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Abstract

In this paper, we study some problems related to subspace inclusion graph In(V) and
subspace sum graph G(V) of a finite-dimensional vector space V. Namely, we prove that
In(V) is a Cayley graph as well as Hamiltonian when the dimension of V is 3. We also
find the exact value of independence number of G(V) when the dimension of V is odd. The
above two problems were left open in previous works in literature. Moreover, we prove
that the determining numbers of In(V) and G(V) are bounded above by 6. Finally, we
study some forbidden subgraphs of these two graphs.
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1. Introduction

Graphs defined on vector spaces have been studied extensively in the last few years [2,
3, 4, 5, 6, 7, 12], and as a result various types of graphs on finite-dimensional vector spaces
and numerous problems related to them have surfaced recently. As these graphs inherit
the rich structure possessed by the finite-dimensional vector spaces, their combinatorial
properties are also worth studying. In this paper, we focus on two such graphs, namely
subspace inclusion graph [5] and subspace sum graph [7], and study some problems related
to these two graphs.
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Definition 1.1. Let V be a finite-dimensional vector space over a field F of dimension
greater than 1 and V be the collection of non-trivial proper subspaces of V. The subspace
inclusion graph In(V) is a graph on V as the set of vertices and two distinct vertices W1

and W2 are adjacent if W1 ⊂ W2 or W2 ⊂ W1. The subspace sum graph G(V) is a graph on
V as the set of vertices and two distinct vertices W1 and W2 are adjacent if W1 +W2 = V.

The subspace inclusion graph In(V) was introduced in [5]. The automorphism group
and independence number of In(V) were determined in [18] and [13], respectively. In [6],
it was observed that In(V) possesses special properties when dim(V) = 3. In particular,
the authors posed four conjectures on In(V) when dim(V) = 3. Two of those conjectures,
namely In(V) is distance transitive and γ(In(V)) = 2q where |F | = q and dim(V) = 3,
has been proved in [21]. The other two conjectures, namely In(V) is a Cayley graph and
In(V) is Hamiltonian when dim(V) = 3 were left open. In this paper, we resolve these two
conjectures affirmatively.

The subspace sum graph G(V) was introduced in [7] and its automorphism group and
independence number was determined in [16] and [13], respectively. In particular, authors
in [13] found the exact value of independence number of G(V) when dim(V) is odd and
provided an upper bound on the independence when dim(V) is even. In this paper, we
determine the exact value of α(G(V)), when dim(V) is even.

We next focus our attention to finding the determining number of In(V) and G(V).
We found out to our surprise that the determining number of In(V) and G(V) of any
finite-dimensional vector space of dimension ≥ 3 is at most 6.

We also characterize when these graphs forbid certain induced subgraphs. In particular,
we study when the graphs In(V) and G(V) are cographs, chordal graphs, split graphs and
threshold graphs.

1.1. Preliminaries

We first recall some definitions and results on graph theory. For undefined terms and
results, please refer to [20]. A graph G = (V,E) is said to be Hamiltonian if there exists
a cycle which passes through each vertex of the graph. A subset S of V is said to be
independent set if no two vertices of S are adjacent in G. The cardinality of the maximum
independent set is called the independence number of G and is denoted by α(G). The group
of automorphisms of G is denoted by Aut(G). A matching in a graph is a set of edges that
do not have a set of common vertices. A perfect matching is a matching that matches all
the vertices of the graph. A maximum matching is a matching that contains the largest
possible number of edges and the matching number µ(G) of G is the size of a maximum
matching. A subset S of V is said to be a determining set [1] of G, if identity map is the
only automorphism which fixes S elementwise. The size of the smallest determining set is
called the determining number or fixing number of G and is denoted by Det(G). Let G
be a group and S be an inverse-symmetric subset of G (i.e., x ∈ S ⇒ x−1 ∈ S) such that
identity of the group is not in S. The Cayley graph of G with respect to S is a graph with
vertex set G and two distinct group elements x and y are adjacent if xy−1 ∈ S. For any
graph G, the automorphism group of G is denoted by Aut(G). A subgroup H of Aut(G)
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is said to be a regular subgroup if for any two vertices x and y of G, there exists a unique
automorphism ϕ ∈ H such that ϕ(x) = y. A graph G is a Cayley graph if and only if
Aut(G) possesses a regular subgroup. (See Lemma 3.7.1 and 3.7.2 in [10])

2. Subspace Inclusion Graph

It was proved in [6] and [21] that if V is a 3-dimensional vector space over a finite
field F with q elements, then In(V) is a bipartite distance transitive graphs with one-
and two-dimensional subspaces forming the partite sets each with q2 + q + 1 vertices. In
the next two theorems, we prove that for dim(V) = 3, In(V) is a Cayley graph and it is
Hamiltonian.

Theorem 2.1. Let V be a 3-dimensional vector space over a finite field F with q elements.
Then In(V) is a Cayley graph.

Proof. Let K be a finite field of order q3. Then K/F is a field extension, K is a 3-
dimensional vector space over F and K is isomorphic to V as F -vector space.

As K is a finite field, its multiplicative group K∗ is a cyclic group of order q3 − 1. Let
a ∈ K∗ be an element of order q3−1. Consider the left multiplication map Ta : K → K by
Ta(x) = ax. Clearly, Ta is a linear isomorphism on K which permutes the non-zero vectors
in a single cycle of length q3 − 1. Now, as b = aq

2+q+1 is a (q − 1)-th root of unity, b ∈ F .
Thus Tb fixes all 1-dimensional subspaces of K. Thus Ta induces a cyclic permutation of
order q2 + q + 1 on the 1-dimensional subspaces, permuting them in a single cycle. Thus
the group H generated by Ta acts as automorphisms of the graph, having one orbit on the
1-dimensional subspaces and one orbit on the 2-dimensional subspaces.

Let U be a 1-dimensional subspace and W be a 2-dimensional subspace such that
U ⊂ W . Then Ta

i(U) ⊂ Ta
i(W ) for all values of i. Note that as i varies from 0 to

q2 +q+1, Ta
i(U) and Ta

i(W ) vary over the set of all 1-dimensional subspaces and set of all
2-dimensional subspaces respectively. Define a map S on the set of all 1 and 2-dimensional
subspaces such that S interchanges Ta

i(U) and Ta
−i(W ). Clearly, S is a bijection on In(V).

We prove that S is a graph automorphism.
If Ta

j(U) ∼ Ta
k(W ), i.e., Ta

j(U) ⊂ Ta
k(W ), then applying Ta

−j−k on both sides, we get
Ta

−k(U) ⊂ Ta
−j(W ). So S maps the edge {Taj(U), Ta

k(W )} to the edge {Ta−k(U), Ta
−j(W )}.

Thus S is an automorphism. One can easily check that S is an involution and STaS = Ta
−1.

Hence, the dihedral group 〈Ta, S〉 of order 2(q2 + q+ 1) acts regularly on In(V) and In(V)
is a Cayley graph.

Theorem 2.2. Let V be a 3-dimensional vector space over a finite field F . Then In(V)
is Hamiltonian.

Proof. Let a,K and Ta be as in the proof of Theorem 2.1. Consider U = 〈1〉 and W =
〈1, a〉 as subspaces of K. Clearly U and Ta(U) are subspaces of W . So {U,W} and
{Ta(U),W} are edges in In(V). So, we can construct a Hamiltonian cycle in In(V) as
(U,W, Ta(U), Ta(W ), Ta

2(U), . . . , Ta
k−1(U), Ta

k−1(W ), U) where k = q2 + q + 1.
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3. Independence Number of Subspace Sum Graph

Ma and Wang [13, Theorem 2.5] determined the exact value of the independence number
of the graph In(V) where V is a finite-dimensional vector space over finite field. Moreover,
they were also able to find explicitly the exact value of the independence number of the
subspace sum graph when the dimension of the vector space is odd. In this section, we are
interested in finding the exact value of the independence number of the subspace sum graph
when the dimension of the vector space is even. We begin with some known results about
the number of k-dimensional subspaces of an n-dimensional vector space. Throughout this
section, F is a finite field of order q.

Lemma 3.1 ([11]). The number of k-dimensional subspaces of an n-dimensional vector
space over F is the following q-binomial coefficient(

n

k

)
q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
.

Lemma 3.2 ([14]). For a fixed positive integer n, the q-binomial coefficients
(
n
k

)
q

is a

polynomial in the variable q and the coefficients satisfy the following symmetry:(
n

k

)
q

=

(
n

n− k

)
q

, for 1 ≤ k ≤ n− 1.

We are now in a position to state the result of Ma and Wang [13, Theorem 3.7] on the
independence number of the subspace sum graph when the dimension of the vector space
is odd.

Theorem 3.1. If n = 2m− 1 is odd, then

α(G(V)) =
1

2

( n∑
k=0

(
n

k

)
q

− 2
)
.

In course of their proof, they constructed an independent set of the above size and
also proved that when n = 2m− 1, the graph G(V) has a perfect matching and hence the

matching number is
1

2

( n∑
k=0

(
n

k

)
q

− 2
)

.

But when n = 2m, the maximum size of the independent set they could construct, is
not the same as the size of the maximum matching and hence they left finding the exact
independence number as a topic of further research. Here we prove the following result to
answer their question.

Theorem 3.2. Let n = 2m be a positive integer. Then,

α(G(V)) =

(
2m

1

)
q

+ · · ·+
(

2m

m− 1

)
q

+

(
2m− 1

m− 1

)
q

.
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To prove Theorem 3.2, we need some more results. First we state the following version
of the Erdős–Ko–Rado Theorem [9] for t-intersecting families of k-dimensional subspaces
of a n-dimensional vector space V over F . Let V (n, k) denote the set of k-dimensional
subspaces of a n-dimensional vector space V over F . A family F ⊆ V (n, k) is said to be
t-intersecting if for any W1,W2 ∈ F . we have dim(W1 ∩W2) ≥ t.

Theorem 3.3 (Frankl–Wilson). Suppose n ≥ 2k − t and a family F ⊂ V (n, k) is t-
intersecting. Then,

|F| ≤ max

{(
n− t
k − t

)
q

,

(
2k − t
k

)
q

}
.

Let n = 2m. For 1 ≤ k ≤ m, we define Γk to be a bipartite graph with vertex set
V (n, k) ∪ V (n, n − k) and there is an edge between a vertex U ∈ V (n, k) and a vertex
W ∈ V (n, n−k) if and only if U +W = V. Note that Γk can be obtained from the induced
subgraph of the subspace sum graph with vertex set V (n, k) ∪ V (n, n− k) by deleting all
possible edges between vertices of V (n, n− k). Ma and Wang [13, Lemma 3.4] proved the
following Lemma on the existence of perfect matching of Γk.

Lemma 3.3. For positive integers n = 2m and 1 ≤ k ≤ m− 1, Γk has a perfect matching.

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. We fix a particular nonzero vector α of V. Let Y denote the set of
all m-dimensional subspaces of V containing α. Let

S = Y ∪ V (2m, 1) ∪ V (2m, 2) ∪ · · · ∪ V (2m,m− 1).

We first prove that S is indeed an independent set. Let W1,W2 ∈ S. If both W1 ∈ Y and
W2 ∈ Y, we have dim(W1 +W2) = dim(W1) + dim(W2)−dim(W1∩W2) ≤ 2m− 1 < n and
therefore W1 � W2. If atleast one of W1 and W2 is not from Y , we have dim(W1 +W2) ≤
dim(W1) + dim(W2) ≤ 2m− 1. Hence, S is an independent set and it can be checked that

|S| =
(

2m

1

)
q

+ · · ·+
(

2m

m− 1

)
q

+

(
2m− 1

m− 1

)
q

.

We now prove that this is the maximum possible cardinality of an independent set.

Let T be an independent set of G(V). Thus, for 1 ≤ k ≤ m − 1, T ∩ Γk is also an
independent set. Now, by Lemma 3.3, Γk has a perfect matching and by Lemma 3.1 and
3.2, we have

|T ∩ Γk| ≤
1

2
|Γk| =

1

2

((2m

k

)
q

+

(
2m

2m− k

)
q

)
=

(
2m

k

)
q

. (1)

We now consider T ∩ Γm which is again an independent set. Thus, for any W1,W2 ∈
T ∩ Γm, we have W1 � W2 and dim(W1) = m = dim(W2). This forces us to have
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dim(W1 ∩W2) = dim(W1) + dim(W2) − dim(W1 + W2) ≥ 1. Hence the family T ∩ Γm is
a 1-intersecting family of m-dimensional subspaces. Thus by setting n = 2m, k = m and
t = 1 in Theorem 3.3, we have

|T ∩ Γm| ≤ max{
(

2m− 1

m− 1

)
q

,

(
2m− 1

m

)
q

} =

(
2m− 1

m− 1

)
q

. (2)

From (1) and (2), we get

|T | =
m−1∑
k=1

|T ∩ Γk|+ |T ∩ Γm| ≤
(

2m

1

)
q

+ · · ·+
(

2m

m− 1

)
q

+

(
2m− 1

m− 1

)
q

.

This completes the proof of Theorem 3.2.

4. Determining Number of Subspace Inclusion Graph and Subspace Sum Graph

In this section, we provide bounds for the determining number of subspace inclusion
graph and subspace sum graph. We begin with a definition.

A base for a permutation group is a sequence of points in the domain of the group
whose pointwise stabiliser is the identity. The base size is the minimum cardinality of a
base. The determining number of a graph is the base size of its automorphism group.

Theorem 4.1. The determining number of In(V) of a finite dimensional vector space of
dimension 3 or higher is at most 6.

Proof. Wang and Wong [18] proved that the automorphism group of In(V) of the n-
dimensional vector space V over GF(q) is PΓL(n, q) : C2, where PΓL(n, q) is the group
generated by invertible linear maps on V and field automorphisms acting coordinatewise,
modulo the normal subgroup of scalar maps, and C2 is the inverse-transpose automorphism
which acts on the graph as a duality map (exchanging subspaces of dimensions k and n−k).
It is also known that the general linear group GL(n, q) is generated by two elements.
(See [19] for explicit generators.)

The proof will separate the cases of even and odd dimension. We begin with the
even-dimensional case.

First we show that the subgroup PGL(n, q), omitting the field automorphisms and
inverse-transpose automorphism, has a base of size 5, which we give explicitly. Let n = 2m,
and let S, T be two matrices which generate GL(m, q). We take the vector space V to have
the form V = E ⊕ F , where E has basis {e1, . . . , em} and F has basis {f1, . . . , fm}. Our
five subspaces are

• W1 = E;

• W2 = F ;

• W3 = 〈e1 + f1, . . . , em + fm〉;
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• W4 = 〈e1 + S(e1), . . . , em + S(em)〉;

• W5 = 〈e1 + T (e1), . . . , em + T (em)〉.

For the last two, we re-interpret S and T as maps from E to F whose matrices (relative
to the bases for E and F ) are equal to the matrices on the m-dimensional space in their
definition. Now we have to show that the only invertible linear maps on V which fix all
five subspaces are the scalars.

The stabiliser of W1 and W2 in GL(n, q) is GL(m, q) × GL(m, q). Now W3 induces a
linear bijection from E to F , defined by e 7→ f if and only if e + f ∈ W3. This bijection
must be preserved by the stabilizer of these three subspaces, which is thus GL(m, q), acting
on the same way on E and F .

In a similar way, W4 and W5 also induce bijections from E to F . Now applying the W4

map and the inverse of theW3 map gives a linear map on E which acts as the transformation
S. Similarly the W5 map and the inverse of the W3 map gives the transformation T on
E. As before, the stabiliser of the five subspaces must commute with S and T . However,
since S and T generate GL(m, q), this means that the stabiliser of the five subspaces is
contained in the centre of GL(n, q), which consists of scalar matrices only. So the stabiliser
is the identity in PGL(n, q), that is, acts trivially on the graph as required. So these five
matrices form a basis for PGL(n, q).

From this, we see that the group induced on the subspace graph by the stabiliser of
W1, . . . ,W5 in its automorphism group is contained in Cr : C2, where q = pr with p prime,
so that Cr is the automorphism group of the field of order q. (We cannot say exactly
which subgroup, or how it acts, since this may depend on the choice of S and T .) We
will choose the sixth subspace W6 to have dimension 1. It follows that the stabiliser of
W1, . . . ,W6 cannot induce a duality map, and so is contained in Cr. The group of field
automorphisms, in its coordinatewise action, has an orbit of length r on V (containing a
vector (1, a, . . .), for example, where a is a generator of GF(q) over GF(p)); the stabiliser
of this vector is the identity. So if we choose W6 to lie in an orbit of maximum length,
then certainly its stabiliser in the group of field and duality automorphisms will be trivial.
Thus {W1, . . . ,W6} is the required base.

Now we turn to the odd-dimensional case, with n = 2m + 1. We assume first that
m > 1. Let V = V (n, q), and let U be a subspace of dimension n− 1 = 2m. We begin by
choosing six subspaces W1, . . . ,W6 forming a basis for PΓL(2m, q) as above. The stabiliser
of these six subspaces in PΓL(2m + 1, q) fixes U (which is spanned by the first two of
them) and acts trivially on U . The subspaces of V not contained in U can be regarded
as the elements of the affine geometry of dimension 2m over GF(q), and the stabiliser
of all subspaces contained in U acts on it as a group of affine transformations fixing the
hyperplane at infinity pointwise; these are just the translations and dilations of the affine
space, that is, the maps v 7→ cv + w where w ∈ GF(q)2m and c ∈ GF(q), c 6= 0.

We claim that the stabiliser of two skew affine subspaces whose dimensions are not
complementary (in the group of translations and dilations) is trivial. For this group can
contain no non-trivial translations, since the translation vector would have to fix both
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subspaces. Also, it cannot contain any dilation centre, since the dilation centre would have
to lie in both subspaces.

So we let Wi be one of W1, . . . ,W5 not containing W6. Choose x ∈ V \ U ; and let
W+

i = 〈Wi, x〉, and A = W+
i \U , an affine subspace of V \U with affine dimension m+ 1.

For any y ∈ V \U , if W+
6 = 〈W6, y〉, then A2 = W+

6 \U is a 2-dimensional affine subspace
disjoint from U . Now replace Wi and W6 in our basis by W+

i and W+
6 , and set W+

j = Wj

for j ≤ 5, j 6= i.
We claim that {W+

1 , . . . ,W
+
6 } is a basis. For the stabiliser of these six subspaces fixes

U , which is spanned by some two of W+
1 , . . . ,W

+
5 except W+

i . (For example, any two of
W1, W2 and W3 span U .) Thus it fixes Wi = W+

i ∩ U for i = 1, . . . , 5; these five form a
basis for the group induced on subspaces of U . It also fixes the two affine spaces A1 and
A2. It follows from our argument that this stabiliser is trivial.

Finally we have to deal with the case m = 1, when the vector space V has dimension
3. Now it is familiar in the theory of projective planes that the five points

〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(0, 0, 1)〉, 〈(1, 1, 1)〉, 〈(1, a, a2)〉,

where a is a primitive element of GF(q), form a base for the collineation group of the
Desarguesian projective plane. So there is a determining set of size 5 in this case.

Now, we present a lower bound on the determining number of In(V).

Theorem 4.2. It dim(V) ≥ 3, then the determining number of In(V) is at least 4 for
infinitely many choices of n and q, where q is the order of the base field.

Proof. The order of the automorphism group of In(V) is 2qn
2−1 log q(1−O(q−1)). On the

other hand, the number of vertices of the graph is at least qn
2/4(1−O(q−1)); so the number

of choices of three subspaces is smaller than the order of the automorphism group, for all
but finitely many q (given n). If there is a base of size 3, then the number of its distinct
images under the automorphism group G would be equal to |G|.

Analogous results to that of Theorem 4.1 and Theorem 4.2 for upper bounds and lower
bounds of determining number of the subspace sum graph also hold:

Theorem 4.3. Let V be a finite vector space with dimension n ≥ 3 over the field with q
elements.

(a) The determining number of G(V) is at most 6, and is at most 5 if q is prime.

(b) There are infinitely many choices of n and q such that the determining number of
G(V) is at least 4.

Proof. For n = dim(V) > 2, the automorphism group of the subspace sum graph G(V)
is PΓL(n, q), a subgroup of index 2 in the automorphism group of the subspace inclusion
graph not containing the duality map [16].
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Since Aut(G(V)) is a subgroup of the automorphism group of the subspace inclusion
graph, its determining number is bounded above by that of the latter group, and hence is
at most 6. Indeed, if the field has prime order, then its automorphism group is PGL(n, q),
and as we saw earlier, five subspaces suffice to form a base in this case.

The proof of the lower bound is almost exactly as in Theorem 4.2.

5. Forbidden subgraphs of Subspace Inclusion graph and Subspace Sum graph

A graph G is a cograph if it has no induced subgraph which is isomorphic to the
four-vertex path P4. That is, a graph is a cograph if and only if for any four vertices
{v1, v2, v3, v4}, if {v1, v2}, {v2, v3} and {v3, v4} are edges of the graph then at least one
of {v1, v3}, {v1, v4} or {v2, v4} is also an edge. A threshold graph is a graph containing
no induced subgraph isomorphic to P4, C4 or 2K2. Therefore every threshold graph is a
cograph.

A graph G is split if the vertex set is the disjoint union of two subsets A and B such
that A induces a complete graph and B a null graph. An equivalent definition is that a
graph is split if and only if it contains no induced subgraph isomorphic to C4, C5 or 2K2.

A graph G is chordal if it contains no induced cycles of length greater than 3; in other
words, every cycle on more than 3 vertices has a chord.

We now restrict our attention on the dimension for the graphs In(V) and G(V) to
be cographs, threshold, split and chordal graphs. At first we observe the following when
dim(V) = 2.

1. The vertices of In(V) are only the one-dimensional subspaces and therefore, it is
edgeless.

2. The vertices of the graph G(V) are the one-dimensional subspaces of V. Now, the
sum of two distinct 1-dimensional subspaces in a 2-dimensional vector space is 2-
dimensional and hence equal to V. So G(V) is complete.

Hence, throughout this section we assume dim(V) ≥ 3 and we at first prove the following
result on the subspace inclusion graph In(V).

Theorem 5.1. For any vector space V with dim(V) ≥ 3, the graph In(V) is

1. never a cograph and hence never a threshold graph,

2. never a chordal graph and hence never a split graph.

Proof. Let B = {α1, α2, . . . , αn} be a basis of V . Suppose n ≥ 3.

1. Consider the following vertices: W1 = 〈B \ {α2, α3}〉, W2 = 〈B \ {α2}〉, W3 =
〈B \ {α1, α2}〉, and W4 = 〈B \ {α1}〉. It can be seen that W1 ⊆ W2,W3 ⊆ W2 and
W3 ⊆ W4 but W1 � W3,W1 � W4 and W2 � W4. Thus, the graph contains a P4 and
hence it is not a cograph.
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2. We now show that this is not a chordal graph: W1 = 〈B \{α2, α3}〉, W2 = 〈B \{α3}〉,
W3 = 〈B \ {α1, α3}〉, W4 = 〈B \ {α1}〉, W5 = 〈B \ {α1, α2}〉, and W6 = 〈B \ {α2}〉.
Thus the following is a 6-cycle in the graph In(V):

W1 ∼ W2 ∼ W3 ∼ W4 ∼ W5 ∼ W6 ∼ W1.

One can check that there is no chord in this 6-cycle and hence it is not a chordal
graph.

This completes the proof.

We now move on to the subspace sum graph and here we have the following result.

Theorem 5.2. For any vector space V with dim(V) ≥ 3, the graph G(V) is

1. never a cograph and hence not a threshold graph;

2. a chordal graph if and only if dim(V) = 3;

3. a split graph if and only if dim(V) = 3.

Proof. Let B = {α1, α2, . . . , αn} be a basis of V . Suppose n ≥ 3.

1. Consider the following vertices: W1 = 〈B \ {α2, α3}〉, W2 = 〈B \ {α1}〉, W3 =
〈B \ {α3}〉, and W4 = 〈B \ {α1, α2}〉. It can be easily checked that W1 + W2 = V,
W2 +W3 = V and W3 +W4 = V but W1 � W3,W1 � W4 and W2 � W4. Therefore,
the graph contains a P4 and hence it is not a cograph.

2. Suppose dim(V) = 3 and let the following be a k-cycle with k ≥ 4:

W1 ∼ W2 ∼ W3 ∼ W4 ∼ W5 ∼ . . .Wk ∼ W1.

If none of the Wis have dimension 1, then of course we can find many chords. If for
any 2 ≤ i ≤ k − 1, Wi has dimension 1 then both Wi−1 and Wi+1 has dimension 2
and as k ≥ 4, the edge Wi−1 ∼ Wi+1 is a chord of the k-cycle. If W1 has dimension
1 then Wk ∼ W2 is a chord and if Wk has dimension 1 then Wk−1 ∼ W1 is a chord.
Thus for n = 3, the graph is chordal.

For the other direction, let dim(V) ≥ 4 and let B = {α1, α2, . . . , αn} be a basis
of V . Suppose n ≥ 4. Consider the following vertices: W1 = 〈B \ {α1, α2}〉, W2 =
〈B\{α3, α4}〉, W3 = 〈B\{α1, α2, α4}〉, and W4 = 〈B\{α1, α3, α4}〉. It can be seen that
W1 ∼ W2 ∼ W3 ∼ W4 ∼ W1 but W1 � W3 and W2 � W4. Thus, the graph contains
a C4 which does not contain any chord and therefore the graph is not chordal.

3. This was proved by Venkatasalam and Chelliah [17, Theorem 4.2].

This completes the proof.
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