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Preface

In the last two years one of the most significant things that I have learned is
how important identity elements are in algebra. Without an identity, especially
in combinatorial semigroup theory, everything becomes very much harder. It is
well-known that the additive semigroup N x N is not finitely generated. This
kind of example shows that finite generation and finite presentability are more
interesting problems in combinatorial semigroup theory. In Chapters 2, 3 and
4 we investigate finite generation and finite presentability together with some
other finiteness conditions for semigroup constructions, namely 0-direct unions

of semigroups and Rees matrix semigroups.

For a mathematician, it is nice to see some connection between two different
mathematical disciplines. I. Schur constructed the Schur multiplier M(G) of
a finite group G directly from the multiplication table of G' and proved that
rank(M(G)) < def(G) in [60]. The Schur multiplier of a finite group G can also
be considered as the second homology group H>(G,Z). C. Squier constructed
a free resolution of Z over the monoid ring ZM of a monoid M which has a
monoid presentation { A | R) such that R is a reduced complete rewriting system
over A in 1987 and S. J. Pride proved in 1997 that, for such a monoid M,
rank(Hy(M,Z)) < def(M) by using a resolution similar to Squier’s. In Chapters
5, 6, 7 and 8, we investigate the efficiency of semigroups and the efficiency of

monoids and of groups.

Most of the results presented in this thesis have been submitted for publication

vil



by H. Ayik and N. Ruskuc; and by H. Ayik, C. M. Campbell, J. J. O’Connor
and N. Ruskuc. One of them [1] has been accepted for publication. However,
this thesis is not a compilation of these submitted papers. The reason for this is
that the papers have been submitted while the research has been in progress. In
addition, this thesis contains more general results and some results have not yet

been submitted for publication.

Hayrullah Ayik
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Abstract

In this thesis we consider in detail the following two problems for semigroups:
(i) When are semigroups finitely generated and presented?
(ii) Which families of semigroups can be efficiently presented?

We also consider some other finiteness conditions for semigroups, homology of
semigroups and wreath product of groups.

In Chapter 2 we investigate finite presentability and some other finiteness con-
ditions for the 0-direct union of semigroups with zero. In Chapter 3 we investigate
finite generation and presentability of Rees matrix semigroups over semigroups.
We find necessary and sufficient conditions for finite generation and presentabil-
ity. In Chapter 4 we investigate some other finiteness conditions for Rees matrix
semigroups.

In Chapter 5 we consider groups as semigroups and investigate their semigroup
efficiency. In Chapter 6 we look at “proper” semigroups, that is semigroups
that are not groups. We first give examples of efficient and inefficient “proper”
semigroups by computing their homology and finding their minimal presentations.
In Chapter 7 we compute the second homology of finite simple semigroups and
find a “small” presentation for them. If that “small” presentation has a special
relation, we prove that finite simple semigroups are efficient. Finally, in Chapter
8, we investigate the efficiency of wreath products of finite groups as groups and

as semigroups. We give more examples of efficient groups and ineflicient groups.

xi



Chapter 1

Introduction

In this chapter we introduce certain basic definitions and results about semi-
group and group presentations, finiteness conditions for semigroups and homology

groups.

1.1 Semigroups

A semigroup (S, 0) is defined as a non-empty set S on which an associative binary
operation o is defined. However we usually write 2y instead of z oy (z,y € §).
If a semigroup S contains an element 1 such that 1z = 21 = z for all z € S,
we say that 1 is an identity, and that S is a monoid. We may always adjoin an
identity to S (even when S already has one). We now define S* to be the monoid
obtained from S by adjoining an identity, that is S* = S U {1}. Note that if S
had an identity, it is no longer an identity in S*.

If a semigroup S contains an element z such that zz = 2 for all z € S, we
say that z is a left zero element. Similarly, we define a right zero element. If an
element 0 of a semigroup is both a left and right zero, we say that 0 is a zero
element. Also we define S° as the semigroup obtained from S by adjoining a zero

if necessary, that is S = SU {0} if 0 ¢ S, and S° = S otherwise. Note that the

1



2 Presentations and Efficiency of Semigroups

definition of S is the same as the one in [29], but the definition of S* is different
from the one in [29].

Both identity and zero elements are unique if they exist. However, left or right
zero elements need not be unique. If a semigroup consists of left zero elements
only, then it is called a left zero semigroup, and we denote it by L,, where m
is the size of the semigroup. Similarly, we define right zero semigroups, and we
denote them by R,,.

If a semigroup S contains an element e such that e? = e, we say that e is
an tdempotent. If S consists of idempotents only, we say that S is a band. A
commutative semigroup S is a semigroup such that zy = yz for all z,y € S. If §
is both a band and commutative, we say that S is a semilattice.

Let A be a set and let SL4 be the set of all non-empty subsets of A. Consider
the set-theoretical union U as a binary operation. With respect to this operation,
it 1s clear that SL4 is a semilattice, and it is called the free semilattice over A.

Let Z, = {zo,Z1,... ,Zn_1} n > 2. Define a binary operation by z;z; = z¢ for
all z;,z; € Z,. It is clear that Z, is a semigroup with respect to this operation,
which is commutative but not a band, and it is called the zero semigroup of
order n.

Let Rpnn = {(5,7)|1 < ¢ <m, 1 <j <n} Define a binary operation
by (z,7)(k,1) = (3,1) for all (4,7),(k,l) € Rmn. With respect to this operation,
R, is a semigroup, which is a band but not commutative, and it is called a
rectangular band. Note that if m = 1, then R; , is a right zero semigroup, and if

n =1, then R, is a left zero semigroup.

1.2 Semigroup presentations

Let S be a semigroup and let 7' be a subset of S. ¥T* C T, thatistt' € T
for all ¢, t' € T, we say that T is a subsemigroup of S. Let X be a subset of

S. The smallest subsemigroup of S which contains X' is called the subsemigroup
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generated by X, and is denoted by (X).

We say that a semigroup is finitely generated if there exists a finite subset X
of S such that S = (X). The rank of S is denoted by rank (S) and is defined by
rank (S) = min{ |X|| X is a generating set for S }.

An element = of a semigroup S is called indecomposable if z # yz for all
y,z € S, that is z € S\S% Notice that all the indecomposable elements of a
semigroup S are contained in every generating set of S.

Consider the left zero semigroup L,, of order m. Sincezy = zforallz,y € L,
it follows that the smallest generating set of L., is itself. Therefore rank (L,,) =
|Lm| = m. Now consider the zero semigroup Z, = { 9, T1,... ,Tn-1 } 7 > 2.
Since z;x; = z¢ for all z;,z; € Z,, it follows that the smallest generating set
of Z, is { z1,... ,zn—1 }. Therefore rank (Z,) = n — 1. Next we consider the
free semilattice SL4 over a set A. Since, for each a € A, U;e;X; = {a} implies
X; = {a} for all i € I, and since every element of SL4 is a union of some {a}
(a € A), it follows that { {a} | a € A} is the smallest generating set of SL4.
Therefore rank (SL£4) = | Al

Let A be an “alphabet”. Then A* is defined to be the set of all non-empty
finite words in the alphabet. A binary operation is defined on At by juztaposition:
(@1 an)(b1- -bn) = a1+ apby - by for all ay---an, by by, € A*. With
respect to this operation, A% is a semigroup, and it is called the free semigroup
on A. Similarly, we define the free monoid A* = A% U {¢}, where € is the empty

word.

Theorem 1.1 Let A an alphabet, let S be a semigroup, and let f : A — S

be any mapping. Then there exists a unique homomorphism ¢ : A* — S such

that ¢(a) = f(a) for all a € A. [ |
Theorem 1.2 Every semigroup is a homomorphic image of a free semigroup. B

The proofs of Theorems 1.1 and 1.2 are standard and can be found in [42].



4 Presentations and Efficiency of Semigroups

Let S be a semigroup and let p C S xS be an equivalence relation on S. Then
p is called a congruence if (zz,yt) € p for all (z,y), (2,t) € p. For convenience,
we denote the equivalence class containing z by pz and we denote the set of the
equivalence classes by S/p.

If p is a congruence on a semigroup S, then we define a binary operation on
the quotient set S/p by (pz)(py) = p(zy). With respect to this operation, S/p is
a semigroup.

A semigroup (monoid) presentation is an ordered pair ( A|R), where A is an
alphabet and R C A% x A% (respectively, R C A* x A*) is a set of pairs of words.
An element (r, s) of R is called a (defining) relation, and is usually written r = s
instead of (r,s). The semigroup (monoid) defined by ( A| R ) is the quotient
semigroup A%t /p (respectively, A*/p) where p is the smallest congruence on A%
(respectively, A*) containing R. Let S be the semigroup defined by ( A| R ).
Then, for two words w;,w, in A%, we write w; = w;, if they are identical words,
and we write w; = wy if they represent the same element of the semigroup 5,
that is (w;,ws) € p and we say that w; = wy holds in S. If a semigroup S can
be defined by ( A| R) with both A and R finite then the presentation is said to

be a finite presentation and S is said to be finitely presented.

Theorem 1.3 Let P = ( A| R) be a semigroup presentation, and let S be the
semigroup defined by P. For a semigroup T generated by X, and an onto map
f: A— X, define ¢ : At — T to be the unique homomorphism extension of
f. If ¢(r) = ¢(s) for all (r,s) € R, then T is a homomorphic image of S. [

For a proof, see [55, Proposition 2.1].

Let P = ( A| R) be a semigroup presentation and let S be the semigroup
defined by P. For w;, wy € AT, we say that w, is obtained from w; by one
application of one relation from R if there exist u, v € A* and (r,s) or (s,7) € R

such that w; = urv and w, = usv. We say that w; is deduced from w; if there
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exists a finite sequence
W =01 = Qg > — Qg — A = Wy

of words from A% such that oy, is obtained from a; by one application of one

relation from R. In this case, we may also say that w; = w, is a consequence

of R.

Proposition 1.4 Let P = ( A| R) be a semigroup presentation, let S be the
semigroup defined by P, and let wy and w, be two words in A*. Then w; = w,

holds in S if and only if wy is deduced from w;. [

For a proof, see [29, Proposition 1.5.9]. Next we give a stronger result which

will be useful in Chapters 2 and 3.

Proposition 1.5 Let S be a semigroup generated by a set A, and let R C A% x
A*. Then P = ( A| R) is a presentation for S if and only if the following two
conditions are satisfied:

(1) S satisfies all the relations of R and;

(ii) if u, v € AT are any two words such that u = v holds in S then u = v is

a consequence of R. [ ]

For a proof, see [55, Proposition 2.3].
Therefore, we may also say that the relation v = v holds in S if u = v is a

consequence of R where ( A| R) is a presentation for S.

Proposition 1.6 Let S be a semigroup generated by a set A, let R C AT x At
and let W C A*. If the following three conditions are satisfied:

(i) S satisfies all the relations of R;

(i) for each word w € A%, there exists w € W such that w = W is a conse-
quence of R and;

(i) W] <151,
then ( A| R) is a presentation for S. ]
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For a proof, see [55, Proposition 2.2].
Now we apply the previous proposition to find a presentation for the free

semilattice SL 4 over a finite set A.
Example 1.7 The presentation

P={(ai...,anla}=a; (1 <i<n), aja; =aa; (1 <i<j<n))
defines the free semilattice SL4 over A= {ay,...,a, }.

Proof As we mentioned at the beginning of this section, it is clear that A is
a generating set for SL4. Moreover, since SL4 is a commutative semigroup of
idempotents, SL 4 satisfies all the relations in P.

Let
W={a5 - -arecAt|e€{0,1} (1 <i<n)}

Now let w be any word in A*. First applying suitable relations of the form
a;ja; = a;a; yields a word w' of the form a}' ---a)" where \; > 0 (1 < i < n).

n

Then applying relations of the form a? = a; as much as possible yields a word @
from W.
Since |W| = 2" — 1, it follows from the previous proposition that P defines
SL 4, as required. [ |
The monoid defined by a monoid presentation ( A| R) may be defined by the

semigroup presentation
(AU{e}|RU{e* =€, ae=a, ca=ala€ A})

where R is obtained from R by replacing every occurrence of the empty-word by
e. (We assume that e & A.)

We may consider a semigroup presentation P = ( A| R) as a monoid presen-
tation. If P defines a semigroup S, then P, as a monoid presentation, defines the

monoid S = S U {1}.

—rv o
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1.3 Group presentations

A group presentation is a ordered pair ( A| R ) where A is an alphabet, R is a
subset of (AUA™)* x (AUA)*and A™' = {a"!|a € A}. The group defined
by (A|R) is the quotient group F(A)/N where F(A) is the free group on A and
N is the smallest normal subgroup containing { rs=! | (r,s) € R }. Note that we
will use relations instead of relators to define group presentations.

Observe that the free group F(A) over A may be defined by the monoid
presentation

(AUA |aa ' =¢, a7 la=c(ac A)).

Moreover, the group defined by ( A| R ) may be defined as a monoid by the

monoid presentation
(AUA' |RU{aa ' =¢, ala=¢€|la€ A}).

Theorem 1.8 Let P = ( A| R) be a semigroup presentation, let S be the semi-
group defined by P, and let G be the group defined by P when we consider P as
a group presentation.

(i) If S is finite, then G is a homomorphic image of S.

(ii) If S is a group, then G is isomorphic to S. [ |
For more general results on the relation between S and G, see [17] and [51].
Proposition 1.9 If G is the group defined by the group presentation ( A| R) and

if H is the group defined by the group presentation ( A| Q) where R C @), then

H is a homomorphic image of G. u
For a proof, see [36, Proposition 4.2].

Proposition 1.10 Let G be the group defined by the group presentation (A|R)
and let H be the group defined by the group presentation ( B | Q) . Then the
direct product G x H of groups G and H can be defined by the group presentation
(AUB|RUQUC)whereC:{ab:ba|a€A,b€B}. ]
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See for a proof [36, Proposition 4.4].

1.4 Tietze transformations

Another method for finding presentations for a semigroup S is to apply Tietze
transformations. Neumann used this method in [47] to find a presentation for

left zero semigroups.

There are four basic types of transformation which are called elementary Ti-

etze transformations:

(T1) If r = s holds in the semigroup defined by ( A | R ), then transform
(A|R) to (A|RU{r=s}) (“adding a new relation”).
(T2) If r = s holds in the semigroup defined by ( A| R ), then transform
(A|RU{r=s}) to (A|R) (“removing a relation”).
(T3) If b ¢ A and w € At, then transform
(A|R) to (AU{b}|RU{w=0b}) (“adding a new generator”).
(T4) If b€ A and w = b € R such that w € (A\{b})*, then transform
(A|R) to (A\{b}|R) (“removing a generator”)

where R is obtained from R\{ w = b} by replacing b by w for every occurrence

of b.

These are analogous to Tietze transformations in the theory of groups (see,

for example, [36]).

Theorem 1.11 Tuwo finite semigroup (respectively, group) presentations define
the same semigroup (respectively, group) if and only if one can be obtained from
the other one by applying a finite number of applications of elementary Tietze

transformations. |
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For the proof of the semigroup case, see [55, Proposition 2.5], and of the group
case, see [36, Proposition 4.5 and 4.6].

1.5 Finiteness conditions for semigroups

Let P be a property of semigroups. We say that P is a finiteness condition if
every finite semigroup has the property P. Since every finite semigroup is finitely
generated, finite generation is a finiteness condition.

Let S be a semigroup and let T be a subsemigroup of S. We say that S is
a small extension of T if the set S\T is finite. Moreover, the cardinal of the set

S\T is called the index of T in S, and is denoted by [S : T1.

Theorem 1.12 Let S be a semigroup and let T be a subsemigroup of S with
finite index. Then S s finitely generated if and only if T is finitely generated. W

This was first proved by Jura (see [37]), and reproved in [15] (see also [56,
Theorem 1.1]).

For a semigroup S, we may consider the set S as a generating set for itself and
the multiplication table (Cayley table) as a set of relations, and so if a semigroup
is finite, then it is finitely presented. Therefore, finite presentability is a finiteness

condition.

Theorem 1.13 Let S be a semigroup and let T be a subsemigroup of S with
finite index. Then S is finitely presented if and only if T is finitely presented. W

For the proof, see [56, Theorem 1.3].

Let a be an element of a semigroup S, and consider the monogenic subsemi-
group {a) = { a,a?,a®,...} generated by a. If there are some repetitions in the
list a,a?,a ..., that is there are integers m # n such that a™ = ", then the

monogenic subsemigroup (a) is finite. We say that a semigroup is periodic if all
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monogenic subsemigroups are finite. Since finite semigroups are periodic, being
periodic is a finiteness condition.

Let A be an infinite set. Since SLy4 consists only of idempotents, it follows
that SL4 is periodic. The (left/right) zero semigroups and rectangular bands are
periodic but not necessarily finite.

Let P be a class of semigroups. Then a semigroup S is said to be locally P
if every finitely generated subsemigroup of S belongs to P. Since every finite
semigroup is locally finite, local finiteness is a finiteness condition. Moreover,
since every finite semigroup is locally finitely presented, local finite presentability
is a finiteness condition.

Note that, since finite semigroups are finitely presented, locally finite semi-

groups are locally finitely presented.

Example 1.14 Let A be any non-empty set. Then the free semilattice SL4 over
A 15 locally finite and locally finitely presented.

Proof If B a finite subset of SL4, then it is clear that (B) is isomorphic to
a subsemigroup of SLp which is finite. Therefore (B) is finite, and so (B) is
finitely presented, as required. ]

Example 1.15 Rectangular bands are locally finite and locally finitely presented.

Proof Let X be a finite subset of a rectangular band R = {(z,j)|i € I, j € J }.
Then define

I' = {i € I| there exists j € J such that (i,5) € X } and

J' = {j € J| there exists i € I such that (7,7) € X }.

Since I' and J' are finite, the subsemigroup R' = { (3,5) |t € I', j € J'} of
R, which is also a rectangular band, is finite. Moreover, R’ contains X, in fact
(X) = R'. Therefore, rectangular band are locally finite, and so locally finitely

presented. [ |

M

'-—-.,___‘\:.
7 = N
i
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A semigroup S is said to be residually finite if, for any two elements s # ¢
of S, there exists a finite semigroup S’ and a homomorphism ¥ from S onto
S’ such that ¢ (s) # ¥(t). Since every finite semigroup is residually finite (by
considering the identity homomorphism from S to itself), residual finiteness is
also a finiteness condition.

Let S and T be two semigroups and let ¢ : S — T be a homomorphism.

Since
kerg = { (5,8) € S x 5| 9(s) = $(t) }

is a congruence on .5, we have the following result:

Proposition 1.16 A semigroup S is residually finite if and only if, for any two
distinct elements s, t € S, there exists a congruence p on S such that (s,t) & p

and p has finitely many equivalence classes. |

A semigroup S is hopfian if every onto endomorphism of S is an automor-
phism. Since every finite semigroup is hopfian, hopficity is also a finiteness con-
dition.

Let S be a semigroup and let A be a generating set for S. We say that S
has a soluble word problem with respect to A if there exists an algorithm which,
for any two words u, v € AT, decides in a finite numbers of steps, whether
the relation v = v holds in S or not. If S is finitely generated then it is a
well-known fact that the solubility of the word problem does not depend on the
choice of the generating set for S. Therefore solubility of the word problem is a
property of finitely generated semigroups. Moreover, since every finite semigroup

has a soluble word problem (see [7] or [53]), having a soluble word problem is a

finiteness condition.

Theorem 1.17 Let S be a semigroup and let T' be a subsemigroup of S with
finite index. Then
(i) S is periodic if and only if T is periodic:
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(ii) S is locally finite if and only if T is locally finite;

(iii) S is locally finite presented if and only if T is locally finite presented;

(iv) S is residually finite if and only if T is residually finite.

(v) In addition, if S is finitely generated, then S has a soluble word problem
if and only if T has a soluble word problem. |

For the proof of Theorem 1.17(iv) see [58, Corollary 4.6], and for the other
proofs of Theorem 1.17 see [56, Theorem 5.1].

A non-empty subset I of a semigroup S is called a left ideal if SI C I and
is called a right ideal if IS C I. If I is both a left and a right ideal, we say
that I is a (two-sided) ideal. A (one or two-sided) ideal I such that I # S and
I # {0} (if S has a zero) is called proper. A (right/left) ideal I of a semigroup S
is said to be minimal if I does not contain other (right/left) ideals of S. Clearly,
having a minimal (right/left) ideal and having finitely many (right/left) ideals
are finiteness conditions. If we define the index of an ideal as its index as a
subsemigroup, having finite index is also a finiteness condition.

Note that not every semigroup has a minimal ideal. For example, the semi-
group (N, +) has no minimal ideal (see [42]). If a minimal ideal exists then it
is unique (see [42]). However minimal right and left ideals are not necessarily
unique. For example, for each 1o € I the set { (40,7) | j € J } is a minimal right
ideal of the rectangular band R ={(i,5) |1 €1, 7€ J }.

Next we give some results from [56].

Theorem 1.18 Let S be a semigroup, and let T be a subsemigroup of S with
finite indez.

(i) If T has a minimal right ideal then S also has a minimal right ideal.

(ii) If every right ideal of S has finite index then every right ideal of T has
finite indez.

(iii) S has finitely many right ideals if and only if T' has finitely many right
ideals. [}
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For the proof, see [56, Theorem 10.3], [56, Theorem 10.5] and [56, Theorem
10.4], respectively.

The converses of Theorem 1.18(i) and 1.18(ii) are not necessarily true. For
this, consider the semigroup (N, 4) has no minimal right ideal but (N U {0}, +)
has one, namely {0}. Let T be an infinite group. Then T has only one right
ideal, which is itself. However, the right ideal {0} of the semigroup 7'U {0} has

index |T'| which is infinite.

1.6 Homology groups of monoids

Let R be a ring with an identity 1 and let A be an additive group. We say that A
is a (left) R-module if there is an action o : R x A — A denoted by rom + rm

such that the following are satisfied:

(i) r(a1+az) =ray+ray (ii) (r1+r2)a=ria+rya

(iii) (rire)a = ri(rea) (iv) la=a

for all a, ai, a; € A and all r, ry, 7, € R. Similarly, we define a right R-module.

Let M be a monoid written multiplicatively and let Z denote the integer
numbers. The integer monoid ring ZM of M is defined as follows. Its underlying
abelian group is the free abelian group on the set of elements of M as basis; the
product of two basis elements is given by the product in M. Thus the elements
of the monoid ring Z M are sums ) .y NzT, Where n, are integers which are all

zero except finitely many. The multiplication is given by

( Z ne) ( Z myy) = z (namy)zy.

zeEM yeEM z,yeEM

The definition of a monoid ring is similar to a group ring (see, for example, [28]).

If we consider this multiplication as an action on itself, Z M becomes a (left /right)

7. M-module.

.

I
|
!
H
d
§
-
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Let M be a monoid. Then define an action by zn = n for each z € M and
n € Z. With respect to this action, Z is a Z M-module, and it is called the trivial
left ZM -module. Similarly, we define the trivial right ZM-module, Z.

Let A and B be two R-module. An R-map f : A — B satisfies f(z +y) =
f(z) + f(y) and f(rz) = r(f(z)) for all z,y € A and r € R. For example,
consider the monoid ring ZM of a monoid M and consider the Z M-modules:
ZM and the trivial left module Z. Then define a map ¢ : ZM — Z by
D weM T V= D carNe. It is an ZM-map (also a ring map) and is called the

augmentation map.

Let f : A— B be an R-map. Then we define
kerf ={z€ A|f(z) =0} and imf={y€ B|3zc Awith f(z) =y}

where Op is the identity element of the additive group B.
We say that two R-maps A 4 B -2 C are exact at B if kerg = imf. The

sequence

"'_>Bn+1f_ni;Bni)Bn—l”'

of R-maps and R-modules is called a chain complez if imf,,; C kerf, for all n

and an eract sequence if imf,; = kerf, for all n.

Proposition 1.19 The sequence
B=---— B, B, B,

of R-maps and R-modules is ezact if and only if, for all n and all z, € B,,
Frc1(fa(2n)) = On—z where 0,_3 is the identity element of B,_2; and there exists
a sequence of homomorphisms g, : B, — Bny1 such that foy19n+ g1 fr = Ip,

where I is the identity map on B,. ]

The proof is standard and can be found in any homological algebra book as
a simple exercise (see, for example, [52]). We call the sequence of maps g, :

B, — Bny1 a contracting homotopy for B.
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Let A be a R-module and let X be a subset of A. The smallest submodule
of A containing X, which is an R-module with respect to the same action on
A, is called the module generated by X, and is denoted by (X). We say that
a R-module F is free if there exists a subset X of F' such that F = (X) and
Y zex et = 0 implies n, = 0 for all z € X. In this case, X is called a basis for
the free module F. A projective R-module is a summand of a free R-module.

A free (projective) resolution of an R-module A is an exact sequence
fn fn— f2 h fo
= F, S R, S SRS RS A0

where each F, in a free (projective) R-module (n > 0).
Let M a monoid. Then the (left) bar resolution of the (left) trivial Z M-module

Z: is an exact sequence
n 871— 82 31 €
i — By = By =5 2 B 2 By -7 — 0,

in which each B, is a (left) free ZM-module on the set of formal symbols
[z1|z2|...|z,] With z; € M and z; # 1p (where 1 is the identity of M) and
By is a (left) free Z M-module on the unique symbol [], Z is a trivial Z M-module,

¢ is the augmentation map and the map 0, : B, — B, is defined by
n—1
On([z1] .- |2a]) = mlaal.. |2l + ) (=1 [zl |ziina] - . |24
=1
+(=1)"[z1] .- - |Zn=1].

Remark. In order that 8, be defined, we require that [z;]...|z,] = 0 whenever

some z; = 1.

The (left) standard resolution of a (left) trivial ZM-module Z is an exact

sequence
Sp— 5 ) €
iy P Sy p b By p NP7,

in which every P, is a (left) free ZM-module on the set of formal symbols

[:c1|x2[|xn] with z; € M (z;’s are allowed to be 1x), Z is a trivial Z M-module,




16 Presentations and Efficiency of Semigroups

¢ is the augmentation map and the map 6, : P, — P,_; is defined, as 0,, by

Su(lz1] .- lzn)) = @ifz2|...|20) + z_:(—l)i[zli oz - 2]

+(=1)"[z4] ... |zn=a)-

As shown in [52, Theorems 10.19 and 10.23] for groups, it is similarly shown
that both the bar and standard resolutions are, indeed, resolutions of a (left)
trivial Z M-module Z. Note that the bar resolutions and some other resolutions
for monoids were also considered and compared in [23].

Let A be a right R-module, let B be a left R-module, let F' be the free abelian
group on the Cartesian product of sets A x B and let N be the subgroup of F
generated by the set

{(z+2,y)— (z,y) — (2',y), (z,y +¢) — (z,y) — (z,¥), (zr,y) — (z,7y) |

z,2' € A, y,y €B, r€R}.
Then the tensor product, A ®r B of R-modules A and B is the quotient group

F/N. We usually use A® B instead of A®r B and we denote the coset (z, y)+ N
by z ® y.

Theorem 1.20 Let f : A — B be an R-map of right R-modules and g : C —
D be an R-map of left R-modules. Then there is a unique (group) homomorphism
ARC — B®D withz @y — f(z) ®g(y). [

For a proof, see [52, Theorem 1.5] or [31, Corollary 5.3].
The homomorphism A® C — B® D sending z®y ~ f(z) ® g(y) is denoted

by f®g.

Proposition 1.21 Let M be a monoid and let I be a free left ZM-module on
the basis X. IfZ is the right trivial ZM-module, then the tensor product Z ®@zm F

is isomorphic to the free abelian group on the basis X. [
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The result is a special case of Corollary 5.13 in [31] and Proposition 3.4 in
[24].
Let M be a monoid and let

1

—*)F —)Fn1—> L)FHL)F})—E)Z—)O

be a left projective (free) resolution of the trivial left Z M-module Z. Then apply
the tensor product Z ®zar —, where Z is the right trivial Z M-module, to this

resolution. Then we have the chain complex

o TRz F BB L @ap Fosy 5 R e 2 (1)

Z @gm Fo 225 Z Qo Z — 0

of abelian groups where 1 is the identity R-map of the right trivial module Z
(since iIm(1 ® fny1) C ker (1 ® fn)). Therefore, we define the nth left integral
homology group of a monoid M, H,(M), to be

Hn(M) = ker(l ® fn)/lm(l ® fn+1)'

We usually say the nth homology of M for H,(M). The nth homology of
groups is defined similarly.

As in the group case (see Chapter II Section 3 in [11]), if the chain complex
in (1) is obtained from the standard resolution, then, by Proposition 1.21 and
the action on the right trivial module Z, we may consider the chain complex as

follows:

P B p By p B 2)

where P, = Z Qzum P, is the free abelian group on all [zy]...|z,] with z; € M,

and the group homomorphism 8, = 1 ®znm 6, is given by
So([z1] .. |za)) = lzal...lza] + Z Vlz1] .- |zizi] - |24
+(=1)"z4]- - |:z:n_1].

Thus, the nth homology of M is H,(M) = ker(8,)/im(ént1)-
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Proposition 1.22 Let M be a monoid with identity 1ps and let M be the monoid
obtained from M by adjoining an identity 1. Then Hy(M) = Hy(M*).

Proof We consider the relevant part of the standard resolution of Z
P3 L P > — P,

where P;, P, and P, are the free ZM!'-modules on the set of formal symbols

[z|y|z], [z]y] and [z] (z,y,z € M") respectively, and &; and &, are given by

&3([zlylz]) = z[ylz] = [zylz] + [z|y2] — [2]y],
bo([zly]) = zly] — [zy] + [z].

As explained in (2), applying the functor Z @zan —, where Z is a trivial right
Z M'-module yields the chain complex

S A .
P3—3—)P2—2>P1

where P;, P, and P, are the free abelian groups on the set of all formal symbols
[z|y|z], [z]y] and [z] (z,y,z € M") respectively, and the group homomorphisms
63 and &, are given by

85([zlylz]) = [ylz] = [zyle] + [z|y2] — [z]y],
bo([zly]) = [yl — [zy] + [z].

We find a basis set for ker(gg). Each a € P, has the form;
a(L, DI+ Y (el @)tle] + alz, DIz + Y alz, )zl
€M z,yeM
where each a(z,y) is integer. It follows that o € ker(8,) if and only if
0 = &5() ( (1L,1) + Y (a1, 2) + oz, 1)))[1|1]+52( > a(z,y)lzly)
zeM z,yeM
or, equivalently, if and only if

afl,1) = —( Z (a1, 2) +a(:c,1))) and & ( Z a(r.y)lzly]) =

TeM z,yeM
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The equation &( Y2, cpr @(z,y)[z]y]) = 0 gives a basis for ker(3}') where
Hy(M) = ker(8M)/im(6M) by considering the standard resolution of the trivial
ZM-module Z. Say { U; |1 € I} is a basis for ker(8¥). From the equation

a(1,1) = —< Z (a(1,z) + a(:c,l))),

zeM
we obtain the generators: U;, = [l|z] — [1|1] and U,; = [z|1] — [1]1] for each
z € X. Therefore the set
Z:{Uia Ul,z’ Ux,lliela ‘TGM}

is a basis for ker(é,).

Now we find a generating set for im(ds). First consider the image of the

generators of P; which contains 1 under d3. They are:

&([1]) = o,

S([1Ll]) =[] = []z] + [L]e] = [1]1] = [L|z] = [1[1] = Vhc,
&([1z|1)) = [zl1] = [z]1] + [1]z] - [1]z] = O,

d3([z]1]1]
85([lyl1]
83([z|1ly]
83(([1]zly]

where z,y € M. Therefore, since Vizy = Voy1 — Vo1, Vaey = Vo1 + Vi, and

) = [ =[]+ [z[1] = [z]1] = [L]1] = [z[1] = Vo,

) = [yt = [zylt]+ [zly] — [zly) = Y]] = [zy|1] = Vi,

) = [yl = [zly] + [zly] = [=]1] = [Ly] = [z]1] = Va,z,

) = lzly] - [zly] + Mlzy] = [Llz] = [Hzy] — [Lz] = V3

Vaey = Viey — Vi, it follows that if { Vj|j € J } is a generating set for im(83/)

then the set B = {V;, Vi, Von |7 € J, = € M } is a generating set for im(J3).
Since Uy, = Vi and Uy = —Vy 1, it follows that Hy(M) = Hy(M'), as

required. [ |
More generally, since the bar resolution of the trivial Z M'-module Z is also

the standard resolution of the trivial Z M-module Z and since the homology does

not depend on the choice of resolution (see [52]), we have the following result:

Proposition 1.23 Let M be a monoid. Then Hn(M) = Hn(3M") forn>0. W
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1.7 Efficiency of semigroups

The deficiency of a finite semigroup (monoid or group) presentation P = (.| R)
is defined to be |R| — |A|, and is denoted by def(P). The semigroup deficiency of
a finitely presented semigroup S, defs(S), is given by

defs(S) = min{ def(P) | P is a finite semigroup presentation for S }.
The monoid deficiency of a finitely presented monoid M is given by
defy (M) = min{ def(P) | P is a finite monoid presentation for M }.
The group deficiency of a finitely presented group G is given by
defq(G) = min{ def(P) | P is a finite group presentation for G }.

Therefore a finitely presented group G has three deficiencies, namely defg(G),
defy(G) and defs(G); and a finitely presented monoid M has two deficiencies,
namely defy (M) and defs(M).

Let P be a finite semigroup presentation for a finitely presented semigroup
S. We say that P is a minimal semigroup presentation if def(P) = defs(S).
Similarly, we define a minimal monoid presentation for a monoid and a minimal
group presentation for a group.

It is a well-known fact that if a group presentation { A| R) defines a finite
group G, then |R| — |A| > 0 (see for example [43]). Moreover, if ( A| R) defines
a finite semigroup S, then, since the group G defined by the presentation (as a
group presentation) is a homomorphic image of S (see Proposition 1.8(i)), G is
finite, and so we have |R| — |A| > 0.

After Schur’s study in [60], it is a well-known fact that if a group presentation
( A| R) defines a finite group G, then we have

|R| — |A| = rank (Hy(G))

(see, for example [52, Corollary 10.17]).
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We say that a (finite) group G is efficient if G has a group presentation {A|R)
such that |R| — |A| = rank (H,(G)) and that it is inefficient otherwise. A group
presentation ( A|R) of G such that |R| —|A| = rank (H,(G)) is called an efficient
group presentation. Many families of groups are known to be efficient groups (see
6], [8], [13], [20], etc.). The first examples of inefficient groups were given by
Swan in [64]. More examples of inefficient groups can be found in [33], [41] and

[50].

Recently, Steve Pride showed that if ( A| R) is a finite monoid presentation

for a finite monoid M, then

|R| — |A] = rank (H2(M)).

Since a semigroup presentation for a semigroup S can be considered as a monoid
presentation for the monoid S!, it follows that if ( A| R) is a finite semigroup

presentation for a finite semigroup S, then

|R| — |A| > rank (Hz(S")).

We call a finite semigroup (monoid) S efficient as a semigroup (monoid) if S
has a semigroup (monoid) presentation (A|R) such that |R|—|A| = rank (H,(S"))
and inefficient otherwise. A semigroup (monoid) presentation ( A | R ) of S
such that |R| — |A| = rank (Hy(S")) is called an efficient semigroup (monoid)
presentation.

Therefore there are three potentially different notions of efficiency for a group
and two for a monoid.

Note that if a semigroup (monoid or group) S is efficient, then a semigroup
(monoid or group) presentation is an efficient presentation for S if and only if it

is a minimal presentation for S.
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1.8 Finite presentability

One of the most important research fields in combinatorial group theory is the
study of subgroups of finite index in finitely presented groups. The most impor-
tant result in this field is the Reidemeister-Schreier Theorem about the method
for determining presentations for subgroups of finite index in finitely presented
groups. As a consequence of this, subgroups of finite index in finitely presented
groups are finitely presented.

An analogous theory for semigroups has been one of the major research fields
in combinatorial semigroup theory. The following questions for a finitely pre-
sented semigroup S were considered.

(i) Is every subsemigroup (one sided ideal or two sided ideal) of S finitely
generated?

(ii) Is every subsemigroup (one sided ideal or two sided ideal) of S which is
finitely generated (as a semigroup) finitely presented?

(iii) Is every subsemigroup (one sided ideal or two sided ideal) of finite index
in S is finitely presented?

The answer of the first question is, in general, negative. To see this, consider
the free semigroup F on two generators {a,b} and the set I of all words containing
both @ and b. I is obviously a subsemigroup (one-sided ideal, two-sided ideal)
of F. However, the words ab' (i > 1), are indecomposable in I, and so I is not
finitely generated. (Note that this example was given in [18, Example 3.4].) It is
obvious that I has infinite index in S (by considering { a*|¢ > 1} C S\I). We
change the first question as below:

(") Is every subsemigroup (one sided ideal or two sided ideal) of finite index
in S is finitely generated?

The answer of this question is, in general, yes. It was first considered and
answered by Jura (see [37]). Let S be finitely generated semigroup and let T be a

subsemigroup of finite index in 5. In [15] (see also [56, Theorem 1.1]) it is shown
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that if the set A generates S, then the set
X ={s1as2]| 31,5, €S\T, a € A, s1a,s1as; € T},

where IS is the monoid obtained from S by adjoining an identity 1 if necessary,
generates T'. (Note that the monoids!S and S! may not be the same.) Hence T
is finitely generated as well.

The answer of the second question is, in general, negative. To see this for the
case of subsemigroups, consider the free semigroup F' on the generators {a, b, c},
and the subsemigroup I generated by X = {ba,ba?, a3 ac,a?c}. I is obviously
finitely generated, but it is shown (see [18, Example 4.5]) that [ is not finitely
presented. Note that, if a semigroup is finitely presented with respect to one
generating set, then it is finitely presented with respect to any finite generating
set (by considering Tietze transformations). Let {v,w,z,y,z} be an alphabet
in one to one correspondence with X. In [18] it is shown that the relations
vz"z = wz™y (n > 0) hold in I and any set of defining relations for I must
include all the relations vz™z = wz™y (n > 0).

For the case of ideals, we have the following result:
Theorem 1.24 Let S be the semigroup defined by the presentation
(a,z,y]|az = zy, za = yz, ay = zy°, ya = yz ),

and let T be the subsemigroup of S generated by {z,y}. Then T is a two-sided
ideal of S, but T is not finitely presented. ]

For a proof, see [19, Theorem 3.1].

To prove the above theorem and some of the following theorems the authors
used a method based on the idea of a (Reidemeister-Schreier) rewriting mappings.
The method was developed for finding presentations for subgroups of finite index
in finitely presented groups (for more details, see [45]). A general theory of

Reidemeister-Schreier type rewriting for semigroups has been developed in [16).
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Since rewriting mappings are also important in this thesis, we define rewriting

mappings here.

Let P = ( A| R) be an arbitrary presentation, let S be the semigroup defined
by P, and let

X={wl|iel}CA"
be any set of words. If we consider X as a subset of S, it generates a subsemigroup

of S. Let T' denote the subsemigroup of S generated by X. We first introduce a
new alphabet

B={bliel}
in one to one correspondence with X. The representation mapping is the unique

homomorphism ¥ : Bt — A* extending the mapping b; — w;, 1 € I. For a

subset T' of S, we define the set L(A,T) to be
L(A,T)={w € A" | w represents an element of T }.
A rewriting mapping is a mapping ® : L(A,T) — B such that the relation
U(d(w)) =w

holds in S for all w € L(A,T). Note that a rewriting mapping always exists (see

[19]).

By using the method of rewriting mappings, the following result was obtained:

Theorem 1.25 Let S be a finitely presented semigroup such that S has finitely
many minimal left ideals and finitely many minimal right ideals. Suppose we are
given a word representing an element of some minimal left ideal L and of some
minimal right ideal R. Then the group RN L is finitely presented. There exists
an effective algorithm to determine a presentation for RN L and a presentation

for the minimal two-sided ideal of S. m

For a proof, see [16, Theorem 6.1]. It is worth to note that the rewriting

mapping which was introduced in [16] is a homomorphism.
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In [15, Theorem 2.1] a presentation which is not finite is given for subsemi-
groups. When a subsemigroup is an ideal with finite index, we have the following

result from [15, Theorem 4.1] and [18, Theorem 2.1]:

Theorem 1.26 Let S be a semigroup, and let I be a two-sided ideal of finite
index in S. Then S is finitely presented if and only if I is finitely presented. M

Moreover, from [18, Theorem 5.1], we have the following result for one-sided

ideals:

Theorem 1.27 Let S be a semigroup, and let T be a right (left) ideal of finite
index in S. If S is finitely presented, then T is finitely presented. |

A complete answer for the last question concerning subsemigroups had been
open until the study of N. Ruskuc was published which we stated in Theorem
1.13 in Section 1.5.

Although all the answers of three questions has been given, finitely pre-
sentability of an arbitrary subsemigroup 7' (not necessarily of finite index) of
finitely presented semigroup S is still an open problem. Before we give some
results related to this problem, we define co-index.

Let S be a monoid, and let X be a non-empty subset of S. For s € S, we say
that Xs is a (right) coset if there exists ¢ € S such that Xst = X. The number
of disjoint (right) cosets of X in S is said to be (right) co-index. (See for more
details [57].)

Theorem 1.28 A subgroup of finite co-index in a finitely presented monoid is

finitely presented as a monoid, and so as a group. [

For a proof, see [57, Corollary 2.11]. It is obvious that the above result can

be extended to subgroups of semigroups.

Is it always necessary to have finite (co-)index? The answer of this question

was given in [72].
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Theorem 1.29 Let S be a monoid with a finite presentation ( A| R ) such that
R C A* x {€} (or equivalently, R C {€} x At) where € is the empty-word. Then
the group of units U(S), consisting of all invertible elements of S, is finitely
presented. [

Note that the co-index of U(S) is either 1 or infinite (see [42, Proposition
2.3.7] or [57]). Also note that the above result can not be generalised to an
arbitrary finitely presented monoid (see [57, Proposition 3.3]).

A monoid S is said to be regular if for every s € S there exists ¢t € S such
that sts = s.

Theorem 1.30 Let S be a regular monoid with finitely many right and left ideals.
Then S is finitely presented if and only if all mazimal subgroups of S are finitely
presented. u

For a proof, see [57, Theorem 4.1]. The most important result in [57] for this
thesis is the one concerning ideal extension.

Let T and U be semigroups. An ideal extension of I by T is an semigroup S
such that [ is an ideal of S and the Rees quatient S/ is isomorphic to T.

Proposition 1.31 An ideal extension of a finitely presented semigroup by an-

other finitely presented semigroup is finitely presented. [ |

For a proof, see [57, Proposition 4.4].

As finite presentability of subsemigroups, finite presentability of various semi-
group constructions of semigroups is also an important research field in combina-
torial semigroup theory. It is well-known that the direct product of two groups
(monoids) defined by the group (monoid) presentations (A|R) and ( B|Q ) may
be defined by the following group (monoid) presentation

(A,B|R, Q,ab=ba(a€ A be B)).
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For a proof for groups, see [36, Proposition 4.4], and a proof for monoids is similar.

Therefore the direct product of finitely presented groups (monoids) is finitely
presented. This is, in general, not true for direct products of finitely presented
semigroups. It is well-known that the direct product N x N of the additive group
N = {1,2,3,...} is not finitely presented even not finitely generated. Finite
generation and finite presentability of direct products of semigroups have been

considered in [49].

Theorem 1.32 Let S and T be two infinite semigroups Then S x T is finitely
generated if and only if both S and T are finitely generated and S* = S and
T*=T. |

We define S? = { ss' | s,s’ € S }. For a proof, see [49, Theorem 2.1].

Let P = (A| R) ba a semigroup presentation, let S be the semigroup defined
by it, and let w;, wy € AT be arbitrary words. The pair (w;,w,) is called a
critical pair (for S with respect to P) if the following conditions are satisfied:

(i) the relation w; = w; holds in 5;

(ii) for every sequence wy = oy, g, ..., = Wy, Where o4 is obtained from
a; by applying one relation from R, there exists j such that |o;| < min(]ws|, |wz]).

Let S be a semigroup with a finite generating set A. We say that S is stable
(with respect to A) if there exists a finite presentation P = ( A| R ) defining S
in terms of A, with respect to which S has no critical pairs.

Stability is invariant under the change of the finite generating set (see [49,

Proposition 3.4]).

Theorem 1.33 Let S and T be two infinite semigroups. Then S x T is finitely
presented if and only if the following conditions are satisfied:

(i) S?=S and T* =T;

(i1) S and T are finitely presented and stable. m

For a proof, see [49, Theorem 4.1].
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As we have seen finite presentability of direct products of semigroups de-
pends on more conditions than finitely presentability of direct products of groups
or monoids. These kinds conditions make finitely presentability of semigroup con-
structions more interesting problems in combinatorial semigroup theory. It is still
not known What are necessary and sufficient conditions for finite presentability
of wreath products, semidirect products, the Schitzenberger products of semi-
groups and regular semigroups. Some of these problems have been considered for
monoids in [30].

Let S and T' be monoids. The direct product of |T'| copies of S is denoted by
SITI. One may consider SIT! as the set of all functions having finite support, that
is the. images of them are finite, from 7T into S. The restricted wreath product of
the monoid S by the monoid 7', denoted by ST, is the set SITI x T with the
multiplication

(,8)(9,#) = (f', 1)

where ¢ : T — S is defined by ¢'(z) = g(zt) (z € T).

Theorem 1.34 Let S be a finitely presented monoid, and T be a finite monoid.

Then the restricted wreath product S 1T is finitely presented. In particular if
S (A|R) and T = (B|Q), then

S1T = (A, (teT), B|R (t€T),Q, aw, =aya; (a,d' € A, tueT),
ba;=( [ a)b(acA beB, teT))

ce{yeT |yb=t }

where Ay = {a;|a € A} and Ry is obtained from R by replacing a by a.. [ |

For a proof, see [30, Theorem 2.2].
The Schiitzenberger products of the monoids S and 7', denoted by SOT, is

the set S x P(S x T) x T where P(S x T') denotes the set of all subsets of S x T

with multiplication

(s1, P1,t1)(s2, P2y t2) = (8182, Pit2 U s1P,, tity)
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where Pity = { (s,tt3) | (s,t) € Py } and 81 P, = { (s15,t) | (s,t) € P, }.

Theorem 1.35 Let S and T be the monoids defined by the monoid presentations
(A|R) and ( B|Q), respectively. Then the monoid presentation

<Aa B, Cs,t(SES, tGT)|R, Q, CLb:ba(aGA, beB)’
Cz,t = Cs,ty Cs,tCujy = CyuuCsyt (S,U < S, t, v E T),

aCst = Cast@, Cs b =bcopp (s €S, t€T, a€ A, be B))

defines the Schiitzenberger products SOT . [ |

For a proof, see [30, Theorem 3.2]. Note that if the sets AU{1s} and BU{17}
are indecomposable and either S or T is infinite, then the above presentation is
infinite. Therefore, there are still some open quetions for finite presentability of
Schitzenberger products of monoids.

The most important result in [30] for this thesis is the one concerning Rees
matrix semigroups. The authors proved the following result for Rees matrix
semigroups (over monoids) with zero, the same proof still remains valid for Rees
matrix semigroups (over monoids).

Let S be a monoid, let [ and J be index sets, and let P = (p;;) bea J x [
matrix with entries from S. The Rees matriz semigroup M[S; 1, J; P] is the set

IxSxJ={(isj)]|i€el,se€S, jel}
with the multiplication
(2,8,7)(k,t, 1) = (4, spjxt, 1)

We will mention the importance of this construction in the chapters which
concern Rees matrix semigroups. Now we give a presentation for Rees matrix

semigroups which is useful throughout this thesis.
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Theorem 1.36 Let S be a monoid, let (A| R) be a semigroup presentation for
S, let p1y = 1s where 1 is a common element of I and J, and let e € AT be a

word representing the identity element 1s of S. Then the monoid presentation

(A, yi el —A{1}), 2z, (j € J—{1}) | R, vie = yi, ey; = pui,

zje =pj1, €zj = z;, ziyi = pi (L €1 — {1}, j € J—{1}))

defines the Rees matriz semigroup M([S;1,J; P]. u

For a proof, see [30, Theorem 6.2]. Note that each element p;; is also consid-
ered as a word (representing p;;) in the above presentation. Also note that if S is
finitely presented, and if both I and J is finite, then the Rees matrix semigroup
M(S; I, J; P] is finitely presented.

1.9 The Schur multiplier and efficiency of finite
groups

Although the Schur multiplier was first introduced in the important paper [59]
about fractional linear substitutions, it became very important in combinatorial
group theory after the study of Schur in [60]. In [59] Schur constructed the Schur
multiplier M(G) of a finite group from the multiplication table (a presentation)
of G.

Let ( A| R) be a finite (group) presentation, where R is a set of “relators”,
for a finite group G. Let F be the free group on A, N be the normal closure of
R in F, let F' denote the commutator subgroup of F, and let [F, N] denote the
subgroup generated by the set {u~'v"'uv|u € F, v € N }. Then Schur multipier

of G if defined by
F'NnN
[F,N]

M(G) =

In [60], for a finite group G, Schur proved the followings:
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(1) M(Q) is an invariant, that is it does not depend on the finite presentation
of G.
(i) M(G) is a finite abelian group generated by defg(G) elements.

As a consequence of (ii), if (A| R) is a finite presentation for G, then we have
|R| — |A| > rank (M(Q)).

After this result this is a natural problem which asks when the rank of M(G)
is equal to defq(G) that is, which groups are efficient. Since then, many results
about efficiency of finite groups have been published. In this section we mention
some of these results which will be useful for this thesis. Before this it is worth
commenting on inefficient groups.

The first examples of inefficient groups were given by Swan. In [64] Swan
gave a class of finite groups with trivial multipier but non-zero deficiency. More
examples of inefficient groups can be found in [41, 50, 33] and for a survey article,
see [70]. Here we give a result from [50]. (Therefore we see one of the methods

to show that a group is efficient.)

Theorem 1.37 The group presentation
(a,b,c|a®=0b*=c? = (ab)’ = (bc)® = (ca)® = (abac)” = 1)

is a symmetric presentation of a finite group G, which is inefficient when (n,6) =

3. |

We denote the greatest common divisor of two integers m and n by (m,n).
For a proof and more details on symmetric presentations, see [50]. To prove the
above theorem the authors first computed the Schur multiplier of G, directly from
its presentation showing it to be trivial when n is odd. By using the following

lemma, they proved that defg(G,) = 1 when (n,6) = 3.
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Lemma 1.38 If G is a finite group with a subgroup H of index k and M(H) has

rank r, then we have

r+1

_|._

defo(G) > —1.

k

This follows from the Reidemeister-Schreier theorem (see [45]).

Since G, is a quotient group of a Coxeter group, namely
(a,b,c|a®=b"=c* = (ab)® = (bc)® = (ca)®* = 1),

it is worth noticing that the efficiency of Coxeter groups has been studied in [6].

When Eilenberg-MacLene defined cohomology of groups, they did not see the
connection between the Schur multiplier of a group G and its second cohomology
H?*(G,C*) where C* is the multiplicative group of non zero complex numbers.
The second cohomology of a group H*(G,C*), with trivial G-module structure
for C* and the Schur multiplier M(G) are isomorphic. This was first noticed by
MacLane (see [44], page 163). After this, the theory of (co)homology became
one of the most important tools for combinatorial group theory. (Note that the
second integral homology Hy(G,Z) is also isomorphic to the Schur multiplier
M(G) (see, for example [40, Theorem 2.7.3].)

Now we state the result known as the Schur-Kunneth formula:

Theorem 1.39 If G and H are any finite groups, then the Schur multiplier of
the direct product G x H 1is

M(G x H)2 M(G) x M(H) x (G/G' ®z H/H')

where the additive groups G/G' and H/H' are considered as Z-modules with the
actionnz =z +---+z wheren € Z and z € G/G' (H/H'). ]

The first proof of the theorem above given by Schur directly from a mul-
tiplication table in [60]. Then an easier proof was given by Wiegold by using

homological arguments in [69].
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One of the most interesting classes of groups is the class of groups with trivial
Schur multiplier. (Notice that D. L. Johnson uses the name “interesting groups”
for this class of groups.) Among the interesting groups are the metacyclic groups.
A group G is metacyclic if it has a normal subgroup H such that both H and
G/ H are cyclic. The efficiency of metacyclic groups has been proved in [68] (see
also [36]).

Proposition 1.40 Let G be a finite metacyclic group, and let H be a its normal

cyclic subgroup of order m with index n. Then the presentation
Prrms ={a,bla™ =1, b"lab=1d", b" = a*),
where 7,3 < m, r™ = 1(mod m) and rs = s(mod m), defines G. [

For a proof and more details about metacyclic groups, see [36, Proposition 7.1].
To talk about the efficiency of metacyclic groups we give the Schur multiplier

of metacyclic groups.

Theorem 1.41 With the above notation, the Schur multiplier of the metacyclic
group given by the presentation Ppyns is the cyclic group C; where

(r=1,m)(L+r+---+r""1s)
- .

For a proof, see [40, Theorem 2.11.3]. Therefore, if ¢ # 0, then Pr ;0,5 1s an

efficient presentation.
Theorem 1.42 Let G be a finite metacyclic group defined by
Pryms = (a,b|a™ =1, blab=ad", 0" =a’),

where r,s < m, " = 1(mod m) and rs = s(mod m). With above notation, if

t =0, then The presentation

(a,b l b = as’ b”lxkb:c—k — x(m,r—l) >,
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where k = u + ws and where (m,r — 1) = u(r — 1) + vm and w is the largest

factor of m coprime to u, defines G. |

Therefore we deduce that finite metacyclic groups are efficient. Since the
dihedral group D, of order 2n is a metacyclic group, we deduce that D,, is also
efficient.

Since the projective linear group PSL(2,p) is also considered in this thesis,
we give some result concerning the efficiency of PSL(2,p) and of some related
groups.

A presentation of the group PSL(2,p), where p is a prime may be found in
[25]. A nice presentation for PSL(2,p) for an odd prime p

(a,b|ap — 1, b2 — 1’ (ab)3 — 17 (a2ba(l’+1)/2b)3 =1 >
was given in [9].

Theorem 1.43 The Schur multiplier of the projective linear group PSL(2,p) for
an odd prime p is the cyclic group C, of order 2. [ |

For a proof, see [40, Theorem 7.1.1].

Therefore, the above presentation is not an efficient presentation. But this
presentation was used to find some efficient presentations by Zassenhaus in [71]
and by Sunday in [63]. Although Zassenhaus’s efficient presentation may be
the first efficient presentation for PSL(2,p) with odd prime p, we give Sunday’s

presentation here since it is important in this thesis.

Theorem 1.44 The projective linear group PSL(2,p) for an odd prime p can be
defined by the following presentation

(a,bla? =1, b = (ab)B, (a(p*'l)ﬂba“b)2 =1).

In particular, PSL(2,p) with odd prime p is efficient. n
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Note that it is well-known that as PSL(2,2) 2 Dg we have already mentioned
its efficiency.

Since the Schur multiplier of special linear group SL(2,p) is trivial (see [32,
Theorem 25.5]), it is an interesting group and since SL(2,p) is an important
family of groups related to PSL(2,p), we give an efficient presentation from [13].
In [13] the authors proved the presentation

(a,b]a® =1, (ab)® =1, (ab*abPTV/2)2pp = 1)

defines PSL(2, p) with p odd prime. Then, by using the fact that SL(2, p) is the
covering group for PSL(2,p), they obtained the following result:

Theorem 1.45 The presentation
( a, b I a2 = (ab)s, (ab4ab(p+l)/2)26pa2k =1 ),

where k is the integer part of p/3, defines SL(2,p) for an odd prime p, and so
SL(2,p) is efficient. |

It is also worth noticing that the smallest simple non-abelian group SL(2,8)
with trivial Schur multiplier is efficient which was shown in the same paper [13].

To see an application of the Schur-Kinneth formula in combinatorial group
theory we give some results concerning the efficiency of direct product of certain
groups.

The efficiency of the direct product PSL(2,p) x PSL(2,p) with p prime was
considered in [20]. It is shown that PSL(2,p) x PSL(2,p) is efficient for all
primes p. The efficiency of PSL(2,p)> was considered and it is proved that they
are efficient in [12]. The efficiency of PSL(2,p)" for an odd prime p # 5 and
n > 4 is still an open problem.

In fact it is an open problem whether there exists a simple non-abelian group
G such that G™ (n > 1) is efficient. However there is a family of non-simple

groups, namely Dz, such that the direct powers of them are efficient.
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In [21], since the efficiency of the direct powers of DJ® with n even are obvious,

the authors considered the case when n is odd. They first proved the following:
Lemma 1.46 The following
(a,bla® =1, (a™)® =1, b = (ab)?)
is an efficient presentation for D3 with n odd. u
They also proved the following:
Lemma 1.47 The following
(a,b,cla® =1, (ac)* =1, (ac™)?™ =1, ab= ba, b" lc=cb"t!, b~ 't = "ty
is an efficient presentation for D3 with n odd. |

Then, by induction, they proved that the direct powers of D} with n odd are
efficient.

The efficiency of direct powers of imperfect groups was considered in [22]. Tt
was proved that, for an imperfect group G, there exits a positive integer N such
that, for n > N, the direct powers G" is efficient. In particular, it was proved
that A} (n > 1), where Ay is the alternating group of degree 4, is efficient.

An analogous definition of the Schur multiplier of groups has not been made
for semigroups or monoids. However the nth homology of monoids have been
defined, and some results has been obtained. For example, in [27], the second
and third integer homology of free Burnside monoids was computed.

The free Burnside monoid M, 4 is the monoid defined by the presentation
(A|w™? =w™ (we A¥))

where |A| = r. In [27] it is shown that if m > 3 and d > 1, then Hy(M, . q) is
a free abelian group of infinite rank and H3(M; mq) is a direct sum of infinitely
many copies of Z4. As a consequence of this, the free Burnside monoid M, 4

with m > 3 and d > 1, is not finitely presented.



Introduction 37

1.10 A computational tool

In 1967 B. H. Neumann introduced an enumeration procedure for finitely pre-
sented semigroups in [47], but he did not prove the validity of the procedure. A
proof of Neumann’s enumeration procedure was given by A. Jura in [38]. This pro-
cedure is also known as the Todd-Coxeter enumeration procedure for semigroups
since the procedure is analogous to the Todd-Coxeter enumeration procedure for
groups in [65].

The first machine (PASCAL version) implementation of the Todd-Coxeter
enumeration procedure running in St Andrews was given by E. F. Robertson and
Y. Unlii in [51]. An improved C version is due to T. G. Walker which is called
SEMI; see [67]. Two modifications of the Todd-Coxeter enumeration procedure
for enumerating minimal one-sided ideals and idempotents of the minimal two
sided ideal are described in [14], [15] and [16]. (See [55] for a short history of
the Todd-Coxeter enumeration procedure.) The last improved version of SEMI
determines idempotents, provides a multiplication table, decides if semigroup
is a group, finds D-classes, H-classes, etc. This version is now running at the

University of St Andrews.



Chapter 2

Finiteness Conditions for the

O-direct Unions of Semigroups

Finiteness conditions of various semigroup constructions have been studied in
many articles. For example, finite generation and finite presentability of com-
pletely (0-)simple semigroups in [30] and [15], of direct products of semigroups
in [49], of subsemigroups, ideals and small extension of semigroups in [37], [15]
and [56]. Some other finiteness conditions have been studied in [58] and [56].

It is a well-known fact that a semigroup S without zero is completely simple
if and only if S is regular and every idempotent is primitive (see [29, Theorem
3.3.3]). It is also well-known that this result cannot be generalised for a semigroup
with zero. However a semigroup S with a zero is regular and every non-zero
idempotent of S is primitive if and only if S is a 0-direct union of completely
0-simple semigroups (see [29, Theorem 3.3.3] or [62, 66]). A semigroup S is said
to be a 0-direct union of completely 0-simple semigroups if there exists a family

of completely 0-simple semigroups S; (¢ € I) such that
S = 'LEJISi’ S;NS; =55;={0} e #j€I).

Since the O-direct union of arbitrary semigroups with zero is a more gen-

eral semigroup construction than the 0-direct union of completely 0-simple semi-
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groups, in this chapter, we study some finiteness conditions of the 0-direct union
of any two semigroups with zero.
Throughout this chapter, we fix S; and S; to be any two semigroups with

zero, and Ty to be the 0-direct union of them, that is

T():SlUSz, 5105223152:.9251:{0}.

2.1 Presentations

First we consider the finite generation of the 0-direct union of semigroups with
zero. In the process we also construct certain natural generating sets for Ty, 51
and Sz where Tj is the 0-direct union of semigroups S; and Sz with zero. Thus

we prepare the ground for the presentations.

Theorem 2.1 Let Ty be the 0-direct union of semigroups Sy and S;. Then Ty is

finitely generated if and only if both S; and Sz are finitely generated.
Proof (=) Let X be a generating set for T5. Then we show that the sets
X;=(XnS)u{0} (:=1,2)

generate S; for ¢ = 1,2. For arbitrary s € S;, since s € Top = ( X ), we have
s = xzy---T, where z1,...,2, € X. Since X;X; = X;X; = {0}, it follows
that either s = 0 or z1,...,2, € X;. Therefore X; generates S; (+ = 1,2). In
particular if X is finite, then both X; and X, are finite.

(«=) It is clear that if Sy = (Y1) and Sz = (Y2), then To = (Y ) where
Y = Y; UY;. In particular, Y is finite when both Y; and Y; are finite. [ |

We now construct presentations. First note that if ( A| R) is a presentation
for a semigroup S with zero, then there exists a word w in A* which represents
the zero element of S. By adding a new generator z = w into the presentation,

we have a new presentation (A, z| R, w = z) for S. The new presentation remains
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finite if A and R are both finite. Therefore we consider all finite presentations
for a semigroup S with zero of the form ( A,z | R ) where = represents the zero
element of S. The purpose of this is that the zero element of the 0-direct union

is represented by the same generator in all the presentations for Sy, S; and 7.

Theorem 2.2 Let Ty be the 0-direct union of semigroups Sy and Sy. Then Ty is

finitely presented if and only if both S, and Sy are finitely presented.

Proof (<) Let P, = ( Ay,z| R:) and P, = ( Ay, z | Ry ) be presentations in
terms of YU {0} C S; and YU {0} C S, for S; and S,, respectively. Then
we construct a presentation for Tp in terms of Y =Y; UY, U {0}, since, by the

previous theorem, Y generates Ty. Since each relation from R;, R; and Z where
Z={a1a, =2, aga; = z|a; € Ay, a; € Ay }

holds in Tp, it follows that Tp is a homomorphic image of the semigroup S defined
by the following presentation

Pr = <A1,A2)Z | RlaR2>Z>'

To prove that Tp = S, we show that an arbitrary relation wy = wy, (wq,w, €
At) where A = A;UA;U{ 2}, which holds in Tp, is a consequence of the relations
from Pr.

Let W = (A;U{z})TU(A;U{z})*. Then there exists a mapping ¢ : A* — W
such that, for w € AT, w = ¢(w) is a consequence of the relations from Z. Indeed,
if w e W, then define ¢(w) = w. If w W, then w contains subwords of the
forms ajas or aza; where a; € A; and a; € A;. Then we systematically apply
relations from Z to eliminate all the subwords of the forms aja; or aza; until we
obtain a word @ from W. Then define ¢(w) = w.

Since the relation w; = wy (w1, ws € A1) holds in To, it follows that ¢(w,) =
#(wq) holds in Tp. It remains to prove that the relation ¢(wi) = @(w;) is a

consequence of the relations from R; U R,. Indeed, either ¢(w1) and ¢(w,) are
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in the same free semigroup (A; U{z})T (i = 1,2), or (w;) € (A;U{z}*
and ¢(wz) € (A; U{z})t (1 # j). In the first case, that is ¢(w;) and ¢(w;)
are in the same free semigroup (A; U{ z })* ( = 1,2), then since the relation
¢(wy) = ¢(ws) holds in S; (2 = 1,2), it follows that the relation ¢(w;) = ¢(w,) is
a consequence of the relations from R; (: = 1,2). In the second case, since ¢(w;)
represents an element in S; and ¢(w;) represents an element in S; (i # j), and
since S; N.S; = {0}, it follows that both ¢(w;) and ¢(w,) represent the zero.
Therefore, the relation ¢(w;) = z holds (i = 1,2). Since the relation ¢(w;) = 2z
(2 = 1,2) is a consequence of the relations from R; and ¢(w;) = z (i = 1,2)
is a consequence of the relations from R; (¢ # j), it follows that the relation
¢(wy) = ¢(w2) is a consequence of the relations from R; U R,. Thus the first part
of the proof is now complete.

(=) Let P =(B,z|Q ) be a presentation for T in terms of X. Then define
Bi={b€B|7r(b)€S¢}U{Z} (i:l,?)

where 7 is the natural projection from (BU { z })* onto Tp. Then it is clear that
m(B;) = X; = X N S; which generates S; by the previous theorem.

Since 7(B;) = Xi, and ( X; ) = S; (¢ = 1,2), it follows that the relations
bib, = z and byby = 2z (by € By, by € B;) hold in Ty. By adding these relations

into P we have the following presentation
<B,Z | Q, b2b1 =z, b2b1 =z (bl € Bl, bg € B2)>

for Tp.
Assume that there are some relations » = s in @ such that r or s € (B U
{ z ))*\(B; U BY). If this happens, then it is clear that the relations r = z and

s = z hold in Tp. Since r = s is a consequence of 7 = z and s = z, the following

presentation

<B?Z|Q> b2b1=23 b2b1:Z(b1€B1, b2€B2)),
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where () is obtained from @ by replacing the relation r = s by the relations r = z
and s = z when r or s € (BU { z })*\(B] U B), defines Tj.
Next define

Qi={(r=s5)eQ|rseBf} (i=12)

and

Zi={bz=1z2b=2|beB;} (:1=1,2).

Notice that the relations in Q\(Q; U Q) are redundant relations since they are
all consequences of the relations of the forms b,b, = z and b6, = 2z (b, € By,

b, € B;). Therefore the following presentation

’

P = < B,Z | Ql; QQ, blb2 =2z, bzbl =2z (b1 € Bl, bg € Bz))
defines Ty. Moreover, we show that the presentation
Pi=(Bi|Qi, Z)

defines the semigroup S; (¢ = 1,2). Since n(B;) = X; generates S; (¢ = 1,2) and
all the relations in @; and Z; hold in S; (7 = 1, 2), it follows that S; (¢ = 1,2) is a
homomorphic image of the semigroup defined by P;. Note that since z € B; for
each i = 1,2, it follows that Z; C { b1by = 2, boby = 2| b, € By, by € By }.

Next we show that the relation w; = wy (wy, wy € B) which holds in S; is a
consequence of the relations in @); and Z;.

Let the relation w; = w;y (wy, w2 € BY) hold in S;. Then it holds in Ty, and
so there exists a sequence wy = ay,09,...,a; = wy of words such that a; 4 is
obtained from a; by one application of one relation from the relations of P’, that

is there exist (r; = s;) in P’ and u;,v; € B* (1 < j < k —1) such that
aj = u;r;v; and a1 = u;s;v;.

If all the relations r; = s; (1 < j < k—1) are in ;U Z;, then the relation w; = w;

is clearly a consequence of @); U Z;. If they are not all in Q;, then there exists
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1 < ¢ < k such that (r; = s;) € Q; U Z; for j < qand (r, = s,) € @Q; U Z;. This

is possible when r, = z and s, ¢ Bf". Since a, = u,2v, € B}, it is clear that
o, = z 1s a consequence of the relations from Z;. Therefore we have a sequence
Wy = Q1,0 Q1,0 = P, . .., B = z where (41 is obtained from £y (1 < A <
n —1) by applying one relation from Z;. Similarly, by considering w, € B}, there
exists ¢ < p < k such that (r; =s;) € Q;UZ; for 5 > pand (r, =s,) € Q; U Z;.
Similarly we have a sequence z = v1,... ,Ym, Qpt1,- .. , = wy such that v, is

obtained from 7,4, by applying one relation from Z; (1 < ¢ < m —1). Thus we

have the following sequence

wy = o1,... ,Clq_l,ﬁl,... ,,Bn,Z,’)’l,... s Ymy Opgls . ooy O = Wp

which is a consequence of the relations from @; U Z;. Therefore the presentations
P; = ( B; | Qi, Z;) define the semigroups S; (: = 1,2). In particular if P is a
finite presentation then P’ is finite, and so each P; is a finite presentation for S;

(1 = 1,2), as required. u

Note that it is an immediate consequence of the proof of Theorem 2.1 that
rank(S;) + rank(Sz) — 2 < rank(7p) < rank(S;) 4 rank(Sz). Note also that, by

the previous theorem, we have the following corollary:

Corollary 2.3 If S; is defined by the presentation ( A; | R; ) for it = 1,2. Then

the presentation
(A, Ay, | Ri, Ra, w1 = ws, aja; = wy, a2a; = Wy (a1 € Ay, az € Aj) ),

where w; € A] represents the zero element of S; (i = 1,2), defines the 0-direct
union of Sy and S,.

2.2 Finiteness conditions

In this section, we study some finiteness conditions, namely being periodic, locally

finite, locally finitely presented, residually finite and hopfian, and having soluble
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word problem for 0-direct unions of semigroups with zero. Before we state and
prove our main results on finiteness conditions, we first give the following lemma

which will prove useful for the remaining part of this section.

Lemma 2.4 Let S and T be two semigroups, and let ¢ : S —> T be an onto

homomorphism. If S contains a zero Og, then T contains a zero O, and moreover

#(0s) =07.

Proof Lett € T be arbitrary. Since ¢ is onto, there is some s € S such that
#(s) = t. It follows that

td(0s) = ¢(s)p(0s) = ¢(s0s) = #(0s),

and so ¢(0s) is a right zero for T'. Similarly, it is shown that ¢(0s) is a left zero,
and so ¢(0s) is a zero element for T'. By the uniqueness of the zero element, we

have ¢(0s) = Or, as required. [

Next we state and prove our main results on the first four finiteness conditions

listed above.

Theorem 2.5 Let Ty be the 0-direct union of semigroups S; and Sz. Then

(i) To is periodic if and only if both Sy and S, are periodic;

(ii) To is locally finite if and only if both Sy and Sz are locally finite;

(iii) Ty is locally finitely presented if and only if both Si and S; are locally
finitely presented;

(iv) Tp is residually finite if and only if both Sy and S5, are residually finite.

Proof (i) The proof is clear.
(ii) (=) Every subsemigroup of a locally finite semigroup is itself locally finite.

(<) Let U be any finitely generated subsemigroup of T5. Then define U; =
UnS; (i=1,2). It is clear that U? (i = 1,2), where U? is obtained from U; by

adjoining the zero element of Tp if necessary, is a subsemigroup of S; (i = 1,2).
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It is also clear that U°, which is obtained from U by adjoining the zero element
of T, if necessary, is finitely generated and it is the 0-direct union of U? and U3.
Since U? and UY are finitely generated by Theorem 2.1, it follows that both U
and U are finite. Thus U° is finite, and so is U.

(iii) («) Every subsemigroup of a locally finitely presented semigroup is itself

locally finitely presented.

(=) Let U be any finitely generated subsemigroup of To. Then define U; =
UNS; (1 = 1,2). With the above notation, both U? and Uy are finitely generated.
Therefore they are finitely presented. It follows, from Theorem 2.2, that U° is
finitely presented. Since U° is a small extension of U, it follows from [56, Theorem

1.3] that U is finitely presented.

(iv) (<) Every subsemigroup of a residually finite semigroup is itself residually

finite.

(=) Let s and ¢ be two different elements in 7. If they are not in the same
subsemigroup S; (¢ = 1,2) of Tp, then both of them are distinct from the zero
element. Assume that s € S; and ¢ € S,. Since S is residually finite, there
exists a finite semigroup S and a homomorphism % from S; onto S such that
¥(t) # ¥(0). Since, by Lemma 2.4, S has a zero such that ¢(0) = 0, we define
¢: Ty — S by

P(w) = ,
0 lf w & Sl.
Since 1 is onto, it is clear that ¢ is well-defined. Thus it follows that ¢ : Tp — S
is an onto homomorphism such that ¢(s) = 1(0) # ¥(t) = ¢(¢).
If s, t are both in the same subsemigroup Sy or 53, say s,¢ € Sz, then there

exists a finite semigroup S’ and a homomorphism ¢ from S; onto S’ such that

o(s) # o(t). Since, by Lemma 2.4, S has a zero such that ¢(0) = 0, similarly, we
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define ¢ : Ty — S’ by

o(w) ifweS,
0 if we 5.

p(w) =

It is also clear that ¢ is a well-defined onto homomorphism from Tj onto S’ such

that ¢(s) # ¢(t), as required. ]
We now study the word problem for the 0-direct union of semigroups.

Theorem 2.6 Let Ty be the 0-direct union of semigroups S; and Sy, and let Ty
be finitely generated. Then Ty has soluble word problem if and only if both S; and

Sy have soluble word problems.

Proof (=) Let T have soluble word problem. Since both S; and S, are finitely
generated subsemigroups of the finitely generated semigroup 7T by Theorem 2.1,
it follows that there exist two finite generating sets Y; and Y, for S; and S
respectively. Since Y = Y; UY, is a finite generating for Tp, there exists an
algorithm which for any two words w;, w; € Y decides whether w; = w, holds
in Ty or not. In particular, for any two words w;, w, € Y;, the algorithm decides
whether w; = w, holds in S; or not, and hence both 5} and 53 have soluble word
problem.

(<) Let both S; and S; have soluble word problem, and let X be a finite

generating set for Tp. Then, as in the proof of Theorem 2.1,
X;=(XnS)u{0}
are finite generating sets for S; for (i = 1,2). Note that the set
Z={z12,=0, 2321 =0 |21 € X1, 2, € X3 }

of relations, which hold in T, is finite.
For any two words w;, w; € X, one can use some relations from Z to obtain

words w}, wy € X7T such that w; = w] holds in Ty and that either w) € X;
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(1 =1,2) or wi € XF (1 = 1,2). If w} and w) are not in the same free semigroup
X (1 =1,2), then it is immediate that the relation w} = w), does not hold in Tp.
If both w} and w} are in the same free semigroup X} (¢ = 1,2), then w; = w)
is decidable since both S; and S; have soluble word problem. Therefore Tp has a

soluble word problem, as required. |
We finish this section with the concept of hopfian semigroups.

Theorem 2.7 Let T be the 0-direct union of semigroups S; and Sy. If Ty ts
hopfian then both Sy and S, are hopfian.

Proof Let T, be hopfian and let 3; : S; — S; be an onto endomorphism
(1 = 1,2). Then define ¢; : Ty — T by

W if w Si,
@(w):{w ) ifwe

w otherwise.

Since t; is onto, it follows from Lemma 2.4 that ;(0) = 0, and hence ¢; is a
well-defined onto endomorphism of Tp. Since Tp is hopfian, it follows that ¢; is
an automorphism, that is ker(¢;) = { (w,w) |w € To } = Ar.
Since
ker(¢;) UAs, = Ar = As, U Ag,
where Ag, = {(s,s)|s € Si} (1,7 =1,2) and (i # 5 € {1,2}), it follows that
ker(t;) = As,. Therefore ¢; is an automorphism of 5;, as required. [ |

Open problem. Let Tj be the 0-direct union of semigroups S; and 5;. Is it
true that if both S; and S, are hopfian, then T is hopfian?

2.3 Subsemigroups and ideals

Let U be a subsemigroup (one or two-sided ideal) of To. Then define U; = U N S;
for ( = 1,2). If U; is not empty then it is easy to see that U; is a subsemigroup of
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Si (¢ = 1,2). (Note that if U is a one or two-sided ideal than U; (i = 1,2) is not
empty since 0 € U; (1 = 1,2).) Now assume that both U; and U, are non-empty.
Then, for s; € U; and s; € Us, s15, =0 € U. Therefore 0 € U; (: = 1,2), and so
U is the 0-direct union of U; and Us,.

Notice also that .S; (¢ = 1,2) is a subsemigroup (one or two-sided ideal) of Tj.

Theorem 2.8 Let Ty be the 0-direct union of the semigroups S; and S;.

(1) To has finitely many subsemigroups (one or two-sided ideals) if and only if
both Sy and Sy have finitely many subsemigroups (one or two-sided ideals).

(ii) Every subsemigroup (one or two-sided ideal) of Ty has finite index if and
only if both Sy and S, are finite, or equivalently, if and only if Ty is finite.

Proof First we prove the result concerning subsemigroups.

(i) (=) Since every subsemigroup of S; ( = 1,2) is a subsemigroup of 7Tj, it
follows that S; (z = 1,2) has finitely many subsemigroups when 7, has finitely
many subsemigroups.

(<) Let U be a subsemigroup of Tp. Then define U; = U N S; for (+ = 1,2).
It is clear that if one of them is empty, say U; is empty, then U = U; (1 # )
and U = U; is a subsemigroup of S;. If both U; and U, are non-empty, then U
is the 0-direct union of the subsemigroups U; and U, of S; and S,, respectively.
Hence we deduce that the number of subsemigroups of Ty, n, is smaller than
ni + ns + ning where n; denotes the number of subsemigroups of S; (1 = 1,2).
Therefore n is finite when both n; and n, are finite.

(ii) (=) Let every subsemigroup of Tp have finite index. Since S; is a sub-
semigroup of Ty, it follows that To\S; = S;\{ 0} is finite (5 # ¢). Therefore S; is
finite, and so T is finite.

(<) The converse is clear.

Next we prove the result concerning left ideals. The cases of right and two-

sided ideals are proved similarly.
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(1) (=) Let I; be a left ideal of S; (: = 1,2). Then it is clear that 0 € I; and
I; is a left ideal of Ty. It follows that S; (: = 1,2) has finitely many left ideals
when T, has finitely many left ideals.

(<) Let J be a left ideal of Ty. Then define J; = J N S; for (1 = 1,2). Since
0 € JiNJs, both of J; and J; are non-empty. Hence J is the 0-direct union of the
left ideals J; and J; of Sy and Sy, respectively. Hence we deduce that the number
of left ideals of Ty, m, is smaller than m;m, where m; denotes the number of left
ideals of S; (1 = 1,2). Therefore m is finite when both m; and m, are finite.

(ii) (=) Let every left ideal of Ty have finite index. Since S; is a left ideal of
Ty, it follows that To\S; = S;\{ 0} is finite (j # ¢). Therefore S; is finite, and so
T, is finite.

(<) The converse is clear. [ |

Note that all the results which have been obtained for the 0-direct union of two
semigroups can be generalised for a 0-direct union of finitely many semigroups

with zero. For example we have the following immediate corollary.

Corollary 2.9 A regular semigroup in which every non-zero idempotent is prim-
itive is finitely generated (respectively, presented) if and only if it is a 0O-direct
union of finitely many completely 0-simple semigroups which are finitely gener-

ated (respectively, presented). ]



Chapter 3

(Generators and Relations of Rees

Matrix Semigroups

Rees matrix semigroups are one of the most important semigroup constructions,
with numerous applications. Especially, they are very important for the structure
theory of simple semigroups (see [48] or [29]). In this chapter we give necessary
and sufficient conditions for a Rees matrix semigroup over a semigroup to be
finitely generated or finitely presented (for a survey for Rees matrix semigroups
over semigroups, see [46]).

Let S be a semigroup, let I and J be two index sets and let P = (pji) ey, eI

be a J x I matrix with entries from S. The set
IxSxJ={(,s7)]|1€l,s€85, €]}
with multiplication defined by
(2,5,7)(k,t, 1) = (2, spjrt, 1)

is a semigroup. This semigroup is called a Rees matriz semigroup, and is denoted
by M|[S;1,J; P].
If S is a group, then 7' is a completely simple semigroup, and, conversely, every

completely simple semigroup can be obtained in this way; see (48] or [29]. There
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is a similar construction for completely 0-simple semigroups; this is considered in
Section 4.
The results of this chapter will appear in Proceedings of the Edinburgh Math-

ematical Society (see [5]).

3.1 Generators

The purpose of this section is twofold. In it we prove a necessary and sufficient
condition for a Rees matrix semigroup to be finitely generated. In the process
we also construct certain natural generating sets for S and T', thus preparing the

ground for the material on presentations considered in Sections 2 and 3.

Proposition 3.1 Let T = M[S;1,J; P] be a Rees matriz semigroup, and let U
be the ideal of S generated by the entries of P. If T is finitely generated then I,
J and S\U are finite sets.

Proof Observe that, for any (,s,j),(k,t,l) € T, we have (z,s,7)(k,t,1) =
(¢,3pjkt,!) and spjxt € U. Therefore, if S # U, then every element of the set
I x (S§\U) x J is indecomposable (i.e. not equal to the product of two elements
from T'), and hence belongs to every generating set of T'. If 1" is finitely generated,
then all I, J and S\U must be finite. If S = U, we show that I and J are finite.
First we fix sg € S and jo € J. Then, for each 1 € I, we have

(ia 303j0) = (ilv Slajl) e (va Sn?jn)

where (i1, 51, 71)s - » (in, Sn, Jn) belong to a finite generating set X for T. Since

i, must be equal to i, it follows that I is finite. Similarly, it is shown that J is

finite. [ |

Next we describe a generating set for S, given a generating set for T'.
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Proposition 3.2 If X is a generating set for a Rees matriz semigroup T =

M|[S;1,J; P], then the set

Y={s€S5|(s7)€X forsomeiel, jeJ}U{p;|jed, iel}

generates S.

Proof Let s € S be an arbitrary element. By taking arbitrary : € I, 57 € J and
decomposing

(i,S,j) = (ihslajl) t (Zma vajm) = (il,slpj1i252 t 'pjm—1im3m3jm)
into a products of generators (¢1,$1,71); .5 (¢m, Sm,Jm) € X, we conclude that
8 = 81Pj1ipS2 " * Pjpm_rimSm € (Y'), as required. ||

Now we construct a natural generating set for 7', assuming that .S is a monoid.

Proposition 3.3 Let S be a monoid and let T = M([S; I, J; P] be a Rees matriz
semigroup. Denote by U the ideal of S generated by the entries of P, and let
Z be a set generating U as a semigroup. Write an arbitrary element z € Z as

3(2)Pi(2)i(z)8'(2) with s(z), s'(z) € S, j(z) € J and i(2) € I, and let
H={s(z),s(z)eS|ze Z}uU{1}.

Then the set
X:[X(HZUS\U) x J,

where H? = { hh' | h,h' € H }, generates T.

Proof Take an arbitrary element (z,s,7) € T. If s € U, then (s,s,7) € X.

Assume that s € U, say s = 21 -+ - 2, Where 21,..., 2, € Z. Then we have

(i,8,7) = (1,21 2m,])
= (i,5(21)p5is'(21) -+ $(2m)Pimim s’ (2m), 7)
= (Z, S(Zl),jl)(il, S,(Z1)S(Z2),j2) c (imasl(zm)vj) € ( X >>
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completing the proof. |

Remark If S is not a monoid, one can still construct a generating set for T' along

the same lines, replacing H? by the set
[s(2), /() |2 € 2} U{(2)s(2) | 2 € Z }.

However, it is the generating set given in Proposition 3.3 which will prove useful in
Section 3. Alternatively, when S is not a monoid one may note that M([S; I, J; P]
is a subsemigroup of M[SY;1,J; P] (where, as usual, S* denotes the monoid
obtained from S by adjoining an identity element), and then use the methods
from [37, 15, 18] or [56] to obtain a generating set for M[S; I, J; P]. This idea is

used in the following:

Theorem 3.4 Let S be a semigroup, let I and J be index sets, let P = (pji)jeJ, icl
be a J x I matriz with entries from S, and let U be the ideal of S generated by
the set {p;i | j € J, 1 € I '} of all entries of P. Then the Rees matriz semigroup
T = M[S;1,J; P) is finitely generated if and only if the following three conditions
are satisfied:

(i) both I and J are finite;

(ii) S is finitely generated and;

(iii) the set S\U is finite.

In particular, if S is a group, then T is finitely generated if and only if S is
finitely generated and both I and J are finite.

Proof (=) The result follows from Propositions 3.1 and 3.2.

(<) Let S be finitely generated, and let I, J and S\U be finite. It follows
by Theorem 1.12 that U is finitely generated as a semigroup. Therefore, by
Proposition 3.3, T = M[S%; I, J; P] is also finitely generated. Finally, note that
T\T C I x {1} xJ is finite, so that T is finitely generated by Theorem 1.12. W
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3.2 Presentations (1)

In this section we construct a presentation for a semigroup S, starting from a
presentation for a Rees matrix semigroup T' = M([S; I, J; P]. This presentation
for S is finite whenever the starting presentation for T is finite.

Let H = {(i(k), s(k),7(k)) |k € K} be a generating set for T' = M|[S; I, J; P].
If we define Y = { s(k) |k € K }, then it is clear that the set X = I xY x J
contains H, and so generates T. Moreover, it is clear that if X is finite then Y,
and so H, is finite. Conversely, if H is finite then, by Proposition 3.1, both I and
J are finite, and so X is finite.

Take an alphabet
A={a(ny,j)liel,yeY, jeJ}

in one-one correspondence with X. Let ( A| R) be a presentation for 7' in terms

of X, and let
mr i AT = T, a(i,y,5) = (1,9,9), (1)
be the natural projection. By Proposition 3.2, the set
YU{piljed, iel}
generates S. Take a new alphabet
C={cly)lyeY}u{dyaljeJ iel}

and let

rs:Ct =8, c(y)—y, d(J,t) — pji (2)

be the natural projection.

Next we define a mapping ¢ : AT — C* by

¢'(a(ila ylyjl) T a(imv ymvjm)) = C(yl)d(jl’ iz)C(yz) e d(jm—him)c(ym)’ (3)
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where i1,...,%, € I, Y1,..,ym € Y, and j1,...,Jm € J. (Intuitively, ) rewrites a
word w € AT into a word from C* which represents the middle component of
the element mr(w) € T.)

For a word w = a(21,Y1,J1) " - - @(tm, Ym, Jm) € AT, define
A(w) = ¢; and p(w) = jm.

With this notation, the above definition of ¢ has the following immediate conse-

quence

P(wiws) = Pp(wi)d(p(wr), Awz))(w2) (4)

for all wy,w, € A*. Notice that if w; = w; holds in T, then A(w;) = A(w;) and

p(w1) = p(w).
If we let W = im(¢), then we have the following:

Lemma 3.5 For all y,y' € Y, 1 € I and j € J, there exist words ((y,y’),
n(j,2) € W such that

((y,y") (5)

o)
—
x
~—

O
—~
Ny
—

Il

hold in S.

Proof Let w € Ct, 15 € I, jo € J be arbitrary, and consider the element

(10, ms(w), jo) € T. If we write
(10, ms(w), Jo) = (11,Y1571) -+ * (¥ms Yy Jm)
a product of generators from X, we conclude that
Ts(w) = Y1Pi1i¥2 " * Pim-1imYm-

For 0’ = c(y2)d(jn,i2)e(u)  d(jm-1,im)e(ym), We now have u/ € W, and the
relation w = w’ holds in S. By putting in the above argument w = ¢(y)c(y’) and

w = d(j,1) respectively, we complete the proof. [
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For the remainder of this section, we consider the words ((y,y’), n(J,1) to be

fixed as given in Lemma 3.5.

Lemma 3.6 There exists a mapping o : Ct — W such that the relation w =

o(w) is a consequence of the relations (5) and (6).

Proof If w € W, then define o(w) = w. If w ¢ W then first apply (6) to obtain
a word ¢(y; )wic(y2) containing no subword of the form d(ji,4;)d(js,2), and then

systematically apply (5) to eliminate all the subwords of the form c(y)c(y’). B

Intuitively, o rewrites an arbitrary word from C* into a corresponding word
in the image of ). We now use o to define a mapping ¢ : Ct — A", which will

act as a kind of inverse to 1, as follows:

(b(w) = a(io, yl)jl)a’(i% y27j2) o a(i'm’ ym’jo) (7)

where 19 € I and jo € J are fixed and where
O'(UJ) = C(yl)d(jh iz)C(yg) e d(jm—l: Zm)c(ym) (8)

Finally, we let

p:T =S, (i,8,7)—s

be the second projection. In the following lemma, we establish certain connections

between 7, 7T, ¢, ¢ and p.

Lemma 3.7 (i) For any word w € C*, we have prrd(w) = ms(w).

(ii) For any word w € A, we have urr(w) = s (w).
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Proof (i) If o(w) = c(y1)d(J1,22)c(y2) - - - d(Jm—1,%m)c(ym ), then
prrp(w) = pmrr(a(io, yi,J1)aliz, y2,J2) - - - a(imy Ym, Jo)) (7)
= (b0, y1,51)(22, Y2, J2) - - * (im, Yms Jo)) (1)
= (%0, Y1Pj1i2¥2 " ** Pin_yim¥Ym Jo))
= UPjii2¥2 PimeiimYm
= ns(o(w)) @)
= 7s(w). (Lemma 3.6)
(i1) If w = a(i1, y1,J1)a(t2, Y2, J2) - @(Srmy Yms Jm ), then
prr(w) = p((1,y1,01) (2, Y2, 52) (I Yms i) (1)
= (11, Y1Pj1Y2 " " * Pim—rimYms Jm))
= UPji¥2 " Pim_yimYm
= ms(c(y1)d(g1,i2)e(y2) -+ d(m—1,1m)c(ym) (2)
= msp(w), (3)

as required. [ |

Now we can state and prove the main result of this section.

Theorem 3.8 Let T = M([S;1,J; P] be a Rees matriz semigroup and let ( A| R)
be a presentation for T in terms of a generating set of the form I XY x J, with

Y C S. With the above notation, S is defined by the presentation;

(Cl ¥(u)=1(v) (u=v) € R) (9)
c(y)ely) =C(vy) (v, €Y) (10)
d(j,7) = n(3,7) Ged,iel) ) (11)

in terms of the generating set Y U{p;i|j € J, i €1}

Proof Since the relation u = v holds in T, it follows that mr(u) = 7r(v), and

so , by Lemma 3.7 (i1), we have

msp(u) = prr(u) = prr(v) = 7s9(v).
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Thus, all relations (9) hold in S. That all relations (10) and (11) hold in S follows

from Lemma 3.5.

To complete the proof of the theorem, we show that an arbitrary relation
w; = wy (wy,wy € CT) which holds in S is a consequence of (9), (10) and (11).
We do this in three steps.

Step 1: The relation ¢(w1) = ¢(ws) holds in T. Indeed, by Lemma 3.7 (i), (1)

and (7), we have

7TT¢(w1) = (ioalmﬂb(wl) ]0) (ZO,'"'S(U)I) jo)
= (io,ﬂ's(wg),jo) = (iO’MWT¢(w2)’jO)
= mr(p(ws)).

Step 2: The relation pé(wy) = Yé(ws) is a consequence of (9). From Step 1,
we know that ¢(ws) can be obtained from ¢(w;) by applying relations from R.
Without loss of generality, we can assume that ¢(w;) can be obtained from ¢(w;)

by one application of one relation (v = v) € R, i.e. that

d(w1) = auf and ¢(w,) = avf

for some a, 8 € A*. If both « and (3 are non-empty, then we have

pp(wi) = P(ouf)
= y(a)d(p(e), A(w))P(u)d(p(u), A(8))¥(B) (by (4))
= p(a)d(p(e), \(u))P(v)d(p(u), A(B))¥(8) (by relation (9))
= P(a)d(p(e), A(v))d(v)d(p(v), A(8))%(B) (since u =vinT)
= ¢P(avh) = Ppé(w2)
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If o is empty but g is non-empty, then we have

po(wr) = P(up)
= P(u)d(p(u),A(8))¥(8) (by (4))
= P(v)d(p(u), A(8))¥(8) (by relation (9))
= P(v)d(p(v), A(8))%(B) (since u=vin T)
= P(vh) = Yo(wa).

The cases where 3 is empty or where both « and 3 are empty are treated similarly.
Step 3: The relation Yp(wi) = wy (k = 1,2) is a consequence of (10) and (11).
Indeed, by (3), (7), (8) and Lemma 3.6, we have

P(P(w)) = o(wi) = wy (k= 1,2),

as a consequence of (10) and (11).

The proof of the theorem is now complete. [

Corollary 3.9 If T = M|S;1,J; P] is finitely presented, then so is S.

Proof As explained at the beginning of this section, if T is finitely generated,
then it has a finite generating set of the form I x Y x J. Moreover, if T is finitely
presented, it can be defined by a finite presentation ( A | R) in terms of this
generating set. An application of the previous theorem to ( A| R) yields a finite

presentation for S. ]

3.3 Presentations (2)

Now we find a presentation for a Rees matrix semigroup T = M(S; I, J; P], given
a presentation for the ideal U of S generated by the entries of P. We do this in
the case where S is a monoid. Then we use the main result of [56] to extend this

presentation to the case where S is an arbitrary semigroup.
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So let S be a monoid, let T = M[S; I, J; P] be a Rees matrix semigroup and
let U be the ideal generated by the set { p;; |t € I, j € J } of all entries of P.
Let Z C U be any set generating U as a semigroup. As in Proposition 3.3, write

an arbitrary element z € Z as
z = s(2)pj(2)i(2)s' ()
with s(z),s'(z) € S, i1(z) € I, j(2) € J and let
H={s(),8(z) |z € Z}U{1}.
Then, clearly, the set
Y ={hpjih' |h,h€H, jeJ iel}

contains Z and hence generates U as a semigroup. Moreover, Y is finite, provided
that Z, I and J are all finite.
Now let
C ={c(h,j,i,h") | A,k € H, je J, 1 €1}

be a new alphabet representing elements of Y, and let ( C | R) be a presentation

for U. For technical reasons, we also introduce an alphabet
D ={d(s)|seS\U}

representing the elements of S\U. It is obvious that the set Y U S\U generates

S, and so the natural homomorphism
ms: (CUD)T = S, c(h,j,i,h') = hp;ih!, d(s) s (12)
is onto. By Proposition 3.3, the set
X=1Ix(HUS\U)xJ
generates 1. Let

A={a(i,k,h,j)|i€l, b, €H, jEJ}
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and
B={b(,s,7)|t€l, seS\U, jeJ}
be two alphabets, and let

mp i (AUB)Y =T, a(i,l,h,5) = (i, 'k, §) b(i,s,5) = (i,s,5)  (13)

be the natural projection.

Next, we define a mapping ¢ : (I x H x C* x H x J) = At by
¢(i7h,7w7h)j) - a(iah,’ hlvjl)a(ihh’ph?)jZ) Tt a(imah;n’haj) (14)

where w = ¢(h1, 1,11, R)) - ¢(hmy Jmy tm, AL,) € CF. Intuitively, ¢(i, h', w, h, j)
is a word in At representing the element (i, h'ms(w)h, 7) € T. Immediately, from

the above definition of ¢, it follows that

¢(3, B’ wic(h, ji, 11, hy)wa, by 7) = (6, B, wi, ha, j1)@(2n, by, w2, h, 5) (15)
forall¢,0, € I, 7,751 € J, h,h' hy, b} € H and all w;,w; € C*, where we introduce
the convention that ¢(z,h’, €, h,j) = a(i, A, h, J).

We also need a mapping (AU B)t — (C U D)*, which rewrites a word
w € (AU B)* into a word representing the middle component of m7(w). To this
end, we let
W={¢@G1wl,j)|iel,we At, jeJ},
and then establish certain relations allowing us to transform words from (AU B)*

into W.

Lemma 3.10 For arbitraryi,i',7" € I, j,7',7" € J, h,h' € H and §',s" € S\U,
there exist words C:(l, hl, h,]) e Wu B) U(i" iﬂvj,a.j”asl, 3”)) a(iai,aj’jla h’ h,a 3/))
Mi,7', 5,5 bR, s") € W osuch that

[—
N |

P e
—
— e e N
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hold in T.

Proof Let w € (AU B)* be arbitrary, and write mr(w) = (40, 8, o). If s € S\U

then define w’ = b(io, s, 70). Otherwise, if s € U, then we can write
s =hipj,i,hy - hmpinin bl
a product of generators from Y, and then define
w' = a(to, 1, k1, J1)a(iy, Ry, hey o) - - - a(im, Al 1,50) € W.

With this choice we have w' € W U B, and the relation w = w’ holds in
T. The proof of the lemma is completed by letting w = a(i,h',h,7), w =
b(e',s',3M)b(:", ", 3"), w = b(¢', ¢, 5)a(i, A’ h,7) and w = a(e, ', h, 7)b(V, s, 7)

respectively, and noting that in the last three cases we cannot have w’ € B. W

For the remainder of this section, we consider the words (, n, § and A to be

fixed.

Lemma 3.11 There erists a mapping o : (AU B)tY — W U B such that the
relation w = o(w) is a consequence of relations (16)-(19) for every word w €

(AU B)*.

Proof Letw € (AUB)*. First replace each a(,h’, h, ) in w by the correspond-
ing (i, k', h, 7). If the resulting word is b(:', ', j') define o(w) = b(<', ', j'). Oth-
erwise, use (17), (18) and (19) to systematically eliminate all symbols b(s', s', 5'),
and define o(w) to be the resulting word. ]

Now we define the required mapping ¢ : (AU B)t — (C U D)% as follows:

d(s) if o(w) = b(¢,s,7),
1/)(w) = C(hlajlvilvh,l)'"c(hm?jmaim7h;n) (20)
if a(w) = a(i, 1, hl,jl)a(il, h,l’ hg,jg) s a(im, h:n’ 1,])
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As before, we also let
p:T =S5, (i,8,7) s,

be the second projection.

Lemma 3.12 (i) For all w € (AU B)*, we have mgip(w) = prr(w).
(ii) Forallw € C*, i€ I, 5 € J hh € H, we have urpe(i,h',w,h,j) =
hlﬂ's(w)h.

Proof (i) If o(w) = b(i, s, j), then
msp(w) = ms(d(s)) = s = p((3, 5, 7)) = prr(b(s, s, 7)) = prro(w) = prr(w)
by (20), (12), (13) and Lemma 3.11, while if
o(w) = a(1,1, hy,51)a(is, i, hay o) - - a(im, hiny 1,7) € W,
then it follows from (20), (12), (13) and Lemma 3.11, respectively that
msp(w) = ws(e(hy,ji, i1, hh) - (Rms Jmy Tms rn))

= hipjihl AmPiminhi,

= p(t, hapjiis By - P i > 7)

= (5,1, k1, 1) (11, Ry, b2y g2) - - (imy By 1,5))

= P”TT(a(ia 1) hlajl)a(ila hlla h2>j2) e a(im’ h,/m, 1).7))

prro(w) = prr(w),
as required.
(1) T w = c(hry juyin By) -+~ oy Grmsims i) € C, then it follows from (14),
(13) and (12), respectively that
urrd(i, B w, by 3) = prr(a(i, i, ey j1)ain, by, ha, j2) - - alim, by, b, )
= u((5, A hiy51) (i1, Ry, Ray J2) o+ (imy By By 5))
= p(i, B (P1pjyinhy) - (hmPimimbm ), 7)
= K(h1pjriht) - (AmPimin )b
= h'rs(w)h,
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as required. u

Next we give a presentation for a Rees matrix semigroup over a semigroup.

Theorem 3.13 Let S be a monoid, let T = M[S;1,J; P] be a Rees matrix
semigroup, and let U be the ideal of S generated by { p;; | 7 € J, i € I}. [
(C'|R) is a presentation for U in terms of a generating set Y = { hp;;h' | h,h' €
H,jeJ 1e€l} withl € HCS, then, with the above notation the presentation

with generators AU B and relations

(21)

(22)

i, OB ) = 017,37, (23)
0(i,7,5,7',h, k', ), (24)

(25)

(
a(i,h' b, )b, s, 5') = A5, 7, 7,5, hy R, S, 25

where (u =v) € R, 1,7',1" € 1, 3,7',5" € J, h,h' € H, §',s" € S\U, defines T in
terms of the generating set X = I x (H*US\U) x J.

Proof Note that by (13), (14) and Lemma 3.12 (ii), we have

7TT¢(i> b u, h,j) = (¢, ﬂﬂ'T¢(i’ h,u, hnj)’j) = (i’ h'ws(u)h,j)
= (Z',hlﬂ's(v)h,j) = (Z, NWT¢(i,hI,U,h,j),j)
— 7TT¢(i7hI’U’h7j)a

and thus all relations (21) hold in T'. That all the other relations (22)-(25) hold
in T' was proved in Lemma 3.10.

To complete the proof of the theorem, we show that any relation w; = w,
(wy,w; € (AU B)*) holding in T is a consequence of the relations (21)-(25).
Recall that o(w;),o(w;) € W U B. Note that the words from W represent

decomposable elements of T, while the letters from B represent indecomposable
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elements of T. Therefore we have o(w;) € B if and only if o(w;) € B. Also
note that distinct letters from B represent distinct elements of T by (13). Thus,
if o(w;),0(ws) € B, then we must have o(w;) = o(w;), and then we have
w; = o(w;) = o(wz) = w; as a consequence of the relations (22)-(25) by Lemma

3.10.

For the remainder of this proof, we consider the case o(w,),o(w;) € W. We
proceed in three steps.
Step 1: The relation (w;) = ¥ (w,) holds in S. Indeed, by Lemma 3.12 (i), we

have

msp(wr) = prp(wi) = prp(ws) = Tsih(we).

Step 2: The relation ¢(1,1,%(w1),1,7) = &(2,1,¢¥(w2),1,7) is a consequence of
the relations (21). From Step 1, it follows that ¢(w;) can be obtained from ¢ (w;)
by applying relations from R. Without loss of generality, we may assume that it

can be obtained by one application of one relation from R, say

P(wy) = auf and P(w;) = avp,

where a, 8 € C*, (u = v) € R. If both o and  are non-empty, then we can write
a = ajc(hi, J1,11, hy) and B = ¢(he, j2, 12, h5)B1, and then we have

¢(i, 1, xc(ha, ji, 11, hy)uc(ha, J2, 02, B5)B1, 1, 5)
¢(1,1, 1, b, J1)Bin, By, us ha, 52)d(i2, by, By 1, 5)
= (i, 1,01, by, 1) (i1, Ry, v, ha, 2)d(i2, ha,y Br, 1, )
(
(

¢(la 1’ d)(wl)? 1a])

(;S 7;, laalc(hlvjlailvhll)vc(h27j2ai2ah‘/'_)):Bl, 13])
¢ ia 17 1[)([02), 1aj)a

1

by using (15) and (21). If o is empty but § is non-empty, then we can write
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B = c(hq, Ja, 12, hy)P1, and then we have

¢(7'a 1’ ¢(w1)a 17]) QS(Za ]-a uc(h27j27 i?a hlz)/Bla 1a.7)
¢(i11 1) u, h?aj2)¢(i27 h,2a /817 17])
- (rb(ila 17U7h27j2)¢(i21 hlmﬂla 1,.7)
(

¢ i, 1,1)C(h2,j2,i2,h’2),81, 17]) = d)(la 1,’()&(11)2), l’j)7

Il

by using (15) and (21). The cases where 3 is empty or where both o and 3 are
empty are treated similarly.

Step 3: The relations wy = ¢(1,1,¢¥(w),1,7), k = 1,2, are consequences of
(22)-(25). To prove this, it is enough to note that, by (14) and (20), we have
#(1,1,¢¥(wk),1,7) = o(wg). Then apply Lemma 3.11. The proof of the theorem

is now complete. [ |

Theorem 3.14 Let S be a semigroup, let I and J be index sets, let P = (p;;)
be a J x I matriz with entries from S, and let U be the ideal of S generated by
the set { p;i |7 € J, 1t € I} of all entries of P. Then the Rees matriz semigroup
T = M[S;1,J; P] is finitely presented if and only if the following three conditions
are satisfied:

(i) both I and J are finite;

(i1) S is finitely presented and;

(iii) the set S\U is finite.

In particular, if S is a group, then T is finitely presented if and only if S is
finitely presented and both I and J are finite.

Proof (<) The result follows from Corollary 3.9.

(=) If S finitely presented then so is U by Theorem 1.13. As explained at
the beginning of this section, U can be generated (as a semigroup) by a finite set
Y = { hp;ih' |h,h € H, j € J, i €1} wherel € H C S1. Moreover, U can

be presented by a finite presentation ( C | R ) in terms of Y. From the previous
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theorem, it follows that 7' = M[S*; I, J; P] is finitely presented. Finally, note
that 7\T' C I x {1} x J is finite, and hence T is finitely presented by Theorem
1.13. |

3.4 Rees matrix semigroups with zero

One common variant of the Rees matrix construction is as follows. Let S be a
semigroup with zero, and let 7' = M][S; 1, J; P] be a Rees matrix semigroup.
The set I x {0} x J is an ideal of T'. Hence one can form the Rees quotient
T'/(Ix{0}xJ)to obtain a new semigroup. This semigroup is called a Rees matriz
semigroup with zero, and is denoted by T' = MP[S; I, J; P]. It is well known that
if $ = G° is a group with a zero adjoined, and if P is reqular, in the sense that
no row or column of P consists entirely of zeros, then T is a completely 0-simple
semigroup, and it is also well-known that all completely 0-simple semigroups can
be obtained in this way (see [48] or [29]).

Our main results of this chapter remain valid for this new construction, that

is we have the following result for a Rees matrix semigroup with zero.

Theorem 3.15 Let S be a semigroup with zero , let I and J be index sets, let
P = (pj;)jet,icr be a J x I matriz with entries from S, and let U be the ideal of S
generated by the set {p;i|j € J, 1 € I'} of all entries of P. Then the Rees matriz
semigroup T = MPO[S; I, J; P] is finitely generated (respectively finitely presented)
if and only if the following three conditions are satisfied:

(i) both I and J are finite;

(ii) S is finitely generated (respectively, finitely presented) and;

(iii) the set S\U is finite.

In particular, if S = G° where G is a group and P is regular, then T is finitely
generated (respectively, finitely presented) if and only if 5 is finitely generated
(respectively, finitely presented) and both I and J are finite.
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Proof If welet 77 = M|[S;1,J; P], then we can think of T as being 7" with
all the elements of I x {0} x J being equal (and denoted by 0).

(=) Assume that T is finitely generated. As in Proposition 3.1, we can prove
that [ and J are finite. Therefore the ideal I x {0} x J is finite and so 7" is
finitely generated as well. It follows from Propositions 3.1 and 3.2 that S is
finitely generated and that S\U is finite. Moreover, if T if finitely presented,
then so is 7" (as an ideal extension of a finite semigroup by a finitely presented
semigroup (see Proposition 1.31)). It follows from Corollary 3.9 that S is finitely
presented.

(«) If S is finitely generated and all I, J and S\U are finite, then, by Theorem
3.4, T' is finitely generated. Since T is a quotient of 7", it follows that 7" is finitely
generated as well. Moreover, if S is finitely presented then so is 77 by Theorem
3.14. Since the ideal I x {0} x J is finite, it follows that 7' = T"/(I x {0} x J) is
also finitely presented. |

3.5 Remarks

Finite presentability of Rees matrix semigroups has already been investigated in
certain special cases. Thus, Howie and Ruskuc in [30] prove the converse part of
Theorems 3.14 and 3.15 in the case where S is a monoid and P contains at least
one invertible entry. Also, an immediate application of the Reidemeister-Schreier
type rewriting technique developed in [15] proves the direct part of Theorem 3.15
in the completely (0-)simple semigroup case. Finite generation of Rees matrix
semigroups (in the completely (0-)simple case) has been considered in [26] and
[54].

This chapter (as Chapter 2) is part of wider research into finite presentability
(and other finiteness conditions) of various semigroup constructions; see [19], [30],
[49], [56] and [57]. A common feature in all these results is that of a rewriting

mapping (mappings 1 and ¢ in Sections 2 and 3). It is interesting to note that,
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unlike in other constructions considered so far, no rewriting mapping defined
in this chapter is a homomorphism. This is because, in general, S is neither a

subsemigroup nor a homomorphic image of T = M([S; 1, J; P].



Chapter 4

Finiteness Conditions for Rees

Matrix Semigroups

In this chapter we investigate some finiteness conditions of Rees matrix semi-
groups. In particular we consider periodicity, local finiteness, residual finiteness,
and having soluble word problem, finitely many ideals, minimal ideals and finite
index. We consider a Rees matrix semigroup on a semigroup instead of a group

(as in Chapter 3).
The results obtained in [56] and [58] prove useful throughout this chapter.

4.1 Periodicity
We start with a technical lemma.

Lemma 4.1 Let X be a non-empty subset of a semigroup S. Then the following

are equivalent
(i) XS! is periodic, (i) S'X is periodic, (iii) S*XS? is periodic.

Proof (i)=(ii): For an arbitrary element sz € S'X (s € §', z € X)), consider

rs € XS8! so that there exist two positive integers m # n such that (zs)™ = (zs)".
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It follows that

(sz)™! = s(zs)™z = s(zs)"z = (sz)"*.

(i))=(iii): For an arbitrary element szt € S'XS?! (s,t € S, z € X), consider
tsz € S'X so that there exist two positive integers m # n such that (tsz)™ =
(tsz)™. It follows that

(szt)™! = sz(tsz)™t = sz(tsz)"t = (szt)"+.
(iii)=(i): It is clear. |
Next we have the following result.

Theorem 4.2 If a semigroup S is periodic then the Rees matriz semigroup T =

M([S; 1, J; P) is periodic.

Proof For an arbitrary element (z,s,7) of T, consider sp;; € S so that there

exist two positive integers m # n such that (sp;;)™ = (sp;;)". It follows that

m+1 — n+1

(ia 37j) (i’ (spji)ms’j) = (i’ (Spji)ns’j) = (i’sﬁj)

Thus T is periodic as well. n

Let S be a semigroup, T = M([S; I, J; P|] be a Rees matrix semigroup and let
U be the ideal of S generated by all the entries of the matrix P = (p;;). Then

we have the following result.

Theorem 4.3 The Rees matriz semigroup T = M|[S; I, J; P] is periodic if and
only if the ideal U of S is periodic.

Proof (=): Let V be the left ideal of S generated by the entries of P. It is
clear that an arbitrary element of V has the form sp;; (s € S'). For sp;; € V,

consider (,3pjis,7) € T so that there exist two positive integers m # n such that

(i,5p;is, 7)™ = (5, (sp3:)™™ " s, 5) = (4, (spss)*" "5, 7) = (1. spjis, J)™
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2n-1

Thus we have (sp;;)*™ s = (spji)**!s, and so

)2m )2n.

(8pji)*™ = (spji

Therefore, V' is periodic. It follows, from Lemma 4.1, that U is periodic.
(«): Let (4,s,7) € T be arbitrary. Consider sp;; € U (since p;; € U and U is
an ideal) so that there exist two positive integers m; # n; such that (sp;;)™ =

(spji)™. It follows that

(iashj)ml-l-l = (2’ (Spji)mlsaj) = (7:7(3pji)n137j) = (iasvj)nl+17

and so T is periodic. [ |

Note that if the ideal U has finite index in S, that is S\U is finite, then S
becomes a small extension of U. It follows by Theorem 1.17(i) that U is periodic
if and only if S is periodic. Therefore, from Theorem 4.2 and 4.3, we have the

following immediate result.

Corollary 4.4 Let T = M(S;1,J; P] be a Rees matriz semigroup and let U be
the ideal of S generated by all the entries of P. If U has finite indezx in S, then
T is periodic if and only if S is periodic. [ |

4.2 Local finiteness

It is obvious that a semigroup S is locally finite if and only if S is locally finite.

Next we give a less obvious similar result for Rees matrix semigroups.

Lemma 4.5 Let S be a semigroup without an identity. Then the Rees matriz
semigroup T = M[S; I, J; P] is locally finite if and only if the Rees matriz semi-
group T' = M[S% I, J; P] is locally finite.

Proof (<): Let 7" be locally finite. Since every subsemigroup of a locally finite
semigroup is locally finite and since T is a subsemigroup of T", it follows that T

is also locally finite.
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(=): Let T be locally finite and let X be a non-empty finite subset of T".
Then define Y = X NT and Z = X\Y. If Z is empty then X =Y C T, and
so the subsemigroup generated by X is finite. If Z is not empty, then note that
(X)=(W)UZ where W =Y UYZUZY U Z?% Since W C T is finite, it
follows from the local finiteness of T that ( W) is finite. Therefore T” is locally
finite. [

Theorem 4.6 The Rees matriz semigroup T' = M(S; 1, J; P] is locally finite if
and only if the ideal U of S generated by the entries of P is locally finite.

Proof (=): Let T = M[S; I, J; P] be locally finite and let X be a finite subset
of U. Since each z € X has the form z = sp;;s’ (s,s’ € S'), we may take

X = { sipji,Sh | Sk, s, €5, 1<k <n}
Then define
L={ix|1<k<n}, Y={s, s}, sps1€S'|1<k,I<n}
and
Ji={g|l1<k<n}

Since I; X Y x Ji is a finite subset of T/ = M([S*; I, J; P}, it follows, from the
previous lemma, that ( I; x Y x Jy ) is finite. If (4,s,5) € Iy x ( X ) x Ji, then

we have
(i7 S,j) = (3 Sk1Pjk, ix, S;cl e Skqukqikqs;cq’j)
= (iaSknjh)(ikus;clskzajb)"'(ikws;cqaj)

so that Iy x ( X ) x J; C (11 xY x Ji). It follows that ( X ) is finite, and so U

is locally finite.
(«): Let U be locally finite and let ¥ = { (%, Sk, Jk) | 1 £k < m} be a finite
subset of T = M[S; I, J; P]. Then define

L={i|1<k<m}, Z={spjrir» skPsast|1 <k, l<m}
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and
Jr={js|1<k<m}.

Since Z is a finite subset of U, it follows that { Z ) is finite.

Next observe that since, for (i,s,7) € (Y )\Y

;
(4,8,3) = (ke Skis Ji) =+ (Shgs Sky» Jky)
(ks Sky Pjy in, Sky - Skqm1Pik,_, ing Ske> Jky)>
where ¢ > 2 and (i, Sk, 7k )y - - - » (Tky» Skes Jk,) € Y, it follows that (i,s,;) €

Iy x ( Z ) x J;. Therefore (V') CYU(yx(Z)xJy). Since I, x (Z) x Jq is
finite, it follows that (Y ) is finite, as required. [ |

Note that if S\U is finite then, by Theorem 1.17(ii), we have the following

immediate corollary.

Corollary 4.7 Let T = M[S;1,J; P] be a Rees matriz semigroup and let the
ideal U of S generated by all the entries of P have finite index in S. Then T is
locally finite if and only if S is locally finite. [ |

4.3 Residual finiteness

Let I and J be the index sets of the Rees matrix semigroup T = M[S; [, J; P].
Define

nr={(i,3") € I x I| pji = pjiv for each j € J }
and

nr={(,5)€J xJ|pj =pjisforeachi € I}.
It is clear that n; and 7y are equivalences on I and J, respectively. We say that
nr (ns) has finite index in I (J) if the number of equivalence classes is finite. We
denote a subset of I which contains one and only one representative from each of
the equivalence classes by I,, (and similarly J;). With this notation we have the

following result:
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Lemma 4.8 Let S be a semigroup and let T = M|[S;1,J; P] be a Rees matriz
semigroup. If S is residually finite, and both the equivalence relations n; and n;

have finite indez, then T is a residually finite semigroup.

Proof For (i1,s1,1) # (42, 2,72) € T, first assume that ¢; # ¢,. Then consider

the rectangular band
R ={(i1,51), (12,51) },
and the mapping ¢ : T — R defined by
oo { (v, 1) if i = iy
(12,71) if ¢ # 45.
It is clear that ¢ is an onto homomorphism such that ¢(iy, s1,71) # é(i2, s2, 72)-
If 31 # 72, then it may be checked similarly. Now we check the case where
11 = i3 and 7; = Ja, but s; # sp. Since S is residually finite, there is an onto
homomorphism ¢ : S — S5’ such that S’ is a finite semigroup and ¥(s;) #
¥(s2). Since both I, and J, are finite sets, the Rees matrix semigroup 7" =
M([S%; I, Jn; @], where Q = (gjiir)1,xJ, and gjrr = P(p;i), where (i,i') € n; and
(7,7") € ny, is a finite semigroup.
Then define § : T — T’ by 0(i,s,7) = (¢/,%(s),7’) where (¢,¢) € n; and

(7,7") € ns. Since

0((i,5,5)(k, 1, 1)) = 0(i,spet, 1) = (', ¥ (spjxt), 1)
= (& 9(s)¥(ps)¥ (1), 1)
= (I, 9(8)gwip(t), 1) = (¢, 9(s), ) (K, (), ')
= 0(i,s,5)0(k,t,1),

0 is a homomorphism. It is clear that # is onto and
(i1, 81,01) # 0(i2, 52, J2)-

Therefore, T' is residually finite. n
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Since a rectangular band R is isomorphic to a Rees matrix semigroup, namely
R = M[{1};1,J; P,] where P, = (pj;) with p;; = 1 for all: € I, j € J, we have

the following immediate corollary.

Corollary 4.9 All rectangular bands are residually finite. [

In general, the converse of Lemma 4.8 may not be true. For this we show that
there is a residually finite Rees matrix semigroup T = M(S; I, J; P] such that n;
and 7y have finite indices, but S is not residually finite.

Let S be a non-residually finite semigroup. Then consider the Rees matrix
semigroup To = M[S% I, J; Py] where S° is obtained from S by adding a zero if
necessary, and Py = (p;;) with p;; = 0 for all¢ € I, j € J. Now we show that
Ty is residually finite. For wy = (21, s1,71) # (¢2,82,72) = w2 € To, if i3 # 1 or
J1 # J2, it may be checked as in the previous lemma. Assume that i; = 7, and
J1 = J2, but s; # 35, and assume that s; # 0. Then consider the zero semigroup

Z, =40, z } of order 2 and consider the mapping ., : To — Z, defined by

zifs=s

0if s # sy

¢W1(i’s7j) =

for all w = (1,s,7) € To. Since, for any w, w' € Tp, the middle term of ww’ is

always zero, it follows that

"z)wl(’ww,) =0= d)wl(w)wwl (w)>

and so ), is a homomorphism. It is clear that %, is onto and ¥y, (w1) = z #
0 = 9, (wy). Therefore Ty is residually finite. However, since S° is a small
extension of S, it follows from [58, Corollary 4.6] that S° is not residually finite.

We have given an example which shows that if T' = M[S; I, J; P] is residually
finite then S may not be residually finite. However if S is group then we have

the following result.
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Lemma 4.10 Let G be a group and let T = M|G;1,J; P] be a Rees matriz
semigroup. If T is a residually finite semigroup , then G is a residually finite

group.

Proof By [29, Theorem 3.4.2], we first may assume that 1 € I N J and that
pri=pji=1foralls€landjeJ.

It is a well-known fact that G’ = {¢(1,s,1)|s € G} is a subgroup of 7. Thus
G’ is residually finite. Since G’ is isomorphic to G, it follows that G is residually

finite, as required. [

Corollary 4.11 Let G be a group and let I and J be finite index sets. Then the
Rees matriz semigroup T = M|G; 1, J; P] is residually finite if and only if G is
residually finite.

Proof The result follows from Lemmas 4.10 and 4.8. [ |

Next we give an example for the case S is a residually finite group, but 7" is not
residually finite. First, from Proposition 1.16, we may redefine that a semigroup
S is residually finite if, for each pair s; # s2 € S, there exists a congruence p
with finite index (which means p has finitely many equivalence classes) in S such
that (s1,s2) ¢ p.

Consider the Rees matrix semigroup T' = M[C3; N, N; P] where C; = {a, a*}
(a® = a) is the cyclic group of order 2, N is the natural numbers and the matrix
P = (pji)Nxn where

a ifj3>1
pji =

a® ifj <.

Assume that T is residually finite. Then, for (1,a,1), (1,a%,1) € T, there is a
proper congruence p with finite index such that ((1,a,1), (1,a%1)) ¢ p. Since p
has finite index, for j < [, either ((¢,a,7), (k,a,l)) € p or ((¢,a,7), (k,a? 1)) € p.
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If ((,a,j),(k,a,l)) € p, then choose ig € I such that p;;, = a* and p, = a.

Since pi; = pix = a2, and a® = q, it follows that

(1,a%,1)(¢,a,7)(i0,a*,1) = (1, a’pysapji,a®, 1) = (1,a%a%aaa?, 1) = (1,4q,1)
and

(1,a*,1)(k,a,1)(30,a* 1) = (1, a*pikapii,a®,1) = (1, a*a*aad’, 1) = (1,4d% 1),

and so ((1,a,1),(1,a% 1)) € p which is a contradiction to the choice of p.

If ((z,a,7),(k,a% 1)) € p, then choose iy € I such that pj;;; = a2 and py;, = a®.
It may be shown similarly that ((1,a,1),(1,a% 1)) € p which is a contradiction.
Therefore, T is not residually finite although C, is residually finite.

4.4 The word problem

Recall that a semigroup S is said to have a soluble word problem with respect
to a generating set A if there exists an algorithm which, for any two words wu,
v € A*, decides whether the relation © = v holds in S or not (in finite steps).
It is a well-known fact that for a finitely generated semigroup S the solubility of
the word problem does not depend upon the choice of the finite generating set
for S.

In this section we assume that T = M|S; I, J; P] is finitely generated, and
so, by Propositions 3.1 and 3.2, all I, J and S\U (U is the ideal of S generated
by the entries of P) are finite, and S is finitely generated.

Theorem 4.12 Let S be a semigroup, and let T = M]S;I,J; P] be a finitely
generated Rees matriz semigroup. Then T has a soluble word problem if and only

if S has a soluble word problem.

Proof (=): Let T have a soluble word problem, and let X be a finite generating

set for T. Now we show that S has a soluble word problem with respect to the
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generating set
Y={seS|(i,s,j)e X}U{ps€ePliel, jel}

Let u, v € Yt be any two arbitrary words. Then, from Lemma 3.6, there are

two words

_ r_
U = 31P51i392P52i3 * " Pim—1imSm and v = Z1Pliky Z2Ploks * * * Ply_1kn?n

in Y such that v = v’ and v = v’ hold in S. Moreover, we can construct v’ and
v’ from u and v, respectively in finite steps.

Now we define X’ = I x Y x J. Since X’ is a finite generating set for 7', and
since T' has a soluble word problem, it follows that, for fixed ip € I and jo € J,

we can decide whether the relation

(io, sl?jl)(i27 327j3) e (im, Sm’jO) = (i07 21, ll)(k27 22, 13) e (kna znajO)

holds in 7', that is we can decide whether the relation

(io’ S1Pj1i282Pjz13 * 'pjm—limsm’]o) = (Zo, 1Pl k2Pl ks * p[n—lknzn7]0)

holds in T'. Therefore we can decide whether the relation ' = v’ holds in S, and
so u = v. Therefore, since Y is finite, S has a soluble word problem.

(«<): Let S have a soluble word problem. Since S\U is finite, it follows by
Theorem 12 that U is finitely generated and, by Theorem 17(v), that U has a
soluble word problem. Let Z be a finite generating set for U as a semigroup.
Recall that every z € Z has the form z = s(z)p;is'(z) where s(z),s'(z) € S*.

Then we take
H = {s(2),s'(z) € S| s(2)pjis'(2) € Z}U {1}
so that, by Proposition 3.3, the finite set

X=Ix(H*U(S\U) xJ
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generates T' = M[S*; I, J; P]. Now we prove that 7" has soluble word problem
with respect to X. Let u, v € Xt be two arbitrary words. By applying finitely
many relations from the presentation given in Theorem 3.13, we determine effec-

tive words

Uy = (i073’j0) or u; = (io, hlajl)(ilahlthajZ) T (im—lah;n—lhmajm)(imah:rnjO)

and

v = (k07 5I7 lO) or v; = (kO? g1, ll)(klag;g% 12) e (kn—l,g;—lgn’ ln)(knag;u lO),

where s,s' € S\U, h,h',g,4' € H, such that the relations u = u; and v = v; hold
in T". If u; = (io, 3, J0) or vy = (ko, ', lo), then u; or v; represents an element in
I x (S\U) x J which is indecomposable, and hence v = v holds in 7" if and only
if u; = vy. Otherwise u = v holds in 7" if and only if ig = ko, jo = lo and v’ = v’

holds in U where

u = h1pj1i1h'1thj2i3 e h',rn,—lhmpjmimh;n

' = g1Puk 9192Pl2ks G 1 GnPimkn O € 27T

Since we can decide whether v’ = v’ holds in U and since [ and J are both finite,
it follows that we can decide whether u = v holds in 7. Therefore, since X is
finite, T’ has a soluble word problem.

Since T is a subgroup of T/ and |T'\T| < |I| x |J| is finite, it follows by
Theorem 1.17(v) that T has a soluble word problem as well. |

4.5 Ideals

Let V be a two-sided ideal of S. Then it is easy to show that [ x V x J is a
two-sided ideal of T = M|[S;I,J; P] and we denote this two-sided ideal by V7.

With this notation, we have the following result.
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Lemma 4.13 If the Rees matriz semigroup T = M|[S; I, J; P] has finitely many
two-sided ideals, then S has finitely many two-sided ideals.

Proof Let A denote the set of all two-sided ideals of S and let B denote the set
of all two-sided ideals of T'. Then, define the map ¥ : A — B by ¥(V) = V7.
Since ¥ is an injection from A to B, it follows that |A| < |B|, as required. N

The converse of the statement in the previous lemma, in general, is not true.
For a counterexample, we consider the Rees matrix semigroup 77 = M[S; I, J; Py
where S is any infinite 0-simple semigroup and Py, = (pj;;) with p;; = 0 for all
i€ 1,35 € J (I and J may be finite). Then define, for each s € S,

V(s)=Ix{0,s} xJ.

It is clear that, for each s € S, V(s) is an ideal of 7", and so T' has at least |S]
many ideals, that is 7" has infinitely many ideals. However S has only two ideals.
Although this is a counterexample, we have the following result for monoids

under certain assumptions.

Theorem 4.14 Let M be a monoid and let T = M[M; 1, J; P] be a Rees matriz
semigroup. If there exists (jo,t0) € J x I such that, for each j € J and i € I,
pii, and pj,; are invertible (units), then T has finitely many ideals if and only if
M has finitely many ideals.

Proof The direct part of the theorem follows from Lemma 4.13. We prove the

converse part of the theorem.

Let M have finitely many ideals. Let U be an ideal of T'. Define
Uv ={s€M|(iss,js) € U for some i; € I, j, € J }.

Let i € I, j € J and s € Uy be arbitrary. Denote the inverse of pjy;, and p;;,

by ¢;, and g;,, respectively. Then observe that we have

(iastajo)(is’sij)(iO’qisaj) = (i’ql'spjoisspjsioquj) = (’i,S,j)
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so that I x Uy x J C U, and so we have
U=1xUpyxJ.

Let A denote the set of all two-sided ideals of M and let B denote the set of
all two-sided ideals of T'. Then, define the map ® : B — A by ®(U) = Un.
Since @ is an injection from B to A, it follows that |B| < |A|. In fact, we have
from Lemma 4.13 that |A|=|B|, as required. ]

Let V be a right (left) ideal of S. Then it is easy to show that, for fixed 1o € I
(jO € ‘])7
Vi ={io} xV xJ (V} =1xV x{jo})
is a right (left) ideal of T = M|[S; I, J; P]. Similarly, with this notation, we have

the following result.

Lemma 4.15 If the Rees matriz semigroup T = M|[S; 1, J; P] has finitely many
right (left) ideals, then S has finitely many right (left) ideals.

Proof The proof is similar to the proof of Lemma 4.13. [ |

Next we investigate the minimal ideals of a Rees matrix semigroup T =

M|S;1,J; P].

Theorem 4.16 Let S be a semigroup and let T = M|[S; I, J; P] be a Rees matriz
semigroup. Then S has a minimal two-sided ideal if and only if T has a minimal

two-sided ideal.

Proof (=): Let V be a minimal ideal of S. Then consider the ideal V7 =
I xV x J of T. We claim that V7 is a minimal ideal.
Assume that there is an ideal W C Vr of T. Then take

X = {ijiijiw | (i,w,j) ew }»
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and let U be the ideal of S generated by X. Now consider the ideal Uy = I xU x J
of T so that if (i,u,j) € Ur, then

(i’ ua]) = (Za Swplkwplkwslaj)7

where s,s' € 1S (in the monoid obtained from S by abjoining an identity if

necessary) and wpwpprw € X so that we have
(e,u,7) = (1, sw, ) (k,w, ) (k,ws', j) € W

since (k,w,l) € W and W is an ideal. Therefore, we have Ur C W C V7.

On the other hand, since X C V, it follows from the minimality of V' that
V = U so that Ur = V. Thus W = Vr so that V is a minimal ideal of T'.

(«<): Let W be a minimal ideal of 7. Then we show that the ideal U of S
generated by X = { wp;;wpj;w | (t,w,7) € W } is a minimal ideal of S. For this,
consider the ideal Uy = I x U x J of T'. Similarly, it is shown that Uy C W.
It follows from the minimality of W that Ur = W. If there is an ideal V' of S
such that V is a proper subset of U, then the ideal Vi = I x V x J of T would
be a proper subset of Ur = W which is a contradiction to the minimality of W.

Therefore U must be a minimal ideal of S, as required. [ |

Theorem 4.17 Let S be a semigroup and let T = M|S; I, J; P] be a Rees matrix
semigroup. Then S has a minimal right (left) ideal if and only if T has a minimal

right (left) ideal.

Proof (=): Let V be a minimal right ideal of S. Then, for fixed iq € I, consider
the right ideal Vi = {io} x V x J of T. We claim that V7 is a minimal right ideal

of T'.
Assume that there is a right ideal W C V7 of T. Then take

X = {wpji,w] (io,w,j) €W }
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and let U be the right ideal of S5 generated by X. Now consider the right ideal
Ur ={io} xU x J of T, and so, if (ig,u,j) € Ur, then

(iO‘;U,j) = (iO)wpl,iowSaj)
where s €15 and wp;;,w € X so that we have
(0, u,7) = (0, w, l)(0,ws,j) € W

since (1o, w,l) € W and W is a right ideal. Therefore, we have U, C W C V7.
On the other hand, since X C V, it follows from the minimality of V' that
V = U so that Uy = V. Thus W = VJ so that V7 is a minimal right ideal of T'.
(«=): Let W be a minimal right ideal of T. Then we show that the right ideal
U of S generated by X = { wpji,w | (0, w,7) € W } (for fixed o € I such that
(0, wo, Jo) € W) is a minimal right ideal of S. For this, consider the right ideal
Ur = {io} x U x J of T. It is, similarly, shown that Uy C W. It follows from
the minimality of W that U} = W. If there is any right ideal V of S such that
V is a proper subset of U, then the right ideal VJ = {ig} x V x J of T would
be a proper subset of U7 = W which is a contradiction to the minimality of W.

Therefore, U must be a minimal right ideal of S, as required. |

Notice that, for each minimal right (left) ideal of S, we can construct at least
|I] (]J]) many minimal right (left) ideals of T'.

Recall that, for a semigroup 7" and its subsemigroup S, the index of S in T
is the number |T\S|. If the index is finite then we say that S has finite index in

T. With this concept, we have the following result for Rees matrix semigroups.

Theorem 4.18 Let T = M[S;1,J; P] be a Rees matriz semigroup. Then every
two-sided ideal of T has finite index if and only if every two-sided ideal of S has
finite index and both I and J are finite.

Proof (=): Let V be any ideal of S. Then, since the ideal Vp =1 x V x J of
T has finite index, I x (S\V) x J is finite so that I, S\V and J are all finite.
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(«=): Let W be any ideal of T. Then consider the ideal U of S generated
by { wpjiwpjw | (¢,w,j) € W }. As in the previous proof, it is shown that
Ur=(I xUxJ)CW. It follows that

[TA\W| < [T\Ur| = I x (S\U) x J| < 00

since |I], |[S\U| and |J| are all finite. Therefore W has finite index in T, as
required. [

It is similarly shown that:

Theorem 4.19 Let T = M(S; 1, J; P] be a Rees matriz semigroup. Then every
right (left) ideal of T has finite index if and only if every right (left) ideal of S
has finite index and J (I) is finite. |



Chapter 5

Semigroup Efficiency of Groups

The aim of this chapter is to investigate the efliciency of groups as monoids and
as semigroups. We show that any efficient group is efficient as a monoid and
further that certain efficient groups are efficient as semigroups.

Recall that the deficiency of a finite semigroup (monoid or group) presentation
P = (A|R) is def(P) = |R| — |A|, the semigroup deficiency of a finitely presented

semigroup S is given by
defs(S) = min{ def(P) | P is a finite semigoup presentation for S },
the monoid deficiency of a finitely presented monoid M is given by
defy(M) = min{ def(P) | P is a finite monoid presentation for M }
and the group deficiency of a finitely presented group G is given by
defg(G) = min{ def(P) | P is a finite group presentation for G }.

Since every semigroup (monoid) presentation for a group G is also a group

presentation by Theorem 1.8(ii), we have
defs(G) > defg(G) and defu(G) > defg(G).
In the first section we prove that

defy(G) = defa(G).
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In the second section we show that defy (M) = defs(M) is not true in general.

In the remaining sections we prove that, for certain classes of efficient groups,
defs(G) = defg(G).

We say that a finite monoid (group) M is efficient as a semigroup if M has a
semigroup presentation P = ( A| R) such that def(P) = rank(H,(M)). We call a
finite group G efficient as a monoid if G has a monoid presentation P = ( A|R)
such that def(P) = rank(H,(G)).

The most of the results of this chapter have been submitted for publication
by H. Ayik, C. M. Campbell, J. J. O’Connor and N. Ruskuc (see [3]).

5.1 Efficiency of groups as monoids

If a group G is efficient as a semigroup then it is clear that it is efficient as a
group (by considering its efficient semigroup presentation as a group presenta-
tion). Similarly, if G is efficient as a monoid, then it is clear that it is efficient as a
group. Conversely one may ask whether an efficient group is efficient as a monoid
or as a semigroup. In this section, we prove that efficient groups are efficient as
monoids.

Before proving the main theorem of this section, we state and prove a technical

lemma which we use throughout this and the next chapters.

Lemma 5.1 Let P = ( A| R) be a semigroup presentation and let e be a word
in AT.

(i) If, for each a € A, ea = a (left identity) and there exists u, € A™ such
that usa = e (left inverse), then P defines a group with the identity e.

(ii) If, for each a € A, ae = a (right identity) and there exists v, € At such

that av, = e (right inverse), then P defines a group with the identity e.
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Proof (i) It is enough to show that, for each a € A, au, = e and ae = a.

Observe that from (i) we have that, for each a € A,

(aug)?

= a(ua)uq = aeu, = a(ed')u), = aa'v! = au,
where u, = a'u/, and @’ € A, v/ € A*. Let

Ug = a1+ Ay

where a; € A (1 <i < n). Then, by (ii), we have

ULd) =+ = UpQy, = €
for some u; € A*. Since
Un - Ul(Ua@)ar G = Uy us(ear)ag: - ap = uyp - - uz(uiar)az - - - a,
= Up-oug(eas) cay = - = upay = e,
it follows from (i) that
AUy = €aUq = (Up " UUgAdy * "+ Qp)AUG = Uy - - - Urug (au,)?

= Uyt UUAUG = U -+ U UgAA] « + * Gy = €.
Moreover,
ae = a(uqa) = (auy)a = ea = a,
as required.

(ii) It is proved similarly. u

For a similar proof, see [31, Proposition 1.3]. Notice that a similar result holds

for monoid presentations.

Next we state and prove the main theorem of this section.

Theorem 5.2 Let P = ( A| R) be a finite group presentation for a group G.

Consider the monoid presentation

Pa= (A AR, ada=1(a€ A)),
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where A’ = {ad' |a € A} is a copy of A and R' is obtained from R by replacing
a™! (if it occurs) by aa’ in every relation in R. Then Py defines G as a monoid.

Therefore G is efficient as a group if and only if it is efficient as a monoid.

Proof Since

ad’ = ad'(ad'a) = (ad'a)d’a = da,

it follows that

a’d' = d'a® = ad'a = 1.

We deduce that a? is an inverse of a’ and aa’ is an inverse of a. Therefore, by
Lemma 5.1, Py defines a group. It is clear that this group is isomorphic to the
group G.

If G is efficient as a monoid, it is clear that it is eflicient as a group by
considering an efficient monoid presentation as a group presentation. Since
def(Pg) = def(Par), it follows that if a group G is eflicient as a group then

it is efficient as a monoid. [ |

Next we give another proof of the monoid efliciency of efficient groups. This
proof is only for finite groups but the monoid presentation below is defined on

fewer generators then the monoid presentation above.

Theorem 5.3 Let Qg = ( A| R ) be a finite group presentation for a finite
group G. Then G has a monoid presentation on |A| + 1 generators with the
same deficiency as Qg. Moreover, G has a semigroup presentation on |A| + 1

generators with deficiency |R| + 1.

Proof Let Qg = ( A| R) be a finite group presentation on A = {ay,...;a, }.

Since @ is finite, |R| > n and we may assume n many of these relations to have

the form

uiay---a; =1 (1 <1< n)

(sincer=s & rsT'=1 & (rsY(ar- @) Vay e =1).
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Consider the monoid presentation
QM:<Aab|R,a al"'anb:l)

where R’ is obtained from R by replacing a;' by a;4;---anbay - --a;_; in each

relation in which it occurs for 1 <1 < n. Since, for 1 < ¢ < n, we have

(@ip1- - anbay - ai1)a; = (uay---a;)aiyr- - apbag -+ - a;

ui(ay - -azb)ay - a; = way---a; =1

and a;---a,b = 1, it follows that every generator in Pp; has a left inverse.
Therefore, by Lemma 5.1, Qas defines a group. It is clear that this group is the
group (G, and so the proof of the first part of the theorem is complete.

Next consider the semigroup presentation
Ps=(A,b|R", a1--anb=al, ala; =a; (1 <i<n), al’'b=0b)

where m is the order of a; and R" is obtained from R’ by replacing 1 by a}* in
each relation in which 1 appears.
It is clear that a]* is a left identity for the semigroup S defined by Ps. Since

al"aiy1 = aip1 and u;aq -+ - a; = al* € R, we have

m
(@ip1---aqbay - “@i_1)a; = a{'@iy1ccapbay - a;g
= (w1 a;)aiy1 - anbay - q
= wui(ay---apb)ay---a; = uiat g

= way---a; =aj.

It follows from the relation a; - - - a,b = a* that each generator has a left inverse.
Therefore, from Lemma 5.1, S is a group. It is clear that S is isomorphic to G,

as required. m

The above efficient monoid presentation is defined on only (|A|+1) generators

rather than the 2|A| used in Theorem 5.2.
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5.2 Efficiency of monoids as semigroups

However there is no result connecting monoid efficiency and semigroup efficiency
of a finite monoid. To show this we give an example which shows that not all

efficient monoids are eflicient as semigroups.

Example 5.4 Consider the monoid Z = {1, z, 2% } with 23 = z? which is
obtained from the zero semigroup of order two by adding an identity 1. The

monotd Z is efficient as a monoid but it is not efficient as a semigroup.

Proof It is clear that the monoid presentation { a | a® = a?) defines Z as a
monoid, and so Z is an eflicient monoid (since the deficiency of this presentation
is zero).

We show that Z is not an efficient semigroup, that is, if (A| R) is a semigroup
presentation for Z, then |R| > |A|. We may assume that there is no trivial relation
w=w (w € A") nor a relation of the form (w = a) € R such that a € A and
w € (A\{ a })* (otherwise we eliminate these kinds of relations or generators
without increasing the deficiency).

Since every generating set of Z contains { 1, z }, the sets
Aj={a€A|n(a)=1}and A, ={be A|n(b) =2z},

where 7 is the natural homomorphism from A%t onto Z, are non-empty subsets

of A. Then take
A3:A\(A1UA2) = {Ce A|7r(c)::v2}

which may be empty.
Consider a € A; and d € A so that the relation ad = d holds in Z. Therefore,

there is a relation of the form wy = d with |ws| > 2 (by the assumption on R).

Then define the sets

RI:{(wa:a)GRlaeAl}, RZZ{(wbzb)GR“)EAQ},
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Ri={(w.=c)€R|ce A;}.

Notice that, by assumption, |R;| > |A:| ( = 1,2,3) and they are disjoint
subsets of R. Since a € A; and w, = a, we must have w, € A], and since b € A,
and w, = b, we must have w, € ATbA7}.

Finally, observe that the relation * = b* (b € A;) holds in Z, and so there is
a sequence

3 2
b = 01,0Q9,... ,Oénzb

of words ¢; (1 <1 < n)in A" such that ;4 is obtained from o; (1 <1< n—1)
by applying one relation from R. Notice that we cannot apply any relation from
R3 to any word w € (A; U A3)*. Since applications of the relations from R; U R,
to b> do not change the number of b’s and since they always yield a word w from
(A1 U A2)*, we have a relation (r = s) € R\(R; U R, U R3) so that |R| > |A].

Hence Z is an inefficient semigroup, as required. [ |

It follows from the previous example that the presentation

(a,b|a®=a* bab=a, b* =b)

is a minimal semigroup presentation for the monoid { 1, z, 2? } with z® = z2.

Let S be a semigroup. If we consider a semigroup presentation of S as a
monoid presentation, then it defines S* = S U {1}. The example above shows
that S! may be an inefficient semigroup although S is an efficient semigroup.
(Since the semigroup presentation ( a|a® = a®) defines the zero semigroup Z; of
order 2, Z, is an efficient semigroup.) However, this is not true in general. That
is, there is an efficient semigroup S such that S is also an efficient semigroup.

For this consider the cyclic group C, of order n given as a semigroup by
(a]a™! =a).
We claim that the semigroup C, with presentation

(a,b]a™! =a, ab=a, ba = a, b* =b),
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which is obtained by adjoining an identity to C, (note that a™ is not the identity

anymore) is also efficient as a semigroup. In fact, the semigroup presentation
(a,b|ba"*'b=a, b* =b)
defines C!. Indeed,
ab = (ba™"'b)b = ba™*'b* = ba™*'b = a and

ba = b(ba™'b) = b%a"t'b = ba"t'b = a.

It also follows that
a™t! = (ba)a™ ! (ab) = ba™*'b = a,

and so the assertion is proved.

5.3 Semigroup efficiency of certain groups

If G is a group, then every semigroup presentation for G is also a group pre-
sentation for G. Therefore, if G is efficient as a semigroup, it is also efficient
as a group. In general, we have not proved that an efficient group G is efficient
as a semigroup. In this section we start to investigate the semigroup efficiency
of certain efficient groups, namely finite abelian groups, dihedral groups Ds, (n

even) of order 2n and generalised quaternion groups (), of order 4n.

Theorem 5.5 Finite abelian groups are efficient as semigroups. More precisely,

a finite abelian group has a minimal semigroup presentation

+1 1 . 9 g1 . _
Ps=(ai,...,a | a'7 =a, af' =aj, argjay = a;, ara; = aak

(2<j<r2<k<i<r)),

where r > 1 and q; divides gj41 forall j=1,...,r — 1.
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Proof A finite abelian group G of rank r can be expressed as a direct product
of cyclic groups of order ¢; > 1 (1 < 7 < r) with ¢; dividing g¢;4; for each j
(1 <4 <r—1) (see, for example, [53]). Moreover, G has finite second homology
of rank r(r — 1)/2 (see [40]). Therefore the standard group presentation for G,

namely
’PG=(x1,...,wr|x§’=1 (1<j<r) zjzp=axz; 1<j<k<r))

shows that G is efficient as a group.
We show that Pg defines G as a semigroup. For this, it is enough to show that
ara; = aja; (2 < j <r), that af* is an identity and that each azj_l (1<j<r)

is an inverse of a;. By the first three group relations of Ps we have

= g+l CE— q¥ — 011 — .
ara; = ai'" a; = 10 aj = aya;a; = (a1a5a1'" )ay = aja;.

Now by commutativity we have

-1
a;al' = aya;a]'’” = q;
.. . . . . i—1
and similarly a{'a; = a; for j = 1,... ,r. Therefore, a{' is an identity and a’
is an inverse of a; for each 7 = 1,...,r, and so Ps defines a group. It is clear

that this group is the abelian group defined by Pg. From def(Ps) = r(r — 1)/2,
the result follows. [

Theorem 5.6 The dihedral group Dj, can be presented as a semigroup as fol-

lows:

-1
P={(abla*=a, a®*=0b", ab" la=0).
When n is even, P is a minimal presentation and D, is efficient as a semigroup.

Proof By the first relation, we have a’a = a = aa® and by the first and third

relations, we have

a?b = a*(ab"la) = a®V" " la = ab" la = b=ab""'a = ab"'a® = ba’.
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Therefore a? is an identity of the semigroup which is defined by the presentation
P. By the first and second relations, a is its own inverse and 4"~! is an inverse
of b, and so P defines a group, namely D,,.

Since the second homology of D,, with n even is the cyclic group of order 2

(see [40]), it follows that D, with n even is an efficient semigroup. [

Since the second homology of D, with n odd is trivial (see [40]). P is not
necessarily a minimal presentation for D,, with n odd. However we know that
there is a minimal (deficiency zero) group presentation for D,, with n odd. For

example, the group presentation

(n+1)/2,,., (n+1)/2

(z,y|z?=y", z7ly~ zy =y)

defines Dy, with n odd (see Proposition 1.42 to construct the above presentation).
Lemma 5.7 The semigroup presentation
(a,b]|ababa = a, ab® 'a"* =)

defines a group G, and D, is a homomorphic image of Gy, for odd n. Moreover,
Gn = Dy, forn = 3,5,7,9, so that D,, is efficient as a semigroup when n =

3,5,7,9.
Proof Since
(ab)*b = (ab)*(ab™'a"?) = (ababa)b™ 'a""? = ab™'a™"? = b,
it follows from the first relation that (ab)? is a left identity. Since
(aba’b"'a"%)a = aba(ab"'a""?) = (ab)?,

aba2b®1a™ 3 is a left inverse of a and it is clear that aba is a left inverse of b.

Therefore, it follows from Lemma 5.1 that the presentation above defines a group.

say Gp.
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Next we show that the relations ab” 'a""% = b and ababa = a hold in D,,,
that is they are consequences of the presentation in Theorem 5.6. Since a®> = a

and n is odd, we have ab" 1a"? = ab"la = b. It follows from the relation

a® = b" that
ababa = aba(ab™ 'a)a = aba®b""'a® = abb"" " = ab®" = 0" = a.

Therefore we deduce that D, is a homomorphic image of G, when n is odd.
A coset enumeration program shows that |G,| = |D,,| for n = 3,5,7,9.

Therefore, Dy, is efficient as a semigroup when n = 3,5,7,9, as required. [

In general we do not know which group G, is when n > 9. We do not even
know the order of G, for n > 9. The coset enumeration program we use fails to

compute the order of G, for n > 9.

Open problem. Does there exist a deficiency zero presentation for D, with

n odd and n > 97

Next we investigate the semigroup efficiency of the generalised quaternion

group @, of order 4n. A group presentation for (), is
(a,bla®™ =1, a" =b% blab=a"")
(see, for example, [35)).
Theorem 5.8 The semigroup presentation
P, =(a,b|laba=b, ba" 'b=a)
defines the generalised quaternion group @, of order 4n.
Proof Observe that, from the first relation, we have

~1p n-— - - ~2; n—2
" 'ba™ ! = a" *(aba)a" " = a" b = - -

aba = b. (1)
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It follows from the second relation and (1) that
a® = (ba™ 'b)a™"! = b(a"'ba™"") = b2, (2)
From (2), the second relation and the first relation, we have
a®"b = aa™a™ b = ab?a™"'b = ab(ba™"'b) = aba = b
and also
a**a = b*a = b(b*)ba = ba"ba = ba™ ' (aba) = ba""'b = a.

We conclude that a®® is a left identity. Since b° is a left inverse of b (from (2)),
and a?"~! is a left inverse of a, it follows from Lemma 5.1 that P, defines a group

2n

with identity a®*. Since a®" is an identity for the group and the relation a™ = b?

holds in the group, this group may be given by the following group presentation:

(a,b|aba =b, ba" 'b=a, a" =b*, a* =1)

~ (qg,b|brab=a"", ba" b =a, a" =%, A =1).
Since the relation
ba™"'b = ba™(b™'ab)b = bb%btab? = bkab? = ¢t = ¢

holds in @,, this group is, in fact, the generalised quaternion group (). Since

the deficiency of P; is zero, we conclude that @, is efficient as a semigroup. B

Note that in this case, this efficient group presentation of @, is also an ef-
ficient semigroup presentation. In general (see for example [1] or [51]) a group
presentation (without 1 and inverses) does not give a semigroup presentation for

the same group.
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5.4 Semigroup efficiency of direct powers of di-

hedral groups

In the previous section it was shown that the dihedral group D,, with n even
is efficient as a semigroup. In this section although we have not been able to
prove that Dy, with n > 9 odd is efficient, we prove that the direct power D7 is
efficient as a semigroup for an arbitrary n and m > 2.

We begin with a technical lemma.

Lemma 5.9 Let (A|R) and ( B| Q) be two semigroup presentations for two
groups G and H, respectively. Then the direct product G x H may be defined by

the semigroup presentation
B=(A B|R,Q,C,e=f)

where C = {ab=1ba|a € A, b€ B} and e € A* and f € B* are any two words

representing the identity elements of G and H, respectively.

Proof Let S be the semigroup defined by B. It is clear from the relation e = f
that e is the identity of S. For a € A, there exists a word w, € AT C (AU B)* |
such that w,a = e, and for b € B there exists a word w, € Bt C (AU B)* such
that wyb = f = e. It follows from Lemma 5.1 that B defines a group and it is
clear that this group is the direct product G' x H, as required. [

Notice that the last relation of B above makes the semigroup efficiency of the
direct product of efficient groups harder to prove than in the group case. It is

proved in [21] that, for all m and n, the direct power D7 of the dihedral group

D,,, of order 2n is efficient as a group.

We apply the previous lemma to prove the following:

Theorem 5.10 For any m,n > 1 with n even, the direct product DT}, is efficient

as a semigroup.
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Proof By Theorem 5.6, D, has the following semigroup presentation:
(a,b|la®>=a, a®> =b", ab" la = b).

From the previous lemma, it follows by induction that, for any positive integers

m and n, D7, may be presented by

PZ = <ai7 bl | a? = aq, a? = b?) aibin_lai = bia (3)
ara; = ajag, agb; = bay, bra; = ajbg, bib; = biby, (4)

af=a} (1<i<m,2<j<m,1<k<i<m)) (5)

Note that the deficiency of P, is (3m+4m(m—1)/2+(m—1)) — (2m) = 2m?—1.
In [21], the rank of the Schur multiplier of D}* was computed to be:

1(m? —m) ifnis odd,

rank(Ho(D2)) = 2

2m? —m  if n is even.
Therefore P, is not an efficient presentation for D7} for any positive integers
m and n except m = 1 and even n. However, we can construct an efficient

presentation for even n using Ps.

For 2 < j < m, observe that, from the relations (4), (5) and (3), we have

ajajas =a; (2<7<m) (6)

3

since aja;a; = ajai = a; = aj. Now we show that the relations a? = a; and

ara; = aja; for (2 < j < m) are consequences of the other relations and the

relations (6). Indeed, from (5), (6) and (3), we have
a? = a}(a1a;a1) = alaja; = a1aja; = a; (2 <j <m),
and, from (6), (5) and (3), we have

aa; = al(alajal) = a%ajal = a?al = a;a, (2 <Jj < m).
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Therefore, adding the (m — 1) relations (6) and removing the (2m — 2) redundant
relations, we have the following presentation:
Ps={(ai, b | ad=ay, ¢ =07, a,b] a; = by,
aia;a, = a;, a? = b7, ajb;-‘_laj =b;, af- =a?
Aprdp = apag, aka = bgak, bkal = albk, bkbl = blbk

(1<i<m,2<j<m, 2<k<l'<m,1<k<l<m))

for D7. Since the deficiency of P3 and the rank of Hy(Dj.) are both 2m? — m

when n is even, we conclude that D7} is an efficient semigroup, as required. W

Next we investigate the semigroup efficiency of D} for odd n. First we give

the following result.
Proposition 5.11 The presentation

Pi=(z,yla™y =y, (2"y)’z =z, (zy)’2™ = y*")
is an efficient semigroup presentation for Da, X D, with n odd.

Proof First we show that P, defines a group. Since, from the second and first

relations above,
2 = 2 (2"y)’z = 2" (2¥y)z"yz = (2"y)r =2 (7)

and z?"y = v, it follows that 2" is a left identity.
Now we show that, for all positive integers k, y*z"y* = yz"y. Indeed, from

the first and second relations of Py, we have

y2zmy? = y(zy)a™y? = y"(z"y)ly = ya"(z"y) ey = ya"z?ty = yaTy.

Therefore y*z"y* = yz"y follows by induction on k. For k = 2n, we have

2n_mn,2n

y "2y = yz"y. (8)
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From the third relation and (7),

y2n — (xy)ZxZn — (.’Ey)2$4n — y2n$2n‘

From this, (8) and the second relation, it follows that
(xny2n)2 — (mnyZn)ZxZn = xn(y2nxny2n)x2n — xn(ywny)IZn = (xny)2$2n — x?n.

Therefore z"y*"z"y>"~! is a left inverse of y. It follows from Lemma 5.1 that

P4 defines a group with an identity z?". This group has the following group

presentation
(z,y|a* =1, (z"y)’ =1, (zy)’ = y*")

which is a group presentation for D3 for odd n (see Lemma 1.45). Since the
deficiency of P, and rank(M(D3,)) are both one, we conclude that D?,_ is efficient

as a semigroup. [ |

Now we give an efficient semigroup presentation for D3  with n odd.

Proposition 5.12 The presentation

is an efficient semigroup presentation for D3, with n odd.

Proof First we prove that Ps defines a group with identity (az)?. For this we
apply Lemma 5.1. Indeed, from the fifth and first relations, we have

- - -1 1
z(az)? = (2" tzz")(az)? = 2" I22"2(az2)? = 2" 122" = 2.
Moreover, from this and the third relation, we have

a(az)? = (2" laz)(a2)? = 2?7 laz(az)? = 2" lez = a.
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Therefore, it follows from these and the first relation that (az)? is a right identity
of the semigroup B, defined by Ps.
Next we find right inverses for the generators. It is clear that zaz is a right
inverse of a. We prove that 2" 2z2"*11?"2gzz2az is a right inverse of z and
-2

x*™ axzaz is a right inverse of z. Indeed, from the fifth and third relations in

Ps, we have

n—2 Zn+1x2n—2 2n—-2 2n-—1

z(z" "z azzaz) = (2" 'z2" )2 tazzaz = (z

and, from the third relation, we have

z(z* 2azzaz)

= (2 'az)zaz = (az)”

Therefore, we deduce that B, is a group with the following group presentation:

(a,z,2z | azaz=1, (z2z")*" =d? z¥" 'az = q,

Next we show that the relations a* = z*" = 1 hold in B,. Indeed, from the

third and sixth relations, we have

- - — -1 2 —
a2____(w2n 1(11')(272” 1(1.’1?):.’172n azr nax:l]n 1a4m:$6n:a6,

and so we have

3n-1 — x2n—221,6n—2 — ... = xkn—kleﬂcn—k
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for any k. In particular, for £ = n, we have
gMP=1) yon(3n-1) _ (10)

Since n is odd, either n = 4m + 1 or n = 4m + 3. If n = 4m + 1, then, from (9),

we have

l_n(n—l) = xn((4m+l)—~1) = gimn —

$4

and

xn(3n—1) = :L,n(3(4m+1)—1) = pl?mnt2n _ x?n,

and so, from (10), we have z?" = 1.

If n = 4m + 3, then from (9), we have

xn(Sn—l) wn(3(4m+3)—1) = $4(3m+2)n =1

and
xn(n—l) = $n((4m+3)—1) = :v4mn+2n _ x2n’
and so, from (10), we have z?" = 1.
Therefore, the relations a?> = z?" = 1 hold in B,. Moreover, the relation

z? laz = a can be replaced by the relation az = za. Hence we obtain the

following group presentation for B,:

(a,z,z | (az)?=1, (zz")* =1, az = az,
mfn—lz — an+1’ ~n-—1x2n+1 =z, x2n — a2 — 1 >
which defines D3 for odd n (see Lemma, 1.46). (]

Note that the group presentation above is not the efficient presentation given
in [21]. Tt is shown in [21] that the relation 2?" = 1 is redundant. If we eliminate
this redundant relation, we obtain the efficient group presentation for D, given
in [21].

We now consider the general case when n is odd.
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Theorem 5.13 For any integers m > 2 and odd n, the direct product D7 is

efficient as a semigroup.

Proof First we prove that D7} is efficient for m even. By Proposition 5.11, D3
has the efficient semigroup presentation P,. It follows, from Lemma 5.9, that for

any positive integer ¢, the semigroup presentation

oy 2n,, — .. N2 — . Y220 — 2
(ziy yi | 2"y = yi, (2Py:)%xs = 4, (ziy:)2a?™ = Y27,
LT = 1Tk, TRY! = Y1k, YTl = Ti1Yky, YeY!I = Yi1Yk,

e =2t (1<i<t, 1<k<I<t 2<j<t))

defines D2t . Since

— .. 2n __ ..2n 2n, . __ ...
Ty = Y%, z;° =2y and 7i"y; = y;

(2 < j <t) hold in D3, we have

ziyjzi Tt =2ty = 2y, =y (11)

Next we show that the relations z1y; = y;jz; and 23"y; = y; (2 < j < t) are
consequences of the other relations and the relations (11). First, from the second

and first relations (2 = 1), we have

x?n'*'l — x?n(x?’yl)2$1 = x?(zf”yl)m?ylxl = (.’E;Lyl)2:131 =2I.

It follows from (11), the relation 22" = z3" and the fact that z3"*! = z;, that we

have
2n _ 2n 2n—=1y _ 2n+1,  2n—1 __ W2n=1 __
T;Y; =T (xlyj‘rl ) = z{"" Y,y = T1Y;Ty =Y
for 2 < 7 <'t. Moreover,
2 2n—1 2n __ adn=1 __ a2n—1 __ )
ijjn = (g2 )Ty = T1Y;T = T1Y;T, = Y;-

From this fact, the relation " = z}" and (11), we have

r1y; = $1(y123n) = Ilyjl‘%n = (Cl,‘ly]'l‘fn_l).’f‘l = yjdtl.



Semigroup Efficiency of Groups 105

' =y; (2 <j <), and then removing

Therefore, adding the relations z,y;z3"~
the relations m?”yj = y; and z1y; = y;z; (2 < 7 < t), we have the following
presentation
(zi, yi| 2Py =y, (2Ty1)?21 = 21, (2ay1)?2]” = yi",

ziy;e" " =y, (2Fy) e = 5, (z5y;) "l = g2, 2t = "

TkTp = LTk, Ti'Yvr = YrTrry YeTl = 1Yk, YY1 = Y1Yk

(1<i<t 1<k<I<t, 2<Kk <lU<t 2<j<t))
for D2t with n odd. Since the deficiency of the presentation above and the rank
of the Schur multiplier of D3. (with n odd) are the same number, 2¢? — ¢, it
follows that D2! is efficient as a semigroup.

Next we prove that D7), is eflicient for m > 3 odd. Let m = 2t + 3 for some
integer ¢ > 0. If ¢t = 0, we know from Proposition 5.12 that D3 is efficient as a
semigroup. If ¢ > 1, then it follows from Lemma 5.9, the presentation Ps for D3
and the presentation for D2 above, that the semigroup presentation

(a, x, z, z;, yi | zazaz =z, (zz")* = a?, 2" laz = q,

n—1 n+1 n—1
3

2"l =22 2t lgantl =

T, 2" = a?,

2ty = 1, (2fy)’er = 21, (zgn)?2] = i,
ziyz T =y, (27y) e = 2, (2y;) el =y,
TrT; = LTk, TR'Yr = YTy, Yl = TilYk, YeYi = YiYk,
azr; = T;a, ay; = Yia, TT; = T;T, TY; = YT,

ZT; = Tz, 2Yi = Yi%, m?n =z

(1<i<t 1<k<i<t 2<k<lU<t 2<j<t))

defines D+ = D3 x D3I as a semigroup. Notice that the deficiency of the
above presentation is 2t2 + 5t + 4. However, the rank of the Schur multiplier of
D23 is (2t + 3)(2t + 2)/2 = 2t + 5t + 3 (see [21]).

To obtain an efficient presentation, first notice that the relation zy,z?*~! =y,

X . on _ .2 2n,
is a consequence of the relations zy; = y1z, 77" = ™" and r{"y; = y;. Indeed.
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observe that
$y1x2"_1 — y1x2n — ylx?n = .

2n+1

Next notice that the relation z = z is a consequence of the first six rela-

tions of the presentation above (as we proved z?" = 1 in the proof of Proposition
5.12). From this fact, the relation 22" = 22" and the new relation zy,2**"! = y;,

we show that the relations 2"y, = y; and zy; = y,z are redundant. Indeed,

:Irf"y1 _ z:f"(:vylxzn"l) _ $2n+1y1$2n—1 = zye? =y
and
ylx%n — (xylen—l):r%n — .'17y1.’1:4n_1 — $y1x2n—1 — yl-
It also follows that
zy = o(yeit) = (w1’ Yz = yiz.

Therefore, the relations z3"y; = y; and zy; = y;z can be replaced by the single
’ 1 Y g

1

new relation zy,z?*~! = y;, and hence DZ*? is efficient as a semigroup, as

required. m

From Theorems 5.10 and 5.13, we may deduce that
Theorem 5.14 The direct power DY is an efficient semigroup for m > 2.

For odd n, we do not know whether D,, is efficient as a semigroup. But
we know that DJ' (m > 2) is efficient as a semigroup although the semigroup
efficiency of direct product of groups is harder then the group case. This makes

Open Problem 1 more interesting.

5.5 Semigroup efficiency of PSL(2,p)

The efficiency of PSL(2,p) (as a group) has been studied in many papers (see for
example [8], [63] and [71]). In this section, we prove that PSL(2,p) is efficient as

a semigroup for all primes p.
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We begin with the (inefficient) group presentation of PSL(2, p)
PGp)=(myle® =197 =1, ()’ = 1, (ey'ey™® ) = 1)

for p an odd prime (which can be deduced from the presentation in Theorem

1.44).

Next we give an inefficient semigroup presentation for PSL(2,p) which will

be useful for Theorem 5.19.

Lemma 5.15 If p is an odd prime, then

Gp=(z,y| 2’ = T, y* = 1?2, (“?y)s =z?, xy”_lxy?’:vy%:cy‘lxy% =y)

is a semigroup presentation for PSL(2,p).

Proof From the last and the first relations, we have

_ il Bl _ ptl Pl
2y = 2y layley E aytey s = eyt leyey e aytay =y

It follows from the second relation that z? is central, and so z? is the identity of
the semigroup S5, defined by G,. Moreover, z and y have inverses, namely z and

yP~! and so S, is, in fact, a group. It is clear that the following

!

G,=(z,ylz’=1, 9" =1, (zy)° =1, y*

xy”—lxy‘g:cyr%xy‘*xy% =1)

is a group presentation for S,.

Since, from the first three relations of g;,

1 1

y ey lay Tt =y Ty ey T =1

it follows from the last relation of gz’, that

1 = yolay ety aytey®

_ _ p+1 p+1
= (ylzy"lzy Vy'zy 2 zytzy

= (a:y%yrd?i)z.
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which is the last relation of P(G,p).

Now we prove that the last relation of g;, is a consequence of the relations of
P(G,p). Since yP~lzty = yP~ly =1, (a:y“:cypér_l)r" =1land (zy)*=y? =22 =1,
it follows that

p= p—1_2

1 _ p—1 ptl
ey leyley oyteyt = oy 2P 2ty ytay ™ aytay

= p=

= oy ey e(eytey™ )P = oy ey e

= xyp“lx(:cymy:c)x = zyP l2tyzyz® = y.

Therefore, G, and P(G, p) define isomorphic groups, and so S, & PSL(2,p), as
required. |

Next we give a deficiency one semigroup presentation which defines a group

and which will prove useful in obtaining an efficient presentation for PSL(2, p).

Lemma 5.16 The following semigroup presentation

ptl

H(p, k) = (z,y |y = 2%, yayzy = z, oy* ‘aylay™® ay'zy™ =y)

defines a group with the identity z*(zy®)? for each odd prime p and for each

positive integer k.

Proof First notice that, from the first relation, z? and y? are both central.

Then we have

P4 (ayteyS)? = y(’““)”:v(fc.y“:lcﬂ‘l)2 (by 2* = y7)
= yhkrtlg2yr- Lydey™ zytzy™®  (since 2 is central)
= yrristayley Faylay™  (by 2 =)
= yxykpsczxy%ya;ﬂmy“xy% (since y® is central)
= yryzly*r- Leydey™F zylzy™  (since z? is central).

Thus, from the last and second relations, we have

1

;c2k+3(xy4;cyp‘;—)2 = yTyTy = . (12)
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We also have

rlyzy = :E“y:c(acyk”'l:cy%yp;_lxy“xyr#) by the third relation)
= $4ykp$$2y3$ym2i$y4$y% since z? is central)
= 334ykp$yp_ly43«"y%—1$y4$y by 2% = yP)

(
(
R
(
(

= fyp_lykpifa(ivy%y%)r‘) since z? and y” are central)
= wyp‘lcczk”(:cy“xy'%)? by z? = yP)
It follows from (12) that
yrya' = zlyey = zyP 'z, (13)

and, from the first relation,

:1:2k+2yxy = ka_z(:n4yxy) _ y(k—l)pxyp—lx _ :I:y/cp—lx’

and so, from the last relation,

$2k—|—2( E‘—*—l)2 — p2k+2

y aytzy y(zy'zy™t )? = 2y loyPeyF aytey ™ =y, (14)

From the second relation, for any k € N, we have (yzy)*zy* = z. In particular,
(yey)'zy*! =z (15)

It follows from the third and first relations that

_ _ 1o _ pt1 psy
y(zy®yPt = (yay)ly = ((yzy) oy Dy Paeylay aytey™
— oyt Py T ayteyt = 2%yPey oytey™t
and so, by multiplying by zy on the left-hand side, we have
(zy?)? = o (ay'ay™™ ). (16)

Therefore, it follows from (12) and (14) that

z%(zy®)? = 7 and ya*(zy’)’ =y (17)
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so that z2(zy?)? is a right identity.
Next we prove that y(zy?)? = (zy?)Py. By the last and first relations, we have

yay = yaiy**laytey T aytey™ = yPayrlytay T oytay
_ xyp—1m2k—1($y4xyl’%)2.
It follows, by multiplying by (yzy)?~! on the left-hand side, that

p—lek—l( ptl

y(zy®)P oy = (yay)P yey = (yoy) ey zytey )2,

and so, by (15), we have
y(ey) oy = o (ay'ay"T )P,
Therefore, from (16), we have that y(zy?)zy = (zy?)?, and so we have
y(zy®) = (ay*)y. (18)

It is clear that z(zy?)” is a right inverse of . Now we show that z?(zy?)?~'zy is

a right inverse of y. From the first relation and (18),

p+1 p—1

y(z (zy?)PLzy) = y(zy?) teyPt! = y(zy?)PyP ! = yP(ay?)P = 2P (zy?)P.

Therefore, from Lemma 5.1, we deduce that ‘H(p, k) defines a group. [
Let H(p, k) denote the group defined by the semigroup presentation H(p, k).

Lemma 5.17 For all odd k and all odd primes p, if the generator z satisfies
z* =1, then 2% =1 holds in H(p,k).

Proof First we show that
y* ! = zyzye (19)

without assuming z* = 1. Observe that we have

o= et i ety T (by (14))
= x(my”‘%)x%_l(wy%y%—lf (since z? is central)
= ayzya®(aytay™t )’ (by (13))
= ayzyz (by (12)),
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as required. Next we have from the last and first relations of H(p, k) that

yzy = ya'yleyley" T aytay™s = 243yPryF ytey

Now assume that z* = 1. Then, since k is odd, we have z2¥*3 = z, so that
3 prl 4 ptl
yzy = ay’zy z zy'zy 2 .

It follows from (13) and z* = 1 that

p—1 ptl ptl
zy? 'z = zylzy e aytzy 2 .

2p33

Multiplying the above equation by y on the left, we have

231 238
Yy iz =2y 7 aylzy e

since z* = y?? = 1. By multiplying the above equation by z2y?~'z® on the right,

we have
yP iyl = a:yegixy a:sys =L 3 (20)
Since
yP~ig3yP1z® = yPizyPlz (since z? is central and z* = 1)
= y*ia?yayz®  (by (19))
= y?3zyz? (since z2 = yP)
= y? iryzy’a? (by the second relation)
= (¥ x)y(’y?),

it follows from (20) that
(v**2)y(’y*) = uy™v

where u = xyE2L.’1) and v = z° y #2223, Since vu = z 3y?Pr = 23z%z = 1, it follows

from
(¥ 22)y(z%?))" = (uy*u™1)P
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that (y?~2z)yP(z3y?) = uy*Pu™!, and so 2% = y? = 1, as required. |

Before the main theorem of this section, we state a useful theorem from [13].
For any group G, we use G’ and Z(G) to denote the derived group of G and
the centre of G, respectively. If G = G’ then G is said to be a perfect group. A
covering group C of G is a group such that C has a subgroup A with C/A = G,
A< C'NnZ(C) and |A] = |M(G)|, where M(G) denotes the Schur multiplier of
G. Thus it is clear that SL(2,p) is a covering group of PSL(2,p).

Theorem 5.18 Let G be a finite perfect group. Suppose G = H/B where B <
H' N Z(H). Then G has a unique covering group C and H is a homomorphic
image of C.

For a proof and more details, see [13].

Theorem 5.19 For each prime p, PSL(2,p) is efficient as a semigroup. More-
over, PSL(2,p) = H(p,11) for all odd primes p.

Proof Since PSL(2,2) = Dg and D is efficient (see Lemma 5.7), PSL(2,2) is
efficient as a semigroup. For each odd prime p, we use the group H(p, k). Note
that, for all k¥ and odd primes p, PSL(2, p) is a homomorphic image of H(p, k)
since

yryzy = (z’y)zyzy = 2(zy)’ =2° =2
(see Lemma 5.15). For some k, if 22 = z (or 2* = 1) holds in H(p, k), then
PSL(2,p) is isomorphic to H(p, k). Therefore, to prove PSL(2,p) is efficient, it
is enough to show that z* = z holds in H(p, ko) for some ko.

First we show that PSL(2,3) = H(3,1). Recall that

H(3,1) = (z,y |y = 2*, yayey = 2, ey’ey’ey’zyzy’ =y ).
and that z2(zy?)® is an identity. Observe that, from the first and last relations

above, we have

2% = zy® = (zy?)zyley’eyieyiey? = (ay?)Pyzy’ey'zy’ = 2 (ay?)Pyy’ryay’.
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Since z%(zy?)® = 1, it follows from the second relation above that

z’ = yrylryzy® = yry(yryzy)y = yryzy = z,

as required. Notice that H(3,1) & H(3,11) (we use a coset enumerate program
for this).

Now consider the group H = H(p,11) for odd primes p > 5. Now we show
that H is a perfect group, that is H/H’ is trivial. Observe that we have

H/H = (z,y|y* =2 y’z=1, y""*%° =1, 2y = yz)

12

(y| yp+6 =1, ylzP—9 =1 ) ( by eliminating =z = y‘3)
(yly"™®=1,4"=1)

{1}

12

1R

since the highest common divisor of p+6 and 81 is one if p # 3. (For more details
for the group G/G’ see [35] or [36].)

Therefore, we have 22 € H' = H and z? is central so that B < H' N Z(H)
where B is the subgroup generated by z%. Since

ptl

H/B =(z,yly’ =2%=1, yayay =z, sy ay’ay oyzys

= (o,y|y? = 2* = 1, yayzy = 7, zyP ayley"F aytey T
= PSL(2,p)

by Lemma 5.15, it follows from Theorem 5.18 that H is either PSL(2,p) or

SL(2,p). In both cases * = 1 holds in H, and so, by Lemma 5.17, z* = 1 holds

in H so that PSL(2,p) = H/B = H, as required. [

Remark. The group H(p,k) is perfect if and only if 2k + 5 and p + 6 are
coprime. The values of k for which this holds for all p are those for which 2k + 5
is a power of 3.

It is not true, in general, that PSL(2,p) = H(p,k) for all odd k. Even
the orders of PSL(2,p) and H(p, k) may be different. For example, |H(5,3)| =
11 x |PSL(2,5)|.
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Finally, we give examples of efficient semigroups which lead us to consider the
efficiency of direct products of the semigroups PSL(2,p). It is known [20] that

these are efficient as groups.

Example 5.20 The semigroup presentation
(a,bla” = a, (a°)* = ab, (a®b)*0° =b)

defines PSL(2,2) x PSL(2,2). Therefore PSL(2,2) x PSL(2,2) s efficient as

a semigroup.

Proof Since
a®b = a®(a?b)*b® = a"(aba’b)b® = (a’b)?b° = b

from the last and first relations above, it follows that a® is a left identity. It is
clear that a® is a left inverse of @ and a®ba? is a left inverse of b, and so, by Lemma
5.1, the above presentation defines a group with the identity a®. Thus this group

may be given by the following group presentation:
(a,b]a® =1, (¢®)* =1, (a®b)’b* =1).

It is known that this group presentation defines PSL(2,2) x PSL(2,2) efficiently
(see [20]). Therefore PSL(2,2) x PSL(2,2) is efficient as a semigroup. [

Since PSL(2,2)? & D2, the efficiency of PSL(2,2)? also follows from Propo-

sition 5.11.
Example 5.21 The semigroup presentation
(a,b|a* = a, b°=d® (ab)®b=>b, bab’a’ba = ab)

defines PSL(2,3) x PSL(2,3). Therefore PSL(2,3) x PSL(2,3) is efficient as

a semigroup.
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Proof From the first and the third relations of the above presentation, we have
a®b = a*(ab)®b = a*b(ab)®b = ab(ab)’b = b.

It follows from the second relation that a® is the identity, a? is the inverse of a
and b? is the inverse of b. Therefore the above presentation defines a group with

the identity . This group may be defined by the following group presentation
(a,b]a® =1, b =1, (ab)® = 1, bab*a’*ba = ab)

which is given as an efficient group presentation of PSL(2,3) x PSL(2,3) (see
[20]). |

Open problem. Does there exists a deficiency two semigroup presentation

for PSL(2,p) x PSL(2,p) with p prime, p > 57
More generally, we have the following question:

Open problem. Is an efficient finite group G efficient as a semigroup?
Alternatively, are there any examples of finite efficient groups which are not

efficient as semigroups?



Chapter 6

Minimal Presentations for Zero
Semigroups, Free Semilattices

and Rectangular Bands

In the previous chapter we considered groups as semigroups. Then we proved
that certain classes of groups were efficient as semigroups. In this chapter we find
certain infinite classes of both efficient and inefficient semigroups. For example,
finite rectangular bands are efficient semigroups. By way of contrast we show that
finite zero semigroups and free semilattices are never efficient. In the process, we
calculate their second homology groups and find minimal presentations for them.
Finally, we compare these results with some well-known results on the efficiency
of groups.

Recall that we define the monoid S* by adjoining an identity 1 to a semigroup
S. We now define the nth (left) integral homology of a semigroup S, H,(S), to
be the nth (left) integral homology of the monoid S, that is

Ho(S) = Ho(SY).

The results of this chapter together with some of the results of the previous

chapter will appear in Semigroup Forum (see [1]).
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6.1 The nth homology groups of semigroups

with a left or a right zero

In the following proposition, we compute the homology groups of a semigroup

with a left or a right zero.

Theorem 6.1 Let S be a semigroup with a left or right zero. Then, forn > 1,
the nth homology of S is the trivial group.

Proof We compute the homology groups of a semigroup S by using the bar
resolution of Z (see Chapter 1).
Recall that applying the functor Z ®zs1 —, where Z is a trivial right ZS*-

module, to the bar resolution of Z, in effect, yields the following chain complex:

B:—)Bn—g—n)Bn_l Lii)Bli 70—>0
where B, is the free abelian group on all [z;]...|z,] with z; € S and, and the

group homomorphism 3, is given by

n—1
On([z1] .- |zal) = [22] .- |&a] + > (1)) ... |zizia] ... |24]
=1
_*_(_1)71[1,1' BN lxn—l]-
Now we apply Proposition 1.19 to show that the chain complex B is exact for

n > 1. For this, we only need to construct a contracting homotopy.

In the case when S has a left zero z, we construct a contracting homotopy for
B, namely

e — Bn+1 (sn Bn s("-l (81 Bl <50 BO < 0

where each s, : B, — Bny is defined by

sa(lz1]. . J2a]) = [zlea] . |2a].
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Then observe that, for [zy]...|z,] € B,, we have

(Ont18n 4 8n—10p)[21]...| 2] = 5n+1(3n([$1|---|35n])) + Sn—l(gn([xll---l%]))

n—1

= Bpp1([z]21]- ] 2n]) + Snt ([mzl...lscn] + (Z(—l)i[xl|...|xixi+1|...|xn])
(1) o] 2]

— ([:clllzcn] — [zz1]zg]... |20 + (i(—l)i+l[z|x1|...]xixi+1|...|xn])
+(—1)”+1[z|w1|...lmn_1]) + ([z|x2||xn Z ) [zlz1|-|zizign ]| zn))

+(=1)Leler] o l@naa]) = 2] o]
so that 5n+13n + 8,10, = Ig,, where Ig_ is the identity homomorphism of B,.
It follows that B is exact at B, for n > 1, and hence the nth homology is trivial,
as required.
In the case when S has a right zero z, a contracting homotopy can be defined
by
ta([z1] .- - [2a]) = (1) [ai] .. |2al2]

and, similarly, we have

(Bugit + too1Bn) 21|10 = Bnpr(bn([21]--[20))) + tnos (Bal[21]---|2]))
= Bt (=1 - oalz]) + taoa (2] J22]

n—1

+( i(_1)2[$11|3’z$z+1||$n]) + (—1)"[3:1|...|:rn_1])
- ((—1)n+1[ |znlz] + Z )" 2] |zi@ig1]--|2al2])

F( 12 [ar]ef@noalenz) + (<12 ] ]

—

n—

(ol clzalz] + (Y (1 ozl feal2])

1

+(—1)2"[m1|...|xn_1|z])

= (=1)2"*2[z,]...|za] = [21]---|22]
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s0 that Onyity + ta10n = Ig,, and so we conclude that the nth homology is

trivial, as required. [ |

It follows from Proposition 1.22 and Theorem 6.1 that we have the following

corollary.

Corollary 6.2 Let M be a monoid with a left or right zero. Then, forn > 1,

the nth homology of M is the trivial group.

6.2 Inefficiency of zero semigroups

Observe that from Theorem 6.1, a semigroup with zero has trivial second homol-
ogy. In particular, the second homology of a zero semigroup is trivial. Next we

investigate the efficiency of finite zero semigroups.

Theorem 6.3 Let Z, be the zero semigroup of order n with n > 2. Then
defs(Z,) = (n —1)(n — 2).

Ifn > 3, then Z, is inefficient.

Proof Let Z, = {z0,21,...,2n-1} With 2;2; = 2o, where z; is the zero element,
and let P = ( A| R) be a presentation for Z,. We may assume that there
are no relations of the form w = w (w € A') nor of the form w = @ with
a€ A we (A\{a})* (otherwise we eliminate the relations of these form without
increasing the deficiency of P).

Decompose A as A = X UY, where X represents the non-zero elements
of Z, and Y represents {z0}. Since zz; = z for all z;, z; € Z,, the elements

#1.... , Zn_1 Must belong to every generating set of Z,. It follows that | X| > n—1.
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The set Y may be empty. We let

R = Rﬂ((X2><A+)U(A+XXz))={(u=v)€R|ueX20rv€X2},
Ry, = RN((Y xAT)UAYxY))={(u=v)eR|ueYorveY}
Rs = R\(RiUR,).

Clearly, R = R; U R; U R3, and both R; N Rs and R, N R; are empty. We claim
that Ry N R, is also empty. Otherwise, we would have a relation of the form
z;x; =y (z;, t; € X,y € Y) which is a contradiction to the assumption on P.

On the set X2 define a binary relation
p= (X2 X X2) ﬂRl = { ((Ell'g = .733334) € R] ].271, To, T3, T4 € X}

and let p* be the equivalence relation generated by p. Then consider an arbitrary

equivalence class C of p* and let z;2, € C. We must have
[(CxC)Np[=|(CxC)NR| 2|C| -1,

because any two elements of C' must be connected by a chain of pairs from p.
Also note that the relations z;z, = z3$ holds in Z, and that z3 cannot be obtained

from z;z, by applying relations from p. Hence there exists a relation of the form

(z3z4 = u) € R;\(C x C) with z3z4 € C and u € X?. Therefore,
Rl > ) (CxCnRl+1)> Y [C]=]X".
CEXQ/p' C€X2/p*

Noting that the relation y*> = y holds in Z, for each y € Y, and hence there
exists a relation (w, = y) € Ry with |wy| > 2 (otherwise we eliminate y which

is a contradiction to the minimality of A). Therefore we have |R;| > |Y|, and

hence

def(P) = |R|—|A| = |Ri|+ |R2|+ |Rs| = |X| = Y]
X2+ Y- |X|=1Y|2(n=1)=(n—=1) = (n—1)(n —-2).

Vv
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Finally, we show that Z, can be presented with a deficiency (n — 1)(n — 2)
presentation. For this purpose, we start with its Cayley table as a presentation,

that is
(@0, a1,... 0,1 | @a; = ag (0<4j<n-1)).

By eliminating the generator ay = a, we obtain

4_ 2 3_ 2 9 _ 2 2 2 2
(ay,...,an_y | @i =a3, a} = a}, a;a® = a?, a’a; = %, ara; = a’
l<i<n; 1<kl<n)).
We show that the relations af = a?, a;a} = a? and a?a; = a?for 1 < i < n

are redundant. Indeed, from the relations a} = a?, a;a; = @? and aya; = a}

(1 < i < n), we have

and moreover,
2 _ 3 2 2 _ 3 2
a;a] = (a;a1)a; = ay = a] and aje; = ai1(a1a;) = aj = af.

By eliminating these redundant relations and the trivial relation a} = a?, we

obtain the following presentation
{ar,... yan-1 |@iaj=a (1<i,j<n—1)).

of deficiency (n — 1)(n — 2). Therefore the deficiency of Z, is (n —1)(n — 2). By
Theorem 6.1, Hy(Z,) is trivial and hence Z,, is inefficient for n > 3. [ |

Note that since

Zy={z|z®=2%),

Z, is efficient.

6.3 Inefficiency of free semilattices

Next we investigate the free semilattice SL4 over a finite set A. Recall that SL4

is the set of all non-empty subsets of A with set-theoretic union as multiplication.
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Theorem 6.4 If A is a finite non-empty set of size n then

defs(SL4) = n(n —1)/2.
In particular, SL4 is inefficient if n > 2.

Proof Let P = (X |R) be a presentation for SL4. As in the previous theorem,

we assume that there are no relations of the form (w = w) (w € X*) nor w =z
where z € X and w € (X\{z})*.
For each a € A, let

Xo ={ 2 € X | z represents {a}}.

Note that {a} belongs to every generating set of SL£, so that X, is non-empty.
Let

Ri=(XxXHUuXxX*")WnR={(u=v)eR|ueXorve X}

Since, for each z € X, the relation z2 = z holds in SL4, it follows that R contains
a relation of the form z = w with w € X*. Note that |w| > 2 because of the

minimality of P and |A|. Therefore we have
|Ra| > |X]. (1)

Next note that if a relation w; = w, holds in SL£4 and if wy, € X} then w, € X}
as well. Now let a,b € A (a # b) and = € X,, y € X, be arbitrary. The relation
zy = yz holds in SL£4 and hence is a consequence of R. However, applying
relations from R; to zy will always yield words from X} X', whereas yz does
not have this form. We conclude that there is a relation (v = v) € R\R; such
that both u and v represent the element {a,b} of SL4. Hence

|R\R1| > n(n —1)/2. (2)
By combining (1) and (2), we have

X|>n(n-1)/2.

[R| — |X| = |Ru| + |[B\Bi| =
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If A={ay,...,a,}, then it is clear that the presentation
(ar,...,an|a? = a;, gjar =ara; (1<i<n, 1<j<k<n))
defines SL 4 and has deficiency n(n — 1)/2. We conclude that
defs(SL4) = n(n —1)/2.

Since A € SL4 is the zero element, by Theorem 6.1, the second homology of
SL4 is trivial. Therefore SL4 is ineflicient if |A| =n > 2. ]

Note that if A = {a}, then SL4 = (a|a®’=a), and hence SL, is efficient if
|A| = 1.

6.4 The second homology of rectangular bands

In this section we compute the second homology group of finite rectangular bands.

Recall that the rectangular band R,, , is the set [ x A where I = {1,... ,m}
and A = {1,... ,n}, with the multiplication given by (z, A)(j, ) = (2, ) for (¢, A),
(J, 1) € B

Theorem 6.5 For any integers m,n > 1, we have
H2(Rm n) — Z(m—l)(n—l).

Proof Since R, is a right zero semigroup, it follows from Theorem 6.1 that
H,(Ry,) = {1}. Similarly, Hy(Rm,1) = {1}. Thus we may assume that m, n > 2.

Now we consider the relevant part of the bar resolution of Z
B; % B, % By,

where Bs, B, and B, are the free ZR}, ,-modules on the set of formal symbols

(G NGy )k, [ WG] and (6] (oo k € T A € A) respectively,
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and 03 and 0, are given by

({6, M1 (R, 0)]) = (& NG Wl (k; )] = [(2, 1) (k, v)]
+[(2, V(G )] = 1@ MG ),
(& MIGWD = @06 m)] = 16 m] + (6 )]

By applying the functor Z ®zny, , —» Where Z is a trivial right ZR}nﬁn—module,

we obtain the chain complex
Z @zry, , Bs % 7 Qzry, , B2 %7 ®zri, , B1
of abelian groups. As before, this chain complex is isomorphic to
_ 5 = 8 =
Bg — B2 — B1

where B;, B, and B, are the free abelian groups on the set of all formal symbols
G V10 )1k, ), 166 )G, )] and [, N)] (5rd b € I5 A,y € A) respectively,

and the group homomorphisms s and 9, are given by

a([(¢, VI, Ik, v)]) = [, Wk, v)] = [ )k, )]+ [(2, M7, V)]
=[(% M7, 1],
A ([(z, MG, 1)) = [, )] =[G, )] + [(5, N)]-
We find a basis set for ker(8;). Each a € B, has the form;

a = Z Z 7/ )\ .73 )‘)l(]alu)]

1,7€I \,u€EA

with a(i, A, 7, ) € Z. It follows that o € ker(d;) if and only if

0 = =Y > ali, A g, m({(m)] = [ ]+ M)
1,J€1 A\ \u€EA
= Y (a(i,x,z’,m S (@l is A) — ali, 5, V)
i€, €A J#i or
BEN

-}-a(i, Ay Js H))) [(Zv ’\)]
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or, equivalently, if and only if

(i, A6, 0) = Y (= ald, 1, ) + ali,u, 4, A) — ali, X, j, 1)) (3)
J#t or
BEX
for each pair (z,A).
For fixed Ot(ig,)\g,jo,/lo) Wlth ’ig 7é jo or /\0 # Ho, We set a(io,)\o,jo,/lo) =1

and all the other variables on the right-hand side in (3) to zero, and so we obtain

a(io,)\o,io,/\o) = -1, a(io,ﬂo,io,ﬂo) =1, and a(jo,ﬂo,jo,uo) = -1

Therefore we obtain the following basis set for ker(8,):

{a(iMjou) |ij €1, A€ A(i#jor A p))

where

(4, 4,5, 1) = [(& VIG5 )] = [(2, M@ M)+ [G )l G )] = 16, )1 G w))-

Now we find a generating set for im(8s). If y = [(z, \)|(5, #)|(k, v)], then

Os(y) =[0G Wk, V)] = [ )|k, v)] + [(2, MG )] = [ MG, )]
= [0 wI k)] =[G, 1G> )] + G 0)1G )] = (R, ) (R, )]

=[G (ks )] + [ I G )] = [ )| (25 )] + [(Rs )| (R, v)]
+( M@V = 16 MIE M+ (@) 6 )] = (6, )]65v)

=[G MG ) + 16 MIE M) = G @ ]+ Gl s w)],

7
7

and so we have

53([(1, /\)I(J’H)Kk?l/)]) = I(j,,u,k,l/) - x(i,/.t,k,l/) + $(Z, )\)jv V) - IL‘(Z, /\a]a:u)
Therefore an abelian group presentation of Ha(Rp ») is
(z(,M,5,0) (7 €L Ap ez Ai,2) =0,

(g, p, ke, v) — (i, kyv) + 2(2, A, 7, v)—z(i, A\ 7, 1) =0, (4)
(i,5,k € I; A\ p,v € A)).
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By taking k = v =1 and g # 1 in (4), we have
z(1, A, 0,0) = 2(j, 1, 1, 1) — 2(i, 4, 1,1) + 2(3, A, 5, 1).
It follows that, for A # 1,
(2, A5, A) = (i, A, 1,1) — (4, A, 1,1) + (3, \,i,1) = (i, A, 7, 1).
Moreover, for v, u # 1,

z(J, o ko v) — (i, by v) + (3, X, 7,v) — 2(3, A, 4, 1)
= (z(j,p,k, 1) — 2(4, 1, 1,1) + z(k, 1, 1,1)) — (2(i, . k, 1) — 2(3, 0, 1, 1)
+z(k,v,1,1)) + (2(i,A,5,1) — 2(3,v,1,1) + 2(j, 1,1, 1)) — (2(3, A, 4, 1)
—z(i,p, 1,1) + 2(j, 4,1, 1))

= x(j”"’?k’l) _w(z”#’k’l)+x(i’ﬂ7]‘,]‘)_x(j7/l7]"l)'
For v #1 and u =1,

z(4,1,k,v) — z(i,1,k,v) + 2(3,\, J,v) — (i, A, §, 1)
= (z(5,1,k,1) — z(4,v, 1,1) + 2(k, 1, 1,1)) — (2(3,1,k,1) — (i,1,1,1)
+z(k,v,1,1)) + (2z(3,A,5,1) — 2(t, v, 1,1) + 2(j, 1, 1,1)) — (3, X, 5,1)
=x(5,1,k,1) — z(j,1,k,1).

Therefore, eliminating the generators z(z, A, 7, ) gives the presentation

(2(i,)\4,1) (5,5 € I, A€ A) | 2(3,1,4,1) = 0, (i, \,4,1) = 0,
z(g, p, b, 1) — 2 (i, p, ky 1) — 2(g, 11,1, 1) + 2(4,4,1,1) = 0, (5)
(5,1, k1) —z(¢,1,k,1) =0 (i, 5,k €I, \\p € A, N # L p#1)). (6)

Next set k = j in (6) to obtain

z(1,1,5,1) = z(5,1,7,1) =0
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and in (5) to obtain

‘T(Z>/J7]’1) = x(]?“’]71)+$(zﬁu7171)_x(]’l’l”]‘J]‘)

x(ivﬂ7 la 1) - :v(j,,u, ]-a 1)

since z(j, 4, 7,1) = 0 (1 # 1). It follows, for A # 1, that
z(4,A,4,1) = 2(¢,\,1,1) — 2(i,),1,1) = 0
and, for p # 1, that
z(J, 1k, 1) — (i, p, by 1) — (5, 1,1,1) + z(i,p1,1,1)

= (20, 1,1) —a(k, 1, 1,1)) = (2(i, 1, 1,1) — 2(k, 1, 1,1))

—(x(j>ﬂ7 la ]-) - $(17M71,1)) + (.’ﬂ(i,/.b, 17 1) - x(l’uv 19 1)) = 0.

Therefore, by eliminating z(i,1,7,1) and z(i, 4, 75,1) (u # 1), we obtain the pre-

sentation

(2(ipn, 1,1) Gel, pe A{1}) [ 2(1,1,1,1) = 0 (u € A\{1}) ).

Finally, we eliminate z(1,u,1,1) (1 # 1) to obtain the free abelian group

(z(6p1,1) e {1}, pe A\(1}) | ),

thus proving that Hy(R}, ) = Zm~D(~1) a5 required. [ |

6.5 Efficiency of rectangular bands

In this section we prove that finite rectangular bands are efficient. Therefore we
obtain our first example of a family of efficient semigroups which are not groups.
It is easy to see that R, 1s isomorphic to the left zero semigroup of order m.

Neumann showed in [47] that all finite left zero semigroups have deficiency zero

presentations, namely

(a1,...,am|a1a3 = ay,... ,00i41 = aiy... 04,01 = a, ), (7)
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and so they are efficient. Similarly, one may show that the presentation
(bl,... ,bn | blb2 e b2,. .. ,b,\b,\+1 — b,\+1,... 7bnbl = bl >

defines the finite right zero semigroup R, , of order n. Therefore all finite right
zero semigroups are efficient. Notice that both left zero semigroups and right zero
semigroups may only be generated by themselves, that is if (X) = Rn1 (Ri,),
then X = R, 1 (R1.,).

From now on we assume that m,n > 2. Before we show that rectangular bands
are efficient, we give nice presentations for them. Note that since a rectangular
band is, in fact, a Rees matrix semigroup over the trivial group, a presentation
for R, , can be deduced from a general presentation for Rees matrix semigroups

given in [30], namely
2

(6, Y29+ yYm,y 225...2n € =€, €Yy; = €, Y€ =Y;, €2\ = 2),

ne=¢e, ny=¢€ (2<i1<m,2< A< n)).

Proposition 6.6 The rectangular band R, , (m,n > 2) has a presentation

Pi=( a(i,1),al,)) 1<i<m, 1 <A<n)|
a(i,1a(i +1,1) = a(z,1) (1 << m), (8)
a(1,Na(1, A+ 1) =a(l,A+1) (1< A <n), (9)
a(1,Na(i,1) =a(1,]) 2<i<m, 2<A<n)),  (10)

with the convention that a(m + 1,1) = a(1,1) = a(l,n + 1) in terms of the

generating set
X = {(1)]1<i<mIU{(LA)[1<A<n}.

Proof From (i,)) = (i,1)(1, A), we see immediately that X » generates Rp, .
A routine verification shows that R,,, satisfies all the relations (8), (9), (10).

Hence R,.n is a homomorphic image of the semigroup S defined by P; and, in
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particular, |S| > mn. From (8) and (7), it follows that the semigroup S; of S
generated by { a(i,1) |1 <1 < m } is a semigroup of left zeros, and so |S;| < m.
Similarly, |S2| < n, where S, is generated by { a(1,A) | 1 < A < n }. Because
of the relations (10), we have S = 5153, and so |S| < mn. We conclude that
|S| = mn and hence S = R, .. ]

Note that the deficiency of the presentation P; is (m —1)(n — 1)+ 1, which is

just 1 greater than we require. We now give our efficient presentation for R, .

Theorem 6.7 The rectangular band R,,, (m,n > 2) has a presentation

P2 = (a(i,1), a(1,X) (2 <
a(1,n)a(m,1)a(2,1) =
a(i, Na(i+1,1) =
a(l,n)a(m,1)a(1,2) =

|/\
[N
IA
>~
IA
E

in terms of the generating set { (1,1) |2<i<m }U{(1,A)|2<A<n}.

Proof We apply Tietze transformations to P; to obtain P;. By (10), we
have a(1,1) = a(1,n)a(m,1) and so, by eliminating a(1,1) from P, we have the

following presentation:

(a(i,1), a(1,)) 2<i<m; 2< A <n)|
a(1,n)a(m,1)a(2,1) = a(1,n)a(m, 1),
a(i,1)a(i +1,1) = a(i,1) (2 <i < m —1),
a(m,)a(1,n)a(m,1) = a(m, 1), (12)
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a(1l,n)a(m,1)a(1,2) = a(1,2) (13)
a(1,Va(L, A +1)=a(l,A+1)(2< A <n—-1), (14)
a(l,n)a(l,n)a(m,1) = a(l,n)a(m,1), (15)
a(1,MNa(i,1) = a(l,n)a(m,1) (2<i<m; 2< A < n; (1,A) # (m,n)) ).

Next we show that we may replace the relation (15) by the relation (11). First
we show that (11) holds in R,,,. Indeed, from (15) and (12), respectively, we

have
a(m,1)a(1,n)a(1,n)a(m,1) = a(m, )a(l,n)a(m,1) = a(m,1).

A repeated application of (14) yields

a(l,n) = a(1,2)a(1,3) - a(1,n) = a(1,2)a(1, n), (16)
and hence
a(l,n)a(m,1) = a(l,n)a(m,a(l,n)a(l,n)a(m,1) (by (11))
= a(1,n)a(m,1)a(l,2)a(l,n)a(l,n)a(m,1) (by (16))
— a(1,2)a(1,n)a(l,n)a(m, 1) (by (13))
— a(1,n)a(1,n)a(m,1) (by (16))

and so we may replace the relation (15) by the relation (11). Next we prove that

the relation (12) is redundant. Observe that we have
a(l,n)a(m, Da(l,n) = a(l,n)a(m, Da(l,2)a(1,n) (by (16)

= a(1,2)a(l,n) (by (13)

= a(l,n

)
Finally, from the previous relation and (11), it follows that
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Therefore, by eliminating this redundant relation we obtain our presentation P,

as required. |

Corollary 6.8 The rectangular band R,, ., is efficient for arbitrary m,n > 1.

Proof Recall that, by Theorem 6.5, Hy(R,) & Z™-D®=1 If n = 1, then
R is a semigroup of left zeros, and is efficient by [47]. The case m =1 is dual.

If m,n > 2, then

def(P;) = (m—-1)(n—=1)+(n—2)+(m—-2)+3) - (m+n—1)
= (m—1)(n—1)=rank(Hz(Rn.))

and hence P, is an efficient presentation for R, ,. |

6.6 Remarks

Although finite left and right zero semigroups are efficient, we showed in the
second section that zero semigroups of order at least 3 are not efficient. Moreover,
defs(Z,) — rank(H3(Z,)) and defs(SL,) — rank(H,(SL,)) both increase with n.
Note that Z, and SL, are both abelian semigroups. This contrasts with the case
of finite abelian groups which are efficient even when considered as semigroups
(as we proved in the previous chapter).

It is interesting to notice that although the second homology of a finite group is
a finite abelian group, the second homology of a finite semigroup is not necessarily
finite since Hay(R}, ) = Z(m=D(=1) which is free abelian group of rank (m—1)(n—
1).

If G and K are finite groups, then it is well-known (see, for example, [40])
that

Hy(G x K) = Hy(G) x Hy(K) x (Hi(G) @ Hi(I)).
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However, R,,, is a direct product of the left zero semigroup L, of order m and
the right zero semigroup R, of order n (see [29, Theorem 1.13]). It follows, by
Theorems 6.1 and 6.5 that

Hy(Lp x R,) = Zm V0D £ 0 = Hy(L,,) x Hy(Ry,) x (Hy(Lw) ® Hi(R,))

for m,n > 2. Therefore, the above (Schur-Kinneth) formula for the second
homology of the direct product of groups is not valid for the direct product of

semigroups.



Chapter 7

Efficiency of Finite Simple

Semigroups

The purpose of this chapter is to investigate the efficiency of finite simple semi-
groups.

It is well-known that a finite semigroup S is simple if and only if it is iso-
morphic to a finite Rees matrix semigroup M[G; I, A; P] (see for example [48] or
[29]). Here G is a group, I and A are non-empty sets, P = (py;) is a A x I matrix

with entries from G and
MIG LA P ={(1,9,\) i€, 9€G, AeA}
with multiplication defined by

(1,9, M) (G, by 1) = (1, 9pajh, p)-

It is also well-known that the matrix P can be chosen to be normal, that is
pa1 = p1i = lg for all A € A, 7 € I, where 15 is the identity of G; see for example
[48] or [29, Theorem 3.4.2].

Let S be a finite simple semigroup, given as a finite Rees matrix semigroup

M|G; I, A; P] over a group G. We prove that the second homology of 5 is

Hy(S) = Hz(G) % 7,(1=1)(|A]-1)
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For a given semigroup presentation ( A; | Ry ) of G, we find a presentation
(A|R) for S such that |R| — |A| = |R1| — |Ai| + (|I| = 1)(JA] = 1) + 1. We
use this presentation to prove that S is efficient when ( A; | Ry ) is an efficient
semigroup presentation for G and R; contains a relation of a special form. In
particular, we prove that finite Rees matrix semigroups M[G; I, A; P] over finite
abelian groups, or direct powers D7 (m > 1) of dihedral groups D,, with even
n, or generalised quaternion groups @), of order 4r, or projective special linear
groups PSL(2,p) with p prime are efficient. Finally, we show that there exist
non-simple efficient semigroups which have non-trivial second homology.

The most of the results of this chapter have been submitted for publication

by H. Ayik, C. M. Campbell, J. J. O’Connor and N. Ruskuc (see [2]).

7.1 A rewriting system for Rees matrix

semigroups

In the previous chapter, the bar resolution was used to compute the second inte-
gral homology of rectangular bands R, to be Z(™~1D("~1) and the nth (n > 1)
homology of semigroups with a left or a right zero to be trivial. Here we use
another resolution which is described by Squier in [61]. Since this resolution is
defined by using a presentation in which the set of relations is a uniquely termi-
nating rewriting system, we first find a presentation for a Rees matrix semigroup
in which the set of relations is a uniquely terminating rewriting system. We begin
by introducing some elementary concepts about rewriting systems.

Let A be a set and let A* be the free monoid on A. A rewriting system R on
A is a subset of A* x A*. For wy,w, € A*, we write w; = w, if they are identical
words. We say that w; rewrites to w; if there exist b,c € A* and (u,v) € R
such that w; = buc and wy, = bvc and we write w; — w;. We denote by =

the reflexive transitive closure of — and by ~ the equivalence relation generated
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by —.

For a word w we say that w is reducible if there is a word z such that w — z;
otherwise we call w irreducible. If w = y and y is irreducible, then we say that
y is an irreducible form of w. A rewriting system R is said to be terminating if
there is no infinite sequence (w,) such that w, — w,,; for all n > 1. We denote
by |w| the length of the word w. We call R length-reducing if |u| > |v]| for all
(u,v) € R.

Let u and v be any words in A*. Then we write u < v if |u| < |v] or if |u| = |v|
and u precedes v in the lexicographic order induced by some well-ordering on A.
We call R a lezicographic rewriting system if u < v for all (v,u) € R. It is clear
that if R is a lexicographic rewriting system, then R is a terminating rewriting
system. We say that R is confluent if, for any z,y,z € A* such that z 5 y, z = z,
there exists w € A* such that y = w, z = w. A rewriting system R is complete
if it is both terminating and confluent. For a given R, define R; C A* to consist
of all » € A* such that there exists (r,s) € R for some s € A*. The system R is
said to be reduced provided that, for each (r,s) € R, we have R; N A*rA* = {r}
and s is R-irreducible. A reduced complete rewriting system R C A* x A* is

called a uniquely terminating rewriting system.

Lemma 7.1 Let R be a terminating rewriting system. Then the following are
equivalent:

(i) R is confluent (and hence complete);

(ii) for any (rira, s1,2), (rars,s23) € R, where ry is non-empty, there exists a
word w € A* such that sy or3 5w, risy3 — w; for any (r17ar3, 812), (r2,893) €
R, there exists a word w € A* such that sy 2 5w, 182,373 = w;

(iii) any word w € A* has ezactly one irreducible form. Moreover w ~ w' if

and only if w and w' have the same irreducible form.

For a proof see, [27] or [61].
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We define the overlaps to be the ordered pairs of the form

[(7”17‘2,51,2)7(7'27“3,32,3)] and [(7"47“57“6,34,5), (7‘5,35,6)]

where (1172, 812), (T2rs, $2,3), (raTsTs, Sa5), (75,856) € R, and ry and r5 are non-
empty words.

First we give a presentation for a Rees matrix semigroup with a normal matrix.
For ease of notation we assume that I and A both contain a distinguished element

denoted by 1.

Theorem 7.2 Let S = M|G;1,A; P] be a Rees matriz semigroup, where G is a
group and P = (px;) is a normal A X I matriz with entries from G. Let ( X | R)
be a semigroup presentation for G, let e € X+ be a non-empty word representing
the identity of G, and let Y = X U{y; |1 € - {1} }U{zx|A € A—={1}}. Then

the presentation
(YR, yie=y;, eyi=€, zme=e, ex=2x Y =P

(tel—-{1}, xeA-{1}))
defines S in terms of the generating set { (1,z,1) |z € X } U {(4,16,1) |1 €
[-{1}}u{(L,1g,N) [ X e A={1}}.

Proof The result is a special case of Theorem 6.2 in [30]. ]

In the previous presentation, there are some overlaps, for example [y;e =
y;, eys = €], which show that the set of the relations is not a uniquely terminating

rewriting system. Indeed, we have
yi(eyir) = yie = y: but (yie)ys = yiyir,

and so we need relations of the form y;y;» = yi, which hold in S. Similarly we
need relations of the form zyz,» = z,/, which also hold in 5. Let e = z¢’ where

z € X, € € X*. We assume that there is a relation (rz = s) € R so that we
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have the overlap [(rz,s), (z€'y;, z€’)]. If we consider this overlap, then we need
relations of the form zy; = z (z € X, ¢ € [ — {1}), which hold in S (since the
relations ey; = e hold in S). Similarly, we need relations of the form zyz = =z
(z e X, xe A—{1}).

Now we construct a new presentation with a uniquely terminating rewriting
system of relations.

We can take the presentation ( X | R) to be the Cayley table of the group G,
that is X = G and R = { (z122,23) | #1,22,23 € G, 717, = 23 in G }. It is clear
that R is a uniquely terminating rewriting system on X. Let zg € X represent
the identity of G. Then taking e = z¢ and adding the new relations zy; = =z,
2T =z, yiys = y; and zxzy = 2y (¢ € X —{zo}; 1,3 € [ —{1}; M e A—{1})
yields the presentation

(YR, yizo=yi, zyi =2, Yy = yi, 22T =T, ToZx = 2\
ozy =z, oy =py (G €T—{1} AN eA—-{1}; z € X))
which defines S = M[G; 1, A; P).
For ease of notation, we assume that G is finite and X = { zo,z1,...,2¢ }

where zq is the representative of the identity of G. We further assume that the

entries py; of the matrix P are represented by words of length one.

Theorem 7.3 Let (X |R) be the Cayley table of the finite group G and let zo € X
be the representative of the identity. With the above notation, the presentation

P=(Y| R, ¥ixo=VYi, TkYi = Tky YilYir = Yi, 22Tk = Tk,
ToZ) = Zxy 2AZ) = 2y AYi = P
O0<k<m; 7' el-{1} AN eA-{1})),
which defines S = M[G;I,A; P], has a uniquely terminating rewriting system of

relations on Y.

Proof Let Q denote the set of relations of P. Recall that all rewriting rules

in R have the form (z1z2,23) (21,22,23 € X) so that all the rewriting rules in
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@ are length reducing. Therefore ) is terminating. Moreover, observe that each
word on the right hand-side of each rewriting rule is a generator, and each word
on the left hand-side of each rewriting rule is not a subword of the words on the
other left hand-sides of rewriting rules, and so @) is reduced. Therefore it remains

to prove that @) is confluent. For this we first determine all overlaps. They are:

Ui = [(zpzir, 1), (@pzen, 2v)], Usprs = [(2ezr, 1), (Teys, 2k)],

Us ke x = [(zkzo, zk), (Tozr, 22)], Uski = [(Yizo, ¥s), (zozk, Tk)],
Usii = [(yizo, ¥:), (Toyir, To)], Us,ipn = [(iwo, ¥i), (zoza, 21)],
Ur ki = [(Zrys, zx), (YiTo, ¥:)], Us.k,iir = [(zkYs, Tk), (Yilir, ¥i)],
Us,iir = [(yiyr, yi), (Yaro, yir)], Usoiinin = [(yayir, ¥:), (Yaryin, yar)],

Uiikpen = [(2axr, 2k), (xze, )], Urgrin = [(2aZr, 21), (Trys, k),
U13,A,A' = [(Z,\fco,mo), (3502,\', Z,\’)], Uia e = [(xoZA,Z,\),(Z,\xk,xk)],
U15,)\,/\' = [(IOZ/\7 ZA)? (Z)\Z/\" ZA')]a U16,i,)\ = [(‘IOZA, Z,\), (Z)\yi,p)\i)],
U17,k,>\,/\’ = [(Z)\Z).'v Z/\’)7 (Z)\ka, xk)]a Uls,/\,/\’,/\” = [(2)\2)\'7 z/\')a (ZA'ZA"> Z/\”)]’
U19,i,,\,,\’ = [(Z/\ZA’a Z,\‘)s (Z,\’yivp,\’i)]’ Uz,ip = [(nyi,p,\i), (yixo,yi)],
Usiirn = [(22¥is Di), (Wi 93],
where 3,31 € I —{1}; A, A, )" € A —{1}; 1 < k,k',k” < m. Now we apply
Lemma 7.1(ii).
For Uy 4 s+ kv, we have some z» € Yt such that
(xkxk/)wkn —> LT —> T and xk(xk:xku) — Ty —> Ty,
For Us x x1;, we have some z; € Y *(X) such that
(zpzk)yi — Ty — x; and e (ThYi) = ToTe = T4

For Us k., we have some zx2z) € Yt such that

(zkz0)2x — Tkzx and Tr(Toz)) = Tk,
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For U, x;, we have some y;zx € YT such that
(Yixo)zr — yizx and yi(Tozk) — Yik.
For Us; ;, we have some y; € Yt such that
(Yizo)ys — yiys — yi and yi(Toysr) — YiZo = Yi-
For Us; , we have some y;zy € YT such that
(yizo)zx — yizx and y;(z02x) — yiza.
For Uy x;, we have some z; € Yt such that
(zryi)zo = Txxo = 2 and zx(yiTo) — ThYi — Tk.
For Ug i1, we have some zj € Yt such that
(zryi)ysor — Trys — Tk and zE(Yiyir) = TeYi = Tk
For Uy, we have some y; € Yt such that
(yayir)To = yiTo — yi and yi(yiro) = Yiyer — Vi
For Uyo i, we have some y; € Y+ such that
(yiya )yin = yiyin — yi and yi(yaryin) = Yivir = Yi-
For Uy k x',x, We have some z; € Y+ such that
(2xzk)Trr — Tezp — T and 2x(zrzr) = 2221 — 21
For Uja ki, We have some zj € Y+ such that
(22Tk)Yi = ThYi = Tk and z)(zkyi) = 23Tk — Tk.
For Uy , y/» We have some 2y € Yt such that

(2aZo)2zy — Tozy —> 2y and z)(Tozy) = a2y — Zy.
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For U4, we have some z; € YT such that
(:IZOZ)\):L'IC — Z2\T) — Tk and SL'O(Z,\.T;;) — 9Tk — Tk.
For U5 , v/, we have some zys € Y'* such that
(zoza)zy — 222y — 2y and zo(zxzy) = Tozy — 2y.
For Use .5, we have some py; € Y+ such that
(zoza)yi = zayi = pai and zo(2ayi) = Topai — Pai-
For Uy, 5\, we have some z; € Yt such that
(zazy )z = 2y &K — ¢k and 2x(2,Tk) = 22Tk — Tk
For Uyg , yv y7, we have some z,» € Y* such that
(Z)\Z)\I)Z/\u — Zy1Zym = 2y and Z)\(Z/\IZI\H) —r ZAZy 2y
For Uy ; 5y, We have some p,/; € Y+ such that
(zazy)yi = 2yyi — py; and 2x(2y1yi) = 2yPy; = Pys-
For Usg ., we have some py; € Yt such that
(2a¥i)To = priTo — Pai and zx(YiTo) = 22Yi = Pxi-
Finally, for Us; i, We have some py; € Y+ such that
(za¥:)yir — Paiyer — Pai and zx(Yiyir) = 22Yi — Pi-

Therefore we have proved that @ is confluent, and so it is a uniquely termi-

nating rewriting system on Y. [
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7.2 The second homology of Rees matrix
semigroups

Now we describe the resolution of Z given by Squier in [61], which we use to
compute the second homology of a finite Rees matrix semigroup.

Let S be a monoid and let { A| R) be a presentation for S in which R is a
uniquely terminating rewriting system. Then Squier defined a free resolution of

the trivial Z.S-module Z as follows:

Ps2p2p p 5750

where P, is the free Z.S-module on a single formal symbol [], the augmentation
map € : Py — Z is defined by ¢([]) = 1, P; is the free ZS-module on the set of
formal symbols [z] for all x € A and 0, : P,—F, is defined by

A([z]) = (z = 1)[]

where z € A. Further P, is the free ZS-module on the set of formal symbols
[r, 5], one for each (r,s) € R. For z € A, we define a function /0, : A* — ZA*

inductively by
8/8,(1) = 0
8/0,(wz) = 0/u(w)+w (we A7)
8/0s(wy) = 8/0:(w)  (we A andy#2).

This function, 8/3;, is called a derivation.
Now we define 0, : P,— P, by
do([r,s]) =Y #(8/8:(r) — 0/0s(s))lx]
€A
where ¢ : ZA* — ZS is induced by the natural homomorphism from A* to S.
Next, P; is the free ZS-module on the set of overlaps [(rir2,51,2), (r2r3, 52,3)]

from R. Let w be in A* and let u be the irreducible form of w. Then we have a
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sequence

w = byrier, bisie; = borgey, ... ybgsqcy = u

where b;,¢; € A* and (r;,s;) € Rforalli=1,...,q. Define ® : A* — P, by

q

B(w) =Y $(b:)[ri, sil.

=1

Now we define 05 : P; —s P, by

63([(7"17"% 31,2), (7’27‘3, 32,3)]) = 7‘1[7’27”3, 52,3] - [T17’2,31,2] + ®(r1s23) — @(51,27“3)-

Squier [61] showed that P; N P, 2 P Py =+ Z —> 0 is an exact
sequence when R is a uniquely terminating rewriting system.
We now use this resolution to compute the second homology of a finite Rees

matrix semigroup M[G; I, A; P].

Theorem 7.4 Let S = M[G;1,A; P] be a finite Rees matriz semigroup. Then
the second integral homology of S is

Hy(S) = Hy(G) x 7, (H1=1)(|A|-1).

Proof Without loss of generality we may assume that P is normal. We consider
the uniquely terminating rewriting system ) on Y given in Theorem 7.3 and the
resolution of Z arising from it. By applying the functor Z®zs1— to this resolution,

we obtain the chain complex of abelian groups

ZoP % 70P %% 720, 237205 25282 — 0,
or simply
P3ipgipl i)Z—)O,
where P;, P, and P; are the free abelian groups on the sets of formal symbols

[v] (z € Y), [r,s] ((r,s) € Q) and [(ri72,1.2), (273, S2,3)], one for each overlap
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from Q, respectively. The mappings 8, : P, — P, and 05 : P; — P, are defined
respectively by

0y([r, s]) = Z((the number of 2’s in r) — (the number of z’s in s))[z]

z€Y

and

95([(r1r2, 51,2)5 (7°27'3’52,3)]) = [rors, 23] — [r172, s1,2] + ‘f)(ﬁsz,s) — 6(31,27“3),
where @ is defined by
q
®(w) =) [ry, s]
=1

if ®(w) = D20y (bi)[rs, s:].

Before we compute the second homology of S, H,(S) & ker ,/im 85, we note
that Ha(G) = ker 85 /im 05 where ker 85 is the free abelian group on {W;|j € J}
and im 95 is the free abelian group on { Vi |/ € L } which are found by using the
Squier resolution on the Cayley table ( X | R) of G. (Recall that R is a uniquely
terminating system on X.) Notice that since G is a finite group, H,(G) is finite,

and so |J| = |L|. Moreover, since
S ([2%, wa] + [waz, ug] + ... + [tn, 17, 7]) = ny[7] (1)

where z € X, u; = £t and n, is the order of z, we have rank (im §§) = |X| =
|G|, and so |J| = |L| = |G|* — |G].

Now we find a generating set for im 83 by using the overlaps from the proof
of Theorem 7.3. First observe that 8s(Uy i s 4#) gives a generating set which may

be reduced to the basis { V|l € L } for im 5. Next we have

Bs(Uppird) = oy = zi] — [wwze = @] + S(zpzr) — B(zry:)

= [zey — 2] = [1ys — @]
since ®(zpzy) = [Twzr — 21| and ®(z1y;) = [t1iy; — «1]. Similarly, we compute
that

8s(Usir) = [mozy = 23] — [zkz0 = 7] + B(ezn) — B(zezn)

= [zoz) = 23] — [TkTo — Tk
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03(Usks) = [zoTk = xk]) — [yizo = yi] + ®(vizs) — B(vizk)
= [fcoxk — i) — [yil”o — yi

O3(Us;iir) = [zoys = mo] — [yizo — ] + D(yizo) — (yiyir)

= [zoys — zo] — [yivir — vi

03(Us;in) = [moza = 23] — [yizo = v] + @(viza) — B(yizn)
= [3702,\ — Z,\] - [yﬂo — yi]

O3(Urki) = [yizo = yi] — [zeys = zi] + O(22y:) — B(z40)
= [yiro = yi] — [zkT0 — T4]

O(Us ki) = [yiver = yi] — [zeys = za) + B(zrys) — B(zryir)

= [yiye = yi] — [zhys — 24

3(Ussiir) = lywzo = yir] — [yiver — v] + ®(yayer) — (yizo)
= [yszo = yi] — [Vizo — yi]

O3(Uroirin) = [yiyir = yir] — [yiver = ] + ®(yayer) — ®(yiyin)
= [yi'yi” — Z/i'] — [yiyi” — yz]

Os(Urewn) = [zraw — 2] — [2azi = z) + ©(202)) — B(zpai)

= [at = o] — [2az — T4]

O(Uizpip) = [zeyi = a] — [onze = i) + B(2az1) — O(24y:)
=0
53(U13,A,,\’) = [zozy = 2y] = [2az0 = o] + é(ZAZy) — <I>(:coz/\;)

= [zazy = 2y — [2220 — To)

O(Urapy) = [zazk = 2] — [zoza = 23] + B(zozi) — B(22ak)

= [zozk — Tk) — [T02) — 2)]

53(U15,A,,\’) = [aazy = 2y] = [0z = 22] + i)(3302,\') - <I)(Z/\Z,\')

= [zozy — 2zy] — [Tozn = 2))]
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05(Utein) = [2ayi = pail — [zozn = 23] + ®(zopai) — ®(2ays)

= [zopri — Pai) — [zoz) — Z/\]

33(U17,k,A,,\’) = [ayar = 2] — [2a2y — zy ]+ @(ZAxk) - ‘i)(z,\'mk)

= [2xzk = ) — [z2azyr — 2,/]

63(U18,>\,)\',)\") = [zyzy — zyr] = [aazy = 2] + i’(ZAZA“) - é(zx’zx”)

= [aazyr = 2y] — [2azy — zy]

83(U19,i,A,A’) = [ZA'yi — P,\’i] - [Z/\Z/\' — zy] + i)(ZAPA’z‘) - ‘i)(zx’yi)

= [aapy; = oyl — [2a2y = 2]

03(Uz0,in) = [yizo = ] — [2ays = pai] + ©(22y:) — ®(paizo)

= [yizo — yi] — [pPrizo — P

Os(Uariirn) = [yiye = uil — [y — pai] + B(22w:) — B(priyir)

= [y = vi]l — [Py — pail.

Let

Vi = 53([(~Tk$0; Tk), (ToTo, To)]) + 53([(»’60370,370), (zozk, zk)])

= [zkT0, k] — [ToTk, Tk] € iIM IS,
and let

Vii = [wizo, vi] — [zrzo, k], Vi = [Yaver, vi] — [Tryir, 24,

Vi = [Zoza, 23] — [Tk, Tk, Vi = [2xz)r, 2] = [2ak, 24]

(0<k<m, 5,0 €l—{1}, \,\) € A—{1}).
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Now observe that we have

3(Uzkbri) = = Vi + Vi, 3(Uskn) = Vir + Vi,
03(Uspki) = = Vi + Vi, 03(Us 1) = —Vosii,
03(Usin) = Vir — Vi + Vi, 03(Ur ki) = Viis
03(Us kiir) = Vit 03(Us,iir) = —Viir — Visis
03(Uro,i,inin) = Viaran — Viegin, O3(Un1 e 0) = Viax — Vi
03(Urz,ki0) = 0, _3(U13,A,,\') = Voo
_3(U14k A) = —Via, _3(U15,,\,,\’) = Vix = Ve,
93(Uss, A) = =Viga (zk = pai), ¥3(U17,k,>\,/\') ==V
33( 18,),) ,\”) = VkA N ka A _3(U19,i,)\,/\') = “Vkl,m’ (T, = Pyy)s
93(U20,i0) = Vio,i (Tke = Pai), 03(Ua,iir2) = Vioyivir (Tke = Pai)-
Therefore

B - {‘/17 ‘/k,h ‘/k,i,i’a ‘/k,/\) Vk’,\y,\' |l € L, 0 S k S m; ?"’i/ € 1_{]‘}’ /\’A’ S A_{l}}

generates im Os.
Next we find a basis for ker d,. First notice that since 0([ysys, vir]) = [y:] and
52([2Az/\:, zy]) = [21], it follows from (1) that

rank (im 8;) = rank (P) = |G| + (JA| = 1) + (|| = 1).
Therefore
rank (ker 3;) = rank (P;) —rank (P;) = (|G)* — |G]) + |G|((]A] = 1)
+(1=1)) + (1Al = 1)* + (1] = 1)* + (JAl = D)(IT] = 1).

Since each a € P, has the form

Z R I B Y (al,i[yix07yi]+ > emialyoyi, vl

kk'=0 iel-{1} iel-{1}
+ E aa,k,i[ﬂfkynﬂ?k]) + Z (ﬂ1,).[$02,\, Z)\] + Z ﬂzl\'l\l[z)\z/\:, z)‘/]
k=0 AeA-{1} Nea-{1}

+ Z Bk r[22Tk, Tk] + Z ’YA,i[ZAyi,PAi])

k=0 iel-{1}
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where all the coefficients are integers, o € ker 0, if and only if

0=0y(c) = > o, (lox] + [zx] - [21)

k,k'=0

+ Z (al,i[CEo] + Z agia[yi] + Z aS,k,z‘[Z/i])
1€I-{1} i'el-{1} k=0

+ Z (ﬁuwo]-l- Z 52/\,\[ZA]+Zﬁ3k,\Z,\
AEA-{1} NeA-{1}

+ D malla] + [yl - [PM]))-
iel-{1}

Equivalently, o € ker , if and only if

m
Qzo,cg = — Z(ark,l’o + Qg zp — A, Ty Z Q1 — Z !31,/\ (2)
k=1

iel-{1} AeA-{1}
+ Z Yrsis

AeA—{1},1el-{1}
PAi=To

0 = 2a$k,$k + § :(al'kvl'kl + Qg o — aa:k, z

k'=1
k'#£k

- Y mi (1<k<m),

AeA—{1},i€l-{1}

“ig,) (3)

k!

PAi=Tk
min = —( Y aw+§ja3kz+ > o) Gel-{1h), (@)
vel-{1,2} reA—{1}
Bar2 = —( Z 52,\,\'+Z[33k,\+ Z ’y,\,) (Ae A={1}). ()
ANeA-{1,2} iel—{1}

We have assumed that |I|, |A| > 2 and that 2 is a common element. The
cases |I| = 1 or |A| = 1 are considered later. By using the system of equations
above, we find a basis for ker 9,. First, if we take all a4, 02,501, @346, B2, By s
Bk and v, ; to be zero, we have

> an (o] + [ze] — [2]) =
Tk,T €X

which gives the basis { W; | j € J } of ker 9 where H,(G) = ker 85 /im 65 .
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Now if we fix a;; = 1 and all the other variables on the right-hand side in

(2)-(5) to be zero, then we obtain a,, ., = —1. Therefore we obtain the following

generators:
Wi = [yizo, yi] — [z, mo] (i € 1—{1}).

By using similar arguments, we obtain certain other generators:

Wy = [zozn, 2a] = [zg, 0] (A € A—{1}),

IN

Wir = [va¥i,v2] — [eryi,zi] (0<k<m,iel—{1}),
Wir = [2az2,22) — [oazk, 2] (0<k<m, A€ A—{1}),
Wio = lyoyi,yo] — [vayiry2] (5,0 € I — {1}, i' #2),

(

Wiy = [aazy,zv] —[aaze,z2) (WA € A={1}, X #£2).

We note that to construct a basis for ker 9, we need a further (|A| —1)(|/| —1)
independent elements. We will see that we do not need to identify these remaining

elements Wy ; (A € A — {1}, ¢ € I — {1}) of the basis:

Z ={Wj, Wi, Wx, Wi, Wa, Wea, Wy v, Way, |7€J;0<k <my

el —{1} (" #2); M e A={1} (N #2)}.

Now we express the V’s in B in terms of the W’s in Z. First, for each
| € L, write Vj(W) for the expression of V; in terms of the W; (j € J) as in the
calculation of Hz(G). Now observe that

Voi =W, Vii = Wi + 05([(zxz0, 21), (z0Z0, 20)])  (k # 0),
Voo =Wy Via = Wi — 05([(z0%o, 20), (zozk, z4)]) (K # 0),
Viai=Wix Viii=Wio+Wix (7 #2),

1N

Vi = W/\,k Vk')\,)\’ = W,\,A' + W/\,k (/\I 76 2)
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We obtain the following abelian group presentation for H,(S):

(Z | ilW)=0, W; =0, W;+ Vi(W) =0 (k #0), Wy =0,
Wi+ Vi(W)=0(k#0), Wip =0, Wia+ Wi =0 (i’ # 2),
Wik =0, Wy v+ Wy =0 () #2)
(leL;0<k<m; AN eA—{1};4,7 eI —{1}))
where Vi(W) expresses 05([(zxz0, 24), (zoTo, To)]) in terms of the W; and V(W)
expresses 05([(zozo, Zo), (Tozk, 2;)]) in terms of the W;. It is clear that some of

the generators in the above presentation are redundant. By eliminating these

redundant generators, we obtain the abelian group presentation:
(Vi, Wai(Ged; xeA-{1}iel—-{1}) | W(W)=0(€ L))
which defines the abelian group
Hy(G) x z{M=-D0AI-1),

as required.

Now we assume that |[A| = 1, [I| > 1 and we prove that Hy(S) = H,(G). In
this case, first observe that we have the following overlaps in the proof of Theorem
7.3:

U{,k,k',k” = [(xkxk'axl),(xk'l'k"afﬂl')]a Ué,k,k',i = [(mk'xkvml)7($kyia$k)]a

é,k,i = [(yimoayi)a (xoxk,xk)], Uz;,i,z" = [(yil’o,yi), (CEoyi',on)],
Ué’k,{ = [(QTkyi, xk)a (yi‘rOa yi)]7 Ué,k,i,i’ = [($kyia :L'k)) (yiyi’v yi)]a
Uz o = [(yiyir, 9:), (Yiro, yir)), Usg,iiran = [(Wiyir, Yi),s (yaryin, yar)],

where 7,7',1" € [ — {1} and 1 < k, k', k" < m.

Now we find a generating set for im 95 by using the overlaps above. First
observe that, as before, 05(U] ; ;s ;) gives a generating set which may be reduced
to the basis { Vi |l € L} for im 8§ as before. Similarly, next we have

03(Upprs) = [zwys = za] = [zwar = @] + S(zwax) — O(z1y;)

= [zryi = xi] — [Ty — 2]
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since ®(zpzi) = [zwze — o) and ®(z1y;) = [z1y; — z]. Similarly, we compute

that

Let

and let

Os(Ug i) = [zoze = zi] — [vizo — yi] + ®(yizr) — B(yizx)

= [zozk — zk) — [yizo — vi]

63(Uzi,i,i') = [zoysr — xo] — [yizo — yi] + (i)(yil'O) - (i)(yiyi’)

= [zoysr — xo] — [yiyir — yi]

Os(Usr:) = [yimo = yi] — [zkyi — @a] + (zxy:) — @ (240)

53(

= [yizo — yi] - [wkwo — 1'k]

03(Ug i) = iy = i) — [zeyi = i) + O(axys) — B(ziyir)

= [yiye = yi] — [Ty — 4]

iU, 0) = lyrmo = yr) — lyiye — ] + ®(yivir) — (yizo)

= [yszo = yir] — [yizo — ¥

giiin) = [yoyir = o) — [iye = vl + (viyer) — ®(yayin)
= [yayir = yar] — [yiyir — yil.

Vi = 0Os([(zkzo, zk), (oo, To)]) + O5([(z0%0, o), (Tozk, Z1)])

= [zx20, k] — [Z0Tk, 24] € IM I,

Vii = [yixo, yi] - [wkl‘o,xk], Vi = [yiyi'ayi] - [l“kyi', -rk]

where 0 < k < m and ¢,i' € [ — {1}. Then we have

_3(U2,k,k’,i) = —Viiri + Viiris 03(Us i) = —Vii + Wi,
03(Uy ;) = —Vosiin, 05(Us 1) = Vi,is

03(Us .i0) = Viisirs (UL, ) = —Viir — Vi,
M3(U§,i,i',i") = Viirin — Vi
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Therefore
B ={V, Vigy, Vi |l € L; 0<k<m;i,i'el—-{1}}
generates im Os.
Next we find a basis for ker ;. Since each a € P, has the form

m
Z a.’L‘k,xkl [xkxk') wl] + Z (al,i[yi:pO) yz] + Z a?,i,i'[yi'yh yi’]

k,k'=0 ieI-{1} iel-{1}

+ Z a3,k,i[$kyi, il?k])

k=0

where all the coefficients are integers, o € ker 8, if and only if

0=0y(a) = Z Qoo ([2k] + [22] — [21])

k,k'=0
+ Z (011 :[zo] + Z aziolyi] + Z Ols,k,z'[yi])-
iel—{1} iel-{1} k=0

Equivalently, o € ker 8, if and only if

m
a'ZvaO = - § :(al‘k,.’l}o + az‘Ovrk - azk,le) - § : alyl
k=1

iel-{1}

0 = 2a$k11‘k + Z(aﬂ?kvxk’ + azk/sxk - al‘kl :v xk) (1 S k < m)

k'=1
k' #k
0242 = —( Z a2zz’+za3kl+ Z ’YM) (tel—{1}).
iel—{1,2} AEA_{1}

As before, by using the above system of equations, we obtain the following

basis for ker 0,:
—{W;, Wi, Wip, Wi |7 €J; 0<k<m;1,d e [ {1} (' #2) }
where { W; | j € J } is the basis for ker 89S (Hy(G) = ker 85 /im 05') and
Wi = [yizo,yi] — [25,20] (i€ 1—{1}),
Wik = [vayirve — [magirz] (0<k <msiel—{1}),

Wi = [ysyi,yir] — [y2viry2) (5,4 € I —{1}, 7 #2).
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Next we express the V’s in B’ in terms of the W’s in Z’. First, for each
[ € L, write Vi(W) for the expression of V; in terms of the W; (7 € J) as in the

calculation of Hy(G). Now observe that we have
Vo, =W, Vii = Wi+ 53([($k$0,93k), (zozo,20)]) (k #0),
Vigi = Wik, Vioi=Wio+ Wik (7 #2).
Therefore, we obtain the following abelian group presentation for H3(.S):
<Z, | W(W)“_'O’ W; =0, M+%(W):O(k7£0)v VVi,k:O’
Wip+Wig=0(€L; 0<k<m;i,i' €l —{1}, (' #2)))
where Vi (W) expresses 03([(zxZo, Zk ), (ZoZo, To)]) in terms of the W;. It is clear

that some of the generators in the above presentation are redundant. By elimi-

nating these redundant generators, we obtain the abelian group presentation:
(Vi i(W)=0(l€ L))

which defines the abelian group H»(G), as rquired.
Since M|G;I,{1}; P] & M[G;{1},I; P] and M[G;,{1},{1}; P] = G, the

proof is now complete. [

7.3 A small presentation for Rees matrix
semigroups

Consider the presentation for S = M[G; I, A; P], a Rees matrix semigroup with

P normal, which is given in Theorem 7.2 by

P1=<Y|R, Y€ = Yi, eyi:e(QSiSm)a (6)
ne=c¢e, ezy=z) (2< A< n), (7)

Hyi=py 2<i1<m,2<A<n))
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where e is a non-empty representative of the identity of G, and where [ =
{1,...,m} and A = {1,...,n}. From now on, we write S = M[G;m.n:P]
instead of S = M[G; 1, A; P).

The deficiency of P; is given by def (P;) = def (Pg)+(m—1)(n—1)+(m—1)+
(n — 1), where Pg = ( X | R) is a semigroup presentation for G. With the above
notation, we give a presentation for S with deficiency def (Pg)+(m—1)(n—1)+1,
which is one higher than the rank of H;(S) (see Theorem 7.4) if Pg is an efficient

semigroup presentation for G.

Proposition 7.5 The presentation

P,=(Y|R, eyp=¢€, yYir1 =% (2<:<m~—1), (8)
ezy = 23, Zaiag1 = 2a41 (2 < A <n—1), (9)
YmZn€ = Ym, (10)

Hyi=pu 2<i<m,2<A<n))

defines the Rees matriz semigroup S = M[G;m,n; P] with m,n > 1.
Proof From (6), we have

yitir1 = (i€)yir1 = yileyin) =yie =y (2<1<m—1).
Similarly, from (7), we have

gt = 2a(ezag) = (2a€)zaapr = e = 41 (2<A<n—1).
Moreover, from (7) and (6), we have
YmZn€ = Ym€ = Ym-

Therefore, every relation in P; holds in S. Now we show that every relation in

P, is a consequence of the relations in P,.
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By induction, it follows from (8) that y,yy =y, (2 < i < ¢ < m). In

particular,

Yiym = Y and yoy; = yo (2 <@ <m). (11)
Similarly, from (9),

2azn = zp, and zzy =2y (2< A < n). (12)

Since G is finite and e is a representative of the identity of GG, there exists k € N
such that the relation p¥ = e holds in G, and so (2,y.)*F = € is a consequence

of the relations from R U { z,ym = pnm }. It follows from (12), (9) and (10) that

zne = (z22n)e = (e22)zne = ezpe = (znym)k'lzn(ymzne) = (znym)k =e. (13)

2

Moreover, since e? = e is a consequence of the relations from R, it follows from

(10) that

Yme = (YmZn€)€ = YmZn€ = Ym. (14)
Next we show that the remaining relations of P; hold. From (11) and (14), we
have
yie = (YiUm)e = Yi(Yme) = Yiym =y (2<i<m—1)
and, from (8) and (11), we have
eyi = (ey2)yi = e(yayi) = egp =€ (3 <1< m).
and from (12), (9) and (13), we have

ezy = e(z22)) = (ez2)zx = 2223 = 2» (3< A< n)

and

zye = za(2,€) = (2x2n)e = e = € 2<A<n-1),

as required. u
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7.4 Efficiency of Rees matrix semigroups

The presentation P; is not efficient, but it proves useful in the following results. In
Chapter 5 we proved that finite abelian groups and direct powers of the dihedral
groups D7, with r even are efficient as semigroups. In particular, we found

efficient semigroup presentations of the form ( X | Ry, zuz = z ) with identity

Tu.

Theorem 7.6 Let S = M[G;m,n; P)] be a finite Rees matriz semigroup with P
normal. If G has a semigroup presentation of the form Pg = ( X | Ry, zuz =z )
with identity zu (z € X, u € X1), then S has a semigroup presentation whose
deficiency is def (Pg) + (m — 1)(n — 1).

Proof First assume that m,n > 1 and consider the presentation P, for S. Take

e = zu. Since, from (8) and (13), the relations zuy, = zu, 2,z = r and zuz =z

hold in S, we have
TUY22nt = (Tuy2)znt = zu(2,2) = zTuz = 7.

Therefore, S is a homomorphic image of the semigroup T defined by the presen-
tation obtained from P, by adding the relation zuy,z,2 = = and removing the

relations zuy, = zu and zuzr = z:

PB = < Y I R17 TUY2Z2nT = T, 15

Yivir1 =¥ (2<1<m—1), 16

v =241 (2< A <n—1), 18

(15)
(16)
Tuzy = 23, (17)
(18)
(19)

19

YmZnITU = Ym,

ayi=pu 2<1<m, 2< X <n)).

Note that if m = 2, then (16) is absent and if n = 2, then (18) is absent. Now

we show that the relations zuy, = zu and zuz = ¢ hold in T so that S = T.
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As before, from (16), (18) and (17), we have
YolUYm = Y2, 22Zp = 2z, and zuz, = 2,. (20)

It follows from (20), (19) and (15) that

Tuys = TU(Y2Ym) = TUY2(Ym2n2u) = (TUY22,T)u = U (21)
and also that

2t = (292n)T = (TU22)2,T = Tuz,T = (TUY2)2,T = T. (22)
Therefore, from (15), (21), (20) and (22), we have

ruz = zu(zuyrz,2) = zu(zuz,)z = (Tuz,)r = 2,z =2

and hence S is efficient, as required.

If m =1, then
’Pé =(X,z2,.., 20| B1, urza =122, 2xznp1 =201 2<A<n—-1), zzuz =1z)

is an efficient presentation for S. Indeed, from the relations z)zxy4; = zx41 (2 <

A <n —1), we have 222, = z,. It follows that
z2pux = (2225 )uz = (urz2)zpuz = u(rzut) = Uz,
and so
zuz = zu(Tzut) = TuUT(222, )ut = T(UT22)2,UT = T(222,)UT = TZUT = T.

Therefore, since rz,uz = rur = x, we may replace the relation zz,uz = z by

the relations z,uz = uz and zuz = z to obtain the presentation
( X,2z) | Ri, zux =z, uTzg = 22, 23Zx+1 = Za41 (2<A<n—1), zyuzr = uz )

which is a presentation for S by Theorem 7.5, as required.
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Similarly, if n = 1, then

"

P —(X,yg,...,ymlRl, CIIUyQ.’E:.T, yiyi+1=yi (QSZSm—l)’ ymxuzym>

is an eflicient presentation for S. The proof is now complete. ||

As we mentioned at the beginning of this section, finite abelian groups and
dihedral groups D, with r even, have efficient semigroup presentations of the

required form. Therefore we have the following results:

Corollary 7.7 Finite Rees matriz semigroups over finite abelian groups or di-

hedral groups with even degree are efficient.
Proof Since rank Hy(D2,) =1 with r even and
(a,bla®=a, a®>=b", ab"'a=10)

is an efficient presentation for D,, with r even (see Theorem 5.6), it follows by
Theorem 7.6 that finite Rees matrix semigroups over dihedral groups with even
degree are efficient.

Since rank Hy(A) = t(t — 1)/2 where A is a finite abelian group of rank ¢ and

i+l _ a _ 9 -l —
< ayy... ,0¢ | a =a, a4 = a'j y @10;a4 = a;, aga; = a|ag

(2<j<t 2<k<I<t)),

where ¢, > 1 and ¢; divides ¢j1q for all j =1,...,t —1, is an efficient presenta-
tion for A (see Theorem 5.5), it follows by Theorem 7.6 that finite Rees matrix

semigroups over abelian groups are efficient. [

In Chapter 5, we found an efficient semigroup presentations for the direct
power D% with r even of the form ( a;, b |al = a;, Ri) with identity a} (see

Theorem 5.10). By Theorem 7.6, we have the following result.

Corollary 7.8 Finite Rees matriz semigroups over the direct power D% with r

even are efficient.
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Next we give another efficient semigroup presentation for the generalised
quaternion groups. This presentation will be useful for the efficiency of finite

Rees matrix semigroups over generalised quaternion groups.

Proposition 7.9 The semigroup presentation
(a,b|ba"'b=a, ba"b* =b)

defines the generalised quaternion group Q, of order 4r (r > 2).

Proof Since (a,b|ba" b =a, aba =b) defines Q, with identity a*" and since
the relation a” = b* holds in @), (see (2) in Chapter 5), it is enough to show that
the relation aba = a is a consequence of the relations ba""'b = a and ba"b? = b.

First observe that we have
a"tb? = (ba""'b)a"b? = ba" " (ba"b?) = ba" b= a
and

b2a™t = b%a"(ba"7'b) = b%a"b(ba""'b)a"%b = b(ba"b?)a" " b)a" b
= b(ba""'b)a" b = ba""'b = a.

It follows that
aba = ab(a"T16?) = (ba""'b)ba’ b = ba" "' (b?a”T)b? = ba’b* = b,
as required. [

Therefore we have another efficient semigroup presentation for @),. More-
over, since the relation ba"b = a® holds in @,, this presentation of the form

( X | Ry, zuz = z ) with identity zu.

Corollary 7.10 Finite Rees matriz semigroups over the generalised quaternion

groups @, of order 4r are efficient.
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Proof The result follows from Proposition 7.9 and Theorem 7.6. |

Next we consider the finite Rees matrix semigroups over the projective special

linear groups PSL(2,p) with p prime.

Corollary 7.11 Let S = M[G;m,n; P] be a finite Rees matriz semigroup (with
P normal). If G is the group PSL(2,p) with p prime, then S is efficient.

Proof Since PSL(2,2) & D¢ and D¢ = (a,b|ababa = a, ab’a = b) (see Lemma
5.7), it follows from Theorem 7.6 that S is efficient when p = 2.

If p is an odd prime, then, from Theorem 5.19, the presentation:

PSL(2,p) = (a, b| b = a?, babab = a, ab''"? 'ab’ab®+V/2aptapP+1)/2 = )
> (g, b| b = a?, babab = a, b(abab'Pab>abPTV/2ab*abP=1/%)b = b)

is an efficient presentation for PSL(2,p).
Since b(abab'Pabab®t1)/2ab*abP=1)/2) is a representative of the identity of

PSL(2,p), it follows from Theorem 7.6 that S is efficient, as well. [ |

7.5 Efficient non-simple semigroups

All the efficient semigroups in the previous chapters and in this chapter so far are
simple semigroups. In this section, we give two families of efficient non-simple
semigroups which have non-trivial second homology.

Consider the following presentation:

(al,...,arla"‘+1-——ai (1<i<7r), gjai=aia; (1<i<jyj<r))

1' — —

where n; > 1 and n; divides n;j4y forz =1,...,7— 1.
This semigroup presentation is related to the standard group presentation of

the abelian group C,, x --- x C, , where Cy, is the cyclic group of order n;.
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For r > 2, it is clear that this semigroup presentation defines a commutative

semigroup S but not an abelian group. For r > 2, the subset

— mi1.,.. M
I = {d] al

1<m;<n; for i=1,..,r}

is a proper ideal of S, so that S is not simple.

Theorem 7.12 Let S be the semigroup defined by the following presentation
(ai,...,a, |a;’”'Irl =a; (1<i<r), gja;=aa; (1<i<j<r))

where ny > 1 and n; divides n;yy fori1 =1,...,r — 1. Then the second homology
of S is
r— (7’—2)
cir=Y x ¢ X Ch,_, -

ng .. _

In particular, S is an efficient semigroup.
Proof First we determine all overlaps. They are:

Uoi = [(a¥ 1 7%ak a), (aFa 7, 0))] (1<i<r, 1<k <n;+1),

Uij = [(G?J+1,aj),(ajai,aiaj)] (1<i<j<r),

Uszij = [(ajai, aia;), (a¥*,a;)] (1<i<j<r),

Us,i,j,k = [(akaj,ajak),(ajai,a,-aj)] (1 < < ] <k < 7‘).

Now we apply Lemma 7.1. For Uy, there exists a?‘”_k such that

(azze+1—kalp)a7_u+1—k

ni+2—-k
1 7 1 a;

+1— i+1— i+2—k
ni+1 k(afa?t‘*'l k) _)an+ .

— and a; ;

For U, ; ;, there exists a;a; such that

nj+ly .- -
(aj Ja; = aja; — a;a; and

n;+1

a;’(aja;) — G?j_l(ajai)aj = T Ga = 0i04.

For U,; j, there exists a;a; such that

: —1 +1
(ajai)al — ai(aja;)a;'™" = -+ = al*"a; = a;a; and
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(gl a: s
aj(al*™) = aja; = a;a;.

For Us; jk, there exists a;a;ax such that
(araj)a; — aj(ara;) — (aja;)ar — a;a;ax and
ak(a]’ai) — (akai)aj — ai(akaj) — a;a;a.

Therefore the rewriting system is confluent. If we consider length-lexicographic
ordering (a; < a2 < --- < a,), then it is clear that the rewriting rule is terminat-
ing and reduced and hence it is a uniquely terminating rewriting system.

Next we compute the second homology of S by using the Squier resolution.
By applying the functor Z ®zs1 — to that resolution, we obtain the chain complex
of abelian groups

P2 py 2 p 27—
where P, P, and Ps are the free abelian groups on the sets of generators A,

relations (rewriting rules) R and overlaps, respectively. The mappings
321?2—)?1 and 531]53—)]52
are defined respectively by

Oa([r, 8]) = E((the number of a’s in 7) — (the number of a’s in s))[qa]
a€A

and

(93([(7"17"2, 51,2), (7"27"3,82,3)]) = [7"27”3,82,3] - [T17“2, 51,2] + (i)(’f’lszyg) - (—13(31'21@,),

where @ is defined by ®(w) = > [ri, 8] if @(w) = D1, (bi)[ri, sl
First we find a basis for ker 8,. Each o € P, has the form

r

o= aila el + Y aigleja ]

=1 1<i<y<r

where all the coefficients are integers. Thus o € ker 9; if and only if

0= 32(01) = Zami[ai].
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It follows that o € ker 0, if and only if a; = 0 (1 <¢ <r). Therefore the set
Z ={Vij = lajai,0i0;] |1 < i <j<r}

is a basis for ker 0.

Next we find a basis for im 5. For this we first find the image of the overlaps

above under 0s.

Os(Uoig) = [alt, ai] — [a¥t, a;] + ('I_)(a?"*'l_kai) — ®(aq;a" 1 *a) =0
03(Uriy) = [ajai,aia5) — [0, a;] + ®(a} aia;) — B(a;a;)

= —[a?ﬁl, a;] + @(a?"aiaj)

=~ 5] + njlajai, asag] + [T, 0]

= njlajai, aia;] = n;Vi

0a(Uzij) = [}t a)] — [ajai, ai0;] + (aja;) — B(aia;a™)

2

= [aP*, 4] — @(aia;al)

= (a7, @] = nifejai, aia] — [0, a_]
= —nilejai, ai0] = —n;Vi;
03(Us,ijp) = [ajai, aia] — [araj, ajar] + ®(araia;) — ®(ajara;)

= [ajai,aia;] — [aka;, ajax] + [aka;, a;ax)

+aka;, ajar] — [ara;, a;ax] — [a;a:, aia;] = 0.

Since n; divides n; for 1 <1 < j < r, it follows that, for 1 < ¢ < j < r, the

generator n;V; ; is redundant. Hence
B={ni[aja,~,aiaj] Il <i1<y< T‘}

is a generating set (basis) for im 0;. Therefore the second homology of S may be

given by the following abelian group presentation:

(VijlnVi; =0(1 <1<y <)),
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where n; > 1 and n;jn;y1 (1 =1,...,7 — 1), which defines the abelian group
r—1 (r=2)
C,(“ ) x C,, % Ch,_,-
where ny > 1 and nijnip (1=1,...,r—1).

Since the deficiency of P and the rank of Hy(S) are the same number r(r —
1)/2, it follows that S is efficient, as required. ]

We now give another example of an efficient non-simple semigroup. This time
we give a non-commutative semigroup whose second homology is infinite.

Consider the semigroup T defined by the following semigroup presentation:
(a,b]a®=a, B> =b, (ab)* =ab).

Let w be a word in {a,b}*. Then apply the first two relations so that we have a
word w’ € {a,b}* such that w = w’ holds in T and, a* and b are not subwords

of w’. Moreover apply the last relation to obtain a word w” € {a,b}* such that

|w”| < 4 and if |w”| = 4 then w” = baba. Therefore we have
T ={a,b,abd,ba,aba,bab, baba }

since the set contains one and only one representative for each element of 7.
Next consider the subset J = { ab, aba,bab,baba } of T. It is clear that J
is a proper (minimal) ideal of T. Therfore T' is non-simple, and clearly is non-

commutative.

Theorem 7.13 Let T be the semigroup defined by the presentation
(a,b|a®=a, b* =, (ab)* = ab).

Then Hy(S) = Z, and so T is efficient.

Proof It is clear that the rewriting system of the relations is terminating and

reduced. The overlaps are:

U, = [(aQ,a), (az,a)], U, = [(aa’a)a (aaa a)]v Us = [(az,a), ((ab)z* ab)],
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Uy = [(bz’ b), (bz’b)]a Us = [(bb’ b),(b,b)], Us = [((ab)2’ab)v (bz’ b)]

Now we apply Lemma 7.1 for Us and Us. (The others are clear.) For U3, there

exists ab such that
(a*)bab — abab — ab and a(ab)?* — ab — ab.

For Ug, there exists ab such that
(ab)?b — ab® — ab and aba(b?) — (ab)? — ab.

We now use the Squier resolution. As before, o € P, has the form
a = a1[d?, a] + aa[b?, ] + as[(ab)?, ab]
where a1, a3, and a3 are all integers. Thus « € ker 0, if and only if
0 = 9y(@) = cua] + ca[b] + ex3([a] + [8])

Thus o € kerd, if and only if a; = oy = —a3, and so ker 0; is the free abelian

group on the unique sysmbol
V = [(ab)?, ab] - [a%, ] — [12,8]

Next we find the image of the above overlaps under 5. For this, we first find the
image of the overlaps above under 0.
(th) = [a*a] - [a*,a] + ®(a) — @(a) =
(U2) = [a%a] —[d*,a] + ®(a*) — ®(d’) =
5(Us) = [(ab)?,ab] = [a*, a] + @(a’b) — B((ab)*) = 0
(Us) = [b%8] = [6*,0] + @(b*) — @(b%) = 0
(Us) = [b%,6] —[(ab)?, ab] + ®((ab)*) — ®(ab®) = 0.
Hence im 85 is the trivial group. It follows that Hy(T) = ker 8, that is

Ho(T) = Z.
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Since the rank of Hy(T) and the deficiency of the above presentation are both

one, it follows that T is efficient, as required. |



Chapter 8

Efficiency of Wreath Products of

Finite Groups

The aim of this chapter is to investigate the (semi)group efficiency of wreath
products of finite groups.

The results of this chapter have been submitted for publication by H. Ayik,
C. M. Campbell, J. J. O’Connor and N. Ruskuc (see [4]).

8.1 Wreath products of finite groups

In this section, we investigate the group efficiency of wreath products of finite
groups. The main result of this section is to extend a result of Jamali in [33] from
C to certain finite efficient groups.

Let G and H be finite groups. The (standard) wreath product of G and H,
denoted by Gl H, is a split extension of the direct product of |H| copies of G by
H. Let I = I(H) denote the set of all involutions of H and let J = J(H) be a
minimal set of non-involutions of H such that JUJ ™! contains all non-involutions
of H\{1}. Observe that we have H\{1} = TUJUJ " and |J| = (|H| - |I|-1)/2.

Let ( X|R) and (Y| S) be finite group presentations for the finite groups G
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and H, respectively. Then it is a well-known fact that
<X7 Y I R, S’ [zl’mg] =1 (wl,x? € Xa h € [(H)U J(H)) )a (1)

is a group presentation for the wreath product G| H (see, for example, [34] or
[35]).

For a group G, we denote the Schur multiplier of G by M(G), and the tensor
product of G by itself by G® G. Then the Schur multiplier of the wreath product
of G and H, by [40, Theorem 6.3.3] (see also [10]), is

M(GV1H) = M(G) x M(H) x (G® &)V x (GG, (2)

where J = J(H), I = I(H), and if

4
G/G =[] Cm.
=1

with C,,, the cyclic group of order m; > 1 and m;|m;4; for ¢ = 1,...;,¢ — 1, then
t—1

GiG = ([[cuh % Cs (3)
=1

where s is the number of even m; (1 <: < t) (see [40, Lemma 6.3.4]). Moreover,

we have

i
GRG= H Ct-241), (4)

=1
Note that the rank of G ® G is given by

t
rank (G®G) =Y (2t —2i+1) =1

=1
and the rank of G{ G is given by

t—1

rank (G1G) = (Y (6~ 1)) +5= %(ﬁ — )+

=1
The numbers mi,..., m¢ where G/G' = [[i-; Cm, with Cp, the cyclic group of
order m; > 1 and m;|m;y, for 1 = 1,...,t — 1 are called the invariant factors of
the abelian group G/G’.

With the above notation, we have the following result:
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Theorem 8.1 Let G and H be finite efficient groups and let G have an efficient
presentation on rank (G/G') > 1 generators. If each abelian group G/G', M(G)

and M(H) is trivial or has even invariant factors, then GIH is an efficient group.

Proof Let J = J(H), I = I(H) and G/G' = [['_, Cm, of rank t > 1. We
suppose that all m; (1 < ¢ <t) are even and m;|m;4; fori =1,...,t— 1. From the
hypotheses of the theorem, if rank(M(G))= r; and rank(M(H))= ry (r1 or 5
may be zero), then C3' and C3? are subgroups of M(G) and M(H), respectively.
Since all the invariant factors of G/G’ are even, it follows from (3) and (4) that
CflJl is a subgroup of (G ® G)M! and that Cz(%ﬂ)m is a subgroup of (G #G)/.
Therefore, it follows from (2) that Cj, where r = ry 4 ry + t2|J| + (££4)|1] is a
subgroup of M(G ! H) so that

2+t
rank(M(GUH)) > 1 + 1o + t|J] + (T+)|[|

From (2),

rank(M(G 1 H)) < rank(M(G)) + rank(M(H)) + |J|(rank(G ® G))

+|I|(rank(G§ Q) = ri 4+ 2 + |Jt2 + [I](£* + 1) /2,

and so we have equality.
Suppose that G has an efficient presentation ( X | R) where X = {zy,..., 2 },
and H has an efficient presentation (Y | S ). It follows from (1) that G H has

the following group presentation:

(X, Y|R, S, [zi,2}]=1(1<4,5<t helUJ)).

J

If I is empty, then it is clear that the above presentation is an efficient pre-
sentation for G H.
Now assume that I is not empty. Then we show that the relations of the

form [xi,x;‘] — 1 with ¢ > j and h € I are redundant. Indeed, from the relation
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[z;,2?] = 1, first we have [z] ~1, 2k = 1. Since A~! = h, it follows that

[z:,28] = z7'(ha;h) 'zi(hz;h) = z; ha; hahajh

J

= (haj'z;h)z;  hai hashajh = ha(zjha] ha]  hah)z;h

hz [z, afash = hzj'zih =1,

J’l

as required. Therefore, by eliminating these redundant relations, we have the

following presentation

(X, Y|R, S, [z,28]=1 (1<4,5<t, hel), (5)

et =1 (1<i<j<t hel))

for Gl H. Since the deficiency of the above presentation and the rank of Gl H
are the same number r; +ry + |J[t2+ |I|(¢2 + t)/2, the proof is now complete. B

Since the abelian groups C,, X - -+ x Cy, with n; even (: = 1,...,t), the dihedral
groups D, of order 2n with n even and the generalised quaternion groups @), of
order 4n (= (a, b|aba = b, ba™ 'b = a)) with n even satisfy the conditions in

the previous theorem, we have the following corollary:

Corollary 8.2 Let H be an efficient group and let n, nq, ..., ny be positive even
integers such that n; divides ny4q (1 =1,... ,t—1). If the Schur multiplier M (H )
of H is trivial or if all the invariant factors of M(H) are even, then

(i) (Cny X -+ x Cp,) VH is efficient,

(ii) D2n L H is efficient and

(iii) Qn V H is efficient.

Proof (i) Let G = Cy, x -+ x Cy, with n; even and let n; divide n;y; (2 =
1,...,t—1). It is a well-known fact that

Hy(G)=CLt x -+ x C}

ng—2

Cnt—l
(see [40, Corollary 2.2.12] or [60]). Therefore the following presentation

'sz(xl,...,:ct|x?’:1 (1§]§t) TjTp = Tk (1Sj<k§t))
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is an efficient group presentation on rank (G/G’) = t generators for G (since
G/G" = G). Now the efliciency of G H follows from Theorem 8.1.
(ii) Let n be even. Since Hy(Ds,) = C; (see [40, Proposition 2.11.4]),

Dy = (a,bla®*=1,b"=1, ab"la=0)
and since

Dy, /Dy, = (a,bla®=1,0"=1, a®" 2 =1, ba = ba)
~ (a,bla®>=1,b"=1,b""2=1, ba=ba)
~ (a,bla*=1,b*=1, ba =ba)

& (y x Oy,

the efficiency of Dj, ! H follows from Theorem 8.1.
(iii) Let n be even. Since H2(Q,) is trivial (see [40, Example 2.4.8)),

Qn=(a,blaba=0b, ba" 'b=a)

and since
Qn/Q. = (a,bla®=1, b?a" 2 =1, ba = ba)
~ (g, bla®=1,b =1, ba=ba)
= 02 X 023
the efficiency of @, ! H follows from Theorem 8.1. [

Since, for any integer m and prime p, the Schur multipliers of the cyclic
group Cp,, the dihedral group Dz, the generalized quaternion group Qm, the
alternating group A, the special linear group SL(2,p) and the projective special
linear group PSL(2,p) are either trivial or a cyclic group of even order (see [40]),

it follows from Corollary 8.2 that, for n even, the groups:

ancma anDva Clem, CHZSL(Qﬁp)’ anPSL(2’p)’ DQ”ICm’ etc.



Efficiency of Wreath Products of Finite Groups 171

are all efficient.
Next we prove that a wreath product of any two cyclic groups is efficient.
This will give an example of an efficient wreath product G| H such that not all

the invariants of G/G’ are necessarily even.
Proposition 8.3 For anyn and m, C,1C,, is an efficient group.

Proof From the previous corollary, it is enough to prove the result for n odd.
First note that C,, ® C, = C,, and C, § C,, is the trivial group when n is odd. It
follows from (2)—(4) that

(Cp ® C! x (Cof CHHl = ™ D% if mis odd,

M(Cou1Cp) =
(Co ® Co)V! x (Cot CHOM = C™ D if m is even

where I = I(C,,) and J = J(Cp,). Therefore, if m is odd, it follows from (1) that

the presentation
(a,bla" =1, =1, [a,b7%ab'] =1 (1 <i < (m—1)/2))

is an efficient presentation for Cp, 1 Cp,.

Now we assume that m is even. We prove that the presentation
P = (a,bla* =b", (ab™*)? = b™2ab"™%a, [a,b7'ab] =1 (1 <i < (m—2)/2))

defines C,, | C,. For this, it is enough to prove that b™ = 1.

Indeed, from the second relation of P, we have
abm/2a—1 — b‘m/2a_1bm/2ab_m/2.

Since b™ is a central element, by squaring both sides of the above equation, we

have

ab™a~ = b a7 2ab a6 b = b7,

and so we obtain b*™ = 1.
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Again from the second relation, we have

abm/2abm/2a—1 — bm/Qab_mﬂ.

This time, taking the nth power, we have
a(bm/2abm/2)na—1 — bm/2anb—m/2 = q"

since a™ is central. It follows from the first relation that (b™/2ab™/?)» = b™, and

so (ab™)™ = b™. Since a™ = b™, b>™ =1 and n is odd, it follows that
pm — (abm)n — "V = b(n+1)m =1,
as required. [ |

Let G and H be any two finite groups, and let W = G H. Then it follows
from (1) that

WIW' = (G/G") x (H/H'). (6)

We denote the direct power of k copies of G by G*, that is G* = G x --- x G.
However, since wreath products of groups are not associative, we introduce the

convention for the wreath product of k copies of G as below:
G = (- (G1@NGENG) 1 1G) G G.
With the above notation, we have the following results:

Lemma 8.4 Let G be a finite group and let k be a positive integer. Then
(i) (GG W ) = (G/G)
(i) GG = (GG)
(iii) G7® ® G*W) = (G ® G); and
(iv) M(G™®) = M(G)F x (G G)kE=D/VL (G @ G) k=D
where I = 1(G) and J = J(G).
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Proof (i) Inductively, the result follows from (6).
(i1) The result follows from (3) and (i).
(iii) The result follows from (4) and (i).
(iv) For k = 2, the result follows from (2). Now we use the inductive hypoth-

esis to prove it for any positive integer k + 1.

First assume that the equation holds for k. Then, for k + 1, it follows from
(2), (ii) and (iii) that
M(G™¢E+0y = M(G™MG)
= M(G™®) x M(G) x (G ® G)V x (G G)H
= M(G)* x (G§G)HE=DAM (G @ G)HE=D/DI o M(G)
x(G® GV x (GG
= M(G)H! x (G G)EEDAV (G g G)+E+D/2H

where I = [(G) and J = J(G), as required. ]

Next we give two families of efficient groups which are wreath powers of the

groups C, and Dy,.

Theorem 8.5 Let n be an even integer. Then, for any integer k, the groups

™ and D;,f(k) are efficient.

Proof It is well-known that the groups C, and D,, are efficient (even as
semigroups (see Theorems 5.5 and 5.6)). When k = 2, the result is a consequence
of Corollary 8.2. Now we use the inductive hypothesis for £ > 3. Since the
invariant factors of C,/C. = C, and D2,/D;, = C; x C; are even, and since
M(C,) is trivial and M(Ds,) = Cy, it follows from Lemma 8.4 that all the

invariant factors of the following abelian groups
(Cyr @)/ ®y, (D™D MY, M(CY®) and M(DF™)

are even. From Lemma 8.4(i), we deduce that the rank of ( wr(k))/(C:r(k))’ is k
and the rank of (Dwr(k))/(D;nr(k)) is 2k. It follows from (1) that Cn™™ has an
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efficient presentation on k generators and D;’;(k) has an efficient presentation on
2k generators. Since M(C,) is trivial and M (D,,) = C,, the result follows from
Theorem 8.1. [

8.2 The semigroup efficiency of wreath

products of groups

Now we investigate the semigroup efficiency of wreath products of finite groups.
From (5) and a similar argument to Lemma 5.9, we have the following immediate

result for wreath products of groups:

Lemma 8.6 Let (X |R) and (Y | S) be semigroup presentations for finite
groups G and H, and let e € X* and f € Y1 be any representatives of the
identity elements of G and H. Then the semigroup presentation

(X,Y|R,S,e=f, zhzjh=hzjhz; (1<4,5<t, held),

CL‘ihaZjh:hanh.’E,' (1§ZS]St, hEI) ),

where I = I(H), J = J(H) as in the previous section and h' € Y+ represents an

inverse of h € U J, defines G1 H as a semigroup.

We first give a semigroup presentation for the wreath product of two cyclic

groups.

Lemma 8.7 The semigroup presentation

Prn=1(a,b | ™ =a, a® = b™, ba" '™ a1 bab™ 'ab = b,

a" ™ g b ab™ bt = 0 (2 <1 < [m/2])),

where [m /2] denotes the integer part of m/2, defines Cp, 1 Cpy as a semigroup.
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Proof First we prove that b™*! = b. Indeed, from the first three relations of

Pm.n, we have

bt = g = a"(ba""lbm_la"'lbabm_lab) =ba®" " a" thab™ Lab

= ba" '™ ta" tbab™ tab = b.
It follows that a™b = ba™ = b™*! = b so that a” is an identity of the semigroup

S defined by P, ,. Since both a and b have inverses, P, , defines a group. It

follows from Lemma 8.6 that Py, ,, in fact, defines Cy, 1 Cy, as a semigroup. W
Let n and m be even positive integers. Then, from (2)-(4), we have
M(C,1Cp) = (Cn®0n)l~7(0m)l x (Cp Cn)II(Cm)I = CJLJ(Om)I x Cy = 07(1771—2)/2 x Cy.

Similarly, from (2)—(4), we have

C’T(zm_l)/2 if m is odd
M(C,1Cp) = C,(Lm_Z)/2 if m is even and n is odd

cm=D/2 o ¢, if both m and n are even,
and so we have

(m—2)/2 if mis even and n is odd

rank(M(Cn1Cr)) =

[m/2] otherwise.

Therefore, since the deficiency of P, is [m/2], we have the following result.

Theorem 8.8 Ifm is odd or if both m and n are even, then C,, 1 Cy, is efficient

as a semigroup. [ |

It is an open problem whether a finite group which is efficient as a group is
necessarily also efficient as a semigroup. We do not know an efficient semigroup

presentation for Cp 1 Cr with m even and n odd, and if none existed it would

give a counterexample for the above problem.
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Next we investigate the semigroup efficiency of the wreath product of two

dihedral groups. Since

Dy /D, = Cy if n is odd,

C2 if nis even,

it follows from (3) and (4), respectively that

Cy ifnisodd
Dot Doy = , if n is odd,

C3 ifniseven
and

C, if nis odd,
D2n ®D2n =

C3 ifn is even.

Suppose that (¢,d|c? =1, d™ =1, cd™ 'c = d), is a group presentation for Dy, .
Then I(Dam) = {¢,cd,...,cd™ '} for odd m and I(Dym) = {c, cd, ..., cd™ ™, dmi?}

for even m. Since

1 if n is odd,
M(D2n) —

C, if nis even,

it follows from (2) that, if m and n are odd, then
M(Dgp 1 Do) = CS" 702 x Cp = ¢ D2,
If m is even and if n is odd, then
M(Dan 1 Dam) = Ca x C{W % x ot = P92,
If m is odd and if n is even, then
M (Dqy ) Do) = Ca2 X Cim=1I2  o3m = 31
Finally, if m and n are even, then

M(D2n 1 Dym) = Ca X C, X C;x(m—z)/z » C;S(m+1) = Cgm
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Therefore we have

(3m —1)/2 if both m and n are odd,

3m +2)/2 if mis even and n is odd,
rank(M(Dzn 1 Dor)) = ( )/ (7)

Sm — 1 if m 1s odd and n is even,

| om +1 if both m and n are even.

Next we use the semigroup presentation for D,, given in Theorem 5.6 and
Lemma 8.6 to obtain a semigroup presentation for D, | Dy,,. If m is even, then
the semigroup presentation
Bn,. = (a)becd|a®=a, b"=d? ab"'a=",

S =c, d"=c* cd"lc=d, a* = ¢,
ad™ ladt = d™ladia, ad™ 'bd' = d™bd'a, (1 <0 < (m—2)/2)
bd™lad = d™tad'b, bd™'bd' = d™bd'b, (1 <1< (m—2)/2)
(ac)? = (ca)?, (acd’)? = (eda)?, (1<j<m—1)
acd’bed’ = cd’bed’a, (bed’)? = (ed’b)?, (0<j<m—1)
(ad™?)* = a*, ad™*bd™* = d™/*bd™?a, bd™/*bd™* = d™/*bd™*b)
defines D, ! Dy,,. If m is odd, then the semigroup presentation
Con = (a,b,c,d|a®=a, b"=d’, ab"'a=0,
S=c d"=¢, cd"'c=d, a* =,
ad™ tad' = d"ad'a, ad™'bd' = d™bd'a, (1 << (m—1)/2)
bd™ iad = d™ " ad'b, bd™'bd' = d™'bd'b, (1 <1< (m—1)/2)
(ac)? = (ca)’, (acd’)? = (ed’a)’, (1<j<m—1)
acd’bed’ = cdibed’a, (bed?)? = (ed’b)?, (0<j<m—1))
defines Dap ! Dam-

Lemma 8.9 The relation (ac)*c = ¢ holds in Dan U Do Moreover, if we add

3

this relation to the presentations B n and Cp, n, then the relations ¢ = ¢ and

(ac)? = (ca)? become redundant.
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Proof First we show that the relation (ac)*c = c¢ is a consequence of the

3 3

relations: ¢® = ¢, a® = a, a®> = ¢* and (ac)? = (ca)?. Indeed, observe that

2

(ac)4 = ((10)2(ca)2 = acac’aca = acatca = a® = ¢ ,

and so

(ac)lc=d*c=c =c.

3 2

Now we show that the relations ¢’ = ¢ and (ac)? = (ca)? are consequences of the

3 2

relations: a® = a, a®> = ¢? and (ac)?c = c. Indeed, observe that

¢® = a’c = a*(ac)*c = d®c(ac)®c = (ac)c = c.

2

Since a(caca’cac) = a*(cac’ac) = a® = a, we have

(ca)®> = (ca)?(caca’cac) = (ca)*(ac)? = (ca)*a’cac = (ca)*c*(ac)?
= c((ac)*c)(ac)? = c*(ac)® = a®cac = (ac)?,

as required. [

Let &, . denote the semigroup presentation which is obtained from B,,, by

3

adding the relation (ac)*c = ¢ and then removing the relations ¢® = ¢ and (ac)? =

(ca)?.
Theorem 8.10 If both m and n are even, Dap l Doy, is efficient as a semigroup.
Proof Since
def(Emn) = (6 +4((m —2)/2) +3m +3) —4 = 5m + 1 = rank(M(Dzn ! Do),
it follows that Ds, ! D2 1s efficient as a semigroup. |
Next consider the following semigroup presentation
Gm = (¢, d | cdede = ¢, cd™ et =d)

which defines a group G,, (see Lemma 5.7). Moreover, it is known that Gp, is

isomorphic to Ds,, for m = 3,5,7,9.
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Theorem 8.11 Let n be any even integer. Then the groups Dy, | Dy, for m =

3,5,7,9 are efficient as semigroups.

Proof Let n be a positive even integer and let m be one of the odd numbers:
3,5, 7and 9. Then consider the semigroup presentation C,. » which is obtained
from Cn,n by replacing the relations ¢® = ¢, a*> = ¢?, d™ = ¢?, (ac)? = (ca)? and
cd™ !¢ = d by the relations cdede = ¢, cd™1c™ 2 = d, (ac)*c = c and a? = (cd)?.
Since (cd)? is a representative of the identity the group defined by the semigroup
presentation G,,, it follows from Lemmas 8.6 and 8.9 that C,. n defines Dy, 1 Doy,

as a semigroup for m = 3,5,7,9. Now we prove that the relation cdede = ¢ in

C;n’n is redundant, and so Dy, | Dy, is efficient as a semigroup. Indeed, we have

cdede = a*c = a*((ac)*c) = a®c(ac)®c = (ac)ic = ¢,

as required. [

8.3 Some inefficient groups

Notice that all inefficient groups are also inefficient as semigroups. Examples of
inefficient semigroups which are semigroups but not groups are given in Chapter
6. Examples of inefficient groups were first given by Swan in [64], and more
examples can be found in [70], [41], [50] and [33]. In this section we give further

examples of inefficient groups.

Theorem 8.12 Let G and H be finite groups and let the Schur multiplier of H
be trivial. Suppose that the first invariant factor of G/G' is odd and not coprime
to the first invariant factor of the Schur multiplier of G (provided this is non-
trivial). Denote the number of involutions in H by m and the rank of G/G' by t.

If mt > 2, then G U H is an inefficient group.
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Proof Let s be the number of even n; > 1 (1 <4 <t) where G/G' = []._, Cn,
with n;[n;41, ¢ = 1,...,4 — 1. Since ny is odd and t — 1 > s, it follows from (3)

that

- t—1
GiG =([[crxcs =05, x O < [T ot

1=2

Hence, from (2) and (3),
t—1
M(GIH H02t 2:4+1 (n m— 1)/2 (Czsnl « C:”—s—l x Hc;th—z)m

where |H| = n and m is the number of involutions of H. From the fact that, for

any abelian groups A and B,
rank(A x B) < rank(A) + rank(B),
arguing as in the preivious section, we deduce

rank(M(G1H)) = r+t*(n—m—1)/2+ (t* —t)m/2

= r+t?(n-1)/2-mt/2<r+t*((n-1)/2) =1, (8)

where rank(M(G)) = r, since mt > 2.
Next consider the direct product of n copies of G, G™, which is a subgroup of
G| H. By using the Schur-Kinneth formula inductively, we have

M(G™) = M(G)" x (G ® G)"(»~V/?
(for more details see [22]), and so, from the hypotheses of the theorem, we have
rank(M(G™)) = nr + t*(n(n — 1)/2).

Since the index of G™ in Gl H is n, from Lemma 1.38, we have that

nr+t2(n(n —1)/2) +1

n

—1>r+t*(n-1)/2-1.

def(GU1H) 2

It follows from (8) that def(G1 H) > rank(M (G 1 H)), and so Gl H is inefficient,

as required. u



Efficiency of Wreath Products of Finite Groups 181

Let A = C,, x -+ xChp, be an abelian group of rank ¢t > 2, n; odd and n;|n,,
(t=1,...,t —1). Since the groups Cay, Dy, and SL(2,p) with n odd and p prime
have trivial Schur multipliers and contain at least one involution, it follows from

the previous theorem that the groups:
A1Cy, AlD,, and A1 SL(2,p)

are inefficient groups. Moreover, for odd m and n, the group C,,1D,, is inefficient
if n>3.
Let
G = (a,b|a®> =1, ba = ab?),

Gy =(a,b|d®=b>= (ab)?),
Gs=(a,b|a®*=1, bab* =a)

be groups of order 21, 24 and 27, respectively. Since they have trivial Schur

multipliers (see [40]) and since
(G1/Gy) = (G2/Gy) = Cs and (Gs/Gh) = Cs x Cs,

it follows that G;1 Ds, (2 = 1,2,3) are inefficient for odd n > 3.
Let G = C, x SL(2,p) with ¢ odd and p prime. Since

C, ® SL(2,p) = (C,/Cy) ® (SL(2,p)/SL(2,p)) = C; ® {1} = {1},
it follows from the Schur-Kiinneth formula that
M(G) = M(Cy x SL(2,p)) = M(Cy) x M(SL(2,p)) x (Cq ® SL(2,p)) = {1}.

Since G/G" = Cy, it follows from the previous theorem that for any group H with
trivial Schur multiplier and at least 2 involutions, (Cg x SL(2,p)) 1 H is inefficient.
In particular, for odd n > 3, (C, x SL(2,p)) 1 D2y, is inefficient.

We can generalise this last example.
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Corollary 8.13 Let G and H be finite groups, let the Schur multiplier of H be
trivial, and let q be any odd integer. If G is a perfect group, then the group
(Cy x G)V H is inefficient.

Proof The proof is as in the last example. |
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