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Abstract 33 

Background: Tuberculosis remains a global public health threat, and the development of rapid and 34 

precise diagnostic tools is the key to enabling the early start of treatment, monitoring response to 35 

treatment, and preventing the spread of the disease. 36 

Objective: An overview of recent progress in host- and pathogen-based tuberculosis diagnostics. 37 

Sources: We conducted a PubMed search of recent relevant articles and guidelines on tuberculosis 38 

screening and diagnosis. 39 

Content: An overview of currently used methods and perspectives in the following areas of tuberculosis 40 

diagnostics is provided: immune-based diagnostics, X-ray, clinical symptoms and scores, cough 41 

detection, culture of Mycobacterium tuberculosis and identifying its resistance profile using phenotypic 42 

and genotypic methods, including next generation sequencing, sputum- and non-sputum-based 43 

molecular diagnosis of tuberculosis and monitoring of response to treatment. 44 

Implications: A brief overview of the most relevant advances and changes in international guidelines 45 

regarding screening and diagnosing tuberculosis is provided in this review. It aims at reviewing all 46 

relevant areas of diagnostics, including both pathogen- and host-based methods. 47 

mailto:ikontsevaya@fz-borstel.de
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 48 

Introduction 49 

Tuberculosis (TB) remains a global public health threat that requires rapid and precise 50 

diagnostic tools to enable the early start of treatment and prevent the spread of the disease. National TB 51 

programmes were affected by the COVID-19 pandemic with a large drop in the number of people newly 52 

diagnosed with TB [1]. However, the pandemic has also stimulated rapid growth in the field of 53 

diagnostics for infectious diseases, with many novel tests and platforms aiming at rapid and precise 54 

detection of the pathogen, which has also boosted TB diagnostics. Overall, significant progress has been 55 

made in the past decades in diagnosing stages of TB from TB infection to TB disease. This review gives 56 

an overview of recent progress in host- and pathogen-based TB diagnostics. For that, we conducted a 57 

PubMed search of relevant articles focusing on articles published in the last decade as well as the most 58 

recent updates of guidelines on TB screening and diagnosis. 59 

 60 

Diagnostics of tuberculosis infection 61 

Immune-based diagnostics of tuberculosis infection 62 

TB infection (TBI) is a state in which we detect an immune response to Mycobacterium 63 

tuberculosis (Mtb) in the absence of clinical, microbiological and radiological signs of disease (Figure 64 

1). TBI can progress to TB disease via stages of incipient TB, when there are still no microbiological, 65 

radiological, or clinical signs of disease but a Mtb-specific immune response is detected and the TB 66 

progression test can be positive, and subclinical TB when radiological and/or microbiological signs of 67 

TB are detected but there are still no clinical symptoms specific for TB. With the progression to TB 68 

disease, clinical symptoms appear. 69 

In the state of TBI, Mtb is suspected to be in a low-replicative stage and in the absence of 70 

standard technologies to detect it, we measure the Mtb-specific immune response as an indirect 71 

assessment of infection, using tuberculin skin test (TST) and interferon (IFN)-γ release assays (IGRAs) 72 

[2]. TST involves intradermal injection of purified protein derivative (PPD) causing a delayed type 73 



 4 

immune reaction determining an induration; assay score is based on the size of immune infiltrate after 74 

48-72 hours. TST has a low cost, does not require a laboratory setting and is useful in large screening. 75 

However, the specificity for TBI diagnosis is affected by the PPD cross-reaction with non-tuberculous 76 

and tuberculous Mycobacteria, including Bacillus Calmette et Guerin [3]. Specificity is improved using 77 

Mtb-specific antigens (ESAT-6, CFP-10), as in new skin tests [Cy-Tb (Serum Institute of India, India), 78 

Diaskintest (Generium, Russia), and EC skin test (Anhui Zhifei Longcom, China)] [4, 5]. 79 

IGRAs are based on IFN-γ detection in response to Mtb-specific antigens (ESAT-6, CFP-10).  80 

QuantiFERON-TB Gold Plus (Qiagen, Germany) based on whole blood and ELISA and T-SPOT TB 81 

(Oxford Immunotec, UK) based on isolated lymphocytes/monocytes and ELISpot are worldwide used 82 

IGRAs that require an equipped laboratory and trained staff [3, 6]. 83 

The WHO is currently evaluating multiple next generation IGRAs as “next in class”. They are 84 

based on different methodologies such as chemiluminescence, automated enzyme-linked 85 

immunofluorescent assay, lateral flow technique, or non-IGRA testing (Table 1). 86 

Although IGRA and TST are widespread and recommended for TBI diagnosis [2], they do not 87 

distinguish infection from disease [3, 6] and poorly predict TB progression [7]. An increase of thresholds 88 

for QFT-GIT, T-SPOT.TB, and TST may increase the positive predictive value for incident TB at the 89 

cost of sensitivity reduction [7] without improving accuracy for routine application. Regarding the new 90 

skin tests and IGRAs, we do not expect a higher accuracy compared to routine IGRAs because based on 91 

the same Mtb-specific antigens [2].  Alternative experimental IGRAs involve antigens different from 92 

ESAT-6 and CFP-10, such as heparin-binding hemagglutinin antigen associated with Mtb containment, 93 

as reported in children, adults, people living with HIV (PLHIV) [8-10]. Other approaches are based on 94 

antibody detection [11]. 95 

 96 

 97 

 98 

 99 

 100 
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Table 1  101 

Tools for the diagnosis of TBI in the past and present 102 

 Description Skin tests IGRAs 

Present/

Past 

Commercial test TST QuantiFERON-TB Gold 

Plus (Qiagen) 

T-SPOT TB (Oxford 

Immunotec) 

Characteristics ● PPD based  

 

● ELISA 

● ESAT-6/CFP10 based  

● Whole blood based 

● ELISPOT 

● ESAT-6/CFP10 based  

● PBMC based 

Main benefits ● No laboratory 

needed 

● High specificity ● High specificity 

Main 

limitations 

 

 

 

 

WHO 

endorsement 

● Low specificity 

● Poor sensitivity 

in immune-

compromised 

individuals 

 

● WHO endorsed 

[12] 

● Equipped laboratory 

needed 

● Poor sensitivity in 

immune-compromised 

individuals 

 

● WHO endorsed: 

Qiagen 

QuantiFERON-TB 

Gold Plus performance 

is comparable to that of 

WHO-recommended 

IGRAs for the 

detection of TB 

infection [13] 

● Equipped laboratory 

needed 

● Poor sensitivity in 

immune-compromised 

individuals 

 

● WHO endorsed [12] 

Present 

Commercial test - Diaskintest 

(Generium) 

- EC skin test 

(Anhui Zhifei 

Longcom) 

- Cy-Tb (Serum 

Institute of India) 

- Liaison QuantiFERON 

Plus: chemiluminescence 

(Qiagen) 

- AdvanSure TB-IGRA: 

chemiluminescence (LG 

Chem) 

- WANTAI TB-IGRA 

ELISA, three tubes based 
(Beijing Wantai) 
- T-SPOT.TB 8 with T-

Cell Select (T-Cell Select) 

simplified procedure to 

automatically isolate 

mononuclear cells from 

whole blood (Oxford 

Immunotec) 
 

- QIAreach* 

QuantiFERON-TB 

(Qiagen) 

- ichroma IGRA-TB 

(Boditech) 

- STANDARD F TB-Feron 

FIA (SD Biosensor) 

Characteristics ● ESAT-6/CFP-10 

based 

 

● Alternative 

methodology to run 

large volume of sample 

or automated 

workstation 

● ESAT-6/CFP10 based  

● Whole blood based 

● Lateral flow test 

● ESAT-6/CFP10 based  

● Whole blood based 

 

Main benefits ● High specificity  ● High specificity ● High specificity 

● No laboratory needed  
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● No laboratory 

needed 

Main 

limitations 

 

 

 

 

WHO 

endorsement 

● Poor sensitivity 

in immune-

compromised 

individuals 

 

 

● WHO endorsed; 

Recommendatio

n: Mtb antigen-

based skin tests 

(TBSTs) may be 

used to test for 

TB infection. 

Conditional 

recommendation 

for the 

intervention, 

very low 

certainty of the 

evidence [12] 

● Equipped laboratory 

needed 

● Poor sensitivity in 

immune-compromised 

individuals 

 

● Liaison 

QuantiFERON Plus, 

AdvanSure TB-IGRA: 

WHO evaluation not 

available [12]  
● WANTAI TB-IGRA: 

WHO endorsed, the 

performance is 

comparable to that of 

WHO-recommended 

IGRAs for the 

detection of TB 

infection [13] 
● T-SPOT.TB 8 with T-

Cell Select (T-Cell 

Select) not WHO 

endorsed: based on 

available data, could 

not be adequately 

compared with WHO-

recommended IGRAs 

for detection of TB 

infection [13]. 
 

● Poor sensitivity in 

immune-compromised 

individuals 

 

 

 

● STANDARD F TB-

Feron FIA: not WHO 

endorsed; based on 

available data, it could 

not be adequately 

compared with WHO-

recommended IGRAs for 

detection of TB infection 

[13]. 
● ichroma IGRA-TB: 

WHO evaluation not 

available [12] 

 103 

ELISA, enzyme linked immunosorbent assay; ELISPOT, Enzyme-linked ImmunoSPOT; PPD, protein 104 

purified derivative; TBI, tuberculosis infection; TST, tuberculin skin test; *not available yet. 105 

 106 

Diagnostics of tuberculosis disease 107 

Clinical symptoms and scores, chest X-ray, and cough detection 108 

The World Health Organization (WHO) 4-symptom TB screen is recommended for active case 109 

finding in PLHIV of all ages, close contacts of TB cases, and other targeted populations separately or in 110 

combination with chest X-ray (CXR), molecular WHO-recommended rapid diagnostic tests (mWRDs) 111 

for TB, and/or immune response markers such as C-reactive protein [12]. The sensitivity and specificity 112 

of the 4-symptom screen varies significantly depending on antiretroviral status and CD4 count in 113 
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PLHIV, age, and population TB burden, among other factors [14]. Multiple clinical scores have been 114 

designed for adults to improve upon the performance characteristics of the WHO 4-symptom screen or 115 

better inform the post-test probability of a confirmed TB diagnosis in an individual screening positive 116 

on the WHO 4-symptom screen through the addition of other clinical symptoms or signs or 117 

anthropometric measurements [15]. These scores can help prioritise use of constrained testing resources 118 

or guide clinical management before test results are available [16-22] though they require external 119 

validation before broader use [15]. Several paediatric scores incorporating clinical signs and symptoms, 120 

exposure history, CXR findings, TST results, and/or lab results have been developed to aid clinicians 121 

with diagnosis due to the difficulty of bacteriological confirmation of TB disease in children [23, 24].  122 

CXR is an important TB diagnostic tool in individuals with and without TB symptoms. Several 123 

TB-specific computer-assisted detection (CAD) software applications using artificial intelligence have 124 

been demonstrated to improve the sensitivity and specificity of CXR in both use cases and are now 125 

recommended by the WHO [12, 25]. Portable ultralight CXR machines combined with CAD 126 

interpretation have the potential to make CXR more accessible for populations in greatest need of 127 

improved TB diagnostics. Current CAD software applications are not recommended for use in TB 128 

diagnosis in children <15 years because CXRs from this sub-population were not used in their 129 

development and TB often causes different CXR findings in children [12]. 130 

Cough is often a hallmark symptom of pulmonary TB and assessing cough and its decline 131 

following initiation of treatment is crucial for clinical care. Novel technologies allow for accurate 132 

counting and characterization of cough [26]. Numerous companies are taking advantage of cell phone 133 

microphones to collect cough sounds by applying AI-driven algorithms for their identification and 134 

enumeration (https://www.hyfe.ai/; https://www.resapphealth.com.au/technology/; 135 

https://www.nuvoair.com/). Further advancement of these technologies may provide enough 136 

differentiation of cough sounds to contribute to the accurate diagnosis of TB and other pulmonary 137 

diseases though the absence of cough in a notable minority of individuals with bacteriologically 138 

confirmed TB will likely limit the scope of their impact on TB diagnosis [27].  139 

 140 

https://www.hyfe.ai/
https://www.resapphealth.com.au/technology/
https://www.nuvoair.com/
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Sputum-based diagnostics of tuberculosis  141 

Sputum has long been the most used sample in TB diagnosis. Traditionally, the diagnostic aim 142 

has been to identify the presence or absence of disease, the susceptibility pattern of the organism, and 143 

to measure the response to treatment.  144 

 145 

Mycobacterium tuberculosis culture  146 

Liquid automated culture performed through BACTEC MGIT (Becton Dickinson, USA) 147 

remains deeply embedded in the TB diagnostic algorithm, being the most sensitive confirmatory method 148 

available, especially in the case of extrapulmonary TB. According to current recommendations, culture 149 

should be performed whenever feasible on all first diagnostic samples and for monthly treatment 150 

monitoring [28].  151 

 152 

Molecular diagnostics of tuberculosis  153 

Xpert (Cepheid, USA) provides a real-time polymerase chain reaction to detect the presence 154 

of Mtb as well as rifampicin resistance in a single automated cartridge [29]. This integration provides 155 

both direct diagnostic information as well as a guide to empirical therapy that is easy to deploy. 156 

Supplemented by a second Xpert MDR/XDR test that detects resistance to isoniazid, fluoroquinolones, 157 

amikacin, kanamycin, capreomycin and ethionamide it may provide a comprehensive guide to therapy 158 

in resistance cases [30].  159 

 160 

Drug susceptibility testing of Mycobacterium tuberculosis 161 

Phenotypic drug susceptibility testing 162 

Mtb strains obtained through culture can be further characterised through phenotypic drug 163 

susceptibility testing (pDST), minimal inhibitory concentration (MIC) determination and next 164 

generation sequencing. pDST is usually performed in MGIT™ using defined critical concentrations 165 
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(CCs), as a clinical breakpoint has currently only been established for moxifloxacin [31]. Non-166 

commercial pDST assays include microscopic observation of drug susceptibility (MODS), thin-layer 167 

agar (TLA), or colorimetric redox indicator (CRI), among others [32]. 168 

pDST presents several constraints and the advent of reliable, accurate and rapid molecular 169 

methods for the detection of rifampicin and isoniazid resistance has led to a decline in the use of pDST 170 

for these TB cornerstone drugs [33].  171 

Among first line drugs, pyrazinamide pDST also shows several technical hurdles and is 172 

hampered by a different MIC distribution of Lineage 1 strains [34]. 173 

Regarding new and repurposed drugs, pDST for bedaquiline and linezolid at WHO-174 

recommended CC should be performed when resistance is suspected and for surveillance at population 175 

level [35].  For pretomanid a MIC bimodal distribution has been observed associated with Lineage 1 176 

strains and a consensus on CC for this drug has yet to be reached [36].  177 

A standardisation of pDST in MGIT against the EUCAST Broth MicroDilution (BMD) in 178 

microtiter plates protocol is ongoing as MIC determination could represent a more effective strategy 179 

(Table 2) to monitor resistance trends [37]. A suitable plate layout was proposed by the WHO; plates 180 

are not yet available, but a validation round is planned by 2024.  181 

 182 

Table 2  183 

Advantages and disadvantages of the use of MGIT or EUCAST Broth MicroDilution in microtiter plates 184 

to perform phenotypic drug susceptibility testing 185 

 Advantages Disadvantages 

MGIT Standardised method, automated 

reading and reporting 

Cost, needs to be set up in one tube at a 

time, results are available by CC only, 

difficult to interpret for new drugs 

BMD in microtiter 

plates 

Provide MIC, possibility to 

monitor resistance trends 

Mostly manual, amount of inoculum may 

influence results, different reading time 
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especially for new drugs, set up of 

several drugs at same time, cost 

 186 

BMD, Broth MicroDilution; CC, critical concentration; MGIT, Mycobacteria Growth Indicator Tube; 187 

MIC, minimal inhibitory concentration. 188 

 189 

Genotypic drug susceptibility testing 190 

In 2021, following the systematic review of diagnostics accuracy, the WHO recommended the 191 

use of three classes of nucleic acid amplification tests (NAATs), expanding the range of rapid 192 

diagnostics that allow for rapid detection of tuberculosis and resistance of bacteria to antituberculosis 193 

drugs [33]. However, none of currently recommended genotypic DST assays determine resistance to 194 

new and repurposed drugs (Table 3). A number of molecular tests are available on market but not 195 

evaluated by the WHO yet, for example, AccuPower TB&MDR and XDR-TB (Bioneer, Korea), 196 

Genechip MDR test (Capital Bio, China), or mfloDx MDR-TB (EMPE Diagnostics, Sweden). 197 

 198 

Table 3 199 

Classes of technologies and associated products currently recommended by the WHO for rapid 200 

diagnosis of tuberculosis and resistance to antituberculous drugs (modified from [33]) 201 

Technology 

class 

Products included in the 

WHO evaluation 

Strengths Limitations 

 Xpert® MTB/RIF and 

Xpert® MTB/RIF Ultra 

(Cepheid) 

• Point-of-care test 

• Rapid and easy to 

perform 

• Detects Mtb and 

rifampicin resistance 

• Requires minimal 

laboratory 

infrastructure 

Sensitivity is suboptimal in 

specific groups, e.g. smear-

negative or PLHIV 
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 Truenat™ MTB, MTB 

Plus and MTB-RIF Dx 

(Molbio) 

• Rapid and easy to 

perform 

• Detects Mtb and 

rifampicin resistance 

• Can be performed in 

peripheral laboratories 

• Requires minimal 

laboratory 

infrastructure and 

training of staff 

• Battery-operated 

device 

• More complex test from 

the user perspective 

• Limited data on 

diagnostic accuracy in 

specific groups, e.g. 

PLHIV, extrapulmonary 

TB 

Moderate 

complexity 

automated 

NAATs for 

detection of TB 

and resistance to 

rifampicin and 

isoniazid 

Abbott RealTime MTB 

and Abbott RealTime 

MTB RIF/INH (Abbott) 

BD MAX™ MDR-TB 

(Becton Dickinson) 

cobas® MTB and cobas 

MTB-RIF/INH (Roche) 

FluoroType® MTBDR 

and FluoroType® MTB 

(Hain 

Lifescience/Bruker) 

• High throughput 

• Largely automated  

• Detect Mtb and 

resistance to rifampicin 

and isoniazid 

• May require an initial 

manual specimen 

treatment step 

• require medical  

laboratories with 

biosafety measures in 

place and test-specific 

equipment 

• Require well-trained, 

skilled and qualified 

laboratory staff 

• Require complex 

maintenance of 

equipment 

• Limited data on 

diagnostic accuracy in 

specific groups, e.g. 

PLHIV, extrapulmonary 

TB 

 TB-LAMP (Eiken) • Manual assay 

• Rapid and easy to 

perform 

• Requires little 

infrastructure and 

biosafety level 

• Does not detect 

resistance to drugs 

• Relatively low sensitivity 

• Limited data on 

diagnostic accuracy in 

different epidemiological 

and geographical settings 

and patient populations 

Antigen 

detection in a 

lateral flow 

format 

(biomarker-

based detection) 

Alere Determine™ TB 

LAM Ag (Alere) 
• Non-sputum based, 

non-invasive, easy-to-

obtain sample 

• Improved sensitivity in 

PLHIV with low CD4 

count 

 

• Does not detect 

resistance to drugs 

• Low sensitivity in HIV-

negative patients 

• Lower sensitivity 

compared to second and 

third generation LAM 

test 

Low complexity 

automated 

NAATs for the 

detection of 

resistance to 

isoniazid and 

second-line anti-

TB agents 

Xpert® MTB/XDR 

(Cepheid) 
• Point-of-care test 

• Rapid and easy to 

perform 

• Detects Mtb and 

resistance to isoniazid, 

fluoroquinolones, 

ethionamide and 

second-line injectable 

drugs (amikacin, 

• Limit of detection is 

higher than Xpert® 

MTB/RIF Ultra 

• Not recommended for 

testing on samples with 

“Mtb complex trace 

detected” 

• Test for pre-XDR TB 

rather than XDR-TB 
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kanamycin and 

capreomycin) 

• Requires minimal 

laboratory 

infrastructure 

Line probe 

assays (LPAs) 

GenoType® 

MTBDRplus v1 and v2; 

GenoType® MTBDRsl, 

(Hain 

Lifescience/Bruker) 

Genoscholar™ 

NTM+MDRTB II; 

Genoscholar™ PZA-TB 

II (Nipro) 

• Can be partly 

automated 

• Detect Mtb and 

resistance rifampicin, 

isoniazid, 

pyrazinamide, 

fluoroquinolones, and 

second-line injectable 

drugs (amikacin, 

kanamycin and 

capreomycin) 

• Perform both on 

sputum specimens and 

cultured isolates 

• More complex tests from 

the user perspective 

• Limited evaluation data 

on non-sputum 

respiratory samples 

• Cannot determine 

resistance to individual 

drugs in the class of 

fluoroquinolones 

• Mutations that may be 

important in some 

regions are not included   

 202 

Next generation sequencing   203 

High throughput or next generation sequencing (NGS) technology raises exciting 204 

opportunities for studying the Mtb genome and for the development of future TB diagnostics [38].  205 

The development of benchtop and even portable sequencing platforms combined with 206 

significant reduction of sequencing costs, time and workflow complexity has enabled the progressive 207 

utilisation of Mtb NGS in clinical practice and for public health [39]. 208 

As a public health tool, whole genome sequencing (WGS), i.e., sequencing of the entire 209 

bacterial genome, has been shown to provide the highest level of granularity for the detection of 210 

transmission outbreaks [40] and to monitor trends of drug resistance [41].  211 

In 2021, the WHO published the first standardised catalogue of mutations in the Mtb complex 212 

genome and associated drug resistance using globally representative WGS data to guide end users in the 213 

interpretation of sequencing data [42]. This dataset is also a key resource for developers to support the 214 

selection of relevant targets and associated mutations to be included in sequencing-based DST. In this 215 

context, culture-free solutions based on targeted NGS (tNGS), such as the commercially available 216 

Deeplex Myc-TB (GenoScreen, France), provide comprehensive drug resistance profiles starting 217 

directly from clinical specimens and have the advantage of significantly reducing the DST turnaround 218 
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times, allow for the detection of minor frequency variants and subpopulations, and are less data intense 219 

than WGS [43, 44]. Furthermore, other tNGS assays at late-stage development (e.g. ABL; Oxford 220 

Nanopore Technologies, ONT; Clemedi) and currently being evaluated [45]. 221 

Another breakthrough came with the development of the third-generation sequencing 222 

technologies able to generate long reads (LRS, 1-100+ kb, e.g. ONT; PacBio), as opposed to the 223 

conventional short-reads (e.g., Illumina; MGI Tech; ThermoFisher Scientific) (SRS, 75–300 bp), which 224 

helped to resolve hard-to-sequence regions of the Mtb genome such as large structural variations and 225 

repetitive regions [46]. Even if LRS has reported higher error rate than SRS, this limitation can be 226 

overcome by adopting hybrid approaches for high-quality genome assemblies [47]. 227 

As several options for wet and dry TB-related NGS processes are becoming available, we 228 

highlight the key research needs to close current gaps for their optimal use in patient care and 229 

surveillance (Table 4). 230 

 231 

Table 4  232 

Gaps and future directions in NGS for tuberculosis diagnosis and performing genotypic drug 233 

susceptibility testing 234 

Gaps / Future directions in TB NGS 

Development of rapid, automated NGS (tNGS or WGS) workflows suitable for decentralised testing 

NGS implementation in high TB burden, low-resource settings 

Validation of tNGS solution on a wider array of specimen types 

Development of culture-free WGS approaches overcoming limitations of tNGS 

Standardisation of NGS reports for clinical decision making and link to electronic health records 

Standardisation and automation of post-sequencing processes 

Update of mutation catalogues, including new and repurposed drugs  

Worldwide accessibility to NGS (supply) 

 235 
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NGS, next generation sequencing; tNGS, targeted next generation sequencing; WGS, whole genome 236 

sequencing. 237 

 238 

Sputum-based assays for monitoring of response to antituberculous treatment 239 

The tuberculosis molecular bacterial load assay (TB-MBLA) takes a different approach, 240 

targeting 16S ribosomal RNA [48]. This has a short half-life after Mtb cell death, is present in multiple 241 

copies and is thus a sensitive marker of viable count. It has been shown to be reproducible in a high-242 

burden setting [49], and able to detect differences between treatment regimens [50].  243 

Mtb cell wall includes lipoarabinomannan (LAM), and detection of this antigen has been used 244 

to detect the presence of organisms in sputum. Initial indications suggest that sputum LAM can be used 245 

to estimate the bacterial count at the early stages of treatment [51]. Further studies are required to show 246 

its applicability over the duration of TB therapy. 247 

Among emerging tests, sputum incubation for 60 mins at 46oC triggers the release of MPT64, 248 

an Mtb-specific protein, from live bacteria. Early small-scale studies show that the signal falls in 249 

response to treatment suggesting its diagnostic and therapeutic monitoring potential [52].  250 

On the host side, biomarker candidates with the potential to improve treatment monitoring and 251 

determination of treatment success include transcriptomic profiling, host adaptive responses, clinical 252 

score, signs, lung function and imaging [53]. 253 

 254 

Non-sputum-based methods of tuberculosis diagnostics 255 

Sputum remains an access barrier for TB testing in particular at the primary health care level 256 

where most patients are seeking care and replacing sputum with a simpler sample is expected to increase 257 

diagnostic yield and microbiological confirmation of TB. Tongue swabs is a leading contender as a field 258 

friendly sputum replacement test, and when combined with a sensitive molecular backend such as the 259 
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Xpert Ultra, this sample type can deliver sensitivity slightly below a sputum based test but with a simpler 260 

to obtain sample, modelled to increase number of patients detected  [54].  261 

Bioaerosol sampling capturing Mtb in exhaled breath using face masks or blow tube filters is 262 

still experimental but preliminary data suggests this sample type also has potential as a sample type to 263 

replace sputum [55, 56]. Both tongue swabs and bioaerosol sampling, as well as detection of Mtb in 264 

saliva [57], are still on early stages of development and require extensive further work. 265 

A simple blood-based diagnostic for TB is pursued using host and bacterially derived markers. 266 

Host measurement of gene expression signatures in a finger prick sample has demonstrated high 267 

sensitivity but may prove suboptimal specific in particular outside of high endemic settings [58]. 268 

Capturing cell free DNA fragments provides direct measure of Mtb infection and has recently been 269 

shown surprisingly sensitive when coupled with a specific clustered regularly interspaced short 270 

palindromic repeats (CRISPR) based amplification and detection step in both children and adults [59]. 271 

Stool remains an attractive alternative sample type in particular for young children who have 272 

difficulty producing high quality sputum samples. A systematic review underlying the recent WHO 273 

policy recommendation of stool as an alternative sample for paediatric TB detection in the Xpert 274 

MTB/RIF and MTB/RIF Ultra system suggested acceptable usability and similar diagnostic accuracy 275 

compared with sputum-based sampling [60]. The pulmonary mucociliary escalator drains lung debris 276 

into the gastrointestinal (GI) tract and therefore both GI sampling (gastric lavage, string test, stool, rectal 277 

swab) may allow Mtb bacilli detection. Stool studies have identified both Mtb DNA and RNA 278 

(representative of viable bacilli), therefore allowing stool-based diagnostics and treatment monitoring 279 

of viable organisms [61, 62]. It remains unclear how GI and stool-based tests should augment 280 

conventional sputum-based testing.  281 

In PLHIV, Xpert in urine increased diagnostic yield of TB [63]. Also, WHO recommends the 282 

use of urine LAM test for TB diagnosis in people with advanced HIV co-infection and low CD4 cell 283 

counts [64]. More sensitive LAM tests can also improve TB diagnosis in HIV-negative children [65]. 284 

As urine LAM can provide rapid, point-of-care diagnosis of TB it can be particularly helpful in settings 285 
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with limited resources where traditional TB diagnostic methods may not be readily available. However, 286 

the sensitivity of urine LAM for detecting TB is relatively low compared with other diagnostic tests. 287 

 288 

Conclusions 289 

In the past decades, TB diagnostics have made significant progress, moving from culture-290 

based methods to more rapid and precise assays that are less labour- and time-consuming and do not 291 

require extensive high biosafety level laboratory. Moreover, the field is moving away from sputum-292 

based assays towards less invasive, more precise methods that include biological samples easier to 293 

collect. However, for many novel assays, sufficient clinical evidence to support their use in TB 294 

diagnostics is still lacking. Large clinical studies to validate the use of novel TB diagnostic assays are 295 

urgently needed. 296 
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Figure legend 315 

 316 

Figure 1  317 

A) Natural history of tuberculosis and B) diagnostic tools for detection of tuberculosis infection 318 

and disease. Mycobacterium tuberculosis infection is characterised by different conditions strictly 319 

connected to each other:  in  TB infection there are no signs or symptoms of disease and in the case of 320 

immune suppression IGRAs and skin test could give a negative or anergic response (anergy is diagnosed 321 

only by IGRA); in case of incipient TB signs or symptoms of disease are absent but the bacteria are 322 

alive and replicating; individuals with subclinical TB do not have symptoms but may have radiological 323 
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or/and microbiological evidence of TB disease; patients with TB disease have classical signs and 324 

symptoms of disease and the diagnosis is based on clinical, radiological and microbiological findings. 325 

IGRA, IFN-γ release assays; Mtb, Mycobacterium tuberculosis; TB, tuberculosis. § Data from a meta-326 

analysis in adult population [66]; # data from a study in a low TB endemic country [67]. 327 

 328 
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