derived in Appendix A.5.2.

Table 7.3: Relations between the parameters in the generic 2D stress-strain constitutive
equation (7.10) and those in the 2D constitutive equations for the Kelvin-Voigt model
and the Maxwell model.

Generic 2D model a1 a0 b1 b0 c1 c0

Kelvin-Voigt model 0 1
⌘

1 E
0

⌘
⌫
0 E

0
⌫
0

⌘

Maxwell model 1
E0

1
⌘

1 0 ⌫
0 0

In (7.10), �(t,x) is the stress tensor, while the strain "(t,x) and the dilation ✓(t,x) are

defined in terms of the displacement u(t,x) as

" =
1

2

�
ru+ru|� and ✓ = r · u . (7.11)

Notice that both " and ✓ reduce to " = @xu in the 1D case. Amongst the parameters in

the stress-strain constitutive equation (7.10) reported in Table 7.3 for the 2D Kelvin-Voigt

and Maxwell models, ⌘ > 0 is the shear viscosity,

E
0 :=

E

1 + ⌫
and ⌫

0 :=
⌫

1� 2⌫
, (7.12)

where ⌫ > 0 is Poisson’s ratio and E > 0 is Young’s modulus. The 2D Maxwell model

in the form (7.10) holds under the simplifying assumption that the quotient between the

bulk viscosity and the shear viscosity of the ECM is equal to ⌫ 0 (see Appendix A.5.2).

Note that the entries of Table 7.3 rely on this relation, which was assumed to hold for

both the Maxwell and the Kelvin Voigt models in our baseline parameter set.
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Chapter 8

The role of stress-strain constitutive

equations in mechanical models of

biological pattern formation

Following the problem introduced in Section 7.1.3, here we complement and further de-

velop the results presented in Byrne and Chaplain (1996) by systematically assessing the

pattern formation potential of di↵erent stress-strain constitutive equations for the ECM

within a mechanical model of pattern formation in biological tissues (Byrne and Chap-

lain, 1996; Murray et al., 1988; Oster et al., 1983). Compared to the work of Byrne and

Chaplain (1996) here we consider a wider range of constitutive models, presented in Sec-

tion 7.2.1, we allow cell traction forces to be reduced by cell-cell contact inhibition, and

undertake numerical simulations of the model equations showing the formation of cellular

patterns both in 1D and 2D. A related study has been conducted by Alonso et al. (2017),

who considered a mathematical model of pattern formation in the cell cytoplasm. The

chapter is structured as follows. In Section 8.1, we describe the 1D mechanical model of

pattern formation in biological tissues that is used in this study, which follows closely the

one considered in Byrne and Chaplain (1996); Murray et al. (1988); Oster et al. (1983),

and briefly introduce the corresponding 2D model. In Section 8.2, we carry out a LSA

of a biologically relevant homogeneous steady state of the 1D model equations, derive

dispersion relations when di↵erent stress-strain constitutive equations for the ECM are

used, and investigate how the model parameters a↵ect the dispersion relations obtained.

In Section 8.3, we verify key results of LSA via numerical simulations of the 1D model

equations, complementing these findings with the results of numerical simulations of the

2D version of the mechanical model of pattern formation considered.
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8.1 A mathematical model of mechanical pattern for-

mation

We consider a 1D region of tissue and represent the normalised densities of cells and

ECM at time t � 0 and position x 2 [`, L] by means of the non-negative functions n(t, x)

and ⇢(t, x), respectively. We let u(t, x) model the displacement of a material point of the

cell-ECM system originally at position x, which is induced by mechanical interactions

between cells and the ECM – i.e. cells pull on the ECM in which they are embedded,

thus inducing ECM compression and densification which in turn cause a passive form

of cell repositioning (Van Helvert et al., 2018). In Section 8.1.5, the extension of this

modelling framework to the 2D case is addressed.

8.1.1 Dynamics of the cells

Following Murray et al. (1988); Oster et al. (1983), we consider a scenario where cells

change their position according to a combination of: (i) undirected, random movement,

which we describe through Fick’s first law of di↵usion with di↵usivity (i.e. cell motility)

D � 0; (ii) haptotaxis (i.e. cell movement up the density gradient of the ECM) with

haptotactic sensitivity ↵ � 0; (iii) passive repositioning caused by mechanical interactions

between cells and the ECM, which is modelled as an advection with velocity field @tu.

Moreover, we model variation of the normalised cell density caused by cell proliferation

and death via logistic growth with intrinsic growth rate r � 0 and unitary local carrying

capacity. Under these assumptions, we describe cell dynamics through the following

balance equation for n(t, x)

@tn = @x [D @xn � n (↵ @x⇢+ @tu)] + r n(1� n) (8.1)

subject to suitable initial and boundary conditions.

8.1.2 Dynamics of the ECM

As was done for the cell dynamics, in a similar manner we model compression and densi-

fication of the ECM induced by cell-ECM interactions as an advection with velocity field

@tu. Furthermore, as in Murray et al. (1988) and Oster et al. (1983), we neglect secretion

of ECM components by the cells since this process occurs on a slower time scale com-

pared to mechanical interactions between cells and the ECM. Under these assumptions,
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we describe the cell dynamics through the following transport equation for ⇢(t, x)

@t⇢ = �@x (⇢ @tu) (8.2)

subject to suitable initial and boundary conditions.

8.1.3 Force-balance equation for the cell-ECM system

Following Murray et al. (1988); Oster et al. (1983), we represent the cell-ECM system as

a linear viscoelastic material with low Reynolds number (i.e. inertial terms are negligible

compared to viscous terms) and we assume the cell-ECM system to be in mechanical

equilibrium (i.e. traction forces generated by the cells are in mechanical equilibrium

with viscoelastic restoring forces developed in the ECM and any other external forces).

Under these assumptions, the force-balance equation for the cell-ECM system is of the

form

@x (�c + �m) + ⇢F = 0 , (8.3)

where �m(t, x) is the contribution to the stress of the cell-ECM system coming from

the ECM, �c(t, x) is the contribution to the stress of the cell-ECM system coming from

the cells, and F (t, x) is the external force per unit matrix density, which comes from

the surrounding tissue that constitutes the underlying substratum to which the ECM is

attached.

The stress �c is related to cellular traction forces acting on the ECM and is defined

as

�c := ⌧ f(n)n
�
⇢+ � @

2
xx
⇢
�

with f(n) :=
1

1 + �n2
. (8.4)

Definition (8.4) relies on the assumption that the stress generated by cell traction on the

ECM is proportional to the cell density n and – in the short range – the ECM density

⇢, while the term � @
2
xx
⇢ accounts for long-range cell traction e↵ects, with � > 0 being

the long-range traction proportionality constant. The factor of proportionality is given

by a parameter ⌧ � 0, which measures the average traction force generated by a cell,

multiplied by a non-negative and monotonically decreasing function of the cell density,

f(n), which models the fact that the average traction force generated by a cell is reduced

by cell-cell contact inhibition (Murray, 2001). The parameter � � 0 measures the level of

cell traction force inhibition and assuming � = 0 corresponds to neglecting the reduction

in the cell traction forces caused by cellular crowding.

The stress �m is given by the stress-strain constitutive equation that is used for the ECM,

which we choose to be the general constitutive model (7.9) with the strain "(t, x) being

given by the gradient of the displacement u(t, x), that is, " = @xu. Therefore, we define

129



the stress-strain relation of the ECM via the following equation

La[ �m ] = Lb[ @xu ] , (8.5)

where the di↵erential operators La and Lb are defined according to (7.8).

Assuming the surrounding tissue to which the ECM is attached to be a linear elastic

material (Murray, 2001), the external body force F can be modelled as a restoring force

proportional to the cell-ECM displacement, that is,

F := �s u . (8.6)

Here the parameter s � 0 represents the elastic modulus of the surrounding tissue.

In order to obtain a closed equation for the displacement u(t, x), we apply the di↵erential

operator La[ · ] to the force-balance equation (8.3) and then substitute (8.4)-(8.6) into the

resulting equation. In so doing, we find

La [ @x (�m + �c) ] = �La [ ⇢F ]

,La [ @x �m ] + La [ @x �c ] = La [ s⇢u ]

, @x La [ �m ] = La [ s⇢u ] � La [ @x �c ]

, @x Lb [ @xu ] = La [ s⇢u � @x�c ]

,Lb [ @xxu ] = La [ s⇢u � @x�c ] ,

that is,

Lb [ @xxu ] = La


s⇢u � @x

✓
⌧n

1 + �n2
(⇢+ �@xx⇢)

◆�
. (8.7)

Finally, to close the system, equation (8.7) needs to be supplied with suitable initial and

boundary conditions.

8.1.4 Boundary conditions

We close our mechanical model of pattern formation defined by the system of PDEs (8.1),

(8.2) and (8.7) with the following boundary conditions

8
>>>>>><

>>>>>>:

n(t, `) = n(t, L) , @xn(t, `) = @xn(t, L) ,

⇢(t, `) = ⇢(t, L) , @xx⇢(t, `) = @xx⇢(t, L) ,

u(t, `) = u(t, L) , @xu(t, `) = @xu(t, L) ,

8t � 0 . (8.8)
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Here, the conditions on the derivatives of n, ⇢ and u ensure that the fluxes in equa-

tions (8.1) and (8.2), and the overall stress (�m + �c) in equation (8.3), are periodic on

the boundary, i.e. they ensure that

8
>>>>><

>>>>>:

[D @xn � n (↵ @x⇢+ @tu)]x=`
= [D @xn � n (↵ @x⇢+ @tu)]x=L

,

[n @tu]x=`
= [n @tu]x=L

,

h
⌧

n

(1 + �2)
( ⇢+ � @

2
xx
⇢ ) + �m

i

x=`

=
h
⌧

n

(1 + �2)
( ⇢+ � @

2
xx
⇢ ) + �m

i

x=L

,

8t � 0 ,

with �m given as a function of @xu in equation (8.5), according to the selected constitutive

model. The periodic boundary conditions (8.8) reproduce a biological scenario in which

the spatial region considered is part of a larger area of tissue whereby similar dynamics

of the cells and the ECM occur.

8.1.5 Extension to 2D

The mechanical model of pattern formation defined by the system of PDEs (8.1), (8.2)

and (8.3) posed on a 2D spatial domain represented by a bounded set ⌦ ⇢ R2 with

smooth boundary @⌦ reads as
8
>>><

>>>:

@tn = div [Drn � n (↵r⇢+ @tu)] + r n(1� n) ,

@t⇢ = � div(⇢ @tu) ,

div(�m + �c) + ⇢F = 0 ,

(8.9)

with t � 0, x = (x1, x2)| 2 ⌦ and u = (u1, u2)|. We close the system of PDEs (8.9)

imposing the 2D version of the periodic boundary conditions (8.8) on @⌦. Furthermore,

we use the following 2D analogues of definitions (8.4) and (8.6)

�c :=
⌧n

1 + �n2

⇣
⇢+ ��⇢

⌘
I and F := �su , (8.10)

where I is the identity tensor. Moreover, in analogy with the 1D case, we define the stress

tensor �m via the 2D constitutive model (7.10), together with the parameter choices re-

ported in Table 7.3 for the Kelvin-Voigt and Maxwell models, that is used to represent the

stress-strain relation of the ECM. As introduced in Section 7.2.3, the strain "(t,x) and the

dilation ✓(t,x) are defined in terms of the displacement u(t,x) according to (7.11).
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8.2 Linear stability analysis and dispersion relations

In this section, we carry out LSA of a biologically relevant homogeneous steady state

of the 1D system of PDEs (8.1), (8.2) and (8.7) in Section 8.2.1, and we compare the

dispersion relations obtained when the constitutive models (7.1)-(7.6) are alternatively

used to represent the contribution to the overall stress coming from the ECM, in order

to explore the pattern formation potential of these stress-strain constitutive equations in

Section 8.2.2.

8.2.1 Linear stability analysis

Biologically relevant homogeneous steady state. All non-trivial homogeneous

steady states (n̄, ⇢̄, ū)| of the system of PDEs (8.1), (8.2) and (8.7) subject to bound-

ary conditions (8.8) have components n̄ ⌘ 1 and ū ⌘ 0, and we consider the arbitrary

non-trivial steady state ⇢̄ ⌘ ⇢0 > 0 amongst the infinite number of possible homoge-

neous steady states of the transport equation (8.2) for the normalised ECM density ⇢.

Hence, we focus our attention on the biologically relevant homogeneous steady state

v̄ = (1, ⇢0, 0)|.

Linear stability under spatially homogeneous perturbations. Similarly to as

done in Section 5.2, in order to investigate the linear stability of the steady state v̄ =

(1, ⇢0, 0)| under spatially homogeneous perturbations, we make the ansatz v(t, x) ⌘
v̄ + ṽ(t), where the vector ṽ(t) = (ñ(t), ⇢̃(t), ũ(t))| models small spatially homogeneous

perturbations, and linearise the system of PDEs (8.1), (8.2) and (8.7) about the steady

state v̄. Assuming ñ(t), ⇢̃(t) and ũ(t) to be proportional to exp ( t), one can easily verify

that  satisfies the algebraic equation  ( + r)( 2
a2 + a1 + a0) = 0. Since r is positive

and the parameters a0, a1 and a2 are all non-negative, the solution  of such an algebraic

equation is either negative, for which the small perturbations ñ(t), ⇢̃(t) and ũ(t) will

decay to zero as t ! 1, or  = 0. However, the zero eigenvalue here does not correlate

with instability: small spatially homogeneous perturbations in ⇢ simply correspond to a

di↵erent, nearby, steady states and thus will not grow in time, while small spatially ho-

mogeneous perturbations in n or u will decay in time (cf. spatially homogeneous version

of equations (8.1) and (8.7)). This is the case for any choice of the parameter a0, a1,

a2, b0, b1 and b2 in the stress-strain constitutive equation (8.5) (i.e. for all constitutive

models (7.1)-(7.6)).

Linear instability under spatially inhomogeneous perturbations. Similarly, in

order to investigate conditions under which the steady state v̄ = (1, ⇢0, 0)| is unstable un-
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der small spatially inhomogeneous perturbations, we make the ansatz v(t, x) = v̄+ṽ(t, x),

where the vector ṽ(t, x) = (ñ(t, x), ⇢̃(t, x), ũ(t, x))| models small spatially inhomogeneous

perturbations, and linearise the system of PDEs (8.1), (8.2) and (8.7) about the steady

state v̄. Assuming ñ(t, x), ⇢̃(t, x) and ũ(t, x) to be proportional to exp ( t+ ikx), we

find that  satisfies the following equation

 

h
c3(k

2) 3 + c2(k
2) 2 + c1(k

2) + c0(k
2)
i
= 0 , (8.11)

with

c3(k
2) := a2⌧�1� k

4 +
⇥
b2 � a2⌧(�1 + �2⇢0)

⇤
k
2 + a2s⇢0 (8.12)

c2(k
2) := a2⌧�1D� k

6 +
⇥
b2D � a2⌧(�2⇢0↵ +D�1 � r�1�) + a1⌧�1�

⇤
k
4

+
⇥
b2r + b1 + a2(Ds⇢0 � r⌧�1)� a1⌧(�1 + �2⇢0)

⇤
k
2 + (a1 + a2r)s⇢0

(8.13)

c1(k
2) := a1⌧�1D� k

6 +
⇥
b1D � a1⌧(�2⇢0↵ +D�1 � r�1�) + a0⌧�1�

⇤
k
4

+
⇥
b1r + b0 + a1(Ds⇢0 � r⌧�1)� a0⌧(�1 + �2⇢0)

⇤
k
2 + (a0 + a1r)s⇢0

(8.14)

and
c0(k

2) := a0⌧�1D� k
6 +

⇥
b0D � a0⌧(�2⇢0↵ +D�1 � r�1�)

⇤
k
4

+
⇥
b0r + a0(Ds⇢0 � r⌧�1)

⇤
k
2 + a0rs⇢0

(8.15)

where

�1 :=
1

1 + �
and �2 :=

(1� �)

(1 + �)2
.

Equation (8.11) has multiple solutions  (k2) for each k
2, including  = 0 which we

ignore henceforth in order to focus on positive solutions, and we denote by Re(·) the

maximum real part of all these solutions. For cell patterns to emerge, we need the

non-trivial homogeneous steady state v̄ to be unstable under spatially inhomogeneous

perturbations, that is, we need Re( (k2)) > 0 for some k
2
> 0. Notice that a necessary

condition for this to happen is that at least one amongst c0(k2), c1(k2), c2(k2) and c3(k2)

is negative for some k
2
> 0. Hence, the fact that if ⌧ = 0 then c0(k2), c1(k2), c2(k2) and

c3(k2) are all non-negative for any value of k2 allows us to conclude that having ⌧ > 0

is a necessary condition for pattern formation to occur. This was expected based on the

results presented in Murray (2001) and references therein.

In the case where the model parameters are such that c2(k2) = 0 and c3(k2) = 0, solving

equation (8.11) for  gives the following dispersion relation

 (k2) = �c0(k2)

c1(k2)
. (8.16)

On the other hand, when the model parameters are such that only c3(k2) = 0, from
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equation (8.11) we obtain the following dispersion relations

 (k2) =
�c1(k2)±

q�
c1(k2)

�2 � 4c2(k2)c0(k2)

2c2(k2)
. (8.17)

Finally, in the general case where the model parameters are such that c3(k2) 6= 0 as well,

from equation (8.11) we obtain the following dispersion relation

 (k2) =

⇢
q +

h
q
2 +

�
m� p

2
�3i1/2

�1/3

+

⇢
q �

h
q
2 +

�
m� p

2
�3i1/2

�1/3

+ p , (8.18)

where p ⌘ p(k2), q ⌘ q(k2) and m ⌘ m(k2) are defined as

p := � c2

3c3
, q := p

3 +
c2c1 � 3c3c0

6c23
, m :=

c1

3c3
. (8.19)

8.2.2 Dispersion relations

Substituting the definitions of a0, a1, a2, b0, b1 and b2 corresponding to the stress-strain

constitutive equations (7.1)-(7.6), which are reported in Table 7.1, into definitions (8.12)-

(8.15) for c0(k2), c1(k2), c2(k2) and c3(k2), and then using the dispersion relation given

by formula (8.16), (8.17) or (8.18)-(8.19) depending on the values of c2(k2) and c3(k2)

so obtained, we derive the dispersion relation for each of the constitutive models (7.1)-

(7.6). In particular, we are interested in whether the real part of each dispersion relation

is positive, so whenever multiple roots are calculated – for instance using (8.17) – the

largest root is considered. In addition, dispersion relations throughout this section are

plotted against the quantity k/⇡, which directly correlates with perturbation modes and

can therefore better highlight mode selection during the parametric analysis.

Base-case dispersion relations. Figure 8.1 displays the dispersion relations obtained

for the stress-strain constitutive equations (7.1)-(7.6) under the following base-case pa-

rameter values

E = 1 , E1 = E2 =
1

2
E = 0.5 , ⌘ = 1 , ⌘1 = ⌘2 =

1

2
⌘ = 0.5 , D = 0.01 , (8.20)

⇢0 = 1 , ↵ = 0.05 , r = 1 , s = 10 , � = 0.5 , ⌧ = 0.2 � = 0.005 . (8.21)

The parameter values given by (8.20) and (8.21) are chosen for illustrative purposes, in

order to highlight the di↵erent qualitative behaviour of the dispersion relations obtained

using di↵erent models, and are comparable with nondimensional parameter values that

can be found in the extant literature (see Appendix C.3 for further details). A comparison

between the plots in Figure 8.1 reveals that fluid-like models, that is, the linear viscous
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model (7.2), the Maxwell model (7.4) and the Je↵rey model (7.6) (cf. Table 7.2), have a

higher pattern formation potential than solid-like models, since under the same parameter

set they exhibit a range – or, more precisely, they exhibit the same range – of unstable

modes (i.e. Re( (k2)) > 0 for a range of values of k/⇡), while the others have no unstable

modes.

Figure 8.1: Base-case dispersion relations. Dispersion relations corresponding to
the stress-strain constitutive equations (7.1)-(7.6) for the base-case set of parameter values
given by (8.20) and (8.21).

We now undertake a parametric analysis with respect to the di↵erent model parameters

and discuss key changes that occur in the base-case dispersion relations displayed in

Figure 8.1.

ECM elasticity. The plots in Figure 8.2 illustrate how the base-case dispersion re-

lations displayed in Figure 8.1 change when di↵erent values of the parameter E, and

therefore also E1 and E2 (i.e. the parameters modelling ECM elasticity), are consid-

ered. These plots show that lower values of these parameters correlate with overall larger

values of Re( (k2)) for all constitutive models, except for the linear viscous one, which

corresponds to speeding up the formation of spatial patterns, when these may form. In

addition, su�ciently small values of the parameters E, E1 and E2 allow the linear elastic

model (7.1), the Kelvin-Voigt model (7.3), and the SLS model (7.5) to exhibit unstable

modes. However, further lowering the values of these parameters appears to lead to sin-

gular dispersion relations (cf. the plots for the linear elastic model (7.1), the Maxwell
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model (7.4) and the SLS model (7.5) in Figure 8.2), which suggests that linear stability

theory may fail in the regime of low ECM elasticity.

ECM viscosity. The plots in Figure 8.3 illustrate how the base-case dispersion relations

displayed in Figure 8.1 change when di↵erent values of the parameter ⌘, and therefore

also ⌘1 and ⌘2 (i.e. the parameters modelling ECM viscosity), are considered. These

plots show that larger values of these parameters leave the range of modes for which

Re( (k2)) > 0 unchanged but reduce the values of Re( (k2)). This supports the idea

that a higher ECM viscosity may not change the pattern formation potential of the

di↵erent constitutive models but may slow down the corresponding pattern formation

processes.

Cell motility. The plots in Figure 8.4 illustrate how the base-case dispersion relations

displayed in Figure 8.1 change when di↵erent values of the parameter D (i.e. the pa-

rameter modelling cell motility) are considered. These plots show that larger values of

this parameter may significantly shrink the range of modes for which Re( (k2)) > 0. In

particular, with the exception of the linear elastic model, all constitutive models exhibit:

infinitely many unstable modes when D ! 0; a finite number of unstable modes for in-

termediate values of D; no unstable modes for su�ciently large values of D. This is to be

expected due to the stabilising e↵ect of undirected, random cell movement and indicates

that higher cell motility may correspond to lower pattern formation potential.

Intrinsic growth rate of the cell density and elasticity of the surrounding

tissue. The plots in Figures 8.5 and 8.6 illustrate how the base-case dispersion relations

displayed in Figure 8.1 change when di↵erent values of the parameter r (i.e. the intrinsic

growth rate of the cell density) and the parameter s (i.e. the elasticity of the surrounding

tissue) are, respectively, considered. These plots show that considering larger values

of these parameters reduces the values of Re( (k2)) for all constitutive models, and in

particular it shrinks the range of unstable modes for the linear viscous model (7.2), the

Maxwell model (7.4) and the Je↵rey model (7.6), which can become stable for values

of r or s su�ciently large. This supports the idea that higher growth rates of the cell

density (i.e. faster cell proliferation and death), and higher substrate elasticity (i.e.

stronger external tethering force) may slow down pattern formation processes and overall

reduce the pattern formation potential for all constitutive models. Moreover, the plots in

Figure 8.6 indicate that higher values of s may in particular reduce the pattern formation

potential of the di↵erent constitutive models by making it more likely that Re( (k2)) < 0

for smaller values of k/⇡ (i.e. low-frequency perturbation modes will be more likely to

vanish).
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Level of contact inhibition of the cell traction forces and long-range cell trac-

tion forces. The plots in Figures 8.7 and 8.8 illustrate how the base-case dispersion

relations displayed in Figure 8.1 change when di↵erent values of the parameter � (i.e. the

level of cell-cell contact inhibition of the cell traction forces) and the parameter � (i.e.

the long-range cell traction forces) are, respectively, considered. Considerations similar

to those previously made about the dispersion relations obtained for increasing values

of the parameters r and s apply to the case where increasing values of the parameter

� and the parameter � are considered. In addition to these considerations, the plots in

Figures 8.7 and 8.8 indicate that for small enough values of � or � the SLS model (7.5)

can exhibit unstable modes, which further suggests that weaker contact inhibition of cell

traction forces and lower long-range cell traction forces foster pattern formation. More-

over, the plots in Figure 8.8 indicate that in the asymptotic regime � ! 0 we may observe

infinitely many unstable modes (i.e. Re( (k2)) > 0 for arbitrarily large wavenumbers),

exiting the regime of physically meaningful pattern forming instabilities (Moreo et al.,

2010; Perelson et al., 1986).

Cell haptotactic sensitivity and cell traction forces. The plots in Figures 8.9

and 8.10 illustrate how the base-case dispersion relations displayed in Figure 8.1 change

when di↵erent values of the parameter ↵ (i.e. the cell haptotactic sensitivity) and the

parameter ⌧ (i.e. the cell traction force) are, respectively, considered. As expected (Mur-

ray, 2001), larger values of these parameters overall increase the value of Re( (k2)) and

broaden the range of modes for which Re( (k2)) > 0, so that for large enough values of

these parameters the linear viscous model (7.2), the Kelvin-Voigt model (7.3) and the SLS

model (7.5) can exhibit unstable modes. However, su�ciently large values of ⌧ appear

to lead to singular dispersion relations (cf. the plots for the linear elastic model (7.1),

the Maxwell model (7.4) and the SLS model (7.5) in Figure 8.10), which suggests that

linear stability theory may fail in the regime of high cell traction for certain constitutive

models, as previously observed in (Byrne and Chaplain, 1996).

Initial ECM density. The plots in Figure 8.11 illustrate how the base-case dispersion

relations displayed in Figure 8.1 change when di↵erent values of the parameter ⇢0 (i.e.

the initial ECM density) are considered. Considerations similar to those previously made

about the dispersion relations obtained for increasing values of the parameter ↵ apply to

the case where increasing values of the parameter ⇢0 are considered. In addition to these

considerations, the plots in Figure 8.11 indicate that smaller values of the parameter

⇢0, specifically ⇢0 < 1, correlate with a shift in mode selection toward lower modes (cf.

the plots for the linear viscous model (7.2), the Maxwell model (7.4) and the Je↵rey

model (7.6) in Figure 8.11).

137



Figure 8.2: E↵ects of varying the ECM elasticity. Dispersion relations corre-
sponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of
the ECM elasticity, that is for E 2 [0, 1]. The values of the other parameters are given
by (8.20) and (8.21). White regions in the plots related to the linear elastic model, the
Maxwell model and the SLS model correspond to Re( (k2)) > 10 (i.e. a vertical asymp-
tote is present in the dispersion relation). Red dashed lines mark contour lines where
Re( (k2)) = 0.

Figure 8.3: E↵ects of varying the ECM viscosity. Dispersion relations correspond-
ing to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the ECM
viscosity, that is for ⌘ 2 [0, 1]. The values of the other parameters are given by (8.20)
and (8.21). Red dashed lines mark contour lines where Re( (k2)) = 0.
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Figure 8.4: E↵ects of varying the cell motility. Dispersion relations correspond-
ing to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the cell
motility, that is for D 2 [0, 0.1]. The values of the other parameters are given by (8.20)
and (8.21). Red dashed lines mark contour lines where Re( (k2)) = 0.

Figure 8.5: E↵ects of varying the intrinsic growth rate of the cell density.
Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6)
for increasing values of the intrinsic growth rate of the cell density, that is for r 2 [0, 10].
The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark
contour lines where Re( (k2)) = 0.
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Figure 8.6: E↵ects of varying the elasticity of the surrounding tissue. Dis-
persion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for
increasing values of the elasticity of the surrounding tissue, that is for s 2 [0, 100]. The
values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark
contour lines where Re( (k2)) = 0.

Figure 8.7: E↵ects of varying the level of cell-cell contact inhibition of the
cell traction forces. Dispersion relations corresponding to the stress-strain constitutive
equations (7.1)-(7.6) for increasing levels of cell-cell contact inhibition of the cell traction
forces, that is for � 2 [0, 2]. The values of the other parameters are given by (8.20)
and (8.21). Red dashed lines mark contour lines where Re( (k2)) = 0.
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Figure 8.8: E↵ects of varying the long-range cell traction forces. Dispersion re-
lations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing
long-range cell traction forces, that is for � 2 [0, 0.1]. The values of the other parameters
are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k2)) = 0.

Figure 8.9: E↵ects of varying the cell haptotactic sensitivity. Dispersion relations
corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of
the cell haptotactic sensitivity, that is for ↵ 2 [0, 0.5]. The values of the other parameters
are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k2)) = 0.
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Figure 8.10: E↵ects of varying the cell traction forces. Dispersion relations
corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing cell
traction forces, that is for ⌧ 2 [0, 2]. The values of the other parameters are given
by (8.20) and (8.21). White and black regions in the plots related to the linear elastic
model, the Maxwell model and the SLS model correspond, respectively, to Re( (k2)) > 20
and Re( (k2)) < �20 (i.e. a vertical asymptote is present in the dispersion relation).
Red dashed lines mark contour lines where Re( (k2)) = 0.

Figure 8.11: E↵ects of varying the initial ECM density. Dispersion relations
corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values
of the initial ECM density, that is for ⇢0 2 [0, 10]. The values of the other parameters are
given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k2)) = 0.
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8.3 Numerical investigations

We verify key results of LSA presented in Section 8.2 by carrying out numerical simula-

tions in 1D in Section 8.3.2. In particular, we report on numerical solutions obtained in

the case where equation (8.7) is complemented with the Kelvin-Voigt model (7.3) or the

Maxwell model (7.4). These results are complemented with the numerical simulations of

the corresponding problem in 2D, reported in Section 8.3.3. The set-up of these numerical

simulations and the methods employed to construct numerical solutions are described in

Section 8.3.1.

8.3.1 Set-up of numerical simulations and numerical methods

Set-up of numerical simulations in 1D. We first solve numerically the 1D system

of PDEs (8.1), (8.2) and (8.7) subject to boundary conditions (8.8) using the parame-

ter values given by (8.20) and (8.21). We choose the endpoints of the spatial domain

to be ` = 0 and L = 1, and the final time T is chosen su�ciently large so that dis-

tinct spatial patterns can be observed at the end of simulations. We consider the initial

conditions

n(0, x) = 1 + 0.01 ✏(x) , ⇢(0, x) ⌘ ⇢0 , u(0, x) ⌘ 0 , (8.22)

where ✏(x) is a normally distributed random variable with mean 0 and variance 1 for every

x 2 [0, 1]. Initial conditions (8.22) model a scenario where random small perturbations

are superimposed to the cell density corresponding to the homogeneous steady state of

components n = 1, ⇢ = ⇢0 and u = 0. This is the steady state considered in the LSA

undertaken in Section 8.2.1. Consistent initial conditions for @tn(0, x), @t⇢(0, x) and

@tu(0, x) are computed numerically – details provided in Appendix B.3.

Set-up of numerical simulations in 2D. Next, we solve numerically the system of

PDEs (8.9) subject to the 2D version of the periodic boundary conditions (8.8) and com-

plemented with (8.10)-(7.12). Numerical simulations are carried out using the following

parameter values

E = 1 , ⌘ = 1 , D = 0.01 , ⌫ = 0.25 , (8.23)

↵ = 0.05 , r = 1 , s = 10 , � = 0.5 , ⌧ = 0.2 � = 0.005 , (8.24)

which are chosen for illustrative purposes and are comparable with nondimensional pa-

rameter values that can be found in the extant literature (see Appendix C.3 for further

details). We choose ⌦ = [0, 1]⇥ [0, 1] and the final time T is chosen su�ciently large so

that distinct spatial patterns can be observed at the end of simulations. We consider the
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following 2D analogue of initial conditions (8.22)

n(0, x1, x2) = 1 + 0.01 ✏(x1, x2) , ⇢(0, x1, x2) ⌘ 1 , u(0, x1, x2) ⌘ 0 , (8.25)

where ✏(x1, x2) is a normally distributed random variable with mean 0 and variance 1 for

each (x1, x2) 2 [0, 1]⇥ [0, 1]. Consistent initial conditions for @tn(0, x1, x2), @t⇢(0, x1, x2)

and @tu(0, x1, x2) are computed numerically, as similarly done in the 1D case.

Numerical methods. Numerical solutions are constructed on a uniform discretisation

of the interval [0, 1] or the square [0, 1] ⇥ [0, 1] as the computational domain of the in-

dependent variable x, using the Method of Lines. Finite di↵erence and finite volume

approximations of the spatial derivatives are used, together with first order upwinding

for the flux terms, to obtain a system of ODEs, solved implicitly with the Matlab solver

ode15i. All numerical computations are performed in Matlab. Details of the numerical

schemes are given in Appendix B.3.

8.3.2 1D patterns

The results obtained are summarised by the plots in Figure 8.12, which display the

solution of the system of PDEs (8.1), (8.2) and (8.7) subject to the boundary conditions

(8.8) and initial conditions (8.22) for the Kelvin-Voigt model and the Maxwell model

when a steady state is reached. The supplementary Figure D.8 displays the solution of

the same system of PDEs for the Maxwell model under alternative initial perturbations

in the cell density, i.e. randomly distributed, periodic or randomly perturbed periodic

initial perturbations.

The results in Figures 8.12 and D.8, demonstrate that, in agreement with the dispersion

relations displayed in Figure 8.1, for the parameter values given by (8.20) and (8.21),

small randomly distributed perturbations present in the initial cell density:

• Vanish in the case of the Kelvin-Voigt model, thus leading the cell density to relax

to the homogeneous steady state n = 1 and attain numerical equilibrium at t = 100

while leaving the ECM density unchanged;

• Grow in the case of the Maxwell model, resulting in the formation of spatial pat-

terns both in the cell density n and in the ECM density ⇢, which attain numerical

equilibrium at t = 500.

Notice that the formation of spatial patterns correlates with the growth of the cell-ECM

displacement u. In fact, the displacement remains close to zero (i.e. ⇠ O(10�11)) for

the Kelvin-Voigt model, whereas it grows with time for the Maxwell model. In addition,

the steady state obtained for the Maxwell model in Figure 8.12, together with those ob-

tained when considering alternative initial perturbations (cf. Figure D.8), demonstrate
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that, in agreement with the dispersion relation displayed in Figure 8.1 for the Maxwell

model, for the parameter values given by (8.20) and (8.21), under small perturbations

in the cell density, be they randomly distributed, randomly perturbed periodic or peri-

odic, the fourth mode is the fastest growing one within the range of unstable modes (cf.

Figure 8.12: 1D numerical results for the Kelvin-Voigt and the Maxwell mod-
els. Cell density n(t, x) (left), ECM density ⇢(t, x) (centre) and cell-ECM displacement
u(t, x) (right) at t = 0 (first row) and at steady state obtained solving numerically the
system of PDEs (8.1), (8.2) and (8.7) complemented with the Kelvin-Voigt model (7.3)
(second row) and with the Maxwell model (7.4) (third row), respectively, subject to
boundary conditions (8.8) and initial conditions (8.22), for the parameter values given
by (8.20) and (8.21).
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Re( (k2)) > 0 for k/⇡ between 2 and 6, with max
�
Re( (k2))

�
⇡ 4 in Figure 8.1 for the

Maxwell model). Moreover, all the obtained cellular patterns at steady state exhibit the

same structure – up to a horizontal shift – consisting of four large peaks, independently

of the initial conditions that is used (cf. left panel in the bottom row of Figure 8.12

and supplementary Figure D.8). This indicates robustness and consistency in the nature

of the saturated nonlinear steady state under specific viscoelasticity assumptions and

parameter choices.

8.3.3 2D patterns

The results obtained are summarised by the plots in Figures 8.13 and 8.14. Solutions of

the system of PDEs (8.9), together with (8.10)-(7.12), subject to initial conditions (8.25)

and periodic boundary conditions, for the parameter values given by (8.23) and (8.24),

are calculated both for the Kelvin-Voigt model and the Maxwell model according to the

parameter changes summarised in Table 7.3. The randomly generated initial perturbation

in the cell density, together with the cell density at t = 200 both for the Kelvin-Voigt and

the Maxwell model are displayed in Figure 8.13, while the solution to the Maxwell model

is plotted at a later time in Figure 8.14. Overall, these results demonstrate that, in the

scenarios considered here, which are analogous to those considered for the corresponding

1D models, small randomly distributed perturbations present in the initial cell density

(cf. first panel in Figure 8.13):

• Vanish in the case of the Kelvin-Voigt model, thus leading the cell density to relax

to the homogeneous steady state n = 1 and attain numerical equilibrium at t = 260

(cf. second panel of Figure 8.13) while leaving the ECM density unchanged;

• Grow in the case of the Maxwell model, leading to the formation of spatiotemporal

patterns both in the cell density n and in the ECM density ⇢ (cf. third panel

of Figure 8.13 and Figure 8.14), capturing spatiotemporal dynamic heterogeneity

arising in the system.

Similarly to the 1D case, the formation of spatial patterns correlates with the growth

of the cell-ECM displacement u. In fact, the displacement remains close to zero (i.e.

⇠ O(10�11)) for the Kelvin-Voigt model, whereas it grows with time for the Maxwell

model – see Figure 8.14. Note that, while the observed pattern for the Maxwell model is

not at steady state and we cannot therefore conclude that patterns exist at steady state,

spatiotemporal heterogeneity and the emergence of transient patterns can sometimes be

more biologically interesting than the existence of steady patterns.
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Figure 8.13: 2D numerical results for the Kelvin-Voigt and the Maxwell mod-
els. Cell density n(t, x1, x2) at t = 0 (left panel) and at t = 260 for the Kevin-Voigt model
(central panel) and the Maxwell model (right panel) obtained solving numerically the sys-
tem of PDEs (8.9) subject to the 2D version of the periodic boundary conditions (8.8)
and initial conditions (8.25), complemented with (8.10)-(7.12), for the parameter values
given by (8.23) and (8.24).

Figure 8.14: 2D numerical results for the Maxwell model. Cell density n(t, x1, x2)
(top row, left panel), ECM density ⇢(t, x1, x2) (top row, right panel), first and second
components of the cell-ECM displacement u(t, x1, x2) (bottom row, left panel and right
panel, respectively) at t = 1000 for the Maxwell model obtained solving numerically the
system of PDEs (8.9) subject to the 2D version of the periodic boundary conditions (8.8)
and initial conditions (8.25), complemented with (8.10)-(7.12), for the parameter values
given by (8.23) and (8.24). The random initial perturbation of the cell density is displayed
in the left panel of Figure 8.13.
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Chapter 9

Discussion and research

perspectives

9.1 Summary and discussion

In Chapter 7 we saw how mechanical and mechanochemical models of pattern formation

have been used in a variety of applications in which the mechanical interaction between

the cells and the ECM cannot be neglected. These models generally rely on linear vis-

coelasticity assumptions on the ECM, often making use of the Kelvin-Voigt model of

linear viscoelasticity. However, a variety of linear viscoelasticity models that can bet-

ter capture the rheological properties of the ECM exist, as outlined in Section 7.2. In

Chapter 8 we therefore investigated the impact of considering di↵erent stress-strain con-

stitutive equations in a generic mechanical model of pattern formation in biological tissue

on the pattern formation potential of the system.

9.1.1 Summary

We have investigated the pattern formation potential of di↵erent stress-strain constitutive

equations for the ECM within a 1D mechanical model of pattern formation in biological

tissues formulated as the system of implicit PDEs (8.1), (8.2) and (8.7). The results of

LSA undertaken in Section 8.2 and the dispersion relations derived therefrom support the

idea that fluid-like stress-strain constitutive equations (i.e. the linear viscous model (7.2),

the Maxwell model (7.4) and the Je↵rey model (7.6)) have a pattern formation potential

much higher than solid-like constitutive equations (i.e. the linear elastic model (7.1), the

Kelvin-Voigt model (7.3) and the SLS model (7.5)). This is confirmed by the results of

numerical simulations presented in Section 8.3, which demonstrate that, all else being
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equal, spatial patterns emerge in the case where the Maxwell model (7.4) is used to

represent the stress-strain relation of the ECM, while no patterns are observed when the

Kelvin-Voigt model (7.3) is employed. In addition, the structure of the spatial patterns

presented in Section 8.3 for the Maxwell model (7.4) is consistent with the fastest growing

mode predicted by LSA. In Section 8.3.3, as an illustrative example, we have also reported

on the results of numerical simulations of a 2D version of the model, which is given by the

system of PDEs (8.9) complemented with the 2D Kelvin-Voigt and Maxwell models (7.10).

These results demonstrate that key features of spatial pattern formation observed in

one spatial dimension carry through when two spatial dimensions are considered, thus

conferring additional robustness to the conclusions of our work.

9.1.2 Empirically informed mechanical models

These findings corroborate the conclusions of Byrne and Chaplain (1996) suggesting that

prior studies on mechanochemical models of pattern formation relying on the Kelvin-

Voigt model of viscoelasticity may have underestimated the pattern formation potential

of biological tissues and advocating the need for further empirical work to acquire detailed

quantitative information on the mechanical properties of single components of the ECM in

di↵erent biological tissues, in order to furnish such models with stress-strain constitutive

equations for the ECM that provide a more faithful representation of tissue rheology, cf.

Fung (1993). This is particularly relevant as the Kelvin-Voigt model, typically selected in

mathematical studies also thanks to its simple constitutive equation in 2D, is unlikely to

give a faithful representation of the viscoelastic behaviour of biological or bio-engineered

tissues, even in linear viscoelasticity regimes. These, in fact, generally display viscous

flow during the creep test, as exemplified by the experimental creep curve reported in

Figure 9.1a, and some form of stress relaxation during the stress relaxation test, as

shown by the stress relaxation curves obtained fitting experimentally data reported in

Figure 9.1b.

9.2 Research perspectives

9.2.1 Model extensions, further analytical and numerical work

The dispersion relations given in Section 8.2 indicate that there may be parameter regimes

whereby solid-like constitutive models of linear viscoelasticity give rise to dispersion re-

lations which exhibit a range of unstable modes, while the dispersion relations obtained

using fluid-like constitutive models exhibit singularities, exiting the regime of validity of
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Figure 9.1: Experimental creep and stress relaxation curves. (a) Experimental
creep curve of hydrogel-based engineered tissue, and comparison with creep curves cap-
tured by the Maxwell and Burger’s models. Reprinted from Biomedical materials, 12(2),
R. Kocen, M. Gasik, A. Gantar, S. Novak, Viscoelastic behaviour of hydrogel-based com-
posites for tissue engineering under mechanical load, 025004, 2017, under Creative Com-
mons licence https://creativecommons.org/licenses/by/3.0/ (Kocen et al., 2017,
Figure 8). (b) Fitted stress relaxation curves of experimental stress relaxation tests
conducted by Hoyt et al. (2008) on normal prostatic and cancerous tissues. Reprinted
from the Journal of the Mechanical Behavior of Biomedical Materials, 41, J. Palacio-
Torralba, S. Hammer, D. W. Good, S. A. McNeill, G. D. Stewart, R. L. Reuben, Y.
Chen, Quantitative diagnostics of soft tissue through viscoelastic characterization us-
ing time-based instrumented palpation, 149-160, 2015, under Creative Commons licence
https://creativecommons.org/licenses/by/3.0/ (Palacio-Torralba et al., 2015, Fig-
ure 1).

LSA. In this regard, it would be interesting to consider extended versions of the mechan-

ical model of pattern formation defined by the system of PDEs (8.1), (8.2) and (8.7), in

order to re-enter the regime of validity of LSA for the same parameter regimes and verify

that in such regimes all constitutive models can produce patterns. For instance, it is

known that including long-range e↵ects, such as long-range di↵usion or long-range hap-

totaxis, can promote the formation of stable spatial patterns (Moreo et al., 2010; Oster

et al., 1983), which could be explored through nonlinear stability analysis, as previously

done for the case in which the stress-strain relation of the ECM is represented by the

Kelvin-Voigt model (Cruywagen and Murray, 1992; Lewis and Murray, 1991; Maini and

Murray, 1988). In particular, weakly nonlinear analysis could provide information on

the existence and stability of saturated nonlinear steady states, supercritical bifurcations

or subcritical bifurcations, which may exist even when the homogeneous steady states

are stable under small perturbations according to LSA (Cross and Greenside, 2009).

Nonlinear analysis would further enable exploring the existence of possible di↵erences

in the spatial patterns obtained when di↵erent stress-strain constitutive equations for
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the ECM are used – such as amplitude of patterns, perturbation mode selection and

geometric structure in two spatial dimensions. In particular, the base-case dispersion

relations given in Section 8.2 for di↵erent fluid-like models of viscoelasticity displayed the

same range of unstable modes. This suggests that the investigation of similarities and

di↵erences in mode selection between the various models of viscoelasticity could yield

interesting results. It would also be interesting to construct numerical solutions for the

mechanical model defined by the system of PDEs (8.1), (8.2) and (8.7) complemented

with the Je↵rey model (7.6). For this to be done, suitable extensions of the numerical

schemes presented in Appendix B.3 need to be developed.

2D constitutive equations. It would also be relevant to systematically assess the

pattern formation potential of di↵erent constitutive models of viscoelasticity in two spatial

dimensions. This would require to relax the simplifying assumption (A.64) on the shear

and bulk viscosities of the ECM, which we have used to derive the 2D Maxwell model

in the form of (7.10), and, more in general, to find analytically and computationally

tractable stress-strain-dilation relations, which still remains an open problem (Birman

et al., 2002; Haghighi-Yazdi and Lee-Sullivan, 2011). In order to solve this problem,

new methods of derivation and parameterisation for constitutive models of viscoelasticity

might need to be developed (Valtorta and Mazza, 2005).

Burger’s model of linear viscoelasticity. Once appropriate 2D constitutive equa-

tions for the models of linear viscoelasticity presented in Section 7.2.2 have been derived,

and the numerical methods further developed to address a constitutive equation in the

form (7.7) – or (7.9) in 2D – it might be beneficial to focus on the Burger’s model of

linear viscoelasticity. While this was not addressed in this study, it can capture all the

rheological properties of linear viscoelastic materials introduced in Section 7.2.1 (cf. Ta-

ble 7.2) and will therefore more easily fit any experimental creep and stress-relaxation

data – e.g. see Figure 9.1a.

9.2.2 Experimentally motivated studies

As previously mentioned, the values of the model parameters used in this paper have

been chosen for illustrative purposes only. Hence, it would be useful to re-compute the

dispersion relations and the numerical solutions presented here for a calibrated version of

the model based on real biological data. On a related note, in addition to the relevance

this study has for in vitro vs. in vivo assays as briefly mentioned at the end of Chap-

ter 6, there exists a variety of interesting applications that could be explored by varying

parameter values in the generic constitutive equation (8.7) both in space and time. For
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instance, cell monolayers appear to exhibit solid-like behaviours on small time scales,

whereas they exhibit fluid-like behaviours on longer time scales (Tlili et al., 2018), and

spatiotemporal changes in basement membrane components are known to a↵ect struc-

tural properties of tissues during development or ageing, as well as in a number of genetic

and autoimmune diseases (Khalilgharibi and Mao, 2021). Amongst these, remarkable

examples are Alport’s syndrome, characterised by changes in collagen IV network due

to genetic mutations associated with the disease, diabetes mellitus, whereby high levels

of glucose induce significant basement membrane turnover, and cancer. In particular,

cancer-associated fibrosis is a disease characterised by an excessive production of colla-

gen, elastin and proteoglycans, which directly a↵ects the structure of the ECM resulting

in alterations of viscoelastic tissue properties (Ebihara et al., 2000). Such alterations

in the ECM may facilitate tumour invasion and angiogenesis. Considering a calibrated

mechanical model of pattern formation in biological tissues, whereby the values of the

parameters in the stress-strain constitutive equation for the ECM change during fibrosis

progression, may shed new light on the existing connections between structural changes

in the ECM components and higher levels of malignancy in cancer (Chandler et al., 2019;

Park et al., 2001).
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Part V

Potential future directions
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Spatial sorting and the migratory phenotype

Throughout this thesis, a series of mathematical models comprising of systems of PDEs

have been proposed to study di↵erent mechanisms at the basis of spatial sorting of cell

populations at the tissue scale. In Part II this spatial sorting resulted from the nonlinear

interaction between cells and abiotic factors which leads to the creation of distinct ecolog-

ical niches in which cells in di↵erent phenotypic states can be selected. Here, cell spatial

movement was either neglected or modelled as low di↵usion in the quantity n(t,x, y), i.e.

the cell phenotypic distribution. In Part III spatial sorting resulted from more complex

forms of movement, such as chemotaxis and long-range cell adhesion, and interaction

with the ECM, including matrix degradation. Finally, in Part IV it was a result of the

mechanical interaction between cells and ECM, based on the cells’ ability to exert trac-

tion forces on the ECM.

While in Parts III and IV it was assumed that all cells in the population were undergoing

the same spatiotemporal dynamics, in reality cell populations are often composed of

cells with di↵erent migratory abilities. In particular, it is known that mesenchymal-like

cells, as opposed to amoeboid-like ones, have a more elongated morphology allowing

them to sense environmental clues, including ECM binding sites, at larger distance and

exert high traction forces on the ECM fibers to which they are bound (Friedl and Wolf,

2003; Friedl, 2004). In tumours, mesenchymal-like invasive cells are also characterised

by invadopodia, protrusions associated with proteolytic degradation of the ECM (Alblazi

and Siar, 2015). It might therefore be beneficial, for certain cell spatial sorting problems,

to include a phenotype-structuring variable, say, y 2 Y ⇢ R to model the cell morphologic

and migratory phenotype, and define di↵erent terms in the equations as functions of y,

similarly to as done in Part II for the metabolic phenotype. Below are discussed three

problems, in cancer and development, which could benefit from this approach.

Cancer invasion. As hinted at in Section 1.1.1, EMT allows cells to switch to an

invasive phenotype, capable of moving more easily though the ECM thanks to long-range

adhesion and secretion of matrix-degrading enzymes. During EMT, moreover, tumour

cells can display hybrid morphologies resulting in a range of motile behaviours within the

same population (Jolly et al., 2015). Therefore, in a first instance, it would be interesting

to study cancer invasion in a modelling framework similar to that recently proposed

by Fiandaca et al. (2021a). The model would incorporate phenotype-dependent ECM-

driven movement by considering local haptotaxis, as in equations (8.1) and (8.9), with

heterogeneous haptotactic coe�cient, e.g. ↵(y). Moreover, ECM degradation could be

modelled by considering a phenotype-dependent degradation rate, e.g. �(y), and the

154



product �(y)n(t,x, y) would need to be integrated over Y and multiplied by the ECM

density. This way matrix degradation would introduce a nonlocal term in the balance

equation for the ECM density, as opposed to the local term used in (5.10). In view of the

results in (Bouin et al., 2012; Lorenzi et al., 2021; Lorenzi and Painter, 2022), and other

works discussed in Section 1.2.4, we expect phenotype-dependent spatial movement to

result in travelling wave solutions with the most motile individuals selected at the edge

of the invading front. Moreover, these results could be combined with LSA to explore a

potential emergence of spatial patterns, such as the finger-like patterns that are sometimes

observed in invading tumours – see for instance (Bearer et al., 2009; Roche and Norris,

1975; Weinberg, 2013) and references therein.

Cell migration by nonlocal adhesion. In the cancer invasion problem introduced

above, as well as in the cluster-based vasculogenesis one introduced in Part III, cell migra-

tion through the ECM could be guided by nonlocal adhesion thanks to cell protrusions.

To capture the range of migratory abilities of cells in di↵erent phenotypic states, it would

therefore be relevant to let the sensing radius of a cell be defined as a function of y,

e.g. R(y). Modelling nonlocal cell adhesion as in equations (5.5) and (5.6), this would

introduce a y-dependence in the integration limits. A simpler first step in this direction

would be to consider the approach of Loy and Preziosi (2020, 2021), where the sensing

radius appears in the integrand, which is set to zero at spatial points further than the

distance imposed by the sensing radius R.

Cluster-based vasculogenesis. As hinted at in Sections 4.1.4 and 6.2.3, during the

early stages of cluster-based vasculogenesis EPCs display amoeboid-like features, and

have been observed to extend protrusions and have an elongated morphology only after

clusters have formed (Blatchley et al., 2019). The introduction of a phenotype-structuring

variable would therefore allow for a comprehensive model including dynamics occurring

at the early and late stages, without the need for separate modelling frameworks. In

such model, local vs. nonlocal adhesion could be modelled as discussed in the previous

paragraph. Moreover, mechanical clues relevant at the later stages could be modelled as

in equations (8.3)-(8.5), or (8.9)-(8.10), of the mechanical models discussed in Part IV,

with phenotype-dependent cell traction coe�cient, e.g. ⌧(y). Note that it is still unclear

what drives this phenotypic change after cluster formation, and mathematical modelling

could therefore provide a great theoretical framework in which to test verbal hypotheses.

The interest of the mathematical community is indeed moving in this direction, as indi-

cated by the fact that these modelling frameworks are increasingly being discussed – e.g.

at seminars, workshops and conferences – and related papers are starting to be proposed
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– e.g. Fiandaca et al. (2021a); Lorenzi and Painter (2022). This will likely lead to new

mathematical challenges at the interface of the fields of adaptive dynamics and pattern

formation, which would feed back into related fields in physics and mathematics, and

inspire new mathematical and interdisciplinary work.
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Appendix A

Analytical details

We here report the details of the investigations conducted to support analytical results

presented throughout the manuscript. In particular we include: the proof of Proposi-

tion 1 and that of Theorem 1 stated in Part II (Section 2.2.1) in Section A.1 and A.2

respectively; details of the formal analysis conducted in the asymptotic regime consid-

ered in Part II (Section 2.2.2) in Section A.3; details of the LSA conducted in Part III

(Section 5.2) in Section A.4; rules of derivation of the constitutive equations in Part IV

(Chapter 7) in Section A.5; examples of creep and stress relaxation tests presented in

Part IV (Section 7.2.2) in Section A.6.

A.1 Proof of Proposition 1 in Chapter 2

Substituting (2.6) and (2.15) into (2.5) yields

@n

@t
= �

@
2
n

@y2
+
⇥
a� b (y � h)2 � ⇣ ⇢(t,x)

⇤
n,

n ⌘ n(t,x, y), (t,x, y) 2 (0,1)⇥ ⌦⇥ R.
(A.1)

Building upon the results presented in (Almeida et al., 2019; Chisholm et al., 2016b;

Lorenzi et al., 2015), we make the ansatz (2.29). Substituting this ansatz into (A.1) and

introducing the notation v(t,x) := 1/�2(t,x) we find

@t⇢

⇢
+
@tv

2v
=
@tv

2
(y � µ)2�@tµ v (y � µ)+ �

⇥
v
2 (y � µ)2 � v

⇤
+ a�b (y � h)2�⇣⇢. (A.2)

Equating the second-order terms in y gives the following di↵erential equation for v

alone

@tv + 2�v2 = 2 b. (A.3)
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Moreover, equating the coe�cients of the first-order terms in y, and eliminating @tv from

the resulting equation, yields

@tµ =
2b(h� µ)

v
. (A.4)

Lastly, choosing y = µ in (A.2) gives

@t⇢

⇢
+
@tv

2v
= ��v + a� b(µ� h)2 � ⇣ ⇢ (A.5)

and eliminating @tv from (A.5) we obtain

@t⇢ =

✓
a� b

v
� b (µ� h)2

◆
� ⇣⇢

�
⇢. (A.6)

Under the initial condition (2.27), we have

v(0,x) = v0(x), µ(0,x) = µ0(x), ⇢(0,x) = ⇢0(x),

and imposing these initial conditions for (A.3), (A.4) and (A.6) we arrive at the Cauchy

problem (2.30) for the functions v(t,x), µ(t,x) and ⇢(t,x).

A.2 Proof of Theorem 1 in Chapter 2

Under assumptions (2.24) and (2.25), Proposition 1 ensures that for any (t,x) 2 [0,1)⇥⌦

the solution of (2.5) subject to (2.27) and (2.28) is of the Gaussian form (2.29). Therefore,

building upon the method of proof presented in (Ardaševa et al., 2020b; Chisholm et al.,

2016b), we prove Theorem 1 by studying the behaviour of the components of the solution

to the Cauchy problem (2.30) for t ! 1.

Step 1: asymptotic behaviour of v(t,x) ⌘ 1/�2(t,x) for t ! 1. Solving (2.30)1

subject to the initial condition v(0,x) = v0(x) gives

v(t, ·) =

s
b

�

r
b

�
+ v0 �

✓r
b

�
� v0

◆
exp

�
�4

p
b � t

�

r
b

�
+ v0 +

✓r
b

�
� v0

◆
exp

�
�4

p
b� t
� , (A.7)

which implies that

v(t, ·) �!

s
b

�
exponentially fast as t ! 1. (A.8)
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Step 2: asymptotic behaviour of µ(t,x) for t ! 1. Solving (2.30)2 subject to the

initial condition µ(0,x) = µ0(x) yields

µ(t, ·) = µ0 exp

✓
�2b

Z
t

0

dz

v(z, ·)

◆
+ h


1� exp

✓
�2b

Z
t

0

dz

v(z, ·)

◆�
, (A.9)

which implies that

µ(t, ·) �! h exponentially fast as t ! 1. (A.10)

Step 3: asymptotic behaviour of ⇢(t,x) for t ! 1. We define

w(t,x) ⌘ w(v(t,x), µ(t,x), S(x), C(x)) :=

✓p
b � � b

v

◆
� b (µ� h)2

and rewrite (2.30)3 as

@t⇢ =
h⇣

a�
p
b � + w

⌘
� ⇣⇢

i
⇢. (A.11)

Solving (A.11) subject to the initial condition ⇢(0,x) = ⇢0(x) yields

⇢(t, ·) =
⇢0 exp

⇣
a�

p
b �

⌘
t+

Z
t

0

w(z, ·) dz
�

1 + ⇣ ⇢0

Z
t

0

exp

⇣
a�

p
b �

⌘
z +

Z
z

0

w(⌧, ·) d⌧
�
dz

. (A.12)

The asymptotic results (A.8) and (A.10) ensure that

w(t, ·) �! 0 exponentially fast as t ! 1, (A.13)

and, therefore, (A.12) allows us to conclude that

if
p

b(S(x), C(x)) � � a(S(x), C(x)) then ⇢(t,x) �! 0 as t ! 1. (A.14)

On the other hand, the asymptotic result (A.13) implies that in the asymptotic regime

t ! 1 we have

exp

⇣
a�

p
b �

⌘
t+

Z
t

0

w(z, ·) dz
�
⇠ A(S,C) exp

h⇣
a�

p
b �

⌘
t

i
,

and also that, under the additional assumption
p
b � < a,

Z
t

0

exp

⇣
a�

p
b �

⌘
z +

Z
z

0

w(⌧, ·) d⌧
�
dz ⇠ A(S,C)

exp
⇥�
a�

p
b �
�
t
⇤

a�
p
b �

,

160



for some positive function A(S,C). These asymptotic relations, along with (A.12), allow

us to conclude that

if
p
b(S(x), C(x)) � < a(S(x), C(x))

then ⇢(t,x) �!
a(S(x), C(x))�

p
b(S(x), C(x)) �

⇣
as t ! 1.

(A.15)

Taken together, the asymptotic results (A.14) and (A.15) ensure that

⇢(t, ·) �! max

✓
0,

a�
p
b �

⇣

◆
as t ! 1. (A.16)

Claims (2.31)-(2.32) follow from the asymptotic results (A.8), (A.10) and (A.16).

A.3 Formal analysis presented in Chapter 2

We consider the asymptotic behaviour of the weak solution of (2.37) subject to the initial

condition (2.38)-(2.39) in the asymptotic regime "! 0.

Hamilton-Jacobi equation. Having introduced theWKB ansatz (2.41), i.e. n"(t,x, y) =

exp [u"(t,x, y)/" ], we have the following

@tn" = "
�1
n"@tu", rxn" = "

�1
n"rxu", @yn" = "

�1
n"@yu",

�xn" =
⇣
"
�1|rxu"|

⌘2
n" + "

�1
n"�xu", @

2
yy
n" =

⇣
"
�1
@yu"

⌘2
n" + "

�1
n"@

2
yy
u" .

Substituting the ansatz (2.41) into (2.37)1, and using the identities listed above, we

obtain

@tu" = R
�
y, ⇢"(t,x), S(x), C(x)

�
+ (@yu")

2 + |rxu"|2 + "
�
@
2
yy
u" +�xu"

�
(A.17)

subject to the initial condition u"(0,x, y) = u
0
"
(x, y), with u

0
"
(x, y) given by (2.38).

Letting " ! 0 in (A.17) we formally obtain the following equation for the leading-order

term u of the asymptotic expansion for u"

@tu = R(y, ⇢(t,x), S(x), C(x)) + (@yu)
2 + |rxu|2 in ⌦, (A.18)

where ⇢(t,x) is the leading-order term of the asymptotic expansion for ⇢"(t,x). This is

the Hamilton-Jacobi equation (2.42)1.
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Bounds on ⇢. We here make use of the notation ⇢
¯
and ⇢̄ to indicate the infimum

and supremum of ⇢, respectively (i.e. ⇢
¯
(t,x)  ⇢(t,x)  ⇢̄(t,x)). From the maximum-

minimum principle of parabolic equations (Perthame, 2015) we obtain from (2.5)1, under

assumption (2.24),

@t⇢
¯
(t,x

¯
) �


min
y2R

�
p(y, S(x)� k(y, C(x))

�
� ⇣⇢

¯

�
⇢
¯

����
x
¯

(A.19)

where both sides of the equation are evaluated at the minimum of ⇢
¯
, i.e. x

¯
= arg min

x2⌦
⇢
¯
(t,x),

and

@t⇢̄(t, x̄) 

max
y2R

�
p(y, S(x)� k(y, C(x))

�
� ⇣⇢̄

�
⇢̄

����
x̄

(A.20)

where both sides of the equation are evaluated at the maximum of ⇢̄, i.e. x̄ = arg max
x2⌦

⇢̄(t,x).

Equation (A.19), together with the lower bound on ⇢(0,x) in (2.40), implies ⇢
¯
(t,x

¯
) � 0

for all t � 0. Equation (A.20), together with the upper bound on ⇢(0,x) in (2.40), implies

⇢̄(t, x̄)  max

✓
⇢̄(0, x̄),

1

⇣
max
y2R

�
p(y, S(x)� k(y, C(x))

�
|x̄
◆

for all t � 0. Thus, overall we

have

0  ⇢(t,x) < 1 . (A.21)

Note that the rest of the analysis is conducted on the support of ⇢.

Constraint on u. Consider x 2 ⌦ such that ⇢(t,x) > 0, i.e. x 2 supp(⇢), and let

ȳ(t,x) be a nondegenerate maximum point of u(t,x, y), i.e. ȳ(t,x) 2 arg max
y2R

u(t,x, y)

with

@
2
yy
u(t,x, ȳ(t,x)) < 0 , (A.22)

and, by definition,

@yu(t,x, ȳ(t,x)) = 0. (A.23)

Moreover, the upper bound on ⇢ given by (A.21) gives the constraint

u(t,x, ȳ(t,x)) = 0 for all (t,x) 2 (0,1)⇥ ⌦. (A.24)

This is the constraint imposed on the Hamilton-Jacobi equation for u(t,x) in (2.42)2.

Canonical equation for ȳ. Evaluating (A.18) at y = ȳ(t,x) and using (A.23) along

with (A.24) yields

R(ȳ(t,x), ⇢(t,x), S(x), C(x)) = 0. (A.25)

Di↵erentiating (A.23) with respect to t yields

@tyu(t,x, ȳ(t,x)) + @
2
yy
u(t,x, ȳ(t,x)) @tȳ(t,x) = 0
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and, using (A.22), we can formally rewrite the above equation as

@tȳ(t,x) = �(@2
yy
u(t,x, ȳ(t,x))�1

@tyu(t,x, ȳ(t,x)). (A.26)

Furthermore, di↵erentiating both sides of (A.18) with respect to y, evaluating the result-

ing equation at y = ȳ(t,x) and using (A.23) along with (A.24) gives

@tyu(t,x, ȳ(t,x)) = @yR
�
ȳ(t,x), ⇢(t,x), S(x), C(x)

�
.

Substituting the latter equation into (A.26) we formally obtain the following canonical

equation for ȳ(t,x)

@tȳ(t,x) = �(@2
yy
u(t,x, ȳ(t,x)))�1

@yR
�
ȳ(t,x), ⇢(t,x), S(x), C(x)

�
. (A.27)

Equilibrium values of ⇢ and ȳ. Combining (A.25) and (A.27) we find that the

steady-state values of ⇢(t,x) and ȳ(t,x), say ⇢1(x) and ȳ1(x), need to satisfy

8
><

>:

R(ȳ1(x), ⇢1(x), S(x), C(x)) = 0,

@yR(ȳ1(x), ⇢1(x), S(x), C(x)) = 0.

Substituting (2.6) into the above system of equations, we formally obtain

8
><

>:

p(ȳ1(x), S(x))� k(ȳ1(x), C(x))� ⇣⇢1(x) = 0,

@y

⇥
p(ȳ1(x), S(x))� k(ȳ1(x), C(x))

⇤
= 0,

which implies the following equilibrium solution

8
><

>:

⇢1(x) =
1

⇣

⇥
p(ȳ1(x), S(x))� k(ȳ1(x), C(x))

⇤
,

ȳ1(x) = arg max
y2R

⇥
p(y, S(x))� k(y, C(x))

⇤
,

(A.28)

valid in the support of ⇢1, i.e. as long as ⇢1(x) > 0 with ⇢1(x) given by (A.28)1. Under

definitions (2.13) and (2.14), rewritten in the form (2.15), we obtain

8
>><

>>:

⇢1(x) =
1

⇣

⇣
a(x)� b(x)

�
ȳ1(x)� h(x)

�2 ⌘
,

ȳ1(x) = arg max
y2R

⇣
a(x)� b(x)

�
y(x)� h(x)

�2⌘
,

=)

8
><

>:

⇢1(x) =
1

⇣
a(x),

ȳ1(x) = h(x),

(A.29)

that is a unique value of ȳ1(x) for each x, dictated by the local values of S(x) and C(x)

through (2.16)-(2.18). Taken together, these formal results lead to the weak solution

given in (2.43) and (2.44).
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A.4 Linear stability analysis presented in Chapter 5

In Section A.4.1 we conduct a LSA of the 1D system (5.15) under definitions (5.5), (5.8)

and (5.9), and either under definition (5.16) or (5.17). Similarly, in Section A.4.2 we

conduct an analogous LSA of the 2D system (5.15) under definitions (5.6), (5.8) and (5.9),

and either under definition (5.16) or (5.17).

A.4.1 Linear stability analysis of the 1D problem

Spatially homogeneous steady states. The spatially homogeneous steady states of

the system (5.15) v̄ = (n̄, ⇢̄, m̄, c̄)| satisfy

8
>>>>>><

>>>>>>:

pn̄(1� n̄� ⇢̄) = 0

µ(1� n̄� ⇢̄)+ � �⇢̄m̄ = 0

↵mn̄� �mm̄ = 0

↵cn̄� �cc̄ = 0

, (A.30)

giving either v̄ = (0, 1, 0, 0)| or v̄ = (1, 0,↵m/�m,↵c/�c)|. Each spatially homogeneous

steady state is therefore in the form

v̄ =

✓
n̄, 1� n̄,

↵m

�m
n̄,
↵c

�c
n̄

◆|
(A.31)

with either n̄ = 0 or n̄ = 1. The first one (‘cell-free’ steady state) corresponds to the

absence of cells, with the whole volume occupied by the ECM. The second one (‘cell-

full’ steady state) corresponds to the case in which the cells have completely degraded

the ECM and are occupying the whole volume. Note that in the absence of matrix

degradation (i.e. � = 0) the spatially homogeneous steady states are still in the form

(A.31), but with 0  n̄  1. We thus have, in addition to the two already described,

infinitely many steady states in which both cells and ECM are present, filling up the

volume. These might be referred to as ‘intermediate’ steady states henceforth, as they

correspond to intermediate values of n̄, namely 0 < n̄ < 1.

Remark 7. We are going to assume that n+ ⇢  1 for our LSA investigations. That is

indeed satisfied by the steady states and it can be justified through the biological argument

that random perturbations to these states are likely to arise naturally if there is space

available, while changes that would imply n + ⇢ > 1 are much less likely as they would

require high energy expenses to oppose a high pressure environment. Mathematically this

allows us to avoid complications that arise when introducing perturbations in the typical

ansatz (vid. below) due to definition (5.3) and equation (5.10). In fact, under this

164



assumption the term (1� n� ⇢)+ = (1� n� ⇢) � 0 for all perturbations allowed.

Remark 8. During the LSA reported in the following sections, we are going to use the

fact that n̄+ ⇢̄ = 1 and �⇢̄n̄ = �⇢̄m̄ = �⇢̄c̄ = 0 for all spatially homogeneous steady states,

as concluded above, to further simplify calculations.

Remark 9. In the following we are interested in the biologically significant steady states,

that is, we are going to consider the stability of the steady states with n̄ > 0, focussing

on the cell-full steady state with additional observations drawn on the intermediate steady

states in the absence of matrix degradation. We will however also include results for the

cell-free steady state, which will clearly indicate that such steady state is degenerate.

Remark 10. In the following we will encounter inconclusive LSA results – i.e. option

(iii) described in Section 5.2 – particularly for the cell-free steady state. In such case

the stability of the steady state under consideration could be investigated by considering

the dynamics along a center manifold about the steady state, as LSA calculations reported

below are inconclusive for this case. Such investigation, however, goes beyond the scope of

this study and we leave the mathematical details to the interested reader, referring them

to Carr (2012); Guckenheimer and Holmes (2013). We will instead briefly comment

on the linear stability or instability of the steady state in question by means of ad hoc

numerical simulations.

Stability under spatially homogeneous perturbations. Introducing a small spa-

tially homogeneous perturbation v = v̄ + ṽ(t), with |ṽ| ⌧ 1, in (5.15) and linearising

leads to the following system for the perturbation ṽ(t):

8
>>>>>><

>>>>>>:

@tñ = �pn̄(ñ+ ⇢̃)

@t⇢̃ = ��(⇢̄m̃+ m̄⇢̃)� µ(ñ+ ⇢̃)

@tm̃ = ↵mñ� �mm̃

@tc̃ = ↵cñ� �cc̃

. (A.32)

Assuming small perturbations in the form ñ, ⇢̃, m̃, c̃ / exp ( t), the system (A.32) can

be rewritten as

Mṽ = 0 , with M =

0

BBBB@

 + pn̄ pn̄ 0 0

µ  + �m̄+ µ �⇢̄ 0

�↵m 0  + �m 0

�↵c 0 0  + �c

1

CCCCA
. (A.33)

For a non-trivial solution we require detM = 0, leading to the characteristic equa-

tion

( + �m)( + �c)
h
 

2 +  

⇣
pn̄+ �m̄+ µ

⌘
+ �pn̄m̄

i
= 0 , (A.34)
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Note that these steps simply provide an alternative route to the calculation of the eigen-

values  i (i = 1, ..., 4) of the Jacobian matrix of the ODE system

8
>>>>>><

>>>>>>:

ṅ = pn(1� n� ⇢)

⇢̇ = µ(1� n� ⇢)+ � �m⇢

ṁ = ↵mn� �mm

ċ = ↵cn� �cc

(A.35)

which corresponding to the spatially homogeneous version of the PDE system (5.15). The

eigenvalues are then given by the roots of the characteristic polynomial on the left-hand

side of equation (A.34). For n̄ = 1 we have that all eigenvalues  i (i = 1, ..., 4) are such

that Re( i) < 0 indicating the cell-full spatially homogeneous steady state is stable under

spatially homogeneous perturbations. On the other hand, for n̄ = 0 we have one zero

eigenvalue, thus LSA is inconclusive. We briefly investigate this by constructing numer-

ical solutions for the ODE system (A.35) under the nondimensional baseline parameter

set (BPS) in Table 5.1, complemented with initial conditions mimicking spatially homo-

geneous perturbations from the cell-free steady state, i.e. steady state (A.31) with n̄ = 0.

From the numerical solutions displayed in Figure A.1 we observe that:

• If the perturbation is such that n0 = 0, then the cell-free steady state is stable

under spatially homogeneous perturbations (cf. Figure A.1a);

• If the perturbation is such that n0 > 0 (although in this case n0 + ⇢0 > 1), then

the cell-free steady state is unstable under spatially homogeneous perturbations (cf.

Figure A.1b).

Figure A.1: Numerical solution for n and ⇢ of system (A.35), (a) under the BPS
in Table 5.1 and initial conditions n0 = 0, ⇢0 = 0.99, (b) under the BPS and initial
conditions n0 = 0.01, ⇢0 = 1, (c) same as in b except for � = 0, (d) same as in b except
for p = 0. Numerical solutions obtained using a finite di↵erence scheme (forward in time).
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Additional numerical tests with initial conditions such that n0 > 0 indicate that the cell-

free steady state is stable under spatially-homogeneous perturbations also in the latter

case if � = 0 (cf. Figure A.1c). Under the same initial condition, the solution also does

not reach the cell-full steady state if p = 0 (cf. Figure A.1d). In this case, however,

it is because for p = 0 there are infinitely many spatially homogeneous steady states of

system (5.15) with 0  n̄  1, ⇢̄ = µ(1 � ⇢̄)/(µ + �m̄), m̄ and c̄ as in (A.31). Thus

the initial condition considered in Figure A.1d may be seen as a spatially homogeneous

perturbation (in ⇢) of the steady state n̄ = n0, which is stable in this case. Overall

these tests indicate that the cell-free steady state, which is unstable under spatially

homogeneous perturbations with positive cell density, may owe such instability to cell

proliferation and matrix degradation.

Stability under spatially inhomogeneous perturbations. We now introduce spa-

tially inhomogeneous perturbations v = v̄ + ṽ(t, x), with |ṽ| ⌧ 1. After linearisation,

system (5.15) gives

8
>>>>>><

>>>>>>:

@tñ = Dn�ñ� n̄r · A[v̄ + ṽ(t, ·)]� pn̄(ñ+ ⇢̃)

@t⇢̃ = ��(⇢̄m̃+ m̄⇢̃)� µ(ñ+ ⇢̃)

@tm̃ = Dm�m̃+ ↵mñ� �mm̃

@tc̃ = Dc�c̃+ ↵cñ� �cc̃

. (A.36)

We immediately notice that, as all steady states satisfy volume filling conditions, chemo-

taxis in the presence of saturating e↵ects does not play a role in the dynamics of small per-

turbations from any of these states. After linearisation, for the 1D problem A[v̄+ ṽ(t, ·)]
in equation (A.36)1 becomes

A[v̄+ ṽ(t, ·)](x) = � 1

R
(Snnn̄+Sn⇢⇢̄)

Z
R

0

1X

j=0

⌘(j)�(r)
�
ñ(t, x+r⌘(j))+ ⇢̃(t, x+r⌘(j))

�
dr

(A.37)

with �(r) given by the corresponding definition in (5.8). Assuming small perturbations

in the form ñ, ⇢̃, m̃, c̃ / exp ( t+ ikx), we have that (A.37) can be rewritten as

A[v̄ + ṽ(t, ·)](x) = � 1

R
(Snnn̄+ Sn⇢⇢̄)

�
ñ(x) + ⇢̃(x)

� Z R

0

�(r)
�
exp (ikr)� exp (�ikr)

�

A{v̄ + ṽ(t, ·)}(x) = � 1

R
(Snnn̄+ Sn⇢⇢̄)

�
ñ(x) + ⇢̃(x)

�2i
R

Z
R

0

⇣
1� r

R

⌘
sin(kr) dr

A{v̄ + ṽ(t, ·)}(x) = � 2i

R2k
(Snnn̄+ Sn⇢⇢̄)

�
ñ(x) + ⇢̃(x)

�⇣
1� 1

Rk
sin(Rk)

⌘
.

(A.38)
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We will make use of the notation

w1(k) :=
⇣
1� 1

Rk
sin(Rk)

⌘
, (A.39)

for which we have that w1(k) � 0 for all k 2 R. Then, for small perturbations in the form

introduced above, system (A.36) can be rewritten as Mṽ = 0 with M given by

M =

0

BBBB@

 +Dnk
2 + A(k) + pn̄ A(k) + pn̄ 0 0

µ  + �m̄+ µ �⇢̄ 0

�↵m 0  +Dmk
2 + �m 0

�↵c 0 0  +Dck
2 + �c

1

CCCCA
,

(A.40)

where

A(k) =
2n̄

R2
(Snnn̄+ Sn⇢⇢̄)w1(k) , (A.41)

with w1(k) defined in (A.39). This immediately implies A(k) � 0 for all steady states,

those with, or without, matrix degradation. Imposing detM = 0 for a non-trivial solution

to Mṽ = 0, we obtain the characteristic equation from which to infer the dispersion

relation  (k2) which, in its more general form, is given by

( +Dck
2 + �c)

�
pn̄+ A(k)

�⇥
 + �m̄+ ( +Dnk

2)( + �m̄+ µ)
⇤
= 0 . (A.42)

In order for the steady states to be unstable under spatially inhomogeneous perturbations

– and patterns to arise – we require Re
�
 (k2)

�
> 0 for some k

2 2 R. It is clear from

(A.42) that Re
�
 (k2)

�
< 0 for all k2 and n̄ > 0. This indicates that the cell-full steady

state (as well as the intermediate ones) is also stable under spatially inhomogeneous

perturbations. We claim this to be due to saturation e↵ects introduced in (5.16), while

we may still expect chemotaxis and cell-to-cell or cell-to-matrix adhesion to play an

important role for cell aggregation when the initially perturbed states are far from being

volume filling, which will be investigated in the next paragraph. On the other hand, note

that for n̄ = 0 the second term in (A.42) is zero, thus any value of  will satisfy (A.42).

However, substituting n̄ = 0 from the beginning of this investigation would lead to the

corresponding simpler version of matrix (A.40), the determinant of which would be given

by the product of the entries in its main diagonal: in this case the dispersion relation

would satisfy Re
�
 (k2)

�
< 0 for all k2, with the exception of k = 0, in which case we

retrieve the results obtained above under spatially homogeneous perturbations.

Considerations in the absence of saturation e↵ects. We here consider the pattern

formation potential of the model in the absence of saturation e↵ects, that is we make use
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of definition (5.17) for the function f(n, ⇢), which influences both the chemotactic sensi-

tivity of cells and their adhesion velocity. All results and considerations made earlier in

this section on spatially homogeneous steady states and their stability under spatially ho-

mogeneous perturbations still hold. Introducing spatially inhomogeneous perturbations

as done above leads to the following linearised system alternative to (A.36):

8
>>>>>>>><

>>>>>>>>:

@tñ = Dn�ñ� �n̄�c̃� n̄r · A[v̄ + ṽ(t, ·)]� pn̄(ñ+ ⇢̃)

@t⇢̃ = ��(⇢̄m̃+ m̄⇢̃)� µ(ñ+ ⇢̃)

@tm̃ = Dm�m̃+ ↵mñ� �mm̃

@tc̃ = Dc�c̃+ ↵cñ� �cc̃

(A.43)

in which, for the 1D problem, A[v̄ + ṽ(t, ·)] is given by

A[v̄+ṽ(t, ·)](x) = 1

R

Z
R

0

1X

j=0

⌘(j)�(r)
�
Snnñ(t, x+r⌘(j))+Sn⇢⇢̃(t, x+r⌘(j))

�
dr (A.44)

with �(r) given by the corresponding definition in (5.8). Then, assuming small pertur-

bations in the form ñ, ⇢̃, m̃, c̃ / exp ( t+ ikx), (A.44) can be rewritten as

A[v̄ + ṽ(t, ·)](x) = 1

R

�
Snnñ(x) + Sn⇢⇢̃(x)

� Z R

0

�(r)
�
exp (ikr)� exp (�ikr)

�

A{v̄ + ṽ(t, ·)}(x) = 2i

R2k

�
Snnñ(x) + Sn⇢⇢̃(x)

�
w1(k) ,

(A.45)

with w1(k) � 0 defined in (A.39). We can rewrite (A.43) as Mṽ = 0, with M given

by

M =

0

BBBB@

 +Dnk
2 � An(k) + pn̄ �A⇢(k) + pn̄ 0 ��n̄k2

µ  + �m̄+ µ �⇢̄ 0

�↵m 0  +Dmk
2 + �m 0

�↵c 0 0  +Dck
2 + �c

1

CCCCA
,

(A.46)

where

An(k) =
2n̄

R2
Snnw1(k) and A⇢(k) =

2n̄

R2
Sn⇢w1(k) . (A.47)

We have both An(k) � 0 and A⇢(k) � 0 for all k 2 R. Comparing these to (A.40) and

(A.41), we see that in the absence of saturation e↵ects the contributions from cell-to-cell

and cell-to-matrix adhesion are decoupled and both give a negative contribution to M.

Furthermore, the contribution from chemotaxis does not vanish for any of the biologically

significant steady states (i.e. n̄ > 0). From this system the dispersion relation  (k2)
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satisfies

( +Dmk
2 + �m)

⇢
( +Dnk

2)
⇣
 + �m̄+ µ

⌘
+
�
pn̄� An(k)

�⇣
 + �m̄

⌘

+ µ
�
A⇢(k)� An(k)

��
( +Dck

2 + �c)� ↵c�n̄k
2( + �m̄+ µ)

�
= 0 .

(A.48)

We now have that any biologically significant steady state – with or without matrix

degradation – may be unstable under spatially inhomogeneous perturbations for strong

enough cell-to-cell adhesion and/or chemotaxis, i.e. for large enough Snn and ↵c and/or

�. In addition, the magnitude of cell-to-cell adhesion An(k) in (A.47) will be larger for

smaller values of the sensing radius R and larger values of n̄, and the contribution from

chemotactic movement will also increase for larger values of n̄. Therefore in the absence

of saturation e↵ects steady states with n̄ > 0 may be unstable under spatially inho-

mogeneous perturbations and patterns may form. This suggests that perturbed initial

conditions far from being volume filling, so that saturation e↵ects do not play a big role,

might result in cell aggregation thanks to cell-to-cell adhesion and chemotaxis, as long

as the initial cell density is large enough for these dynamics to play a significant role.

On the other hand, for n̄ = 0, we reach the same conclusions as in the presence of sat-

uration e↵ects, that is the cell-free steady state is stable under spatially inhomogeneous

perturbations, although we retrieve instability in the limit case of spatially homogeneous

perturbations.

A.4.2 Linear stability analysis of the 2D problem

We here consider how the results obtained so far change in the 2D problem. Conclusions

drawn in Section A.4.1 on the steady states of the system and their stability under

spatially homogeneous perturbations remain unchanged and we report below the 2D

calculations under spatially inhomogeneous perturbations.

Considerations in the presence of saturation e↵ects. When introducing spatially

inhomogeneous perturbations v = v̄+ ṽ(t,x), after linearisation A[v̄+ ṽ(t, ·)](x) for the
2D problem is given by

A[v̄+ṽ(t, ·)](x) = � 1

R
(Snnn̄+Sn⇢⇢̄)

Z
R

0

r

Z 2⇡

0

⌘(✓)�(r)
�
ñ(t,x+r⌘(✓))+⇢̃(t,x+r⌘(✓))

�
d✓ dr

(A.49)

with �(r) given by the corresponding definition in (5.8). Assuming small perturbations

in the form ñ, ⇢̃, m̃, c̃ / exp ( t+ ik · x), with k = (k1, k2)| 2 R2, then (A.49) can be
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rewritten as

A[v̄ + ṽ(t, ·)](x) = � 1

R
(Snnn̄+ Sn⇢⇢̄)

�
ñ(x) + ⇢̃(x)

� Z R

0

r

Z 2⇡

0

⌘(✓)�(r) exp (irk · ⌘(✓)) d✓ dr

A{v̄ + ṽ(t, ·)}(x) = 3

⇡R3
(Snnn̄+ Sn⇢⇢̄)

�
ñ(x) + ⇢̃(x)

�h
⇥I(k) + i⇥R(k)

i

(A.50)

where we have defined, with notation that will become more intuitive in a few steps,

⇥R(k) =

Z 2⇡

0

⌘(✓)
�
k · ⌘(✓)

�2

"
sin
�
Rk · ⌘(✓)

�
+

2
�
cos
�
Rk · ⌘(✓)

�
� 1
�

Rk · ⌘(✓)

#
d✓ , (A.51)

⇥I(k) =

Z 2⇡

0

⌘(✓)
�
k · ⌘(✓)

�2

"
1 + cos

�
Rk · ⌘(✓)

�
+

2 sin
�
Rk · ⌘(✓)

�

Rk · ⌘(✓)

#
d✓ . (A.52)

We eventually obtain the system (A.40), in which k
2 = |k|2 = k

2
1 + k

2
2 and, instead of

A(k) as in (A.41), we have A(k) given by

A(k) = � 3n̄

⇡R3
(Snnn̄+ Sn⇢⇢̄)k ·

h
⇥R(k)� i⇥I(k)

i
, (A.53)

with ⇥R(k) and ⇥I(k) defined in (A.51) and (A.52). Despite the complexity of these

integrals, we evaluated numerically the quantity �k · ⇥R(k) – see Figure A.2 – which

allowed us to conclude that, just like in the 1D case, Re
�
A(k)

�
� 0 for all k 2 R2. For

this problem we therefore obtain the corresponding version of equation (A.42) for the

dispersion relation and reach the same conclusions as in section A.4.1 for the full system

including saturation e↵ects.

Considerations in the absence of saturation e↵ects. In the absence of saturation

e↵ects, A[v̄+ ṽ(t, ·)](x) is given by the 2D correspondent of equation (A.44), that is

A[v̄+ ṽ(t, ·)](x) = 1

R

Z
R

0

r

Z 2⇡

0

⌘(✓)�(r)
⇣
Snn ñ(t,x+r⌘(✓))+Sn⇢ ⇢̃(t,x+r⌘(✓))

⌘
d✓ dr .

(A.54)

Then assuming small perturbations in the form ñ, ⇢̃, m̃, c̃ / exp ( t+ ik · x), with k =

(k1, k2)| 2 R2, (A.54) can be rewritten as

A[v̄ + ṽ(t, ·)](x) = 1

R

�
Snnñ(x) + Sn⇢⇢̃(x)

� Z R

0

r

Z 2⇡

0

⌘(✓)�(r) exp (irk · ⌘(✓)) d✓ dr

A{v̄ + ṽ(t, ·)}(x) = � 3

⇡R3

�
Snnñ(x) + Sn⇢⇢̃(x)

�h
⇥I(k) + i⇥R(k)

i
,

(A.55)
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Figure A.2: Plot of the quantity �k ·⇥R(k), where k = (k1, k2)| and ⇥R(k) is defined
in (A.51) for nondimensional R = 0.05. We clearly have �k · ⇥R(k) � 0 for all k 2 R2,
ensuring the real part of A(k) in (A.53), as well as those of An(k) and A⇢(k) in (A.56)
are non-negative. The integral in (A.51) was evaluated numerically using the composite
trapezoidal rule for numerical integration.

with ⇥R(k) and ⇥I(k) defined in (A.51) and (A.52). We eventually end up with a system

Mṽ = 0, with M defined as in (A.46), in which again we have k
2 = |k|2 = k

2
1 + k

2
2 and,

instead of An(k) and A⇢(k) as in (A.47), An(k) and A⇢(k) defined by

An(k) = � 3n̄

⇡R3
Snn k ·

h
⇥R(k)� i⇥I(k)

i
and

A⇢(k) = � 3n̄

⇡R3
Sn⇢ k ·

h
⇥R(k)� i⇥I(k)

i
.

(A.56)

Again, as demonstrated by the numerically evaluated quantity plot in Figure A.2, we have

that Re
�
An(k)

�
� 0 and Re

�
A⇢(k)

�
� 0 for all k 2 R2, and can therefore reach analogous

conclusions to those drawn in section A.4.1 for the corresponding 2D problem.

A.5 Derivation of the constitutive equations of the

models of linear viscoelasticity in Chapter 7

In Section A.5.1 are reported the rules of derivation of the constitutive equations of the

1D models of linear viscoelasticity presented in Section 7.2.2, using the Kelvin-Voigt and

Maxwell models as illustrative examples. In Section A.5.2 are reported the details of

the derivation of the constitutive equations for the 2D Kelvin-Voigt and Maxwell models

introduced in Section 7.2.3.
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A.5.1 Derivation of the 1D Kelvin-Voigt and Maxwell mod-

els

As presented in Section 7.2.2, the stress �e and strain "e of a purely elastic spring with

elasticity E are related via Hooke’s law

�e = E "e , (A.57)

which gives the constitutive equation (7.1) for the linear elastic model. Similarly, the

stress �v and strain "v of a purely viscous damper with viscous modulus ⌘ are related via

Newton’s law

�v = ⌘ @t"v , (A.58)

which gives the constitutive equation (7.2) for the linear viscous model. When two

elements are connected in parallel the strain of each component is the same as the overall

strain, while the overall stress is given by the sum of the stress of each component.

For a Kelvin-Voigt arm, where a purely elastic spring and a purely viscous damper are

connected in parallel, this means that the overall stress � and strain " are related via
8
<

:
" = "v = "e

� = �v + �e

(A.59)

where �e and "e satisfy (A.57), while �v and "v satisfy (A.58). Solving system (A.59) with

(A.57) and (A.58) leads to the constitutive equation (7.3) for the Kevin-Voigt model. On

the other hand, when elements are connected in series the overall strain is given by the

sum of the strain of each component, while the stress of each component is the same as

the overall stress. For a Maxwell arm, where a purely elastic spring and a purely viscous

damper are connected in series, this means that the overall stress � and strain " are

related via 8
<

:
" = "v + "e

� = �v = �e

(A.60)

where �e and "e satisfy (A.57), while �v and "v satisfy (A.58). Solving system (A.60)

with (A.57) and (A.58) leads to the constitutive equation (7.4) for the Maxwell model.

The same rules can be applied to obtain the constitutive equations of any model of

linear viscoelasticity starting from the system of purely elastic springs and purely viscous

dampers that illustrates it, as was done to obtain (7.5) and (7.6) from Figures 7.1e and 7.1f

respectively. Note that more complex models may be represented by di↵erent systems

(e.g. the SLS model may be illustrated as a Maxwell arm connected in parallel with a

purely elastic spring instead of as in Figure 7.1e), which lead to di↵erent constitutive

equations but still capture the same properties characterising the model.
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A.5.2 Derivation of the 2D Kelvin-Voigt and Maxwell mod-

els

Landau & Lifshitz derived from first principles the stress-strain relations that give the 2D

versions of the linear elastic model (7.1) and of the linear viscous model (7.2) in isotropic

materials (Landau and Lifshitz, 1970), which read, respectively, as

�e =
E

1 + ⌫

⇣
"e +

⌫

1� 2⌫
✓eI
⌘

and �v = ⌘ @t"v + µ @t✓vI . (A.61)

Here, E is Young’s modulus, ⌫ is Poisson’s ratio, I is the identity tensor, ⌘ is the shear

viscosity and µ is the bulk viscosity. Moreover, "e and ✓e are the strain and dilation

under a purely elastic deformation ue while "v and ✓v are the strain and dilation under

a purely viscous deformation uv, which are all defined via (7.11).

In the case of a linearly viscoelastic material satisfying the Kelvin-Voigt model, the two

dimensional analogue of (7.3) is simply given by

� = �e + �v = E
0"+ E

0
⌫
0
✓I + ⌘ @t"+ µ @t✓I . (A.62)

Here E
0 and ⌫

0 are defined via (7.12) and there is no distinction between the strain

or dilation associated with each component (i.e. " = "e = "v and ✓ = ✓e = ✓v), as

the viscous and elastic components are connected in parallel. This is the stress-strain

constitutive equation that is typically used to describe the contribution to the stress of

the cell-ECM system coming from the ECM in 2D mechanochemical models of pattern

formation (Cruywagen and Murray, 1992; Ferrenq et al., 1997; Javierre et al., 2009;

Maini and Murray, 1988; Manoussaki, 2003; Murray, 2001; Murray et al., 1988; Murray

and Oster, 1984a,b; Murray et al., 1983; Olsen et al., 1995; Oster et al., 1983; Perelson

et al., 1986).

On the other hand, deriving the 2D analogues of Maxwell model (7.4), of the SLS

model (7.5) and of the Je↵rey model (7.6) is more complicated due to the presence of

elements connected in series. In the case of Maxwell model, using the fact that the overall

strain and dilation will be distributed over the di↵erent components (i.e. " = "e+"v and

✓ = ✓e + ✓v) along with the fact that the stress on each component will be the same as

the overall stress (i.e. � = �e = �v), one finds

1

⌘
� +

1

E 0@t� = @t"+ ⌫
0
@t✓I +

✓
µ

⌘
� ⌫

0
◆
@t✓v I , (A.63)

with E
0 and ⌫ 0 being defined via (7.12). Under the simplifying assumption that

µ

⌘
= ⌫

0 (A.64)
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the stress-strain constitutive equation (A.63) can be rewritten in the form given by the

generic 2D constitutive equation (7.10) under the parameter choices reported in Table 7.3.

Dividing (A.62) by ⌘, under the simplifying assumption (A.64), the stress-strain consti-

tutive equation for the Kelvin-Voigt model (A.62) can be rewritten as

1

⌘
� =

E
0

⌘
"+

E
0
⌫
0

⌘
✓I + @t"+ ⌫

0
@t✓I ,

which is in the form given by the generic 2D constitutive equation (7.10) under the

parameter choices reported in Table 7.3.

A.6 Creep and stress relaxation tests on the consti-

tutive equations of the Kelvin-Voigt and Maxwell

models in Chapter 7

We here report examples the mathematical procedures mimicking the creep and stress

relaxation tests that can be used on the constitutive equations of linear viscoelastic models

in order to identify the properties of linear viscoelastic materials captured by each model.

The Kevin-Voigt and Maxwell models have been chosen as illustrative examples, and

analogous methods have been used for the other models presented in Section 7.2.2.

The creep test. During a creep test we first impose a constant stress �a = �0 at t = t0

and then remove it at t = t1, and calculate the resulting strain "(t) which can be plotted

to give the creep curve (cf. left column in Figure A.3). For t < t0 we have " = 0. For the

Kelvin-Voigt model, the strain during the first phase of the creep test, here labelled "a(t)

as resulting from the stress �a, satisfies the constitutive equation (7.3), i.e. we have

"̇a +
E

⌘
"a =

1

⌘
�0 for t0  t < t1 .

This can be solved using an integrating factor, yielding

"a(t) = "(t0  t < t1) =
�0

E

✓
1� exp

✓
E

⌘
(t0 � t)

◆◆
, (A.65)

where we can identify a delayed elastic response. For the strain "(t) during the second

phase of the creep test, we note that removing the stress �0 at t = t1 is the same as

applying a stress �b = ��0, and by linearity we have that the strain "b due to stress

removal is given by "b(t) = �"a(t � t1). Using Boltzmann’s superposition principle, i.e.
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"(�a + �b) = "(�a) + "(�b), we can compute the overall strain

"(t � t1) = "a(t)� "a(t� t1) =
�0

E

✓
exp

✓
Et1

⌘

◆
� 1

◆
exp

✓
E

⌘
(t0 � t)

◆
���!
t!1

0 , (A.66)

where we can identify a delayed elastic recovery, eventually observing a total recovery

– see also Figure A.3 (first column, second row). On the other hand, for the Maxwell

model, the strain "a(t) during the first phase of the creep test satisfies the constitutive

equation (7.4), and we have

"a(t) =

Z
t

t0

"̇a(s)ds =

Z
t

t0

✓
�̇a

E
+
�a

⌘

◆
ds for t0  t < t1 ,

where we have used that "(t < t0) = 0. This can be integrated, using that �a = �0 and

that �̇a(t) = �0 �(t� t0) in the interval considered, and we obtain

"a(t) = "(t0  t < t1) =
�0

E
+
�0

⌘
(t� t0) , (A.67)

where we can identify an instantaneous elastic response and viscous flow. Following the

same principles introduced above for the Kelvin-Voigt model, we have that the strain in

the second phase of the creep test is given by

"(t � t1) = "a(t)� "a(t� t1) =
�
��
�0

E
+
�0

⌘
t�

�
��
�0

E
� �0

⌘
(t� t1) =

�0

⌘
t1 ���!

t!1

�0

⌘
t1 (A.68)

where we can recognise an instantaneous elastic recovery (cf. cancelled out terms) and a

permanent set (residual strain) – see also Figure A.3 (first column, third row). Note that

this is exactly due to viscous flow, and therefore specifically characterises viscoelastic

fluid models such as Maxwell’s (viscous flow and permanent set are observed in the same

way repeating the test for the linear viscous and the Je↵rey model).

The stress relaxation test. During a stress relaxation test we impose a constant

strain "0 at t = t0, and calculate the resulting stress �(t) which can be plotted to give

the stress relaxation curve (cf. left column in Figure A.3). For t < t0 we have � = 0.

For the Kelvin-Voigt model we can apply the constitutive equation (7.3) directly and

obtain

�(t � t0) = E "0 + ⌘ "0 �(t� t0) , (A.69)

which implies �̇(t � t0) = 0 and we observe no stress relaxation – see also Figure A.3

(second column, second row). Note that the singularity in � is due to the presence of

the viscous damper, since it is unphysical to impose an instantaneous strain on a purely

viscous damper. For this reason, we have indicated stress relaxation as N.A. for the linear

viscous model in Table 7.2. For the Maxwell model, on the other hand, we have that the
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Figure A.3: Left column: Creep curve for the Kelvin-Voigt model (second row) and
the Maxwell model (third row) obtained under a constant stress (first row) applied dur-
ing a creep test. The curves are obtained plotting functions (A.65) and (A.66) for the
Kelvin-Voigt model, and (A.67) and (A.68) for the Maxwell model. Right column: Stress
relaxation curve for the Kelvin-Voigt model (second row) and the Maxwell model (third
row) obtained under a constant strain (first row) applied during a stress relaxation test.
The curves are obtained plotting functions (A.69) and (A.70) for the Kelvin-Voigt and
Maxwell models respectively.

stress satisfies

�̇ +
E

⌘
� = E "̇ for t � t0 .

Using an integrating factor and the fact that "̇ = "0 �(t� t0), we obtain

�(t � t0) = E "0 exp

✓
E

⌘
(t0 � t)

◆
, (A.70)

which implies �̇(t � t0) < 0 so we observe stress relaxation – see also Figure A.3 (second

column, third row).

177



Appendix B

Numerical details

The numerical schemes used to construct numerical solutions to the models studied in

this thesis are based on finite di↵erence and finite volume methods. We first give a brief

introduction of these methods, for 1D problems, followed by details of the schemes used

in each part: the scheme developed for the numerical simulations reported in Part II is

described in detail in Section B.1; the scheme developed by Alf Gerisch (TU Darmstadt)

used for the numerical simulations in Part III is described in Section B.2; the scheme

developed for the numerical simulations reported in Part IV is described in detail in

Section B.3.

Spatial discretisation: finite di↵erences, finite volumes, numerical integration.

Consider a 1D domain ⌦ = [0, L]. Finite di↵erence and finite volume methods rely on a

discretisation of the domain, similarly to as illustrated in Figure B.1. The methods used

in this thesis rely on homogeneous discretisations of the domain, therefore certain details

provided below may not apply to schemes developed on unstructured meshes.

Consider a domain discretised into a grid of, say, K + 1 grid points, similar to the one

illustrated in Figure B.1a. Finite di↵erence methods (LeVeque, 2007) rely on the

approximation of derivatives in the di↵erential equation by finite di↵erence formulas at

each grid point. These can be obtained from Taylor expansions of the function whose

derivative we need to approximate centred at di↵erent points on the grid, and truncating

the obtained expression by ignoring terms of order �x
N (�x = L/K is the distance

between two grid points) for an approximation of order N . The approximations may

be ‘backward’, ‘forward’ or ‘central’, depending on which points of the grid are used to

obtain the approximation. This gives a large but finite algebraic system of equations to

be solved in place of the di↵erential equation, which can often be done e�ciently using

programming and numeric computing platforms (e.g. Matlab). Finite di↵erence ap-

proximations are used in the schemes presented in Sections B.1 and B.3.
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Figure B.1: Schematic illustration of the spatial discretisation of the (1D) domain used
in this thesis: (a) grid with K + 1 grid points xi (i = 1, ..., K + 1) used for the finite
di↵erence scheme presented in Section B.1; (b) grid made up of K cells (finite volumes) of
centres xi (i = 1, ..., K), left and right grid cell interfaces xi�1/2 and xi+1/2 (i = 1, ..., K),
used for the finite volume scheme described in Section B.2; (c) grid with K+1 grid points
xi (i = 1, ..., K + 1) with cells constructed centred at each xi used for the mixed finite
di↵erence and finite volume scheme presented in Section B.3.

Finite volume methods (Eymard et al., 2000), on the other hand, rely on the discreti-

sation of the domain into, say, K grid cells (i.e. finite volumes), similar to as illustrated

in Figure B.1b. The finite volume approximations are derived by integrating the dif-

ferential equation over each cell (control volume) and using the divergence theorem to

obtain an integral formulation of the fluxes over the boundary of the control volume.

Then numerical fluxes can be computed at the grid cell interfaces, which is particularly

helpful when solving transport equations. In this case a popular approach is to define

the approximate advective flux at each interface according to the sign of its velocity,

a method known as ‘upwinding’ that helps to avoid spurious oscillations and negative

solution values often introduced by large advective fluxes. Finite volume methods are at

the basis of the scheme described in Section B.2, as well as in the mixed finite di↵erence

and finite volume scheme presented is Section B.3 for the advective/taxis terms.

Finally, for the numerical approximation of the integral terms found in Parts II

and III, we make use of finite di↵erence schemes based on a weighted sum of the values of

the integrand at a finite set of integration points. The method described in Section B.2,

in particular, relies on the composite trapezoidal rule of numerical integration. This con-

sists of applying the trapezoidal rule, i.e. the approximation of an integral by calculating

the area of the trapezoid fitting under the curve of the integrand, over a partition of the

integration interval and summing up the results.
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Time integration: explicit and implicit schemes. Time integration is computed

via explicit or implicit numerical methods. These can be obtained by approximating the

time derivatives using, respectively, forward and backward di↵erence approximations.

Explicit schemes, such as the one presented in Section B.1, allow for the calculation of

the solution at the next timestep solely relying on the solution at the current and/or

previous timesteps. Implicit schemes, such the one presented in Section B.3 which relies

on the Method of Lines (MOL), require an implicit equation involving the solution at the

next and current (and/or previous) timesteps to be solved instead. Implicit methods are

computationally more expensive than explicit ones, but are better suited to solve sti↵

systems of equations, for which explicit schemes require extremely small step sizes for

numerical stability (LeVeque, 2007).

B.1 Numerical schemes used in Chapter 2

As introduced in Section 2.3.1, we construct numerical solutions both to system (2.26) and

system (2.30) in 1D under stationary distributions of s(t, x) ⌘ S(x) and c(t, x) ⌘ C(x)

for Section 2.3.2. Then we construct numerical solutions both to system (2.26) and

system (2.5) in 2D, each coupled with equations (2.19) and (2.20), for Section 2.3.3

and 2.3.4 respectively. Therefore, Appendix B.1 is organised as follows: the schemes

developed for simulation in 1D spatial domains, both to solve (2.26) and (2.30) for given

S(x) and C(x), are reported in Section B.1.1; the scheme developed for simulations

in 2D spatial domains, to solve (2.5) together with (2.19) and (2.20), are reported in

Section B.1.2. Comments on how the scheme changes to solve (2.26), together with (2.19)

and (2.20), in 2D will be made throughout Section B.1.2. Files containing the code

corresponding to the schemes is available on GitLab1

B.1.1 Numerical schemes for 1D spatial domains

Numerical simulations in 1D rely on a uniform discretisation of the the spatial domain

[0, 0.05] consisting of Kx+1 = 101 grid points and a uniform discretisation of the compu-

tational domain [�L,L] (L = 7) for the independent variable y consisting ofKy+1 = 1000

grid points, in a similar fashion to the example grid (a) in Figure B.1. We denote the

spatial grid width with �x and the grid width of the computational domain for the inde-

pendent variable y as �y. We also consider a uniform discretisation of the time interval

[0,T] with grid width �t = 0.01 and denote the total number of grid points by Kt + 1.

1https://github.com/ChiaraVilla/VillaEtAl2021Phenotypes
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The phenotypic distribution n(t, x, y) is approximated as

n(ti, xj, ym) ⇡ n
i

j,m
for i = 0, ..., Kt , j = 0, ..., Kx , m = 0, ..., Ky ,

while the cell density ⇢(t, x), the local mean trait µ(t, x) and the inverse variance v(t, x) =

1/�2(t, x) are approximated as

⇢(ti, xj) ⇡ ⇢
i

j
, µ(ti, xj) ⇡ µ

i

j
, v(ti, xj) ⇡ v

i

j
for i = 0, ..., Kt , j = 0, ..., Kx .

Finally we make use of the notation Sj := S(xj) and Cj := C(xj) for the stationary

distributions of oxygen S(x) and chemotherapeutic agent C(x) at each grid point j =

0, ..., Kx.

Numerical scheme for the nonlocal reaction-di↵usion equation (2.26). We

rewrite the 1D version of the reaction-di↵usion equation (2.26) under stationary dis-

tributions of oxygen and chemotherapeutic agent as

@tn = �@
2
yy
n+R(y, ⇢(t, x), S(x), C(x))n , with ⇢(t, x) =

Z
L

�L

n(t, x, y)dy ,

where R is defined as in (2.6) with (2.15)-(2.18). We discretise the equation as

n
i+1
j,m

= n
i

j,m
+�t


�

�y2

�
n
i

j,m+1 � 2ni

j,m
+ n

i

j,m�1

�
+R

i

j,m
n
i

j,m

�
, (B.1)

where we have used the notation R
i

j,m
:= R(ym, ⇢ij, Sj, C

j), with

⇢
i

j
=

KyX

m=0

n
i

j,m
�y . (B.2)

In particular, equation (B.1) is based on a first order forward di↵erence approximation for

the time derivative, thus yielding an explicit scheme, and a second order central di↵erence

approximation for the di↵usion term in y. For this reason, the scheme (B.1) is based on

a three-point stencil and can only be solved for m = 2, ..., Ky � 1. The solution for

m = 1 and m = Ky is calculated using a first order (forward and backward, respectively)

di↵erence approximation of the derivative @y, which is set to zero at the boundary (i.e.

at y = �L and y = L) under the zero-flux boundary conditions (2.52). This yields

n
i

j,1 = n
i

j,2 and n
i

j,Ky
= n

i

j,Ky�1 . (B.3)

Numerical scheme for the system (2.30). Note first of all that, thanks to absence

of spatial derivatives, the PDE system (2.30) is de facto and ODE system to be solved

at each point in space. Therefore, we rewrite the 1D version of the system (2.30) under
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stationary distributions of oxygen and chemotherapeutic agent as
8
>>><

>>>:

v
0 = 2 (b(S,C)� �v

2) ,

µ
0 = (2b(S,C)/v) (h(S,C)� µ) ,

⇢
0 =

⇥�
a(S,C)� (b(S,C)/v)� b(S,C) (µ� h(S,C))2

�
� ⇣⇢

⇤
⇢ .

Where a, b and h are defined as in (2.18)-(2.18). Introducing the notation aj := a(Sj, Cj),

bj := b(Sj, Cj) and hj := h(Sj, Cj), we discretise system (2.30) as

8
>>><

>>>:

v
i+1
j

= v
i

j
+�t

⇥
2
�
bj � �(vi

j
)2
�⇤

,

µ
i+1
j

= µ
i

j
+�t

⇥�
2bj/vij

� �
hj � µ

i

j

�⇤
,

⇢
i+1
j

= ⇢
i

j
+�t

nh⇣
aj �

�
bj/v

i

j

�
� bj

�
µ
i

j
� hj

�2⌘� ⇣⇢
i

j

i
⇢
i

j

o
.

(B.4)

System (B.4) is based on a first order forward di↵erence approximation of the time deriva-

tive corresponding, at each point in space, to what is known as the explicit Euler method

for solving systems of ODEs.

Remark 11. System (B.4) is complemented with initial conditions (2.49) with exactly

⇢0 = 108. On the other hand system (B.1)-(B.3) is complemented with initial condi-

tions (2.27) with (2.49), where ⇢0 ⇡ 108. This is because we seek to have corresponding

numerical initial conditions for the two problems, in order to compare the numerical

solutions of the two systems and verify the analytical results of Section 2.2.1. Initial

condition (2.27) is defined as a Gaussian-like function with support R, integrating to

⇢0. However, integrating the Gaussian-like function over the finite computational domain

[�L,L] introduces an approximation error and the resulting quantity does not match the

required initial cell density of 108. In order for these to match, ⇢0 in (2.27) needs to be

defined as

⇢0 = 108
p

2⇡�2
0(x)R

L

�L
exp

h
� 1

2�2
0(x)

(y � µ0(x))
2
i
dy

⇡ 108

for the numerical initial condition complementing scheme (B.1)-(B.3).

B.1.2 Numerical schemes for 2D spatial domains

Numerical simulations in 2D rely on a uniform discretisation of the the spatial domain

[0, 0.05] ⇥ [0, 0.05] consisting of (Kx + 1) ⇥ (Kx + 1) = 101 ⇥ 101 grid points and, as in

the 1D case, a uniform discretisation of the computational domain [�L,L] (L = 7) for

the independent variable y consisting of Ky + 1 = 1000 grid points. Again, we denote

the spatial grid width in each direction with �x and the grid width of the computational

domain for the independent variable y as �y. We again consider a uniform discretisation
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of the time interval [0,T] with grid width �t = 0.01 and denote the total number of grid

points by Kt + 1. The phenotypic distribution n(t,x, y) is approximated as

n(ti, xj, xl, ym) ⇡ n
i

j,l,m
for i = 0, ..., Kt , j, l = 0, ..., Kx , m = 0, ..., Ky ,

while the cell density ⇢(t,x), oxygen concentration s(t,x) and chemotherapeutic agent

concentration c(t,x) are approximated as

⇢(ti, xj, xl) ⇡ ⇢
i

j,l
, s(ti, xj, xl) ⇡ s

i

j,l
, c(ti, xj, xl) ⇡ c

i

j,l
for i = 0, ..., Kt , j, l = 0, ..., Kx .

Numerical scheme for the nonlocal reaction-di↵usion equation (2.5). We rewrite

the 2D version of the reaction-di↵usion equation (2.5) as

@tn = Dn�xn+ �@
2
yy
n+R(y, ⇢(t,x), s(t,x), c(t,x))n , with ⇢(t,x) =

Z
L

�L

n(t,x, y)dy ,

where R is defined as in (2.6) with (2.15)-(2.18). We discretise the equation as

n
i+1
j,l,m

= n
i

j,l,m
+�t


Dn

�x2

�
n
i

j+1,l,m + n
i

j,l+1,m � 4ni

j,l,m
+ n

i

j�1,l,m + n
i

j,l�1,m

�

+
�

�y2

�
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i
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j,l,m
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i

j,l,m�1

�
+R

i

j,l,m
n
i

j,l,m

�
,

(B.5)

where we have used the notation R
i

j,l,m
:= R(ym, ⇢ij,l, s

i

j,l
, c

i

j,l
), with

⇢
i

j,l
=

KyX

m=0

n
i

j,l,m
�y . (B.6)

In particular, equation (B.5) is based on a first order forward di↵erence approximation for

the time derivative, thus yielding an explicit scheme, and a second order central di↵erence

approximation for the di↵usion terms in x and y. For this reason, the scheme (B.5)

is based on a seven-point stencil and can only be solved for j, l = 2, ..., Kx � 1 and

m = 2, ..., Ky � 1. The solution at the end points of the grid is calculated using a first

order (forward and backward, respectively) di↵erence approximation of the derivatives

@x1 , @x2 and @y, which are set to zero at the boundary under the zero-flux boundary

conditions (2.5)3 and (2.52). This yields, at each timestep i,

n
i

1,l,m = n
i

1,l,m and n
i

Kx,l,m
= n

i

Kx�1,l,m for l = 2, ..., Kx � 1 , m = 2, ..., Ky � 1 ,

n
i

j,1,m = n
i

j,2,m and n
i

j,Kx,m
= n

i

j,Kx�1,m for j = 1, ..., Kx , m = 2, ..., Ky � 1 ,

n
i

j,l,1 = n
i

j,l,2 and n
i

j,l,Ky
= n

i

j,l,Ky�1 for j, l = 1, ..., Kx .

(B.7)

In the absence of spatial di↵usion, i.e. for the 2D system (2.26) coupled with (2.19)

and (2.20), we obtain a scheme analogous to (B.5) with Dn = 0, together with (B.6),
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and boundary conditions (B.7)3 as in such case the scheme for n
i+1
j,l,m

is valid for all

j, l = 1, ..., Kx.

Numerical scheme for the balance equations (2.19) and (2.19). We rewrite equa-

tion (2.19), together with definitions (2.22)-(2.23), as

@ts = Ds �xs�
Z

R
rs(y, s)n(t,x, y) dy � �ss+ Is1!(x)

where rs is defined as in (2.21). This is discretised as

s
i+1
j,l

= s
i

j,l
+�t


Ds

�x2

�
s
i

j+1,l + s
i

j,l+1 � 4si
j,l
+ s

i

j�1,l + s
i

j,l�1

�

�
KyX

m=0

(rs)
i

j,l,m
n
i

j,l,m
� �ss

i

j,l
+ IsWi,j

�
,

(B.8)

where we have used the notation (rs)ij,l,m := rs(ym, sij,l), and where Wi,j is a (Kx +

1) ⇥ (Kx + 1) matrix of ones in correspondence of the blood vessel positions and zeros

otherwise. As for (B.5), equation (B.8) is based on a finite di↵erence scheme that is

first order forward in time and second order central in space, computed on a five-point

stencil. The solution at boundary grid points are computed, as in (B.7), from the zero-

flux boundary conditions (2.19)2 using a first order finite di↵erence approximation in

space, i.e.

s
i

1,l = s
i

1,l and s
i

Kx,l
= s

i

Kx�1,l for l = 2, ..., Kx � 1 ,

s
i

j,1 = s
i

j,2 and s
i

j,Kx
= s

i

j,Kx�1 for j = 1, ..., Kx .

(B.9)

The scheme for the numerical computation of the solution c(t,x) to equation (2.20),

together with definitions (2.22)-(2.23), is analogous to that here described for s(t,x).

B.2 Numerical method used in Chapter 5

The code used for the numerical simulations reported in Section 5.3 for the nonlocal

PDE model introduced in Section 5.1 was developed by Alf Gerisch, from the Technical

University of Darmstadt. We here describe the main features of the scheme and refer

the interested reader to publications which report its sophisticated details – e.g. Gerisch

(2010); Gerisch and Chaplain (2006, 2008). As introduced in Section 5.3.1, we solve the

nondimensional system (5.15)-(5.16) in ⌦ = (0, 1) in 1D and ⌦ = (0, 1) ⇥ (0, 1) in 2D,

with zero-flux boundary conditions and initial conditions (5.13)-(5.14).
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Spatial discretisation. The numerical solution is constructed following the MOL by

first discretising the nonlocal model in space, yielding an initial value problem for a large

system of sti↵ ODEs. This is obtained using a second-order finite volume approach,

described in detail by Gerisch and Chaplain (2006) and references therein. First, the

spatial domain ⌦ is discretised by an equi-spaced linear grid of K = 1000 grid cells in

1D, in a similar fashion to the example grid (b) in Figure B.1, and K⇥K = 100⇥100 grid

cells in 2D. Reaction terms are computed using approximations at the grid cell centres.

Di↵usion terms are calculated using a second-order finite di↵erence approximation of the

di↵usion operator within each grid cell (e.g. in 1D the three-point stencil used is made

up of the left grid cell interface, the grid cell centre and the right grid cell interface).

Advection (chemotaxis and adhesion) terms exploit the calculation of the advective flux

at the grid cell interfaces using first-order upwinding – see Section B.3 (equations (B.16)-

(B.18)) – with the additional use of flux limiter functions in order to ensure an accurate

and at the same time non-negative approximation of the taxis and adhesion terms; note

that here in particular we employ the Koren flux limiter (k = 1/3, � = 0.25) (Gerisch and

Chaplain, 2006; Koren, 1993). Zero-flux boundary conditions are simply implemented by

imposing the flux to be zero at the interfaces corresponding to the boundary of ⌦.

Computation of the nonlocal term. In order to calculate the adhesion terms, we

require a computation of the nonlocal adhesion velocity at each grid cell interface. A de-

tailed account of the approximation of the nonlocal term in a periodic boundary condition

setting is given by Gerisch (2010). The integral needs to be computed over integration

domains which can be discretised by means of finer stencils overlapping the main spa-

tial grid; note in particular that for the sensing region in 2D a circular stencil is used –

see (Gerisch, 2010, Figure 6). A piecewise-constant reconstruction of the quantity g
�
v
�

in (5.5) is used to approximate the function within the sensing region starting from the

approximation evaluated at the grid cell interfaces. Then the composite trapezoidal rule

of numerical integration is applied over the discretised integration domain. The com-

bination of these two steps gives rise to a matrix-vector product resulting in a vector

for the adhesion velocity at each grid cell interface. In the case of periodic boundary

conditions the matrix involved in this product is a circulant2 matrix. Under zero-flux

boundary conditions the matrices involved in this product have Toeplitz3 structure, and

can be embedded in slightly larger circulant matrices (Domschke et al., 2014; Villa et al.,

2022). Then the matrix-vector product involving a circulant matrix can be evaluated

e�ciently using fast Fourier transform techniques. This e�cient approximation of the

nonlocal term, simultaneously on the full computational grid, is key to an overall e�cient

numerical scheme for the full PDE system.

2
A circulant matrix is a Toeplitz matrix where each row is a right cyclic shift of the row above it.

3
A Toeplitz matrix is an n⇥ n matrix M such that Mi,j = Mi+1,j+1 for all i, j = 1, ..., n� 1.

185



Time integration. The above methods yield an initial value problem for a large system

of sti↵ ODEs. This system is solved using the linearly-implicit time integration scheme

ROWMAP (Weiner et al., 1997), implemented in a Fortran subroutine and called from

Matlab. ROWMAP is specifically designed for the numerical solution of sti↵ initial value

problems of ODEs of large dimension, and implements automatic time step size control

ensuring that the temporal discretisation error of the numerical solution is negligible in

comparison with the spatial error introduced during the spatial discretisation (Gerisch

and Chaplain, 2008).

B.3 Numerical schemes used in Chapter 7

Details of the numerical schemes for the 1D and 2D problems presented in Chapter B.3 are

given in Section B.3.1 and B.3.2 respectively. The files containing the code corresponding

to the schemes is available on GitLab4. The following schemes and available code have

been developed in collaboration with Alf Gerisch (TU Darmstadt).

B.3.1 Numerical schemes for the 1D problem

Numerical solutions for the system of implicit, time-dependent and spatially 1D PDEs (8.1),

(8.2) and (8.7) are obtained exploiting the Method of Lines. We make use of a uniform

discretisation of the spatial domain [l, L] consisting of K + 1 grid points, or grid cell

centres, while, at first, leaving the time variable continuous. We denote the spatial grid

width by �x. The normalised cell density n(t, x), the normalised ECM density ⇢(t, x)

and the displacement of a material point of the cell-ECM system u(t, x) are approximated

as

n(t, xi) ⇡ Ni(t) , ⇢(t, xi) ⇡ Pi(t) , u(t, xi) ⇡ Ui(t) for i = 0, . . . , K .

Thanks to the periodic boundary conditions we have

N0(t) = NK(t) , P0(t) = PK(t) and U0(t) = UK(t) ,

and consequently have 3 ⇥K time-continuous approximations to determine. We collect

them in the vectors N(t), P (t), U(t) and denote their time-derivatives by N
0(t), P 0(t),

U
0(t). The discretization of the spatial derivatives in the PDE system will then result

in an implicit system of 3 ⇥K ODEs for the variables N(t), P (t), U(t) and their time-

4https://git-ce.rwth-aachen.de/alf.gerisch/VillaEtAl2021BullMathBiol
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derivatives of the following form

F (N,P, U,N
0
, P

0
, U

0) =

2

6664

fn(N,P,N
0
, U

0)

f⇢(P, P 0
, U

0)

fu(N,P, U,N
0
, P

0
, U

0)

3

7775
= 0 . (B.10)

In this system fn(N,P,N
0
, U

0) = 0, f⇢(P, P 0
, U

0) = 0 and fu(N,P, U,N
0
, P

0
, U

0) = 0 are

each systems of K ODEs obtained, respectively, from PDEs (8.1), (8.2) and (8.7), us-

ing second-order central finite di↵erence approximations for the spatial derivatives and

the first-order upwind scheme for the advection terms, as detailed below for each equa-

tion.

In order to solve system (B.10), we make use of the Matlab solver ode15i, which uses

a variable-order (orders 1 to 5) backward di↵erence formula (BDF) method in a form

suitable to an implicit system of ODEs. Initial conditions N(0), P (0) and U(0) are

given by the appropriate equivalent of initial conditions (8.22), and we make use of the

Matlab function decic to obtain consistent initial conditions N
0(0), P 0(0) and U

0(0)

such that (B.10) is satisfied at initial time t = 0.

Useful matrices. In order to apply the first-order upwind scheme we need to compute

variables and derivatives at the grid cell interfaces, i.e. half-way between grid points, in

addition to those at the grid cell centres. We here clarify the notation adopted throughout

the rest of this document. The K⇥K matrices Mx and Mxx are used to approximate,

using second-order finite di↵erences, the first-order and the second-order derivatives in

space, respectively, of a periodic grid function at the grid cell centres and are therefore

given by

Mx :=
1

2�x

2

666664

0 1 �1

�1 0 1
. . . . . . . . .

1 �1 0

3

777775
and Mxx :=

1

�x2

2

666664

�2 1 1

1 �2 1
. . . . . . . . .

1 1 �2

3

777775
. (B.11)

We make use of the notation �*· to indicate a shift from the grid cell centres to the (right)

grid cell interfaces. In particular to approximate the value of a periodic grid function at

these grid cell interfaces we multiply it by the K⇥K matrix

�*
M :=

1

2

2

66664

1 1

1 1
. . . . . .

1 1

3

77775
. (B.12)
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In addition, the K⇥K matrices
�*
Mx and

�(
Mx are used to approximate the first-order

derivatives in space of a periodic grid function at the (right) grid cell interfaces, when the

grid function is given in the grid cell centres, and at the grid cell centres, when the grid

function is given in the (right) grid cell interfaces, respectively. These are given by

�*
Mx :=

1

�x

2

666664

�1 1

�1 1
. . . . . .

1 �1

3

777775
,
�(
Mx :=

1

�x

2

666664

1 �1

�1 1
. . . . . .

�1 1

3

777775
. (B.13)

Note that, even though these two matrices are multiplied by 1/�x, they still stem from

second-order finite di↵erence approximations, calculated on a staggered grid shifted by

half the grid cell width.

Convention: In the formulas which follow below, we use the convention that any product

of a matrix from above with a vector of length K is a matrix-vector product but any

operation between two vectors, in particular multiplication, division, or exponentiation,

are understood element-wise.

Numerical scheme for the balance equation (8.1). We rewrite the balance equa-

tion (8.1) as

@tn � D@
2
xx
n + rx(�n) � rn(1� n) = 0 with � = ↵rx⇢+ @tu ,

which, upon spatial discretisation, leads to the following system of K ODEs

fn(N,P,N
0
, U

0) = N
0 �DMxx N +A

��*
� , N

�
� rN(1�N) = 0 (B.14)

with
�*
� indicating the advective velocity computed at the grid cell interfaces, that is

�*
� = ↵

�*
Mx P +

�*
MU

0
, (B.15)

and the matrices Mxx,
�*
M and

�*
Mx are defined in (B.11), (B.12) and (B.13), respectively.

The function A
��*
� , N

�
computes the contribution of advection, given advective velocity

and advected quantity as inputs, at the grid cell centres as

A
��*
� , N

�
:=

�(
Mx

�*F
��*
� , N

�
(B.16)
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where the matrix
�(
Mx is defined in (B.13) and the advective flux

�*F at the grid cell

interfaces is computed using first-order upwinding, i.e.

h�*F
��*
� , N

�i

i

:=

8
><

>:

��*
� i

�+
Ni +

��*
� i

��
Ni+1 for i = 1, ..., K � 1

��*
�K

�+
NK +

��*
�K

��
N1 for i = K

(B.17)

with (·)+ and (·)� being the positive and negative parts of the input variable, i.e.

(�)+ := max(0,�) and (�)� := min(0,�) . (B.18)

Numerical scheme for the transport equation (8.2). We rewrite the transport

equation (8.2) as

@t⇢ + rx(@tu ⇢) = 0

which, upon spatial discretisation, leads to the following system of K ODEs

f⇢(P, P
0
, U

0) = P
0 +A

��*
MU

0
, P
�
= 0 , (B.19)

where the function A
��*
MU

0
, P
�
is defined in (B.16), together with definitions (B.17)

and (B.18), with advection velocity given by U
0 calculated at the cell interfaces using

�*
M

defined in (B.12).

Numerical scheme for the force-balance equation (8.7). We solve the system of

PDEs (8.1), (8.2) and (8.7) for the Kelvin-Voigt (7.3) and the Maxwell (7.4) models. In

these cases we have b2 = a2 = 0, and the force-balance equation (8.7) reads as

b1 @
3
xxt

u+ b0 @
2
xx
u � a1s @t(⇢u) � a0 s⇢u + rx

�
a1 @t�c + a0 �c

�
= 0

with �c = ⌧
n

1 + �n2

�
⇢+ � @

2
xx
⇢
�
.

Upon spatial discretisation, this leads to the following system of K ODEs

fu(N,P, U,N
0
, P

0
, U

0) = b1MxxU
0 + b0MxxU � a1s(PU)0

� a0sPU +MxT1(N,P,N
0
, P

0) = 0
(B.20)

with

T1(N,P,N
0
, P

0) = ⌧
⇥
a1 ⇤2(N)N 0MT1P + a1 ⇤1(N)MT1P

0 + a0 ⇤1(N)MT1P
⇤
, (B.21)

where the functions ⇤1 and ⇤2 are defined as

⇤1(N) :=
N

1 + �N2
and its derivative ⇤2(N) :=

1� �N
2

(1 + �N2)2
, (B.22)
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while the K⇥K matrix MT1 is given by

MT1 := I+ �Mxx , (B.23)

where I is the K⇥K identity matrix and Mx is defined in (B.11).

This scheme is valid as long as b2 = a2 = 0 and can therefore also be applied when

considering the linear elastic model (7.1), the linear viscous model (7.2), and the SLS

model (7.5). On the other hand, in the case where b2 6= 0 (i.e. when the Je↵rey

model (7.6) is considered) the above numerical scheme cannot be directly employed due

to the presence of a second-order derivative in t. We could still, however, take a simi-

lar approach and make use of the ode15i solver by introducing extra variables for the

first-order derivatives in t of n and ⇢, thus formally reducing the PDE (8.7) to first-order

in time, at the cost of increasing the number of equations in the Method of Lines ODE

system.

B.3.2 Numerical scheme for the 2D problem

Similarly as done for the spatially 1D model, numerical solutions for the system of im-

plicit, time-dependent and spatially 2D PDEs (8.9), together with (30)-(32), are ob-

tained exploiting the Method of Lines. We make use of a uniform discretisation of the

square spatial domain [l, L] ⇥ [l, L] consisting of (K + 1)⇥(K + 1) grid points, while

leaving the time variable continuous. The spatial grid width, in both spatial directions,

is denoted by �x again. The normalised cell density n(t, x1, x2), the normalised ECM

density ⇢(t, x1, x2) and the displacement of a material point of the cell-ECM system

u(t, x1, x2) =
�
u1(t, x1, x2), u2(t, x1, x2)

�|
are approximated as

n(t, xi, xj) ⇡ Ni,j(t) , ⇢(t, xi, xj) ⇡ Pi,j(t) for i, j = 0, . . . , K ,

u1(t, xi, xj) ⇡ (U1)i,j(t) , u2(t, xi, xj) ⇡ (U2)i,j(t) for i, j = 0, . . . , K .

Thanks to the periodic boundary conditions, we can drop the index values i = 0 and

j = 0 and consequently have 4 ⇥K
2 time-continuous approximations to determine. We

collect them in the matrices N(t), P (t), U1(t), U2(t) and denote their time-derivatives by

N
0(t), P 0(t), U 0

1(t), U
0
2(t). The discretization of the spatial derivatives in the PDE system

will then result in an implicit system of 4⇥K
2 ODEs for the variables N(t), P (t), U1(t),
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U2(t) and their time-derivatives of the following form

F (N,P, U1, U2, N
0
, P

0
, U

0
1, U

0
2) =

2

6666664

fn(N,P,N
0
, U

0
1, U

0
2)

f⇢(P, P 0
, U

0
1, U

0
2)

fu1(N,P, U1, U2, N
0
, P

0
, U

0
1, U

0
2)

fu2(N,P, U1, U2, N
0
, P

0
, U

0
1, U

0
2)

3

7777775
= 0 . (B.24)

In this system fn = 0, f⇢ = 0, fu1 = 0 and fu2 = 0 are each systems of K2 ODEs obtained

from the system of PDEs (8.9), using second-order central finite di↵erence approximations

for the spatial derivatives and the first-order upwind scheme for the advection terms, as

detailed below for each equation.

In order to solve system (B.24), we make, similarly to the spatially 1D case, use of the

Matlab solver ode15i. Initial conditions N(0), P (0), U1(0) and U2(0) are given by

the appropriate equivalent of initial conditions (8.25), and we make use of the Matlab

function decic to obtain consistent initial conditions N 0(0), P 0(0), U 0
1(0) and U

0
2(0) such

that (B.24) is satisfied at initial time t = 0.

Useful functions In order to solve the system (B.24) we need to compute variables and

derivatives at the grid cell centres and interfaces, both in the x1- and the x2-direction. We

here introduce the functions that will be used in the rest of this document to compute

the aforementioned quantities in the di↵erent directions. These rely on the fact that

the matrices (B.11)-(B.13) act on column vectors and therefore, when applied to an

K⇥K argument matrix, they will act on each column of that, which in our framework

corresponds to computing the quantity of interest in the x1-direction. In order to compute

the same quantities in the x2-direction, we need the operating matrix to act on each row

of the argument matrix of interest, which can be achieved by matrix transposition of the

argument matrix before and of the product matrix after matrix multiplication. Hence

the functions Mx1(N) and Mx2(N) are used to approximate the first-order derivative

of the variable of interest, say N , at the grid cell centres in the x1- and x2-directions

respectively, and are defined as

Mx1(N) := Mx N , and Mx2(N) :=
⇥
Mx N

|⇤|
, (B.25)

where the matrixMx is defined in (B.11). Similarly, the functionsMxx1(N) andMxx2(N)

are used to approximate the second-order derivative of the variable of interest at the grid

cell centres in the x1- and x2-directions, respectively, and are defined as

Mxx1(N) := Mxx N , and Mxx2(N) :=
⇥
Mxx N

|⇤|
, (B.26)
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where the matrix Mxx is defined in (B.11). Then the function Mx1x2(N) is used to

approximate the second-order mixed derivative in space at the grid cell centres and is

defined as

Mx1x2(N) := Mx2

�
Mx1(N)

�
=
⇥
Mx

�
Mx N

�|⇤|
. (B.27)

In order to approximate the value of a variable in the centres of the (right or upper)

grid cell interfaces in the x1- and x2-direction, we make use of the functions
�*
M1 and

�*
M2,

respectively, which are defined as

�*
M1(N) :=

�*
MN , and

�*
M2(N) :=

⇥�*
MN

|⇤|
, (B.28)

with the matrix
�*
M defined in (B.12). In a similar fashion we define the functions

A1

��*
v1 , N

�
and A2

��*
v2 , N

�
which approximate the contribution of advection in the x1-

and x2-direction, respectively, given as input the advective velocity at the grid cell inter-

faces in the direction of interest – say v1 and v2 are, respectively, the first and second

components of the advective velocity – and the advected quantity. These are given

by

A1

��*
v1 , N

�
:= A

��*
v1 , N

�
and A2

��*
v2 , N

�
:=
⇥
A
��*
v2

|
, N

|�⇤|
, (B.29)

with the function A
��*
v1 , N

�
given by (B.16) together with definitions (B.17) and (B.18).

Convention: With the definitions above, we have hidden all applications of the matrices

from the spatially 1D case in newly defined functions. Consequently, in the formulas

which follow below, we use the convention that any further operation between matrices, in

particular multiplication, division, or exponentiation, are understood element-wise.

Numerical scheme for the balance equation (8.9)1. We rewrite the balance equa-

tion (8.9)1 as

@tn � D
⇥
@
2
x1x1

n+ @
2
x2x2

n
⇤
+ @x1(�1 n) + @x2(�2 n) � rn(1� n) = 0

with �i = ↵ @xi⇢+ @tui i = 1, 2 ,

which, upon spatial discretisation, leads to the following system of K2 ODEs

fn(N,P,N
0
, U

0
1, U

0
1) =N

0 �D
⇥
Mxx1(N) + Mxx2(N)

⇤
+A1

��*
� 1, N

�

+A2

��*
� 2, N

�
� rN(1�N) = 0

(B.30)

with the functions Mxx1(·) and Mxx2(·) defined in (B.26), and the components of the

advective velocity at the grid cell interfaces given by

�*
� 1 = ↵

�*
Mx1(P ) +

�*
M1(U

0
1) and

�*
� 2 = ↵

�*
Mx2(P ) +

�*
M2(U

0
2) , (B.31)
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where functions
�*
Mx1(·) and

�*
Mx2(·) are defined in (B.25),

�*
M1(·) and

�*
M2(·) are defined

in (B.28), and functions A1(·, ·) and A2(·, ·) are defined in (B.29).

Numerical scheme for the transport equation (8.9)2. We rewrite the transport

equation (8.9)2 as

@t⇢ + @x1(@tu1 ⇢) + @x2(@tu2 ⇢) = 0

which, upon spatial discretisation, leads to the following system of K2 ODEs

f⇢(P, P
0
, U

0
1, U

0
2) = P

0 +A1

��*
M1(U

0
1), P

�
+A2

��*
M2(U

0
2), P

�
= 0 , (B.32)

where the functions A1(·, ·) and A2(·, ·) are defined in (B.29) and functions
�*
M1(·) and

�*
M2(·) are defined in (B.28).

Numerical scheme for the force balance equation (8.9)3. We rewrite the first

component of the force balance equation (8.9)3, complemented with (30)-(32), as

b1

⇣
@
2
x1x1

@tu1 +
1

2

⇥
@
2
x2x2

@tu1 + @
2
x1x2

@tu2

⇤⌘
+ b0

⇣
@
2
x1x1

u1 +
1

2

⇥
@
2
x2x2

u1 + @
2
x1x2

u2

⇤⌘

+ c1

�
@
2
x1x1

@tu1 + @
2
x1x2

@tu2

�
+ c0

�
@
2
x1x1

u1 + @
2
x1x2

u2

�

+ @x1 [a1@t�c + a0�c]� a1s(u1@t⇢+ ⇢@tu1)� a0s⇢u1 = 0 ,

(B.33)

and, similarly, we rewrite the second component as

b1

⇣
@
2
x2x2

@tu2 +
1

2

⇥
@
2
x1x2

@tu1 + @
2
x1x1

@tu2

⇤⌘
+ b0

⇣
@
2
x2x2

u2 +
1

2

⇥
@
2
x1x2

u1 + @
2
x1x1

u2

⇤⌘

+ c1

�
@
2
x2x2

@tu2 + @
2
x1x2

@tu1

�
+ c0

�
@
2
x2x2

u2 + @
2
x1x2

u1

�

+ @x2 [a1@t�c + a0�c]� a1s(u2@t⇢+ ⇢@tu2)� a0s⇢u2 = 0 ,

(B.34)

where �c is defined by

�c = ⌧
n

1 + �n2

�
⇢+ �@

2
x1x1

⇢+ �@
2
x2x2

⇢
�
. (B.35)

Upon spatial discretisation, these lead to the following systems of K2 ODEs

fu1(N,P, U,N
0
, P

0
, U

0) = b1

�
Mxx1(U

0
1) +

1

2
(Mxx2(U

0
1) +Mx1x2(U

0
2) )
�

+ b0

�
Mxx1(U1) +

1

2
(Mxx2(U1) +Mx1x2(U2) )

�
+ c1

�
Mxx1(U

0
1) +Mx1x2(U

0
2)
�

+ c0

�
Mxx1(U1) +Mx1x2(U2)

�
+Mx1

�
T2(N,P,N

0
, P

0)
�

� a1s(PU
0
1 + P

0
U1)� a0sPU1 = 0

(B.36)
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and

fu2(N,P, U,N
0
, P

0
, U

0) = b1

�
Mxx2(U

0
2) +

1

2
(Mx1x2(U

0
1) +Mxx1(U

0
2) )
�

+ b0

�
Mxx2(U2) +

1

2
(Mx1x2(U1) +Mxx1(U2) )

�
+ c1

�
Mxx2(U

0
2) +Mx1x2(U

0
1)
�

+ c0

�
Mxx2(U2) +Mx1x2(U1)

�
+Mx2

�
T2(N,P,N

0
, P

0)
�

� a1s(PU
0
2 + P

0
U2)� a0sPU2 = 0 .

(B.37)

Here

T2(N,P,N
0
, P

0) = ⌧
⇥
a1 ⇤2(N)N 0 MT2(P ) + a1 ⇤1(N)MT2(P

0)

+ a0 ⇤1(N)MT2(P )
⇤
,

(B.38)

where the functions ⇤1 and ⇤2 are defined as in (B.22), while the function MT2(P ) is

given by

MT2(P ) := P + �
⇥
Mxx1(P ) +Mxx2(P )

⇤
, (B.39)

where the functions Mxx1(·) and Mxx2(·) are defined in (B.26).

Remark 12. The Matlab solver ode15i allows for the specification of the sparsity

pattern of Jacobian matrices. In particular in the spatially 2D simulations this leads, in

comparison to not specifying these patterns, to substantial savings in required CPU time.

For details on these patterns we refer to the available Matlab implementation for the

numerical solution of the PDE systems.
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Appendix C

Parameter details

C.1 Parameter values used in Chapter 2

Numerical solutions are computed in a domain of length L = 0.5 cm, which in 2D

corresponds to a region of tumour tissue of area 2.5 ⇥ 10�3 cm2, chosen in agreement

with clinical images provided by Schuh et al. (2017).

Cancer cells. As discussed in Section 2.2, typical values of the epimutation rate � are

one or two orders of magnitude larger than the rate of somatic DNA mutation (Doerfler

and Böhm, 2006, p.45), which is about 10�12 s�1 (Duesberg et al., 2000), and typical val-

ues of the cell di↵usivityDn are about 10�12 cm2s�1 (Smith et al., 2004; Wang et al., 2009).

Given the various sources of spontaneous phenotypic changes, discussed in Section 1.1.3,

and the wide range of observable mutation rates (Duesberg et al., 2000), higher rates of

spontaneous phenotypic variation have been considered in the literature (Ardaševa et al.,

2020c; Chisholm et al., 2015). In view of the analytical choices made in Section 2.2 we

make di↵erent choices of these parameters for two parameter sets. (A) We take � = 0�6

s�1 as proposed by Chisholm et al. (2015), and D0 = 0 cm2s�1 to match assumptions

made for the analysis in Section 2.2.1. (B) We take � = Dn = 10�13 for consistency

with assumptions made for the formal analysis in Section 2.2.2, i.e. parametrising these

quantities as the square of a small parameter " , and this way we have Dn = 10�13

cm2s�1 close to the estimate of Wang et al. (2009) using an experimentally calibrated

model, and � = 10�13 s�1 closer to the order of magnitude discussed above (Doerfler

and Böhm, 2006; Duesberg et al., 2000). The maximal background fitness of anaerobic

phenotypic variants ' can be estimated from the experimental data reported by Gordan

et al. (2007) on the proliferation of the control culture in hypoxic conditions using the

logistic growth, where the death rate is assumed to be 109 orders of magnitude smaller
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than the proliferation rate for consistency with the parameter choices of Lorenzi et al.

(2018). Moreover, in agreement with experimental results of Gordan et al. (2007) and

the choices made by Lorenzi et al. (2018), we choose the maximum proliferation rate

via aerobic energy pathways to be one order of magnitude higher than via anaerobic

energy pathways. This results in about ' = 1 ⇥ 10�5 s�1 and �s = 1 ⇥ 10�4 s�1. We

take the rate of cell death due to competition for space ⇣ = 2⇥ 10�13 cm3s�1cells�1, for

consistency with the parameter choices made by Lorenzi et al. (2018), who considered

experimental values reported in Li (1982). Finally, we chose the maximal reduction of

the background fitness due to chemotherapy �c = 1.8 ⇥ 10�4 s�1 as chosen by Lorenzi

et al. (2018) referring back to Ward and King (1997).

Oxygen. In agreement with the choices made by Lorenzi et al. (2018), in view of the

considerations made by Ward and King (1997) and the experimental results reported

by Casciari et al. (1992), we take the Michaelis-Menten constant of oxygen ↵s = 1.5 ⇥
10�7 g cm�3 and the di↵usivity of oxygen Ds = 2 ⇥ 10�5 cm2s�1 with reference to the

experimental results of Hlatky and Alpen (1985). In view of definitions (2.21) and (2.13),

and the parameter choice for �s, we take the conversion factor for cell consumption

of oxygen ⌘s = 2 ⇥ 10�11 g cells�1, so that the maximum consumption rate of oxygen

max rs = ⌘s�s matches that of Lorenzi et al. (2018), who refer back to the considerations

made by Ward and King (1997) and the experimental results reported by Casciari et al.

(1992). We take the rate of natural decay of oxygen �s = 2.78 ⇥ 10�6 s�1 mathing the

value used by Cumsille et al. (2015). Similarly to as chosen by Lorenzi et al. (2018),

we pick the reference value for the concentration of oxygen S0 = 6.3996 ⇥ 10�7 g cm�3,

consistent with experimental data on oxygen concentration reported by Kumosa et al.

(2014). We pick the constant rate of inflow of oxygen through blood vessels Is to match

this value, i.e. Is = 6.3996⇥ 10�7 g cm�3s�1.

Chemotherapeutic agent. We follow the parameter choices made by Lorenzi et al.

(2018), who take the Michaelis-Menten constant of chemotherapeutic agent ↵c = 2⇥10�6

g cm�3 following considerations made by Norris et al. (2006) and experimental results of

Kwok and Twentyman (1985). For consistency with the choice made for ⌘s, we take the

conversion factor for cell consumption of chemotherapeutic agent ⌘c = 4⇥10�11 g cells�1,

cf. Norris et al. (2006); Lorenzi et al. (2018). We take average values in the range

of estimates reported by Powathil et al. (2012b) for the di↵usivity of chemotherapeutic

agent, yielding and the rate of natural decay of chemotherapeutic agent , yielding Dc =

4.4⇥ 10�6 cm2s�1 and �c = 2.3⇥ 10�4 s�1. Norris et al. (2006) reported reference values

for the concentration of chemotherapeutic agent in the range 5⇥ 10�8� 2⇥ 10�5 g cm�3,

thus we chose C0 = 2.5 ⇥ 10�6 g cm�3, although other parameter values in that range
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are considered for the study in Section 2.3. Similarly to as chosen for Is, we take the

constant rate of inflow of chemotherapeutic agent through blood vessels Ic to match C0,

i.e. Ic = 2.5⇥ 10�6 g cm�3s�1.

C.2 Parameter values used in Chapter 5

As already indicated in Section 5.1.4, we use L = 0.1 cm as characteristic length scale,

in accordance with previous vasculogenesis works (Manoussaki, 2003; Serini et al., 2003)

and for easy visual comparison with the experimental results reported by Blatchley et al.

(2019). We then take reference time scale ⌧ := L
2
/D, where D is a characteristic dif-

fusion coe�cient D ⇠ 10�6 cm2s�1 (Bray, 2000), resulting in a reference time scale

⌧ = 104s.

Endothelial progenitor cells (or endothelial cells). The reference cell density is

chosen to be N := nM = #
�1
1 and we take #1 to be the average volume occupied by an

EC. (Rubin et al., 1989) measured the average ECs volume during di↵erent phases of

the cell cycle, registering values in the range of 800 � 1800µm3, with a predominance

of measurements around 1000µm3. Hence we take #1 = 10�9 cm3/cell, corresponding

to an average cell diameter of approximately a = 10�3 cm. Measures and estimates

of the di↵usion coe�cient of ECs fall in the range 10�6-10�12 cm2s�1 (Ambrosi et al.,

2005), so we take Dn = 10�9 cm2s�1. We consider the chemotactic sensitivity coe�cient

estimated by Jain and Jackson (2013), corresponding to � = 1.4⇥ 10�7 cm5ng�1s�1. Sen

et al. (2009) estimated a maximum cell surface radius, upon morphological changes to

better adhere to the underlying gel, of about 50µm. Given cell-to-cell and cell-to-matrix

adhesion occurs via adhesion molecules on the cell surface, we take the sensing radius

R = 0.5 ⇥ 10�2 cm. While the nonlocal term introduced in equations (5.5) and (5.6)

allows us to consider cell-to-cell and cell-to-matrix adhesion dynamics at tissue level,

these are the result of smaller scale dynamics between adhesion molecules and receptors

on cell surfaces – vid. for instance Albelda and Buck (1990); Berrier and Yamada (2007);

Garrod (1993) – of which our modelling choice is a simplification. As a result, good

estimates for cell-to-cell and cell-to-matrix coe�cients Snn and Sn⇢ are currently lacking.

We therefore consider nondimensional values chosen by Gerisch and Chaplain (2008) for

our baseline parameter set which correspond to Snn = 10�16 cm5 s�1 and Sn⇢ = 10�6 cm2

nM�1 s�1 respectively, acknowledging that model fitting to experimental data is required.

Kinev et al. (2013) reported dubling times of non-irradiated ECFCs – the same class of

EPCs employed by Blatchley et al. (2019) – of about 19.5 hours, estimated from measured

growth rates assuming exponential growth. Following their calculations, this corresponds

to proliferation rates of about p = 10�5 s�1.
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Extracellular matrix. We use a reference matrix density of P = 10�1 nM (Anderson,

2005; Anderson et al., 2000; Terranova et al., 1985) and define the parameter #2 :=

P
�1. Since the LSA suggest that a domain not too densely packed with cells and ECM

may facilitate the emergence of spatial patters (see Section 5.2 and Appendix A.4), we

take the initial ECM density in (5.13) to be ⇢0 = 0.5 in our nondimensional baseline

parameter set, corresponding to ⇢0 = 0.5⇥ 10�1 nM. We take the ECM degradation rate

by MMPs proposed by Kim and Friedman (2010), i.e. � = 9 ⇥ 105 cm3g�1s�1. ECM

remodelling is a complex process involving a variety of cells and molecules (Chang, 2016;

Daley et al., 2008; Lefebvre et al., 1999; Streuli, 1999), so the remodelling term introduced

in equation (5.10) is an oversimplification of the underlying dynamics. Therefore the lack

of experimental values or estimates for the remodelling rate µ is not surprising, and

we take the nondimensional value 0.2 as similarly considered in Deakin and Chaplain

(2013); Domschke et al. (2014); Gerisch and Chaplain (2008) for our baseline parameter

set. Under the defined nondimensional parameters this corresponds to the dimensional

value µ = 0.2⇥ 10�5 nM s�1.

Matrix degrading enzyme (MMP). Blatchley et al. (2019) reported concentrations

of MMP-1 in the range 1 � 100µg ml�1, so we take the intermediate concentration as

reference MMP density, i.e. M = 10µg cm�3. We let the di↵usion coe�cient for the MMP

be given by Dm = 8 ⇥ 10�9 cm2s�1, which was experimentally determined by Sa↵arian

et al. (2004), although di↵usion rates have been observed in the range 10�10 � 10�8

cm2s�1 (Collier et al., 2011; Kumar et al., 2018). While MMPs secretion rates by cells

have been reported in a variety of works, these fail to provide parameter values in the

appropriate unit of ↵m in this model. For instance Kumar et al. (2018) considered

secretion rates varying between 0.01 � 0.5 s�1 but the associated MMP concentration

is unspecified, while Ruggiero et al. (2017) estimated secretion rates by stromal cells

and macrophages to be 5.75 ⇥ 10�10 and 4.44 ⇥ 10�10 g cm�3 respectively, without an

indication of the considered time frame. We here consider that molecular dynamics are

generally faster than cellular ones and therefore the observed average MMP concentration

satisfies (5.11) at equilibrium, i.e. m = ↵mn/�m. Under the chosen reference values N ,

M and �m, this corresponds to an MMP production rate of ↵m = 0.5⇥ 10�12
µg s�1 per

cell. Note that the resulting nondimensional parameter value is close to that chosen in

previous mathematical models – vid. for instance Anderson et al. (2000); Deakin and

Chaplain (2013); Domschke et al. (2014); Gerisch and Chaplain (2008). Nonetheless, we

will also consider higher values of ↵m, since Deem and Cook-Mills (2004) have reported

up to a 4-fold increase in MMP production in the presence of reactive oxygen species, and

in addition MMP production levels have been shown to be significantly upregulated in

human cancers (Shiomi and Okada, 2003). Finally, Kim and Friedman (2010) estimated
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– from its half life – the decay rate of MMP �m = 5⇥ 10�5 s�1.

Chemoattractant (VEGF). We take the reference VEGF density to be C = 20

ng cm�3, in the range of values generally considered in in vitro set ups – vid. for in-

stance Hanjaya-Putra and Gerecht (2009); Lee et al. (2007); Serini et al. (2003). Mea-

sures and estimates of the di↵usion coe�cient of the chemoattractant, usually identified

as VEGF, are in the range 10�6 � 10�9 cm2s�1 (Ambrosi et al., 2005; Gamba et al.,

2003; Merks et al., 2008; Miura and Tanaka, 2009; Serini et al., 2003; Singh et al., 2015),

so we take Dc = 10�7 cm2s�1. Yen et al. (2011) reported a VEGF secretion rate of

0.068 molecules cell�1s�1, which in combination with Avogadro’s number (6.022 ⇥ 1023

molecules per mole) and a molecular weight of 45kDa (Yen et al., 2011) results in a VEGF

production rate of about ↵c = 0.5 ⇥ 10�11 ng s�1 per cell. Serini et al. (2003) reported

the half-life of VEGF-A to be approximately 64 minutes, corresponding to a decay rate

of about �c = 2.7⇥ 10�4 s�1, in line with the values chosen in Merks et al. (2008); Singh

et al. (2015).

C.3 Parameter values used in Chapter 7

In order not to limit the conclusions of our work by selecting a specific biological scenario,

we identified possible ranges of values for each parameter of our model on the basis of

the existing literature on mechanochemical models of pattern formation and then define

our baseline parameter set by selecting values in the middle of such ranges. In the

sensitivity analysis presented in Section 8.2.2, we then consider the e↵ect of varying

the parameter values within an appropriate range. We first consider the parameters

appearing in equations (8.1), (8.2) and (8.7), as well as in the initial conditions (8.22),

and then consider additional parameters appearing in the 2D system (8.9)-(7.12), and

the associated initial conditions (8.25).

Parameters in the balance equation (8.1). Nondimensional parameter values for

the cell motility coe�cient D in the literature appear as low as D = 10�8 (Gilmore et al.,

2012), and as high as D = 10 (Murray and Oster, 1984b), but are generally taken in

the range [10�5
, 1] (Bentil and Murray, 1991; Byrne and Preziosi, 2003; Cruywagen and

Murray, 1992; Ferrenq et al., 1997; Maini et al., 2002; Murray et al., 1988; Namy et al.,

2004; Olsen et al., 1995; Perelson et al., 1986). Hence, we take D = 0.01 for our baseline

parameter set. The nondimensional haptotactic sensitivity of cells ↵ takes values in the

range [10�5
, 5] (Bentil and Murray, 1991; Cruywagen and Murray, 1992; Gilmore et al.,

2012; Murray et al., 1988; Namy et al., 2004; Olsen et al., 1995; Perelson et al., 1986),
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and we take ↵ = 0.05 for our baseline parameter set. While most authors ignore cell

proliferation dynamics, i.e. consider r = 0 (Ambrosi et al., 2005; Byrne and Preziosi,

2003; Gilmore et al., 2012; Murray et al., 1988; Perelson et al., 1986), when present, the

rate of cell proliferation takes nondimensional value in the range [0.02, 5] (Cruywagen and

Murray, 1992; Olsen et al., 1995; Perelson et al., 1986). Hence, we choose r = 1 for our

baseline parameter set.

Parameters in the balance equation (8.2). While no parameters appear in the

balance equation (8.2), the value of the parameter ⇢0 introduced in Section 8.2 as the

spatially homogeneous steady state ⇢̄ = ⇢0, and successively specified to be the initial

ECM density in (8.22) for our numerical simulations, stems from neglected terms in

equation (8.2). With the exception of Cruywagen and Murray (1992) and Maini et al.

(2002) who, respectively, have ⇢0 = 100.2 and ⇢0 = 0.1, this parameter is usually taken

to be ⇢0 = 1 in mechanochemical models ignoring additional ECM dynamics (Bentil and

Murray, 1991; Cruywagen and Murray, 1992; Harris et al., 1981; Manoussaki, 2003; Moreo

et al., 2010; Murray and Oster, 1984a,b; Olsen et al., 1995; Oster et al., 1983; Perelson

et al., 1986).This is generally justified by assuming the steady state ⇢0 of equation (8.2)

that is introduced by the additional term, say S(n, ⇢), is itself used to nondimensionalise

⇢, before assuming the dynamics modelled by S(n, ⇢) to occur on a much slower timescale

than convection driven by the cell-ECM displacement, thus neglecting this term (Murray,

2001), resulting in the nondimensional parameter ⇢̂0 = 1. Hence, we take ⇢0 = 1.

Parameters in the force balance equation (8.7). The elastic modulus, or Young

modulus, E is usually itself used to nondimensionalise the other parameters in the di-

mensional correspondent of equation (8.7) and, therefore, does not appear in the nondi-

mensional system (Bentil and Murray, 1991; Gilmore et al., 2012; Murray and Oster,

1984b,b; Murray et al., 1988; Olsen et al., 1995; Perelson et al., 1986). This corresponds

to the nondimensional value E = 1, which is what we take for our baseline parameter set.

The viscosity coe�cient ⌘ has been taken with nondimensional values in low orders of

magnitude, such as ⌘ ⇠ 10�3 � 10�1 (Bentil and Murray, 1991; Cruywagen and Murray,

1992; Gilmore et al., 2012; Perelson et al., 1986), as well as in high orders of magnitude,

such as ⌘ ⇠ 102 � 103 (Gilmore et al., 2012; Olsen et al., 1995). It is, however, generally

taken to be ⌘ = 1 (Bentil and Murray, 1991; Byrne and Chaplain, 1996; Cruywagen

and Murray, 1992; Murray and Oster, 1984b; Murray et al., 1988; Perelson et al., 1986),

which is what we choose for our baseline parameter set. When the constitutive model

includes two elastic moduli, i.e. for the SLS model (7.5), or two viscosity coe�cients, i.e.

for the Je↵rey model (7.6), we take E1 = E2 = E/2 = 0.5 and ⌘1 = ⌘2 = ⌘/2 = 0.5 as

done by Alonso et al. (2017). The cell traction parameter ⌧ takes nondimensional values
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spanning many orders of magnitude: it can be found as low as ⌧ = 10�5 (Ferrenq et al.,

1997) and as high as ⌧ = 10 (Bentil and Murray, 1991; Cruywagen and Murray, 1992;

Perelson et al., 1986), but it is generally taken to be of order ⌧ ⇠ 1 (Bentil and Murray,

1991; Byrne and Chaplain, 1996; Gilmore et al., 2012; Murray et al., 1988; Perelson et al.,

1986) and many works consider ⌧ ⇠ 10�2 � 10�1 (Byrne and Chaplain, 1996; Ferrenq

et al., 1997; Murray and Oster, 1984b; Olsen et al., 1995). Hence, for our baseline pa-

rameter set we choose ⌧ = 0.2. The cell-cell contact inhibition parameter � generally

takes nondimensional values in the range [10�2
, 1] (Bentil and Murray, 1991; Byrne and

Chaplain, 1996; Murray et al., 1988; Perelson et al., 1986), so we choose � = 0.5 for our

baseline parameter set. The long-range cell traction parameter �, when present, takes

nondimensional values in the range [10�3
, 10�2] (Bentil and Murray, 1991; Cruywagen

and Murray, 1992; Gilmore et al., 2012; Moreo et al., 2010; Murray et al., 1988; Perelson

et al., 1986) so we choose � = 0.005 for our baseline parameter set. The elasticity of the

external elastic substratum s, which is sometimes ignored or substituted with a viscous

drag, has been taken to have nondimensional values as low as s 2 [10�1
, 1] (Byrne and

Chaplain, 1996; Murray and Oster, 1984b; Olsen et al., 1995) but is generally chosen in

the range [10, 400] (Bentil and Murray, 1991; Gilmore et al., 2012; Murray et al., 1988;

Perelson et al., 1986). Hence, we take s = 10 for our baseline parameter set.

Parameters in the 2D system (8.9)-(7.12). For the parameters in the 2D sys-

tem (8.9)-(7.12) and initial condition (8.25) that also appear in the equations (8.1),

(8.2), (8.7) and initial conditions (8.22), we make use of the same nondimensional values

selected in the 1D case (see previous paragraphs). The Poisson ratio ⌫, which can only

take values in the range [0.1, 9.45], has been estimated to be in the range [0.2, 0.3] for the

biological tissue considered in mechanochemical models in the current literature (Ambrosi

et al., 2005; Cruywagen and Murray, 1992; Manoussaki, 2003; Moreo et al., 2010). Hence,

we choose ⌫ = 0.25 for our baseline parameter set. This results in E
0 = E/(1 + ⌫) = 0.8

and ⌫
0 = ⌫/(1 � 2⌫) = 0.5 according to definitions (7.12). In addition, under the sim-

plifying assumption (A.64) introduced in Appendix A.5.2, the bulk viscosity takes the

value µ = ⌫
0
⌘ = 0.5⌘ = 0.5, which is in agreement with the fact that the bulk and

shear viscosities are usually assumed to take values of a similar order of magnitude in the

extant literature (Ambrosi et al., 2005; Manoussaki, 2003; Moreo et al., 2010; Murray,

2003).
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Appendix D

Supplementary figures

Figure D.1: First row: Plots of the oxygen concentration s(T,x) (second panel), the
cell density ⇢(T,x) (third panel) and the local mean phenotypic state µ(T,x) (fourth
panel), with T = 5 ⇥ 105s, obtained by solving numerically (2.5) and (2.19) imposing
the initial conditions defined via (2.27), (2.51) and (2.50), and assuming c(t,x) ⌘ 0 (i.e.
in the absence of chemotherapeutic agent). The set ! in (2.22) consists of the parts of
⌦ highlighted in red in the first panel. Second row: Plots of the oxygen concentration
s(T, x1, 0.4) (second panel), the cell density ⇢(T, x1, 0.4) (third panel, blue line) and
the local mean phenotypic state µ(T, x1, 0.4) (fourth panel, blue line). The plot of the
oxygen concentration s(T,x) is displayed in the first panel, where the white, dashed line
highlights the 1D cross-section corresponding to x2 = 0.4. The red lines in the third and
fourth panels highlight ⇢1(x1, 0.4) and µ1(x1, 0.4) computed through (2.47) and (2.48)
with s1(x1, 0.4) := s(T, x1, 0.4) and c1 ⌘ 0. The insets in the fourth panel display
the plot of the mean phenotypic state µ(T, x1, 0.4) (blue line) and of the maximum
point of n(T, x1, 0.4, y) (green line). The oxygen concentration s(T,x) is in units of
10�7

g cm
�2, the cell density ⇢(T,x) is in units of 108 cells cm�2 the spatial variables x1

and x2 are in units of cm, and the parameters values used are those listed in Table 2.1
(Dn = 0 = � = 10�13).
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Figure D.2: First row: Plots of the cell density n(t, x) up to t = 400 obtained solving the
system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13)
and (5.14), complemented with zero-flux boundary conditions, in the absence of cell-
to-cell adhesion, i.e for Snn = 0: under the baseline parameter set (first column), in
the absence of matrix degradation, i.e. for � = 0 (second column), in the absence of
chemotaxis, i.e. � = 0 (third column), and in the absence of both chemotaxis and matrix
degradation, i.e. � = � = 0 (fourth column). Second, third and fourth rows: Same as
first row but in the presence of cell-to-cell adhesion, with Snn = 0.1 (second row), Snn = 1
(third row) and Snn = 10 (fourth row) respectively.

203



(a) Varying cell di↵usion Dn

(b) Varying cell-to-cell adhesion coe�cient Snn

(c) Varying ECM degradation rate �

(d) Varying MMP di↵usion coe�cient Dm

(e) Varying VEGF di↵usion coe�cient Dc

Figure D.3: Cluster width W and compactness C, defined in (5.20) and (5.21), under
alterations of certain parameters from the baseline parameter set (BPS), in Table 5.1. In
(a) we have boxplots of W and C measured on the numerical solution of the system (5.15)
at t = 50, for Dn taking its value in the BPS (center), one order of magnitude higher
(left) and one order of magnitude lower (right) than the one in the BPS. Each boxplot
collects data from 100 simulations under randomised initial conditions (5.13) and (5.14).
In (b)-(e) we have the same as in (a) but varying parameters Snn (b), � (c), Dm (d) and
Dc (e).
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Figure D.4: Plots of the cell density n(t,x) obtained solving the system (5.15), to-
gether with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14), com-
plemented with zero-flux boundary conditions, under the parameter choices reported in
Table 5.1. The solution is plotted at time t = 0, 20, 40, 60, 80 (first row, left to right),
t = 100, 120, 140, 160, 180 (second row, left to right) and t = 200, 220, 240, 260, 500 (third
row, left to right).

Figure D.5: Plots of the cell density n(t,x) obtained solving the system (5.15), together
with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14), complemented
with zero-flux boundary conditions, under the parameter choices reported in Table 5.1,
except for � = 0. The solution is plotted at time t = 20 (first panel), t = 40 (second
panel), t = 80 (third panel) and t = 140 (fourth panel).
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Figure D.6: First row: Plots of the cell density n(t,x) obtained solving the sys-
tem (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13)
and (5.14), complemented with zero-flux boundary conditions, under the parameter
choices reported in Table 5.1, except for ↵m = 0.05. The solution is plotted at time
t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth
panel). Second and third row: Same as first row, except for ↵m = 0.5 (second row) and
↵m = 5 (third row).
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Figure D.7: First row: Plots of the cell density n(t,x) obtained solving the sys-
tem (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13)
and (5.14), complemented with zero-flux boundary conditions, under the parameter
choices reported in Table 5.1, except for ↵c = 1.25. The solution is plotted at time
t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth
panel). Second and third row: Same as first row, except for ↵c = 2.5 (second row) and
↵c = 5 (third row).
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Figure D.8: First row: Cell density n(t, x) obtained solving numerically the system
of PDEs (8.1), (8.2) and (8.7) complemented with the Maxwell model (7.4) subject to
boundary conditions (8.8) and initial conditions (8.22), for the parameter values given
by (8.20) and (8.21). The solution is plotted at time t = 0 (first panel), t = 50 (second
panel), t = 100 (third panel) and t = 500 (fourth panel). Second row: Same as first
row, but under sinusoidal initial perturbations, i.e. with n(0, x) = 1 + 0.01 sin(4⇡x)
in (8.22). Thirds row: Same as first row, but under randomly perturbed sinusoidal initial
perturbations, i.e. with n(0, x) = 1 + 0.01✏(x) sin(4⇡x) in (8.22).
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P. Villa Mart́ın, M. A. Muñoz, and S. Pigolotti. Bet-hedging strategies in expanding

populations. PLoS Computational Biology, 15(4):e1006529, 2019.

C. Waddington. The Strategy of the Genes, 1957.

242



S. E. Wang, P. Hinow, N. Bryce, A. M. Weaver, L. Estrada, C. L. Arteaga, and G. F.

Webb. A mathematical model quantifies proliferation and motility e↵ects of TGF-�

on cancer cells. Computational and Mathematical Methods in Medicine, 10(1):71–83,

2009.

J. P. Ward and J. King. Mathematical modelling of avascular-tumour growth. Mathe-

matical Medicine and Biology: A Journal of the IMA, 14(1):39–69, 1997.
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