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Abstract

It has been proposed that slingshot prominences may be a mass and angular momentum loss
mechanism for rapidly rotating young stars. Stellar evolution models currently rely only on
the wind as the angular momentum loss mechanism and do not include prominences. These
models often require more angular momentum to be removed than the wind allows, and
prominence ejection may hold at least part of the answer. This thesis aims to investigate
the locations of prominence formation through mathematical modelling. The magnetic field
structures that could support prominences are investigated, typically using two models: a
magnetohydrostatic model and a stability method. The distributions of prominences around
the star are calculated and, where possible, compared to observations. In some cases the
magnetic field of the star is prescribed to be a simple field such as a dipole or quadrupole,
and in others the magnetic field is generated from observations of the surface magnetic field,
with the coronal magnetic field reconstructed from this, assuming the field is potential.
This work finds that prominences can be formed both within the stellar wind of stars,
and within the closed field region. With the magnetohydrostatic model, two classes of
prominence are found: those close to the surface of the star that could be analogous to
solar prominences, and those at very large distances from the stellar surface. Those in the
second category may be ejected from the star and act as a mechanism for removing mass
and angular momentum. The removal of mass and angular momentum by prominences
was modelled using the stable point method, and it was found that for some stars within
the sample of M-dwarfs, the prominences could be a significant angular momentum loss
mechanism.
Work here shows that whilst a tilted dipolar field can typically replicate the locations of
observed prominences well, using observed prominence locations to infer the tilt of the dipole
is not very effective due to the degeneracy of stable point locations. Overall, prominences are
likely to be important contributors to the removal of angular momentum and therefore spin
down of a star at certain points in its life, whilst they are typically left out of stellar evolution
models. They are likely to be very common across young stars, however they are usually
only observable when they transit the stellar disc and therefore they will often be missed by
observations due to geometric effects. Those that are observed are likely only being partially
observed, meaning that mass predictions from observations are underestimates.
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Introduction
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1.1 Stellar Prominences

“Prominence” is the term given to cool condensations of plasma, embedded in the hot corona

of a star. Their presence is evidence for the stellar magnetic field, with closed magnetic loops

being required to support the cool, condensed material above the stellar surface. The mag-

netic field prevents the movement of the charged coronal plasma across field lines, which can

isolate regions of plasma from the rest of the corona. Thermal instabilities can cause loops

to cool and without the motion of particles across field lines to reestablish thermal equi-

librium, loops can cool to temperatures dramatically cooler than the rest of the corona[1].

This can lead to the condensations of neutral hydrogen termed prominences.

Figure 1.1: Erupting prominence, seen in extreme UV, from the 13th of April 2010. Photo
Credit: STEREO, NASA

Prominences are well observed on the Sun and can be seen as filamentary structures

as they cross the stellar disc or, if off disc, as loops of coronal material. Although they

were first observed on the Sun, evidence of prominences has since been found on many star

systems; from binary stars to single stars, and on stars of varying masses[1–3]. Prominences

on young stars have been observed to be considerably more massive than solar prominences,

some 10-100 times more massive[4], and are typically much larger in extent. An ejection of

such a prominence, therefore, is likely to be a more dramatic event than similar ejections

from the Sun. These features have consequences for the evolution of both the star and its

system, since prominences are able to remove stellar mass, and angular momentum, from
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the star over its lifetime. This mass may interact with orbiting planets if ejected into the

planet’s path. Prominences could have uses in reconstructing the star’s coronal magnetic

field, and providing insight into the mass loss rates from stellar winds. The work in this

thesis is focused around the mathematical modelling of prominence formation sites around

young, rapidly rotating stars.

1.2 Observations on binary star systems

Evidence for prominences on stars other than the Sun first arose from binary systems. Pencil

beam studies, where a hot star is used to examine the atmosphere of a larger companion,

provided the first hints of condensed clouds in stellar coronae. In this method, an absorption

dip is observed in the spectrum before or after an eclipse has occurred (see Figure 1.2),

suggesting that something other than the eclipsing star has passed in front of the companion

star. In 1981 Schröder et al. observed this in the system 32 Cyg and attributed these

absorption features to scattering by neutral hydrogen, which they explained by the existence

of prominences[5]. From the relative velocity of the B star, the authors extracted a height

for the prominence from the stellar rotation axis of 15R�.

Figure 1.2: Depiction of a prominence and K primary star (black) eclipsing the B secondary
star (white).

The binary system containing V471 Tauri also showed evidence of prominences. The

binary, which is composed of a white dwarf and a K2 star, has an orbital period of about

half a day. In a paper by Jensen et al.[6], the authors report observing the system for 28

hours and the discovery of multiple dips in soft X-ray emission. The authors found these

dips to repeat on an orbital period. Four phases were found at which these absorption

dips occurred, the strongest of which was seen to repeat for three orbits. Whilst some

features were seen to reoccur, some were observed to weaken between rotations and others
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to disappear completely. This all suggests the presence of an absorbing body in orbit that

is held in place, resulting in periodic dips in the observed spectra. The authors predicted

the material from one feature to be trapped at 2-3 stellar radii from the K star. Multiple

explanations for the support of these clouds at such a height from the stellar surface were

suggested by the authors. This included: strong magnetic loops from the corona of the K

star providing support for the material, and their favoured theory: that the material could

be collecting in the Lagrangian points of the binary system. However, in 2022 Zaire et

al. [7] published a paper suggesting that the prominence material was forming above the

Lagrange point, suggesting that the prominence is instead confined by strong magnetic field

lines. The authors suggest that the mechanism supporting this prominence system would

be better explained by the “slingshot prominences” discussed in the section on single star

systems, rather than the Lagrange point mechanism.

Star References Reference in this work
II Peg Doyle 1992, Steeghs 1996 [8, 9]

V471 Tau Jensen 1986, Wheatley 1998, Zaire 2022 [6, 7, 10]
SS Boo Hall&Ramsey 1992,1994,1990 [2, 11, 12]
AW Her Hall&Ramsey 1992, 1994 [11, 12]
BV Cen Watson 2007 [13, 14]
IP Peg Steeghs 1996 [9]
SS Cyg Steeghs 1996 [9]
AM Her Gansicke 1998 [15]

Algol System Peterson 2010 [16]
DH Leo Barden 1986, Newmark 1990 [17, 18]
VW Cep Newmark 1990 [19]

SZ Piscium Cao & Gu 2012, 2019 [20, 21]
V711 Tau / HR 1099 Petit 2005 [22]

V410 Tau Skelly 2010 [23]
AR Sco Garnavich 2019 [24]

Table 1.1: Table of binary star systems in which potential signs of prominences have been
observed.

A larger scale study was undertaken by Hall and Ramsey, as laid out in their paper from

1992[11], where the authors surveyed multiple binary systems in the search for “circumstellar

clouds” or stellar prominences. Their results showed that stellar prominences may not be

uncommon features, with prominences likely to be present on seven out of ten systems

observed. This work came after the authors observed cool condensations on the star SS Boo

in 1987 and 1988[2], when they suggested that the cool material was supported by strong

magnetic fields on the stellar surface. In their study, the authors are careful to note that
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the word “prominence” is taken as an analogy to the solar features we are accustomed to,

but that they are different features in their own right. Table 1.1 shows the binary systems

in which suspected prominences have been observed.

1.3 Observations on single star systems

1.3.1 AB Dor

Prominences on single stars were first observed by Collier Cameron and Robinson in 1989[1]

on AB Doradus. AB Dor is a rapidly rotating “young Sun”, with mass 0.86M�, a radius of

0.96R� and a rotation period of 0.514 days. Collier Cameron and Robinson observed the

star over multiple nights and found absorption features moving through the Hα line profile,

suggesting the presence of an occulting body transiting the star. They observed these tran-

sients to reoccur on consecutive nights, sometimes for multiple nights before disappearing.

These features reappeared on the stellar rotation period, i.e. they were co-rotating with the

star. The authors explained these transients as “circumstellar clouds” or a stellar equiva-

lent to prominences on the Sun. Collier Cameron and Robinson describe the clouds as cool

condensations embedded in the hot and extended corona. They calculated the clouds to

be typically at 3-4 stellar radii from the stellar rotation axis, and occulting up to 20% of

the stellar surface area. The presence of these masses requires closed magnetic field out to

these distances, and suggested that the coronae of such stars must be very extended. As

the clouds pass between the star and the observer, the cloud efficiently scatters light at the

Hα wavelength, causing the cloud to appear as an absorption feature. An example dynamic

spectrum is shown in Figure 1.3.

The authors determined the distances of these clouds from the stellar rotation axis ($)

using the prominence drift rate (v̇) which is proportional to the distance from the rotation

axis:

v̇ = Ω2$ sin(i) (1.1)

and thus the distances from the rotation axis can be extracted:

$

R?
=

v̇

vΩ sin(i)
, (1.2)

where Ω is the stellar rotation rate and i is the inclination of the stellar rotation axis to our
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Figure 1.3: A dynamic spectrum from 1997 of AB Doradus, from the work of Collier
Cameron et al.[25].

line of sight. That prominences around AB Dor preferentially appeared around 3-4 stellar

radii above the stellar rotation axis suggests that these features are supported in a different

manner to their solar analogues. Solar prominences are found only a few thousand kilome-

tres above the solar surface. The prominences around AB Dor appear to congregate close

to the co-rotation radius of the star (Rk), where the gravitational and centrifugal forces are

balanced.

Fg = Fc (1.3)

GM?

r2
= Ω2r sin θ (1.4)

R3
k ≡

GM?

Ω2 sin θ
(1.5)

From the observed hydrogen column densities (N1) and prominence areas (A) ranging

from 0.03A? to 0.38A?, prominence masses of order 1017g were calculated via

Mp = mHN1A (1.6)

where mH is the mass of a hydrogen atom. These masses are 10-100 times the mass of large

prominences observed on the Sun at 2− 6× 1017g [26].

Since AB Doradus has a stellar inclination of about 60◦, any prominences that lie at a
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distance from the rotation axis that is equal to the equatorial co-rotation radius must be

supported 0.5 and 2 stellar radii above this plane, in order to still transit the disc and be

visible as absorption features[26].

Figure 1.4: Cartoon showing three prominences at distances from the rotation axis of the
equatorial co-rotation radius. AB Dor has an inclination of 60◦ therefore (a) and (b) would
be visible as absorption features but (c) would not. The double ended red arrow shows the
range of locations above and below the equatorial plane that a prominence could reside and
be visible in absorption.

Since these first observations, prominences have been observed on AB Dor on many more

occasions [1, 25, 27–33]. This has lead to AB Dor becoming the prototype for prominence

modelling on rapidly rotating, low mass stars. Prominences have been observed at phases

where there was no prominence the previous night (two stellar rotations previously). Collier

Cameron [26] reported that it was common for one prominence to appear or disappear on

a given observational night. Thus, with one prominence disappearing each night and about

6 or 7 clouds observed on any given night, this suggests the clouds would have a lifetime of

up to about a week.

Prominences of the type seen on AB Dor are often referred to as “slingshot prominences”[26]

due to the trapping of coronal material, that is being forced outwards due to the centrifugal

force, within magnetic loops[34].
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1.3.2 Speedy Mic

Another star on which slingshot prominences have been well observed is BO Microscopii

(BO Mic), also known as Speedy Mic1 due to its rapid rotation. Prominences were first

observed on Speedy Mic in 1993 by Jeffries [35]. The clouds showed velocities that were

consistent with being close to the co-rotation radius and had lifetimes of a couple of days.

The author notes that this could result in prominences removing substantial angular mo-

mentum from the star. The prominence heights are given as 2.96R?, 1.36R? and 1.01R?.

They were later observed again, in July of 2002[36]. Dunstone et al. observed the star

for three nights and collected data on 12 prominences, some of which reocurred over multi-

ple nights. The authors quote this as 25 prominences in total (many of which are “double

counts” as they reappear on consecutive nights). The prominences were observed between

the radii of 1.4 and 3.6 stellar radii above the surface. The authors plotted this prominence

data as a histogram, giving prominence distribution with height, and found a peak around

3R?. This is beyond the co-rotation radius for this star which the authors give as about

1.8-2R?.

The authors reported that prominences were found in the same phases 5 nights after initial

Figure 1.5: Histogram of the distribution of prominence locations on Speedy Mic in 2002,
taken from Dunstone et al. 2006 [36].

observations. In other words, the prominence structures were stable over 5 nights, which is

13 stellar rotations. The individual prominences do not last for this length of time, but the

structures that support them do, suggesting that prominences can be disrupted and reform

in the same location.

1The name used throughout this thesis.
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In a follow-up paper [37], Dunstone et al. compared two observations taken weeks

apart so that the evolution of prominences in the system could be understood. The largest

prominences in the system were observed at similar phases between the two observing runs,

suggesting that the lifetime of the prominence-bearing structures was at least 2-3 weeks.

Masses for the largest prominences were estimated at 0.5 − 2.3 × 1014kg, or on the order

of 1017g. The prominences were seen not only as absorption features but also as features

in emission once close enough to the stellar disc to scatter photons in the direction of the

observer.

1.3.3 V374 Peg and the Kepler M-dwarfs

Slingshot prominences have also been seen on M dwarfs, for example the ultra fast rotator

V374 Peg and a set of M dwarfs in Upper Sco.

A paper by Vida et al. [38] presented observations of a CME ejection on the star

V374 Peg. A dynamic spectrum is shown in Figure 1.6. They estimated the ejected CME

material to have a mass of around 1016g, which is comparable to large solar CMEs. The

authors state that the rotational broadening for V374 Peg is insufficient to be able to detect

transient absorption features that are characteristic of slingshot prominences. Despite this,

prominence signatures can be seen in the spectra. In the published dynamic spectra, the

colour table is reversed from the standard presentation, so that darker colours represent

bright features in emission and light colours represent strong absorption features. This

makes it somewhat harder to read the spectra if one is looking for prominence signatures.

Figure 1.6 (a) and (c) show examples of the published spectra. Figures 1.6 (b) and (d)

show the same plot in black and white and with an inverted colour table. With the plots in

this format, absorption features transiting the stellar disc (prominences) can be more easily

identified. They have also been highlighted by the red brackets.

V374 Peg is a useful star in that it has a stable magnetic topology. Its magnetic field is,

globally, quite constant over a period of many years (Vida et al. [38] show it to have been

stable over a 16-year period). Donati et al. [39] showed that V374 Peg has a dipolar field

structure and that it rotates as a solid body. This solid-body rotation is at least in part

responsible for the stability of the magnetic field since differential rotation on stars is an
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Figure 1.6: (a) A dynamic spectrum of V374 Peg as published by Vida et al. 2016 [38].
The CME ejection can be seen at large velocities and is highlighted in the image by the
black arrows. (b) The same but in black and white and with an inverted colour table. (c)
Another dynamic spectrum from Vida et al. [38] and (d) the black and white, colour table
inverted spectrum. Red brackets highlight prominence absorption features.

important mechanism for twisting and disrupting the magnetic field.

Later, Stauffer et al. [40] found 19 M-dwarfs exhibiting prominence-like behaviour from

K2 data. By observing the light curve data, variations in flux that repeated at the same

phase on each rotation were attributed to cloud condensations trapped in co-rotation. This

provides evidence that these features could be common across low-mass stars. The authors

found that the dips in the light curves sometimes change shape and that these changes to

the light curves happen over the period of one day and after a strong flare. The authors

attribute these dips to slingshot prominences. Alongside these 19 stars, the authors also

report a set of more slowly rotating stars with slightly different behaviour. Dips in the light

curves were also seen on these stars, however, the dips were typically asymmetric and highly

17



variable. The authors attribute these to clouds associated with a recent collisional event or

related to a closely orbiting planet.

Stauffer et al. classify their light curves into three groups: “scallop shells”, “persistent

flux dips” and “transient narrow dips”. Scallop-shelled dips are those that appear to be very

modulated and the authors report these light curves to be typically very stable. Persistent

flux dips are those which are triangular in shape, narrow, and typically have longer periods

than scalloped-shaped dips. Both of these may be associated with prominences. The tran-

sient narrow dips are described as triangular and narrow but very variable in depth. These

dips generally have longer periods than the other dip classes. Figure 1.7 shows examples of

each of the flux dip classifications.

Figure 1.7: Example light curves, adapted from Stauffer et al. [40], showing the different
light dip classes.

1.3.4 Other cases

Table 1.2 provides a list of stars and references of other prominence observations. Promi-

nences on these stars have been less well observed, often only once.

In the vast majority of observations, prominences are observed on these stars as absorption

features in the Hα profile, as on the star AB Dor. In the cases of LQ Lup and AP149 the

prominence material was observed in emission as clumps of material around the co-rotation

radius. The material is seen in emission in these cases due to the very low stellar incli-

nations. This low inclination means that the prominence material will be very unlikely to

transit the stellar disc, but the material may be visible in the wings of the line in emission.

This can happen if the material scatters enough light towards the observer such that this

light is not washed out by the starlight from the disc. It is worth noting here that whilst
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Star References Reference in this work
PZ Tel Leitzinger 2016, Barnes 2000 [41, 42]
HK Aqr Leitzinger 2016, van den Oord 1998,

Byrne 1996, Doyle 1990 [41, 43–45]
HE373 Kolbin 2017, Cameron 1992 [46, 47]
HE520 Cameron 1992 [47]
HE622 Cameron 1992 [47]
HE699 Cameron 1992 [47]
AP225 Kolbin 2017 [46]

EY Dra/REJ1816+541 Eibe 1998 [48, 49]
RY Tau Petrov 1990 [50]
TWA6 Skelly 2008 [51]
TWA17 Skelly 2009 [52]
LQ Lup Donati 2000 [53]

V830 Per/RX J1508.6-4423 Donati et al. 2000 [53]
AP149 Barnes 2001 [54]

Upper Sco Stauffer 2017 [40]
V530 Per Cang 2020 [55]

Table 1.2: Table of single star systems in which potential signs of prominences have been
observed.

the prominence material does scatter light in the direction of the observer, it scatters the

light isotropically and not preferentially towards us.

Also of interest here is the selection of stars themselves. Within this list there are young

G, K and M-dwarfs, suggesting that prominences could be common in young stars across a

range of stellar masses.

1.3.5 Prominence ejections

As pointed out by Hussain et al.[56], AB Dor has been very intensely monitored over the

years with spectroscopic time-series. Even in this case, only a handful of ejection events

have been found[25, 57]. Ejection events typically last around 20 minutes[58] and observing

runs last typically for three nights every year or two. Therefore, even with a star as well

observed as AB Dor, observing these events is unlikely. In order to collect more data on

this, a star would have to be nearly constantly observed. Due to this, there is not enough

data to comment in depth on the ejections of such features but it is expected that due to

their size, these events could be significant to the stellar system[59, 60].
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1.3.6 Line asymmetries observed

Coronal mass ejections (CMEs) are regularly observed on the Sun (up to 6 times a day)

and have velocities of about 250-500 km/s [61]. CMEs can be associated with eruptive

prominences, with the prominence material, previously supported above an active region,

being ejected after magnetic reconnection leading to a CME event. On other stars, similar

events can be seen as asymmetries in line profiles and these could also be associated with

stellar prominences. Since material is being ejected from the star, there is an associated

Doppler shift that results in a blue-shifted component to the light, creating a blue-shifted

wing to the line profile. The line profile is asymmetric since material is being ejected (and

blue shifted) but there is not an equal amount of material falling back to the star (which

would be red-shifted). Such line asymmetries have been observed on various stars, with the

fastest observed event on an M dwarf being one on AD Leo, reported by Houdebine et al.

[62], which had a maximum velocity of 5800km/s, over ten times the speed of those on the

Sun. In a previous study of V374 Peg (see section 1.3.3) Vida et al. report a CME with

a velocity of 675km/s, greater than the stellar escape speed [38]. In a large-scale study by

Vida, Leitzinger et al. [63] studying over 5500 spectra, 478 were found to have line asymme-

tries that correspond to 25 stars. On these stars, events resulting in asymmetries occurred

between 1.2-19.6 times a day. The authors report that the typical masses of these events

would be 1015g to 1018g, however, they also note that the velocities of these events are

typically lower than the stellar escape speed. Thus, these features do not represent much of

the mass loss from the star. It is important to note, however, that the velocities reported by

Vida et al. [63] are projected velocities. The true velocities may be far higher, depending

on the projection effects and this could mean that far more material is ejected from the star

than is suggested here.

A paper by Fuhrmeister et al. [64], searching for exoplanets around M dwarfs, studied

473 spectra of 28 active M dwarfs. In studying broadening and asymmetries in the Hα line,

they found 41 flares and 67 broadened lines. Of those broadened lines, some were symmet-

ric, and others had asymmetric wings. Both red and blue asymmetries were reported. The

authors note that some of these events were associated with flaring, but that most were not.

They ascribe the red asymmetries to be due to coronal rain or chromospheric condensations,

whilst the blue asymmetries are caused by rising material. The authors suggest that the
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blue shifts are connected to the up-flow of material at the flaring onset. They detect red

asymmetries more often than blue, and symmetric broadening least frequently.

If slingshot prominences are destabilised, the material may be visible as line shifts [65, 66].

Because these prominences are supported beyond the co-rotation radius, their destabilisation

would result in ejection from the star. Prominences like those on the Sun, however, which lie

close to the star and below the co-rotation radius, would likely fall back to the stellar surface

but may also be ejected depending on their velocity relative to the escape velocity. It would

be impossible to tell the difference between these two situations from line asymmetries alone.

1.4 Zeeman Doppler Imaging (ZDI)

Zeeman Doppler Imaging (ZDI) is the technique used to measure the magnetic fields of

stars. It uses both the Zeeman and Doppler effects to infer the stellar magnetic field from

the light received by observers at Earth.

The Zeeman effect is the name for the phenomenon where a spectral line is split into multiple

lines, under the influence of a magnetic field. Discovery of the phenomenon is credited to

Pieter Zeeman, who published a paper on it in 1897 [67]. The presence of a magnetic field

alters the atomic energy levels and therefore the transitions between them, which make up

the emission and absorption spectra. This splits a single spectral line into multiple spectral

lines. The change in energy, and therefore change in wavelength of light is linearly dependent

on the magnetic field strength (∆λ ∝ |B|). Thus, the strength of the local magnetic field

can be deduced. The direction of the magnetic field can be deduced from the polarisation

of the light. This allows for a magnetic map to be generated of the stellar surface.

The Doppler effect is the phenomenon in which waves experience a shift in frequency

due to the motion of the emitting object. For rapidly rotating stars, this phenomenon can

be seen in the emitted light spectrum as rotational broadening. As the star rotates, the

side of the disc rotating away from observer appears red shifted, whilst the side of the disc

rotating towards the observer appears blue shifted. This Doppler shift occurs all across the

stellar disc. Stars with faster rotations will have greater broadening effects, and therefore

greater spatial resolution across the stellar disc.
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ZDI, combines the Zeeman effect (splitting of spectral lines) with the Doppler effect

(rotational broadening). The broadening of the line profiles makes it easier to find the fine

structure of Zeeman splitting. However, this broadening of the line profile also results in

it becoming shallower, and for very rapid rotators this can be a problem since determining

any fine structure within this shallow profile is more difficult. ZDI as a method of inferring

stellar magnetic field structures is discussed more in subsection 1.7.1.

1.5 Stellar coronae

The extent of stellar coronae is still unknown. Stellar prominences are observed multiple

stellar radii above the surface of the star and this could be taken as evidence that the coronal

magnetic field is closed up to this point. However, it could instead be the case that whilst

the local magnetic field (confining the prominence) is closed, globally the coronal field is

open at these heights. There is evidence that the coronae of these rapidly rotating stars

are quite compact. By considering both the surface magnetic field and the coronal X-ray

emission, multiple studies have suggested this [68–71].

Despite the compact corona, some magnetic field is likely to be closed at large distances

from the star. Radio emission from the stars AB Doradus and V773 Tau A may be the

result of large-scale magnetic structures such as helmet streamers, which is evidence for

some closed field at great distances above the surface [72, 73]. Radio emission producing

two lobes at large distances from the surface of the star (9 stellar radii) has also been found

on the extremely low-mass stellar object LSR J1835+3259 [74]. This object straddles the

boundary between low-mass star and brown dwarf and rotates with a period of 2.8 hours

[75]. The stellar object is viewed equator-on, providing a good view of the material around

the star. The lobes are stable over a period of a year and suggest a stable magnetic dipole

around the star, in which the radio emitting material is trapped. This suggests that such

field structures and radio emission could be common across low-mass stars.
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1.6 Previous modelling

1.6.1 Closed field, Cartesian model - Jardine and Collier Cameron

1991.

Figure 1.8: Cartoon of the magnetic field structure in this model, specifically for a dipole
field (k = 1).

Jardine and Collier Cameron published a model in 1991 to explain the presence of

these condensations at such large distances from the stellar rotation axis[76]. The two-

dimensional, Cartesian model for prominence formation within the equatorial plane, shows

that prominence formation can occur at large heights due to the rapid rotation of these stars.

Whilst the model is discussed here, the detailed mathematics is shown in Chapter 2,

where the model is developed.

The model assumes an isothermal atmosphere, which allows for the determination of

the equation of state. The fluid equation for conservation of momentum is solved along the

magnetic field line to yield the pressure variation within the corona:

p(r) = p0 exp
( m

KBT

∫ R

R∗

g(r)dr
)

(1.7)

where p0 is the pressure at the base of the loop, g is the combined gravitational and centrifu-

gal force and R∗ is the stellar radius. The results of their calculation are shown in Figure 1.9.

The prominence bearing loop is modelled as a cooled field line, embedded within a hotter
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Figure 1.9: Pressure variation with height from the stellar surface for (a) gravitational force
that is independent of height3(b) a solar like star where the effects of rotation rate is small
and (c) a rapidly rotating star. Plot from Jardine and Collier Cameron [76].

background magnetic field. The model does not attempt to describe how the loop cools,

only that it starts with a temperature significantly cooler than the background (or external)

field. The background field is set, as in Figure 1.8, and the cooled field line adjusts shape

from this, according to the added mass that it supports when cooled. The background

quantities, for example, the magnetic field, as denoted in the equations with a subscript “e”

(external), and the cooled field with subscript “i” (internal).

The shape of the loop, X(y), is found by solving the conservation of momentum equation

perpendicular to the magnetic field:

X ′(1 + (X ′)2)
∂B2

i

∂y
= −2X ′′B2

i . (1.8)

This can be solved analytically to give

X(y) = ±
∫ H

y

( Bi(H)2

B2
i (y)−B2

i (H)

)1/2

dy (1.9)

where H is the summit height. This places the constraints on the field that B2
i > 0 and
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∂B2
i /∂y < 0. Combining this second constraint with hydrostatic equilibrium leaves

∂B2
e

∂y
< 2µ(ρe − ρi)g. (1.10)

In a Cartesian geometry, the multipolar expansions of a stellar magnetic field can be

defined as:

Be = (B0 cos(kx)e−kȳ,−B0 sin(kx)e−kȳ) = (Bex,Bey) (1.11)

where B0 defines the surface magnetic field strength, k defines the complexity of the mag-

netic field (for example k=1 is a dipole, k=2 is a quadrupole etc) and ȳ defines the height

above the stellar surface, scaled to units of stellar radius. A cartoon of the field structure is

shown in Figure 1.8. Setting Bex = 0, the x-coordinate of the loop footpoints can be found.

From this it can easily be seen that x = π/2k represents the first loop foot-point.

Figure 1.10: Loop summit height (H) variation with loop width (W ), for loops that are
under-pressured (dashed), over-pressured (dotted) and for the external field (thick). k is
a constant that defines the complexity of the field. Plot taken from Jardine and Collier
Cameron [76].

With everything defined, Jardine and Collier Cameron were able to solve for the shape of

the “internal” or cool loops in equilibrium. The authors found a range of equilibria available

for loops at various temperatures which is shown in Figure 1.10[76]. To form a prominence,

3This is a model often used for solar prominences as they typically form over a range of heights where g
is almost constant.
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the loops must be over-pressured. These cool solutions trace a path of equilibria at a range

of heights above the stellar surface, including above the co-rotation radius4 where the pres-

sure within these loops will begin to increase with height.

The model is able to explain some important physics of these features. It can explain

their formation at large radii from the rotation axis, however, it does assume that the field

is closed up to this point. In order to form a prominence in this model, the coronal magnetic

field must be closed. X-ray data does not support this assumption and instead suggests that

the field could become open at low heights above the stellar surface[58]. This model was

later built upon in 2005 by Jardine and van Ballegooijen, where the idea of an open field

was incorporated. The model also has limitations in that it assumes a 2D and Cartesian

geometry; ideally, a model would be three dimensional and in a spherical geometry.

1.6.2 Open field, Cartesian model - Jardine and Ballegooijen 2005.

In 2005, Jardine and Ballegooijen developed the model further[77], choosing a magnetic field

configuration that included a “source surface”. A “source surface” is the radius from a star

at which the magnetic field becomes open. It was introduced by Altschuler and Newkirk[78]

to explain the fact that during a solar eclipse the stellar magnetic field could be seen to be

open at infinity. The presence of a source surface can be seen in Figure 1.11 in panel (b).

The field becomes open beyond a certain radius, defined by the authors in this model by ys.

The authors assume the “thin loop approximation”[79] in their model, such that gas

pressure and density do not vary over the width of the flux tube, and also assume that the

stellar atmosphere is isothermal.

The method for calculating the loop shapes is the same as for the previous model, starting

with the conservation of momentum, and solving parallel and perpendicular to the field. In

this model, however, the authors chose an external magnetic field structure as defined below;

Bex + iBey = B0

√
e2ikz + e−2kys (1.12)

where z = x+ iy and B0 = B0(x = 0, y = 0) = 1 + e−2kys and is the magnetic field strength

41.7R? in Figure 1.10, where heights are measured from the stellar surface.
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Figure 1.11: Diagram adapted from Jardine and Ballegooijen[77], showing (a) the formation
of magnetic loops that can then support prominences out in the open field. Starting with
a helmet streamer and the open field that surrounds it at t = t0, the field evolves and
reconnects, finishing at a closed pointy loop at t = t3. (b) shows the source surface (ys) and
coordinate system.

at the stellar surface. k again defines the complexity of the field, i.e. k = 1 is the dipole

configuration. Here B2
e = e−2ky−e−2kys enforcing that the field strength drops to zero once

y = ys, before rising again to a constant B2
e = e−2kys at large values of y.

The authors solve for the shape of the loop with the same method as in the closed field

model, an example of which is shown in Figure 1.12. A selection of the corresponding loop

height-loop width plots are then shown in Figure 1.13. The same behaviour is found as in

the previous model, with a range of possible equilibria existing for a loop of a particular

temperature. Also, a loop of a given height has a range of equilibria available at various

temperatures, each with a different loop width.

The authors find possible equilibria not just within the closed field region but also out

within the open field. This is more realistic than the closed field model, allowing for promi-

nence existence at multiple radii out from the rotation axis without the requirement for the

coronal field to still be closed. For a source surface above the co-rotation radius, the left

hand panel of Figure 1.13, many solutions are found at various heights, with whole families

of equilibria being possible solutions. With the source surface placed below the co-rotation

radius, as in the right hand panel of Figure 1.13, fewer solutions are found. Not all equilibria

within a family are possible solutions, meaning that a loop could struggle to find a nearby
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Figure 1.12: Example cool field lines; Ti = 5 × 106K (solid), Ti = 2 × 105K (dashed) and
Ti = 2 × 104K (dotted). The external temperature is set to Te = 2 × 107K and the source
surface ys = 1R?. Plot taken from Jardine and Ballegooijen’s 2005 paper[77].

equilibrium to move into if more material were added to the loop.

This model is still restricted to Cartesian coordinates, however, and extension of this

model to a geometry that better fits the geometry of the system might remove the unphysical

behaviour seen here, namely that the loop width can be seen to extend to infinity in Figure

1.13, i.e. extends well beyond the edge of the star.

Figure 1.13: Plots taken from Jardine and Ballegooijens’ 2005 paper[77]. Loop height vs
loop width for loops of temperature Ti = 2.5 × 107K (dot-dot-dot-dash); Ti = 9.1 × 106K
(dot); Ti = 8.7 × 106K (dot-dash); Ti = 8.3 × 106K (long dash); Ti = 7.1 × 106K (short
dash) and Ti = 4.2 × 106K (solid). The external temperature is again Te = 2 × 107K and
an external plasma beta of 10−2. These height-width plots are for ys = 3R? and ys = 1R?.
The authors chose to plot this for k = 3, i.e. an octupolar field geometry.
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1.6.3 Modelling prominences as stable points - Ferreira 2000

Whilst the previous two models solved for the equilibrium loop shapes of prominence bear-

ing magnetic field lines, they do not determine if these equilibria would be stable. Ferreira’s

model specifically calculates the stable equilibrium points within a magnetic field [80]. How-

ever, this model assumes the coronal gas to be massless, because the magnetic field does

not adjust its shape in order to account for the additional mass that would be supplied to

the field line once it was cooled.

The model assumes that the prominence lifetime is greater than other relevant timescales

so that the system is in static equilibrium.

Ferreira published work showing the stable points in a pure dipole and pure quadrupole

field. They showed that for a point to be a stable equilibrium point, it must satisfy the

conditions that

ge.B = 0 (1.13)

and

(B.∇)(ge.B) < 0, (1.14)

where ge is the effective gravity: the combined gravitational and centrifugal forces. The

first condition is that the location is an equilibrium point, however, in order for this point

to be stable it must satisfy the second condition. This second condition requires that as

we move along the field line, in the direction of the magnetic field, the quantity (ge.B) is

always decreasing. Therefore, material collecting at the equilibrium point will remain there

and thus be stable.

For a pure dipole, aligned with the rotation axis, this simplifies to

r >

(
2

3
Rk

)1/3

≈ 0.87Rk (1.15)

This work provided an expression for the equilibrium points in a dipolar field, and

established which were stable and which were unstable. With the dipole field structure,

solutions for stable equilibria can be found below the co-rotation radius (Rk) as well as

beyond it. This is shown in Figure 1.14. However, a pure dipole field will only produce stable

points within the equatorial plane and not at higher latitudes, although some prominences

have been observed at higher latitudes.
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Figure 1.14: Plot from Ferreira 2000 [80], showing a dipolar field (top) and sextupole field
(bottom). The field lines are shown by a solid line, the stable points by the thick lines,
and the unstable equilibrium points are shown by the dotted lines. The dashed lines are
equipotentials.

In order to support higher latitude prominences, a higher order field can be used, for

example, a quadrupole (Figure 1.15).

1.6.4 Modelling stable points in an arbitrary field - Jardine et al.

2001

Jardine et al. [81] developed Ferreria’s model to a generalised magnetic field. The authors

used Zeeman Doppler Imaging (ZDI) maps of AB Dor acquired in 1995, and assumed a po-

tential magnetic field in order to construct the coronal field. They then calculated the stable

points within this field structure. The authors report that the stable point locations, shown

in Figure 1.16 by the grey plane, are determined by the large scale magnetic field for which

field lines have been drawn. Stable points are found both above and below co-rotation, and

the outer extent of the solutions is determined by the location of the “source surface” where
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Figure 1.15: Plot from Ferreira 2000 [80], showing a quadrupolar field, the same lines are
used as above.

the field becomes open. The model is unable to find solutions within the open field, since it

requires closed magnetic field lines, and the field does not adjust when mass is added to a

field line (as the model by Jardine and van Ballegooijen did [77]).

The authors also showed that the solutions from Ferreira’s model for a dipole could not

Figure 1.16: Plot from Jardine et al. 2001 [81], showing the locations of the stable points,
as grey surfaces, around AB Dor for the year 1995. The left plots show the field lines above
co-rotation and right hand plots below. The top plots show the view from longitude 180◦

and bottom plots from 0◦.

explain the observations from stars such as AB Dor or PZ Tel, since with their stellar incli-

nations the stable points within a dipole field would never transit the stellar disc. With a
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quadrupolar field, the stable points can form at higher latitudes and therefore some would

transit the disc and be visible as absorption features in the dynamic spectra. They also

find that stable points exist much closer to the stellar surface with the ZDI generated field

structure than they do with a pure dipole. However, the ZDI generated field is not perfect

since (a) very little of the southern hemisphere of the star can be seen and (b) ZDI does

not work well in regions of low surface brightness, which could be the places of strongest

field. The authors predict that, at the co-rotation radius of AB Doradus, the magnetic field

must be more complex than an aligned dipole because this would not allow for slingshot

prominences to transit the stellar disc, and yet they are observed.

1.6.5 Recent work in the field

Recently, Villarreal D’Angelo et al. published a paper categorising which low mass stars

could support prominences[82]. They did so by comparing the positions of the Alfvén and

co-rotation radii, a technique previously used on high mass stars [83]. The Alfvén radius

is defined as the radius at which the stellar wind velocity is equal to the Alfvén velocity

(uA = B/
√

4πρ), and is the radius beyond which the magnetic field cannot stay closed. This

is because the Alfvén radius is analogous to the sonic radius, in that information cannot

travel back along the field line and allow the field line to readjust shape. If the co-rotation

radius lies above the Alfvén radius, all closed magnetic field lines are within co-rotation

and so prominences that form will drain back to the stellar surface. The authors find that

the Sun, all other solar-type stars and hot Jupiter hosts lie within this regime. They refer

to these magnetospheres as “dynamical magnetospheres”, a term used for the classification

of high mass stars. For stars with the co-rotation radius below the Alfvén radius, closed

magnetic field lines now exist beyond the co-rotation radius and slingshot prominences can

now be supported. The authors refer to these as “centrifugal magnetospheres”, once again in

keeping with high mass stars. Young Suns and M-dwarfs are found to exist in both of these

parameter ranges. In both the high mass and low mass cases, the rapidly rotating stars are

those which have their co-rotation radius close enough to be inside the Alfvén radius, thus

these stars are the ones likely to support prominences by the centrifugal support method,

i.e. slingshot prominences.
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1.7 Motivation for this work

1.7.1 Uses of prominences

Predicting magnetic field strengths

Since prominences can only be supported in closed magnetic fields, the mass of a prominence

must be in part determined by the magnetic field strength of the loop. Thus the observation

of prominences could help to constrain the magnetic field strength at the prominence loca-

tion. Collier Cameron and Robinson in their original paper [1] estimated the field strengths

of the loops supporting the observed clouds by assuming the prominences to be supported in

a dipole field structure and the magnetic pressure to exceed the gas pressure. They assumed

the magnetic pressure to be greater than the gas pressure as they argued that the dynamics

of the fluid must be constrained by the magnetic field in order for the prominence to be

contained.

Predicting magnetic field structure

Since these cool condensations are confined within magnetic loops in the stellar corona, the

observed sites of these features trace out the coronal magnetic field at that particular point

in time. Hence, these features could be useful for building up a picture of the evolution of

the coronal field structure. The magnetic field strengths of stars are currently inferred using

Zeeman-Doppler Imaging (ZDI). The technique combines Zeeman splitting of energy levels

within the stellar atmosphere due to the stellar magnetic field, with the spread in photon

wavelength due to the Doppler effect experienced due to the stellar rotation. However, the

magnetic maps created by ZDI provide the magnetic field vectors at the stellar surface,

and there is no certain way to correctly extrapolate this into the stellar corona as various

forms of field can be assumed, such as potential or force-free. Models that construct the

coronal field from the ZDI maps also require an upper boundary condition to define the field

structure, which could be taken as the “source surface” - the radius at which the magnetic

field becomes open. Determining the location of the source surface for stars can be done

through stellar wind models [84], which can be used to determine the location at which the

magnetic field is forced open, or estimated from the stellar rotation rate [85]. Information

on prominence locations could also be a useful tool in providing greater insight into the

coronal field structure, since they require closed field structures at their locations in the
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corona.

As the magnetic field governs many processes within the star through the stellar dy-

namo, a correct picture of the magnetic field is vital to understand many aspects of the

stellar behaviour.

In 2020, Jardine and Collier Cameron [86] published a model using slingshot prominences

as tracers for the magnetic field structure. The model used ZDI observations of the surface

magnetic field of the star AB Doradus, and the authors constructed the coronal field using

different extrapolation methods: a potential field and a non-potential field5. The locations

of prominence formation in these field structures were found, and synthetic Hα spectra

were produced. These spectra were then compared to the observed Hα spectra for the

corresponding observation. By comparing the model to the observations, the authors found

that the potential field structure better reproduced the observed prominence trails. The

authors found that both the total prominence mass and proportion of this mass that would

be visible should vary with the inclination of the dipole axis. This would suggest that it

may be possible to predict the orientation of the dipole axis if the total prominence mass

on a star could be estimated from observations.

Figure 1.17 shows the magnetic field extrapolation with the prominence material shown

Figure 1.17: Plot from Jardine et al. 2020 [86], showing the constructed field and prominence
mass (red), and the dynamic spectrum (observed on the left and synthetic on the right).

in red. The Hα spectrum shown on the left hand side is the observed spectrum, and

the modelled spectrum is shown on the right. The model clearly reproduces the two dark

5Potential fields are those with the lowest energy state, whilst non-potential fields contain electrical
currents within the stellar corona.
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features of the prominences, but also shows some fainter, slower moving features that cannot

be picked out of the observations. Similar examples are given for other years, with the

synthetic spectra reproducing the observations well. A non-potential field did not provide

such a good match to the observations.

As wind gauges

Jardine and Collier Cameron [87] showed that prominences could be used as “wind gauges”

to probe the stellar wind. The winds of low mass stars are difficult to observe due to their

low densities. Whilst their mass loss is relatively low, due to their low densities, the angular

momentum that these winds remove can be significant [88–90]. This is due to the influence

of the magnetic field. This loss of angular momentum determines how the star will evolve,

determining the rate at which the star will spin down. The interplay between the stellar

rotation rate and the stellar magnetic field, through the stellar dynamo, also means that the

stellar wind influences the magnetic activity. Although it has been done, measuring these

winds directly is challenging.

Panagia and Felli [91] presented a method in which the thermal radio emission of the wind

is measured, as the wind expands with distance from the star. Whilst this produces predic-

tions for the density of the stellar wind, typically the method produces upper-limits to the

wind density since it usually produces non-detections [92–94]. Another method to produce

upper limits to the wind density was suggested by Wargelin and Drake [95]. When the

stellar wind, which is ionised, interacts with the neutral material in the interstellar medium,

the charge exchange produces an X-ray signature.

A successful technique by Wood [96] used observations of Lyman α absorption from the

edges of stellar astrospheres (or heliospheres) to calculate the wind mass loss rates. The

authors found a correlation between the X-ray flux, or stellar activity, and the mass loss rate

per unit surface area of the stellar wind. However, for the stars with the very largest X-ray

flux, i.e. very active stars, this correlation no longer appears to hold. These stars instead

show decreasing mass loss with increasing activity. The boundary between the two has been

dubbed the “wind dividing line” and is of great interest since the stellar wind has such an

important role in the evolution of these stars. It has also attracted attention for those with

an interest in exoplanets, since the stellar wind is an important factor in the retention (or

otherwise) of an exoplanetary atmosphere [97]. Despite this observation, theoretical models
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of stars on either side of this boundary have not shown a difference in field geometry [98, 99].

This suggests that there should be no change in the magnetic field or the wind that drives

it, at this boundary.

For stars with a white dwarf companion, their winds can be deduced by the degree of

pollution found in the photosphere of the white dwarf through the impact this has on the

spectrum of the white dwarf [100, 101]. The wind of the companion star strikes the white

dwarf and therefore contaminates the white dwarf’s surface. This material should quickly

settle below the surface of the star, and therefore the quantity of pollutants that are ob-

served can be used to place limits on the mass acretion rate onto the white dwarf. In other

words, the quantity of pollutants observed can place limits on the mass loss from the stellar

wind of the companion star. Multiple papers have been published on modelling stellar wind

mass loss rates based on the escaping atmosphere of an orbiting planet [102–104]. A stellar

wind can strip the atmosphere of a planet but the extent to which this occurs depends on

the strength of the stellar wind.

Most recently, the work of Jardine and Collier Cameron 2018 [87] suggested the use of

stellar prominences to deduce the wind mass loss rates. The particular advantage of their

method was that it was suitable for very active stars, that lie beyond the dividing line

where there are limited observations. The authors describe prominence formation as being

caused by an up-flow of material from the stellar surface which has been triggered by a

thermal instability at the summit of the loop. This up-flow begins in order to reestablish

pressure balance, since the thermal instability leads to a drop in summit gas pressure. This

is a thermal wind and therefore the same mechanism as the stellar wind itself, albeit at a

different temperature. This up-flow could be modelled by a Parker wind [90], increasing in

speed with distance from the surface until eventually reaching the speed of sound at the

sonic radius, Rs. In their model, the authors describe three regimes in which stars with

prominences could reside; hydrostatic, limit-cycle or open field. Stars forming prominences

in the hydrostatic regime would support prominences that are quasi-static. This occurs for

stars with the co-rotation radius below the sonic radius. Slingshot prominences, which form

on very active stars, form typically around the co-rotation radius. Therefore, in stars where

the co-rotation radius is below the sonic radius, the slingshot prominences could be quite

stable. The up-flow from the surface will occur until the loop has reestablished pressure bal-
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ance and then the up-flow will halt. Stars forming slingshot prominences in the limit-cycle

regime, i.e. with co-rotation radius above the sonic radius, will not support such stable

prominences. This is because the up-flow of material will continue beyond the maximum

mass that the field line could support. Unlike when the sonic radius is below the co-rotation

radius, here the up-flow is supersonic by the time it reaches the loop summit. This means

that information can not travel back downstream to cut off the up-flow when pressure bal-

ance has been reestablished. This results in prominence formation, followed by ejection once

the maximum mass is reached. Once the field line reconnects after this ejection, another

prominence will form in its place and the cycle continue, hence, the name “limit-cycling”.

The third option is that a star forms prominences beyond the Alfven radius. In this case,

the wind speed is greater than the Alfven speed at the loop summit. This means that the

magnetic field can not remain closed and little material would be able to condense into a

prominence. Therefore, stars can be categorised as:

Rk < Rs < RA - hydrostatic regime

Rs < Rk < RA - limit-cycle regime

Rs < RA < Rk - open field regime

For stars that lie in this limit-cycle regime, the prominences could be used as wind

gauges. They trap material driven by a thermally driven up-flow (the same mechanism as

the stellar wind) and gather large quantities of mass that can be visible in the Hα spectrum.

In this paper, the authors use observed values of prominence masses (mp) and lifetimes (tp)

to estimate the mass loss rate associated with the prominences (ṁp), and therefore the wind.

ṁp =
mp

tp
(1.16)

In practice, however, there are a limited number of observations of these prominences that

provide mass estimates. Either, more observations of prominences with derived masses, or,

theoretical models of prominences around such stars, would solve this problem.

The mass loss rate of the wind (Ṁ?) can be estimated from the mass loss rate of a

prominence on these stars by

Ṁ? = 4πR2
?

ṁp

2A0
(1.17)
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where A0 is the area of a prominence loop footpoint. This equation assumes that the up-flow

supplies the prominence from both footpoints. For observational estimations, this area can

be calculated from flux conservation, assuming that the extent of the prominence is known.

Figure 1.18 shows a plot from Wood et al. [105] of mass loss rate per unit surface area

Figure 1.18: Plot from Wood et al. [105], showing the prominence mass loss alongside the
wind values.

against X-ray flux. The data come from various different methods of measuring the stellar

wind over a range of star types: the prominence method (pink), the exoplanetary atmo-

sphere method and the astrosphere method. The plot shows a large degree of scatter. The

prominence bearing stars follow the same trend as the less active stars and do not appear

to show evidence of the wind dividing line.

Insight into the “young Sun”

The Sun, in its youth, would have been one of these rapidly rotating, low-mass stars. Whilst

the Sun is the star that is the most well observed by humans, we have been observing it for

an insignificant length of time in comparison to its age. In order to gather an understanding

of the Sun’s early evolution, we rely on observations of young solar-like stars.

Prominences on the Sun today are very different to the slingshot prominences observed on
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young solar-like stars such as AB Doradus. Since these prominences have been found on

many similar stars, it suggests that they could be a common feature at this point in a star’s

evolution. This would suggest that these prominences once existed on our Sun too. The

consequences of such prominences are discussed in depth in the following section, and here

they are just touched upon. The ejection of prominences could remove considerable angular

momentum from the young star, influencing its spin-down rate. They could also impact

orbiting planets when ejected. These raise questions about how our Solar System as we

know it evolved.

1.7.2 Consequences of prominences

Habitability of exoplanets

These features, if eruptive, could play an important role in the development of any nearby

planets and their ability to harbour life. Having an orbital radius in the “Goldilocks zone”

or “habitable zone”, the range of radii around a star where an orbiting planet can sustain

liquid water on its surface, is often quoted as the requirement for a planet to harbour life.

In reality, this is only one of the considerations in finding a possible host planet for life[106–

109]. Other factors which should be considered include, but are not limited to: the spectral

type of the star, the radius of the planet and its composition, the geological activity of the

planet, and the activity of the star. Ejections of stellar prominences, and the character of

these features, are intrinsically linked to this final point.

Prominences, if ejected into the orbit of the planet, could cause disruption to the planet’s

magnetosphere. The planetary magnetosphere can be compressed, on the side of the planet

closest to the star, whilst the magnetosphere on the opposite side will be elongated[110], as

shown in Figure 1.19. This distortion of the magnetic field6 can lead to magnetic reconnec-

tion, which will release a large amount of energy and cause electrons to be channeled along

the planet’s magnetic field towards the poles. On Earth, this can lead to disruptions of com-

munications, satellite damage, and damage to electrical transmission equipment, leading to

power cuts[111–113].

“CME atmospheric erosion” is another possibility for exoplanets in orbit around their

6often referred to as a “Geomagnetic storm”[110]
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Figure 1.19: Distortion of the planetary magnetic field due to the outflow of stellar material.

host star. A CME (coronal mass ejection) is the release of stellar plasma and magnetic

field and is often associated with stellar flares or prominences[114–118]. On the Sun, CMEs

typically occur anywhere from 1 - 6 times a day, depending on where the Sun is in the solar

cycle[118]. The solar energetic particles (SEPs) that are accelerated in the shock ahead of

the CME after its ejection can cause substantial damage to a planetary atmosphere. If the

atmosphere of the planet was severely stripped away, the surface of the planet would be

subjected to large quantities of stellar radiation that would otherwise have been absorbed

by the planetary atmosphere.

High energy radiation from host stars can be absorbed in the atmosphere of the exo-

planet, causing it to heat and expand. This expansion could be extreme, causing the kinetic

energy for the majority of atmospheric constituents to overcome the gravitational binding

energy and escape the planet in the form of a planetary wind similar to that of a Parker

wind[119–122]. This is likely detrimental to life development.

The likelihood of an impact of a CME with an orbiting planet depends on many fac-

tors. The number of prominences held in co-rotation at a given time, and their frequency of

ejection, are clearly important. AB Dor. is thought to typically have around 6 prominences

in orbit at once[1, 31, 33], with evidence of the ejection rate being every day or two. The

proximity of the exoplanet to the star also contributes to the likelihood of impact; planets

closer in to their host star will experience more, or higher intensity, impacts than plan-

ets further out, as shown in Figure 1.20. If the CME remains undiluted as it propagates

through space, being closer to the host star will result in more of the orbit being in the
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“danger zone” than being further out. If, however, the CME maintains the same angular

size as it propagates through space, whilst the planetary distance from the star does not

affect the proportion of the orbit in the danger zone, the CME will experience geometric

dilution and thus the quantity of radiation that impacts the planet will decrease. The proba-

bility of impact of a CME with an orbiting planet was discussed by Khodachenko et al.[123].

Figure 1.20: Planets (blue) orbiting a star, with ejection of prominence material (red) and
prominence ejection including geometric dilution (orange).

Depending on the spectral type of the host star, the position of the habitable zone may

be rather different due to the stellar luminosity. The surface temperature of the planet is

related to the stellar luminosity since the radiation flux from the star provides energy to

heat the planet. Assuming the planet has a set efficiency to radiate away energy as heat,

the luminosity of the host star thus determines the radius at which liquid water could be

present on the planet’s surface. In the case of M-dwarfs, the habitable zone is very close

to the star, which places the planet at a radius where it is much more likely to suffer an

impact from an ejection.

Observationally, these prominences on young, rapid rotators have been found to be of

considerable size, up to 20% of the stellar surface area could be occulted by them. Clearly,

the larger the cloud that is ejected the more likely it is to be ejected into the path of the

orbiting planet, therefore stars that host larger prominences could be poor targets in the

search for life.
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The more active a star is, the stronger is its magnetic field[124]. This could allow for

larger prominences to be supported on active stars than on less active stars. Stars with

more complex magnetic field structures could also have more condensations in co-rotation

at a given time.

Stellar evolution

The evolution of a low mass star is heavily influenced by its wind [88, 125]. The winds of low

mass stars are thermally driven and although typically low in mass, can remove considerable

angular momentum. This is due to the influence of the magnetic field. The out-flowing gas

is constrained by the magnetic field of the star. As the star rotates, a torque is exerted

on the gas by the magnetic field, as it tries to enforce co-rotation. This results in angular

momentum being lost from the star.

The loss of angular momentum causes the star to spin down as it ages, and this influences

its activity through its magnetic field. The magnetic dynamo is the process by which a star

regenerates its magnetic field, and is driven by the rotation of the star itself. In this feedback

loop, the rotation rate drives the dynamo which generates magnetic field and determines

the stellar wind, which removes angular momentum and causes the star to spin-down.

However, the models of stellar evolution often struggle to replicate the observed spin-down

rates. In order for models to match the observations, a scaling factor is included that arti-

ficially increases the angular momentum loss or spins down the star. This ensures that the

spin down rates of stars converges to the observed values [85]. Slingshot prominences could

be a mechanism for angular momentum loss at early stages of the stars life.

The evolution of slingshot prominences on a solar like star was studied by Villarreal

D’Angelo et al. in 2019 [126].The authors reason that whilst the Sun does not host slingshot

prominences now, it did earlier in its evolution. They determined the period of the Sun’s

life for which slingshot prominences could have been supported, and find this could range

from around 103Myrs to never, depending on its initial rotation rate (Figure 1.21).

A rotational evolution code was used to generate the relations between stellar rotation

rate and age for fast (90th percentile), medium (50th) and slow (10th) stars. These rota-

tional evolution models require a moment of inertia for the star and a spin-down torque.
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Figure 1.21: Plot taken from D’Angelo et al. 2019 [126], showing the rotation rate from
their model for a fast (blue), medium (green) and slow (red) rotator, and stars on which
prominences have been observed and the age is known.

This spin down torque is often taken to be the torque caused by the stellar wind, as was the

case here, and there is no feedback mechanism by which these prominences can contribute

to the spin-down rate. The authors showed that for around half of solar mass stars, they

will support slingshot prominences into their main sequence, assuming their initial rotation

rate was greater than 4.6Ω�. For fast rotating stars, the age to which slingshot prominences

could be supported was predicted to be about 800Myrs, with the prominences being most

massive as the star reaches ZAMS at around 40Myrs.

The plot shows a few of the stars around which slingshot prominences have been observed,

on this rotational evolution plot. All four of the stars are rapid rotators, between the 50th

and 90th percentiles. The dashed line shows the age at which the stellar co-rotation ra-

dius equals the Alfven radius, and thus slingshot prominences could no longer form. They

calculate this to be at 4.6Ω�. The authors predict the prominence mass (mp), mass loss

rate (ṁp) and lifetime (τp) for both a medium and fast rotator, and compare these to the

observations, the plot is shown in Figure 1.22.

Solar like stars are shown by circles and the M-dwarfs are included as squares.

The model predicted prominence masses could range from around 1016 to 1018g, and the

observations lie within this range for all stars except LQ Lup, for which the observed masses

are considerably larger. The authors also predict prominence lifetimes of between 1 and 14

days, which is also consistent with observations.
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Figure 1.22: Plot taken from D’Angelo et al. 2019 [126], showing the prominence mass,
mass loss rate and lifetime for a solar-like star’s evolution.

1.8 This work

This thesis compiles work focused on modelling the locations of these prominences around

low mass stars. Using various techniques, the locations around such stars in which promi-

nences could be supported are found. The properties of these prominences are estimated

(e.g. mass) and the consequences of the ejection of this material on the star and orbiting

planets are investigated.
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Chapter 2

Prominence modelling within

the equatorial plane
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2.1 Introduction and background theory

This chapter is based on work published in Waugh et al. 2019[127].

This chapter investigates the mechanical equilibria available to magnetic loops in the

coronae of rapidly rotating young stars. This model is 2-dimensional, within the equato-

rial plane of the star. These mechanical equilibria are found by instantaneously cooling a

magnetic field line and solving for the new loop shape, assuming a hydrostatic, isothermal

corona and the thin flux tube approximation. Cooled loops in mechanical equilibria are able

to magnetically support dense regions of gas in the form of slingshot prominences. Three

coronal (background) magnetic field structures are investigated; a dipole, a quadrupole and

a dipole that becomes open field beyond a set radius. Equilibria are found in all three cases,

with solutions being found in the open field (within the stellar wind) in the latter case.

Equilibrium solutions can be found at all heights above the stellar surface for the closed

field structures, but a gap in the distribution with height of solutions is found for a field

structure that contains a source surface. In the case where the external field contains a

source surface, the effect of moving the location of this surface is investigated with respect

to the heights at which solutions may be found. Histograms are produced of the heights at

which prominences may be formed and then compared to observations for two well-observed

stars; AB Doradus and Speedy Mic. The model best reproduces the observed data when

the source surface is placed above the co-rotation radius.

2.1.1 Previous models

This model aims to expand the model by Jardine and van Ballegooijen [77] into polar

coordinates. Their model, discussed in the introduction, modelled the mechanical equilibria

for cooled loops. These loops were set in a background field that was dipolar, but with

a source surface (i.e. becoming open field at a set radius). The model used Cartesian

coordinates, since the surface of the star was assumed to be flat. On a local level this is of

course true, however, globally the surface of a star would be best represented as spherical

(or circular in 2 dimensions). In this section, the model by Jardine and Van Ballegooijen is

developed in polar coordinates, still within the equatorial plane of the star, such that the

stellar surface is circular. The same overall behaviour is found here as in their model.
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2.1.2 Momentum equation

Force balance on a fluid, for example plasma within a stellar corona, can be defined by the

momentum equation:

ρ

(
∂u

∂t
+ (u.∇)u

)
= −∇p+ Fext (2.1)

where Fext is the summation of the external forces and p is the plasma pressure. In the case

of a plasma in the presence of gravity it takes the form:

ρ

(
∂u

∂t
+ (u.∇)u

)
= −∇p+ (j×B) + ρg (2.2)

where j is the current density and B is the magnetic field. In hydrostatic equilibrium, the

case of steady state with no flows, the left hand side of this equation is equal to zero.

0 = −∇p+ (j×B) + ρg (2.3)

This is the form of the equation used throughout the project.
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2.1.3 Equation of state

Alongside the momentum equation, an equation of state is required to define how the state

of matter (in this case the coronal plasma) varies with conditions such as pressure, temper-

ature of volume.

Here the ideal gas law is used, as the corona is assumed to be isothermal and hot. Whilst

the classic form of the equation is

pV = NKBT, (2.4)

with p and V being gas pressure and volume, respectively. N is the number of molecules,

KB the Boltzmann constant and T the temperature. This can be rewritten into the form:

p =
KBT

m
ρ (2.5)

where m is the mean particle mass and ρ the density.

2.1.4 Effective gravity

Figure 2.1: Plots showing the pressure variation with height for the Sun (orange) and AB
Doradus (a rapidly rotating star) (blue). The lines where the centrifugal term is neglected
are shown by dashed lines (shown in black for the Sun) and the line where the centrifugal
term is included are shown as solid lines. Figure adapted from Waugh [128].

The observations of prominences on rapidly rotating stars suggest that these features

co-rotate with the star, i.e. stay above the same point on the stellar surface as the star

rotates. Therefore, when modelling these condensations, it makes sense to do so within the

co-rotating frame. Within the equations, this can be encapsulated by defining the “effective
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gravity”, which encompasses the gravitational, Coriolis and centrifugal forces.

This first model developed in this thesis is restricted to the equatorial plane of the star,

with no gas flows. This simplifies the centrifugal term and removes the Coriolis term. Thus,

in this model the effective gravity is defined by:

grot = −GM
r2

r̂ + ω2rr̂ (2.6)

Where M is the mass of the star, r is the radial distance from the star, ω is the stellar

rotation rate and G is the gravitational constant. The full expression for the effective gravity

can be found in Appendix A[129].

By analysis of Equation 2.6, it can be seen that there is a critical radius below which

the effective gravitational force acts inwards, and beyond which it acts outwards. The

critical point at which the gravitational and centrifugal forces balance is referred to as the

“co-rotation radius”:

rk =
(GM
ω2

)1/3

. (2.7)

On slow rotators like the Sun, which has a co-rotation radius of 37R�, the rotational term

of the effective gravity can be neglected. The difference between rapid and slow rotators

can be easily seen in Figure 2.1 showing the gas pressure with radius from the centre of the

star. There is no need to account for the rotation on slow rotators like the Sun, whilst the

effect of rotation on rapid rotators should not be neglected.

2.1.5 Magnetic topologies

Within this model, a background magnetic field must be prescribed in order to find the

shapes of cooled loops that could support prominences. In this chapter, there are three field

topologies that are used; a dipolar field, a quadrupolar field and a dipolar field with a source

surface. All of these are embedded within the equatorial plane of the star in this model.

The simplest case used here is the dipolar field and can be described mathematically by

B2
e = B2

0e

((
2 cosφ

r3

)2

+

(
sinφ

r3

)2)
. (2.8)
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Figure 2.2: (a) Dipole field (b) quadrupolar field and (c) dipolar field with source surface,
shown by the red dashed line.

The quadrupole field structure is defined by

B2
e = B2

0e

((3(3 cos2 φ− 1)

2r4

)2

+
(3 cosφ sinφ

r4

)2
)

(2.9)

and the most complicated field used here is a dipolar field with a source surface, i.e. a

dipolar field that becomes open beyond a critical radius, rs:

B2
e =


B2

0e

(((
2 cosφ
r3

)(
r3+2r3s
13+2r3s

))2

+

((
sinφ
r3

)(
−2r3+2r3s

13+2r3s

))2)
if r < rs

B2
0e

(((
2 cosφ
r3

)(
r3+2r3s
13+2r3s

))2(
rs
r

)4)
if r > rs.

Here r and φ represent the polar coordinates, radius and longitude, B0e is the (external)

field strength at the base of the loop and these field structures are depicted in Figure 2.2.

2.1.6 The thin flux tube approximation

Flux tubes can be thought of as a tubular region in which the “walls” of the tube are always

parallel to the magnetic field. Flux is conserved along the flux tube, thus the area of the

tube varies throughout space according to the local field strength. The magnetic flux tubes

here are assumed to be ’thin’ and isothermal. Thin loops are those in which internal quan-

tities, like pressure, do not vary across the flux tube width. This approximation therefore

assumes that the flux tube area is much smaller than the pressure scale height squared. It

is also assumed that the tube does not disturb the background coronal field [79, 130].
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Flux tubes must be in pressure balance with their environment, i.e.

B2
i = B2

e + 2µ(pe − pi) (2.10)

where µ represents the permeability of free space, B is the magnetic field strength and p the

gas pressure. The internal and external quantities are denoted with the subscripts i and e,

respectively.

This equation can also be written in the form where it has been scaled to the external

field strength at the loop base;

B2
i

B2
0e

=
B2
e

B2
0e

+
2µp0e

B2
0e

(
pe
p0e
− pi
p0e

) (2.11)

B̄i
2

= B̄e
2

+
2µp0e

B2
0e

(p̄e − p̄i) (2.12)

where B̄i
2 ≡ B2

i /B
2
0e, p̄e ≡ pe/p0e and p̄i ≡ pi/p0e.

The expression 2µp0e/B
2
0e is the “plasma beta” for the external field at the base of the

field line. The plasma beta is a ratio of the gas pressure to the magnetic pressure:

β0e ≡
p0e

B2
0e/2µ

, (2.13)

with a large plasma beta requiring that the gas pressure dominates over the magnetic pres-

sure, and a small plasma beta requiring a stronger magnetic pressure than gas pressure.

In other words, the expression for pressure balance across a thin flux tube may be written

as

B̄i
2

= B̄e
2

+ β0e(p̄e − p̄i), (2.14)

throughout the remainder of this chapter the plasma beta β0e is simply denoted by β.

2.1.7 Mechanical equilibria

Mechanical equilibrium is a state in which all forces present on an object are balanced and

therefore the net force is zero. This has been introduced mathematically in Equation 2.3
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and this subsection introduces in more detail the forces present.

The first term in the momentum equation (0 = −∇p+ (j×B) + ρg) is the gradient of

the gas pressure. The gas pressure decreases with height from the stellar surface reaching

a minimum at the co-rotation radius, before increasing again due to the centrifugal force.

This was shown in Figure 2.1. In other words this force acts towards the surface at heights

below co-rotation, and away from the surface at heights above co-rotation.

The second term in this equation is the Lorentz force, which can be decomposed into

the magnetic tension and magnetic pressure forces.

(j×B) = (B.∇)
B

µ
−∇

(B2

2µ

)
. (2.15)

The magnetic tension force (B.∇)B/µ always acts to straighten out field lines, acting

inwards from the loop summit.

The magnetic pressure force −∇
(
B2/(2µ)

)
acts to smooth out gradients in the magnetic

field, just as a gradient of gas pressure does with mass. The magnetic pressure force acts

from locations of high field strength to locations of low field strength. The direction of this

force is more difficult to imagine, but in general, it will act outwards since field strength

drops away with distance from the star.

The final force is the buoyancy force, ρg. The buoyancy force depends on both the local

density and effective gravity. For a cool loop embedded in a hotter corona, it will be over-

dense (i.e. ρi − ρe > 0) whilst hot loops embedded in a cooler corona will be under-dense

(ρi − ρe < 0).

The effective gravity acts inwards below co-rotation and outwards above co-rotation, mean-

ing that for cool loops the buoyancy force also acts inwards below co-rotation and outwards

above co-rotation. For hot loops, the opposite would be true, with buoyancy acting out-

wards below co-rotation and inwards above co-rotation. Here however we only consider cool

loops.
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2.2 Setting up the equations: Force balance

In order to solve for the loop shapes, we first decompose the momentum equation into com-

ponents along (ŝ) and perpendicular (n̂) to the magnetic field line, using the same method

as Jardine, Ballegoojien and Collier Cameron[76, 77].

Figure 2.3: Splitting up the field line into components parallel (blue) and perpendicular
(red) to the field line.

The line element along the field line in cylindrical coordinates is

dsŝ = drr̂ + rdφφ̂ (2.16)

where ds =
√
dr2 + r2dφ2 = dφ

√
r2 + (r′)2. The unit vectors can be defined as:

ŝ =
1√

r2 + (r′)2
(r′, r) (2.17)

n̂ =
1√

r2 + (r′)2
(−r, r′). (2.18)

The pressure variation with height can be found by taking the component of the momentum

equation along the field, and assuming the base pressure is independent of φ. This yields:

0 = −∇p.ŝ+ (j×B).ŝ+ ρg.ŝ (2.19)

but (j×B).ŝ = 0 since B = Bŝ and thus (j×B).ŝ = B(j× ŝ).ŝ = 0.
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Thus, Equation 2.19 simplifies to:

0 = −∇p.ŝ+ ρg.ŝ. (2.20)

Evaluating:

(
dp

dr
r̂ +

dp

rdφ
φ̂).(r′r̂ + rφ̂)

1√
r2 + (r′)2

= ρ
(

(−GM
r2

+ ω2r)r̂ + 0φ̂).(r′r̂ + rφ̂)
1√

r2 + (r′)2

)
,

(2.21)

which simplifies to

dp

dr
= gρ. (2.22)

Solving this for the gas pressure leaves:

∫ p(r)

p0

dp

p
=

∫ r̄R∗

R∗

m

KBT
g(r)dr (2.23)

and so,

p = p0 exp
( m

KBT

∫ r̄R∗

R∗

g(r)dr
)
, (2.24)

with p0 being the pressure at the base of the loop, p0 ≡ p(R∗). Defining

H(r) ≡ m

KBTe

∫ r̄R∗

R∗

(
−GM∗

r2
+ ω2r

)
dr (2.25)

simplifies this expression for the gas pressure into a more manageable equation:

pe = p0e exp(H(r)). (2.26)

The full expression for the pressure variation can be shown to be

p = p0 exp(
m

KBT

(GM(1− r̄)
r̄R∗

+
ω2R2

∗(r̄
2 − 1)

2

)
, (2.27)

where r̄ is the radial distance from the stellar centre in units of stellar radii. In the work

below, r̄ is replaced with r to make the equations easier to read.
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Normal to the magnetic field, the momentum equation is:

0 = −∇p.n̂+

(
(B.∇)

B

µ
−∇

(B2

2µ

))
.n̂+ ρg.n̂ (2.28)

Using B ≡ Bŝ and noting that ŝ.n̂ = 0 leaves;

0 = −∇p.n̂+
B2

µ

(
(ŝ.∇)ŝ

)
.n̂−∇

(B2

2µ

)
.n̂+ ρg.n̂. (2.29)

Noting that:

n̂.∇ =
1√

r2 + (r′)2

(
− r ∂

∂r
+ r′

∂

∂θ

)
(2.30)

and

∂ŝ

∂s
= (ŝ.∇)ŝ =

n̂

Rc
(2.31)

where Rc is the radius of curvature. This is a standard result, where the expression for the

radius of curvature is given by

Rc =
(r2 + (r′)2)3/2

(rr′′ − r2 − 2(r′)2)
. (2.32)

A full derivation for equation 2.32 is given in Appendix B. Ultimately, equation 2.29 sim-

plifies to:

2B2
i r(r

2 + 2(r′)2 − rr′′)
(r2 + (r′)2)

=
(
−r2 ∂

∂θ
+ r′

∂

∂r

)
B2
i (2.33)

which is the differential equation that must be solved to find the new, cooled magnetic

loop shapes, r(φ).

2.3 Pressure variation with height

As mentioned in the introduction to this section, the pressure variation with height is defined

by Equation 2.27.

p = p0 exp(
m

KBT

(GM(1− r)
rR∗

+
ω2R2

∗(r
2 − 1)

2

)
, (2.34)

This term describes the external and internal pressures, although the base pressure and

temperature may vary between the two. Therefore the pressure variation shows the same

behaviour internally and externally, decreasing above the surface to the co-rotation radius
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and then increasing beyond this1, although the rate at which the pressure varies is steeper

for the cooled internal loops than the background corona.

Figure 2.4: Example of the pressure variation within a cooled flux tube.

Figure 3.3 shows an example of the pressure variation with height assuming AB Doradus

stellar parameters. It becomes apparent that on rapidly rotating stars such as this, the gas

is driven into the tops of magnetic loops a few stellar radii above the surface.

Whilst the internal and external gas pressures do not depend on each other, the internal

pressure is constrained by the pressure in the corona. The expression for the internal

magnetic field,

B2
i = B2

e + 2µ(pe − pi) (2.35)

places constraints on the internal gas pressure. B2
i must always be greater than or equal to

0, i.e.

pi ≥ B2
e/(2µ) + pe. (2.36)

This places constraints on the maximum loop height, since at some height this constraint

will likely not be met. This is discussed in more detail in Section 2.5.

1As was seen in the right hand panel of Figure 2.1.
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2.4 Loop Shapes

By solving the differential equation (Equation 2.33 in Section 2.2), the shape of the cooled

loops can be found and plotted. For most external loops within the background field, there

is an available equilibrium for the loop to take if it were cooled to a chosen temperature.

This yields a family of solutions, i.e. equilibria for loops of all heights. Equilibria are

parameterised by their “heights” and “widths”. The height of a loop is measured from the

surface to the loop summit, and the width is measured from the loop footpoint to the centre

of the loop (this is depicted in Figure 2.5 for clarity). Width here is measured as an angle.

Figure 2.5: Cartoon to define loop “height” and “width” used here.

2.4.1 Pure Multipoles

Equation 2.33 can be solved once the chosen external field structures are combined with

pressure balance, and the following parameters specified: internal and external tempera-

tures; base pressures and the plasma beta. Figures 2.6 and 2.7 show the loop shapes and

height-width curves for an external field of a pure dipole and pure quadrupole, respectively2.

It is worth highlighting here that these solutions do not all exist within the corona at once

(evidenced by the blue field lines that cross each other in the left hand panel of Figure 2.6)

but that they have all been shown here as a “family”. The field strength in these calculations

2Recall that here “Width” refers to the half-width of the loop, i.e. measured from the loop summit to
one of the footpoints.
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is scaled to the external field strength at the stellar surface. The external loops are shown

in grey with the cooled solutions shown in blue. The presence of the cooled plasma does not

alter the loop shape at low heights but distorts the loops with a summit at large distances

from the stellar surface. This distortion is caused by the increasing pressure with height

beyond the co-rotation radius. The height-width curves show the entire family of solutions

and the cooled family follow the external field very closely at low heights. At large heights

the distortion can be seen in the height-width plots by the sudden veering off of the curve

from the external field track and towards the vertical axis. With the parameters used here,

the distortion of loops occurs very suddenly, with a small change in loop height causing a

drastic change in loop width (and therefore shape). The height-width curve does not track

fully back to the vertical axis, because the final solutions become increasingly more difficult

to find with summit height. This occurs due to the sudden changes in loop shape at this

point on the curve, with a very small change in height resulting in a large change in loop

shape. This makes resolving the last solutions tricky since large resolution is required to

sample the final heights.

Figure 2.6: Loop shapes and height-width curves for a pure dipolar external field with
parameters; Te = 107K, Ti = Te/10, p0i = 2p0e and β = 10−7. The black dashed line
represents the co-rotation radius.

For a pure quadrupolar external field the same behaviour is seen as for the dipolar case,

with the cooled solutions matching the external field at low heights and adjusting shape

at large heights to account for the large gas pressure compared to the local field strength.

However, the loops cover a significantly smaller angular extent, constrained now to π/4

rather than π/2.

The lowest order multipoles examined here show slight variations in the maximum loop
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Figure 2.7: Loop shapes and height-width curves for a pure quadrupolar external field with
parameters; Te = 107K, Ti = Te/10, p0i = 2p0e and β = 10−7. The black dashed line
represents the co-rotation radius.

heights, with r = 5.98R∗ and r = 5.34R∗ for the dipolar and quadrupole respectively. This

maximum height mentioned here is determined by the height at which the loop becomes

infinitely thin, i.e. the height-width curve reaches a width of 0 radians. This can be found

by extrapolating the height-width curve to the vertical axis, or analytically, as discussed in

section 2.5. Since the quadrupolar field dies off more quickly with height than the dipole,

a lower maximum height for a quadrupole is to be expected. This difference in height is

so small that this model predicts it to be unlikely that observations of prominence height

alone would be able to determine the topology of the loop. It is important to note that this

maximum height is very dependent on the input parameters of the model, which can not be

obtained from observational data such as; p0e, p0i, β. The loops become infinitely thin in

width once the magnetic field is no longer strong enough to support the increasing pressure

being driven up into the loop summits.

2.4.2 Inclusion Of A Source Surface To A Pure Dipole

Prominences have been observed on AB Dor at heights of 8 stellar radii from the stellar

rotation axis. The coronal magnetic field may not be closed at such large heights above the

stellar surface. It may be more realistic to prescribe a background field that becomes open

at a chosen radius.

Figures 2.8 and 2.9 show results for this field structure, with the source surface depicted by

the red dashed lines. Results are shown for a source surface placed above the co-rotation
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radius and below the co-rotation radius. Prescribing this background field yields ultimately

similar behaviour to the pure dipolar field, with the family of cooled solutions following the

external family at low heights and deviating from them at larger heights above the surface.

Note that here the values for the plasma beta and base pressures have been changed from

the plots shown in the multipole section, in which the plasma beta was set to a very small

value to exaggerate the results for the purposes of illustration. Here the value chosen for

the plasma beta is likely a more realistic value, since the higher value of β reflects a lower

field strength.

Figure 2.8: Loop shapes and height-width curves for a dipolar external field with source
surface at rs = 3.8R∗ with parameters; Te = 107K, Ti = Te/10, p0i = 11p0e and β = 10−3.
The black dashed and red dashed lines represents the co-rotation radius and source surface,
respectively.

Figure 2.9: Loop shapes and height-width curves for a dipolar external field with source
surface at rs = 1.8R∗ with parameters; Te = 107K, Ti = Te/10, p0i = 11p0e and β = 10−3.
The black dashed and red dashed lines represents the co-rotation radius and source surface,
respectively.
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With the source surface above the co-rotation radius, the height-width curve of the

cooled solutions follows the external field closely at low heights before extending beyond

the external arcade in order to maintain force balance at the co-rotation radius. Solutions

can be found beyond width = π/2 radians, but they have been discounted on the grounds

that they are unphysical. Any loop with footpoints that are more than π radians (width

of π/2 radians) apart have footpoints that have crossed over to the other side of the star

and over the poles. This results in a gap in the solutions around the source surface (red

dashed line in the plots) where the loops can not expand enough to allow the tension force

to balance the other forces present, thus no mechanical equilibrium may be reached for these

heights. Beyond the source surface, solutions are found that represent solutions within the

stellar wind. Here the external field is open, but there are mechanical equilibria available for

closed cooled loops. This result was also found in the Cartesian geometry by Jardine and

van Ballegooijen [77]. Once again, it is very mathematically challenging to find solutions

that extend the height-width curves all the way back to the vertical axis. Here a very small

change in height will result in a large change in width, due to the steep gradients in pressure

relative to the magnetic support available.

With the source surface below the co-rotation radius as shown in Figure 2.9, solutions

are more difficult to find. Once again, the cooled solutions match the external field well

at low heights, but their shape deviates from the background field much sooner than the

case with the source surface above the co-rotation radius. There are now three branches

of solutions; (1) solutions at low heights within the closed field, (2) solutions above the

source surface and within the wind, where the loops are still expanding with height and (3)

solutions well above the co-rotation radius where loops are becoming thinner with height.

The overall behaviour is similar to the previous cases shown in this chapter, though the

solutions are much more broken up and more distinct from the background field.

2.4.3 Combining Multipoles

The cases of a pure dipole (Bd) or quadrupole (Bq) can be combined to create a more

realistic stellar field:

B2
e =

(
B2
d +B2

q

)
(2.37)
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B2
d =

(
B2

0d

[(
2 cos(φ)

r3

)2

+

(
sin(φ)

r3

)2]
+B2

0q

[(
3(3 cos2(φ)− 1)

2r4

)2

+

(
3 cos(φ) sin(φ)

r4

)2])

B2
q = B2

0e

[(
2 cos(φ)

r3

)2

+

(
sin(φ)

r3

)2

+

(
3(3 cos2(φ)− 1)

2r4

)2

+

(
3 cos(φ) sin(φ)

r4

)2]
. (2.38)

Here, for simplicity, the components are combined so that the dipole and quadrupole are

equal in strength at the stellar surface (i.e. B2
0d = B2

0q ≡ B2
0e).

Figure 2.10 shows example loop shapes and height-width curves for this combined field

structure (blue) compared to a pure dipole (grey). Most variation in loop shape is seen

at low heights since the quadrupolar term dies off more quickly than the dipolar term and

leaves loops at large heights more similar to a pure dipole.

Figure 2.10: Loop shapes and height-width curve for a combined dipolar and quadrupolar
external field, with parameters; Te = 107K, Ti = Te/10, p0i = 3p0e and β = 10−4, shown
in blue. A pure dipole at the same parameters is shown in grey for comparison. The black
dashed line represents the co-rotation radius.
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2.5 Maximum Loop Height

The maximum height of the cooled loops can be calculated starting from the condition that

B2
i ≥ 0 (2.39)

and considering the case where the internal field strength drops to zero. The internal mag-

netic field strength squared can not be negative and still be physical. Using the expression

for pressure balance;

B̄e
2

+ β(p̄e − p̄i) = 0 (2.40)

and expanding out the terms gives

B2
e

B2
0e

+ β
(
e(H(r)) − p0i

p0e
e

(H(r) Te
Ti

)
)

= 0. (2.41)

Solving this expression for r with the prescribed external field gives the maximum loop

height for which the cool magnetic field gives a physical result.

2.5.1 Dipole

Prescribing a dipole external field and considering the summit of each loop (φ = π/2) where

the loop has its maximum radial value, gives the condition:

4(cosπ/2)2 + (sinπ/2)2

r6
+ β

(
e(H(r)) − p0i

p0e
e

(H(r) Te
Ti

)
)

= 0 (2.42)

which simplifies to

1

r6
+ β

(
e(H(r)) − p0i

p0e
e

(H(r) Te
Ti

)
)

= 0, (2.43)

and therefore, rmax is a function of p0i/p0e, Ti/Te, β, M∗, R∗ and ω.

2.5.2 Quadrupole

Prescribing a quadrupole external field and considering the summit of each loop (φ =

cos−1(1/
√

3)) [131] gives the condition:

9(3((1/
√

3)2 − 1)2

4r8
+

9(1/
√

3)2(sin(arccos(1/
√

3)))2

r8
+β
(
e(H(r))− p0i

p0e
e

(H(r) Te
Ti

)
)

= 0 (2.44)
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which simplifies to

12

4r8
+

2

r8
+ β

(
e(H(r)) − p0i

p0e
e

(H(r) Te
Ti

)
)

= 0 (2.45)

leaving

5

r8
+ β

(
e(H(r)) − p0i

p0e
e

(H(r) Te
Ti

)
)

= 0. (2.46)

2.5.3 Dipole With Source Surface

As for the pure dipole and quadrupole cases, with the inclusion of a source surface there will

be a maximum height beyond which there are no possible solutions. Again, this corresponds

to the point at which B2
i goes to zero. Recall that the expression for this field structure can

be written as;

B2
e

B2
0e

=


((

2 cosφ
r3

)(
r3+2r3s
13+2r3s

))2

+

((
sinφ
r3

)(
−2r3+2r3s

13+2r3s

))2

if r < rs((
2 cosφ
r3

)(
r3+2r3s
13+2r3s

))2(
rs
r

)4

if r > rs.

where the equation has been scaled to the base value.

If we wish to find the maximum loop height that can be found, and using the knowledge

that loops could be found out in the open field region, the field structure outside of the

source surface is the term of importance i.e.

B2
e

B2
0e

=

((
2 cosφ

r3

)(
r3 + 2r3

s

13 + 2r3
s

))2(
rs
r

)4

(2.47)

Once again, Bi2 = 0 gives the maximum height of the cooled solutions, which is evaluated

at φ = π/2, i.e. the loop summit:

B2
i (φ = π/2)

B2
0e

= 0. (2.48)

Noting that B2
e (φ = π/2) = 0, since cos(π/2) = 0, leaves

B2
i

B2
0e

= β
( pe
p0e
− pi
p0e

)
≥ 0. (2.49)

This shows that the maximum loop height in such a case is independent of the position
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of the source surface. In full, the equation can be written as

e

(
H(r)

)
− p0i

p0e
e

(
H(r)Te/Ti

)
= 0, (2.50)

and it can be seen that this depends on the stellar parameters, through the function H(r),

and the ratio of gas base pressures. Since the internal temperature is only a scaling factor on

the exponential, it doesn’t determine the root of the function (pe−pi). It is also independent

of β.

2.5.4 The effect of varying the coronal parameters

Figure 2.11: Maximum height for cool loops with various parameters; internal base pressure
(scaled to external base pressure), internal temperature and external plasma beta. The
parameters chosen here were Ti = Te/10 = 106K, β = 10−4 and p0i = p0e, before each was
varied whilst keeping the other two fixed. The blue curves show the quadrupolar field and
black show the dipolar field.

Here the effect of coronal parameters is investigated on the maximum heights of promi-

nence bearing loops, for a pure dipolar or quadrupolar external field structure. Solving

Equations 2.43 and 2.46 for r, yields the maximum loop height for a given star (i.e. for a

given stellar mass, radius and rotation rate, all of which are hidden within H(r)) and for

given values of the input parameters β, p0i/p0e and Te/Ti. Figure 2.11 shows the maximum
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radius of solutions for the star AB Doradus over a set of coronal parameters3. In all cases,

the maximum attainable height is lower for the quadrupolar external field (blue) than for

the dipolar external field (black). As the quadrupole field falls off with height considerably

quicker than the dipole field, this is to be expected.

Figure 2.12: Maximum height for cool loops for a source surface field structure with varying
internal base pressure (scaled to external base pressure).

In the case where the external field is a dipole with a source surface, the maximum height

is independent of the plasma beta or temperature ratio (see Equation 2.50). The coronal

parameter that influences the maximum prominence height is the ratio of gas pressures.

This is shown in Figure 2.12. The equation for the maximum height also shows that the

maximum height is independent of the location of the source surface.

2.6 Prominence Distributions

From this model, a distribution of prominence locations can be calculated and compared to

the observations. The blue and green histograms in Figures 2.13 and 2.14 show the observed

distribution of prominence heights on the stars AB Dor.[1, 25, 31, 33] and Speedy Mic.[36]

respectively. The co-rotation radius is also shown on these plots by the black dashed line,

and the source surface locations by the red dashed lines. Histogram data produced by the

model are shown overlain in grey. These are generated by sampling the height-width curve in

intervals of 0.2R∗ in width. The stellar parameters used are; M∗ = 0.87M�, R∗ = 0.96R�

3Where radius = height + 1 R?.
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and a period of 0.52 days for AB Dor. [132–134] and for Speedy Mic.; M∗ = 0.82M�,

R∗ = 1.06R� and a period of 0.380 days[36].

2.6.1 Placing the source surface above the co-rotation radius

Figure 2.13 shows the buoyancy force and height-width plots, for both AB Dor and Speedy

Mic, in the top panels. The dashed line shows the results for the hotter temperature of

Ti = 1× 106K and the thick line shows Ti = 0.67× 106K.

The buoyancy force on Speedy Mic changes more quickly with height than on AB Dor.

This is due to the faster rotation rate of Speedy Mic. The buoyancy force is important for

supporting the slingshot prominences, at large heights from the stellar surface and thus the

difference in buoyancy between the two stars is reflected in the prominence height distri-

butions. In order for a solution to be available, all forces on the loop must balance. At

large heights above the surface and in the open field region especially, the magnetic pressure

term is small. The magnetic tension and buoyancy forces must counteract each other for an

equilibrium to be available. The height-width plots are much tighter for Speedy Mic than

AB Dor, due to this difference in buoyancy.

A cooler loop temperature also causes steeper changes in buoyancy, which can be seen in

the difference between the solid and dashed lines of this figure, and thus alters the shape of

the height-width plots. Despite temperature playing a role in the height-width curve shape,

the stellar parameters play a much more significant role as can be seen by the difference

between the two stars.

For both stars, the histograms generated from this model show a similar shape with

both temperatures shown here. Whilst the exact values on the histogram don’t match the

observations, the overall trends show similar behaviour. The model generates a peak in the

histogram above co-rotation but below the source surface, and a secondary peak beyond

the source surface. The model histograms also show a peak below co-rotation and close to

the stellar surface. These would represent solar-like prominences, and do not appear in the

observations. It could be that they are not present on these stars, or that they did not show

up in the observations due to their low masses and therefore low absorption. Alternatively,
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Figure 2.13: Prominence distributions for rs > rk at Ti = Te/10 and rs > rk at Ti = Te/15
for AB Dor and Speedy Mic. Grey shows the distributions calculated from this model whilst
blue and green show the observed distributions for AB Dor and Speedy Mic, respectively.
The black dashed lines show the co-rotation radius and the red dashed lines show the radius
of the source surface.

they may have been difficult to distinguish from variations on the stellar surface, such as

star spots or darker regions.

The trends of the modelled histograms match the observations for AB Dor slightly better
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for the lower of the two temperatures, where the height-width curve is less flat above the

source surface. This creates a smoother peak in the histogram. However, the temperatures

otherwise yield similar histogram shapes. For Speedy Mic, neither of the modelled his-

tograms appears to fit too well to the observations, but the hotter of the two temperatures

appears to give the better distribution. This choice of source surface location allows for

prominences to form in the wind of AB Dor. For Speedy Mic this is not the case, as the

stellar parameters mean the buoyancy force quickly becomes too large to be supported by

the magnetic tension and pressure forces. This means that the maximum height of promi-

nence formation is below this choice for the source surface, making equilibria in the wind an

impossibility. With a different choice of parameters, it should be possible to find solutions

in the wind for Speedy Mic too. However, this is not found here with these parameter choices.

2.6.2 Placing the source surface below the co-rotation radius

Figure 2.14 shows the buoyancy force and height-width plots, for both AB Dor and Speedy

Mic, in the top panels for a cooled temperature of Ti = 0.67 × 106K. The height-width

plots for both AB Dor and Speedy Mic are much more limited than with the source surface

placed above co-rotation. At low heights, the curves are almost identical for the two stars,

where the magnetic field is strong and the difference in rotation is not yet felt. The top

branch in the case of AB Dor is very similar to with rs > rk, but for Speedy Mic the top

branch no longer exists. Finding solutions at these heights, just beyond the source surface

is difficult once below co-rotation. Around co-rotation there is little to no buoyancy force,

since the effective gravity is close to zero. When this occurs within the open field, there is

very little magnetic pressure force to provide support because the field has become suddenly

radial. This leaves nothing to balance the magnetic tension force and so finding equilibria

is difficult to impossible. It is possible that with a different choice of parameters solutions

within this region might be easier to find. However, in all of the parameters that I have

searched, these solutions have been hard to find.

The histograms generated in this case do not match the observed histograms as well as

the previous case. The peak that occurs at very low heights, which is not present in the

observations, is much larger than before. The model generates a peak beyond co-rotation,

however, for AB Doradus it appears to be too close to the co-rotation radius when compared
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Figure 2.14: Prominence distributions for rs < rk at Ti = Te/10 for AB Dor and Speedy
Mic. Grey shows the distributions calculated from this model whilst blue and green show
the observed distributions for AB Dor and Speedy Mic, respectively. Black dashed lines
show the co-rotation radius and red dashed lines show the radius of the source surface.

to the observations. The peak at very large heights is much more sudden than in the obser-

vations. For Speedy Mic, the peak at low heights is again much larger than previously. A

peak does appear at 2.5R? which matches the observations, but there is also a peak directly

after co-rotation that is not present in observations. The peak observed at larger heights

does not occur in this model.

2.6.3 Comparison to observations for AB Dor.

Of the modelled histograms presented here, the field structure with rs > rk and temperature

Ti = 0.67×106K appears the most similar to the observations. With this said, the histogram
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given here for the observed data has been collated from many years worth of observations.

The magnetic field structure for AB Doradus has not been constant over this time. The

modelled histograms have assumed all solutions are at the same temperature and magnetic

field strength, but there is no requirement for this to be true in the stellar corona. This is

examined briefly in section 2.6.5.

The observed distribution shows a trend of two peaks. The first peak slowly increases to

a maximum at around 3.2R? and drops away suddenly by 4R?. The second peak begins

around here and appears to peak just after 4.5R?.

2.6.4 Comparison to observations for Speedy Mic.

The observational data for the prominences on Speedy Mic are all taken from one observing

run, over which the background magnetic field structure will have been constant. The

parameters of rss > rk and Ti = 1 × 106K appear to generate a distribution that fits the

observations better than the other parameters used here. The observational distribution

shows two peaks, one just beyond the co-rotation radius and one at larger heights and

centred around 3.3R? from the centre of the star. Unlike for AB Doradus, this secondary

peak appears to be much larger than the first.

2.6.5 A more complex corona

Figure 2.15: Histogram of prominence distributions from p0i = 20p0e and Ti = Te/10
(orange), Ti = Te/15 (blue) and Ti = Te/20 (pink), again for AB Dor stellar parameters.

All histograms shown in Figure 2.13 and 2.14 are for a single temperature. The reality
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is that it is a simplification that all prominence loops would be at exactly the same temper-

ature, it is much more likely that there would be a range of temperatures. Changing the

loop temperature alters the shape of the height-width plot, as seen in the top right panel of

Figure 2.13. Thus, changing the cooled loop temperature causes the peak of the distribu-

tion to shift, with a decrease in this temperature leading to the distribution moving inwards.

Combining a range of internal temperatures into one histogram yields Figure 2.15. It can

be seen that the gap in the modelled data seen above the source surface can be reduced in

this case. An observed histogram would likely be composed of multiple temperatures.

It is important to note that whilst the histogram of prominence heights for Speedy Mic

is taken from one observing run, the observed histogram for AB Dor is composed of obser-

vations over a ten-year period. Over this time period, the magnetic field (derived from ZDI)

strength has varied by a factor of 10, and thus the plasma beta (the proxy parameter for

field strength in this model) has varied by a factor of 0.01. This is not a small variation.

Figure 2.16 shows three histograms plotted at β = 10−3, β = 10−4 and β = 10−5. This

lowest value of β was chosen by assuming an average field strength on AB Dor of 10G (from

ZDI maps) and then using β = 2µp/B2 with p = κB2 = 10−5.5B2 (for B in Gauss). This

yields β = 2 × 4π × 10−7 × 10−5.5 × 102/10−6 = 10−3.5. As the observations suggest that

β may have varied by 10−2 over the time period considered, we then choose to consider the

impact this would make on the histograms.

There is a large gap in the histograms for β = 10−2 and β = 10−3. This gap is not visible

for β = 10−4 and β = 10−5. All cases show a peak at very low heights and a second peak at

larger heights. For β = 10−3 and β = 10−4 this comes not far after co-rotation (at a height

of 1.8R?), as is seen in the observations of AB Dor. For β = 10−2 this secondary peak is

below the co-rotation radius and for β = 10−5 it is further out. A third peak is present for

β = 10−2, β = 10−3 and β = 10−4 but is not clear in β = 10−5. As with the temperature,

it is likely that prominence bearing loops in a stellar corona could have a range of magnetic

field strengths. This would also complicate the observed histograms from the simple model

presented in Figures 2.13 and 2.14.
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Figure 2.16: Histogram of prominence distributions from p0i = 11p0e and Ti = Te/10 with
β = 10−2 (red), β = 10−3 (blue), β = 10−4 (purple) and β = 10−5 (green).

2.6.6 Further work and conclusions

This chapter has covered the expansion of Jardine and van Ballegooijen’s model of promi-

nence formation within the equatorial plane of a rapidly rotating star from Cartesian and

into polar coordinates. The same general behaviour is found here as within their work.

The height-width plots of the cooled solutions show the same characteristic shape, with

loop width increasing with height but then decreasing beyond the co-rotation radius. The

coronal field structures that have been considered here are; a pure dipole, a pure quadrupole

and a dipole with a source surface. The chapter has also touched very briefly on a combined

dipole and quadrupole field.

The cooled family of solutions formed by applying a purely dipolar or purely quadrupolar

coronal field are very similar. Although, for a given set of input parameters, the maximum

height of solutions is lower in the case of a quadrupolar field compared to the dipolar field,

the height-width plots otherwise look very similar in shape. Quadrupolar fields always result

in loop widths being smaller than for a dipolar field, as restricted by the geometry. The dif-

ference in maximum height is caused by the steeper drop off with height of the quadrupolar

field strength when compared to a dipole.

The field can be adapted to include a source surface, beyond which the field is open. Here
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a source surface has been included to a dipole field structure, and placed both above and

below the co-rotation radius. Cooled solutions have been found out in the wind for both

of these cases, although with the source surface placed below the co-rotation radius it is

hard to find equilibria around the co-rotation radius. This is particularly noticeable from

Figure 2.17: Cartoon showing (a) the forces acting on loops in Cartesian geometry and (b)
the forces acting on a loop with the summit at the co-rotation radius. The red dashed line
shows the source surface and the black dashed line shows the co-rotation radius.

the distributions just beyond co-rotation. It is not fully clear from this preliminary work

if this is always the case, or if it is a result of the input parameters used. If it is the case

that this is universally true, then observations of stars that show many prominences just

beyond co-rotation would imply that the magnetic field is closed to this height. It may be

the case that these solutions are always difficult to find in a Cartesian geometry because

above the source surface, there is no gradient in the external field. This is shown in Fig-

ure 2.17. Looking at the region between the source surface and co-rotation, the magnetic

tension and buoyancy forces act down (because solutions are below co-rotation). There is

no gradient in the external field here, which would act upwards, and therefore there is no

force to balance the other two and produce an equilibrium. For a polar case (rather than

Cartesian) it appears that this gradient does exist but that it is very small. Future work to

determine when this field would be strong enough to support solutions (e.g. source surface
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location, co-rotation radius location, field strength, and temperature) would be valuable in

determining how difficult these solutions are to support - or if there are situations in which

these solutions are common.

This work also raises the question of how exactly the location of the source surface influ-

ences the distribution of solutions. Further work on this could be beneficial in determining

the potential source surface location of stars: if certain source surface locations provide cer-

tain distribution shapes then observations of prominences from a star might help constrain

the source surface radius.

As proof of concept, it has been shown here that multipoles may be used as external fields

in order to produce a more general background field structure. The example shown here

combines a dipole and quadrupole of the same field strength at the stellar surface. This

combined field resulted, as one might expect, in a height-width plot that deviated from the

dipolar height-width plot at low heights but matched it at large distances from the surface

where the quadrupolar term had significantly died off.

The internal temperature of a prominence bearing loop, the external plasma beta (proxy

for external base field strength) and the ratio of internal and external base gas pressures all

alter the maximum height at which cooled solutions can be found. A cooler loop, weaker

coronal magnetic field or higher internal base pressure will all yield a lower maximum height.

Cooler or higher pressure loops will have larger buoyancy forces and thus make it more dif-

ficult to support their large masses at large heights above the surface. A weaker external

field will not be able to provide as much of an inward force to support loops at large heights

as the mass increases. This is increasingly the case for a quadrupolar field since the field

strength decreases with height faster than a dipole, and would become increasingly more

difficult for higher order multipoles.

Different stars could be in different regimes even if they have the same magnetic field

strength, if they have different effective gravity. This leads to potentially very different

buoyancy forces and thus different regimes. Histograms of prominence distributions have

been shown here for two stars, AB Doradus and Speedy Mic, and for a dipole field struc-

ture with the source surface both above and below co-rotation. For AB Doradus, placing

the source surface above co-rotation and the cooler of the temperatures investigated here
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produced the best results when compared to observations. For Speedy Mic, the hotter tem-

perature but same field structure appears closer to the observations. None of the examples

presented here match the observations perfectly. This could be partly due to the fact that

observations cover many years for the star AB Doradus, as well as the simplification here

that all field lines are at the same temperature.

In the next chapter, this model is developed further using a more realistic field structure.

Within this chapter the model is restricted to the equatorial plane, which simplifies the

effects of the stellar rotation. In the next chapter, the model remains two dimensional but

is instead perpendicular to the equatorial plane.
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Chapter 3

Prominence modelling with an

aligned dipole
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3.1 Development on the previous model

This chapter is based on work published in Waugh et al. 2022[135].

This chapter develops the model introduced in the previous chapter, which is limited by

its restriction to the equatorial plane. Within the work presented here, the plane perpen-

dicular to this is investigated. In other words, the magnetic field is now orientated to be

aligned with the rotation axis, as shown in Figure3.1.

Figure 3.1: (a) A dipole field embedded within the equatorial plane. The field and dipole
axis is shown in blue. (b) A dipole field with dipole axis that is aligned with the rotation
axis.

The aligned case allows for a more realistic magnetic field, and also a fuller investigation

into the centrifugal effects. The centrifugal term in the effective gravity equation is largest

within the equatorial plane and drops to zero at the rotational poles of the star.

Within this work, a dipolar magnetic field is applied as the external, coronal field struc-

ture. A dipolar field with a source surface is also applied.

The magnetic field structure for the dipole is defined by:

Be = B0

((
2 cos θ

r3

)
r̂+

(
sin θ

r3

)
θ̂

)
. (3.1)
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The expression for a dipole field with a source surface is given by:

Be = B0

((
2 cos θ

r3

)(
r3 + 2r3

s

R3
? + 2rs3

)
r̂+

(
sin θ

r3

)(
−2r3 + 2r3

s

R3
? + 2r3

s

)
θ̂

)
, (3.2)

the radius of the star is denoted by R?, the field strength at the stellar surface by B0 and

the subscript “e” signifies that this is the “external” field i.e. coronal field. The derivation

for this is shown in Appendix C.

As in the previous chapter, the isothermal equation of state is used to relate pressure,

density and temperature, and we assume that the “thin flux tube approximation” holds.

3.2 Mathematical Framework

3.2.1 Determining the loop shapes

Starting again from the equation of motion,

0 = −∇p+ (j×B) + ρg, (3.3)

and splitting the Lorentz term into magnetic tension and magnetic pressure forces we obtain:

0 = −∇p+ (B.∇)
B

µ
−∇

(B2

2µ

)
+ ρg. (3.4)

The equations are formulated in the co-rotating frame, meaning that the gravitational

force is replaced by an “effective gravity”. As before, this combines the gravitational and

centrifugal forces:

ge =
(
− GM?

r2
+ ω2r sin2 θ

)
r̂+
(
ω2r sin θ cos θ

)
θ̂ (3.5)

where ω represents the stellar rotation rate, M? is the stellar mass and G is the gravitational

constant.

As in Chapter 1, this equation can be decomposed into two unit vectors, one perpendic-
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ular (n̂) and one parallel (ŝ) to the magnetic field.

ŝ =
1√

r2 + (r′)2
(r′, r) (3.6)

and

n̂ =
1√

r2 + (r′)2
(−r, r′). (3.7)

Where r′ represents the derivative of r with respect to θ: dr/dθ.

Parallel to the field line, the momentum equation simplifies to

0 = −∇p.ŝ+ ρge.ŝ, (3.8)

which when evaluated leaves

dp

ds
=

mp

KBT

[(
− GM?

r2
+ ω2r sin2 θ

)
r′√

(r′)2 + r2
+
ω2r sin θ cos θr√

(r′)2 + r2

]
. (3.9)

This can be simplified, since ds =
√

(r′)2 + r2dθ, to

dp

dθ
=

mp

KBT

[(
− GM?

r2
+ ω2r sin2 θ

)
r′ + ω2r2 sin θ cos θ

]
. (3.10)

Integrating this equation gives the expression for the pressure distribution throughout the

corona:

∫ p(r,θ)

p?

1

p
dp =

m

KBT

[ ∫ rR?

R?

(
− GM?

r2
+ ω2r sin2 θ

)
dr

dθ
dθ+

∫ 2π

0

ω2r2 sin θ cos θdθ

]
, (3.11)

p = p0 exp

[
m

KBT

(
GM?

(1− r)
rR?

+ ω2R2
? sin2 θ

(r2 − 1)

2

)]
. (3.12)

Here p0 denotes the base pressure and r has been scaled to units of the stellar radius. This

expression for the gas pressure can be used to solve for both inside and outside of the cooled

field line.
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The momentum equation perpendicular to the field line takes the form

0 = −∇p.n̂+
(
B2 ∂ŝ

∂s

)
.n̂−∇

(B2

2µ

)
.n̂+ ρge.n̂. (3.13)

The first term on the right hand side of this equation can be expanded to give

−∇p.n̂ =
1√

r2 + (r′)2

(
∂p

∂r
r − r′

r

∂p

∂θ

)
(3.14)

and the second and third expressions to

(j×B).n̂ =
B2
(
rr′′ − r2 − 2(r′)2

)
µ(r2 + (r′)2)3/2

+
1

2µ
√
r2 + (r′)2

(
r
∂B2

∂r
− r′

r

∂B2

∂θ

)
. (3.15)

The final expression when evaluated gives

ρge.n̂ =
ρ√

r2 + (r′)2

(
GM?

r
− ω2r2 sin2 θ + ω2rr′ sin θ cos θ

)
. (3.16)

Simplifying these, the equation of motion perpendicular to the field lines is

2rB2
(
r2 + 2(r′)2 − rr′′

)
(r2 + (r′)2)

= −
(
r2 ∂B

2
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− r′ ∂B
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+

(
∂p

∂r
r2 − r′ ∂p

∂θ

)
+ 2µrρ

(
GM?

r
− ω2r2 sin2 θ + ω2rr′ sin θ cos θ

)
. (3.17)

This differential equation can be solved to give the shape of the field line r(θ), when com-

bined with the expression for the pressure variation (Equation 3.12) and the equation of

state to relate ρ and p.

3.2.2 Determining flux tube masses

Solutions of Equation 3.17 give the shape of magnetic field lines and in order to calculate a

loop mass associated with a given field line, a flux tube must be constructed. Here, this is

done using flux conservation,

B?A? = B(r)A(r), (3.18)

so that an area around the field line can be calculated. A? is the area of the flux tube at

the stellar surface (base of the loop), as shown in Figure 3.2. This was chosen to be 1% of
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Figure 3.2: Cartoon showing a field line (black) and the surrounding flux tube (grey). The
area of the flux tube (A) and length of tube elements (ds) are shown, alongside definitions
of loop height and width.

the surface of the star for all flux tubes in this work, to match work by Jardine et al [87].

With this variable fixed, the area at each point along the field line can be calculated. The

mass at a given segment of the flux tube was calculated by multiplying the density at that

location on the field line by the volume of that flux tube element (A × ds). The flux tube

mass is the sum of the multiple flux tube elements.

3.2.3 Generating Hα spectra for these loops

In this section, Hα trails are generated so that they can be compared to observations, in

the hope of generating similar dynamic spectra to those observed and in order to determine

if certain kinds of loop generate certain trails within the observations. With the field line

shapes determined, ten lines are selected at random from the height-width plots and ran-

domly assigned a longitude value (φ). Hα spectra are generated by assuming that these loops

co-rotate with the star AB Doradus, with the following stellar parameters; M? = 0.87M�,

R? = 0.96R�, P = 0.5148 days [136] and a stellar inclination of 60◦. As the material on

these field lines co-rotate with the star, their velocities can be calculated from

v = Ω?rFT sin θFT sin(φFT − φ0). (3.19)
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rFT denotes the radius of a given flux tube element, θFT its colatitude and φFT its longi-

tude. The longitude of the observer is denoted by φ0.

To account for the inclination of the star, the line of sight velocity is required and simply

calculated by

vlos = v sin i. (3.20)

This must be calculated for each loop segment, over multiple stellar rotations and for all

selected loops, in order to generate a Hα spectrum. In order to assign a colour to each area

of the Hα spectrum, the absorption (or emission) intensity must be calculated.

The intensity of absorption (Ia) is calculated from

Ia = e
∫ s
0
−κρds. (3.21)

which sums the product of the local density (ρ) and local flux tube diameter (ds), in the

observers line of sight. κ represents an absorption coefficient which is chosen to ensure that

the loop intensities are visible within the spectra.

In the line wings, the intensity in emission (Ie) is found using the simple relation

Ie = Σi
(
r2
FTi/(4πr

2
i )
)

(3.22)

where for a flux tube segment (i), the flux tube radius is denoted by rFTi and the radial

distance from the stellar centre by ri. The star is treated as a point source, with light

emitted from the star into 4π steradians and the the that reaches the prominence material

depending on its distance from the centre of the star (ri). The light scattered from the

prominence material depends on the size of this material, i.e. r2
FTi.

3.3 The gas pressure distribution

Figure 3.3 shows the pressure variation for both the equatorial case investigated in the

previous chapter (a) and for the aligned case presented here (b). In the previous model,

the gas pressure at any fixed distance from the stellar surface is constant in phase (φ). The
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pressure is high close to the stellar surface, and again at large heights beyond co-rotation.

The co-rotation radius, shown by the black dashed line, is the pressure minimum.

Now, out of the equatorial plane the pressure distribution is more complex. Here, due to

the rotation of the star, gas is driven out beyond co-rotation and into the equator. The co-

rotation radius is again shown by the black dashed line but is no longer circular, reaching the

same value in the equatorial plane as previously but tending to infinity above the rotational

poles, where the centrifugal force is zero. The pressure distribution along the line of the

equatorial plane is identical to that shown in (a) of Figure 3.3.

Figure 3.3: Plots showing how the gas pressure varies between (a) a dipole embedded within
the equatorial plane and (b) the aligned dipole and rotation axis. The colour scale is in
units of the base pressure in both cases. The black dashed line represents the co-rotation
radius of the star and the star itself by the black circle. The rotation axis of the star lies
along the z-axis.

3.4 Loop shapes

3.4.1 The aligned dipole compared to the equatorial dipole

Figure 3.4 shows example loop shapes and height-width plots for the equatorial case and

the aligned case. The overall behaviour is the same in the two cases, showing the classic

height-width curves seen in previous studies [76, 77]. At low heights from the stellar sur-

face, the equatorial and aligned cases show identical height-width curves. Here the magnetic

field is strong and dominates over the gas pressure and therefore the difference in pressure
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distributions between the two cases does not alter the loop shapes significantly. At very

large heights, where the loops become increasingly tall and thin, the two cases again show

similar behaviour. This is because the maximum loop height is determined by the stellar

parameters [77]. Since loop widths shrink so drastically over a short height, there is little

variation between the two cases. The difference in loop shapes is apparent in the middle

section of the height-width curves. Here, the aligned dipole shows a wider loop for a given

height when compared to the equatorial dipole. This qualitative difference is due to the

difference in the pressure distribution within the corona of these two cases (as shown in

Figure 3.3). In the equatorial case, the pressure is constant in φ for a fixed radius whereas

out of the equatorial plane this is no longer the case. This means that a loop with summit

at radius r must take a smaller width (or smaller radius of curvature) in order to support

the same mass as the aligned case and remain in equilibrium.

3.4.2 Including a source surface

Rather than a pure dipole field, a dipole with a source surface can be applied as the external

field. An example is shown in Figure 3.5. The external field is closed until the source surface,

shown by the red-dashed line in the figure, after which it would become purely radial. In

this example the co-rotation radius is shown by the black-dashed line and placed below the

source surface. This allows for a region of closed field between the co-rotation radius and

the source surface.

As in the equatorial case, presented in the previous chapter, cooled solutions can be found

both within the closed field region and out in the wind. The height-width plot in (b) of the

figure shows both the external (grey) and cooled solutions (blue). At very low heights where

the magnetic field is strongest, the cooled solutions follow the external field. For these input

parameters, the cooled solutions deviate from the external field just below the equatorial co-

rotation radius, becoming wider than the external field. These loops have empty summits

since the gas pressure decreases to a minimum at co-rotation. Loops continue to widen

between the co-rotation radius and source surface since the buoyancy term is still small and

therefore the radius of curvature of the field must be large in order to maintain equilibrium.

The top branch of the height-width curve represents the solutions within the wind.
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Figure 3.4: (a) Example loop shapes for cool loops embedded within a dipole external field.
The stellar surface is shown in orange. (b) The height-width curve for these families of
solutions. The parameters used to generate this example are; p0i = 1, p0e = 1, Te =
8.57× 106K, Ti = Te/10 and β = 10−4, and for AB Dor stellar parameters.

3.5 Flux tube mass distributions

The solutions calculated from Equation 3.17 give the shapes of cooled magnetic field lines.

In order to estimate the mass associated with a prominence supported by such a field line,

a flux tube must be determined. As mentioned in section 3.2.2 flux tubes are constructed

around the field line. Figure 3.6 shows the masses associated with these flux tubes for one

family of solutions. This family of solutions are shown by the blue curve on the height-width

plot in the middle panel, with the external, pure dipole, field shown in grey. The left hand

panel is a histogram showing the distribution of loops with height. This is generated by

binning along the height-width curve in steps of 0.01 radians in width. The third panel of

this plot, the flux tube mass, is scaled to units of 1017g. This is the order of magnitude of
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Figure 3.5: (a) Example loop shapes for the cooled solutions (blue) and external field (grey)
(b) The height-width curve for these families of solutions. The parameters used to generate
this example are; p0i = 11, p0e = 1, Te = 8.57 × 106K, Ti = Te/10 and β = 10−3, and for
AB Dor stellar parameters (as mentioned previously). The co-rotation radius and source
surface are shown by the black and red dashed lines, respectively. Note that in (b) the black
dashed line is specifically for the equatorial co-rotation radius.

observed prominence masses on the star AB Doradus [1].

The grey points in this plot show the total mass of the flux tube, and the black points

show the mass of the top 80% of the flux tube (i.e. everything above 0.8 times the maxmi-

mum loop summit, 0.8rmax). Flux tubes at all heights are found to have total masses in

keeping with the observations. Prominences at very low heights have a total mass around

1×1017g and the total flux tube mass decreases as height increases to the co-rotation radius.

On the top branch of the height-width curve, flux tube masses decrease from a maximum

of around 2.7 × 1017g as the total volume of flux tubes drastically decreases with summit

height. Here the grey and black points are very similar, whilst for lower heights there is a

large deviation between the total mass and the top 80%.

The field lines highlighted by the two blue points on the middle panel of Figure 3.6 have the

same loop widths. Despite the same widths, these loops have drastically different heights,

with one lying below the co-rotation radius and one well above. These field lines are shown

in Figure 3.7, coloured by the local flux tube mass. The black dashed line in these plots

represents the co-rotation radius. Panel (a) shows the low-lying loop, which carries most

mass in its footpoints with a relatively empty summit. Panel (b) shows the tall loop, which

is summit heavy. The mass is carried almost exclusively at the loop summit in this case,
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Figure 3.6: Left panel: histogram showing the distribution of the number loops with height.
Middle panel: height width plot for the cooled solutions (blue) and external pure dipole
field (grey). The two blue dots represent two cooled solutions with the same loop width
but different heights. Right panel: Flux tube mass against loop height, shown in units of
a typical AB Doradus prominence (as determined by observations). The input parameters
used to generate this example are; p0i = 11, p0e = 1, Te = 8.57 × 106K and Ti = Te/10,
β = 10−3.

and whilst the loop footpoints also carry mass, this is significantly less than the summit.

Figure 3.7: Example loops of the same width (1.76 radians) but different heights. The
colour represents the flux tube mass.

3.6 Generating synthetic Hα spectra

3.6.1 The equatorial dipole

Figure 3.8 show the magnetic field structures (a) and associated Hα trails (b) for an equato-

rial dipole at two different stellar inclinations. The magnetic field structures are generated

by selecting 10 of the solutions from the height-width curve shown in Figure 3.4. To ensure
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Figure 3.8: (a) Example field lines and (b) the associated Hα spectrum, for the aligned case.
The field lines are shown in blue, with sections of the field line that contribute to absorption
shown in purple. Left: stellar inclination of 85◦ and right: stellar inclination of 60◦.

a dipole field structure, these field lines must all have loop summits at one of two φ values,

creating two lobes. The sections of the field lines that transit the stellar disc, and thus are

present as absorption features, are shown in purple. The remainder of the field lines are

shown in blue.

With an inclination of close to 90◦, i.e. viewing into the equatorial plane of the star, all

of the field lines will transit the disc over one stellar rotation. Within the Hα trails, features

can be found about the two φ values of the lobe summits (π/2 and 3π/2).

For each lobe, there is a fast travelling dark line which is caused by the dense summits of

the tallest field lines. These features can also be seen travelling quickly through the emission

profile. Centred on the same phase but with a different gradient are other, fainter features.

These features are symmetric, lying on both sides of the dark central line. These fainter
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features are the footpoints of the loops and are symmetric in the spectrum due to the loop

symmetry. Some of these features relate to the tall loops but others are caused by the lower

lying loops. One of these lower lying loops can be seen faintly in the emission profile in the

red shifted velocity between φ = 0 and φ = π/2, and then again in the blue shifted velocity

between φ = π/2 and φ = 3π/2. This feature is fainter than the loop summits of taller

loops, despite being closer to the star, due to the area of this flux tube being much smaller

than for the taller loops.

The lobe centred on φ = 3π/2 is much fainter than the lobe centred about π/2. This lobe

corresponds to the lobe on the left hand side of Figure 3.6.1(a). There are fewer loops in this

lobe than the other one, and two of the three field lines are very extended. These “bloated”

loops are those above the co-rotation radius and typically carry little mass in their summits.

They have very wide footpoints, meaning that the two footpoint trails in the spectrum are

separated by a large φ.

Figure 3.6.1 shows the same field structure with a stellar inclination of 60◦. With this

inclination, chosen to be close to the inclination of AB Doradus, very few sections of the

field lines now transit the disc. Only sections of the field line legs close to the surface are

seen in absorption. The Hα trails are very similar to the previous case, but without the

dark, fast travelling features associated with the dense summits of the tall loops.

With an equatorial dipole, an individual loop can create two or three features depend-

ing on its height. The tallest loops with dense summits can show up to three features: the

dense loop summit and the two footpoints, whilst lower loops only add features from the two

footpoints to the spectrum. The inclination of the star will determine if the loop summits

of tall loops, i.e. the prominence itself, is visible in absorption.

A feature of this model is that flux tube footpoints may stack on top of each other.

This is particularly true for this field geometry where summits of loops are restricted to two

phases. These stacked flux tubes all contribute mass to the absorption, and thus darken

features where this couldn’t be the case physically.
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3.6.2 The aligned dipole

With an aligned dipole, field lines can be assigned to any longitude. This creates Hα trails

with features spread throughout the spectrum in phase, and not restricted to two values. An

example is shown in Figure 3.9. There are a range of loop shapes, which can be seen in (a),

and now typically only one field line leg transits the stellar disc. Again, loop summits typi-

cally do not transit the disc as they themselves are still within the equatorial plane. For very

low-lying loops, however, the loop summits are visible in absorption. For the bloated loops,

the section of the loop that transits the disc does not include the summit or either footpoint.

Figure 3.9: (a) Example field lines and (b) the associated Hα spectrum, for the aligned case
and stellar inclination of 60◦. The field lines are shown in blue, with sections of the field
line that contribute to absorption shown in purple.

With this field structure, there are two tall, thin field lines, that are roughly φ = π

radians apart. Although the summits of these loops do not transit the disc, they are visible
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in emission as the two fast travelling and bright lines.

The darkest feature in the absorption profile corresponds to a low-lying loop. The footpoint

of this loop contributes the darkest and slowest moving portion of this feature whilst its

summit contributes the fainter, fast-moving portion. The summit of this loop can also be

seen faintly in emission. The footpoint carries more mass than the summit of this loop, thus

causes more absorption.

Other features on this example spectrum are relatively faint. These are either a footpoint

of the tallest loops or the less dense legs of the bloated loops. These features are almost

invisible in the spectrum since the density, and therefore mass, of these legs is so low at

these heights of the corona.

3.6.3 The aligned dipole with a source surface

The overall behaviour found here is similar to the pure, aligned dipole. Since this field

structure is an adapted dipole, this is to be expected. The field structures presented in (a)

of Figures 3.6.3 and 3.6.3 appear different to the pure dipole in Figures 3.9(a), but once

encoded into the Hα trails the differences in the absorption features are more difficult to spot.

The loops, as previously, are selected at random from the height-width plots. The

height-width plot for the pure dipole was shown in Figure 3.6, although the top branch was

interpolated to the minimum loop width of 0 radians before being sampled here. The height-

width plots for the field structures presented here are shown in Figure 3.11. The maximum

height, and top branch, for all three cases are very similar however the lower branch is very

different. This is especially true for the source surface placed below the co-rotation radius,

where the lower branch is very small and also deviates in shape from the other two cases.

Whilst for the pure dipole, or dipole with rss > rk have a wider variety of loop shapes, loops

for rss < rk must be either very low lying or very tall. Because the height-width curves are

sampled at random, loops that are very tall and wide are more likely in the case of rss < rk

than the other two cases.

The low lying loops in (a) of Figure 3.10 correspond to the features centred around

φ = 4.5 and φ = 5.5 radians. The feature at φ = 2.5 radians corresponds to a loop with its

summit around the co-rotation radius, with a dark footpoint and relatively empty summit.
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Figure 3.10: (a) Example field lines and (b) the associated Hα spectrum, for and aligned
dipole with: rss = 3.8R?, rk = 2.8R?. The field lines are shown in blue, with sections of the
field line that contribute to absorption shown in purple. Both have a stellar inclination of
60◦.

The summit of this loop can be seen very faintly in absorption, and crosses into emission.

The features around φ = 1 and φ = 5 are faint and transit very slowly through the ab-

sorption profile i.e. have a steep slope. They keep very close to the centre of the spectrum,

since the footpoints are at high latitudes and do not have much of the disc to transit. These

correspond to the tall, wide loops. The tall and thinnest loop in this example corresponds

to the absorption feature centred around φ = 3.5 radians, which is caused by the loop foot-

point. This feature looks similar, albeit fainter, to the low-lying loops and without the field

structure would look indistinguishable.

The Hα trail for the field structure with rss < rk is the most distinct. As previously

mentioned, field lines in this sample are either very low-lying loops or very tall loops. The

low-lying loops are very close to the stellar surface, and create the absorption features

centred at φ = 1.5 and φ = 5.5 radians. The tall loops can either be wide or thin. The thin
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loops have a footpoint that transits the disc, whilst for wide loops only a middle section

of the leg transits. This wide loops are responsible for the absorption features at φ = 0.1,

0.5, 1 and 1.2 radians. Whilst the thin loops are present at φ = 1, 2.5 and 6 radians. All

tall loops have dense summits and whilst they are not visible in absorption, they are very

clearly seen in emission. There are more tall loops with this field structure due to the shape

of the height-width curve, and this creates a busier emission spectrum than in the other

cases presented here.

Figure 3.11: Height-width curves showing the family of solutions for the source surface
above and below co-rotation.

3.6.4 Distinguishing between field structures from the Hα spectra

Whilst there are distinctions between the absorption features made by different types of

loop, and some distinctions in the full Hα spectra generated by the field structures applied

here, these distinctions are not always obvious. There are four types of field line in the

structures presented here: low-lying loops, loops with summits near co-rotation, tall and

wide loops and, finally, tall but thin loops. The full absorption trails generated by these

loop types are distinct. Low-lying loops generate dark, slow travelling features that have a

similar intensity across them as the density is relatively similar along the loop. Loops with

their summits close to the co-rotation radius show dark features corresponding to their foot-

points, but have empty summits due to the pressure minimum at co-rotation. Thus, their

summits do not contribute to the absorption features. Tall, wide loops produce absorption

features with footpoints that transit near the poles and thus appear close to line centre.
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These loops also have dense summits and thus add a dark, fast-travelling section to the full

feature. Tall, thin loops produce similar absorption spectra to the tall, wide loops, but with

tighter footpoints that are further from the pole of the star, the footpoint features create

longer v sin i trails.

Whilst low-lying loops can produce two features and tall loops can produce three features

in a spectrum, the stellar inclination and orientation of the dipole can limit this. With a

non-equatorial view of the star, summits of tall loops that support the slingshot prominence

material will rarely transit the disc. Due to this, the Hα trails from the tall loops resemble

the trails from the lower lying loops. Despite the potential differences in the features from

various loop geometries, once stellar inclination is accounted for it may not be a straight

forward task to pick them out of the spectra.

The orientation of the magnetic field plays a more noticeable role in the spectra generated.

Whilst for an aligned dipole there is typically one feature per loop, and these may occur at

any phase, this is not the case for the equatorial dipole. The constraint on the lobes being

φ = π radians apart is partly responsible for this. In the example shown here, the two lobes

are very apparent in the Hα spectra, especially with the inclination = 89◦ case presented.

However, one can imagine that if the loop shapes selected were different then this may be

less immediately obvious. Because the footpoints of loops can take a wide range of values,

features from the footpoints of bloated loops can appear at phases far from the central phase

(i.e. of the loop summit). In Figure 3.8 an example of this occurs for the lobe centred on

φ = 3π/2. The two, symmetric stripes here could be mistaken for independent structures

had the magnetic field structure not been available to compare to.

The emission spectra in the equatorial case is important for differentiating between this

field structure and the others investigated here. The symmetry in the trails is valuable

information, and the emission trails all join the absorption part of the spectrum at the same

phase. This is caused by the loops all stacking on top of each other. This behaviour is

not present in the other spectra. The emission from the aligned dipole with source surface

below co-rotation is also particularly different, caused by many more tall loops in this field

structure than in the others.

Here, Hα trails have been generated from specified magnetic field structures. However,

looking at the Hα spectra alone it is difficult to say that, by eye, much information on

the field structure can be inferred. The model here allows for a simple way to populate
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a stellar corona with potential prominence bearing loops. From this, one could generate

many synthetic Hα spectra using a given field structure, by randomly selecting the loop

shape and phase. With a great many Hα spectra, they could be used as a training set

for AI to investigate more fully the relationship between magnetic field structure and the

possible Hα trails.

3.7 The light curves

As a prominence crosses the stellar disc, it appears in the Hα spectrum as an absorption

feature. These dynamic spectra plot the line of sight velocity against rotation phase, and

when multiple features are present it can be difficult to determine the structure caused by

a given feature. The advantage of models of these features is that the individual trails can

be separated from the combined spectrum, so that the trail caused by any given feature can

be examined, as well as examining the combined spectrum that would be observed.

As well as dynamic spectra, the light curves generated by a feature can be generated.

These light curves plot the intensity against phase, a show the dip in intensity that would

be observed as the prominence transits the disc. An example of a light curve can be seen

in (c) of Figure 3.12.

3.7.1 The equatorial dipole

Inclination = 90◦

First, an equatorial dipole and a stellar inclination of 90◦, such that we observe into the

stellar equator, is considered.

A selection of the field lines shown in (a) of Figure 3.8 are considered below. The first

example shows a low lying field line (a), the associated absorption feature (b), and the light

curve (c). The absorption feature shows dark footpoints at the edges of the feature with

absorption intensity decreasing towards the centre, representing the loop summit. The light

curve is a wide v shape. The dark line of a footpoint absorption feature is not symmetric in

φ: looking at the first footpoint that comes onto the disc (the dark feature that begins at

the earliest phase), it can be seen that the feature darkens with increasing phase. In other
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Figure 3.12: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a low lying loop.

words, the first footpoint to enter the disc appears to absorb more as it exits the disc than

when it enters. This is not actually caused by the footpoint itself, but by the additional

material along the loop that occults it (see Figure 3.13). The same occurs for the other

footpoint, however in the opposite order. This leads to asymmetries in the light curves,

although in this case it is difficult to spot by eye.

Figure 3.13: Top: a field line about to cross the stellar disc. Middle: The leading leg (red) is
seen alone as it comes onto the disc and through the loop as it leaves. Bottom: The trailing
leg (red) is seen through the loop as it comes on to the disc and alone as it leaves.

The second loop has a summit around the co-rotation radius, and is much wider than the

previous example. The absorption feature shows this, with the two dark footpoints being

further separated in φ than was the case in Figure 3.12. The summit (centre of the absorp-

tion feature) is much lighter than previously, since the loop summit is empty at co-rotation.

The light curve is faintly scallop-shaped, showing three lobes. The first lobe is caused by

97



Figure 3.14: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a loop with summit at co-rotation.

the leading footpoint, the central lobe is present when both legs of the loop are transiting

the disc, and the third lobe is caused by the trailing footpoint.

Figure 3.15: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a tall, wide.

The third loop example is tall, but a similar width to the second loop. The absorption

features look similar, however in this case the dark central line of the loop summit is a far

stronger absorption feature, washing out the footpoint absorption. The light curve is a deep

u, dominated by the loop summit.

The fourth loop is only slightly taller than the third, however is considerably thinner.

This is caused by the extra mass supported in the loop summit. The absorption feature

caused by the footpoints looks similar to Figure 3.12, however a dark and very fast travelling

feature associated with the loop summit dominates the absorption. The light curve is again

a deep u, dominated by dense summit.

98



Figure 3.16: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a tall, thin loop.

Inclination = 60◦

A selection of the field lines shown in (a) of Figures 3.6.1 is considered below. The first ex-

Figure 3.17: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a low lying loop.

ample shows the same loop as in Figure 3.12. The absorption feature shows dark footpoints

at the edges of the feature with absorption intensity decreasing towards the centre, repre-

senting the loop summit, and very similar to the previous case. The change in inclination

has very little effect on this loop, since it lies so close to the stellar surface, The light curve

is again a wide u shape.

The second loop has a summit around the co-rotation radius, and is the same loop

shown in Figure 3.14. The absorption feature shows the two dark footpoints with an empty

summit. The light curve is again scalloped shaped, with the three lobes being more appar-

ent than in Figure 3.14. The asymmetry in the absorption is more apparent than previously.
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Figure 3.18: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a loop with summit at the co-rotation radius.

Figure 3.19: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a tall wide loop.

The tall but wide loop now shows an absorption feature that looks virtually identical to

the previous one (Figure 3.18). Since the loop summit is not visible in this inclined case,

there is no way to tell the difference between these two absorption features by eye. The light

curve is also scalloped, and also looks similar to the previous case, albeit more symmetric.

The tall but thin loop now produces an absorption feature and light curve that appears

very similar to the low lying loop (Figure 3.17). The light curve has slightly flatter wings

than the low lying loop, but the dip does not reach such large absorption intensities as the

low lying loop.
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Figure 3.20: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a tall, thin loop.

3.7.2 The aligned dipole

The light curves and Hα trails for individual loops are again considered, this time for an

aligned dipole with a source surface. The inclination is still set to 60◦.

Case 1: Rss > Rk

Figure 3.21: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a low lying loop.

Figure 3.21 shows a very low lying loop. Whilst the entire loop transits the disc, the Hα

spectrum is a very thin line, due to the proximity of the loop footpoints. The light curve

shows a smooth u shape.

The loop with summit around the co-rotation radius, is shown in Figure 3.22. The detail

in the density distribution along the loop can be seen here when the Hα trail is plotted for

this loop alone. The footpoint that transits the disc can be seen by the dark line, closest

to line centre, that passes slowly across the disc. The material closer to the summit of the
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Figure 3.22: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a loop with its summit at co-rotation.

loop, at the maximum height that is visible, can be seen by the fast travelling, faint line.

The light curve again shows a smooth u shape, since there is only one footpoint to transit

the disc so the scalloped shell appearance is not replicated.

Figure 3.23: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a tall, thin loop.

The tall, thin loop is shown above. The Hα trail again shows a similar behaviour, with

only one footpoint present. The loop summit never transits the disc due to the inclination.

Since the prominence footpoints are closer together than in Figure 3.22 above, the footpoint

feature takes longer to transit the disc because the footpoint is at a lower latitude. The

Hα trail again looks similar to the very low lying loop (Figure 3.21). The light curve again

shows a smooth, and symmetric u.

The tall but wide loop shown below again produces a Hα trail similar to the shorter but

wide loop (Figure 3.22). Again, the loop summit does not transit the disc. The light curve
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Figure 3.24: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a tall, wide loop.

is once again a smooth u shape.

Case 2: Rss < Rk

Figure 3.25: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a low lying loop.

Figure 3.25 shows a low lying loop and the observable Hα trail and light curve. The

trail is very similar to the source surface placed above co-rotation (Figure 3.21). Whilst the

trail differs from the equatorial dipole, the light curves are very similar (Figure 3.17).

Figure 3.26 shows a taller loop, closer to the co-rotation radius, although still below

it. Finding solutions at co-rotation is very difficult in this regime. The trail appears very

similar to the very low lying loop above (Figure 3.25), although there is more variation in

absorption across the trail. The light curve is similar in shape to other small loops.
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Figure 3.26: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a loop with its summit at co-rotation.

Figure 3.27: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a tall, wide loop.

The tall, wide loop in Figure 3.27 shows a Hα trail with two features: a slow moving

footpoint and a faster moving feature relating to material at larger heights. The light curve

again is u shaped.

The tall, thin loop in Figure 3.28 shows a similar Hα trail to the case with source surface

placed above co-rotation (Figure 3.23). The light curve again looks like a smooth u.

3.7.3 Comparison

Most light curves produce a smooth u shaped dip. Scallop shell like light curves can be pro-

duced with an equatorial dipole and an inclination here of 60◦. This allows for the multiple

dips within the absorption feature as the two features associated with the loop footpoints

can each contribute to a small dip, and a combined dip in the centre where both footpoints

are infront of the disc at the same time (eg Figure 3.18 or Figure 3.19). If the footpoints
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Figure 3.28: (a) the field line shape (b) the associated Hα trail and (c) the light curve for
a tall, thin loop.

are very close together, as with a solar-like prominence bearing loop such as Figure 3.17,

then the multiple dips cannot be seen as the overlap over too large a range of φ so that

they combine into one dip. Off to the wings, the gradient of the curve can be seen to have

altered although it is slight. The same occurs for tall loops such as Figure 3.20.

With a too large an inclination, such as here with 90◦, the scallop shelled behaviour can be

completely washed out. The light curves for thin loops appears very similar to when the

inclination is higher, but the scalloped behaviour seen in wider loops is not always present.

In this case, the summit of the loops transits the disc, and this can be a considerably dense

feature and dominate over the footpoints for tall loops (Figure 3.15). For loops at co-rotation

however where the summit is empty the behaviour is still present, albeit fainter.

3.8 Conclusions

The results presented in this chapter prove the previous, simplified model to be robust,

despite being restricted to the equatorial plane. The overall behaviour of the loop shapes

does not alter when translated to a more realistic field geometry that accounts for the full

centrifugal force. Allowing for the full effects of rotation does alter results quantitatively,

however.

This model produces closed, cooled field lines at a range of heights above the stellar

surface, including within the range of the observed slingshot prominences of AB Dor. These

cooled solutions at heights of around 4-5 R? above the surface (or 5-6 R? from the centre of
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the star) can be found for a range of field structures; an equatorial dipole, aligned dipole, a

dipole with source surface above, or below, the co-rotation radius. The model also produces

prominence masses that are comparable to the observations for AB Dor, on the order of

1017g. With these field lines, a stellar corona can be simply modelled to contain a selection

of these prominence bearing field lines, which can then be used to generate Hα spectra.

Hα trails can vary with the field structure, but whilst it may be possible to distinguish

between the equatorial and aligned dipole, it may be difficult to pick out any other intricacies.

The stellar inclination plays an important role in determining if loop summits transit the

disc and appear in absorption. With an inclination of 60◦, similar to that of AB Doradus,

none of the tall loop summits transit the disc. The loop summits are always within the

equatorial plane here, regardless of the field geometry, but if the loop summits were above the

equatorial plane then it would make it more probable that a transit would occur. This would

involve either using a tilted dipole or a more complex field structure such as a quadrupole.

This would generate loop summits out of the equatorial plane, though would not alter

the pressure distribution. The loop summits would not be pressure maxima, and it is not

immediately clear what shape the cooled loops would take. However, the loop summits would

be more easily transit the stellar disc and the Hα trails generated would make an interesting

comparison to the work presented here. This is also of interest because prominences are

observed in Hα trails for AB Doradus at distances of up to 8 stellar radii from the rotation

axis, with a similar stellar inclination.
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Chapter 4

Modelling prominence

formation sites on M-dwarfs
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4.1 Introduction

This chapter contains work published in Waugh et al. 2021[137].

Rather than prescribing a field for the star, as in the previous chapter, this chapter uses

observed maps of the stellar magnetic field to predict where prominences would have been

located around a set of M-dwarfs.

4.1.1 Zeeman Doppler Imaging

Prominence formation on a selection of M-dwarfs is investigated using the observed Zeeman-

Doppler Imaging (ZDI) maps available for these stars. ZDI maps provide the magnetic field

vector at the surface of the star. With this information, the full coronal magnetic field

structure of stars can be generated. Typically this involves assuming the magnetic field

to be potential1 and requires one other boundary condition which can be provided by the

location of the source surface.

The Zeeman effect describes the behaviours of atoms and molecules in the presence of a

magnetic field, and therefore is a useful tool throughout astronomy as a way of measuring

magnetic fields[138]. Consider an isolated atom within the presence of a magnetic field, B.

The magnetic field will influence the electrons within the atom, such that the spin (intrinsic

angular momentum) of the electron will align either parallel or anti-parallel with the field.

This results in a splitting of energy levels and thus a range of possible transitions that would

yield different spectral lines than a non-magnetic case. This is shown in Figure 4.1. The

change in energy experienced by a split energy level is proportional to the strength of the

magnetic field applied[138]. This makes the magnetic field strength quantifiable to observers

of the stellar spectral lines. The Zeeman effect results in a splitting or sometimes unresolved

broadening of the line profile.

Since stars rotate, all light that is emitted from them is subjected to the Doppler effect.

Light that is emitted from the star in the direction that is rotating towards us will be blue

shifted from the original wavelength. Light from the side of the star that is rotating away

from us will instead be red shifted. This also broadens the spectral line over a range of

1A potential field is one with zero volume currents i.e. ∇×B = 0.

108



Figure 4.1: (a) shows the splitting in energy levels caused by the magnetic field, whilst (b)
shows the change in number, and energy, of the transitions (yellow arrows).

wavelengths, depending on the stellar rotation rate. There is also a shift in wavelength that

is associated with the overall motion of the star, since the star will likely be moving towards

or away from us. This moves the entire broadened spectral line.

Figure 4.2: Typically, for a given spectral line, we would expect to see a delta function in
wavelength. This line is broadened by the Zeeman-Doppler effect.

The combination of these effects is used in determining the magnetic field strength at

the stellar surface. ZDI is a useful technique for measuring the surface magnetic field of

stars. However, whilst ZDI is useful for measuring large scale fields, it can not resolve finer

details from small scale fields. ZDI produces a map showing the net field in each resolution

element, so if within a resolution element there is some small scale field with a net field of

zero, it can not be distinguished from there being no field in this region.
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4.1.2 The stellar sample

The ZDI maps here are observations from the stars in Table 4.1. All stars used here are

M-dwarfs, with a range of masses, radii, rotation rates and stellar inclinations, as shown in

the table. In some cases, there are maps for multiple years of the same star. The sample

used here is from a large survey by the BCool Collaboration [139–141] of M-dwarfs which

investigated their magnetic fields. The stars used here were selected from this survey based

on their small co-rotation radii. A small co-rotation radius is needed in order to support

slingshot prominences in this modelling method.

Maps M [M�] R [R�] P [days] i [deg] Rk [R?]
V374 Peg (2006) 0.30 0.35 0.45 70 4.77
EQ Peg B (2006) 0.25 0.25 0.40 60 5.80

GJ1156 (2007/08/09) 0.14 0.16 0.33 40 6.57
EQ Peg A (2006) 0.39 0.35 1.06 60 9.21
GJ1111 (2007/08) 0.10 0.11 0.46 60 10.67

GJ1245b (2006/07/08) 0.12 0.14 0.71 40 11.90
GJ182 (2007) 0.75 0.82 4.35 60 12.53

GJ494 (2007/08) 0.59 0.53 2.85 60 13.50
AD Leo (2007/08) 0.42 0.38 2.24 20 14.31

GJ9520 (2008) 0.55 0.49 3.40 45 16.04

Table 4.1: Table of parameters for the stars, and years of observation, used here. Sym-
bols here are for the stellar parameters; M for mass, R for radius, P for period and i for
inclination [139–141].

4.1.3 Constructing the coronal field from ZDI maps

The observed ZDI maps are used to construct the coronal field, giving the field vector at

the stellar surface. In order to extrapolate into the corona, it is assumed that the field is

potential, i.e. ∇ × B = 0 and since it is a requirement that ∇.B = 0, they combine to

give Laplace’s equation ∇2Ψ = 0, where Ψ is the flux function. This expression is solved

in spherical polar coordinates (R,θ,φ) using separation of variables. This gives a solution of

spherical harmonics:

Ψ =

N∑
l=1

l∑
m=−l

[almR
l + blmR

−(l+1)]Plm(θ)eimφ. (4.1)

Here Plm are the associated Legrendre polynomials. The magnetic components are then

given by;

BR = −
N∑
l=1

l∑
m=−l

[lalmR
l−1 − (l + 1)blmR

−(l+2)]Plm(θ)eimφ (4.2)
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Bθ = −
N∑
l=1

l∑
m=−l

[almR
l−1 + blmR

−(l+2)]
d

dθ

(
Plm(θ)eimφ

)
, (4.3)

Bφ = −
N∑
l=1

l∑
m=−l

[almr
l−1 + blmR

−(l+2)]
Plm(θ)

sin θ
imeimφ. (4.4)

alm and blm are coefficients that are determined by the boundary conditions.

Considering the radial component of the field, the value at the stellar surface is a known

quantity from the ZDI maps. Another boundary condition can be set by assuming that the

magnetic field becomes purely radial at some fixed height from the surface. This radius is

called the “source surface” and denoted here by Rss. Since it becomes purely radial, it can

be described by Bθ(Rss) = Bφ(Rss) = 0. In the work shown in this chapter, the source

surface was set to Rss = 18R? for all maps. In order to form prominences in this method

at and beyond the co-rotation radius, the magnetic field must be closed to heights beyond

co-rotation. Many slingshot prominences are found around or beyond the co-rotation radius

and these are the types of prominence that this work models. Thus, this value for the source

surface was chosen to ensure that the field would be closed to large enough heights for all

stars in this sample.

The full magnetic field structure is then constructed using a code initially developed by Van

Ballegooijen, Cartledge & Priest in 1998 for studying filament formation on the Sun [142].

The prominence formation sites here are stable mechanical equilibrium points. These

mechanical equilibrium points are those in which the forces acting upon the field line are

balanced.

0 = −∇p+ (B .∇)
B

µ
−∇

(B2

2µ

)
+ ρg . (4.5)

As earlier in this thesis, p represents the gas pressure, B the magnetic field, µ the per-

meability of free space, ρ the gas density and g represents the effective gravity. As in the

previous chapter, the effective gravity here includes a θ component since this model is not

confined to the equatorial plane.

g =
(
− GM?

R2
+ Ω2R sin θ

)
R̂+
(

Ω2R sin θ cos θ
)
θ̂, (4.6)
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In order for a point to be in mechanical equilibrium it must satisfy the condition g.B = 0

as shown by [80]. For these points to also be stable, the component of effective gravity along

the field line must be decreasing. This ensures that the point is a potential minimum. This

condition can be written as

(B .∇)(g .B) < 0. (4.7)

In the following work, it is assumed that where ever there is a stable point, a prominence

forms i.e. all stable points are filled with prominence material. The sites are also assumed

to be filled to the maximum mass that they can support. This maximum mass is determined

by the density through ρg = B2/µRc where Rc is the radius of curvature of the field about

the stable point [82]. The lifetime of the prominence is then the time taken to supply this

material from the surface to the stable point by a thermal wind.

4.1.4 The visibility of prominences

Whether a prominence will be visible to an observer on Earth depends on the stellar in-

clination. Visible locations around a star are defined as those that transit the stellar disc,

this is because prominence observations are typically seen as absorption features in the Hα

dynamic spectra.

Figure 4.3: Cartoon of the set-up for checking the visibility.

The stable point, or prominence formation site, can be written in Cartesian coordinates
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as Rp = (xp, yp, zp), which by coordinate transformation becomes:

Rp = |Rp|(cos(λ) cos(α), sin(λ) cos(α), sin(α)). (4.8)

Here λ is the prominence phase at time t = 0 and α is its latitude.

The line of sight vector is defined by

d̂ = (dx, dy, dz) (4.9)

which can be written in terms of the stellar inclination (i) and rotation phase (Ωt) as

d̂ = (cos(−Ωt) sin(i), sin(−Ωt) sin(i), cos(i)). (4.10)

The locations around the star that would transit the stellar disc are found by considering

the distance cosine:

cos(φ) =
Rp.d̂

|Rp|
, (4.11)

which, when expanded, becomes

cos(φ) = cos(λ) cos(α) cos(Ωt) sin(i)− sin(λ) cos(α) sin(Ωt) sin(i) + sin(α) cos(i). (4.12)

It is a requirement for it to enter the disc that

R∗ = |Rp| sin(φ) = Rp
√

1− cos2(φ) (4.13)

i.e. cos(φ) =
√

1− (R∗/Rp)2 which can be combined with Equation 4.12 to give:

cos(Ωt+ λ) =

√
1− (R∗/Rp)2 − sin(α) cos(i)

cos(α) sin(i)
. (4.14)

Equation 4.14 must be ≤ 1 for a transit to occur, i.e. for a prominence to be visible. The

visible locations around a star can be found in terms of latitude (α) and distance from

the rotation axis (Rp). These plots are referred to here as “visibility plots”. Prominence

locations are then over-plotted on these visibility plots (see, for example, Figure 4.11).
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4.1.5 Prominences as wind gauges

Figure 4.4: Cartoon showing the stellar wind (left) and prominence (right).

Mass loss rates associated from the prominences can be calculated from the flow of ma-

terial along closed prominence-bearing loops. Prominences are formed in this model by an

up-flow of material from the stellar surface, as an isothermal wind, at the temperature of

the stellar corona.

The up-flow material is supplied until the mass at the stable point reaches the maximum

mass that can be supported there. The time taken to supply this maximum mass is defined

here as the prominence lifetime. The lifetime for a prominence can be calculated from the

mass loss rate and the maximum mass.

The M-dwarfs in this sample all lie within the “limit-cycle regime” [87]. Because the

co-rotation radius of these stars is above the sonic point for the prominence up-flows, the up-

flow will keep supplying mass to the stable point, even after the maximum mass is reached.

This means that stable points will continually fill up to their maximum mass before being

ejected from the star, and then re-filling. Thus, the mass loss rate can be calculated from

Ṁprom = ρpupAp (4.15)

since the time-averaged mass loss rate will be equal to the mass flow rate from the surface.

Here ρp denotes the prominence density, up the up-flow velocity of the material and Ap the

area of the flux tube that is contributing to the prominence.
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Using mass conservation this could be evaluated from any radius above the star, here it

is evaluated from the stellar surface i.e.

Ṁprom = ρ?u?A?. (4.16)

The isothermal up-flow of the prominence material (u?) is set to the coronal temperature,

which is here set to T = 8.57×106K.2 The density (ρ?) is related to the plasma pressure by

the isothermal equation of state. The plasma pressure is estimated using p = κB2, where

κ = 10−5 [143], which relates the scaling of the gas and magnetic pressures at the stellar

surface. Prominence temperatures were given by Collier Cameron et al.[28] for prominences

on AB Doradus as Tp = 8500K. This temperature is used here to calculate prominence

masses, which are calculated by summing the mass at increments along the field lines, de-

pending on local flux tube volume and local density.

Angular momentum loss rates can also be calculated once the mass loss rates are known:

J̇prom = Ω(Rp sin θ)2Ṁprom. (4.17)

Ω is the stellar rotation rate, Rp the stable point spherical radius coordinate and θ the sta-

ble point co-latitude. This estimate represents a lower limit to the angular momentum loss

rates since it neglects magnetic stresses applied to the outflowing material by the magnetic

field.

2The coronal temperature of AB Dor.
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4.2 Prominence modelling

4.2.1 Where are the prominence formation sites?

Plots showing histograms of the locations of the prominence formation sites are shown in

Figures 4.5, 4.6, 4.7, 4.8 and 4.9.

Figure 4.5: Histograms showing the number of stable points with; left: prominence mass,
middle: co-latitude and right: distance from rotation axis (cylindrical radius). The equato-
rial co-rotation radius is shown in the right hand plots as a black line.

Plots typically show a range in masses, with a peak in mass around the central value.

This is more apparent in some maps than others, for example EQ Peg A, GJ1111 (2007)

and AD Leo (2007). These maps have many stable points, which creates a much smoother

histogram than say GJ494 (2008) for which there was only a single stable point found.
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Figure 4.6: Histograms showing the number of stable points with; left: prominence mass,
middle: co-latitude and right: distance from rotation axis (cylindrical radius). The equato-
rial co-rotation radius is shown in the right hand plots as a black line.
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Figure 4.7: Histograms showing the number of stable points with; left: prominence mass,
middle: co-latitude and right: distance from rotation axis (cylindrical radius). The equato-
rial co-rotation radius is shown in the right hand plots as a black line.
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Figure 4.8: Histograms showing the number of stable points with; left: prominence mass,
middle: co-latitude and right: distance from rotation axis (cylindrical radius). The equato-
rial co-rotation radius is shown in the right hand plots as a black line.

Looking at the middle panels of Figures 4.5, 4.6, 4.7, 4.8 and 4.9, the stable points tend

to peak about the equatorial plane i.e. a co-latitude of 90 degrees. Again, this is especially

apparent for maps that support a large number of stable points. There are a few maps of

particular note from these plots. Firstly, GJ494 (2008) with only one stable point, leading

to a trivial histogram. GJ9520 (2008) may also stand out as atypical, showing two peaks

in the histogram with a gap between. This map supports only a few prominences, which

from these histograms can be seen to be low in mass, often at higher latitudes and typically

close to the rotation axis. These are likely to be more solar-like prominences rather than

the slingshot prominences that this work hopes to model, and therefore little time is spent

examining this map in detail throughout this chapter.

119



Figure 4.9: Histograms showing the number of stable points with; left: prominence mass,
middle: co-latitude and right: distance from rotation axis (cylindrical radius). The equato-
rial co-rotation radius is shown in the right hand plots as a black line.

GJ1111 (2007) and GJ1156 (2007) both show a large number of stable points in their

field structures. The histograms of co-latitude show, in both cases, a central peak around

the equatorial plane and also two peaks at higher latitudes.

The right hand panel of these figures shows the distance from the rotation axis of the stable

points. This is a cylindrical radius, i.e. Rp cos θ. The black line on these plots represents

the location of the equatorial co-rotation radius. Typically the trend is for the distribu-

tion to peak just beyond this radius, though this is not always clear in the maps with few

stable points. GJ9520 (2008) again shows a split distribution, with multiple stable points

very close to the rotation axis, and a smaller number beyond the co-rotation radius. GJ494

(2007) shows similar behaviour. GJ182 (2007) also has few stable points, and all of these

are supported close to the rotation axis.

Prominences around all maps are most likely to form about the equator of the star.

Here the effective gravity is largest, which helps support these slingshot prominences at

large distances from the stellar surface. The most massive prominences are typically found

about the equatorial plane. Distributions of prominence mass with stable point co-latitude

is shown in Figures 4.10 and 4.11. The red line in these figures shows the equatorial plane,

i.e. a co-latitude of 90 degrees. In many cases, the stable points can be seen to take a large
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range of co-latitudes when low in mass, but that high mass prominences are typically found

very close to the equatorial plane. EQ Peg B, EQ Peg A and GJ1111 (2007) show this par-

ticularly well, since they support a great number of stable points, although the behaviour

can be seen in many other maps too.

As before, GJ9520 (2008) shows behaviour very different to the other maps in this sam-

ple. There is a clump of stable points at a high latitude, around 45 degrees. These stable

points support low mass prominences.
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Figure 4.10: Plots showing the co-latitude of and mass supported by each stable point found
on each map. The red line shows the equatorial plane.
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Figure 4.11: Plots showing the co-latitude of and mass supported by each stable point found
on each map. The red line shows the equatorial plane.
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4.2.2 Are these prominences geometrically visible?

Whilst most maps investigated here support many stable points, these may not be visible

to observers. Prominences are typically only visible if they transit the stellar disc, creating

absorption features in the Hα dynamic spectrum. There are exceptions where the star is

viewed pole on and prominence material may be seen in emission. However, these observa-

tions are less common than those present as absorption features. Therefore throughout this

chapter, a visible prominence is one which would transit the stellar disc from our vantage

point on Earth.

Figures 4.12 and 4.13 show plots of the locations around each map in terms of the radial

coordinate (Rp) and latitude (π/2 - θ). The grey regions are those locations around the star

that never transit the stellar disc, thus these locations would never be visible. The middle,

white section show the locations that would transit the stellar disc. The co-rotation radius

for each map is shown by the purple dashed line. The co-rotation radius varies with stellar

latitude, with a minimum value in the equatorial plane and reaches an asymptote at the

rotational pole, where the centrifugal term goes to zero.

Prominences that form closer to the stellar surface are more likely to be visible, since

they can take a large range of latitudes and still transit the stellar disc. As prominences

form at larger heights above the surface, the range of latitudes they can take and still be

visible decreases sharply. The “ideal” prominence latitude is (90 − i), which would ensure

that a prominence would be visible at all radii above the stellar surface.

The prominences are shown on these plots and are coloured based on their mass, with red

being the most massive prominence supported on that map.

Prominences can be seen to form typically around the equatorial plane. There are some

cases that show a larger spread of latitudes for example GJ1156 (2007, 2008, 2009), GJ1111

(2008) and GJ1245b (2007), although this spread still appears to centre on the equatorial

plane.

The largest mass prominences on all maps, shown in red, form around the equatorial

co-rotation radius. In almost all maps this makes them impossible to observe as absorption

features, since this region around the star rarely lands in a visible region around the star.
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Figure 4.12: Plots showing the visible regions around a star (white) and “invisible” (grey).
Prominences are shown, scaled to the maximum mass on each map. The co-rotation radius
is shown by the purple dashed line.
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Figure 4.13: As in Figure 4.12.
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In addition, the formation of prominences around the equatorial plane makes them difficult

to observe through ZDI methods. The inclination of stars that can be reasonably observed

using ZDI methods are restricted. Stars with very high inclinations (i.e. viewed directly into

the equator) produce inaccurate field maps, because it is unclear which hemisphere light was

emitted from. This makes distinguishing between the two hemispheres almost impossible.

The maps in this sample have a range of dipole tilts, from aligned with the rotation

axis to perpendicular. This concept was depicted in the cartoon Figure 3.1 from Chapter

2. The dipole tilt determines where prominences can form since it alters the locations at

which g.B = 0 and (B.∇)(g.B) < 0, which are the requirements for a location to be a stable

equilibrium. Aligned dipoles generate prominences tightly bound to the equatorial plane,

for example AD Leo (2007, 2008), EQ Peg B and V374 Peg. Tilted dipoles, such as GJ1156

(2007, 2009) and GJ1245b (2008), allow for the formation of prominences at higher latitudes.

Hence, the tilt of the dipole axis is responsible for the locations at which prominences can

be supported on a given star. This influences whether prominences are visible around a star.

The stellar inclination also determines the visibility of prominences. The inclination de-

termines which locations around a star are visible, for example V374 Peg allows for promi-

nences around the equatorial co-rotation radius to be partly seen, however AD Leo and

GJ1245b have very high inclinations, making the equator (where prominences typically

form) invisible to observers.

The stellar inclination for a star is fixed, however the dipole tilt will change with changing

large scale field structure. Thus, prominences may not be visible on a star one year but be

visible at a later date.

4.2.3 How does the prominence mass distribute?

Figure 4.14 shows the distribution of mass over latitude for the maps in this sample. Maps

are organised by their dipole tilt. Aligned dipoles are on the right hand side of this figure,

with latitudes of the dipole axis close to 90 degrees. Very misaligned dipoles are on the

furthest left of this figure, with low dipole axis latitudes. The colour represents the promi-

nence mass, binned into 1◦ latitude bands. These masses are normalised individually for
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each map, scaled to the maximum binned mass. These maximum masses are shown in the

second column of Table 4.2.

Map Max prom. mass in Total prom. mass % mass
1◦ latitude band [kg] supported [kg] visible

EQ Peg B 2006 2.6×1016 3.7×1016 0
GJ1156 2007 1.2×1012 2.9×1012 0.1
GJ1156 2008 7.4×1011 3.5×1012 0
GJ1156 2009 5.9×1011 4.8×1012 0.2
AD Leo 2007 1.3×1014 2.3×1014 0
AD Leo 2008 2.4×1014 2.6×1014 0

EQ Peg A 2006 1.9×1015 3.6×1015 0.1
GJ1111 2007 2.0×1013 2.6×1013 0
GJ1111 2008 1.3×1011 3.4×1011 0.7

GJ1245b 2006 5.2×1011 1.2×1012 0
GJ1245b 2007 2.0×1012 2.9×1012 0
GJ1245b 2008 9.9×109 3.1×1010 0
GJ9520 2008 4.3×1012 1.4×1013 22.9
GJ182 2007 5.1×1013 8.7×1013 0
GJ494 2007 8.3×1012 3.5×1013 50.4
GJ494 2008 6.8×108 6.8×108 0

V374 Peg 2006 6.5×1017 5.1×1017 12.9

Table 4.2: Values of the maximum prominence mass supported in any 1◦ latitude band, the
total mass supported in each star and the percentage that is visible.

Aligned dipoles show material that is confined close to the equatorial plane, with a

smooth distribution. Tilted dipoles on the other hand have stable points spread over a wide

range of latitudes, and thus an extended distribution in latitude. These tilted fields sup-

port high latitude prominences, which support little mass. These distributions are clumpy,

compared to the smooth distributions seen around aligned dipoles. The largest masses are

found within the equatorial plane, regardless of field geometry. The centrifugal term in the

effective gravity is largest here, and this does not depend on field structure.

The “bistable stars” are on the left hand side of Figure 4.14. These are the very low

mass M-dwarfs with weak but complex field structures. These two factors result in lower

mass prominences on these stars when compared to others in the sample, and finding stable

points in these fields is difficult. This creates the clumpy distribution.

The total mass supported on these maps ranges from 6.8 × 108kg on GJ494 (2008) to

5.1 × 1017kg on V374 Peg. For most stars, the total mass is on the order of 1012-1014kg.
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Figure 4.14: The range of latitudes where stable points are supported on each map, against
latitude of the dipole axis. The prominence mass supported on each map is shown by the
colour, and is scaled to each map. Equatorial dipoles are those on the furthest left hand
side and a fully aligned dipole would be situated at the furthest right.

However, the visible mass is much smaller than this total value. GJ494 (2007) shows the

largest fraction of mass visible at 50.4%, then GJ9520 (2008) at 22.9%. In both cases,

these prominences all lie very close to the stellar surface and are likely to be closer to solar

prominences than slingshot ones. V374 Peg shows the next largest percentage mass visible,

about 13%. These prominences are about the equatorial co-rotation radius and slingshot

prominences. However, for the remaining maps, the percentage of total mass that is visible

lies below 1%.

4.2.4 Which stars would make good candidates for observing promi-

nences?

This research has established that while prominence support is likely a very common occur-

rence on these stars, the visibility of these prominences is far from guaranteed. In order to

establish which kinds of star would make good candidates for observing these prominences,

the follow points are reiterated:

• stars with small co-rotation radii allow for prominence formation at lower heights than

stars with large co-rotation radii. These prominences are also likely to be the most

massive.
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• A high stellar inclination is preferable, as it allows the observer to view into the

equatorial plane and see the highest mass prominences.

• Alternatively, if viewing a star with a low stellar inclination, it should have a dipole

tilt with a low latitude i.e. highly misaligned. This allows for the support of high

latitude prominences around the star, which whilst less massive could still transit the

stellar disc. Those prominences in the equatorial plane of such a star would never

transit the disc.

Whilst the inclination of a star can not be changed, the dipole tilt will not be a constant.

For the stars in this sample where maps from multiple years were available, it is clear that

the dipole tilt has changed with time. Our Sun has a magnetic cycle of 22 years, and other

solar like stars have also been observed to show some sort of cycle. Jeffers [144] found a

stellar cycle on the star Tau Boo of 120 days, whilst Boro Saikia [145] showed a cycle length

of 14 years for 61 Cyg A. M-dwarfs such as those used here can have magnetic fields that

are stable for long periods of time (Morin 2008 [140] and Vida 2016 [146]). However, even

a small change in the large scale field structure could change the latitude of the dipole axis,

and likely alter the locations of prominence formation. The star AD Leo, which is in this

sample, was found to have magnetic field variability over a long time period [147], and others

in this sample may have similar behaviour.

A stellar cycle, or some variability in the field structure, would cause a star to move across

the plot (Figure 4.14) over time. Hence, its prominence distribution may at times be smooth

and confined close to the equatorial plane, and at other times be dispersed and clumpy. This

also means that it may be possible to observe prominences on a star some years, but not

others, regardless of the stellar inclination. Equally, observing a star but seeing no evidence

for prominences does not mean that they are not present. There is no way to distinguish

between a star with no prominences and a star where prominences are not visible due to

geometric effects.

Looking specifically at the stars in this sample, the maps GJ1156 (2007/2009), EQ Peg

A (2006), GJ1111 (2008), GJ9520 (2008), GJ 494 (2007), V374 Peg (2006) showed visible

prominences. The visible prominences found on GJ9520 are very close to the stellar surface

and are likely to be more similar to solar-like prominences than the slingshot prominences

investigated here. They are also unlikely to be visible in observations, due to their low
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masses and heights. Thus they are not investigated in depth here. In most cases where

prominence material could be visible, less than 1% of the total mass is visible. V374 Peg is

notable star in the sample as there are observations of prominences on this star to compare

to. These do not exist for others in this sample. This work suggests only 13% of the total

prominence mass to be visible, and this prediction is an upper limit. The masses predicted

here assume that, at a given time, all prominence formation sites are filled when in reality

not all sites will be filled at once. Thus, some of the stable points will not be filled at the

time of an observation, making the total mass visible less than this 13%. This suggests that

the observed predictions for prominence masses on V374 Peg is far lower than the true value.

This also extends to other stars in which prominences have been observed. Therefore, of

these stars the best candidates for prominence observing are V374 Peg, GJ1111, EQ Peg

A and GJ1156. The stars GJ494 and GJ9520 are also potential candidates although their

prominences are likely to be very close to the stellar surface.

4.2.5 What are the prominence mass loss rates?

Figure 4.15: Prominence mass loss rate (in solar masses per year) against stellar mass (in
solar masses).

Plotting the mass loss rate of prominences against the stellar mass shows the presence

of two groups of stars (Figure 4.15). The higher mass star group shows an increase in mass

loss rate as stellar mass decreases. On the other hand, the group of stars with very low

mass, the bistable stars, show a decrease in mass loss rate with a decrease in stellar mass.
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As previously mentioned, these bistable stars have weak and complex field structures that

prohibit them from forming massive or many prominences. This leads to low prominence

mass loss rates. Due to the complex field structures of these stars, the prominences that

do form are often found at higher latitudes, where less mass can be supported due to the

weaker effective gravity term that must balance the magnetic tension. For the other group

of stars, however, a decrease in stellar mass leads to an increase in prominence mass loss

rate due to the increased magnetic field strength. Total prominence mass will scale with

the magnetic field strength squared [82], and generally this increases with decreasing stellar

mass. The largest mass loss rates in this sample are for the stars V374 Peg, EQ Peg A

and EQ Peg B. These stars have strong magnetic fields and aligned dipole axes, making

them great candidates for supporting large prominence masses. They also all have small

co-rotation radii, which also helps to drive up prominence masses and mass loss rates. This

is because large prominences typically form around, but not at, the equatorial co-rotation

radius. Since field strength decreases with height, stars for which large prominences can be

supported at lower heights can be supported by larger field strengths.

Figure 4.16 shows relates the prominence mass loss rate to the observed X-ray flux, and

the data is also given in Table 4.4. The stellar values for the X-ray flux were found through

Vizier [148] and Simbad [149] and can be found in the following references; [150–152]. The

vertical axis of the plot is the prominence mass loss rate per unit surface area that con-

tributes to the prominence. The values from this work are shown in (a) of this figure as

black points. There is a lot of scatter on this plot, that is present even for stars in which

there are multiple maps. The blue dashed line gives the line of best fit for this data, which

is Ṁ ∝ F 1.32
X . This value is close to the observationally derived values for the wind, as given

in Table 4.3. It is worth noting that the scatter in this plot is also seen in the data for the

wind values. That the scatter seen in this work is present even for stars with multiple maps,

implies that the scatter is intrinsic. This is due to variation in the field and therefore could

be linked to stellar cycles.

The relation from the line of best fit is close to the wind derived value, specifically from

Wood [96]. This provides further evidence that prominences could indeed be good proxies

for measuring wind mass loss rates, as in the model by Jardine and Collier Cameron, 2019

[87]. An important consideration, however, is that once this plot is made with only the
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Figure 4.16: (a) Plot showing the prominence mass loss rate per unit area against observed
X-ray flux. The black points show the values from this work and the blue dashed line is the
line of best fit. Other lines represent literature values for the wind mass loss rates, as given
in Table 4.3. (b) Plot showing the visible fraction of the mass loss.

visible prominences, the results no longer match the wind values well. This is shown in

Figure 4.16 (b). This figure shows the mass loss rate per unit area that would have been

visible, based on the geometrically visible prominences. These values are much lower, and

for some stars there is no visible prominence mass loss at all. The exact values of the visible

Ṁ/A, plotted in Figure 4.16(b), are given in the final column of Table 4.4.

V374 Peg is again especially interesting, as it can be directly compared to the work of

Jardine and Collier Cameron [87] from the observed values. The authors predicted a mass

loss rate per unit area of 2 × 104 solar units and the value here is 10 times their predicted

value. This is actually consistent with the authors, since this work has predicted only around

10% of the mass to be visible.
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Relation Reference colour in

Ṁ/A ∝ F aX Figure 4.16
a = 1.34 [96] dark grey
a = 0.82 [153] brown

a = 0.5 to 1 [154] light grey
a = 1.32 the prominence model in this work blue

Table 4.3: Table of relations between Ṁ/A and FX .

Map FX Prominence Surface area Visible

Ṁ/A contributing to Ṁ/A
(year) [106 ergcm−2s−1] [10−14A�] prominences [%] [10−14A�]

EQ Peg B 2006 6.51 14103 4.67 0.0
GJ1156 2007 0.46 759 0.48 0.8
GJ1156 2008 0.02 624 0.42 0.0
GJ1156 2009 0.02 514 0.68 1.0
AD Leo 2007 3.52 752 0.21 0.0
AD Leo 2008 3.85 816 0.15 0.0

EQ Peg A 2006 5.09 7643 1.15 7.6
GJ1111 2007 0.06 265 2.85 0.0
GJ1111 2008 0.02 128 0.28 0.9
GJ1245b 2006 0.95 327 0.07 0.0
GJ1245b 2007 0.20 267 0.25 0.0
GJ1245b 2008 4.27 17 0.21 0.0
GJ9520 2008 3.87 890 0.13 203.7
GJ182 2007 1.20 135 0.10 0.0
GJ494 2007 0.34 298 0.26 150.2
GJ494 2008 0.01 253 0.02 0.0

V374 Peg 2006 54.93 25857 6.48 3335.6

Table 4.4: Table of values for Figure 4.16. X-ray fluxes are calculated from the X-ray fluxes
observed at Earth and the distance to each star.

The percentage of the stellar surface that supplies the prominences are given in column

4 of Table 4.4. This value is typically below 1%, with a few maps with higher percentages.

V374 Peg has the highest surface area contributing to prominences at around 6%, and EQ

Peg B is also notably larger than the rest at around 5%. These maps have strong fields and

aligned dipoles, so these relatively large percentages are sensible. However, most maps show

a very small percentage of the stellar surface contributing to prominence mass loss. In the

work of Jardine and Collier Cameron [87], the authors assumed a prominence contributing

surface area of 1% of the stellar surface. This work is consistent with that being a good

“ball park” figure.
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Overall, this work suggests that using prominences as wind gauges is a reasonable method

of gathering data on the mass loss rates of low mass stars. However, it is apparent that

these observational predictions will underestimate the true value, the extent to which will

depend on the proportion of prominence mass visible to observers. Observational values will

always underestimate the mass loss, often greatly so. This should be kept in mind when

such predictions are made.

It is worth commenting that Woods et al. [96] plot mass loss rate per unit surface area

against X-ray flux in order to remove the relationship of the radius of the star, and that

these are X-ray fluxes at the stellar surface. It would also be interesting to plot this against

X-ray luminosity.

4.2.6 What are the prominence angular momentum loss rates?

Plotting the angular momentum loss rate against stellar mass gives Figure 4.17, and shows

two groups of stars and the same behaviour as the mass loss rates. This is not surprising

given the linear relationship between mass loss rate and angular momentum loss rate. Again,

the “bistable” stars can be seen at the bottom left of the plot.

Figure 4.17: Angular momentum loss rate against stellar mass.

The spin-down timescales are calculated from this angular momentum loss rate as τ =

J?/J̇p. These timescales are given in Table 4.5, where there are a wide range of values from

0.1Gyr for V374 Peg to 588.2Gyr for GJ494 (2008). These values are lower limits on the true
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Map Ṁprom J̇prom Prominence spin-down
[M�/year] [ergs] timescale [Gyr]

EQ Peg B 2006 5.2×10−12 5.8×1033 0.2
GJ1156 2007 1.2×10−14 1.2×1031 20.0
GJ1156 2008 8.4×10−15 8.1×1030 29.4
GJ1156 2009 1.1×10−14 1.1×1031 21.4
AD Leo 2007 2.8×10−14 2.4×1031 24.2
AD Leo 2008 2.2×10−14 2.0×1031 29.4

EQ Peg A 2006 1.4×10−12 1.4×1033 0.7
GJ1111 2007 1.1×10−14 1.0×1031 5.5
GJ1111 2008 5.4×10−16 4.9×1029 116.7
GJ1245b 2006 6.2×10−16 4.5×1029 159.3
GJ1245b 2007 1.6×10−15 1.4×1030 52.6
GJ1245b 2008 8.5×10−17 8.1×1028 894.8
GJ9520 2008 3.6×10−14 2.2×1031 38.2
GJ182 2007 1.1×10−14 8.9×1030 285.6
GJ494 2007 2.8×10−14 8.8×1030 114.2
GJ494 2008 1.7×10−15 2.2×1030 588.2

V374 Peg 2006 2.4×10−11 2.8×1034 0.1

Table 4.5: Table of mass and angular momentum loss rates. Also shown are the spin down
timescales associated with the prominence angular momentum loss rates.

value of the angular momentum loss rate as this work has assumed that there is no magnetic

stressing, and this means that the spin down timescales are upper limits. The faster rotating

stars in the sample lose more angular momentum from this prominence ejection than the

slower rotators, which means that the prominences act as a regulation mechanism which

results in the rotation rates of stars converging as they age. The range of angular momentum

loss rates for this sample of maps spans about 5 to 6 orders of magnitude. A large range

was also seen in the mass loss rates in Figure 4.15. This huge range occurs over a very small

variation in stellar mass - only about a factor of 4 in this sample from 0.1M� to 0.8M�.

Despite the very similar mass for stars in this sample, there is no one value of mass loss or

angular momentum loss rates that would have been a suitable choice to represent these stars.

This huge range of values is due to the total prominence mass supported on stars having

multiple factors which includes; field strength, latitude of the dipole axis, stellar rotation

rate and co-rotation radius. It is also important to keep in mind that these prominences

will not be present for all of a stars lifetime and thus will only contribute to the angular

momentum at certain points in its evolution.
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4.2.7 Impact on orbiting exoplanets

The ejection of prominences clearly has consequences for the star itself, however perhaps

less obvious is the impact on orbiting planets. Planets orbiting a star will experience the

stellar wind and the intermittent wind. But planets orbiting a star with these slingshot

prominences, routinely ejected into the stellar system have the potential to orbit into the

path of ejected prominence material, will also experience intermittent prominence ejection.

It is assumed here that this theoretical planet orbits the star within the stellar equatorial

plane, since this would be the most common orientation for planetary orbit.

Figure 4.18 shows (a) the maximum percentage of the orbit that this planet would expe-

rience prominence ejecta material for the stars in this sample. The horizontal axis shows the

latitude of the dipole axis, with the right hand side showing an aligned dipole and left hand

side showing a fully misaligned dipole. As well as the assumption that the planet resides

in the equatorial plane, it has also been assumed that if the ejected material could collide

with the orbiting planet, then it does. This is why the percentage of the orbit intercepted

(the vertical axis of Figure 4.18) is a maximal value.

This percentage was calculated by first selecting the range of latitudes that could collide

with the planet, i.e. the angular extent of the planet (see Figure 4.19). The longitude of

the prominence stable points within this range of latitudes are then used as points from

which the material is ejected into space. The angular extent of the orbit encompassed by

prominence ejecta is then found, as depicted in Figure 4.18(b). In this way, we calculate

the maximum percentage of the planetary orbit that could be affected.

For the maps GJ494 2007, GJ494 2008, GJ1156 2007, GJ1156 2008, GJ9580, GJ1245b

2008 and AD Leo 2008, no prominence material would be intercepted by the planet, thus

they are not shown on the plot. For the remaining maps, the maximum percentage of

an orbit for which a planet would intercept prominence material is around 20%. For the

majority of maps however, the value is below 2%.

If the host star has a large latitude of dipole axis (i.e. is on the far right of Figure 4.18(a)),

the planet is more likely to frequently be impacted by ejected prominence material. These

are also the stars for which it is most likely that large quantities of prominence material
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Figure 4.18: (a) The percentage of the orbit intercepted by prominences against stellar
dipole tilt. The point size represents the maximum Ṁprom intercepted over the orbit. (b)
A cartoon of the system showing example locations where the orbit could be intercepted.

Figure 4.19: Cartoon of the planet orbiting 1AU from the host star, in the equatorial plane.
x shows the range of latitudes that a prominence could take and interact with the planet.
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could be experienced by the planet. In other words, the largest values of Ṁp. This is because

these maps hold more material in their equatorial plane than the maps with low dipole axis

latitudes, although all maps support most of their material in the equatorial plane. Thus,

planets around stars on the right hand side of this plot experience more frequent and more

intensive prominence ejecta collisions. Planets that orbit outwith of the equatorial plane,

which are less common, will escape much of this prominence material because their orbit

will only take them into the equatorial plane in two points.

4.3 Conclusion

This chapter has investigated the locations of prominence formation (mechanical stable

points) around a set of M-dwarfs, given the observed magnetic surface maps and an as-

sumed potential field reconstruction.

This work finds that prominence locations depend on the alignment of the rotation and

magnetic dipole axes. To form prominences at high latitudes, a large misalignment between

these two axes is required, and these prominences typically do not support much mass.

Large prominence masses are typically supported around stars with little tilt between these

two axes, as this allows for the support of large masses close to the equatorial plane of the

star. Whilst the tilt between these two axes influences the latitudes of prominence formation

and the total mass, in all cases the largest prominences on a given map were found at low

latitudes.

Whilst the inclination of a star is fixed, the alignment (or misalignment) between the

rotation and dipole axes is not fixed. It likely varies over time, relating to a stellar cycle

or even just changes to the large scale field. This change will alter whether prominences

could be visible to observers of the system. This is notable as the work presented in this

chapter predicts that the prominences likely exist around almost all of these type of stars (as

all maps here have shown prominence support) but that in many cases the material would

never be visible as it wouldn’t transit the stellar disc. Even for those maps investigated here

where prominence material was visible, it was only a small fraction of the total material

present.
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The work encompassed by this chapter suggests that good stellar candidates for observing

prominences must:

• allow us to observe into, or close to, the equatorial plane. This would result in the

most massive prominences transiting the stellar disc and being present in the Hα trails

as absorption transients. This would translate to the stellar rotation axis having a

high inclination to the line of sight of the observer.

• If this is not the case and the stellar rotation axis is at a low inclination relative to the

observers line of sight, such that the equatorial plane is not visible, then prominences

may still be observed if they can form at high latitudes. This requires that the magnetic

dipole axis is highly tilted compared to the stellar rotation axis.

• These stars should also have a low co-rotation radius. Stars with small co-rotation

radii will form their most massive prominences closer to the stellar surface than those

stars with large co-rotation radii. This makes the most massive prominences easier

to observe as they are more likely to transit the stellar disc, regardless of the stellar

inclination. This can be seen from the visibility plots, where the visible locations

around the star decreases quickly with height above the stellar surface.

Specifically from this work, the stars in this sample that would make possible candidates

for prominence observations using current techniques are; V374 Peg, EQ Peg A, EQ Peg B,

GJ1156, GJ1111, GJ1245b and GJ494. As these are the stars around which this work has

predicted the prominence material to transit the stellar disc.

It is of note that all calculations here on visibility of prominence material has required the

material to transit the stellar disc. In the vast majority of cases, prominences are observed

in absorption as they transit the stellar disc, and thus this constraint is reasonable. How-

ever, there have been cases such as LQ Lup [48] and V830 Per [53] where prominences have

been seen in absorption when the star is viewed pole on.

When plotting the mass loss or angular momentum loss rates with stellar mass, two

categories are found, the higher mass stars following one relation and the very low mass

“bistable” stars which do not follow this relation. This is caused by the very weak and

complex fields of the bistable stars, which does not allow them to support much prominence

material in their corona.
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In the higher mass regime, an increase in stellar mass is linked to lower prominence mass

loss and angular momentum loss rates. These stars have lower field strengths than their

lower mass counterparts, and leads to less material being supported.

The bistable stars seem to show an increase in mass/angular momentum loss rates with

increasing stellar mass.

Spin down timescales as contributed by prominence ejections are calculated. They are in-

versely proportional to the prominence angular momentum loss rates. Thus, stars with

larger J̇ have smaller spin down timescales. These are the lower mass stars in the higher

mass regime (ie the lowest stellar masses but not the bistable stars). These spin down

timescales range from 0.1-588.2 Gyrs. These timescales are dependent on the prominence

mass loss rates, through the angular momentum rate. These mass loss rates are an upper

limit, having assumed that all prominence sites are filled at any given time, and this means

that the spin down timescales are a lower limit. Also, this calculation has assumed that the

prominence mass loss rate has not varied, which is likely not the case. As the field structure

changes, so too will the tilt of the dipole axis and therefore the prominence mass supported.

As suggested here already, it is likely that the large scale field structure of these stars should

change over time.

In plotting Ṁ/A, this work has found that the prominences around these young stars

could be comparable to the wind mass loss rates. The relation for this mass loss rate per

unit area as contributed by the prominences is very similar to the relation found for the

observationally derived wind values. This is especially the case for the relation by Wood

[96]. The study here found there to be a large amount of scatter in the prominence Ṁ/A

values, which is also consistent with the wind observations. As there are a few stars in this

sample for which there are multiple ZDI maps, it can be seen from this work that there can

be variation also for a given star when viewed over multiple years.

This work is consistent then with Jardine et al. [87] that showed prominences could be

used to measure the winds of these stars. However, this work suggests that care should be

taken when doing so, as observations can greatly underestimate the quantity of prominence

material present in a system. This would then lead to incorrect calculations of the mass

loss rates. V374 Peg is a good example of this, which is in this stellar sample and has also

been used by Jardine 2019 [87] to estimate the mass loss rates. This work found a value

a factor of 10 greater than Jardine and Collier Cameron, and also found that likely only
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about 10% of the material would be visible. Thus, whilst this work is consistent with that

work, it also shows that the value gathered from observation is considerably less than the

true value could be.

The consequences of prominence ejection extends beyond the star and also to orbiting

planets. Prominence mass loss rate could typically intercept less than 2% of the planets

orbit. For some maps the percentage is much higher, 18% for EQ Peg B. Maps with more

aligned dipole axes show larger percentages of the orbit that could be intercepted by ejected

prominence material. These maps support more prominence material in the equator and

thus this makes sense.

Overall, the alignment of the stellar magnetic axis to rotation axis, and the magnetic field

strength both influence the quantity of prominence material that could be supported around

a star. The visibility of this prominence material then depends on the stellar inclination,

i.e. the angle into which the observer sees the star.

Using prominences as wind gauges should come with the warning that the proportion of

prominence material observed could be far less than the true value and this should be

carefully considered when making estimates based on the observations alone.
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Chapter 5

Comparison of the modelled

wind and prominences
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5.1 Introduction

This chapter is work that follows from the previous chapter, but was never published.

In the previous chapter, the modelled prominence mass loss rates were compared to the

observed values for the stellar wind. In this short chapter, the prominences are compared

to a modelled wind. This modelled wind is consistent with the modelled prominences, since

the same field structure that was reconstructed from the ZDI maps is used to calculate the

open regions on the maps and estimate the wind mass loss.

5.1.1 Comparison to the previous chapter

The coronal magnetic field structure is constructed from the ZDI maps as in the previous

chapter. Here the difference is that the open field lines i.e. the wind bearing fields lines

are evaluated for their mass and angular momentum loss rates and compared to the mod-

elled prominences. In the previous chapter, this modelled wind was not considered. This

comparison of the modelled wind to the modelled prominences makes this work fully self

consistent.

As discussed in more detail in 5.2.3, the placing of the source surface has consequences for

the mass and angular momentum loss rates calculated by this wind model. The value chosen

here likely underestimates the wind mass loss, and for this reason in the previous chapter

the prominences were compared to the observationally derived relations for wind mass loss

rate. Comparison of the prominence mass loss rates to the wind observations provides in-

sight into how the prominences mass loss rates may compare to the wind values. For clarity,

this chapter where the modelled wind is considered was separated from the previous chapter

where the observed wind was considered.

The modelled wind and prominence mass loss rates (and angular momentum loss rates) are

interconnected and negatively correlated, since the model can only generate open or closed

field lines. More open field automatically results in less closed field, and therefore likely fewer

prominence bearing loops, and vice versa. Thus, this self consistent model is useful for un-

derstanding potential trends, and whilst the modelled wind may underestimate the mass

and angular momentum loss rates, including the prominences would then overestimate them.
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5.1.2 Calculating the mass loss and angular momentum loss rates

The mass loss and angular momentum loss rates of the stellar winds are found using Equa-

tions 5.1 and 5.2.

Ṁwind = ρwuwAw. (5.1)

Given that this is a conserved quantity, this can be evaluated at any point along the field

lines, with the easiest point being at the stellar surface. Here Aw is the area of the surface

contributing to the open field and uw is the wind speed at the stellar surface. The wind

field lines have a distribution of velocities and therefore temperatures. The velocity on a

field line is calculated using a Wang-Sheeley-Arge (WSA) wind model, which provides the

wind velocity at a distance of 1AU from the stellar surface. The corresponding isothermal

Parker solution that matches this velocity at large distances is then used to calculate the

temperature and hence surface velocity of this field line. The density at the stellar surface,

ρw, is determined from the plasma pressure. This is estimated by scaling the surface gas

and magnetic pressures through the relation p = κB2 with a value that fits the solar wind

of κ = 10−2.6 [70]. The angular momentum loss rates of the stellar wind can then be found:

J̇wind = Ωr2
AṀwind, (5.2)

where rA denotes the Alfvén radius.

5.2 Wind modelling

5.2.1 Wind mass loss rates

The mass and angular momentum loss rates for the modelled prominences and wind can

be compared, and are shown in Figure 5.1. The dashed lines in the plots depict where the

modelled prominences and wind values would be equal. It is interesting to note that whilst

the wind is often taken to be the mass loss mechanism for stars, the prominence contribution

in this sample is often larger than the modelled wind contribution, and the general trend

is for the prominence mass loss rates to increase linearly with wind mass loss rates. The

notable exception to this is GJ1245b, a very low mass star, that lies in the bistable region

of the mass-rotation period parameter plane [155]. This shows the wind to dominate over

the prominences in two years out of the three shown here. The mass loss rate for the stellar
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Figure 5.1: Mass loss rates (a) and angular momentum loss rates (b) for the prominences
and the wind, scaled to solar values. The dashed line on both plots shows where the wind
and prominence values are equal.

wind is calculated by summing the quantity ρu∗A for each wind bearing field line. Thus, it

is not a straightforward task to unpick exactly what causes a map to yield a specific value of

Ṁ , since this mass loss rate of a field line depends on the field strength, wind temperature

and surface area, which all vary across field lines. The distribution of wind temperatures for

the maps GJ1245b (2006) and GJ1245b (2008) is higher than most other maps, and this -

which plays into both the density and wind velocity terms in the Ṁ equation - is the main

cause of the high wind mass loss rates when compared to the trend.

5.2.2 Angular momentum loss rates

The angular momentum loss rates reflect a similar pattern to the mass loss, which is un-

surprising as these quantities scale linearly for both the prominences and in the 1D wind

model. Again, the prominence angular momentum loss rates are comparable to the wind.

For many maps the prominences remove more angular momentum that the wind, exceptions

being GJ1245b, GJ494, AD Leo and GJ182. Prominences are released from the stable point

locations, but the wind is released from the Alfvén radius.

5.2.3 Discussion on limitations of this model

The assumption within this work of placing the source surface radius at Rss = 18R? was a

requirement for ensuring the possibility of forming prominences on all maps. In this model,
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prominences can only form in closed field regions and therefore, to have the chance of finding

stable points around these stars, the field must be closed to large heights. 18R? is very far

from the stellar surface, and may not be realistic that all field lines must be closed to this

height. This is especially true as the model has a spherical source surface radius, rather

than one that may vary with latitude. This has consequences for the wind model, which

can only occur on open field lines. With an source surface radius that is larger than it

“should” be, the modelled wind mass loss rates will be lower than in reality, as the model

will under-predict the number of open field lines by forcing more of the field lines to be

closed than is accurate. This means that the modelled wind values here are likely to be

underestimates or lower limits. However, it is still of interest to consider the wind values

here as they are self-consistent with the modelled prominences. Again, whilst the wind will

remove angular momentum throughout a stars life, the prominences will only contribute for

part of it.

Map Spin-down timescale Spin-down timescale
(wind) [Gyr] (wind + prom) [Gyr]

Eq Peg B 2006 2.1 0.2
GJ1156 2007 156.5 17.8
GJ1156 2008 50.7 18.6
GJ1156 2009 59.9 15.8
AD Leo 2007 13.5 8.7
AD Leo 2008 12.3 8.7

EQ Peg A 2006 2.7 0.5
GJ1111 2007 98.4 5.2
GJ1111 2008 216.5 75.8

GJ1245b 2006 10.6 10.0
GJ1245b 2007 21.4 15.2
GJ1245b 2008 32.2 31.1
GJ9520 2008 67.7 24.4
GL182 2007 38.0 33.5
GL494 2007 52.3 38.4
GL494 2008 2325.0 469.5

V374 Peg 2006 0.3 0.1

Table 5.1: Table of spin down timescales as calculated by the wind angular momentum loss
rates and the combined wind + prominence loss rates.

5.2.4 The combined prominence and wind spin-down timescales

The spin-down timescales as calculated from the wind contributions alone range from

0.3Gyrs for V374 Peg to 2325Gyrs for GJ494 in 2008, with most maps yielding a spin-
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down timescale of around 10-60Gyrs. These are shown in Table 5.1.

Including the prominences in the angular momentum loss rates results in a spin-down

timescale that is slightly lower, in some cases an order of magnitude lower (shown in col-

umn 3 of Table 5.1). The maps for GJ1245b (2007 and 2009) yield very similar spin-down

timescales in both cases, with the timescale calculated from the combined wind and promi-

nence angular momentum loss rates being around 95% that calculate from the wind alone.

However, many maps show this percentage to be much lower. For EQ Peg B and GJ1111

(2007) it is about 5% and in 10 of the maps it is below 50%. This would suggest the

prominences could be having a noticeable impact on the spin-down of these young stars.

5.3 Comparison of prominence and wind mass loss rates

from this model

Figure 5.2: The predicted mass loss rates per unit area for both the wind (hollow points)
and prominences (filled points). The lines of best fit are shown by the dashed lines with
the wind in red and prominences in blue. The grey shaded region shows the predicted
range predicted by Ahuir 2020 and dark grey line shows the observationally-based result
from Wood [96]. Table 5.3 shows the corresponding equations for these fits, alongside a few
others.

The mass loss rates per unit area for the wind and prominences are compared in Figure

5.2. Again, this quantity is plotted against stellar X-ray flux, with the prominences shown

by the filled points and the wind by the hollow points. The data is tabulated in Table

5.2. The observed wind relations are shown on the plot by the various grey lines, with the
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relations given in Table 5.3. The blue dashed line is the line of best fit for the prominence

points and the red dashed line is the line of best fit for the modelled wind points. These

are found to be Ṁ/A ∝ F 1.32
X for the prominences and Ṁ/A ∝ F 0.64

X for the wind. As

discussed in the previous chapter, the prominence fit is close to the observationally derived

wind relations. Here it can be seen that whilst the prominence relation is close to the upper

end or these literature values, the modelled wind fit is at the lower end, within the limits

predicted by Ahuir 2020 [154].

Map FX Wind Prominence Area Area

Ṁ�/A Ṁ�/A contributing contributing
(year) [106ergcm−2s−1] [10−14A�] [10−14A�] to the wind [%] to prominences [%]

EQ Peg B 2006 6.51 4007 14103 3.28 4.67
GJ1156 2007 0.46 1146 759 3.81 0.48
GJ1156 2008 0.02 104 624 2.75 0.42
GJ1156 2009 0.02 92 514 2.98 0.68
AD Leo 2007 3.52 449 752 2.96 0.21
AD Leo 2008 3.85 488 816 2.98 0.15

EQ Peg A 2006 5.09 775 7643 3.44 1.15
GJ1111 2007 0.06 587 265 5.83 2.85
GJ1111 2008 0.02 270 128 3.95 0.28

GJ1245b 2006 0.95 3486 327 5.59 0.07
GJ1245b 2007 0.20 856 267 4.89 0.25
GJ1245b 2008 4.27 18471 17 4.73 0.21
GJ9520 2008 3.87 164 890 3.22 0.13
GJ182 2007 1.20 6 135 3.52 0.10
GJ494 2007 0.34 8 298 4.04 0.26
GJ494 2008 0.01 5 253 0.27 0.02

V374 Peg 2006 54.93 7361 25857 3.43 6.48

Table 5.2: Table to support the Woods plot in Figure 5.2

The larger magnetic field strengths and temperatures in the prominence regions when

compared to the wind, lead to larger Ṁ/A values than the modelled wind, since Ṁ/A = ρu

and density and up-flow speed increase as field strength and temperature increase.

In Table 5.2, the surface area contributions for the wind and prominences are listed.

The prominences were discussed in the previous chapter so here the wind is focused on.

The wind area contributions are larger than the prominences, though still relatively low,

typically taking up 3-5% of the stellar surface. This values may actually be slightly larger

in reality and had the source surface been placed closer to the stellar surface, the open field

region would have increased as closed field would not have been forced to such a large height
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Relation Reference

Ṁ/A ∝ F aX
a = 1.34 Wood 2005 [96]
a = 0.82 Suzuki 2013 [153]

a = 0.5 to 1 Ahuir 2020 [154]
a = 0.64 the wind model in this work
a = 1.32 the prominence model in this work

Table 5.3: Table of relations between Ṁ/A and FX

above the surface. However, in moving the source surface in from 18R∗ to 9R∗ for the map

of V374 Peg, the area of closed field decreases to 95% of the original value and for the open

field increases by 2% (from 3.4% to 5.4%). For such a large decrease in the radius of the

source surface, this is not a large change to the field contributions.

5.4 Impact on orbiting planets

The impact of mass loss on orbiting planets is again revisited. Figure 5.3 shows the stellar

mass loss at the source surface, which is the maximum radius in our modelled field. Beyond

this the field is purely radial and thus, had the mass loss rates been plotted at any radius

beyond this, they would have reproduced the same pattern albeit with a different value of

Ṁ/A in each grid point. The top panels of these figures show surface maps (at the source

surface), with the wind mass loss in purple and prominences in red.

Panel (a) of this figure examines the map of EQ Peg A (2006) which has an aligned

dipole axis relative to the rotation axis. This map therefore shows high wind mass loss

rates near the rotational pole and low values around the equator. The prominence mass

loss rates, however, congregate around the equator of the star. Ejection of the prominence

material would result in the mass loss appearing from the formation sites. As examined

in the previous chapter, the prominence formation sites around this star are confined to

very low latitudes, due to the highly aligned dipole axis. In the bottom panel of Figure

5.3(a), a slice is taken through the equatorial plane, to plot what an orbiting planet would

experience. Whilst the wind mass loss here is very low (again shown in purple), the limited

number of prominences (again, shown in red) exactly around the equator (±0.5◦) show mass

loss rates 104-105 times that of the wind. The angular extent over which a prominence is
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Figure 5.3: (a) Mass loss rates as seen from the source surface. The wind is shown in purple
and the prominences in red. (b) A slice through the equatorial plane (±0.5o) of the mass
loss rates, showing the mass loss rates that would be experienced by an orbiting planet.
Shown for EQ Peg B (left) and GJ1156, 2008 (right).

likely to impact on the planet (±0.5◦) is calculated by considering the angular extent the

planet takes up, assuming an Earth size planet at 1AU from the host star.

On the other hand, GJ1156 in (b) of Figure 5.3 has a dipole axis that is highly tilted

from the rotation axis. Therefore, it shows high wind mass loss rates around the rotational

equator. The prominence formation sites, and thus mass loss rates, however, are not in the

equatorial plane in this case. The latitude range at which prominences can form is much

greater as the topology of the closed field region differs significantly to the previous case.

An orbiting planet will not pass through the firing line of any of these prominences, though

would experience a variation in the wind mass loss throughout its orbit. The wind experi-

enced by such a planet around GJ1156 in 2008 would be much weaker than experienced by

a planet around EQ Peg B in 2006.

The colour tables in the plots within Figure 5.3 are scaled to their maximum values.

These maximum values are maxw = 5.5×10−18 M�/year and maxp = 1.1×10−14 M�/year

for EQ Peg B and maxw = 7.1 × 10−20 M�/year and maxp = 4.6 × 10−16 M�/year for

GJ1156 (2008).
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5.5 Conclusions

For many maps in this work, the prominences provide a larger, or at least comparable,

mass loss mechanism to the modelled stellar wind. This could vary as the star progresses

through its cycle, as maps with more inclined fields typically support less mass than aligned

ones. There is limited data from this work to say much more, however as most stars in

this sample have only one ZDI map. The larger mass loss rate from the prominences when

compared to the wind is due to the fact that the prominences are rooted in hotter, higher-

field regions than the wind-bearing field lines. The prominence area contribution for these

maps is generally < 1% and for the wind is often around 3% (ranging from 0.3-5.83)%. The

mass loss rates are likely maximum limits for the prominences, as they assume that all of

the predicted prominence support sites are filled, as discussed in the previous chapter. On

the other hand, the mass loss rates from the wind are probably underestimates, with the

area contributing to the wind likely to be larger than found here where we have forced the

coronal field to be closed to very large heights above the surface.

Here, the modelled wind Ṁ/A is plotted against X-ray flux and line of best fit pro-

duced, as was done for the prominences in the previous chapter. This yielded a relation of

Ṁ/A ∝ F 0.64
X . It is similar to the lower limits of the relations produced from the observa-

tions. As the results here are a lower limit on the mass loss rates, this is still encouraging.

The spin down timescales can be estimated from J̇wind alone or from the combined

modelled wind and prominences (J̇wind+prom). The prominences alone were previously

investigated. Values for spin down rates as caused by this modelled wind, range between

0.3-2325 Gyrs. For the combined wind and prominences, the spin-down timescales range

between 0.1 and 470 Gyrs. This would imply that the prominences could have large effects

on the spin-down of some stars, causing them to spin-down at a much faster rate than the

wind alone.

The wind angular momentum loss rate is a lower limit, meaning that the spin-down timescale

for the wind is an upper limit (since it is inversely proportional to the timescale). The

prominence angular momentum losses are upper limits, and therefore their timescales are

lower limits.

Typically J̇wind is around 2.7 times the timescale from J̇wind+prom, and for some maps the
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timescale calculated from the wind alone is a factor of 10 larger than when the prominences

are included, for example EQ Peg B.

Overall, this work suggests that prominences could have a considerable contribution to the

stellar spin-down and should not be discounted at this point in a stars life cycle. Whilst this

work has likely overestimated the contribution of prominences, their contribution is very

noticeable in the spin-down timescales and mass loss rates and more investigation is needed

to quantify this. This is particularly interesting because models of stellar evolution, which

use the wind as the only mechanism for angular momentum loss and therefore stellar spin

down, require an additional torque which is added to the model in order to produce rotation

rates that match observations [156]. The physics behind this additional torque is unknown

and might be related to the uncertainties in the observations for stellar mass loss rates, or

there could be another mechanism at play such as the ejection of prominences.
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Chapter 6

Finding stable points in a tilted

dipole
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6.1 Introduction

The work within this chapter has yet to be published.

This chapter investigates the locations of stable points around tilted dipolar and quadrupo-

lar fields. These are locations of stable mechanical equilibria. The stable points occur when,

if we move along the magnetic field, the component of the effective gravity along this mag-

netic field decreases. This means that material pools at this location and can not escape

the potential well. The dipole is of most interest, since it is expected that at large heights

above the stellar surface, where slingshot prominences are found, the dipole would be the

dominating term. It has, however, been found that the quadrupolar component may also

be of significance, for example at certain points in a stellar cycle [157]. These stable points

allow for the support of material within the stellar corona which may result in prominence

formation.

6.1.1 Observed velocity plots

Figure 6.1: Velocity plots for observed prominences around the star V530 Per, as published
by Cang et. al [55]. The blue circle shows the stellar disc, the black dashed line is the
equatorial co-rotation radius, and the colour table shows the local Hα equivalent width.

Observations of slingshot prominences are typically shown as dynamic spectra, where the

prominences can be seen as absorption features or trails in the Hα line. There are a couple

of examples in the literature where the observed data has been shown in the form of velocity

plots [53, 55]. A recent example from Cang et. al [55] is shown in Figure 6.1. These plots
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have the benefit that they allow the reader to better understand the spacial distribution of

the prominence material around the star. The velocity plots show the projections of the x

and y velocities of orbiting material onto the equatorial plane of the star. The colour of

the material represents the absorption intensity in Hα, which relates to the density of the

material at that point. This was also done for the star RX J1508.6±4423 by Donati et. al

[53], using a model developed by Marsh and Horne in 1988 [158] for imaging accretion discs.

The main use of these kinds of plot is to be able to locate around the star the condensed

material of prominences. Multiple observations of such plots make it very easy to see the

evolution of such material around the star, and they can be far quicker to read than dynamic

spectra if the location of prominence material is of most interest.

The observations in Figure 6.1 shows two large blobs on the right hand side of the ve-

locity plots. As well as the particularly large clump in each plot, there is also material all

around the equatorial co-rotation radius. Between the two plots (late November to early

December) there has been some sort of evolution of the material such that the blob appears

to have moved, whilst still congregating around the co-rotation radius. This may be the

same feature as in the first observation, or it may be another feature that formed between

these two observations after the breakup of the blob in the November observation.

The observations by Donati et al [53] show a different distribution. On the 6th of May

1998 for the star RX J1508.6±4423, there appears to be only one dark blob, towards the

top left of the image. The ring around co-rotation is still present and there is the suggestion

of the beginnings of a blob forming on the right hand side at vy = 0. By May 10th, there

are 3 dark blobs in the plot and the blob from the previous plot has moved or disappeared.

RX J1508.6±4423 and V530 Per are particularly interesting stars, as they are viewed

almost pole on (35◦ [53] and 30◦ [54, 55], respectively). Because of this, the prominence

material is seen in emission and not absorption as the ring of prominence material around

the star is illuminated by the starlight. It also means that almost all of prominence material

in this hemisphere of the star is visible.
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6.1.2 A tilted dipole

A tilted dipole can be described by the following equation [159]:

B =

(
Br, Bθ, Bφ

)
(6.1)

where

Br =
m

r3

(
2 cosβ cos θ + 2 sinβ sin θ cosφ

)
, (6.2)

Bθ =
m

r3

(
cosβ sin θ − sinβ cos θ cosφ

)
(6.3)

and

Bφ =
m

r3

(
sinβ sinφ

)
. (6.4)

Figure 6.2: A diagram showing, for a star with its rotation axis along the z-axis, (a) a dipole
aligned with the rotation axis and (b) a dipole tilted by β.

This is given in spherical polar coordinates, such that r is the radial coordinate, θ is the

co-latitude and φ is the longitude. β is the angle between the rotational axis and the dipole

axis. m is the dipole moment, which is this work has been set to one for simplicity.

The expressions above for the tilted dipole (Equations 6.2, 6.3 and 6.4) can be found by

taking the expression for a dipole field in spherical coordinates, converting it to Cartesian

coordinates and then rotating the dipole around the y-axis using a rotation matrix. This

expression can then be converted back into spherical coordinates, giving the general expres-

sion for a tilted dipole as above. This method can be used for any magnetic field and is
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later used to tilt a quadrupole and octupole field. Appendix F gives more detail on tilting

the dipole field.

Figure 6.3: An illustration showing an (a) fully aligned dipole (b) dipole tilted by 0.5 radians
and (c) fully misaligned dipole.

Other multipoles

Following the method given in Appendix F, the following expression can be found for a

tilted quadrupole field:

Br =
3((1 + 3 cos 2β)(1 + 3 cos 2θ) + 12 cos 2φ sin2 β sin2 θ + 12 cosφ sin 2β sin 2θ))

16r4
, (6.5)

Bθ =
3(−4 cos 2θ cosφ sin 2β + sin 2θ(cos 2β(3 + cos 2φ) + 2 sin2 φ)))

8r4
, (6.6)

and

Bφ =
(3 sinβ(cosβ cos θ + cosφ sinβ sin θ) sinφ)

r4
, (6.7)

where the quadrupolar moment has been normalised from the expression.

6.2 Finding the stable points

As discussed in Section 4.1.3, for a location to be a stable point it must satisfy g
e
.B = 0

and
(
B.∇

)(
g
e
.B
)
≤ 0. The stable points within a tilted dipolar field are found using these
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Figure 6.4: An illustration showing an (a) fully aligned quadrupole (b) quadrupole tilted by
0.5 radians and (c) fully misaligned quadrupole.

two constraints. These are evaluated using the expression for the effective gravity:

g
e

=
(
− GM?

r2
+ Ω2r sin θ

)
r̂+
(

Ω2r sin θ cos θ
)
θ̂, (6.8)

and the expression for the magnetic field, given in section 6.1.2.

The first condition yields:

g
e
.B = 0 (6.9)

((
− GM?

r2
+ Ω2r sin θ

)
.

2

r3

(
cosβ cos θ + sinβ sin θ cosφ

))
+

((
Ω2r sin θ cos θ

)
.

1

r3

(
cosβ sin θ − sinβ cos θ cosφ

))
+

(
0.

1

r3

(
sinβ sinφ

))
= 0 (6.10)

2

((
− GM?

r2
+ Ω2r sin θ

)
.

(
cosβ cos θ + sinβ sin θ cosφ

))
+

((
Ω2r sin θ cos θ

)
.

(
cosβ sin θ − sinβ cos θ cosφ

))
= 0 (6.11)

which can be simplified and rearranged to

r3 =
−2GM?(cosβ cos θ + cosφ sinβ sin θ)

Ω2 sin θ(cos θ2 cosφ sinβ − 3 cosβ cos θ sin θ − 2 cos θ sinβ sin θ2)
, (6.12)

159



r =

(
−2GM?(cosβ cos θ + cosφ sinβ sin θ)

Ω2 sin θ(cos θ2 cosφ sinβ − 3 cosβ cos θ sin θ − 2 cos θ sinβ sin θ2)

)1/3

. (6.13)

The locations of the stable points can then be found by combining Equation 6.13 with

the second condition, (B.∇)(g
e
.B) ≤ 0. This gives the stable points (r, θ, φ), for a given

dipole tilt, β. This was evaluated in Mathematica and the full working has been omitted

here.

This can equally be evaluated for a quadrupole, or any magnetic field that can be written

analytically, by replacing the expression for the dipole magnetic field with the new magnetic

field expression.

6.3 Analysing the stable points

Figure 6.5: Left: the effective gravity (arrows show the direction and colour shows the mag-
nitude) and the co-rotation radius (red dashed line). Right: the same but in 3 dimensions.
The rotation axis is along the vertical axis in both cases.

Stable points occur when the equilibrium point meets the condition that

(B.∇)(g.B) < 0. (6.14)

The effective gravity changes sign at the co-rotation radius (shown by the red dashed
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line, and red amphora-shaped surface in Figure 6.5). The magnitude varies with latitude,

due to the centrifugal term, and these two things will partly determine the locations of

stable points. Figure 6.5 is shown here to help visualise the variation of the effective gravity

about the rotating star.

Figure 6.6: Dipolar fields with different dipole tilts (d [radians]) and the quantity (g.B)
shown as contour surfaces. Pink shows when g.B > 0 and green when g.B < 0.

The direction of the magnetic field relative to the effective gravity is of importance when

determining the locations of stable points. The quantity (g.B) must decrease as we walk

along the direction of the magnetic field line. In other words, (g.B) must get more neg-

ative/less positive. Figures 6.6 and 6.7 show the quantity (g.B) and field structure for a

range of tilted dipoles and quadrupoles, respectively.

Stable points will form at equilibrium points where the field line passes from pink to

green on the plots in Figures 6.6 and 6.7, or when the field line passes from a green section

to a more vibrant green section, or from a vibrant pink section to a paler pink section.

6.4 A young solar-like star

In most of this work, a young solar-like star is investigated, with the stellar parameters of

AB Dor being used; M = 0.87M�, R = 0.96R� and P = 0.515 days.
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Figure 6.7: As in Figure 6.6 but for a quadrupole.

6.4.1 The stable points in 2 dimensions

Initially a longitude of 0 is selected so that the stable point expression be evaluated with

two variables. Figure 6.8 shows a selection of dipole tilts relative to the stellar rotation axis,

and the equilibrium points and critical radii for stability. The critical radius for stability

(the pink lines) show the minimum radius at which the condition (B.∇)(g
e
.B) ≤ 0 is met.

In other words, any black equilibrium points that lie above the critical radius will be stable

equilibrium points.

An aligned dipole

The aligned dipole, seen in the left panel of Figure 6.8, yields the same results as Ferreira

2000 [80]. The equilibrium points that lie within the pink lines of the critical radius are un-

stable and thus only the points within the equatorial plane are stable. Thus, the equilibrium

points that follow the shape of the co-rotation radius, but at lower heights, are unstable.

The stable points lie within the equatorial plane, on the summits of field lines and extend

slightly within the co-rotation radius of the star to 0.87Rk, which was shown by Ferreira

2000 [80].
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Figure 6.8: The locations of the equilibrium points (black lines) and the critical radius
(pink lines) beyond which these equilibrium points are stable. The star is again shown by
the orange circle and the magnetic field is shown in blue.

A dipole tilted at π/5 radians

When the dipolar field is tilted, as in the middle panel of Figure 6.8, the locations of the

equilibria also move. Equilibrium points can now be found at very high latitudes and close

to the star, which lie within the pink curves and are thus unstable. There are also solutions

for stable equilibrium points. These curves still lie close to the summits of the dipole field

lines.

A misaligned dipole

For a fully misaligned dipole, i.e. a dipole tilt of π/2 radians, the equilibrium points are

shown in the right hand panel of Figure 6.8. Here the stable points form in a cone and can

no longer form close to the summits of the loops, as these lie along the rotational poles.

6.5 3D locations of the stable points

6.5.1 A dipole tilted at π/5 radians from the rotation axis

Here, the stable points are found in 3-dimensions for a dipole tilted by π/5 radians, as in

section 6.4.1. Figure 6.9 shows the locations of the stable points on polar plots.

A polar plot marks the radial position of the stable points with one of the angles, co-

latitude (θ) or longitude (φ). These plots are not a projection of the points onto an x-y

plane. Instead, they can be thought of with the following analogy: if each stable point in a
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3D volume is an ink drop and a piece of paper is placed in a meridional plane and spun about

the z-axis through 360 degrees, the ink drops will mark the paper and produce the polar plot.

Figure 6.9 (a) shows a polar plot in θ (co-latitude), where the star is shown by the orange

circle and the rotation axis is shown by the black line. A 2-dimensional plot of the dipolar

field is overlaid in grey. Figure 6.9 (b) shows a polar plot in φ (longitude), with the star

again shown by the orange circle and the rotational pole now seen as a black dot.

Figure 6.9: Polar plots of the locations of the stable points (blue) for a dipole tilted by pi/5
radians from the rotation axis. The star is shown in orange and rotation axis in black. The
field is shown in grey in (a).

The stable points can be seen to form in two groups: around the equatorial plane at a

range of latitudes that increases with distance from the star, and a group at very high lati-

tudes about the axis of rotation. These high latitude stable points are unlikely to support

as much mass as the lower latitude prominences.

Figure 6.10 shows the distribution of the stable points around this tilted dipole. Figure

6.10 (a) shows a “wine glass” plot, the distribution of stable points in latitude and radial

distance from the star. Figure 6.10 (b) shows a 3D distribution of the stable points, shown

here for completeness. The stable points typically form in a plane around the star with

some spread in latitude, seen most clearly in Figure 6.10 (a), with some stable points also

found at very high latitudes around the rotational axis. The plane of stable points lies very

close to, but not on, the magnetic equator.
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Figure 6.10: (a) The distribution of stable points in latitude and radial distance from the
star. (b) The 3D distribution of stable points.

6.5.2 Wine glass plots

Figure 6.11 shows the radial positions and latitudes of the stable points produced, for a

range of dipole tilts. For a fully aligned dipole, (a) in Figure 6.11, the stable points form

a straight line in the equatorial plane. With a tilted dipole of π/8 radians ((b) in Figure

6.11), the stable points begin to spread in latitude. There are still solutions below the

equatorial co-rotation radius, and these form in two lobes that form a heart shape. As the

tilt increases, this wine glass shaped distribution spreads in widens in latitude, until at a

dipole tilt of π/2 radians (a fully misaligned dipole) only two lines of stable points remain.

For some highly tilted dipoles, for example (d) in Figure 6.11 which corresponds to 3π/8

radians, there are some very high latitude stable points that form on branches off the main

distribution. These correspond to the solutions in the plot for a misaligned dipole. These

very high latitude stable points would likely not support much material because of these

high latitudes.

Stable points can be found within the equatorial co-rotation radius for all tilts except a

fully misaligned dipole. As would be expected, tilting the dipole compared to the rotation

axis allows for stable points to form at latitudes above the equatorial plane. Not all latitudes

can support a stable point for a given dipole tilt, and thus the latitude of a stable point

could be used to constrain the value of the dipole tilt.
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Figure 6.11: Latitude and radial positions of stable points or “wine glass plots”. These are
given for a range of dipole tilts: (a) 0, (b) π/8, (c) π/4, (d) 3π/8 and (e) π/2 radians.

6.6 Stable point distribution

Figure 6.12: The latitudes of stable points against latitude of the dipole axis. The colour
shows the number density of stable points, with dark showing regions of high density.

Figure 6.12 shows a plot of the distribution of stable point number with dipole tilt.

Whilst the exact number of stable points does not have physical meaning, as it depends

on the grid sampling, the distribution does. Locations of high density are regions where

stable points can easily be found and thus prominence formation would be very likely, whilst

regions of low stable point density will be more difficult to support prominences in. In the
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figure, the left hand side of the horizontal axis is a fully misaligned dipole, with dipole axis

within the equatorial plane. A fully aligned dipole, with a latitude of the dipole axis being

at 1.5 radians, lies at the right hand side of the horizontal axis. The vertical axis shows the

latitude around the star, i.e. 0 representing the equatorial plane and ±1.5 radians represent-

ing the poles. For a fully aligned dipole on the right hand side of the plot, stable points can

be very easily formed within the equatorial plane but not at other latitudes. As the dipole

axis tilts over towards the equatorial plane, moving from right to left across the plot, stable

points can then be found at higher latitudes. Due to the symmetry of the magnetic field,

the distribution is symmetric about the horizontal axis and creates a W shape. There are

two branches of the distribution; a line at lower latitudes (from 0 to 1 radians) and a fainter

line at higher latitudes (from 1 to 1.5 radians). This higher branch would support less mass

than the lower branch, not only due to the difference in the number of stable points but

also because supporting mass at higher latitudes becomes increasingly difficult due to the

centrifugal force acting.

This plot suggests that stars of different dipole tilts will support different distributions

of prominences and is in keeping with previous work [86, 135, 137]. As the magnetic field of

a star changes over it’s cycle, an individual star would migrate across this plot with time.

Previous work has shown that prominences in the equatorial plane will support the most

mass [135, 137]. Therefore, whilst observationally it would be easier to find prominences

around stars in the equatorial plane, this might not be possible due to the inclination of

the system. This plot is in keeping with previous work in suggesting that for stars where

the inclination is not ideal for prominence observation, it may still be possible to observe

prominences in these systems at certain points in their stellar cycle.

6.7 Dynamic spectra

Figure 6.13 shows the synthetic dynamic Hα spectra for three different dipole tilts and two

stellar inclinations. Plots in the left-hand column show the spectra with a stellar inclination

of 65◦ and the right-hand column shows 80◦. The rows show results for a dipole tilt of 0.4,

0.8 and 1.2 radian tilt, respectively, from top to bottom of the figure. Intensities have been

normalised to each individual plot so that the structure of the spectra can be easily seen.
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Figure 6.13: Dynamic Hα spectra for a tilted dipole of 0.4, 0.8 and 1.2 radians for the rows,
respectively from top to bottom. The left hand plots show an inclination of 65◦ and right
show 80◦.

168



In absorption, only the stable points in front of the star contribute to the intensity and

therefore there is only one line passing from left to right across the plot. In emission, the

stable points on both sides of the star, π radians apart, both contribute to the intensity and

this leads to two matching curves that are π radians out of phase.

In emission the results are very similar regardless of inclination because, in both cases, all

of the stable points contribute to emission. In absorption this is not the case, since the

inclination determines which stable points transit the stellar disc. There is some variation

with dipole tilt, with more inclined dipoles showing much brighter, thick lines in emission,

whereas the less inclined case shows more of a spread of these emission curves in phase. For

an aligned dipole and viewing into the equator, stable points would form at all phases and

thus the emission spectra would be filled with emission curves. As the dipole is tilted over,

and therefore the plane of stable points is tilted too, the stable points now lie at phases that

are closer together to two particular values. This leads to sharpening of two curves in the

emission profile.

Plots on the right, with an inclination of 80◦ show more of the high mass prominences,

since stable points close to the equatorial plane are visible in absorption. With an inclina-

tion of 65◦ this is true less often.

The top row of Figure 6.13 shows dynamic spectra for a dipole tilt of 0.4 radians. Much

of the material seen with an inclination of 80◦ is not visible with a tilt of 65◦. Lower mass

stable points can now be seen around φ = 2.5 radians because of the normalised colour

table. In reality it would not be easy to observe this material as the densities of the features

are low, which would make the features very faint in the absorption spectrum, but here

the opacities have been selected so that the structure of the features can be seen and are

emphasised. The dark region around φ = 1.5 radians has shrunk in phase as the inclination

drops from 80◦ to 65◦. For a tilt of 0.8 radians, the middle row of Figure 6.13, the dark

band at 1.5 radians can sill be seen. Again, this feature shrinks in phase as the inclination is

lowered. With the lower inclination, lower density stable points can also be seen in a feature

from about 1.5 to 3 radians, whose intensity varies across this phase band. With a dipole

tilt of 1.2 radians, the final row in the figure, the dark band at φ = 1.5 radians is present

with an inclination of 80◦ but not when the inclination is 65◦.
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In some spectra, it is noticeable that the dark feature in absorption does not line up with

the brightest feature in emission. This is because the features seen in absorption are a subset

of those present in emission. Those in absorption need not be centred on the same phase

as the most intense emission feature, and they do not necessarily have the same gradient

as this is dependent on the location of the stable point. The brightest feature in emission

may not be visible in absorption as this cluster of stable points might not cross the stellar

disc. Or, a small part of this cluster might cross the disc and thus be present in absorption

without the features aligning. With a high inclination, the absorption and emission features

are more likely to align. This is because far more of the stable points transit the disc and,

lying in the equatorial plane, they can support higher densities.

6.8 Velocity plots

There have been two publications in which the observations of prominences have been shown

on velocity plots [53, 55]. Here a pure dipole is used in order to generate synthetic observa-

tions of these velocity plots, using various dipole tilts and inclinations.

Figure 6.14: Top row (panels (ai-aiii)): velocity plots showing the density of stable points
for a dipole tilted by (i) 0.4 radians (ii) 0.8 radians and (iii) 1.2 radians. Bottom row (panels
(bi-biii)): velocity plots showing the absorption intensity for the material with tilts as above.
The colour tables have been normalised, orange circles show the stellar surface and black
dashed lines show the co-rotation radius.
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Figure 6.14 shows the stable point number density (i.e. the number of stable points

in a cell on the vx − vy grid) on the top row, for dipole tilts of 0.4, 0.8 and 1.2 radians

respectively. The bottom row of the figure shows the absorption intensity for the material

supported at the stable points, for the same dipole tilts. The orange circles represent the

stellar surface and the black dashed line shows the equatorial co-rotation radius.

With a dipole tilt of 0.4 radians (left column), the stable points congregate around the

equatorial co-rotation radius as well as forming an inner ring within co-rotation. When

the opacity is plotted, only two blobs, π radians apart in phase and at co-rotation, remain

(Figure 6.14 (bi)).

With a dipole tilt of 0.8 radians (middle column), the outer ring of stable points around

co-rotation remains but bulges outwards slightly when compared to a tilt of 0.4 radians.

The inner ring has also changed shape. The two blobs at co-rotation are still present in the

opacity plot, however, they have shrunk in size.

Once tilted to 1.2 radians (right column) the ring of stable points at co-rotation has widened

further and in the opacity, the two blobs have shrunk further.

Since not all stable points can support the same mass, they do not all contribute equally

to the opacity plots. Thus, despite the many points on plots (ai) - (aiii) of Figure 6.14, the

structure of plots (bi) - (biii) can be quite different. Those stable points in the equatorial

plane that can support the most mass dominate the opacity plots. The fine structure seen

below co-rotation in plots (ai) and (aii) is no longer visible in (bi) and (bii) due to the

very low masses that these stable points support. These plots show all of the stable points

present around these tilted dipolar fields, the reality is that not all of these stable points will

transit the stellar disc, a condition usually required to be considered visible. In the following

paragraphs, the visible proportion of these stable points is considered and compared to the

total material.

6.8.1 Inclining the star at 80◦

With an inclination of the rotation axis to the observer of 80◦, most of the stable points

around the equatorial plane are visible. This can be seen from the 3-dimensional plot and

“wine glass” plots in Figure 6.15 where the visible stable points are highlighted in red.

Within this figure, the velocity plots are shown for all of the stable points in the field (top
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Figure 6.15: Velocity plots for a dipole tilted by 0.4 radians and an inclination of 80◦ for the
total material (top row) and visible material (bottom row). Orange plots show the density
of visible stable points and green show the visible material. On the far right: 3D plot of
the visible stable points (red) and remaining stable points (blue) and below, the associated
wine glass plot.

panels) and for only the visible ones (bottom panels). The orange plots show the density

of stable points whereas the green plots show the absorption intensity, which relates to the

density of the material present. The latter is a synthetic observation in that it is similar

to the plots published by Cang and others [55]. These plots are normalised, i.e. scaled

to their own maximum value. In some cases, very little material is visible and therefore

if the visible plots were scaled to the same value as the total material plots, it may be

difficult or impossible to discern any details. Therefore, in order to analyse the shapes of

the plots produced, the colours of all plots are individually normalised. The stellar surface

is shown by the orange circle and the black dashed line shows the equatorial co-rotation

radius. Whilst stable points can be found at all longitudes, the highest densities congregate

around the co-rotation radius, and the material produces two blobs around co-rotation in

the synthetic observation. Once the inclination is accounted for, the synthetic observation

appears almost identical. Whilst some stable points are not visible, those that are support

most of the mass, and thus the shape of the synthetic observation is unaltered.
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Figure 6.16: As in Figure 6.15 but for a dipole tilt of 0.8 radians and 1.2 radians.

With a dipole tilt of 0.8 radians, fewer stable points are visible. The highest mass stable

points, at the equatorial co-rotation radius, are still just visible although the synthetic ve-

locity observations now show two much smaller blobs than in the case of a 0.4 radian dipole

tilt. Despite the half ring of stable points that is visible in the stable point velocity plot,

those around the equatorial co-rotation radius (that forms the stem of the wine glass in the

“wine glass” plots) are those that support the highest densities. All other stable points are

washed out in the velocity plot since far less material can be supported at these points.
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If the dipole is tilted further, to 1.2 radians, fewer still stable points are visible and the

blobs in the velocity plots grow smaller still. The stable points that are visible no longer

encompass one full side of the star and now also form two clumps.

6.8.2 Inclining the star at 65◦

Figure 6.17: As in Figure 6.15 but for an inclination of 65◦.

With an inclination of 65◦, the observer sees far less of the equatorial plane. Figure

6.17 again shows, from left to right, the velocity plots in terms of stable point density and

absorption intensity, and the stable point distribution in 3-dimensions (top) and as a wine

glass plot. Rather than the full ring of stable points that was visible with an inclination of

80◦, now only half of the ring is visible. This alters the absorption intensity velocity plot

which now shows three blobs rather than the previous two. The third blob that is now

present on the left-hand side of the velocity plot can be seen since the masses of the other

two blobs are now smaller and therefore they no longer dominate the intensity.

With a dipole tilt of 0.8 radians, the intensity velocity plot now shows a half ring with two

very small blobs, corresponding to the stable point regions that lie closest to the equatorial

co-rotation radius. This again differs from the two blobs present in the other case with a

higher inclination.
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If the dipole is tilted further to 1.2 radians, the two blobs from stable points corresponding

to the equatorial co-rotation radius are now not at all visible and thus a half ring is all

that remains in the velocity plot. For the absorption intensity plot, the half ring shows two

darker regions, which correspond to the stable points closest to the equatorial co-rotation

radius.

Figure 6.18: As in Figure 6.16 but for an inclination of 65◦.

The number of stable points in a region and the mass supported there are both important

in order for the region to create a visible feature in the velocity plots. For a dipolar field,
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features typically form on either side of the star in two “blobs” around the equatorial co-

rotation radius. Similar behaviour can be seen in observations, although others show one or

three blobs (eg Figure 6.1). Three blobs can be replicated by this model for a more highly

inclined star (65◦), suggesting that inclination effects could be responsible. Overall, the

velocity plots are quite degenerate.
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6.9 Varying the stellar parameters; mass, radius and

rotation rate

6.9.1 An M-dwarf

As the smallest stars, M-dwarfs can have different internal structure to larger stars, be-

ing fully convective and without the tachocline and radiative envelope that solar-like stars

exhibit. For fully convective stars, this results in a different dynamo[160, 161], since the

motions of charged particles within the star lead to different electrical currents and magnetic

fields. The very low mass M-dwarfs that are fully convective can therefore exhibit different

field structures to partially convective stars like the Sun [155].

Figure 6.19: Polar plots showing the locations of the stable points for a tilted solar-like star
((a) and (b)) and M-dwarf ((c) and (d)).

Whilst the work above has modelled a young, solar-like star using the stellar param-

eters of AB Doradus, this small subsection considers the stable points for an M-dwarf of

much lower mass but the same rotation rate. Here the parameters used were M? = 0.3M�,
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R? = 0.3R� and P? = 0.515days. Figure 6.19 shows the stable points on polar plots for

the M-dwarf (bottom) compared to the solar-like star (top). Whilst the relative locations

of the stable points move outwards for the M-dwarf (with a larger co-rotation radius) the

behaviour is still the same. With a mass and radius 0.3 times that of the Sun, this leads to

a co-rotation radius about 3 times that of the solar-like star. The figure shows the stable

point locations for a dipole tilted at π/4 radians from the rotation axis. For the solar-like

star there are two classes of stable points, those within the wine glass distribution and those

at very high latitudes. For the M-dwarf however, all stable points within this volume lie

within the wine glass distribution. The high latitude stable points around the pole of the

solar-like star could also be found for the M-dwarf, however they would lie at far larger radii

from the surface.

The corresponding wine glass plots are shown in Figure 6.20. The M-dwarf is shown in

(a) and the solar-like star in (b). The co-rotation radius of the solar-like star lies closer to

the star than the M-dwarf and therefore the stable points can also be found closer to the

star. The overall behaviour, however, is the same.

Figure 6.20: Latitude and radial positions of the stable points for (a) an M-dwarf with a
tilted dipole and (b) a solar-like star with a tilted dipole.

6.9.2 Altering the stellar mass

Altering the stellar mass alters the effective gravity and the location of the co-rotation

radius. This change in effective gravity moves the locations of the stable points. An example

is shown in Figure 6.21 for a star with the same mass as AB Doradus (shown in blue) and

half this mass (shown in red). The stable points are again shown for a range of dipole tilts.

The lower mass star shows stable points closer to the stellar surface than the higher mass
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star. This is because decreasing the stellar mass decreases the co-rotation radius:

Rk =
GM?

ω2 sin2 θ
. (6.15)

Figure 6.21: Plots showing the locations of the stable points around a star of mass 0.87M�
(blue) and 0.43M� (red). Plots are shown for various dipole tilts: (a) π/8, (b) π/4 and (c)
3π/8.

6.9.3 Altering the stellar radius

Figure 6.22 shows the effect of decreasing the stellar radius. Since the effective gravity

depends in a complex manner on the stellar radius, it is not immediately apparent what

the stable point distribution should look like. The horizontal axis of Figure 6.22 is radius

from the star in units of the stellar radius. Since the smaller star has a smaller radius, its

co-rotation radius is at a larger radius than for the larger star since

rk =
1

R?

(
GM?

ω2 sin2 θ

)1/3

, (6.16)

where rk is the co-rotation radius scaled to the stellar radius. This means that the whole

distribution moves to the right of the plot. However, it is also apparent that the distribution

has altered shape. The distribution is thinner for the smaller star than the larger one, and

the lobes found below the equatorial co-rotation radius are larger.

Stellar mass and stellar radius will generally vary together through a mass-radius relation,

but it can be helpful to see how individual variables alter the results.
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Figure 6.22: Plots showing the locations of the stable points for a star with radius 0.96R�
(blue) and 0.48R� (red). The dipole tilts are as in Figure 6.21.

6.9.4 Altering the rotation rate

The rotation rate also determines the effective gravity, with an increase in rotation rate

increasing the effective gravity. Figure 6.23 shows the locations of the stable points for

a fast (blue) and slower (red) star. The stable points move out to larger radii for slower

rotating stars, and whilst the shape of the distribution has altered slightly, it is still very

similar.

Figure 6.23: Plots showing the locations of the stable points for a fast star with rotation
period 0.515days (blue) and a slower star with P= 1.3days (red). The dipole tilts are the
same as in Figure 6.21.

6.10 A quadrupolar field

Whilst the dipolar field component is likely to dominate at the heights of most prominences,

especially those above the co-rotation radius, the quadrupolar term could also be important

[157]. The quadrupole term dies off with height faster than the dipolar term, meaning that

it is of particular importance for prominences closer to the stellar surface. Here we consider

the stable points around a purely quadrupolar field.
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Figure 6.24: Latitude of the stable points within a tilted quadrupolar field. (a) shows the
results for a quadrupole tilted at 0.4 radians from the rotation axis, (b) 0.8 radians, (c) 1.2
radians and (d) 1.6 radians.

Figure 6.24 shows a selection of wine glass plots for quadrupolar fields of various tilts.

Whilst the shape differs from the dipolar case, the overall “wine glass” spread is the same.

Wings are sometimes present, see Figure 6.24 (c), as were present in some of the analogous

dipole plots. A small cluster around and just below the equatorial co-rotation radius can

be seen in some but not all plots (Figure 6.24 (b) and (c) here).

6.10.1 Stable point distribution

Figure 6.25 shows the stable point distribution with tilt of the quadrupole axis. The left

hand side of the horizontal axis represents a quadrupolar axis that is perpendicular to the

rotation axis and embedded within the equatorial plane. An aligned quadrupole lies on

the right hand side of the plot. Again, dark spots are locations of high density of stable

points. The centre of the plot represents a quadrupole tilted by π/4, where some of the loop

summits lie in the equatorial plane and the rotational axis. This leads to a high density

region of stable points, focused around the equatorial plane.
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Figure 6.25: The latitudes of stable points against latitude of the quadrupole axis. The
colour shows the number density of stable points, with dark showing regions of high density.
The bottom row shows (a) a fully misaligned quadrupole, (b) a tilt of π/4 and (c) a fully
aligned quadrupole.

The overall shape of the plot appears as two W shaped curves, mirrored vertically about

a quadrupolar tilt of π/4 radians. Despite the shapes being symmetric, the right hand W

appears fainter than the left hand one. This might be due to the slightly different shapes of

the quadrupolar field, which can be seen in Figure 6.25. An aligned quadrupole and fully

misaligned quadrupole are similar but not identical in shape, and the magnetic field lines

point in different directions compared to the direction of the effective gravity. Both of these

will have consequences for stable point formation.

Whilst for a dipole, stable points were most easily found around the equatorial plane

for an aligned field, with a quadrupole this occurs with a tilt of π/4 radians. This means

that when observing stars with strong quadrupolar components, in order to spot many

massive prominences within the equatorial plane the field should be inclined by π/4 radians

in comparison to the rotation axis. Stars with strong quadrupolar components provide more
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opportunity for higher latitude prominences than dipolar fields, which can be seen by the

double W in Figure 6.25. However, these higher latitude stable points will support less mass

than those in the equatorial plane.

6.10.2 Dynamic spectra

Figure 6.26: Rows: dynamic spectra for a quadrupole tilted by 0.4, 0.8 and 1.2 radians,
from top to bottom. The left hand plots show an inclination of 65◦ and right show 80◦. The
normalised absorption and emission intensities are shown by the left and right colour bars,
respectively.

Figure 6.26 shows the dynamic spectra for a quadrupolar field with various tilts and

inclinations. The left hand column shows an inclination of 65◦ and the right hand column

shows 80◦. The rows show the quadrupolar tilt, from top to bottom: 0.4, 0.8 and 1.2 radians.
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As with the dipole, tilting the quadrupole leads to the thinning of absorption features,

but here this leads to two features rather than the one found for a dipole. These two features

can both be seen in the highly inclined case (i = 80◦) but are not always both visible for

an inclination of 65◦. The emission lines also show similar behaviour to the dipole case -

showing more coherence for more inclined quadrupolar fields than aligned ones.

6.10.3 Velocity plots

Figure 6.27: Top row: velocity plots showing the density of stable points for a quadrupole
tilted by (i) 0.4 radians (ii) 0.8 radians and (iii) 1.2 radians. Bottom row: velocity plots
showing the absorption intensity for the material with tilts as above. The colour tables
have been normalised, orange circles show the stellar surface and black dashed lines show
the co-rotation radius. The normalised intensity of stable point density and absorption are
shown by the brown and green colour tables, respectively.

Figure 6.27 shows velocity plots for a quadrupolar field of tilts 0.4, 0.8 and 1.2 radians,

from left to right. Again, the top, orange plots show the density of stable points whilst the

bottom, green plots are the synthetic observations. As with the dipole, a large number of

stable points and mass, congregates around the equatorial co-rotation radius. Again some

stable points form within this co-rotation radius, corresponding to the high latitude stable

points, with the density of these decreasing as the field is tilted towards the equatorial plane.

By (aiii) of the figure, a tilt of 1.2 radians, the stable points no longer form a full ring around

the co-rotation radius, showing two gaps separated by φ = π radians. Despite the full ring
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in (ai) and (aii), the synthetic plots show broken rings. For a tilt of 0.4 radians (bi) the

plots show two gaps in the ring, π radians apart. For a tilt of 0.8 radians, these gaps have

grown and the features have shrunk to form two extended blobs. For a tilt of 1.2 radians,

only four small features remain.

Figure 6.28: Velocity plots for a quadrupole tilted by 0.4 radians and an inclination of 65◦.
The figure has the same layout as Figure 6.17.

As in the dipole section, the plots shown in Figure 6.27 show the total stable points

and material. The material and stable points that are visible to observers will depend on

the inclination of the star relative to the observer. Figures 6.28 and 6.29 show the visible

material for an inclination of 65◦. For the 0.4 radian tilt, only one of the blobs is visible

in the synthetic spectra. Many of the stable points, including the high latitude ones, never

transit the disc. As can be seen from the 3D stable point plot, most of one of the rings of

stable points is visible (red points), with the other hemisphere being invisible in absorption.

For an inclination of 0.8 radians and the same inclination, the plane of stable points is more

inclined and therefore no longer completely visible. Now only two clumps are visible, and

this alters the synthetic spectra so that rather than two extended blobs around co-rotation,

only two small features remain in the synthetic spectra. It is apparent from comparison

to the corresponding plot for the stable point density that these two features are small

compared to the stable points that are visible, and yet they contain most of the mass.

For tilt of 1.2 radians, the stable point distribution becomes more complex. One half

of a plane is visible, and a few clumps on the other side of the star, leading to a large
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clump and a few specks in the synthetic observations. From comparison to the synthetic

observation for the total material, the densities or absorption intensities that would be

visible are considerably lower than for the total material.

Figure 6.29: As in Figure 6.28 for a quadrupole tilt of 0.8 radians and 1.2 radians.

6.11 Summary and conclusions

This chapter has investigated stable point formation around tilted field structures, particu-

larly dipole fields. As would be expected, the stable points form symmetrically about the

equatorial plane of the star. They form in a wine glass shape, that widens in latitude as

the dipole tilt becomes more apparent. The distribution of stable points in latitude with
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dipole tilt forms a W shape on its side. For fully aligned dipoles (latitude of the dipole axis

at π radians), stable points form exclusively within the equatorial plane. As the dipole is

tilted over, stable points can be found at a wider range of latitudes about the equatorial

plane, with some very high latitude stable points found at large radii. This band around

the equatorial plane continues to grow with dipole tilt, and the high latitude stable points

move to lower latitudes and radii. This continues until the two sets of solutions merge into

a huge band. This band of stable points is not equally spread, with certain latitudes being

preferred and leading to the W shape. This behaviour is in keeping with previous work,

where bands of stable points were found to vary with dipole tilt [137].

Dynamic spectra for the dipole show the influence of the inclination and dipole tilt on the

absorption features in the Hα line. The tilt of the dipole can also be seen to be of impor-

tance to the emission part of the spectra, with more highly tilted dipoles producing clearer

emission features, for both of the inclinations shown in this work. Therefore the dipole tilt

could be an important factor for observing prominences in both absorption and emission

around prominence bearing stars. The modelled velocity plots make it apparent that the

distribution of stable points need not correlate to the prominence observations. Locations of

large numbers of stable points do not necessarily support large amounts of mass, since this

is dependant on the effective gravity and local magnetic field strength. The model generates

velocity plots that produce two blobs, π radians apart, for a dipole structure. The size of

these blobs depends on the tilt of the dipole, with more aligned dipoles producing larger

blobs. Once the inclination is accounted for, the appearance of the blobs vary.

The model can be easily adapted for different stars, and increasing the stellar mass,

decreasing the stellar radius or increasing the rotation rate all result in the same behaviour

but with stable points moving further out from the star.

More complex fields of quadrupoles have been considered, and unsurprisingly result in

more complex distributions of stable points. Velocity plots in the quadrupolar case can also

result in two blobs, although these blobs can be far more extended and almost ring-like for

some tilts. For other quadrupole tilts, four small blobs may be present in the velocity plot.

Again, once inclination is considered the velocity plots can look quite different from the

total material. In some cases only half a ring remains, in others the two blobs at π radians

apart are reduced to two small blobs from one of the original blobs. In the case of the
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quadrupole, the velocity plots for inclined fields show less symmetry than the dipolar case.

This is a result of the inclination effects which make is impossible to see certain locations

around the star in absorption.

With a dipolar field structure, we might expect from this work that such observations to

result in velocity plots with two blobs, π radians apart. However, the models here have

assumed that all stable points are filled and on a real star this may not be the case at any

given time of observation, therefore it would be possible that only one blob (or no blobs!)

were present in the observations. With a quadrupolar field, we might expect that observed

velocity plots would yield anything from a half ring to four small blobs. By eye it is difficult

to pick out any particular trend with field complexity and inclination that would clearly

show an observation to correlate to a particular field structure. However, with some sort of

machine learning method, it might be possible to compare many generated velocity plots to

observations and suggest potential field structures that could produce the observed plots.
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Chapter 7

Analysing the observations
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7.1 Introduction

The work within this chapter has not yet been published.

Whilst prominences have been well studied for any given observing run, there has been

little work to collate the data available from all prominence observations. In this small

chapter, this observational data is collated and compared across the stars for which data

could be found in the literature. Since these observations are from a wide range of studies,

the data available is not always consistent across stars.

7.1.1 The stellar data

The stars on which there is available data on the prominences observed are given in Table

7.1. For many stars, prominences have been observed but data on masses, distances from

the star and/or densities were not reported. This table lists the stars for which data could

be found on the prominence distances from the rotation axis.

Star M? R? P? i
[M�] [R�] [days] [◦]

PZ Tel 1.13 1.23 0.9447 68
HK Aqr 0.4 0.59 0.43122 90

Speedy Mic 0.82 1.06 0.38 69
AB Doradus 0.87 0.96 0.515 58

TWA17 1 1.25 0.685 29
TWA6 0.7 1.05 0.54 47

V410 Tau 1.4 3.1 1.872 59
EY Dra 0.49 0.52 0.459 90
LQ Lup 1.16 1.22 0.31 35
HE373 1 1.11 0.333 61
HE520 1 1.04 0.6079 90
HE622 1 1.09 0.804 70
HE699 1 1.08 0.4908 62
AP149 1 1.29 0.32 30

Table 7.1: A table showing the stellar parameters; mass, radius, rotation period and in-
clination, for the stars on which there was available data in the literature of prominence
locations.

Figure 7.1 gives histograms of the stellar data listed in Table 7.1. Many stars in this

sample have a mass of around 1 solar mass and a radius of around 1 solar radius. The

smallest star in the sample is the M-dwarf HK Aquarii with the smallest mass and radius

at 0.4 solar masses and 0.59 solar radii. The largest star in the sample is V410 Tau, with a
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mass of 1.4M� and a radius of 3.1R�.

The distribution of rotation periods ranges from 0.31 days to 1.872 days. The fastest rotator

is LQ Lup and the slowest is V410 Tau. Most stars in the sample have a rotation rate between

0.3 and 1 days.

These stars have a range of inclinations (of the rotation axis to the observer), from 29 to 90

degrees. Stars such as HK Aquarii, EY Dra and HE520 are viewed pole on, whilst TWA17

and AP149 with inclinations of around 30 degrees are viewed closest into the stellar equator.

The peak of the distribution lies around 70◦, although there is a large spread.

Figure 7.1: Histograms showing the distribution of stellar (a) mass, (b) radius, (c) rotation
period and (d) inclination for the stars listed in Table7.1.

7.1.2 The observed prominence data

Prominence distances from the rotation axis

Table 7.2 lists the distances from the rotation axis ($) of prominence observations around

these stars, along with the associated references. Distance from the rotation axis is the

cylindrical radius, $ = Rp cos θ. For many stars, there are only one or two observations,

sometimes given in the literature as a range. For HK Aqr, Speedy Mic and AB Dor however,

there are many observations.
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Star $ [R?] References
PZ Tel 2.3, 4.9, 1.5, 2 Barnes 2000[42]

1.44, 1.05 Leitzinger 2016[41]
HK Aqr 5.2, 3.4, 3.0, 2.6, 2.1, 2.2, 1.2 van den Oord 1998[43]

3.75, 0.32, 0.49, 1.67, 2.41, 0.54, 1.35 Leitzinger 2016[41]
1.34, 1.34, 1.34, 1.35, 1.33, 1.35, 1.34 Byrne 1996[44]

Speedy Mic 2.96, 1.01, 1.36 Jeffries 1993[35]
1.3, 3.2, 2.4, 3.8 Barnes 2001[54]

2.79, 3.16, 2.88, 2.4, 3.28, 3.06, 2.82, 1.43, Dunstone 2006[36]
3.21, 2.32, 3.18, 1.71, 3.31, 3.0, 3.64, 2.1,
2.49, 2.87, 3.48, 3.16, 3.0, 3.09, 2.35, 3.39,

3.24
2.99, 3.68, 3.72, 3.92, 2.35, 4.67 Dunstone 2006[37]

3.5, 4.4 Wolter 2008[162]
AB Doradus 7.35, 3.71, 2.87, 1.26, 3.53, 2.29, 2.82, 2.6, Collier Cameron 1989a[1]

2.32, 6.16
6.9, 6.2, 2.3, 4.1, 8.1, 5.6, 2.4, 4.4, Collier Cameron 1989b[27]
3.1, 3.3, 2.9, 2.7, 2.3, 2.7, 4.9, 6.8,

8.5, 2.75, 3.3, 3.7, 3.0, 4.8, 4.1
2.8, 3.5 Brandt 2001 [30]

1.9, 2.9, 2.9, 2.7, 3.3, 2.5, 2.3, 2.9, 2.1, 2.3 Donati 1997[25]
3.1, 3.0, 3.1, 3.45, 4.85, 4, 3.33, 7.96, Collier Cameron 1999[31]

3.5
3.0, 4.5, 4.7, 3.2, 4.2, 4.2, 3.1, 3.4, Donati 2000[53]
3.5, 2.7, 4.5, 3.7, 4.5, 4.5, 3.2, 3.8,

2.5, 2.8, 3.8, 4.5, 3.5, 3.8
3.1, 3.0 Gomez de Castro 2002 [32]

TWA17 4.0 Skelly 2008[51]
TWA6 4.0 Skelly 2009[52]

V410 Tau 2.5cos (π/2− θ) Skelly 2010[23]
EY Dra 3.86-3.99, 1.4-1.72, 0.8-1.33, 4 Eibe 1998[48]
LQ Lup 1.3-2 Donati2000[? ]
HE373 2-2.8 Collier Cameron 1992 [47]
HE520 3.7-5.1 Collier Cameron 1992 [47]
HE622 5.4 Collier Cameron 1992 [47]
HE699 3.8-6.0 Collier Cameron 1992 [47]
AP149 3.23, 3.01, 2.29, 1.58 Barnes 2001[54]

Table 7.2: A table listing the observed distances from the rotation axis of prominences
around the stars in Table7.1.

Figure 7.2 shows a histogram generated from this published data. The black dashed line

shows the location of the equatorial co-rotation radius. AB Doradus is the most studied

star for slingshot prominences, and therefore this histogram has much more data than some

of the others, shown in Figure 7.3. For AB Dor, the peak of the distributions can be seen

to be at distances around the equatorial co-rotation radius. The distribution is biased to

distances beyond this radius, with very few prominences at low distances.
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Figure 7.2: Histogram showing the distribution of prominences around AB Doradus for the
collated date in Table7.2.

Speedy Mic, another well-observed star, shows a slightly different and more compressed

distribution. Rather than the range of $ = 0− 10R? that is seen in AB Dor, the distribu-

tion for Speedy Mic covers $ = 1 − 5R?. The peak of the distribution is no longer at the

equatorial co-rotation radius, but now beyond it. HK Aquarii also has a notable number

of observations, and the distribution here is different to both AB Dor and Speedy Mic.

The peak of the distribution is below the equatorial co-rotation radius, with prominence

numbers decreasing beyond around 2R?. Other stars have low numbers of observations,

making extracting anything meaningful from this data difficult, although they are shown

in Figure 7.3 for completeness. The histograms shown here collate all the observations of

prominences around these stars. For some stars, such as AB Dor, these observations have

taken place over many years and the magnetic field structure of the star has likely changed

over this time period. Therefore these histograms would show a distribution of prominence

locations more like an average, potentially over a stellar cycle, and observations taken in

one particular year might look quite different from these distributions.

As discussed in Chapter 2, the distribution of prominence locations can depend on var-

ious stellar parameters such as coronal temperature, stellar magnetic field strength, the

presence and location of a source surface and the dominating magnetic field topology (e.g.

dipolar or quadrupolar). Therefore, that the distributions of prominences on these stars

would be different is not surprising but the shapes of the distribution may be expected to
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Figure 7.3: Histograms showing the observed prominences distributions. The black dashed
line shows the location of the equatorial co-rotation radius.
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show the same overall trends. A change in these parameters should not alter the overall

shape of the height-width curve that the model in Chapter 2 would generate, and therefore

the prominence distributions would be expected to show the same behaviour. However, the

distribution from AB Dor looks very different from the distribution for HK Aqr. Work in

Chapter 2 showed that the location of the source surface influences the shapes of the distri-

butions and this could be at least partly responsible for the differences seen here in these

distributions. Whilst AB Dor and HK Aqr have, relatively speaking, a large number of

prominence observations used in generating their histograms, the absolute numbers are still

small: 76 and 21 for AB Dor and HK Aqr, respectively. A larger number of observations,

especially for HK Aqr, would make it easier to establish if these differences in the histograms

are caused by intrinsic differences in the prominence locations, small number statistics, or

indeed an inclination effect.

Figure 7.4: Figure showing $, the distance from the rotation axis, which points along the
y axis.

Figure 7.4 shows the distance from the rotation axis, $. Because $ is a cylindrical

radius, a given value of $ could correspond to a range of different locations around the star

(rp,θ). As discussed later in this chapter, however, the range of possible locations (rp,θ) that

the prominence could have had is constrained by the fact that the prominence was observed.

Observations of prominences provide the values for $ from the drift rate of the promi-
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nences in the Hα spectra. In other words, the velocity with which the prominence tracks

cross the stellar disc. This can be found from the gradient of the transient. This provides

observers with the distance of the prominences from the rotation axis ($) since

$ =
v̇

vΩ2 sin(i)
. (7.1)

This is distinct from the radial distance of the prominence (rp), and it’s height above the

stellar surface:

$ = rp cos θ (7.2)

where θ is the co-latitude of the prominence.

With observationally derived values of $, the possible radii and latitudes of these promi-

nences can be calculated.

7.2 Plotting the potential prominence locations

Potential prominence locations (r, θ) can be found by combining the data from the literature

of the prominences distances from the rotation axis ($) with Equation 7.2. This gives a

range of possible solutions, examples are shown in Figure 7.5 for AB Dor and Speedy Mic.

These plots show the visible locations around a star as the white regions, and the locations

that never transit the stellar disc as grey regions. The red line shows the latitude at which a

prominence would be visible at any height above the surface, with the equatorial co-rotation

radius shown on this line as a red point. The black curves show the possible prominence

locations for individual observed prominences.

Given that the prominences were observed and (for almost all stars) transited the stellar

disc, the potential prominence locations can be constrained further. The only possible loca-

tions for these prominence locations are the sections of the black curves that lie within the

white regions of the plot, i.e. transited the disc.

Similar plots for the remaining stars are shown in the appendices (Appendix G).

Observations provide a distance from the rotation axis for prominences, based on the

gradient of the curve that the prominence produces in the dynamic spectrum. Whilst this

quantity is useful when comparing prominence observations, it can be unsatisfactory since it
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Figure 7.5: Possible prominence locations for the stars AB Doradus and Speedy Mic. The
plots show observations from Table7.1. For AB Dor: (a) Collier Cameron 1989a [1] (b)
Collier Cameron 1989b [27] (c) Donati 1997 [25] (d) Collier Cameron 1999 [33] (e) Donati
2000 [53] and (f) Brandt 1994 [30]. For Speedy Mic: (a) Dunstone 2006a [36] (b) Dunstone
2006b [37] (c) Barnes 2001 [54] (d) Jefferies 1993 [35] (e) Wolter 2008 [162].
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contains within it both the radius and latitude. However, untangling the radius and latitude

from$ is not straightforward since a range of combinations would produce the same$ value.

Prominences observed at greater distances from the star have better constrained latitudes.

These further out prominences can only have a narrow range of latitudes and still transit the

disc. Meanwhile, prominences observed closer to the star have poorer constrained latitudes,

since the opposite is true. For constraints on the radius, the stellar inclination is important.

An observation of a prominence on a star that is equator on to observers (or has a low

inclination) will provide the best constraints on the radius of the prominence. Looking at

Figure 7.5, it can be seen from the shape of the black curves that a prominence in the

equator with a given $ value could have a smaller range of radii whilst still being visible.

The black curves of $ are very steep around the equator and therefore the radius does not

change much. However, because of the flattening of the black curves at large distances,

a prominence observed at higher latitudes (for example if the star had a high inclination)

could have had a wider range of radii and still been visible.

7.3 How does the maximum radius vary with co-rotation

radius?

Figure 7.6 shows the maximum radius at which prominences have been observed, plotted

against co-rotation radius. The grey dashed line shows the radius at which the prominence

would be at the equatorial co-rotation radius. The solid grey line shows the maximum

height a prominence within the equatorial plane could take, as calculated by Jardine and

van Ballegooijen 2005 [77]. Speedy Mic, AP149 and AB Dor all lie above this maximum

predicted height. This may be that the prominences are being supported at these great

distances and that the model can not explain this, or it may be that these prominences are

being ejected from the star. Evidence of prominences being ejected has been seen on AB

Dor, with some prominences being seen to move further out on consecutive nights of an

observing run. Given that AB Dor and Speedy Mic are the most well observed stars for

slingshot prominences, it is reasonable that this could be the explanation. For many other

stars, prominences are not observed over many nights and are sometimes only observed for

one night. Therefore, the chances of seeing a prominence moving out from the star would

be lower for the other stars in the sample. Most stars, however, lie between this maximum
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predicted height and the co-rotation line. This suggests that prominences typically form up

to this maximum height, and beyond the co-rotation radius (grey dashed line). The plot

shows quite a lot of scatter, with no obvious trend. Typically, there is a large uncertainty in

the maximum height, which comes from the uncertainties provided in the literature for the

observed distances from the rotation axis. Not all of the observations provide uncertainties

and therefore not all points on the plot have error bars. The horizontal error bars are

also associated with the observed uncertainties - the range of potential latitudes of the

prominence provides a range of co-rotation radii since the co-rotation radius varies with

latitude. The thick black lines show the maximum height for prominences at higher latitudes

(latitudes 30◦, 50◦ and 60◦, from bottom to top). All stars lie below the maximum height

for prominences at a latitude of 50◦. Latitudes of prominences are not accounted for in this

plot, however the latitude of a prominence will determine its maximum height. Some of the

scatter within this plot could be due to differences in latitudes.

Figure 7.6: Plot showing the maximum radius at which prominences have been observed,
against co-rotation radius of the star. The grey dashed line shows where the prominence
radius equals the co-rotation radius, and the solid grey line shows the maximum height
predicted by Jardine and van Ballegooijen 2005 [77]. The black lines show the maximum
radius for higher latitude prominences.

Jardine and van Ballegooijen give the maximum radius as

rmax = −1

2
+

1

2

√
(1 + (2rk)3), (7.3)

shown by the solid grey line in the plot. This gives the maximum radius for prominences
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within the equatorial plane, and is calculated as the radius at which the gas pressure returns

to the same value as it was at the surface. The radius at which this happens is smallest at

the equator, where the centrifugal term is maximal. A more general equation can be found

to calculate the maximum height at other latitudes and is found from the expression for

pressure variation with height, discussed in Chapter 3 as shown by Equation 3.12.

rmax = −1

2
+

1

2 sin θ

√
((sin θ)2 + (2rk)3), (7.4)

For stars with large co-rotation radii, this maximum radius is greater since the gas pressure

takes longer to return to its surface value than when the centrifugal force is stronger (i.e.

more rapid rotation). However, it is apparent that for very slow rotators like the Sun sling-

shot prominences can not be formed. Whilst for very rapid rotators the rotational term may

dominate and be responsible for the maximum height at which prominences can form, for

slower rapid rotators this might not be the case. The rotation alone might not determine

the maximum height of prominences and, for example, the magnetic field strength may be

an important quantity also. Therefore, it is possible that a plot such as Figure 7.6 might

have multiple regimes - one for rapid rotators where this equation holds true, and another

regime for the slower of the fast rotators.

7.4 Can the prominence observations help to constrain

the field structure?

Chapter 6 investigated the stable point distribution around tilted dipoles and quadrupoles.

A question that follows from this is “assuming the observed prominences are supported by a

simple field structure, is it possible to constrain what kind of structure this field might have

been?”. Figure 7.7 shows the locations around AB Dor which transit the stellar disc and

are therefore visible in absorption in a dynamic spectrum (white). The grey region shows

the locations that do not transit the disc (and therefore are invisible). The black curves

show the possible locations of the observed prominences on AB Dor that were published in

a paper by Collier Cameron et al in 1989 [1]. Whilst the observations give $, the distance

from the rotation axis, it is clear from this plot (and Figure 7.5) that not all of the locations

associated with a given $ are possible solutions (since some would not transit the disc).
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The black curves shown here show only the possible locations.

Figure 7.7: A plot showing the possible (r,latitude) locations that prominences observed in
1989 on AB Dor [1] could have had given the reported $ values.

In Figure 7.8, the stable points from various tilted dipoles are over-plotted onto these ob-

servations. It is immediately clear that even with the largest tilts, the innermost prominence

can not be explained by a tilted dipole. From these plots alone, it could be that the second

innermost prominence may also be impossible to explain with this field structure. For the

remaining prominences, it is clear that the stable points for larger dipole tilts (e.g. (c) in Fig-

ure 7.8) could explain the observations better than more aligned dipole fields (Figure 7.8(a)).

Larger dipole tilts allow for higher latitude stable points to be formed, which are needed to

explain the prominences seen around AB Dor with its inclination of 60◦. Whilst not all of

the observed prominences could be explained by a tilted dipole field structure, many could.

Of these, larger dipole tilts seem the most likely, however, it is likely that many tilts could

produce stable points in the necessary locations. This is in part due to the wide range of

locations that the observed prominences could have been at (the black curves in Figure 7.8).

Figure 7.9 shows the observed prominence locations and the stable points for a tilted

quadrupolar field. The innermost prominence observation could now be explained by a tilted

quadrupole, but probably for only a narrow range of quadrupole tilts. The second innermost

prominence again can not be described, however, the remaining prominences can be and

often by a larger range of tilts than with the dipole, due to the typically wider distribution

of stable points for the quadrupole than the dipole.

A simplistic dipole or quadrupole can not alone describe the prominences observed by

Collier Cameron et al in their 1989 paper, and therefore likely in other observations also. It
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Figure 7.8: Plots showing the possible observed prominence locations (black) and the stable
points for dipoles of various tilts (blue). The black dashed line shows the co-rotation radius.
(a) has the smallest dipole tilt and (c) has the largest.

is the prominences at very low heights, at least in this example, that are the most difficult to

describe, which fits with the magnetic field being more complex close to the stellar surface.

A combined field might be more successful in producing stable points which match the

observations.

7.4.1 Finding the tilt of AB Dor from prominence observations

Rather than solving for the stable point locations for a fixed dipole tilt as constructed in

the previous chapter (Chapter 6) and shown in the plots above (Figures 7.8 and 7.9), we

can ask “which dipole tilts are needed to form a stable point at a given location?”.

Here, the locations at which prominences were observed are assumed to be stable points.

As the observations provide a given value of $, this provides a range of possible (r,θ) values,

an example is shown in Figure 7.10 by the black lines for the observed prominences reported

in the 1989 paper by Collier Cameron and Robinson [27]. Note that it does not provide any

information about the longitude of the prominence.

The equations for stable point formation shown in Chapter 6 can then be used to solve

for the dipole tilt (d) and longitude (φ) using the prominence location (r, θ) as input

parameters. For each prominence (an example is shown in Figure 7.11(a)) there are a range
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Figure 7.9: Plots showing the possible observed prominence locations (black) and the stable
points for quadrupoles of various tilts (blue). (a) has the smallest tilt and (d) the largest.

Figure 7.10: Possible (r,θ) locations for the observed prominences reported in Collier
Cameron et al 1989b [27].

of different (r, θ) that would match the observed $. Figure 7.11(b) shows the different

locations considered here for this prominence. For each of these points, various dipole tilt

and longitude values exist for which a stable point could exist at the point. An example

is shown in Figure 7.11(c) for the red point shown in (b). This provides a range of dipole

tilts for which the prominence could have existed at this location. Figure 7.11(d) shows

this range of dipole tilts as a histogram. There is no way from the observations alone to

constrain the longitude of the prominence, and therefore the range of possible dipole tilts is

the full range plotted in Figure 7.11(c).

Whilst the range of dipole tilts shown in Figure 7.11(c) is only for one possible location

of the prominence, a range can be generated in the same method for each point in Figure
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Figure 7.11: (a) shows the range of possible locations for one prominence reported in Collier
Cameron et al [27]. (b) the possible locations of the prominence as used here, the red point
is associated with plots (c) and (d). (c) the possible dipole tilts and longitude for the stable
point and (d) the possible dipole tilts shown as a histogram.

7.11(b). The range of dipole tilts that could have produced the prominence then is the

largest range of dipole tilts that comes from the possible locations (an example is shown

in Figure 7.12). In this example, the range of dipole tilts that could have produced this

prominence is determined by the blue solution, since the other locations resulted in solutions

within this range.

Figure 7.12: An example for one prominence, showing how different possible locations of
the stable point lead to different ranges of possible dipole tilts.

This provides the range of dipole tilts that could have produced one prominence, but in
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order to constrain the range of dipole tilts of AB Dor at the time of the observations, all

of the prominences must be considered. Once a range of dipole tilts is predicted for each

prominence, the solution for the star is the narrowest range that would have allowed for

all of these prominences to have existed around the star. Figure 7.13 shows the possible

range of dipole tilts, calculated by this method from the literature values of the observed

prominences. These ranges are shown by the red lines (and black for 1994, in which two

different publications provide prominence observations for this year). The blue dots provide

the dipole tilt for AB Dor as calculated from the ZDI maps. The range of dipole tilts that

is predicted from the prominence observations is typically large and does not constrain the

value well. If there was a way to link the observed phases of the prominences to a longitude

in the stable point models then this range could be constrained far better. This can be

seen from Figures 7.12, because for any given longitude the range of dipole tilts that could

produce the prominence is far smaller than the range over all longitudes, being able to

constrain this value would lead to better constraints on the dipole tilt. Unfortunately, it is

not possible to link the observed phase to a longitude in the stable point coordinate system

because this would require knowing a priori how the prominence location relates to the

longitude of the dipole axis. Given that we are only working with the observed prominence

locations as input parameters into this model, this is not possible. Despite this, whilst the

ranges predicted are too large to be of much value, it is comforting that the ranges do lie

over the values found from the ZDI maps.

7.5 Future work and conclusions

This chapter has compared the stable points produced in a dipolar and quadrupolar field to

the observations of prominences around AB Doradus. It has primarily focussed on a dipolar

field, finding the range of dipole tilts that could have produced prominences in the locations

in which they were observed.

Not all observed prominences could be generated with a dipolar field, with prominences

close to the surface being the hardest to reproduce. It may be that a combined field struc-

ture could better replicate the lower lying prominences.

With more time, this chapter would have investigated the range of quadrupole tilts that
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Figure 7.13: Red lines: the predicted range of dipole tilts as calculated here from the
prominence observations. A black line is used for one observation in 1994 as there are two
publications for this year. Blue dots: the dipole tilt for AB Dor provided from the ZDI
maps.

could produce these observations, and compared this to the results for a dipole. It would

also have attempted to model the observations from other stars for which there is data,

particularly Speedy Mic and HK Aqr where there are more than a handful of prominence

observations. It would be interesting to see how well a dipole or indeed quadrupole could

describe them and what range of tilts it would give.

Whilst the possible range of dipole tilts predicted from the observed prominences do fit

with the results from ZDI maps, the ranges are too large to be very helpful. These ranges

could be decreased if the longitude of the prominence could be accounted for. There is no

way to link the prominence observations alone to a longitude in the stable point coordinate

system, which would constrain the tilt of the dipole axis far better than the radius and

latitude alone. Whilst the observations of prominence phases can not be directly mapped to

the longitudes used here, the phase of each of the observed prominences are known relative

to each other. Whilst outside the scope of this work, it could be possible for the model to

be extended and developed in such a way as to include these relative phases as a constraint

into the model. This would then help to constrain the dipole tilt and decrease the ranges

shown in Figure 7.13. The longitude of the dipole axis can be extracted from ZDI maps, and

this could be another way to improve the model. It would be possible to use these values
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to map the observed phase of the prominences to longitudes in the stable point coordinate

system and therefore better constrain the dipole tilt. It is clear that trying to extract the

tilt of the dipolar field from the observations of prominences alone is not very successful,

but including some information from the ZDI maps would go some way to improving this.

How valuable this would be, however, is unclear.
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Chapter 8

Summary
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8.1 Introduction

The first and second chapters of this thesis cover a self consistent model of prominences. In

these models the prominences are magnetic loops that have cooled compared to the external

field and thus have adjusted their shape from this background field. The background field

does not adjust shape to account for these loops, which for loops at larger heights from the

surface will be more of a limitation than lower loops, since these have diverged most from

the coronal field. This model has used basic field structures, i.e. pure spherical harmonics of

either a dipole or quadrupole, though in practice this method could be applied to a general

magnetic field structure. In the first chapter, the work focused on the magnetic field being

embedded within the equatorial plane of the star, with the second chapter developing this

model for a magnetic field aligned with the stellar rotation axis. The latter is a more realis-

tic field structure, although the chapters together give the two extremes of such a scenario

since most stellar magnetic fields are at some tilt from the rotation axis.

8.2 The equatorial model

The shapes of cooled, prominence bearing loops were found for a variety of field geome-

tries; a dipole, quadrupole, dipole with a source surface (which was placed above and then

below the co-rotation radius) and a combined dipole-quadrupole. Families of solutions can

be found for a fixed set of parameters (including the stellar parameters, the coronal tem-

perature, prominence temperature and base gas pressures). These families are the set of

solutions for all heights above the surface for which an equilibrium is possible. These fam-

ilies are examined as “height-width” plots, in which the “height” is the distance from the

stellar surface to the loop summit and the “width” is the angular distance from a footpoint

to the loop summit.

The results for a dipole and quadrupole field yield very similar results for the parameters

considered here; despite being confined to a smaller angular extent by the background field,

the quadrupole shows qualitatively the same shape as the dipole. The maximum loop height,

as calculated by the height at which the magnetic field strength of the cooled solutions would

tend to zero, is slightly lower for the quarupole than dipole, which would be expected as

this field drops off with height quicker.
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For a dipolar background field, this was later modified to include a “source surface”, a radius

at which the field becomes purely radial. This source surface was initially placed above the

co-rotation radius, and the behaviour found was very similar to that of a pure dipole but

with cooled solutions now being found within the open field region. These solutions are

cooled loops supported within the stellar wind. This result is consistent with previous work

by Jardine 2005 [77] where similar work was carried out in a Cartesian geometry for a “flat”

star.

The source surface, where the magnetic field becomes purely radial, was also placed below

the co-rotation radius. Solutions are much more difficult to find in this case, which is partly

due to fact that the background field opens before the co-rotation radius, making it difficult

to balance the forces and find an equilibrium. However, this may also be influenced by the

proximity of the source surface and co-rotation radii. Only two locations for the source

surface were investigated here, placed 1 stellar radii away from the co-rotation radius in

either direction. From preliminary findings, it appeared that solutions were more difficult

to find when the source surface was close and below the co-rotation radius. This would

require more investigation however.

The maximum height of these cooled solutions was determined from the expression for the

magnetic field strength of these cooled loops. The maximum loop height would occur once

this field strength drops to zero at the summit, and the expression for this was determined

by the thin flux tube approximation. The influence of various parameters on this maximum

loop height was investigated for the field geometries used, namely a dipole, quadrupole and

a dipole with a source surface. A hotter loop, that is closer in temperature to the coronal

field, can be supported at much larger radii than a cooler one, since less magnetic tension

is required to contain this condensation. Increasing the difference in plasma base pressure

between outside and inside the loop requires more magnetic tension in order to sustain more

material and therefore results in shorter loops than when the loop is in pressure balance

with its environment. Decreasing the plasma beta, which here is a proxy for increasing

the external field strength, allows for taller loops. This is true for both the dipolar and

quadrupolar external field. For the dipole with a source surface, the maximum height is

independent of the plasma beta and the temperature. It depends only on the ratio of gas

pressures, and varies in a similar way to the pure dipolar field.

This model is compared to the observations using the distributions of prominences with

height. Observed data for the stars Speedy Mic and AB Doradus allows prominence distri-
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bution with height to be plotted. From the height-width curves of these models, theoretical

prominence distribution histograms can be plotted. When compared to the observations,

the model using a dipole and source surface above co-rotation matched the observations for

AB Doradus better than placing the source surface below co-rotation. The general trend of

the modelled histogram matches the observations well, generating three peaks; one at very

low heights, one just above co-rotation and one at very large heights. Those at very low

heights are not clearly present in the observations, though they would likely be difficult to

pick out from background noise due to the small size of these loops. Varying the temper-

ature of the model causes the distribution to be condensed to a smaller range of heights,

pushing the peaks to lower heights from the surface. This model has always used families

of solutions to generate the distributions (i.e. all loops set to the same temperature) but

in reality there is no reason why all prominence bearing loops around a star must take the

exact same temperature and it is far more likely that there is a distribution of temperatures

contributing to the observed histogram.

Placing the source surface below co-rotation does not match the observations of AB Dor

well. This model suggests that the source surface of the star could be beyond the co-rotation

radius, if this model accurately replicates the prominences. There is no way to determine

for certain the source surface around these stars, and that prominence distributions could

provide some constraint on this is interesting. Much more work would need to be done to

investigate the combination of parameters that could lead to the model reproducing the

trends for the observed data in order to get concrete numbers out of this, however.

For the star Speedy Mic, chosen as a good example of a very rapidly rotating and active

star, neither of the source surface locations here generate a histogram which matches the

observed trend particularly well. The source surface above co-rotation and at the highest

prominence temperature appears closest to the observations, generating the peak at largest

heights with ease but struggling to generate the peak just beyond co-rotation. Again a peak

is seen at very low heights which is not recovered from the observations. The co-rotation

radius of Speedy Mic is much closer to the stellar surface than for AB Doradus and in

order to generate this in the modelled histogram, the height-width curve needs to extend

outwards in width just beyond co-rotation rather than the tight curves that are seen from

these parameters. It may be that a different plasma beta value would produce better re-

sults, which is reasonable since the magnetic field strength on Speedy Mic will differ from

AB Doradus due to its faster rotation rate. Speedy Mic has a rotation period of about
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0.76 times that of AB Doradus, i.e. rotates faster, which assuming a linear dynamo could

lead to a an average large scale magnetic field that is 1.3 times that of the field on AB Dor

[163]. These values are for the average field strengths alone, and the active regions above

which this loops would form might have larger discrepancies between the two stars. The

model can be highly sensitive to changes in the input parameters, especially the plasma beta.

8.3 The meridional model

Generalising the model to a dipole aligned with the rotation axis and embedded in a merid-

ional plane makes the model more realistic. The gas pressure variation around a star is

dependent on radius from the star and latitude. Thus, whilst the gas pressure is constant

at a fixed distance from the star when confined to the equatorial plane, this is no longer

the case once out of it. In the case of a dipole in a meridional plane then, the gas pressure

varies both in radius and latitude. This alters the shape of the cooled solutions for the

meridional dipole when compared to the equatorial dipole. The steepest variation in pres-

sure with height is always found within the equatorial plane, where the centrifugal force is

largest. Quantitatively, this change in pressure distribution alters the loop shapes between

the equatorial and meridional cases, however this variation is not large. The same behaviour

is found in the meridional case as was found in the equatorial case in terms of the family of

solutions (i.e. the height-width curves).

A source surface can again be included, and the results are again quantitatively different

but qualitatively the same as the equatorial case. Since this work has focused on a dipolar

field, this is not surprising. The summit of the loop is still restricted to the equatorial plane,

even once the dipole has been aligned with the rotation axis. This is where the majority

of the material gathers for tall loops, and for the loops below co-rotation and close to the

stellar surface where the magnetic field strength is strong and the loop summits are empty,

the cooled field would be expected to follow the background field.

An interesting development of this work would be to extend it to a quadrupolar field. The

difference between an equatorial and meridional field would then be more drastic as the

pressure distribution in the two cases would be very different. This would also allow for

the formation of prominences at higher latitudes, where here all prominences are confined

to the equatorial plane. Observations of higher latitude prominences exist on many stars
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for which prominences have been observed, and thus this would be a useful development of

this work. However, quadrupolar fields drop off with height faster than dipolar fields and

at large heights the dipolar field is most likely to be the one dominating.

The masses of flux tubes associated with a family of solutions are calculated, and results

show two types of solution, (1) those with summits at low heights (below co-rotation) that

have empty summits and heavy footpoints and (2) those with summits above co-rotation

with dense summits. These low-lying solutions follow the background field closely, and are

more like solar-prominences than the slingshot prominences observed on rapidly rotating

young stars. The taller solutions are the slingshot prominences, with dense summits. The

masses found are consistent with observations for the star AB Doradus.

Synthetic Hα spectra are generated for a variety of field structures; a dipole embedded

within the equatorial plane, an aligned dipole and an aligned dipole with a source surface

(placed above and then below co-rotation). The inclination of the star, i.e. the viewing

angle of the observer is also investigated.

The inclination of the star has a large effect on if a prominence will transit the stellar disc,

and therefore be visible in absorption. Since the prominences always form within the equa-

torial plane with these field geometries, viewing into the equatorial plane of the star will

result in all of the prominences being visible in absorption at some point. However, even with

a small change in inclination many prominences will never transit the disc. Prominences

at large distances from the surface will not transit the disc with even a slight variation in

inclination, and these prominences are the slingshot prominences.

The Hα dynamic spectra generated by an equatorial dipole and aligned dipole are rather

different. For an aligned dipole, only one side of the loop is visible for an aligned dipole and

therefore the trail produced contains one absorption feature from the leg of the loop, and

another one for the loop summit if the dense summit transits. For the equatorial dipole,

both legs of the loop transit the disc, producing two (or three) absorption features per loop.

However, between a pure dipole and a dipole with a source surface, the Hα trails are more

difficult to distinguish. There is some variation in the shapes of the absorption features,

based on the shapes of the field lines produced by the different external fields. Ultimately

though the overall spectra look similar.

Producing Hα spectra with a similar appearance to the observations is not difficult, with

various field structures generating believable synthetic spectra. This is encouraging that the

observations do not require a very unique set of parameters, although perhaps disappointing
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that recovering the magnetic field structure of the field lines from the dynamic spectra does

not appear to be straightforward.

8.4 Prominences around M-dwarfs

The third and fourth chapters use a different method in order to model prominence forma-

tion. In this method, the stable points within a field structure are found and associated with

a prominence. A prominence can then be modelled as extending about each stable point,

with a fixed size. In this model, the field structure is fixed and does not alter in account

of the presence of the cooled prominence material that is loaded to the stable point. The

field structure is more realistic in this model than the previous, more theoretical chapters,

and is generated from observations of the surface magnetic field structure of the stars in the

sample.

Stable points are found on all maps, suggesting that prominence formation could be com-

mon amongst these kinds of star. Prominences are found to form at a range of latitudes,

dependent on the alignment of the magnetic dipole axis and the rotation axis. Whilst a

range of latitudes are found, in all cases the preferential latitude is the equatorial plane and

is also where the highest mass prominences are supported. Visibility of these prominences

is more difficult, because they must transit the stellar disc in order to be visible. Unless the

star has an inclination of 90◦ (viewing into the equatorial plane), the prominences at this

latitude and far above the surface will never be visible. In this sample, this often includes

the highest mass prominences.

The inclination of a star is fixed, and thus some stars may not seem to be the best candi-

dates for viewing prominences. Chances for viewing prominences around these stars can be

increased if the dipole axis of the star tilts. This occurs when the global structure of the

coronal field changes, and could occur due to a stellar cycle or just a large scale change in

the field structure. Thus a star that is not an ideal candidate one year, could be a possible

candidate another. This will rely on the field structure change allowing for stable point

formation at higher latitudes that can transit the disc. These prominences are likely to be

less massive than the largest prominences around this star, so this is a drawback.

Typically, stars with an aligned dipole field and viewing close to the equatorial plane would

be the best candidates for prominence observing. This field structure will produce the most
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prominence mass and it will collect about the equatorial plane. Thus, the observer must

view into this plane in order to observe this mass. However, in practice this is a challenge.

Observing stars directly into their equatorial plane makes the north and south pole indis-

tinguishable from each other and it is unclear which part of the star light has come from.

Good stellar candidates for observing prominences are:

• stars that have small co-rotation radii. These stars are able to form slingshot promi-

nences at lower heights than stars that have large co-rotation radii. The most massive

prominences typically form around the equatorial co-rotation radius, and thus not

only are we more likely to see prominences around these stars in general, but we are

also more likely to be able to see the most massive prominences too.

• Stars with high inclinations so that we observe into or close to the equatorial plane.

This provides more of a chance of being able to observe the largest massive prominences

in absorption.

• Stars that have very misaligned dipole and rotation axes but that have low inclinations.

In this case we observe high latitudes of the star, and in order to form high latitude

prominences the dipole axis must be very misaligned from the rotation axis.

From the stars examined in this sample, potential candidates for prominence observations

are GJ1156, EQ Peg A, GJ1111, GJ9520 and V374 Peg. The proportion of visible promi-

nence mass is far lower than the total mass present however. For those maps in which

prominences were visible, this percentage ranged from 0.1% - 50.4% of the mass present.

V374 Peg is especially of importance in this sample as it is the only star for which promi-

nences have been observed. This work found only 13% of the prominence mass predicted to

be visible.

Work by Jardine and Collier Cameron [87] used prominences as wind gauges and here the

modelled prominences were placed on the Wood plot of mass loss rate per unit area against

X-ray flux. The modelled prominences showed a lot of scatter, which is also present in

the observations of stellar winds. This scatter was even present amongst stars for which

there were maps over consecutive years, suggesting that the scatter is intrinsic, and perhaps

related to stellar cycles. The line of best fit for these modelled prominences gives a relation

very similar to the relations from observationally derived wind studies. The prominence

relation is at the upper end of these literature relations.
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If the same plot is made for the observable prominences, there are far fewer points on the

plot and the points are up to 3 orders of magnitude lower than the true values. This suggests

that whilst prominences are suitable for use as wind gauges to probe the stellar wind, any

predictions based from prominence observations alone are likely to greatly underestimate

the true value of mass loss rates.

The work in Chapter 4 considered the modelled stellar wind rather than the observations

of stellar winds. This preliminary work suggests that the prominence and wind mass loss

and angular momentum loss rates may be very similar. This is dependent on the location

of the source surface, though the quantitative extent of this was not explored due to time

constraints. When plotted on the Wood plot, the modelled wind relation was found to be

very similar to the lower end of the literature relations for the observationally derived winds.

This fits with the prominence model yielding a relation closer to the upper literature value.

Spin-down timescales were calculated for both the modelled prominences and the modelled

wind. For the prominences these timescales range from 0.1Gyr to 588.2Gyrs. For the mod-

elled wind this timescale ranged from 0.3Gyr to 2335.0Gyrs.

The reality is that both the prominences and wind remove angular momentum from the

star and thus both contribute to the spin-down of the star. Combining the total angular

momentum lost and calculating the timescale from this yields spin-down timescales in the

range of 0.1Gyr to 469.5Gyrs.

The predictions of angular momentum loss rates from the prominences may be overesti-

mates, and therefore lead to underestimates of the wind angular momentum loss rates in

this model. However, this work suggests that the prominences could be having a large con-

tribution to the spin down of some stars. The prominences appear to act as a regulation

mechanism in which stars will eventually converge to the same rotation rate, since stars with

fast rotation rates tend to lose more angular momentum than their slower counterparts and

thus spin-down faster. Since this is also true for the stellar wind, the prominences would be

an additional mechanism contributing to this.

The ejection of these prominences into space could also have consequences for any orbit-

ing planets. A thought experiment is proposed by which an Earth-like planet orbits about

the equatorial plane of the maps considered here, at a distance of 1AU. The planet is more

likely to experience interaction from the ejected prominence material if orbiting about a star

with a an aligned dipole and rotation axis. These stars have large proportions of promi-
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nence material about the equatorial plane and thus is more likely to impact the planet. For

highly misaligned dipoles, the planet is less likely to experience ejected prominence material

throughout its orbit. The aligned dipole maps show not only the largest proportion of the

planetary orbit in which interception could occur, but also the largest masses of prominence

material.

For stars with aligned dipoles, such as EQ Peg B, an orbiting planet will likely experience

a lot of ejected prominence material but little wind material. What little wind was expe-

rienced would likely be quite constant. This is caused by the prominences dominating the

field structure close to the equatorial plane. For a very misaligned dipole such as GJ1156

however, the planet would pass through sections of its orbit where the wind was very strong

and regions where the wind was very low. This big fluctuation in wind is caused by the

planet passing above regions on the stellar surface of open, wind bearing field and then closed

sections. The prominences are spread over a large range of latitudes in this field structure

and it is unlikely that many of them would interact with the planetary orbit unless there

was a very large number of them. Thus, the planet here would have its orbit dominated by

a fluctuating wind and would likely be unaware of the prominences.

8.5 Calculating stable points around tilted field struc-

tures

The final two chapters returned to more mathematical work. It combined the theoretical

and mathematical modelling in the first few chapters, with the stable point method used

within Chapters 3 and 4. Unlike Chapters 1 and 2 where the field is constrained to 2 dimen-

sions and prominences are modelled as field lines that have cooled and adjusted their shape

to be in equilibrium with the background field, the final chapters are mostly 3 dimensional

work where prominences are modelled as stable points within the background field. In other

words, the stable point method assumes that the magnetic field line does not adjust shape

once it is mass loaded. This is perhaps cruder but computationally less challenging. The

complexity of the magnetic field and its effects on the locations at which prominences could

form was investigated in this chapter. This was then used to construct velocity plots that

showed the spatial distribution of material around the star, as has been done in observa-

217



tions [53, 55]. The model was then used to investigate the effects of stellar inclination and

orientation of the magnetic field on the velocity plots that would be produced. The velocity

plots generated appear similar to the observed velocity plots within the literature, however it

is apparent that no one particular field structure is clearly responsible for the observed plots.

The final chapter compared the stable point locations found using the model from Chap-

ter 6 to the observations of prominences found in the literature. It showed that using the

reported locations of prominences from the literature to predict the orientation of the dipole

axis of the star was not very successful, as many stable point locations are highly degen-

erate. This is encouraging in that it suggests that such prominences should be common

across rapidly rotating stars, regardless of the field orientation, and therefore across stellar

cycles also. However it does mean that using prominence locations alone, it is very difficult

to extract meaningful information about the field topology of a star and that some more

information is necessary. It is clear, however, that some of the observed prominences can not

be found even with the most simple field of a dipole. This suggests that the field supporting

these prominences is more complex than a dipole and that at low heights we can not rely

on a dipole alone to reliably predict prominence locations.

8.6 Further work

The first two chapters are proof of concept of a model. In this work, the stellar magnetic

field has been prescribed as a simple field structure (dipole, altered dipole or quadrupole),

and in both cases the work has been 2-dimensional. In the first chapter, the model was re-

stricted to the equatorial plane and in the second chapter, restricted to a meridional plane.

The next step of this work would be to convert this model to a fully 3-dimensional model.

This would likely not yield any new physics, however it would be necessary in order allow

for the next logical step with this work. This would be to use a general magnetic field in

place of the dipole (or similar) structure used here.

Being able to use a more general field structure would allow for the use of observed magnetic

fields as inputs. This would make it easier to compare the model to observations, since maps

of stars such as AB Dor could be used and compared directly to prominence observations

from the star in the same year. It would also allow for a method in which prominences could

be formed in the open field region, whilst allowing the source surface of the star to be closer
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to the stellar surface than was possible in chapters 3 and 4.

The work could also be extended to model a tilted dipole, and since the work so far

has covered the two limiting cases (equatorial dipole and fully aligned dipole) this would

likely not produce a lot of insight in itself. However, it would make for a nice comparison to

the work of chapter 5, in which a tilted dipole model is studied using the stable point method.

The main limitation in chapters 3 and 4 is the location of the source surface. Since this

model searches for stable points within the coronal magnetic field, prominences can only be

found in the closed magnetic field region. In chapters 1 and 2, the models finds equilibrium

shapes of cooled loops and thus there can be solutions within the stellar wind, i.e. open

field region. This is not possible in this work, and therefore in order to have a possibility of

forming prominences at large heights above the surface, the magnetic field must be forced

to be closed to large heights.

With more time, an investigation into the importance of source surface location and promi-

nence and wind mass loss rate would be helpful. It was mentioned in chapter 4 that decreas-

ing the source surface for the star V374 Peg from 18 to 9R? did not increase the area of the

stellar surface contributing to the wind mass loss as much as may be expected. However, an

investigation to quantify the effect on wind and prominence mass loss could be very valuable

here.

To further develop this model, the next obvious and very valuable step would be to use a

combined field structure. This could be a combined dipole and quadrupole structure, where

the fields may be of equal strength or different strengths and the field axes could be aligned

or not. This has not been done here due to time constraints. The current layout of the

code is such that calculating the stable points in these structures would likely require more

time and computer power than was available. However, this kind of field structure would

be far closer to the real fields that most stars have. These more complex field structures

would also likely produce more complex velocity plots as the field structures need not be so

symmetric and therefore the blobs in the velocity plots could also be asymmetric. In order

to make these velocity plots, the method for calculating the radius of curvature of field lines

would also likely have to be changed. In the work here the radius of curvature, used to

calculate the maximum density that each stable point can support (using the method by

Villereal D’Angelo [82]), is calculated analytically from the equation of the field line. This
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method may be too computationally expensive with such complex field lines, and another

method may need to be implemented in this case.

The magnetic field axis, for both dipole and quadrupole fields, has always been tilted

in this work towards the y-axis. With more time, this model would be adapted to vary the

direction into which the magnetic axis is tilted. This would not alter the results significantly,

but would generalise the model so that the blobs in the velocity plots could be centred at

different (vx, vy) locations. Alternatively, a relationship could be applied between the rota-

tion of the velocity plots and the rotation in φ of the magnetic axis, such that velocity plots

could be generated for any geometry of dipole tilt. With these plots, a machine learning

approach could be applied to compare observations to many synthetic observations to find

the field structure from the prominence observations.

As in previous chapters, the prominence material focused on was that which transmitted

the stellar disc. In the vast majority of cases, this is how prominence material is observed.

However, it would be interesting to consider stars such as LQ Lup or V530 Per where the

inclinations are so low that prominence material is observed in emission. In this case, the

velocity plots generated could be compared directly to the few observed velocity plots in

the literature.
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Appendices

A Co-rotating frame

Although the derivation shown here can be found in many textbooks, it has been included

here for completeness. A star can be described in various reference frames. In an inertial

reference frame, the star appears to rotate. However, in a rotating reference frame, the star

appears stationary as the frame itself constantly rotates in sync with the stellar rotation

rate. Forces in an inertial frame can be related to a rotating frame through the following

formulae:

Figure 8.1: A cartoon showing the inertial frame (solid axes) and rotating frame (dashed
axes) in Cartesian coordinates. Figure reproduced from Waugh [128].

The second law of Newtonian mechanics is true in both reference frames:

Fin = main (8.1)

and
Frot = marot. (8.2)

Observers in different frames would, however, have different experiences of accelerations and
therefore forces on objects. This is described in the following equation:

ain = arot + A. (8.3)

Therefore, the force in the rotational frame can be described, as below, in terms of the
inertial acceleration (ain) and an additional acceleration (A) which is the acceleration of the
rotating frame:

Frot = m(ain −A) = Fin + Ffict. (8.4)

Here the force experienced in the rotating frame is equal to the force in the inertial frame
plus an additional force (Ffict). This fictional force is the centrifugal force.

Using r1(t+ ∆t) = r2(t+ ∆t) from Figure 8.2 (which can be combined into Figure 8.3)
we find,

∆r1 = (∆r2 + r2(t))− r1(t). (8.5)
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Figure 8.2: Left: Positional vectors in the inertial frame. Right: The corresponding vectors
are shown in the rotating frame (dashed axes). The inertial frame is still shown by the solid
axes. Figure reproduced from Waugh [128].

And, using
d

dt
r = v = Ω× r, (8.6)

which can be rewritten as
r2(t)− r1(t) = (Ω× r)∆t, (8.7)

Equation 8.5 becomes:
∆r1

∆t
=

∆r2

∆t
+ (Ω× r). (8.8)

Figure 8.3: Comparing the different frames. Figure reproduced from Waugh [128].

Then, taking the limit of ∆t→ 0, this becomes:

dr

dt in
=
dr

dt rot
+ Ω× r. (8.9)

This is applicable to any vector, and therefore r can be replaced with vin, an expression
for the inertial acceleration can then be found:

ain =
dvin
dt rot

+ Ω× vin. (8.10)

Substituting vin = Ω× r leaves:

ain = arot +
d(Ω× r)

dt rot
+ Ω× vrot + Ω× (Ω× r), (8.11)
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which, for a constant angular velocity, simplifies to:

ain = arot + Ω× dr

dt rot
+ Ω× vrot + Ω× (Ω× r) (8.12)

ain = arot + 2Ω× vrot + Ω× (Ω× r). (8.13)

This can be rewritten in terms of gravity, which is the form used in this thesis:

grot = g− 2ω × ṙ− ω × (ω × r). (8.14)

When no fluid flows are present, this equation simplifies further:

grot = g− ω × (ω × r). (8.15)

When restricted to the equatorial plane, this equation simplifies further to:

grot = −GM
r2

r̂ + ω2r (8.16)
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B Radius of Curvature

In chapter 1 the standard result

∂ŝ

∂s
= (ŝ.∇)ŝ =

n̂

Rc
=

(rr′′ − r2 − 2(r′)2)

(r2 + (r′)2)3/2
n̂ (8.17)

is quoted. Here this is shown explicitly.

From
ds = dφ

√
r2 + (r′)2 (8.18)

it can be found that
∂

∂s
=

1√
r2 + (r′)2

∂

∂φ
(8.19)

and the unit vector ŝ is defined by

ŝ =
1√

r2 + (r′)2
(r′r̂ + rφ̂). (8.20)

Thus,
∂ŝ

∂s
=

1√
r2 + (r′)2

∂

∂φ

( 1√
r2 + (r′)2

(r′r̂ + rφ̂)
)
. (8.21)

From here onwards throughout this derivation,
√
r2 + (r′)2 will simply be denoted by

√
to make the equations less clunky. Evaluating:

√∂ŝ
∂s

= (r′r̂ + rφ̂)
∂

∂φ

(
1
√

)
+

(
1
√

)
∂

∂φ
(r′r̂ + rφ̂) (8.22)

√∂ŝ
∂s

= (r′r̂ + rφ̂)

(
−1/2

(
√

)3
(2rr′ + 2r′r′′)

)
+

1
√ (r′′r̂ + r′

∂r̂

∂φ
+ r′φ̂+ r

∂φ̂

∂φ
)

noting that ∂r̂/∂φ = φ̂ and ∂φ̂/∂φ = −r̂ this leaves:

√∂ŝ
∂s

= (r′r̂ + rφ̂)

(
− (r + r′′)r′

(
√

)3

)
+

1
√ (r′′r̂ + r′φ̂+ r′φ̂− rr̂)

through many lines of algebra, this may be simplified to:

(r2 + (r′)2)2 ∂ŝ

∂s
= (rr′′ − r2 − 2(r′)2)(rr̂ − r′φ̂)

∂ŝ

∂s
=

(rr′′ − r2 − 2(r′)2)

(r2 + (r′)2)3/2

(
(rr̂ − r′φ̂)√
r2 + (r′)2)

)
which may equally be written as

∂ŝ

∂s
=

(rr′′ − r2 − 2(r′)2)

(r2 + (r′)2)3/2
n̂
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C Source surface magnetic field

At the surface of the star we should have a dipole, i.e.

Br(r = R?) =
2M cos θ

r3
(8.23)

where M is the magnetic dipole moment.

We also know that Bθ(r = rss) = 0, where rss is the radius of the source surface.

Writing a dipole in terms of spherical harmonics (m=0, l=1):

Br = (−a10 + 2b10/r
3) cos θ, (8.24)

Bθ = (a10 + b10/r
3) sin θ, (8.25)

Bφ = 0. (8.26)

at R?:

2M cos θ

R3
?

= (−a10 + 2b10/R
3
?) cos θ (8.27)

2M = −a10R
3
? + 2b10 (8.28)

M = −a10R
3
?

2
+ b10 (8.29)

at rss:

Bθ = 0 (8.30)

and therefore

a10 + b10/r
3
ss = 0 (8.31)

a10 = −b10/r
3
ss (8.32)

Combining these,

M = fracb10R
3
?2r

3
ss + b10 (8.33)

M = b10

(
2r3
ss +R3

?

2r3
ss

)
. (8.34)
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So,

b10 = M

(
2r3
ss

2r3
ss +R3

?

)
(8.35)

and

a10 = −M
(

2

2r3
ss +R3

?

)
. (8.36)

These can be substituted back into the magnetic field equations to give the expression

for a dipole with a source surface:

Br = (−a10 + 2b10/r
3) cos θ =

[
M

(
2

2r3
ss +R3

?

)
+

2M

r3

(
2r3
ss

2r3
ss +R3

?

)]
cos θ (8.37)

Br =
2M

r3
cos θ

(
r3 + 2r3

ss

2r3
ss +R3

?

)
(8.38)

and

Bθ = (a10 + b10/r
3) sin θ =

[
− 2M +

2Mr3
ss

r3

](
1

2r3
ss +R3

?

)
sin θ (8.39)

Bθ =
M

r3
sin θ

(
2r3
ss − 2r3

2r3
ss +R3

?

)
(8.40)
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D M-dwarf Prominences

Figures 8.4 to 8.6 show histograms of the; mass, theta location and distance from the rotation

axis, of the prominences found from the ZDI maps of the M-dwarf sample. EQ Peg B is

given in the text as an example.
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Figure 8.4: prominence data for GJ1156, EQ Peg A and GJ1111
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Figure 8.5: prominence data for GJ1245b, GJ9520, GL182 and GL494
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Figure 8.6: prominence data for GL494 and AD Leo
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E AB Doradus Prominences from ZDI method

Plots of prominence mass versus polar angle are shown here for the M-dwarfs.
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Figure 8.7: Histograms of prominence masses for AB Dor, generated from the ZDI maps.
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Figure 8.8: Plots of prominence mass versus theta. The red lines in the plots show the
equator (i.e. θ = 90degrees)
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Figure 8.9: Plots of prominence mass versus theta. The red lines in the plots show the
equator (i.e. θ = 90degrees)
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F Tilting a magnetic field

The following appendix gives the mathematics behind tilting a magnetic field structure from

the stellar rotation axis. Here it is discussed in terms of a dipole, although it applies to

other structures too.

Figure 8.10: Cartoon showing the rotational frame (left) and magnetic frame (right).

The expression for a dipolar magnetic field that is aligned with the rotation axis is

Bd =
2 cos θ

r3
r̂ +

sin θ

r3
θ̂. (8.41)

Two frames can be defined, (1) the frame of the rotation axis and (2) the frame of the

tilted magnetic field structure, as shown in Figure 8.10.

In the following, the frame of the rotation axis is denoted as the ’original frame’ and the

tilted frame is denoted as the primed frame (e.g. B′).

Within the primed frame, the expression for the magnetic field can be written simply as:

B′d =
2 cos θ′

r′3
r̂′ +

sin θ′

r′3
θ̂′. (8.42)

In order to have generated this expression in terms of the original frame, the magnetic

field has been rotated by β. To rotate the field structure around the y-axis, a standard

rotation matrix is used:
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Ry =


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

 , (8.43)

such that B′cartesian = [Ry]Bcartesian.

However, in order to apply this matrix to the magnetic field, the expression for the

magnetic field must first be converted into Cartesian coordinates. This can be done with a

conversion matrix:

B′spherical = [M ]B′cartesian (8.44)

where

[M ] =


sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

 (8.45)

and thus

B′cartesian = [M ]−1B′spherical (8.46)

with [M ]−1 being the inverse of matrix [M ].

Thus, the expression for the magnetic field in the original frame can be found by

Bcartesian = [Ry]−1[M ]−1B′spherical. (8.47)

The expression for the tilted magnetic field in the original frame can be converted back

into spherical coordinates:

Bspherical = [M ][Ry]−1[M ]−1B′spherical. (8.48)

Equation 8.48 is a general expression that can be used to tilt any multipole or magnetic

field that can be written in the form of an analytic equation. Due to the matrices manipu-

lation that is required, these expressions used in this thesis were calculated in Mathematica

rather than by hand, to eliminate human errors!
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G Observed prominences

Figure 8.11: Potential prominence locations for the star HK Aqr and PZ Tel. For HK Aqr:
(a) van den Ord 1998 [43] (b) Leitzinger 2016 [41] and (c) Byrne 1996 [44]. For PZ Tel: (a)
Barnes 2000 [42] and (b) Leitzinger 2016 [41].

237



Figure 8.12: Possible prominence locations for the remaining stars, references are given in
Table 7.1.
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