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Abstract

In modern galactic astronomy, cosmological simulations and observational galaxy surveys

work hand in hand, o↵ering valuable insights into the historical evolution of galaxies

on both cosmological scales and an individual basis. As dark matter halos constitute a

significant portion of the mass in galaxies, clusters, and cosmic structures, they profoundly

impact the properties of galaxies. This relationship is known as the galaxy-halo connection.

Galaxies possess a complex nature necessitating computationally intensive modelling.

Accurately and consistently modelling galaxy-halo coevolution across all scales thus presents

a challenge, and compromises are usually made between simulation size and resolution.

However, it is possible to conduct pure dark matter simulations on larger scales, requir-

ing a fraction of the power of complete simulations. As observational surveys expand in

size and detail, however, simulations of this magnitude become crucial in supporting their

findings, surpassing the limitations of galaxy simulations.

In this thesis, I present a machine learning model which encodes the galaxy-halo con-

nection within a cosmohydrodynamical simulation. This model predicts the star formation

and metallicity of galaxies over time, from properties of their halos and cosmic environ-

ment. These predictions are used to emulate observational data using spectral synthesis

models, and subsequently the model is applied to a large dark matter simulation.

Through these predictions, the model replicates the correlations responsible for galaxy

evolution, as well as observable quantities reflecting this galaxy-halo connection, with simi-

lar results in dark matter simulations. The model computes accurate galaxy-halo statistics

and reveals important physical relationships; specifically, variables associated with halo

accretion influence a galaxy’s mass and star formation, while environmental variables are

linked to its metallicity. While the predictions from dark matter simulations are reason-

ably accurate, they are a↵ected by the absence of baryonic processes, the resolution of the

simulation, and the calculation of halo properties.

v
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1
Introduction

1.1 Galaxy Evolution

1.1.1 The Standard Cosmological Model

The history, matter and energy contents, evolution and structure formation of the observ-

able universe are commonly parameterised by the Lambda Cold Dark Matter (⇤CDM)

cosmological model. The principal conjecture is that the energy content of universe is

comprised of four key components: baryonic matter, electromagnetic radiation, dark mat-

ter and dark energy (Planck Collaboration, 2016). The letter ⇤ refers to dark energy: a

vacuum energy force which accelerates the expansion of space; an e↵ect which is appar-

ent on the largest observable scales of the universe (Perlmutter, 2000). The second most

abundant component is cold dark matter: “cold” in that it has negligible, non-relativistic

kinetic energy, and “dark” in that it is impervious to the electromagnetic force, and does

not regularly interact with baryons via collisions (Peebles, 1982).
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Chapter 1. Introduction

Figure 1.1: Thermal fluctuations of the cosmic microwave background as observed by the COBE
(Boggess et al., 1992; Smoot, 1999), WMAP (Bennett et al., 2013) and Planck Collaboration (2016)
satellites, showing the level of detail obtained over time. Though the cosmic microwave background
is considered near homogeneous and isotropic, indicating a previous state of the universe in which
it was condensed into a much smaller space, these perturbations on the scale of one part in 105

would evolve into the large scale structures seen in the present-day universe. Image courtesy of
NASA.

According to ⇤CDM, the universe began as a hot, dense plasma of matter and radia-

tion, which underwent rapid expansion in what is known as the epoch of inflation (Guth,

1981). This expansion would eventually increase the average separation between photons

and baryons, transitioning from an opaque plasma to a cool, transparent universe; where

the interacting photons would decouple from the plasma, being observed today as the

cosmic microwave background (CMB). This allowed protons and electrons to combine to

form the first atoms, in an era known as the epoch of recombination; and for groups of

matter, originating from small perturbations seen in the CMB, to collapse under their own

gravity, forming gravitationally bound structures of dark and baryonic matter (Peebles,

1982; Blumenthal et al., 1984; Weinberg, 2008). The structure of the CMB as observed

by telescopes of three consecutive genrations is shown in fig. 1.1.

One of the most intriguing classes of objects which forms from these collapsing overden-

sities is galaxies: the individual, gravitationally bound structures into which approximately

10% of the baryonic mass of the universe collapses (Fukugita & Peebles, 2004). Within

them, hydrogen gas is converted into heavy elements by the formation of stars, which

go on to form solar systems (White & Rees, 1978). As astronomical surveys in recent
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Figure 1.2: The ratio of energy densities of baryonic and dark matter and dark energy in the
present universe, according to the Planck Collaboration (2016) cosmological model, which mea-
sured these densities by combining gravitational lensing, baryonic oscillation and CMB field cross-
correlation data. The energy density associated with electromagnetic radiation constitutes a neg-
ligible quantity, and thus is not shown. These densities constitute fundamental parameters of the
⇤CDM model. These values are assumed for the entirety of this thesis.

years have increased in sensitivity, more galaxies have been discovered very early in the

universe’s history, and individual galaxies have been mapped and analysed in increasingly

fine detail. Galaxies are therefore useful for studying the mechanics of star formation and

the large scale properties of the local and distant universe.

However, the dominant mass of a galaxy is not what we observe. The ⇤CDM cosmo-

logical model argues that the majority of the mass of the universe is comprised of dark

matter (Planck Collaboration, 2016), while the dominant form of energy in the universe is

dark energy : a form of vacuum energy which drives the expansion of space (Peebles & Ra-

tra, 2003). The relative densities of baryonic and dark matter and dark energy according

to Planck Collaboration (2016) data is given in fig. 1.2.

The dynamics of galaxies and clusters show that the gravitational potential of a galaxy

is dominated by some unseen potential which does not correspond to the potential of

3
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the visible matter alone, and must be produced by an invisible, inert substance which

interacts only via gravitational forces (Zwicky, 1933; Rubin & Ford, 1970; Rubin et al.,

1980), otherwise known as dark matter. The invisible object in which galaxies are nested

which produces this potential is commonly known as a dark matter halo.

1.1.2 Formation Of Cosmic Structure

After recombination, matter was scattered randomly throughout the universe. In theory,

the universe began as a homogeneous, isotopic fluid (Bartelmann, 2010), but the CMB

exhibits density perturbations in the cosmic fluid, shown by fig. 1.1. While on the scale of

only ⇠ 10�5 times the mean density of the universe, these fluctuations have developed into

regions of high concentrations of matter, and by contrast, regions of space with little to no

matter at all (Schneider, 2015). These overdense or underdense regions would evolve much

like a smaller universe of their own, with di↵erent modes of expansion. Areas with little

gravitating matter would expand more rapidly and potentially even source dark energy

(Yusofi et al., 2022), while dense volumes of space would be dominated by their local

gravity, and collapse into a gravitationally bound ensemble.

Dark matter halos, which form from the gravitational collapse of overdensities, are the

fundamental building blocks of cosmic structure. As these halos originated from overdense

regions of space, their gravity would serve to accrete the surrounding material, causing

these halos to continually grow in size (Bartelmann, 2010). The attraction between any

two halos would cause them to grow more and more rapidly through merger events: the

collision of two or more halos, which can have profound e↵ects on the internal structure

and dynamics of the merging objects (Robaina et al., 2010; Welker et al., 2014; Hani et al.,

2020; McAlpine et al., 2020). The result of this mechanism of halo evolution is a hierar-

chical scheme of structure formation: small halos would coalesce to form large halos, large

halos would produce massive halos, and so on (Schneider, 2015). This timeline of struc-

ture evolution from smaller to larger objects is an artefact of the ⇤CDM model, whereas

energetic “hot” dark matter favours the growth of larger structures first, fragmenting into

smaller systems over time (Dodelson, 2003; Frenk & White, 2012).

The anisotropic initial conditions for this structure formation would advance into

highly non-uniform structure growth. The extreme gravity of multiple high mass ha-

los would result in clusters: groups of hundreds to thousands of galaxies amassing around
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1014�16 solar masses (M�). By the same mechanism, halos can form along the pathways

between these high density regions, which form cosmic filaments bounded by expanding

voids (Bond et al., 1996). This network of large scale structures, composed of dark mat-

ter halos and illuminated by their galaxies and intergalactic medium (IGM), forms the

distribution of the present-day universe which is named the cosmic web.

Forming from di↵erent quantities of matter in di↵erent gravitational environments,

there is great diversity of growth and interaction histories of dark matter ensembles and

the galaxies within them. As the dominant mass of a halo-galaxy system, the evolution

of halo properties over cosmic time are bound to have a profound e↵ect on the properties

of the galaxies which live in and interact with said halo (Wechsler & Tinker, 2018). The

surrounding clusters, filaments and other large scale structures further a↵ect how these

halos and galaxies evolve, either by growing their mass in di↵erent ways or channeling

star-forming gas into the galaxy (Poudel et al., 2017; Veena et al., 2018; Castignani et al.,

2022; Donnan et al., 2022).

Galaxies, however, are far more complex objects than any dark matter structures.

While halos and cosmic filaments are governed entirely by gravitational interactions, galax-

ies are subject to a long list of processes which a↵ect their mass, size, shape, luminosity,

colour, chemical composition, star formation activity, gas loss and other physical and ob-

servational features (Somerville & Davé, 2015; Vogelsberger et al., 2020). A popular open

question in astronomy asks how accurately and precisely the behaviour of galaxies can be

explained by their dark matter components alone.

1.1.3 The Properties Of Galaxies

Opposed to the dark matter halo which dominates the gravitational potential of a galaxy,

a galaxy is predominantly comprised of three phases of baryonic matter: gas, stars and

black holes. Galaxies begin as clouds of hydrogen gas, gravitationally bound to their dark

matter halo. Where this gas becomes cool and dense, it collapses under its own gravity

and heats up via self-friction. These regions of collapse eventually reach the necessary

temperature and density to achieve nuclear fusion; initiating the conversion process of gas

into stars.

The internal fusion within stars converts this hydrogen into helium, and hydrogen
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and helium into metals. In astronomy, “metals” refer to elements heavier than either

hydrogen or helium, and “metallicity” refers to the fraction of a baryonic mass, such as

a collection of gas, or stars, which consists of metals. The metallicity of a system can be

calculated from the theoretical e↵ective yield of metals of a specific star-forming region

(Lia et al., 2002; Chruslinska & Nelemans, 2019); or as an average over units of gas or

stars, weighted by their mass, star formation rate, luminosity, or other properties gauging

the abundance of matter per unit (Tantalo & Chiosi, 2004). Alternatively, metallicity

can be constrained observationally by measuring the relative abundances of elements from

relative line emission luminosities or widths (Nagao et al., 2011; Kewley et al., 2019). In

this thesis, references to metallicity consider a stellar metallicity weighted by the mass of

star particles in a cosmic simulation (see section 2.4.2) unless explicitly stated otherwise.

Elements heavier than iron are created in supernovae: the explosions of high mass

stars resulting from the imbalance between gravitational collapse and electron degeneracy

pressure. Lower mass stars never reach this stage in their lifetime, and instead lose most

of their mass into the interstellar medium (ISM) by stellar winds, by which time they have

formed lighter elements overall. The contrast in the evolutionary properties of di↵erent

stars results in very di↵erent properties of old and young, high and low mass stars, and

consequently, galaxies exhibit very di↵erent stellar populations depending on their star

formation history, and emit very di↵erent spectral energy distributions (SEDs/spectra)

accordingly.

Recently formed galaxies have had little time to form stars, and so the stellar popu-

lations they do have include hot, massive blue stars which ionise the surrounding gases;

or cool, low mass stars such as red dwarf stars, which exhibit very di↵erent evolution-

ary paths due to their di↵erence in size, mass and luminosity. Over time, the supply of

star-forming gas will increase due to the accumulation of mass, yet eventually the supply

will be used up, slowing star formation to a halt. Additionally, the collision with another

galaxy can heat and redistribute this gas, making it unusable for star formation. Older

galaxies are therefore typically more massive and redder in colour due to the abundance

of old, cool, red stars; and the abscence of high mass, UV-luminous stars which have a

shorter lifespan (Gallazzi et al., 2005). These aged galaxies also have a stellar population

of assorted sizes, masses and colours, due to the distinct evolutionary trajectories of high

and low mass stars.
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The distribution of galaxy colours is in fact bimodal in nature: “blue cloud” galaxies

are separated from “red sequence” galaxies by the “green valley”: a significantly less pop-

ulated phase where galaxies are undergoing rapid changes such as increase in mass through

collisions with other galaxies, transformation from spiral to elliptical morphologies, and

swift decline in their star formation activity. The observed colour of galaxies is therefore

reflective of several dichotomies in the physical properties of the galaxy population (Baldry

et al., 2004).

The energetic radiation emanating from stars serves to ionise the surrounding gases.

Aside from the heating and acceleration of the gas resulting from this, metal-rich stars can

deposit their contents into the ISM, enriching the gas with metals. The ionising radiation

produces emission lines when interacting with the gas, which are unique to each element,

and therefore the strengths and ratios of di↵erent emission lines are a practical tracer of

the chemical composition, density, temperature and star formation rate of the gas. These

lines can also be broadened by the Doppler shift resulting from the motion of the gas, and

shifted due to gravitational or cosmological redshifts, and therefore are valuable probes of

the kinematics, densities and distances to their galaxies.

For more massive galaxies, a large black hole typically forms in the galactic centre,

and by accreting matter from its surroundings can produce a bright, compact region of

emission, known as an active galactic nucleus (AGN). The black holes which source the

AGN are believed to form through a combination of processes that involve the collapse of

massive clouds of gas, the merger of smaller black holes, and the growth of existing black

holes through accretion of matter. For galaxies hosting highly luminous AGN, commonly

known as quasars, there are substantial, fundamental di↵erences in their spectral features

due to the AGN outshining the galaxy almost completely. Most notably, quasar spectra

are highly luminous at short wavelengths, exhibit a characteristic power law shape and

have strong, broad emission lines owing to intense ionisation of gases in the accretion disk.

The class of AGN-hosting (active) galaxies other than quasars is the Seyfert galaxy, where

the AGN emission is weaker and the host galaxy remains detectable.

In summary, the numerous physical processes which take place in a galaxy’s evolution-

ary history, from the hierarchical builup of the large dark matter halos which contain them

to the onset of collisions and gravitational capture of nearby galaxies, are identifiable in
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several of the galaxy’s spectroscopic and photometric features. By conducting surveys of

the galaxies which we see in the sky, we can observe these features and draw conclusions

about how these galaxies have grown. The interplay between these phenomena is nonethe-

less very complex, and in order to understand these observational statistics, we have to

model this enigma with great precision and accuracy. Fortunately, the dark matter com-

ponent of galaxies and their surroundings have a profound influence on galaxy evolution,

and the relative simplicity of dark matter structures can o↵er a relatively simple approach

to modelling galaxy evolution, while providing useful information about the convoluted

relationship between galaxies and their halos and environment.

1.2 The Galaxy-Halo Connection

With dark matter constituting approximately 84% of the mass of the universe, as mea-

sured by the Planck Collaboration (2016), the halos and cosmic filaments which naturally

manifest from dark matter over time form the framework for galaxy evolution. Over time,

the gas would cool and condense enough to undergo nuclear fusion, creating stars, and

these stars would coalesce to form galaxies.

The behaviour of the halo and its surroundings have profound e↵ects on how its galaxies

evolve over time. As halos collided with each other and merged into larger objects, the

gas contained in these halos would be rapidly compressed and form stars at an accelerated

pace. As halos gain angular momentum, much of the mass of the galaxies is moulded into

bar structures, funneling much of the star-forming gas into the galactic centre, as shown

by Saha & Naab (2013). Gas is also accreted onto galaxies in halos in close proximity to

cosmic filaments, and taken by larger halos during flybys. The dark matter component of

galaxies and cosmic structure has a profound influence on the properties of the galaxies

themselves, from interstellar to cosmological scales.

1.2.1 Modelling Approaches

Astronomers have long sought to understand the logistics of the galaxy-halo connection

(GHC), being of great importance for understanding not only how halos and galaxies

evolve, but for understanding the nature of cosmic expansion and the conditions of the

early universe. Approaches to modelling the GHC have largely consisted of statistical

modelling, either through assigning observational galaxy properties to halo properties in N-
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1.2. The Galaxy-Halo Connection

Figure 1.3: A visual summary of empirical and physical methods of modelling the galaxy-halo
connection in cosmological simulations, as shown in Wechsler & Tinker (2018). The image on the
left shows the dark matter distribution of a 90 ⇥ 90 ⇥ 30Mpc/h region of an N-body simulation,
initialised from a random seed. The image on the right shows the distribution of galaxies assigned
to halos in this simulation, based on an abundance matching model (see section 1.2.1) adjusted to
match observational data. The scale below lists several modelling strategies ranging from physical
models on the left to empirical models on the right, additionally listing basic techniques and
assumptions.
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body simulations, or full simulations of the galaxy formation physics within a cosmological

volume. A schematic illustrating typical methods of computing the GHC is shown in

fig. 1.3.

Empirical Modelling

In observational studies of galaxies, empirical models of the GHC have provided insights

into our understanding of the abundance of halos, the number of satellites of a given halo,

the clustering statistics of halos, and numerous other properties which go beyond the visible

statistics of galaxies. These constraints have gone further to describe the evolutionary

tracks of galaxies which occupy certain halos and large scale environments, by developing

such models which incorporate historical properties of halos and galaxies. The advantage

of these empirical models is in their simplicity: the assumptions or probabilistic mappings

between galaxies and halos can be applied to volumes of any size. On the contrary, their

predictions depend fundamentally on assumptions on galaxy and halo evolution which

may cease to be valid in unseen circumstances, and are limited in their flexibility by the

known results of the variable parameter range.

The galaxy population of a particular halo or cluster of halos can be parameterised by

means of a halo occupation distribution (HOD) (Berlind & Weinberg, 2002): a conditional

probability function of the expected number of galaxies within a halo, typically of a certain

mass, and as a function of just a handful of halo parameters (Paranjape et al., 2015; Hearin

et al., 2016). As a function of galaxy properties (morphology, luminosity, etc.) it is a

powerful tool for relating the abundance and distribution of distinct galaxy subtypes to

the evolutionary history of their halos (Zheng et al., 2005). Similarly, one can predict the

intrinsic properties of galaxies by evaluating a probability distribution modulated by halo

properties. An example is the conditional luminosity function (CLF): a measure of the

distribution of galaxy luminosities based on halo mass (Yang et al., 2003).

Abundance matching is another popular empirical technique in which a heirarchy be-

tween halos and galaxies is assumed; most simplistically, halos and galaxies being ordered

identically according to their mass (Kravtsov & Klypin, 1999; Guo et al., 2010). Ordered

properties of halos and galaxies are then used to produce statistics based on this assump-

tion. These models are typically updated to include additional halo properties which are

shown to strongly influence galaxies, and vice versa. A similar algorithm is subhalo abun-
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dance matching (SHAM) (Kravtsov et al., 2004; Vale & Ostriker, 2004; Chaves-Montero

et al., 2016): in which subhalos above a certain mass threshold are expected to host galax-

ies, and the central, massive halos which harbour subhalos will host a certain number of

galaxies depending on the central halo. By specifying the relationship between galaxies

and subhalos, Abundance matching methods can be used to accurately predict galaxy

properties, such as the stellar masses and star formation rates of galaxies within the host

halo (Guo et al., 2010; Simha et al., 2012; Chaves-Montero et al., 2016).

An example of a galaxy evolution model with an empirical framework is UniverseMa-

chine, developed by Behroozi et al. (2019a), where star formation rates of nested galaxies

are parameterised in terms of halo potential and redshift, which are integrated over the

halo’s merger tree to recover population statistics such as the stellar mass function, and

establish clear galaxy-halo correlations, such as between galaxy and halo growth, and be-

tween halo mass and quenched fractions at di↵erent redshifts. While these results are

indeed observationally accurate and insightful into the specifics of the GHC, they depend

significantly on general assumptions about the histories of unique galaxy populations, such

as a dichotomy between the mean star formation history of quenched and star-forming

galaxies (Behroozi et al., 2019a).

Empirical models in general can fail to reproduce the results of more robust implemen-

tations, such as the correlation functions of mass and colour separated galaxy populations

(Hadzhiyska et al., 2020). Modelling galaxy evolution using fundamental physics rather

than statistical inferences can reproduce similar results while naturally incorporating the

complete history of the galaxy and halo’s growth and interactions.

Physical Modelling

In cosmic simulations of galaxy evolution (examples: Schaye et al., 2014; Lacey et al.,

2016; Davé et al., 2019; Nelson et al., 2019b; Henriques et al., 2020), a set of particles

is initialised at an extremely high redshift, and propagated in time according to a series

of equations of motion, down to the present universe. These simulations are typically

conducted in a cubic, comoving volume with periodic boundary conditions, and similar

simulation runs, such as those di↵ering only in resolution or some physical parameter,

are initialised from the same random seed, creating near-identical halos and large scale

structures. This allows one to compare the properties of the same halos, clusters and
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galaxies under the variation of this parameter.

Some of these cosmic galaxy simulations fall into the class of semi-analytic models

(SAMs). This approach invokes an analytical formula to prescribe baryonic properties

and processes based on the properties of halos in an N-body dark matter simulation

(White & Frenk, 1991). The benefit of these models is their computational e�ciency;

they can be used to perform numerous calculations such as gas cooling, star formation

rate or stellar feedback from properties like the mass and merger history of the host halo.

However, these formulae for galaxy evolution are based largely on approximations of the

baryonic physics, and the results are dependent on a large number of parameters which are

di�cult to fine-tune with observations (Saghiha, 2017). These prescriptions also do not

directly resolve galactic substructures, and so are only a practical tool for the macroscopic

galaxy-halo connection.

The most self-consistent approach to modelling galaxy evolution is with hydrodynam-

ical simulations, which, unlike SAMs, directly include discretised units of baryonic mass,

such as moving mesh cells of the gas density field, alongside dark matter particles in the

simulation. This baryonic component is propagated simultaneously with the dark matter

component, according to both gravitational equations of motion and hydrodynamic equa-

tions of state (Wechsler & Tinker, 2018; Vogelsberger et al., 2020). As well as providing

physical realisations of galaxy diversity at all times following the initial redshift, the mor-

phological components of galaxies are resolved in detail, allowing the inflow and dynamics

of stars and gas to be studied using these simulations. These simulations are also unique

in that the e↵ects that baryons have on the structure of dark matter halos are an explicit

result of the model, and so these simulations are usually accompanied by an equivalent

N-body run to illustrate the di↵erence that is made.

Despite the advantages of hydrodynamical simulations, they, like N-body simulations,

are subject to resolution e↵ects, and again the behaviour of these simulated galaxies is

governed by approximations of the physics below the resolution scale; typically known

as a “subgrid model” (Wechsler & Tinker, 2018; Vogelsberger et al., 2020). Hydrody-

namic simulations are computationally expensive, and there is usually a compromise to

be made between the volume of the simulation, encompassing large scale structure, and

the resolution of the simulation, resolving the internal structures of galaxies. This broad
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range of physical scales includes a long list of aspects of the GHC, discussed at length in

section 1.2.2.

One solution to this problem, in the context of fine resolution of objects dispersed in

high volumes, is the use of zoom simulations: a special class of cosmological simulations

(for various examples see Lovell et al., 2020; Roca-Fàbrega et al., 2021; Wetzel et al.,

2022; Nadler et al., 2023) which compute low resolution simulations of the full cosmo-

logical volume, and then rerun with high resolution in selected regions of space. These

simulations are practical for modelling individual galaxies or clusters in high resolution,

and have provided valuable insights into the properties of unique galaxy populations from

dwarf galaxies to high redshift clusters. The compromise is of course in the loss of large

scale information through resolution reduction, which implies that the influence of cosmic

structure, however relevant to galaxy and cluster evolution, is neglected in these simu-

lations. Using hydrodynamical simulations to self-consistently compute the GHC on all

scales of the ⇤CDM cosmological model is beyond the power of today’s computational

resources.

1.2.2 Halo And Galaxy Histories

In spite of the various shortcomings of all of the aforementioned models of the galaxy-

halo connection, they remain extremely valuable to our interpretation of the various halo

properties which drive di↵erent aspects of galaxy evolution. Several of the most important

properties, correlations and processes involved in the GHC are described below.

Halo Mass

Abundance matching models of the GHC typically invoke the premise that the most

massive galaxies are bound to the most massive halos. While there are inevitably secondary

correlations between galaxies and other halo properties, this assumption alone describes

several galaxy properties very accurately.

One important result of the GHC is the clear trend between the total mass of stars

formed in a galaxy and the mass of its halo - a relationship known as the stellar-halo

mass relation (SHMR). The stellar mass of a galaxy additionally relates to key properties

such as the morphology, star formation activity and environment of said galaxy, and thus

the SHMR is closely related to distinct classes of galaxies; for instance, red, elliptical
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galaxies typically poulate the high mass end of the relation, or have above-average stellar

mass at intermediate halo masses (Correa & Schaye, 2020). Halos and galaxies of any

given redshift or central/satellite phase possess a unique SHMR, highlighting the typical

e�ciency of star formation at the given epoch and mass regime. Similarly to the SHMR,

the total luminosity of galaxies is very tightly correlated with halo mass and is additionally

a useful observational constraint of halo properties (More et al., 2009).

The SHMR, while showing a simplistic scaling relationship between galaxy and halo

masses, is not a tight relation between galaxies and halos, and does not describe galaxy

evolution in its entirety. The variance in galaxy masses of a fixed halo mass, referred

to as the “scatter” of the SHMR, is an inherent property of the data and is a result of

distinct evolutionary histories of these galaxies. Galaxies with above-average scatter have

undergone rapid star formation to reach their stellar mass, and those with below-average

scatter have formed stars ine�ciently for galaxies of their halo mass. Halo properties

other than their present mass with well-defined correlations with this scatter are therefore

considered important for developing the mass of galaxies.

Other than stellar mass, the halo mass can influence a number of additional galaxy

properties. A simple inference from the SHMR is that the halo mass dependence of star

formation e�ciency dictates the rate of metal synthesis in these galaxies, and thus there

is a similar relation between halo mass and stellar metallicity. A relationship which is not

so intuitive is the prevalence of quenched galaxies in higher mass halos, which owes to

several factors such as the interaction history (Davies et al., 2022) and internal dynamics

of the halo (Bluck et al., 2020).

These secondary halo properties can introduce additional di↵erences, such as the en-

hancement of the clustering of halos of a given mass, known as halo assembly bias, which

in turn introduces bias in the distribution of galaxies of a given mass. The halo mass

is thus a powerful but not absolute measure of how galaxies evolve, and the properties

discussed below are known to contribute to the additional diversity of galaxy populations.

Mass Accretion History

The time at which halos begin to form and the rate at which they grow in size and mass

is additionally important to the growth of galaxies. Halos can grow smoothly through the
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accretion of matter from their surroundings, or rapidly through collisions with other halos.

These events in the halo’s growth history have unique e↵ects on their galaxies, and the

future evolution of the halos themselves. The mass accretion history is thus a fundamental

component of most galaxy formation models, yet due to its complexity it is di�cult to

characterise with a small set of parameters.

The time at which a halo forms a significant fraction of its final mass, or maximum mass

achieved throughout its lifetime, is widely used to characterise the age of a halo and its

characteristic rate of mass accretion. This definition is subjective, and multiple definitions

are used by di↵erent studies, showing di↵erent degrees of correlation with di↵erent galaxy

properties (Tojeiro et al., 2017). Half-mass formation time shows clear correlation with the

scatter of the SHMR (Cui et al., 2021), which indicates the rapidity of halo mass accretion

to correlate significantly with the buildup of star-forming gas; while Zhao et al. (2009)

show a clear scaling relation between the time of formation of 4% of the final halo mass

and the increase in the concentration of halo density over time, indicating the formation

of central structure to manifest early in the halo’s history through rapid accumulation of

mass. Formation times are therefore a useful quantity to relate the mass accretion history

to the GHC in parametric form, whether this indicates a direct or indirect e↵ect on the

galaxy; however other parameterisations of accretion history show further distinctions

in galaxy properties, such as their gas fraction or photometric colour (Shi et al., 2020;

Montero-Dorta et al., 2021).

Further to smooth accretion of material from the cosmic web, halos can change their

mass in much shorter frames of time by means of interaction with other halos. Merger

events refer to the coalescence of halos as they collide, which in turn have dramatic e↵ects

on the galaxies residing in merging halos, yet the nature of this influence on galaxy evo-

lution depends on the scale of the merger event (Lambas et al., 2012; Ownsworth et al.,

2014).

A minor merger event is one in which the larger of the two halos is much greater in

mass than the other, and the acquisition of the smaller halo has little e↵ect on it or its

galaxy. The galaxy of the smaller halo, on the other hand, can become a satellite of the

central galaxy and be subject to e↵ects such as tidal or ram pressure stripping of its gas

and stars, or can lose much of its mass to the larger halo in a flyby event. Either way, the
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event has a profound and permanent e↵ect on the future of its galaxy evolution.

A major merger event is one in which the masses of the colliding halos are similar,

and the e↵ect on each halo and galaxy is just as great. These objects merge to form an

object much greater in mass than either of its progenitors, and of course undergo entirely

di↵erent modes of mass accretion afterwards. The galaxies can be a↵ected in that their

gas can be rapidly compressed by the shockwave which results from the merger, leading

to swift acceleration of their star formation. On the contrary, the merger can rapidly heat

this gas and thereby prevent it from condensing and forming stars, or fuel the central

black hole of the galaxy which expels this gas from the system with its relativistic jet.

Major mergers are rarer occurrences than the minor events which collectively equate to

smooth accretion and satellite infall, but individually they are some of the most important

events in a galaxy’s history. Yet the extent to which merger events vary in their frequency,

time of occurrence, progenitor mass ratio, and stellar and gas mass fractions, adds to the

di�culty of understanding their role in the galaxy-halo connection.

Internal Structure And Dynamics

Dark matter halos exhibit a simple, radially symmetric structure when in thermal equi-

librium. The most common function used to describe the radial density profile of a dark

matter halo is the Navarro, Frenk, & White (1996) (NFW) profile. This can be defined

in terms of the concentration parameter c, which indicates the density of matter towards

the centre of the halo. This is defined as follows:

c =
rvir

rs
(1.1)

where rs is the scale radius of the NFW function (eq. (1.2)), indicating where the

gradient of the density profile represents an isothermal sphere; and rvir is the virial radius

of the halo: the radius enclosing a region of su�cient density to collapse under its self-

gravity.

The NFW profile can be written:
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where ⇢crit is the critical density of the universe and �c is the characteristic density
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A similar and commonly used function is the Einasto (1965) profile:
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which is a better fit to halos with gradually changing gradients (Navarro et al., 2004).

↵ represents a gradient parameter which is a function of halo mass and redshift, and ⇢s is

the density at isothermal radius rs.

These profiles provide a good fit to the density profiles of virialised halos. The concen-

tration parameter is a useful quantity; as it can describe the smooth distribution of dark

matter, or the radial number density of subhalos within a halo of galaxy or cluster scale

mass. The concentration parameter follows a scaling relation with halo mass at any given

redshift, which, at low redshifts, shows higher mass halos to have lower concentration,

while this relation becomes flatter at earlier times (Child et al., 2018). The concentration

parameter is also tightly related to the formation time of the halo, and shown to grow

with time as a result of smooth accretion (Zhao et al., 2009). It is a practical indicator of

the mass accretion histories of halos of a given mass.

These profile fits, however, represent an idealised halo, for which the mass, shape, size

and internal dynamics are self-consistent. In reality, halos vary in their shapes and their

velocity structures, which can be reconciled with the tidal distortions induced by large

scale structure and merger activity, or AGN and supernova driven winds and outflows

(Chua et al., 2022).

The dispersion, or variance in the velocities of halo particles, is tightly correlated with

the halo’s total mass if the system is virialised, which makes this a practical observational
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measure of the gravitational potential. The scatter in this relation signifies the non-virial

dynamics of the halo and its satellites, which is usually measured by velocity anisotropy:

quantifying the fraction of matter which is moving isotropically, or radially with respect

to the halo centre, as opposed to a tangential orbit. This motion is often the result of tidal

anisotropy within the local environment or internal to the halo, and has significant e↵ect

on the morphology and distribution of local galaxies. Furthermore, this anisotropic density

field can enhance or suppress mass accretion and merger rates, again having notable e↵ects

on the galaxies’ star formation and chemical enrichment.

Cosmic Environment

“Cosmic environment” refers to the density, distribution and dynamics of subhalos and

large scale structures which surround a halo of interest. Environments are typically charac-

terised using overdensity: the density of matter within a spherical region of space centered

on the target halo or galaxy, as well as the properties of nearby nodes, filaments and voids,

and measures of tidal anisotropy owing to the asymmetric spatial and velocity distribution

of matter in the local vicinity. Di↵erent cosmic structures form from the coalescence of

halos according to the history of their environment (see section 1.1.2).

The di↵erences in the conditions within regions of di↵erent densities and distributions

of halos is very important to the properties of galaxies in these regions, which have distinct

star formation, morphological and chemical properties depending on their environments

(Scoville et al., 2013; Papovich et al., 2018; Galárraga-Espinosa et al., 2023). In denser

regions, e.g. cluster centres, galaxies are typically more massive, elliptical in shape, have

low rates of star formation and are predominantly comprised of old, metal-rich stars and

gas. Galaxies in less dense environments usually have ongoing star formation, spiral

morphology, and a recently formed, metal-poor supply of stars.

The relationship between galaxy properties and their local environment is complex,

and di�cult to characterise with only parameterisations of the surrounding mass distribu-

tion. It is in fact believed to result from various physical processes, such as the presence

of gas for star formation and the magnitude and frequency of gravitational interactions

between halos. In high-density areas, star-forming gas can easily become heated by shocks

or expelled by ram pressure, restricting a galaxy’s ability to condense its gas reservoir and

form stars. Additionally, the presence of numerous galaxies in dense environments can
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result in mergers and other interactions, which as discussed in section 1.2.2, can signifi-

cantly alter the properties of the involved galaxies. Conversely, in lower density regions,

the gas is able to cool with little intrusion, leading to an increased rate of star formation.

It is clear that halos which reside in di↵erent cosmic environments will have distinct

evolutionary histories, as well as the galaxies which they host, having grown in regions of

di↵erent density and tidal asymmetry, a↵ecting their mass accretion and merger history.

It is well established that this is true for galaxies which occupy a known, low-redshift envi-

ronment, however the history of the cosmic structures themselves are likely to have played

a significant role in the galaxy’s development, by governing the rate of interactions, supply

of gas and so on. In this thesis, we have included measures of the cosmic environment as

a function of time as a predictor of galaxy evolution, discussed in chapter 2.

Central And Satellite Phases

The gravitational capture of a galaxy by a much larger halo or cluster has substantial

e↵ects on its future, leading to significant di↵erences between the statistics of central and

satellite galaxies. Galaxies which have remained central galaxies throughout their lifetime

typically grow through the accretion of matter and merger and flyby interactions with

other galaxies, and lose their mass predominantly via supernova-driven winds and AGN

jets. Satellite galaxies, by definition, fall into the gravitational potential of a much larger

halo, and are subject to dynamical friction as it traverses the halo, and as discussed above,

is more likely to be subject to tidal and ram pressure stripping in regions of higher density.

The properties of satellite galaxies are expectedly very di↵erent from central galaxies,

having lost much of their star forming gas and mass in their outer regions, and having

become morphologically distorted by the host halo and other satellites. The local envi-

ronment of satellite galaxies is in fact critical to their quenching (Bluck et al., 2020). For

central galaxies, cosmic filaments play a role in sourcing their star-forming gas, which is

something which does not significantly influence satellites (Simpson et al., 2018). The dif-

ferent importances of di↵erent quantities illustrates the distinction in evolutionary physics

between central and satellite galaxies.

An important quantity deciding the fate of satellites is their mass with respect to their

host: lower mass satellites are more vulnerable to environmental quenching e↵ects due
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to weaker gravitational binding energy. The time of their infall into the central halo’s

potential is additionally important; these stripping e↵ects are greater on galaxies which

have spent more time within the halo, and on galaxies which grew little in baryonic

mass prior to their infall. The gravitational forces and ram pressure are also stronger for

satellites which follow a radial trajectory towards the halo centre, or at higher velocities.

For the central galaxy, the trajectory of these satellites can determine whether these will

remain as satellites, exit the potential as a flyby interaction, or merge with the central

galaxy, and the gas content of the infalling satellite can enhance its own star formation.

1.3 This Thesis

1.3.1 Motivation

Decades of research have established that the physical and observational statistics of galax-

ies are dependent on a wide range of phenomena, yet a substantial part of this is either

directly or indirectly modulated by dark matter halos. The mass accretion and merger

histories of their host halos, the gas and star content of the many millions of halo progen-

itors, the tidal forces provided by halos, clusters and filaments in their local region, are

just some of the factors which contribute to the wide complexity of galaxy evolution.

It has long been established that the halos and cosmic environments which encase

galaxies and clusters have made a dramatic impact on the local galaxy population. The

time at which these halos form, the preferential orbits of their interior and exterior com-

panions, and the quantity of material which they accumulate over time are all factors

which influence how quickly their galaxies form most of their stellar mass, how their disks

and bulges develop, and how these galaxies will a↵ect the galaxies which interact with

them. Despite valuable insights into certain correlations, e.g. galaxy colour bimodality

being driven by the cold gas content of early-forming halos (Cui et al., 2021), the number

of potential mechanisms of galaxy-halo coevolution is multifarious. There may be several

phenomena, such as the collapse of cosmic filaments, which influence galaxies in an as-yet

unexplained fashion.

Modelling the coherent properties of galaxies and halos on all scales, in an e↵ort to

explain the GHC in greater detail, has been a challenging endeavour. Hydrodynamical

simulations incorporate numerous computationally intensive codes to compute the cooling
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of gas, formation of stars, stellar and AGN feedback and other processes. This results in a

tradeo↵ between the volume of the simulation, used to model massive galaxy clusters and

large scale structure; and the mass resolution of the simulation, which is imperative to

modelling sub-kiloparsec galactic disks. Semi-analytical models may allow galaxies to be

modelled on larger scales due to their superior e�ciency, but they are not self-consistent

and rely on optimisation of a wide parameter space.

The size and diversity of a large, detailed cosmological simulation would advocate the

comprehensive study of the correlations of the galaxy-halo connection, describing in detail

the physics of galaxy formation and evolution from the dark matter perspective. Further-

more, galaxy surveys in recent years have surveyed larger regions of the sky and probed to

higher redshifts as instrumental sensitivity has advanced. These surveys have benefitted

from high fidelity baryonic simulations in the production of mock surveys (mocks), using

the baryonic content of simulated galaxies to synthesise SEDs, photometry and images.

Studies investigating these phenomena have provided valuable results, yet they are funda-

mentally limited by the size and resolution of the cosmic simulations that are available.

A data model which encapsulates implicit correlations between galaxy and halo prop-

erties over time would be an invaluable software to galactic astrophysicists. Identifying

the halo and environmental parameters which constrain the evolution of di↵erent galaxy

populations most profoundly will provide an interpretation into the physical processes

common to these galaxies, and the extent to which their evolution can be attributed to

their dark matter component and surrounding structures. By applying a predictive model

to a high fidelity N-body simulation, one may produce a vast galaxy dataset with which

to show these correlations explicitly, and by synthesis of observable quantities from these

predictions, one can emulate equally large mocks which reflect this relationship, and by

comparing this with some of the deepest, widest surveys to date, can be used to assess

the validity of our models of galaxy evolution.

It is the premise of such a practical and versatile design which motivates this thesis.

Machine learning o↵ers a means to design a model which establishes connections between a

set of halo properties to a set of galaxy properties, and to make predictions on larger scales

than the original dataset. Cosmological simulations provide a useful galaxy-halo dataset

with which to train a model, and N-body simulations can be used to test predictions and
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create mocks. In this thesis, we describe the development and assess the predictions of

an artificial neural network, designed to reproduce the evolutionary histories of galaxies

in the Illustris: The Next Generation (TNG) hydrodynamical simulation suite.

1.3.2 Outline

Chapter 2 will discuss the neural network design and the necessary data acquisition and

preparation steps before training and testing the model. This chapter will explore the

advantages of utilising machine learning techniques to forecast galaxy formation from dark

matter data exclusively, with a comprehensive analysis of the neural network algorithms

utilised for these predictions, along with preprocessing and network design considerations.

Chapter 3 will focus on the results of the neural network when applied to the dark

matter halos in the baryonic TNG simulations, while dark simulations will be addressed

in later sections of the thesis. Similar to chapter 2, this will outline the halo and environ-

mental properties used, and we will emphasise the recognised correlations between halo

and galaxy data, establishing the di↵erences between original and predicted statistics, to

demonstrate the model’s direct accomplishments and its limitations.

The primary focus of chapter 4 will be on the general approach for creating observable

quantities, such as SEDs, using the predicted formation histories of galaxies. We will

compare the spectral statistics of our sample with those generated from the true hydro-

dynamical simulation models to evaluate the e↵ectiveness of the algorithm in producing

realistic observables. The chapter will also explore modifications that could improve the

algorithm’s performance in this regard.

Chapter 5 will discuss the technical steps towards application of the completed algo-

rithm to a pure dark matter simulation. The chapter will also present the test results of

the algorithm’s application to the dark TNG and Uchuu simulations. Additionally, we

will discuss and compare the set of baryonic properties and observables with expected

observational and theoretical statistics. Finally, the chapter will explore the anticipated

outcomes of applying the algorithm to a high fidelity N-body simulation.

In conclusion, chapter 6 will discuss the successes and shortcomings of the neural net-

work model, in the context of its suitability for predicting evolutionary galaxy properties,

encompassing the physics of the galaxy-halo connection, populating N-body simulations
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and complementing ongoing and future galaxy surveys. This will involve the potential uses

of this methodology in the wide field of extragalactic astronomy, such as precise modelling

of galactic star-forming regions and predicting the properties and abundance of massive

galaxy clusters at high redshifts.
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The data and methodology presented in this chapter is based on the

methods presented in Chittenden & Tojeiro (2022).

2
Data, Design & Preprocessing

In this chapter, we introduce the methods of machine learning outline the design of the

neural network model used to compute the galaxy-halo connection, justifying the choice

of layout and hyperparameters. We introduce the cosmological simulations in the TNG

and Uchuu suites, and describe the layout of historical halo and galaxy data in these

simulations, as well as how this data was acquired, and secondary data was calculated,

for use in the machine learning model. This also includes preprocessing methods, from

the necessary numerical procedure of normalisation to physical corrections of data from

di↵erent simulations.

2.1 Machine Learning

Machine learning is a subset of artificial intelligence that involves training algorithms

to automatically learn from data and make predictions or decisions. It is a data-driven

approach which enables computers to recognise patterns, learn from past experiences, and

make predictions or decisions based on new data. Machine learning algorithms are designed
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to improve their performance over time through continuous learning and adaptation.

Machine learning can be applied to statistical problems concerning the analysis of large

and complex data sets. Traditional statistical methods (e.g. Bayesian modelling) often

struggle to cope with large data sets which machine learning algorithms can easily handle

(Aggarwal, 2018; Alpaydin, 2020). By identifying patterns and relationships between

quantities in an input and output dataset, machine learning can uncover insights and make

predictions which would be di�cult or impossible to achieve using traditional statistical

methods.

Machine learning takes on two specific forms: supervised and unsupervised machine

learning. In supervised learning, samples in the dataset are assigned labels or values,

and the model is trained to learn the mapping from one set of such data to another.

Following each evaluation step, the model parameters are adjusted to improve the accuracy

of predictions, usually based on some numerical metric comparing predictions and targets.

The trained model can then be used to predict results using previously unseen input

data, making the predictive model useful for applications such as language processing and

data classification (Aggarwal, 2018). Examples of its practical utility in galaxy astronomy

include the classification of star forming and quiescent galaxies according to black hole

properties (Bluck et al., 2023) and the prediction of photometric quasar redshifts using

SDSS quasar spectra (Hong et al., 2022).

Unsupervised learning involves training a model on an unlabeled dataset, in which

there are no predefined target variables, and thus unlike supervised learning, training an

unsupervised model relies on data patterns rather than predictive feedback. The model

is designed to find patterns or structure in the data by grouping similar datapoints or

identifying clusters of data, resulting in a descriptive model which identifies said patterns

and structures. Descriptive models are therefore useful for applications involving data

compression and anomaly detection (Alpaydin, 2020; Géron, 2020). An example of its

use in galactic astronomy is the use of Gaussian mixture models (Viroli & McLachlan,

2017) to distinguish galaxy populations of di↵erent halo properties according to their star

formation and metallicity histories (Fraser, Tojeiro, & Chittenden, 2022).

In this thesis, a predictive machine learning model has been developed to predict

the evolution of galaxies from the historical properties of their halos and environment.
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The development of a predictive model commonly relies on training and testing phases:

routines where the model is optimised to fit known input and output data, and evaluated

on unseen input data, respectively and consecutively. It is crucial to use training and

testing sets to avoid overfitting: a phenomenon where the model fits the training data too

closely and fails to generalise to unseen data (Aggarwal, 2018).

In a procedure known as parameter tuning, the components of a model undergoing

training are modified in order to improve the fitting of the translation from input to

output data, which is done recursively and automatically after evaluating the quality of

the fit (Aggarwal, 2018). When the model is optimised as much as possible, the model

is applied to testing data to assess the quality and accuracy of its predictions. One can

evaluate the adequacy of the trained model by comparing the predicted results with a set

of true data, and measuring the quality of fit using techniques like simple linear regression

or �2 error calculation. Alternatively, one can compile the model several times and assess

the convergence of the predictions, which may be achieved by calculating the mean and

variance of multiple, independent outputs.

Artificial neural networks are a specific class of a predictive machine learning model,

inspired by the composition and behaviour of the human brain. These models consist of

multiple layers of nodes, or neurons, which are computational units connected to multiple

nodes in the preceding and following layer by some scalar normalising function of the

data, known as an activation function (Aggarwal, 2018; Géron, 2020). The translation

from the input to output layers of the neural network are therefore equivalent to a series

of linear operations, in which the coe�cients of each operation, the weights and biases,

are optimised in the training phase to provide the best translation from input to output

data (Deisenroth et al., 2020). An activation function in the (n+1)th layer �n+1 produces

an output:

u
i
n+1 = �n+1(w

ij
n u

j
n + b

i
n) (2.1)

where u
i
n is a vector of neuron activations, wij

n is a matrix of weight values for every

connection between layers, and b
i
n is a vector of biases.

The training process of a neural network involves feeding the model with a set of
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data including input quantities and the corresponding output values. In a process known

as backpropagation, the weights and biases are subsequently adjusted to minimise the

error between the network’s predicted output values and the target output data. This

error is usually characterised by a multidimensional “loss function” between the predicted

and target data, and the adjustments are usually made according to gradient descent

minimisation of this function (Alpaydin, 2020). A common choice of loss function is the

mean squared error (MSE):

MSE ({yi}, {fi}) =
1

N

NX

i+1

(yi � fi)
2 (2.2)

where {yi} and {fi} are true and predicted datasets of size N . This loss function is

used in all models discussed in this thesis.

The accuracy of the model’s predictions depends on the quality of the training data

and the complexity of the model. It is therefore necessary to adjust the training param-

eters, or hyperparameters, to advocate the most e�cient and accurate training possible

(Aggarwal, 2018; Géron, 2020). One such hyperparameter is the learning rate �: the size

of incremental steps in the adjustment of weights and biases. This can make the network

slow to converge if too small, and can fail to converge or even diverge if too large. Another

is the number of hidden layers in the network, or the number of nodes per layer, which

must be suitably large if the mapping from input to output data is highly nonlinear, but

can fail to converge due to the many degrees of freedom in the model if this is too large.

The choice of activation and loss function is also important to specific datasets and

problems; a poor choice can slow or even derail the convergence of the model and produce

incorrect or misleading predictions (Géron, 2020). Eight examples of activation functions

are given in fig. 2.1, showing the variety in the neuron outputs of di↵erent models. The

sigmoid function, for example, is an appropriate choice for problems with binary classi-

fication, as the output of multiple sigmoid operations will converge towards 0 or 1. It is

also a useful function to prevent the divergence of outputs, which will of course cause the

network to fail. The sigmoid function is a poor choice for precise regression calculations

due to gradient saturation: where the gradient becomes small enough that the weights

and biases are barely updated in the training phase. The MSE is also a common choice
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Figure 2.1: Eight commonplace activation functions used in neural networks (Aggarwal, 2018).
In each scenario, the vertical axis displays the output of a particular node, while the horizontal
axis displays the input value to that node. The name of the function is given in the figure titles,
and their mathematical expressions are given in the figure.

of loss function for regressional problems as the error is a continuous variable, whereas

binary cross-entropy is a more suitable choice for classification models, where the output

is a discrete variable.

2.2 A Semi-Recurrent Neural Network

2.2.1 Architecture

In the neural network model which has been designed for this research with the TensorFlow

Python library (Abadi et al., 2016), a fairly non-conventional design is employed. We

have the specific problem of reproducing galaxy evolution from the detailed histories and

multiple physical properties of their halos and environments. This requires an input of

several hundred nodes which are causally connected with one another, in conjunction with

time-independent variables. Training a standard neural network for this task would require

a parameter space of extreme multiplicity to converge towards a highly specific, causally

connected framework. The addition of hundreds of nodes per layer make training di�cult

due to the introduction of many more degrees of freedom.

Recurrent neural networks are a particular class of neural networks in which a one-

directional activation sequence exists between successive nodes in a layer (Lipton et al.,

2015). This allows information from previous nodes to be passed to those later in the

sequence and for predictions to be made from the internal memory of inputs in any time
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Figure 2.2: This diagram depicts the neural network architecture for central galaxies, with each
dot representing a fully connected layer and its dimensionality indicated by a number, except for
the purple dots that represent a subset of the final 1D output layer. The network has separate input
layers for time-dependent and time-independent halo properties, which are combined at a dense
layer with 42 nodes. The temporal input layer and recurrent layers are two-dimensional, consisting
of eight variables over 33 time steps. The arrows show connections between consecutive layers,
with the label indicating the number of times the connection repeats. For example, “3” means
there are four consecutive hidden layers for that connection. The dashed line arrow indicates that
every fourth hidden layer has three additional nodes until each layer reaches 69 nodes. Finally,
the network outputs baryonic data, including star formation and metallicity histories, and three
zero-redshift galaxy properties.

frame. These recurrent layers take in three-dimensional input datasets: adding a temporal

axis to the sample and variable axes of a standard neural network input. The advantages

of this design include the ability to recognise temporal dependencies between variables,

and to predict sequential outputs from multiple sequential inputs.

This work invokes the design of a semi-recurrent neural network: a network with two

input layers. The historical properties of the halos and environment are included in a

recurrent input layer, where they share the same time steps. Variables with no time

dependence are included in a second, dense layer. These inputs and the layers which

follow it are concatenated into a single dense layer which eventually outputs the baryonic

properties we aim to predict. The full architecture of this network is shown in fig. 2.2.

We implement temporal features of the neural network as 33-element vectors. As

discussed in section 2.3, the simulation data used in this work is contained in multiple

“snapshots” in time from a high redshift to a redshift of zero. The TNG data on which

the network is trained consists of 100 snapshots. To reduce the complexity of the model

and improve the speed of convergence, we evaluate temporal quantities in TNG for every

third snapshot in the simulation, not including the first snapshot due to finite di↵erencing

between snapshots. The Uchuu simulation consists of 50 snapshots, and when calculating
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Uchuu data we interpolate the relevant quantities over the reduced TNG time domain.

Two di↵erent networks are designed for predicting central and satellite galaxies, due

to fundamental di↵erences between their evolutionary histories and summary statistics

(Pasquali et al., 2010; Bluck et al., 2020; Engler et al., 2020), and the inclusion of quantities

which are only valid or relevant for one of the two datasets, such as the time of infall of

satellite galaxies. The network designs are very similar, with the design of the network

for central galaxies shown in fig. 2.2, while the network for satellite galaxies has seven

temporal variables where the central network has eight, and the dense input layer has

eleven variables instead of nine. In the satellite network, these sequences combine to make

a 44-node dense layer rather than 42 nodes. From this point onwards, the two networks

are identical, progressing from a 45-node dense layer to a 69-node output.

In the process of developing this model, the minimum number of hidden dense or

recurrent layers needed to achieve convergence was used to determine the total number

of layers in the network. Each input layer was succeeded by the optimal number of dense

or recurrent layers to ensure the network recognised their equal importance before they

were combined. The number of remaining hidden layers was also optimised to reach

the minimum number required for consistent and accurate predictions, while gradually

increasing in dimensionality to match the number of output nodes.

2.2.2 Activation Functions

As discussed in section 2.1, the choice of activation function is imperative to the perfor-

mance of the neural network, and usually depends on the nature of the problem. Exam-

ples of commonly used activation functions and their mathematical definitions are given

in fig. 2.1. In our case, the task of making a regressional fit to galaxy formation histories

using static and temporal halo and environment properties has required a continuous,

non-saturating activation in all network layers.

The highly skewed distribution of a number of the network’s input features, such as

mass accretion rates and overdensity histories, has made saturation e↵ects a prevailing

problem. When trialling activation functions such as the sigmoid or hyperbolic tangent,

the network has performed extremely poorly due to a large range of data having extreme

outputs and vanishing gradients with these activations.
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The Rectified Linear Unit (ReLU) activation function, defined as follows:

ReLU(x) ⌘ max [0, x] (2.3)

is a common choice of activation function to avoid gradient saturation. As the func-

tion has a constant derivative for positive inputs, backpropagation through ReLU layers

does not allow the gradients to vanish, and can advocate faster gradient descent through

the backpropagation of large gradients (Glorot et al., 2011). Where inputs are negative,

ReLU output is zero-valued, which eliminates irrelevant connections in the network, e↵ec-

tively simplifying the model and improving its training e�ciency and computational cost

(Goodfellow et al., 2016).

An issue with ReLU activation is the Dying ReLU Problem (Lu et al., 2020). When

the input to a ReLU neuron becomes negative, the derivative of the ReLU function falls

to zero. The neuron e↵ectively “dies” when the weights of the node are adjusted such

that its input is strictly negative, and this zero-valued derivative causes any subsequent

iterations from this node to be zero-valued, and thus the node no longer contributes to

training the network. When a large number of ReLU neurons die, it can severely impact

the capacity of the network to learn and lead to poor performance. This is the case with

our model.

The similar Leaky Rectified Linear Unit (L-ReLU) activation function, defined as

follows:

L-ReLU(x) ⌘ max [↵x, x] ; ↵ 2 (0, 1) (2.4)

has a nonzero gradient for negative values and thus is a practical alternative to the

ReLU activation function. While this does reduce the abundance of dead neurons in

our model, we have found that using an L-ReLU activated network leads to arbitrary

discontinuities in our predictions. Like ReLU, L-ReLU has an undefined gradient when

the input equates to zero, which can result in di↵erent treatment of inputs approaching

this value depending on the adjustment of weights. To mitigate each of these problems,

we train the network with Exponential Linear Unit (ELU) activation:
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ELU(x) ⌘

8
><

>:

x if x � 0

↵ (exp(x)� 1) if x < 0
(2.5)

with an ↵ value of 1. This function and its gradient are continuous for all input values,

is non-saturating and similar in form to ReLU, o↵ering similar advantages such as linear

behaviour and e�cient gradient descent.

While the network performs well with ELU activation and converges more accurately

and e�ciently than with ReLU or L-ReLU, the model is not fully deterministic. ELU

activated networks can be advantageous for normalizing a layer’s output to have a mean

close to zero and a standard deviation close to one. However, this normalisation behavior

is only reliable for sequential network architectures with standardised inputs and initial

kernel weights, otherwise the model is potentially unstable (Clevert et al., 2015; Géron,

2020). Particularly high or low gradients at very small or very large inputs may result

in diverging or slow gradient optimisation, and thus have negative e↵ects on the model’s

performance.

In many machine learning endeavours, a series of “dropout” layers may be implemented

in the model, which randomly eliminate a specified fraction of neurons, in an e↵ort to pre-

vent overfitting. This reduction of connections is precisely the e↵ect which was impeding

the network’s performance prior to implementing ELU activation. Even with ELU acti-

vation, training the network with dropout layers has worsened the quality of predictions,

producing similar discontinuities and failed fits to the ReLU activated network. This il-

lustrates the prevalence of vanishing gradients in this model and the importance of our

choice of activation function.

2.2.3 Learning Rate

In the process of gradient descent, the learning rate is a model hyperparameter which

decides the step size of each iteration. Specifically, for learning rate � and loss function

f , the model parameters {✓j} are updated according to the gradient of the loss function,

like so:
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Figure 2.3: Four examples of adaptive learning rates used in neural networks, where the name of
the adaptive learning rate is given in the title of each figure, and the mathematical formula for the
learning rate � as a function of the epoch number N is given in the figure. In these mathematical
expressions,  and ⌘ are fixed, tailored hyperparameters, H is the Heaviside step function, and ⇣
is a random uniform variable. The stochastic formula is designed such that for every epoch in the
training phase, there is a 1 in  probability that the current learning rate will be halved.

✓j
..= ✓j � �

@

@✓j
f({✓j}) (2.6)

The choice of the value of � is critical to the performance of the neural network. An

exceptionally small value will cause the rate at which the model is updated to be slow,

and so it may never achieve convergence. A value which is too large will cause the model

to shoot past the optimal solution and potentially diverge from the desired result.

In some cases, a constant learning rate can be problematic; it may be too small at

early times in the training phase to approach the optimal solution, but too large at later

times to converge to this solution adequately. In circumstances where there is no single

number which suits both of these issues, an adaptive learning rate is used, in which the

learning rate is reduced with every epoch (Alpaydin, 2020). Four examples of adaptive

learning rates are given in fig. 2.3, demonstrating the variety of di↵erent adaptive learning

rates used for di↵erent models. This includes the step decaying learning rate, designed to

descend by a certain factor after a certain number of epochs; the stochastic learning rate,

which has a probability of randomly decaying by a given factor; and the time-based and

exponential decay functions, giving a smooth, analytical expression for the learning rate.

In our model, we have found that an adaptive learning rate was necessary as there

was no constant learning rate which lead to adequate convergence. We found that an

exponentially decaying learning rate was the optimal choice for this model. Specifically, a

34



2.3. Simulation Data

decaying learning rate of the form:

� = �0 exp


� N

N0

�
(2.7)

with values �0 = 8 ⇥ 10�4 and N0 = 10, was found to be the optimal solution for

both central and satellite neural networks. This learning rate would eventually decay to a

value so small that it would not make noticeable updates to the model, and therefore our

training phase is given a total of 70 training epochs; terminating as soon as �  10�3 �0.

2.3 Simulation Data

2.3.1 Simulation Suites

IllustrisTNG

The IllustrisTNG simulations (Nelson et al., 2017, 2019a,b; Pillepich et al., 2017a, 2019;

Springel et al., 2017; Marinacci et al., 2018; Naiman et al., 2018) are a suite of twenty

cosmological simulations, assorted in simulation volume, mass resolution and number of

mass particles in the simulation, with a pure dark matter counterpart for each hydrody-

namical simulation. A summary of the properties of each of the TNG simulations is given

in table 2.1, along with those of the Uchuu simulations (see below).

The TNG simulations begin at a redshift of 127, with an initial distribution of dark

matter and baryonic gas that mirrors the conditions of the early universe. By prop-

agation according to the moving-mesh magnetohydrodynamical code Arepo (Springel,

2010; Weinberger et al., 2020), the matter in the simulation clusters together and forms

halos and galaxies, creating a model universe which aligns with the Planck Collabora-

tion (2016) ⇤CDM cosmological model, i.e. assuming the following cosmological param-

eters: ⌦m = 0.3089, ⌦⇤ = 0.6911, ⌦b = 0.0486, ns = 0.9667, �8 = 0.8159, H0 = 67.74

km/s/Mpc. The simulation data includes catalogues of numerous dark matter, stellar, gas

and black hole properties for all halos and galaxies in the simulation, which is visualised

in fig. 2.4.

As discussed in section 1.2.1, the computational expense of hydrodynamical simulations

usually results in a compromise between the size and the resolution of the simulation. In
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IllustrisTNG Simulations
Name of Simulation Volume (Mpc)3 Ndm Mdm (106M�) Nb Mb (106M�)

TNG50

-1

51.73

21603
0.45 21603 0.085

-Dark 0.55 0 N/A

-2 10803
3.6 10803 0.68

-Dark 4.31 0 N/A

-3 5403
29 5403 5.4

-Dark 34.5 0 N/A

-4 2703
232 2703 43.4

-Dark 275 0 N/A

TNG100

-1

110.73

18203
7.5 18203 1.4

-Dark 8.9 0 N/A

-2 9103
59.7 9103 11.2

-Dark 70.1 0 N/A

-3 4553
478 4553 89.2

-Dark 567 0 N/A

TNG300

-1

302.63

25003
47 25003 11

-Dark 59 0 N/A

-2 12503
470 12503 88

-Dark 588 0 N/A

-3 6253
3760 6253 703

-Dark 4470 0 N/A

Uchuu Simulations
Name of Simulation Volume (Mpc)3 Ndm Mdm (106M�) Nb Mb (106M�)

Uchuu 2952.53 128003

482.73
0 N/A

Mini - Uchuu 590.53 25603

Micro - Uchuu 147.63 6403

Shin - Uchuu 206.73 64003 1.3242

Table 2.1: A summary of the parameters of the twenty IllustrisTNG simulations (Nelson et al.,
2019b) and four Uchuu simulations (Ishiyama et al., 2021). Nx represents the total number of
particles or cells of component x, whereas Mx represents the size of one unit of mass in this
simulation, i.e. the smallest resolvable mass. The components “dm” and “b” are dark matter
and baryonic components, respectively. For each baryonic simulation, units of baryonic and dark
mass are split according to the cosmic baryon fraction (⌦b/⌦dm), while in their dark equivalent
simulations, these units are added together into one total mass unit. All simulations shown in this
table use the parameters of the Planck Collaboration (2016) ⇤CDM cosmological model.
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Figure 2.4: Nine halo and galaxy variables mapped over a 110 ⇥ 14 ⇥ 37Mpc region of space in
the TNG100-1 simulation at z = 0, illustrating the wealth of information directly available from
the IllustrisTNG public data release. The variables and their physical scales are indicated in the
legend at the base of the figure, and ordered according to their appearance from the top to the
bottom of the figure. Image taken from Nelson et al. (2019b).
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TNG, there exist three suites of the same cubic volume, whose approximate side length is

indicated in the name of the suite. These are TNG50 (51.73Mpc3), TNG100 (110.73Mpc3)

and TNG300 (302.63Mpc3). As shown in table 2.1, the smaller volume TNG50 simulations

have finer resolution than the larger TNG100 and TNG300 simulations. TNG50 data is

therefore more suited to studies involving the resolved interiors of galaxies (Boecker et al.,

2022), while the larger simulations are appropriate to study rare, high mass halos and

structures (Hadzhiyska et al., 2021; Montenegro-Taborda et al., 2023).

TNG simulations of a specific volume are also run with di↵erent mass and spatial

resolutions, i.e. smallest resolvable masses and volumes, initialised with the same random

seed. This e↵ectively generates the same galaxies and halos of the simulation with vary-

ing levels of resolution, which can be used to investigate the e↵ect of this resolution on

galaxy properties, such as the enhancement of star formation and feedback with improved

resolution (Pillepich et al., 2017b). TNG simulations of di↵erent resolutions are denoted

with a trailing index in the simulation name, e.g. “TNG100-2”. Where this index is 1, the

simulation is the highest resolution of all simulations of this volume, 2 indicates second

highest, and so on. For TNG100 and TNG300, the n
th TNG300 simulation is intended

to approximately recover the n + 1th TNG100 simulation (Pillepich et al., 2017a,b); a

relationship which we exploit in section 2.6.

Finally, for each of these hydrodynamical simulations, there exists a counterpart con-

taining only dark matter. These dark simulations are denoted with “-Dark” on the end of

the simulation name, e.g. “TNG50-2-Dark”. Like the simulations of varying resolution,

the halos in these simulations are generated from identical initial conditions, and halos in

one simulation can be cross-matched with halos in another, allowing studies to compare

the properties of halos with and without baryonic matter and baryon-driven phenomena.

We make extensive use of this concordance between baryonic and dark simulations in

chapter 5, comparing the predictions of our neural network model in baryonic and dark

simulations. The lack of baryonic matter and the phenomena which influence the proper-

ties of halos make notable di↵erences between baryonic and dark simulations (Castro et al.,

2020; Anbajagane et al., 2021; Haggar et al., 2021; Riggs et al., 2022); yet despite this,

the properties and statistics of halos are similar between baryonic and dark simulations.
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Figure 2.5: (Left) Density map of the Uchuu dark matter simulation at z = 0, with white
dashed boxes showing the three TNG simulations to scale. (Right) Magnified regions of the Uchuu
simulation enclosed by the boxes in the left figure, showing the details resolved by Uchuu in a
volume equivalent to the TNG simulations.

Uchuu

Uchuu (Ishiyama et al., 2021) is a set of cosmological N-body simulations, designed to

model the growth of dark matter halos from the scales of dwarf galaxies to massive clusters.

This includes the main, gigaparsec scale simulation Uchuu, the smaller simulations of

identical mass resolution Mini-Uchuu and Micro-Uchuu, and the small, high-resolution

Shin-Uchuu simulation, which are used by the Uchuu project to model the growth of low

mass halos and the e↵ects of long-wavelength modes in the matter power spectrum. The

simulation parameters of the four Uchuu simulations are summarised alongside the TNG

properties in table 2.1.

Like TNG, Uchuu assumes the Planck Collaboration (2016) ⇤CDM cosmological model,

and is initialised from a redshift of 127. This means that the Uchuu and TNG share the

same time domain, matter density and initial power spectrum, and are subject to the

same dynamics of cosmic expansion, which makes comparing the growth of structures in
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the two suites easier.

Unlike TNG, the Uchuu simulations are pure dark matter simulations, and are propa-

gated by the GreeM N-body code (Ishiyama et al., 2009, 2012). Uchuu also defines halos

according to the Rockstar halo finder algorithm (Behroozi et al., 2012a), while in TNG,

two distinct structures: halos and subhalos (see section 2.3.2), are defined according to

the Friends-of-Friends (FoF) and SubFind algorithms, respectively. The simulations are

nonetheless alike in the structures that they form, and despite the superior resolution of

most TNG simulations, the ⇠ 25.7Gpc3 Uchuu simulation resolves structures on the scale

of TNG very clearly. A comparison of the size of these simulations and the level of detail

shown by the main Uchuu simulation on TNG scales is shown in fig. 2.5.

2.3.2 Data Access

For each of these simulation suites, the data is catalogued in multiple formats to suit

di↵erent uses of the simulation results. Some studies will require detailed information of

the properties of all particles or gas cells which constitute a galaxy or halo, while others

will entail the contents of the halos which existed at earlier times, now forming part of the

target halo or its interaction history. In both TNG and Uchuu, public data releases of the

simulation results meet one of the following data formats.

Halo Catalogues

In the TNG and Uchuu data catalogues, “snapshots” refer to a set of data that represents

the state of the simulated universe at a specific moment in time. These snapshots include

a comprehensive list of all halos, and where applicable, galaxies which exist at this time.

Properties of each halo, subhalo or galaxy can be requested from the snapshot archive.

In TNG, one can request the properties of halos or subhalos in a given snapshot. Halo,

or group properties, are associated with halos formed by the FoF percolation algorithm

(Huchra & Geller, 1982; Press & Davis, 1982; Davis et al., 1985), in which any given

particle in the simulation is linked to another if they are separated by less than a specified

linking length, which forms a network of directly or indirectly connected particles. This

is a practical tool for defining halos as the optimal linking length results in a group which

encloses the required density for virial collapse. A linking length equal to a fifth of the

mean inter-particle separation of the simulation is commonly chosen, and is in fact chosen
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in TNG, as it results in a mass function which is invariant under changes in cosmological

parameters (Jenkins et al., 2001; White, 2001).

Subhalos in TNG are identified using the SubFind algorithm (Springel et al., 2001),

which identifies locally overdense regions within a nonhomogeneous structure such as a

halo, and defines the boundaries of the subhalo according to a contour of fixed density

which traces any saddle point in the local density field. This is more practical for identi-

fying structures which are not necessarily virialised; in fact many subhalos will be tidally

distorted by their neighbours and by the main halo in which they reside. The Rockstar

halo finder used in Uchuu adds to the FoF method by optimising for a phase space link-

ing length within each group, which is used to define halo substructures (Behroozi et al.,

2012a).

It is the main halos, the largest single objects in the simulation, which contain the

intracluster medium (ICM) and gravitationally bound subhalos, while it is the subhalos

which contain galaxies (Zavala & Frenk, 2019). By construction, the central subhalo,

hosting the central galaxy of the group, is the most massive SubFind object within the

FoF group. All other SubFind objects in the group are considered satellite subhalos,

hosting satellite galaxies.

In TNG, quantities in the FoF halo catalogue which can be obtained include, but are

not limited to, the sum of masses, star formation rates and gas and star metal fractions

of all members of the group, the centre of mass and velocity of the group, the number of

SubFind groups, and the total mass and comoving radius of regions enclosing spherical

regions of di↵erent density. In Uchuu, of course the baryonic properties listed here are

non-existent, but the halo catalogues include all of the above quantities where applicable,

and in addition include angular momentum and NFW scale radius as fields.

Subhalo fields in TNG include the above quantities for individual galaxies, as well

as masses, metallicities and photometric magnitudes of regions enclosed within di↵erent

radii, such as that of the maximum of the rotation curve. Subhalo catalogues also include

indices which point to their host halos. As halos and subhalos are defined using the same

algorithm in Uchuu, members of the catalogue include the same fields, in addition to flags

which indicate the ID of the host halo, where applicable.
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Particle Data

The snapshots of the TNG and Uchuu simulations also include data relating to the in-

dividual particles of the simulation, concerning the status of each particle at the time of

the snapshot. This particle data can be used to visualise processes internal to the halo or

galaxy, and thereby understand the mechanisms of processes such as supermassive black

hole growth.

The baryonic TNG simulations are initialised as a set of dark matter particles, and

gas ”cells” constructed from the Voronoi tesselation of the Euclidean field (Pillepich et al.,

2017a). Gas cells will go on to form star and black hole components, thus there exist four

types of mass unit in these simulations: dark matter, gas, stars and black holes. Each of

these particle types has a unique set of quantities which can be acquired in the ”particle”

catalogue data.

Dark matter particles, being simplest in nature, have only coordinates, local mass

density, velocity and gravitational potential as relevant fields. Gas cells contain an in-

stantaneous cooling rate and star formation rate, as well as thermal energy, abundances

of individual metals, and magnetic field strength and divergence. Star particles include

similar properties as well as photometry and the time at which they were formed from gas

cells, whereas black hole units include various estimates of mass accretion rate and AGN

feedback energy.

Merger Trees

The evolution of halos and galaxies in these cosmic simulations is documented in the form

of merger trees: a list of all progenitors and descendants of a given halo or subhalo. The

basic structure of a merger tree is outlined in fig. 2.6.

For any given halo at a particular snapshot, the merger tree entails the properties

of all objects from previous snapshots which would become part of the target halo, and

the properties of the halo’s descendants at later snapshots. This includes not only halos

but the smooth accretion of unbound material. Each unique object forms a “node” of

the merger tree. Connecting these objects results in a network of links, or “branches”,

which represent the growth of the halo and its progenitors in the time between consecutive

snapshots.
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Figure 2.6: This diagram is a simplified representation of a halo merger tree, as seen in the
TNG simulations, and is taken from Jiang & van den Bosch (2014). It is organised into rows,
with each row representing a snapshot from the earliest time in the top row to the latest time in
the bottom row. The size of each sphere corresponds to the mass of the halo it represents. In
each row, the purple sphere represents the main (0th order) progenitor of the host halo at the
final snapshot, and the purple lines depict the main progenitor branch. Any other halos in the
diagram are considered secondary progenitors, with the overlap of a smaller sphere over a larger
one indicating that the smaller halo has been accreted by the larger halo as a bound subhalo. The
small rectangles represent smooth accretion of matter that is not associated with halos. The boxed
region provides an example of a subsection of the main tree which is also considered a subtree in
its own right. For any such subtree, the highest order branch is the main progenitor branch of the
subtree, while all other members of the ensemble are secondary progenitors; as is the case for the
complete merger tree.
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The main progenitor branch (MPB) is the single line of connections which trace the

growth of the primary halo itself. By construction, this is the most massive progenitor of

the target halo for each snapshot. The MPB is used to measure the evolution of the main

halo, while secondary branches represent the accretion of smaller halos and other objects.

A halo with more progenitors therefore has more secondary branches. These smaller halos

may exist as satellites of the main halo for a period of time, in which case their own MPB

traces their evolution through both their central and satellite phases. A halo is a central

halo if its MPB is not a secondary branch of any other halo.

Significant events in the halo’s history can sometimes be seen by eye in the features of

the MPB. For example, a sharp rise in the mass of the main halo indicates that a major

merger event took place within the time interval between the two snapshots. Alternatively,

a satellite halo’s mass may decline smoothly if it is stripped away by the ram pressure of

the surrounding ICM. These e↵ects can be verified by the presence of suitably large halos

in their merger trees.

By requesting the MPB of any halo in TNG or Uchuu, one can acquire the properties

of the chosen halo as a function of time, such as its mass components and gas or stellar

metallicity. Requesting the full merger tree returns this information for all progenitors or

descendants of the chosen halo, such as the gas masses of all accreted subhalos.

In Uchuu, due to the great size of the simulation dataset, the simulation is divided into

two thousand merger “forests”. Each forest is a self-consistent collection of merger trees:

one forest contains all merger trees which have interacted with each other at some point in

time. Consequently, each forest is an independent subset of the Uchuu simulation, which

occupies its own region of space. One can therefore treat a single forest as an independent

dataset, spanning all simulation snapshots.

Supplementary Catalogues

Aside from the data directly available from the public data releases of the simulations,

studies have computed additional quantities using the simulation data, following the com-

pletion of the simulations themselves. This includes data which were computed by the

original collaboration, and by third-party researchers.

Examples from TNG include subhalo matching between baryonic and dark simulations
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Network Data
Quantity Notation Units Network GQT Logarithmic Shu✏e

T
em

p
or
al

F
ea
tu
re
s

Halo Mass Accretion Rate Ṁh M�/Gyr Both Vector False 1
Subhalo Mass Accretion Rate ṁh M�/Gyr Satellite Vector False 1a

1Mpc Overdensity �1 Both Scalar False 2
3Mpc Overdensity �3 Central Scalar False 2
5Mpc Overdensity �5 Central Scalar False 2

Circular Velocity (proxy) ṽvir

p
(M�/Mpc) Both Vector False 3

Dark Matter Half-Mass Radius R 1
2

Mpc Both Vector False 3

1Mpc Radial Skew µ3 Satellite Vector False 4
3Mpc Radial Skew µ3 Central Vector False 4

Distance To Closest Subhalo dµ3 Mpc Both Vector False 4

N
on

-T
em

p
or
al

F
ea
tu
re
s

Specific Halo Mass Accretion Gradient � (c)�halo (s) logGyr�2 Both None False 1
Specific Subhalo Mass Accretion Gradient �sub logGyr�2 Satellite None False 1a

Scaled Infall Time ainfall Satellite None False 1a, 2, 4
Scaled Formation Time amax Satellite None False 1a

Infall Mass Ratio µ Satellite None True 1, 1a
Infall Velocity vrel km/s Satellite None True 2

z = 0 Cosmic Web Distances dCW kpc Central Scalar True 2
Starting Time tstart Gyr Both Scalar False All

z = 0 Halo Mass Mh M� Both Scalar True 1
Maximum Absolute Halo Accretion Rate | Ṁh | M�/Gyr Both Scalar True 1

z = 0 Subhalo Mass mh M� Satellite Scalar True 1a
Maximum Absolute Subhalo Accretion Rate | ṁh | M�/Gyr Satellite Scalar True 1a

T
ar
ge
ts

Star Formation History S M�/Gyr Both Vector False N/A
Metallicity History Z Z� Both Vector False N/A

z = 0 Stellar Metallicity Z Z� Both Scalar True N/A
z = 0 Stellar Mass Ms M� Both Scalar True N/A
Mass Weighted Age MWA Gyr Both Scalar False N/A

Table 2.2: A summary of the quantities used in both neural networks, grouped by layer and
ordered by their placement in said layer. This entails the units of each quantity, and indicates
which networks utilise them and how they are normalised. The section column indicates which
section of this paper discusses this quantity. The shu✏e group (final column) indicates which
variables are simultaneously scrambled when testing for feature importance (see section 3.4).

(Nelson et al., 2015; Rodriguez-Gomez et al., 2015), details of black hole mergers (Blecha

et al., 2015; Kelley et al., 2016), distances to key locations in the cosmic web (Duckworth

et al., 2019, 2020) and the properties of galactic bars (Rosas-Guevara et al., 2019; Zhao

et al., 2020).

2.4 Data In This Work

In this work, we utilise data from each of the categories described in section 2.3.2. We make

extensive use of merger trees in TNG and Uchuu, and use our own calculations for any data

not included in the above data releases, e.g. using nearby subhalos to define quantities

relating to cosmic environment. In this section we discuss the relevant variables used in

the machine learning model and discuss how the data was acquired. A full description of

the variables used in this network is given in table 2.2.
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2.4.1 Dark Matter Quantities

Halo Mass Accretion History

The state of any galaxy will be dramatically shaped by the present mass of its halo, and

will have been influenced in the past by the time and rate at which it acquired this mass,

through smooth accretion or major mergers.

One of the key temporal variables included in this model is the halo mass accretion

rate (Ṁh). For this, we request the sum of all dark matter particle masses along the MPB

in TNG, and between every third snapshot we apply finite di↵erencing:

Ṁh(tj) =
Mh(tj)�Mh(tj�1)

tj � tj�1

(2.8)

where tj is the cosmic time of the simulation at sample snapshot j.

By applying this finite di↵erencing and passing Ṁh to the neural network, we train

the network to recognise the e↵ect of changes in the halo’s mass, in the form of smooth

accretion or mass loss, or shorter timescale events such as mergers, which are reflected

in the environmental interaction history (see below). The recurrent framework allows the

model to construct an integral of this variable over any time interval, corresponding to the

net mass acquired in this time. The full integral of course corresponds to the zero-redshift

halo mass, which is included as a static input parameter, being of great importance for

scaling the predicted stellar mass. The maximum absolute value of Ṁh is also included

as a static input parameter, which in relation to halo mass encompasses the magnitude of

the largest interaction event.

A quantity which is derived from the mass accretion history is the specific mass accre-

tion gradient of the halo, defined by Montero-Dorta et al. (2021) as the best-fit value of �

in the following approximation:

log10

 
Ṁh(t)

Mh(t)

!
⇡ � + � log10 (t) (2.9)

where � is a constant, and � is a parameter that distinguishes the halos with the most

rapid formation in the early universe, whose galaxies achieve peak star formation rate at
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high redshifts, from galaxies forming at later times and having continued star formation

at z = 0. Similar to halo mass, this parameter also plays a crucial role in categorising

galaxies based on their evolutionary status. Montero-Dorta et al. (2021) find that �

correlates strongly with stellar-halo mass ratio, quenching time, assembly bias and other

galaxy properties. By incorporating � into the static input layer of the neural network, it

promotes a metric of specific accretion that considers the halo’s growth rate relative to its

present mass and the duration it takes for the halo’s mass fraction to evolve.

This accretion gradient also introduces a necessary quality cut to our training data.

Even after we apply a lower stellar mass cut to all TNG data, there remain a handful

of halo mass histories which are sensitive to the resolution limit of the simulation. Their

noise-dominated behaviour has been detrimental to the network’s performance. We find

that the distribution of � values is very well fit by a Gaussian distribution. Poorly resolved

mass accretion histories typically appear much flatter than most samples due to Poisson

noise, and so have extreme values of �. We discard any samples whose � value exceeds a

5� di↵erence from the mean of the Gaussian fit to the � distribution.

The time of the formation of the halo (tstart) is a parameter that is determined by the

earliest snapshot in which the MPB of the merger tree is defined. The recurrent layer of the

network requires identical time intervals for all data samples, whereas in the dataset, halos

germinate at di↵erent times. To address this, we have interpolated the time-dependent

properties over every third snapshot in TNG. Despite some samples having no data at the

earliest times in the simulation, the recurrent layer maintains the causality between time

steps. The starting time is used as an additional static parameter to identify the likely

characteristics of galaxies whose host halo germinated at a specific time, while ensuring

that the relevant time frame of evolution is recognised for each galaxy.

For central halos, we take the sum of masses of all dark matter particles bound to

the FoF group as the halo mass in TNG. This field does not exist in the Uchuu merger

trees, yet the field M200c: the mass enclosed within a spherical region of density 200 times

the critical density of the universe, is very closely matched to this field in TNG. M200c is

slightly a↵ected by baryonic data, but this bias is very small, and of course non-existent

in Uchuu. Training and testing the model in the baryonic TNG simulations using either

of these definitions of mass makes no noticeable di↵erence to the behaviour of the neural
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network.

For satellite subhalos, we are interested in the properties of the host halo as well as the

satellite itself, particularly as the host ultimately controls the environment of the satellite

phase. The satellite network includes the aforementioned quantities pertaining to the mass

accretion history of both objects, whereas the central network includes only Ṁh, as the

formation history of the Subfind object is usually geometrically congruent to its FoF host,

and comprises most of the mass of the system unless undergoing a major merger event.

For the host halo of a satellite subhalo, in TNG, we take the sum of dark matter

particle masses of the FoF group as before, while we take the sum of dark matter particle

masses of the SubFind group for the satellite subhalo. We denote the satellite subhalo

mass as mh to discern from the halo mass Mh. The presence of two � values in the satellite

model, �halo and �sub, means that the Gaussian quality cut applies to both the satellite

and the host. These variables are all included in the satellite neural network.

In Uchuu, all halos are defined by the Rockstar algorithm and there is no group/subgroup

distinction; we simply use the upid flag to discern central from satellite objects. Main-

taining the same central/satellite relationship in TNG, we select satellite halos in Uchuu

as first order Rockstar halos and central halos as zeroth order in the merger tree structure

(see fig. 2.6).

Halo Substructure

It has been shown that properties pertaining to the distribution of mass and the rota-

tion curve of the halo have significant influence on galaxy evolution, likely indicating the

timescale of internal collapse which leads to substructure growth, and accelerates star and

black hole formation (Davies et al., 2019; Bluck et al., 2020; Lovell et al., 2021; McGibbon

& Khochfar, 2022). Lovell et al. (2021) highlight the maximum circular velocity of the

rotation curve (vmax) and the radius containing half of the total dark matter mass (R 1
2
)

as two properties which constrain galaxy properties at a given redshift, while McGib-

bon & Khochfar (2022) show that the inclusion of historical circular velocity and velocity

dispersion make significant improvements to zero-redshift predictions.

There are two key issues with using these quantities: first, we find that the influence of

baryons introduces substantial di↵erences between the values of vmax in the baryonic and
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dark TNG simulations, particularly for objects in the satellite phase and for high-redshift

central halos. Second, the data used by McGibbon & Khochfar (2022) has been specifically

restricted to halos with little di↵erence in historical circular velocity and velocity disper-

sion. Both of these variables are sensitive to the e↵ects of baryons, and desiring a model

which can make equivalent predictions in a complete dark matter simulation invalidates

the use of these variables in this work.

We compute a proxy for the virial circular velocity as a function of time in terms of

dark matter half-mass radius and halo or subhalo mass, for central and satellite galaxies

respectively:

ṽvir(t) =

s
mh(t)

R 1
2
(t)

(2.10)

which is similar to the proxy for NFW concentration used in TNG by Bose et al.

(2019):

ṽmax =
vmax

H0rmax

(2.11)

In eq. (2.10), we have ignored constant terms such as the Newtonian Gravitational

Constant. ṽvir is not noticeably a↵ected by the presence or abscence of baryons, and thus

it is used in the temporal input of the network alongside R 1
2
.

The same proxy is of course calculated for use in the Uchuu data. The radius enclosing

half of the halo mass is included as a variable in Uchuu merger trees.

Local Overdensity

As discussed in section 1.2.2, the local environment is an important measure of the star

formation, morphological and chemical properties of galaxies. Overdensity is a simple,

common metric of the cosmic environment which modulates processes such as the rate of

interactions of galaxies, the tidal distortion and ram pressure they experience, the rate at

which they accrete gas from the circumgalactic medium (CGM), and other factors.

We calculate overdensities using the Grid Search In Python (GriSPy) package (Chalela

et al., 2021): a tool for finding nearest neighbors in a regular grid of any number of dimen-
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sions, which has been designed to handle simulations with periodic boundary conditions

such as TNG and Uchuu and handle several spacetime metrics. The “bubble neighbors”

search function retrieves a group of objects located within a defined distance from a given

reference coordinate. In our case, we use this function to identify halos located within a

set of comoving Euclidean distances of the center of mass of each target halo.

The local density of an object is calculated as the total mass of all subhalos located

within a spherical volume centered on the object’s center of mass (Agarwal et al., 2018;

Bose et al., 2019). Only subhalos with centers of mass located within this volume are

included in the calculation. As a result, the local dark matter density and overdensity of

the object are dependent on the size of this volume. Specifically, the local halo density

(⇢r) is established by dividing the sum of masses of local subhalos (mlocal

i ) by the spherical

volume which engulfs them (Vr):

⇢r =

PNlocal
i m

local

i

Vr
=

3
PNlocal

i m
local

i

4⇡r3
(2.12)

The mean dark matter density of the simulation volume (⇢̄) is taken by dividing the

sum of all halos in the simulation (mi) by the simulation volume (Vbox):

⇢̄ =

PNtotal
i mi

Vbox

=

PNtotal
i mi

L
3

box

(2.13)

The ratio between these respective densities defines the local halo overdensity (�r):

�r =
⇢r

⇢̄
=

Vbox

PNlocal
i m

local

i

Vr
PNtotal

i mi

=
3L3

box

PNlocal
i m

local

i

4⇡r3
PNtotal

i mi

(2.14)

We use the notation �x to represent the overdensities calculated using a radius of

x megaparsecs. For central subhalos, we calculate overdensities at radii of 1 Mpc, 3

Mpc, and 5 Mpc, as each of these will capture environmental structures on di↵erent

scales. For satellite subhalos, we focus on smaller scale overdensities to measure the state

of the halo environment. Agarwal et al. (2018) suggest that an overdensity radius of

200kpc is useful for constraining zero-redshift baryonic properties, such as stellar mass,

metallicity and neutral and molecular hydrogen masses. However, our investigation of the

history of multiple kiloparsec-scale overdensities showed that while their physical values
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are inevitably shifted, they are geometrically congruent over time. Smaller overdensities

are more likely to have high noise due to fewer subhalos being counted, thus we use the 1

Mpc overdensity (�1) as the solitary measure of overdensity for satellites.

Interaction History

We measure the history of interactions of galaxy-hosting subhalos by calculating a mass-

weighted skewness of the radial distribution of surrounding subhalos, referred to as “skew”

throughout this thesis. As with overdensities, these skews are calculated using periodic

nearest-neighbour searches using the GriSPy package (Chalela et al., 2021).

The weighted statistical moments of a dataset xj with weights wj are given as follows:

µ1 =

PN
j=1

wjxj
PN

j=1
wj

(2.15)

µ2 =

PN
j=1

wj(xj � µ1)2
PN

j=1
wj

(2.16)

µn =

PN
j=1

wj

⇣
xj�µ1p

µ2

⌘n

PN
j=1

wj

, 8n � 3 (2.17)

By definition, the skew is the third statistical moment, and will be denoted µ3 hereafter.

For the skew of the environmental mass distribution, the radial distances of subhalos from

the centre of mass of the target subhalo assume the role of xj in eq. (2.17) with n = 3,

while the subhalo masses are the weights wj .

Several attempts have been made to establish a temporal reference for important

merger events using simple parameters like the redshift of the merger or the mass ratio

of the merging objects at the time. However, since mergers occur on di↵erent timescales,

assigning a definitive redshift is not feasible (Rodriguez-Gomez et al., 2015), and these

parameters are susceptible to errors due to the complexities of the halo referencing algo-

rithm in TNG (Poole et al., 2017). In practice, using a series of average merger ratios at

successive timesteps does not improve the accuracy of constraining galaxy evolution.

The time-dependent skewness parameterisation provides a way to quantify the merger

history of each halo, where the largest subhalos, being most massive, exert the strongest
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Figure 2.7: This figure depicts the x-y plane projection of the dark matter density distribution of
subhalos surrounding three central subhalos of mass log10 M

z=1
h /M� = 11.17, taken from the z = 1

snapshot of the TNG100-1 simulation. The target subhalos are not visualised in these images, nor
do they influence the skew calculation. Dark matter cells which are not gravitationally bound to
the target subhalo and lie within a sphere of radius 3Mpc, centered on the target subhalo’s center
of mass, are selected for this image. The terms “low” and “high” skews are used to refer to the
lower and upper quantiles of the skew dataset, respectively, while “medium” skews are close to the
median skew.

influence on the matter distribution. During infall, the distribution becomes increasingly

positively skewed, particularly if the infalling subhalo is massive in contrast with its neigh-

bouring subhalos.

For satellites, in order to assess both the central phase mergers and collisions inside the

FoF halo during the satellite phase, we calculate the skewness of the radial distribution

up to a 1Mpc radius. For centrals, we evaluate the skewness up to a 3Mpc radius, en-

compassing the merger activity on both the halo and subhalo levels. This larger radius is

necessary to incorporate the external data that a↵ects the central galaxy’s accretion activ-

ity, particularly for the largest FoF halos. However, satellite galaxies are more influenced

by the mass distribution within the FoF halo, hence a smaller scale skew measurement is

su�cient.

The typical surroundings of z = 1 subhalos with low, medium, and high skews are

given in fig. 2.7, where the target subhalo is not included in the diagram to provide a

clear view of the external mass distributions. A distribution with a medium skew has

an impartial local matter distribution, as demonstrated in the central panel. A low skew

distribution is characterised by one or several massive subhalos which move the center

of mass far from that of the target subhalo. Highly skewed distributions, on the other

hand, have the most massive subhalos concentrated near the target subhalo, increasing
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the probability of a merger or significant tidal disruption. Hence the skew is a measure

of the local concentration of dark matter at a specific time, while its temporal variation

reflects the frequency and magnitude of flybys and collisions with the subhalo.

The neural network takes into account not only µ3 but also the distance to the nearest

subhalo as inputs, which stems from the skew calculation. This distance, denoted as dµ3

and measured in megaparsecs, scales the distribution in a way that links the skew to

the actual location of the merging halo. It also serves as a straightforward metric for

measuring the proximity of the merging halo itself.

The Cosmic Web

The Discrete Persistent Structure Extractor (DisPerSE) algorithm (Sousbie, 2011) is a

geometric method that identifies the stationary points of a density field and measures the

structure of connections between critical points. We utilise the supplementary cosmic web

catalog data created from the TNG simulations using the DisPerSE algorithm (Duckworth

et al., 2019, 2020). More precisely, we extract the distances between the target halo and

the nearest critical points and dark filaments at z = 0, which are collectively referred to

as dCW:

• dnode Distance to the nearest node (maximum) of the density field

• dminima Distance to the nearest void (minimum) of the density field

• dsaddle1 Distance to the nearest saddle point with one minimised dimension

• dsaddle2 Distance to the nearest saddle point with two minimised dimensions

• dskel Distance to the midpoint of the nearest filament

When acquiring cosmic web distances from dark simulations, we simply cross-match the

samples in the baryonic TNG simulation to their dark equivalents. This is an adequate

procedure as the geometric structure of the two simulations are equivalent, and so the

cosmic web distances are preserved. For Uchuu, the DisPerSE algorithm is run on the

simulation with a lower mass cut of structure tracers (halos) of 1.5 ⇥ 1010M�, such that

the number density of tracers is similar to that of the TNG DisPerSE catalogue; a necessary

correction due to the di↵erence in resolution of these simulations.
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While the cosmic web distances can provide valuable information for modeling the

impact of large-scale environment and its anisotropic nature on central halos, they are not

as crucial for objects in the satellite phase, and we have not included cosmic web quantities

in the satellite neural network. According to Simpson et al. (2018), most of the satellite

quenching results from ram pressure during infall or the host halo’s tidal e↵ects on its

satellites. Although they suggest that the cosmic web could play a role in quenching some

satellites, they indicate that this primarily a↵ects low-mass satellites which intersect the

gas inflow from the filament to the host.

Satellite Infall

For satellite galaxies, we wish to implement measures of the time of their acquisition by a

larger halo, and the properties of the satellite subhalo in relation to its host.

It has been shown by Shi et al. (2020) that the scaled formation time of a satellite

subhalo is a critical measure of their galaxies’ star formation rate, gas fraction and other

properties. The authors classify satellites as fast-accreting if this value is small, and

slow-accreting otherwise; finding that fast-accreting satellite galaxies consequently have a

di↵erent SHMR. This scaled formation time is defined as follows:

amax ⌘ 1 + zhalf

1 + zmax

(2.18)

where the maximum redshift at which a subhalo’s mass reaches its peak is denoted as

zmax, and zhalf is the redshift at which half of this maximum mass is achieved for the first

time, as per the simulation snapshot.

With a specific focus on the infall of the satellite, we compute a second quantity which

we term the scaled infall time. This is defined similarly:

ainfall ⌘
1 + zhalf

1 + zinfall
(2.19)

where we equate zinfall, the redshift at which the subhalo becomes bound to a larger

halo, to the highest redshift at which the subhalo loses central status, which is indicated

by the GrNr flag in TNG and the upid flag in Uchuu.
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ainfall represents the subhalo’s continued growth, or demise, at the time of infall, or in

the duration between capture and growth; whereas amax is related to the growth profile

during the central phase. For approximately one in 72 TNG samples, however, the subhalo

continues to grow to half of its peak mass following capture, which is indicated by a value

of ainfall less than unity. This is not a possibility for amax as it consists of a ratio of two

consecutive times, enforcing a lower bound of one on its value.

Taking into account the velocity of a satellite with respect to its host halo is crucial

in determining the rate at which it loses mass due to ram pressure, as well as its orbital

velocity, which is indicative of its position in the halo’s gravitational potential and its

potential for sustained star formation during the satellite phase (Behroozi et al., 2019a;

Slone et al., 2021). By incorporating the satellite’s velocity at the time of infall, we

may obtain valuable insights into its trajectory and the interplay between its mass and

environment in the future. We thereby compute the scalar velocity of the satellite subhalo

relative to its host at the point of infall, by evaluating the di↵erence between their peculiar

velocity vectors at this snapshot:

vrel(zinfall) = kvrel(zinfall)k = kvsub

pec(zinfall)� vhalo

pec (zinfall)k (2.20)

Additionally, we include the ratio of the subhalo mass to its host halo’s mass at the

time of infall, denoted µ:

µ(zinfall) =
msat(zinfall)

Mparent(zinfall)
(2.21)

This establishes an important criterion for selection which pertains exclusively to the

satellite model. The assumption is that the dark matter subhalo constitutes the majority

of the mass in the galaxy-halo system. Nonetheless, in the baryonic TNG simulations,

low mass subhalos exist where gas or stars constitute the primary mass, which is a fea-

ture of tidal dwarf galaxies (Haslbauer et al., 2019). If a satellite galaxy becomes much

larger than its future central galaxy, the assumption that the dark matter subhalo is the

dominant mass of the galaxy-halo system is no longer valid. To prevent this scenario,

we use a criterion which reduces the maximum ratio of satellite to central mass by two

orders of magnitude. The criterion is that only satellite galaxies with host halos for which
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ms(zinfall)/Mh(zinfall) < 0.1 are included, where ms is the stellar mass of the infalling

galaxy and Mh is the halo mass of its host. By building our TNG-Dark sample only by

cross-matching with the baryonic TNG sample, this automatically removes TNG-Dark

objects which may have di↵erent histories from their hydrodynamical counterparts.

2.4.2 Baryonic Quantities

All baryonic quantities considered in this thesis are calculated on the subhalo scale, i.e.

for SubFind galaxies. The methods of data acquisition, calculation and preprocessing are

also identical for central and satellite galaxies, with the exception of resolution corrections

discussed in section 2.6, where both the binning of masses in the calculation of the correc-

tions, and the values of the corrections themselves, are di↵erent for central and satellite

galaxies.

Star Formation History

The star formation rate and stellar metallicity are fields which are included in the merger

trees in the TNG simulations. However, this thesis is in part motivated by the prospect

of producing spectroscopic mocks which reflect the galaxy-halo connection, and we aim to

evaluate the quality of predictions of the complete stellar population. Requiring historical

properties which are compatible with spectral template modelling, we compute a pair

of histograms of formation times for all stellar particles bound to the selected subhalo

at redshift zero. Each of these is weighted according to stellar mass and mass-weighted

metallicity, thereby creating a time distribution of these properties.

The star formation history (SFH) of each galaxy, denoted S(t), is computed as a

histogram of the formation times of all stellar particles, weighted according to their mass.

Each SFH per galaxy is initially computed with ten thousand time bins of small and

identical width �t. This simplifies the conversion to a star formation rate; dividing this by

the time interval between age bins produces a set of rates which isn’t distorted as it would

be by time di↵erencing over arbitrary bin sizes, as is the time interval between snapshots

in the simulation. We then average these star formation rates over the time intervals

between snapshots, matching the data to the time steps of TNG. Thus, an element Sn

of the SFH S(t), containing Npart stellar particles in the n
th snapshot time interval, is

defined as follows:
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Sn =

NpartX

j=1

M
part

s j (t)

�t
8t 2 (tn�1, tn) (2.22)

Stellar Metallicity History

We apply the same weighted histogram method to compute the stellar metallicity history

(ZH), with two di↵erences. First, there is no conversion to a rate by dividing by the time

interval of a single bin. Second, all metallicities are weighted according to the quantity

of stellar mass formed in the specified time interval. An element Zn of the ZH Z(t) is

defined as follows:

Zn =

PN
j=1

Mj Zj
PN

j=1
Mj

8t 2 (tn�1, tn) (2.23)

where Mj is the total stellar mass formed in each narrow time interval, and Zj is the

mass-weighted metallicity of all particles formed in said time interval.

Stellar Mass

The total mass of stars formed in the galaxy is defined as the integral of the star formation

history over the full time domain of the simulation:

M
z=0

s ⌘
Z

0

1
S(z)dz =

NsnapX

j=1

S(tj)⇥ (tj � tj�1) (2.24)

where tj are the cosmic times of sample snapshots. Unless made explicit, when referring

to stellar mass this thesis will refer to the integral of the star formation history.

We assess the quality of predictions of star formation histories by computing a numer-

ical SHMR. Despite the merger tree stellar mass being included as a z = 0 target in the

model, we use the SHMR calculated explicitly from the true and predicted SFHs to assess

the quality of the network’s predictions1. Recovering not only the shape but the scatter of

the SHMR, and the correlation of the SHMR with historical halo variables will show the

neural network’s capability of reproducing the dependence of star formation history on the

evolution of its halo and environment. In this vein, we also compute the Mass-Weighted

1
The SFH-derived mass is larger than the merger tree stellar mass due to the lack of recycling.
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Age (MWA) of each galaxy:

MWA =

PN
j=nMn t

lookback
nPN

n=1
Mn

(2.25)

where t
lookback
n is the lookback time to snapshot n, and Mn is the stellar mass formed

in snapshot n:

Mn ⌘
Z tn

tn�1

S(t) dt = Sn ⇥ (tn � tn�1) (2.26)

The MWA characterises the time at which most of the galaxy’s mass is formed, as well

as the basic geometry of the SFH. It is well established that galaxies residing in high mass

halos have assembled most of their stellar mass at early times, therefore we measure this

trend of halo mass with stellar MWA as another quality metric.

Stellar Metallicity

Similarly to stellar mass and the numerical SHMR, we evaluate the mass-weighted metal-

licity Zs of each galaxy as follows:

Zs =

PN
n=1

Mn ZnPN
n=1

Mn

(2.27)

and use these alongside the integrated stellar mass to obtain a mass-metallicity relation.

Again, the shape and scatter of the Mass-Metallicity Relation (MZR) will inform the

diversity and accuracy of the neural network’s predictions of stellar metallicity histories.

2.5 Data Preprocessing

In this section we discuss the methods of preprocessing the data discussed in section 2.4

for use in the neural network models. It is common practice in machine learning to apply

some form of normalisation: bringing all variables to a single scale such that they have

equivalent weighting, and that the model remains stable to perturbations in the training

phase. It is in fact necessary for the data in this work to be normalised due to vastly

di↵erent quantities, however a simple scaling relation is not an adequate solution. Many
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key variables such as halo mass and overdensity have very few samples with large values

and are strongly over-represented at small values, which has introduced extreme biases

when the data is simply rescaled. Temporal variables introduce an additional conundrum:

the network may recognise the development of a variable over time as important, or may

instead rely on values at specific points in time for predictions. We describe two important

preprocessing methods for our data below.

2.5.1 Quantile Transformation

The quantile transformation method in the SciKit-Learn Python library (Pedregosa et al.,

2011) is a transformation method which is used in most of our model data. Quantile

transformation is a method in which the distribution of any given variable is transformed to

a simpler distribution, such as a uniform distribution, which is more suitable for unbiased

training data.

Quantile Transformations work as follows. Any variable xi has a normalised proba-

bility distribution, which can be interpolated and integrated to establish a Cumulative

Distribution Function (CDF)  , which increases monotonically from 0 to 1.  therefore

maps the datapoint xi onto its corresponding quantile value. Thus, if the CDF and the

inverse function of a second probability distribution are analytical, it becomes easy to

apply the same to map the data xi onto the second distribution. The mapping of data xi

onto this distribution can be accomplished like so:

yi = �
�1 ( (xi)) (2.28)

where � is the CDF of the second distribution, i.e. the distribution of yi.

If our goal is to have a normal distribution for yi, then eq. (2.28) takes the following

form:

yi =
p
2 erf�1 (2 (xi)� 1) (2.29)

and can be reversed when converting the data predicted by the neural network back

to original, physical values:
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Figure 2.8: The translation of the halo masses from TNG100-1 dataset (shown on the vertical
axis) into both a uniform distribution (left) and Gaussian distribution (right). The histograms
along each axis, including the halo mass distribution on the vertical axis, are also presented. The
graph illustrates that a considerable range of the data, particularly the halo masses above 1012.5M�,
corresponds to a very narrow range in the uniform distribution, which leads to high sensitivity
towards slight variations in the transformed data. Consequently, the uniform distribution is not
ideal for making predictions from this data. Therefore, we opted to transform the data to a
Gaussian distribution.

xi =  
�1

✓
1 + erf (yi/

p
2)

2

◆
(2.30)

We selected a Gaussian Quantile Transformation (GQT) for our data transformation

because its domain is limited between 5 and -5, which makes it suitably normalised for

the neural network. Although SciKit-Learn provides a transformation to a uniform distri-

bution, the Gaussian transformation is more appropriate for our data. This is illustrated

in fig. 2.8, which shows the quantile transformation of halo masses in TNG100-1 to uni-

form and Gaussian distributions. The distribution of data points in the uniform case is

heavily skewed towards the distribution’s edges. This narrow margin encompasses a wide

range of values, making predictions based on a uniform distribution prone to a significant

margin of error when estimating the true data. This is not the case with the Gaussian

transformation, and this is therefore our choice of distribution of the normalised data.

2.5.2 Vector & Scalar Normalisation

The quantile transformation can take on two distinct forms in the case of time-dependent

variables. The first form involves preserving the shape of the variable’s history, as the

behaviour of a dark matter quantity over time may impact the galaxy’s present state. The

second form acknowledges that there may be physical or systematic di↵erences between
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Figure 2.9: This graphic displays the distribution of monotonically increasing data after apply-
ing scalar (left) and vector (right) GQT normalisation. The data points at each time step are
di↵erentiated by various colours. Scalar normalisation transforms the data independently of other
time steps, resulting in each time step sharing the same normal distribution. In contrast, vector
normalisation transforms the data according to the complete range of the quantity’s value over
time, thus making each time step’s distribution relative to another. When the full set of time step
histograms is combined, it results in the Gaussian distribution of the complete dataset, irrespective
of the method of normalisation used.

time steps, making the absolute value at a given point in time more significant than the

gradient of the variable with time. To incorporate time-dependent properties di↵erently,

we introduce two normalisation techniques: vector and scalar normalisation, which are

visualised in fig. 2.9.

The vector normalisation approach involves fitting the GQT to the time-dependent

variable at all time steps simultaneously. This results in a transformed variable which is

independent of the time at which it is defined, while still preserving the original variable’s

value. The transformed variable is obtained by applying the GQT to the 2D dataset2 as

follows:

yi(tj) =
p
2 erf�1 (2 (xi(tj))� 1) (2.31)

where  represents the CDF of the 1D set of values of the temporal variable xi.

Variables which are transformed without considering time are referred to as scalar

normalised. In this case, each time step has a distinct CDF for the variable, resulting in

a set of unique transformed variables that are separated in time. The GQT is applied as

follows:

2
The dimensions of the variable dataset are data samples and timesteps.
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y
k
i =

p
2 erf�1

⇣
2 k(x

k
i )� 1

⌘
(2.32)

The forms of GQT normalisation for every variable in the model are listed in the GQT

column in table 2.2. Most time-dependent variables used in the neural network are vector

normalised. In the case of halo quantities such as mass accretion and half-mass radius, the

development of these quantities over specific intervals of time, as well as the shape of the

quantity’s history at early and late times, are all contributing factors to the evolution of

their galaxies, which only vector normalisation preserves. The SFH and ZH of a galaxy are

themselves important to consider as temporally evolving quantities, and are also vector

normalised. The skew parameter is of particular importance as a temporal variable as

it traces interactions with neighbouring subhalos, and therefore vector normalisation is

strictly necessary to capture these interaction trajectories.

Overdensity histories are the sole temporal variable which are scalar normalised. Due

to the expected substantial variation in the structure of the local environment, di↵erences

in overdensities between successive times may not have any significance and can be sig-

nificantly large, rendering a common quantile transformation inadequate in distinguishing

subsets of large and small values. Consequently, vector normalisation of the overdensity

values can have a negative impact on prediction quality. Instead, the focus is placed on the

instantaneous environment over its vectorised history, which is not a↵ected by temporal

changes in cosmic structure, and represents the local density field unique to each halo.

2.6 Resolution Corrections

As established in section 2.3.1, the resolution di↵erences between the TNG100-1 and

TNG300-1 simulations result in di↵erent calculations of star formation rates. Pillepich

et al. (2017a,b) illustrate that the stochastic subgrid model of star formation in TNG

ultimately depends upon the local density of star-forming gas, which is compromised at

lower resolution. Thus, the amplitudes of the SHMR and MZR are weaker in the lower

resolution simulation. In this section, we show how adjustments are made to the TNG300-1

data such that it can be used alongside the TNG100-1 data in the neural network, without

any bias between the two simulation datasets.
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Figure 2.10: This figure displays depicts how the ⇣ corrections vary with halo mass at a redshift of
zero, at all halo masses where we sample TNG300-1. For masses exceeding the range displayed, i.e.
above 1014M�, the zeta function values are calculated as the average over the [1013M�, 1014M�]
interval.

2.6.1 Scaling Mass And Metallicity At Fixed Redshift

An appendix in Pillepich et al. (2017a) shows that a correction can be made to the SHMR

of TNG300-1 by means of a multiplicative function of halo mass. As the resolution of

TNG300-1 is equivalent to the resolution of TNG100-2, the SHMR of TNG300-1 can be

adjusted to match that of TNG100-1 by taking the ratio of the mean SHMRs of the two

TNG100 simulations. We label this correction ⇣, and use it to adjust the halo mass-

metallicity relation (HMZR) of TNG300-1 as well as the SHMR.

At a given redshift, the ⇣ fractions are defined:

63



Chapter 2. Data, Design & Preprocessing

⇣S(Mh | z) =

8
><

>:

M̄⇤
100-1(Mh)/M̄⇤

100-2(Mh) if Mh < 1014M�

E
⇥
M̄⇤

100-1(Mh)/M̄⇤
100-2(Mh)

⇤
8Mh
M�

2 [1013, 1014] if Mh � 1014M�

(2.33)

⇣Z(Mh | z) =

8
><

>:

Z̄⇤
100-1(Mh)/Z̄⇤

100-2(Mh) if Mh < 1014M�

E
⇥
Z̄⇤

100-1(Mh)/Z̄⇤
100-2(Mh)

⇤
8Mh
M�

2 [1013, 1014] if Mh � 1014M�

(2.34)

where M̄⇤
100-1 is the mean stellar mass as a function of halo mass for TNG100-1, which

we evaluate by binning the SHMR and interpolating through the mean values of each bin.

The same method applies to stellar metallicity and to TNG100-2.

As in Pillepich et al. (2017a), these functions are assigned their average value over the

halo mass range 1013M�  Mh  1014M� where Mh � 1014M�, due to the low sample

size at such a high mass. The shapes of ⇣S and ⇣Z at other halo masses at z = 0 are

shown in fig. 2.10. We show in fig. 2.11 that applying this correction to the merger tree

masses and metallicities results in a suitable match between the SHMR and HMZR of the

original TNG100 and corrected TNG300 data.

2.6.2 Scaling SFH And ZH At Fixed Halo Mass

The ⇣ corrections are e↵ective in modifying the SHMR and HMZR for a single snapshot.

However, since the computation of the galaxy formation histories of the network relies on

stellar age spectra, which are not determined using single-snapshot data, ⇣ ceases to be

a suitable correction for this purpose. Hence we implement a similar correction for the

average histories of objects in bins of zero-redshift halo mass. We compute a time-varying

variable which we label  , and define as follows:

 S(z | M z=0

h ) = S̃100-1(z) / S̃100-2(z) (2.35)

 Z(z | M z=0

h ) = Z̃100-1(z) / Z̃100-2(z) (2.36)
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Figure 2.11: The relationship between the SHMR and the HMZR at a redshift of zero is presented
in this figure. The TNG100-1 data (green) is compared with the original (red) and adjusted (purple)
TNG300-1 distributions, which have been adjusted using the zeta functions. The error bars with
matching colours correspond to the median and the range between the 15th and 85th percentiles
of either the stellar mass or metallicity within a particular halo mass bin for each dataset.
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Figure 2.12: The figure displays the  variables with respect to cosmic time, with four represen-
tative halo mass bins shown as examples. The upper panel shows the resolution correction for the
star formation history,  S , while the lower panel shows the correction for the metallicity history,
 Z .

where by applying a cubic spline interpolation between  values per halo mass bin, we

can extrapolate values of  outside of the mass range of TNG100-1, where necessary.

The star formation and metallicity properties of  as functions of both time and

halo mass are illustrated in fig. 2.12. Like the ⇣ corrections, this results in a reasonable

agreement between the two simulations after the TNG300 data is modified, which we show

in fig. 2.13. Thus, we use the  -corrected star formation and metallicity histories when

training our neural networks.
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Figure 2.13: The figure illustrates the average star formation and metallicity histories of central
galaxies with halo masses ranging from 1012 to 1012.2 solar masses, where the size of the shaded
regions represents the standard deviation of these data as a function of time. The TNG100-1 data
(green) is aligned with the modified TNG300-1 curves (purple), which have been adjusted from the
original TNG300 data (red) using the  parameters. To eliminate erroneous characteristics caused
by a small sample size at early times, time steps that contain fewer than 100 nonzero values across
all data are excluded from the figure. This only applies to cosmic times earlier than 1Gyr.
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2.7 Summary

In this chapter, an artificial neural network incorporating both time-dependent and time-

independent variables associated with the histories of dark matter halos and their envi-

ronment was developed using data from the TNG simulations. Its purpose is to establish

connections between these variables and the star formation and metallicity histories of the

galaxies nested in halos, enabling predictions of said galaxy properties. In addition to the

calculation of novel variables from the simulation data, this has required a normalisation

method which accounts for the vast di↵erences in the distributions of variables, and a res-

olution correction to ensure the congruence of galaxy-halo statistics between the TNG100

and TNG300 simulations. These procedures can be summarised as follows:

1. We extract the mass and half-mass radius from the main progenitor branch of sim-

ulation merger trees, calculate environmental histories using a periodic-boundary

neighbour search algorithm at each snapshot, and calculate star formation and metal-

licity histories from the stellar age spectrum of all star particles bound to the subhalo.

Additional properties such as specific mass accretion gradient and a proxy for virial

velocity have been calculated from these data. These quantities have been compared

with those in TNG-Dark to ensure that none are substantially biased by the lack of

baryons in dark simulations, making the model unsuitable for application to dark

matter simulations. Uchuu is chosen as a gigaparsec-scale N-body simulation on

which to test the model, due to the similarity of its halo properties and identical

cosmological parameters to TNG.

2. The neural network is designed with a semi-recurrent architecture, containing both

a recurrent input for temporal quantities and a dense input for static variables. The

choice of ELU activation of the network is optimal for avoiding gradient saturation

while simultaneously avoiding dying neurons and gradient discontinuity. We also

require an exponentially decreasing learning rate to achieve swift and accurate model

convergence, which allows the training phase to be terminated when the learning rate

becomes negligible in updating the model parameters.

3. Due to the diversity and sparsity of most input variables, we normalise these quan-

tities by applying a quantile transformation to a Gaussian distribution, which is a
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suitable choice of distribution as it does not diverge under small di↵erences in the

original data. For temporal quantities, we apply two methods of this transformation:

scalar and vector normalisation, allowing temporal quantities to be implemented as

a set of unique variables or a single entity which can be integrated or di↵erentiated

over time, respectively. Overdensity histories are scalar normalised due to signifi-

cant changes in their value over time, whereas other temporal quantities are vector

normalised to implement their temporal geometry into the model.

4. Due to the di↵erences in resolution between the simultaneously used TNG100-1 and

TNG300-1 simulations, the coarser TNG300-1 has lower calculated star formation

rates, and therefore, summary statistics such as the SHMR are o↵set. To obtain

a constant relation in our data, we apply a multiplicative correction to the stellar

masses, metallicities and galaxy formation histories in TNG300-1, inspired by a

method to correct the SHMR introduced in Pillepich et al. (2017a). This method has

fruitfully produced consistent formation histories and galaxy-halo relations between

the original TNG100-1 data and modified TNG300-1 data.

In the following chapter, we evaluate the accuracy and physical properties of the galaxy

formation histories produced by the neural network, comparing the relations between syn-

thetic galaxy properties and halo properties with those in the TNG simulations. Addition-

ally, we present a method of modification to these predictions to correct for a discrepancy

between the original and predicted datasets, and investigate the input parameters with

the strongest influence on galaxy-halo statistics. This is followed by the comparison of

synthetic observables in chapter 4 and the application of the model to N-body simulations

in chapter 5.
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This chapter is predominantly based on the results of Chittenden & To-

jeiro (2022), with the exception of section 3.3, which describes the meth-

ods and physical results of Behera, Chittenden, & Tojeiro (in prep.).

3
Neural Network Predictions

3.1 Introduction

In the previous chapter, the design of a semi-recurrent neural network, constructed to

simultaneously implement time-dependent and time-independent variables relating to the

histories of dark matter halos and their environment in the TNG simulations. The network

is designed to relate these quantities with the star formation and metallicity histories of

the galaxies bound to these halos, such that these galaxy properties can be predicted

accordingly. Preparing this data has involved the acquisition of SubLink merger tree

data, and required the calculation of secondary quantities (e.g. specific mass accretion

gradient); as well as the scaling of galaxy quantities according to simulation resolution,

and two distinct methods of quantile transformation of temporal variables.

In this chapter, we present the galaxy formation histories predicted by the neural

network when applied to the TNG simulation data, in contrast with the hydrodynamical

data with which the network was originally trained. Utilising the original and predicted
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datasets, we compare properties of the directly predicted star formation and metallicity

histories, and relate these to the derived summary statistics, such as the stellar-halo mass

relation, which indicate the aspects of the galaxy-halo connection which are recognised by

the network.

We show that the model is capable of predicting the stellar mass, metallicity and

SFH and ZH geometry of galaxies in di↵erent evolutionary regimes to discernible accu-

racy, recovering comparable correlations between galaxy and halo properties as seen in

the simulation data; and show that the semi-recurrent design of the model prevails over a

conventional neural network in making these predictions. Despite this, we present a loss

of information regarding SFH and ZH features acting on short timescales. We present a

method of modifying the neural network predictions based on similarly predicted Fourier

transforms, with which some degree of accuracy of the derived summary statistics is re-

covered.

Finally, we assess the relationships between input and output variables learned by the

neural network, by performing a test similar to a permutation importance test for feature

importance. By replacing groups of input variables with random data, we recalculate

key relations between galaxy and halo properties with the signals of mass accretion his-

tory, cosmic environment, etc. removed, and compare these with the fiducial predictions.

Similarly, we randomise individual members of these groups to demonstrate the utility of

these variables to the network. We find that certain variables are important to predicting

the scatter of these galaxy-halo relations, yet the relations themselves are impervious to

randomisation, implying that the relations can be inferred from multiple groups.

3.2 Predicted Galaxy Properties

3.2.1 Evolutionary History

A typical prediction of the neural network is given in fig. 3.1, simultaneously showing the

original and predicted star formation and metallicity histories of a single satellite galaxy.

The predicted results show a similar amplitude and shape in both the SFH and ZH of this

galaxy, and for most central and satellite galaxies in the TNG data. However, while the

smooth trends of star formation and chemical enrichment with time are well-matched, the

network fails to predict the variability of these evolutionary histories on short timescales.
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Figure 3.1: This figure illustrates the evolutionary history of a satellite galaxy in IllustrisTNG
with intermediate mass. It displays the original star formation history in blue, and its correspond-
ing prediction by the neural network in cyan; as well as the true stellar metallicity history (purple)
and the predicted metallicity history (magenta), indicating the time-dependent metallicity of stars
formed according to the corresponding star formation rate. The sample’s subhalo mass and pre-
dicted stellar mass and metallicity values are presented in the header of the figure. While the
sample shows a decent match to the shapes of the star formation and metallicity histories, it fails
to replicate the fluctuations on short time scales.

This is illustrated in fig. 3.2, where we stack the amplitudes of the Fourier transforms,

equivalent to the square root of their power spectra, of SFHs and ZHs in a narrow mass

bin, which shows information loss at high frequencies in the predicted data.1

The implications of this result are that the network can be used to accurately derive

results which depend on the full star formation and metallicity histories, such as stellar

mass, luminosity and mass-weighted metallicity. On the contrary, it is less suited to

predicting results which depend on the high frequency variability of the predictions, such

as the luminosity of emission lines.

3.2.2 Galaxy-Halo Relationships At z = 0

Stellar-Halo Mass Relation

Numerically integrating the original and predicted star formation histories results in sim-

ilar stellar-halo mass relations, shown in fig. 3.3. This is a result which shows the success

1
The apparent noise of these stacked Fourier amplitudes at high frequencies owes to the fluctuative be-

haviour of individual Fourier transforms (for examples see fig. 3.11), which does not strictly correlate

with mass, and is more apparent in stacks of relatively low sample size. For higher mass galaxies, there

is less high frequency information in the predicted data which leads to larger uncertainties in the Fourier

transform.
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Figure 3.2: This figure shows the mean and standard deviation in the Fourier amplitudes of the
star formation histories (left) and metallicity histories (right) of central galaxies in the halo mass
range 1012.4 � 1012.6M�, containing 638 samples. The Fourier transforms of the predicted data
(green) show a clear decline in amplitude with respect to the original data (purple) for frequencies
around 0.15Gyr�1 and higher. This indicates the lack of high frequency data in the neural network
predictions. These Fourier transforms are plotted up to the Nyquist frequency of approximately
1.1954Gyr�1.

Figure 3.3: The numerical stellar-halo mass relation assessed with the fiducial and predicted star
formation rates is shown in this figure for central galaxies (left) and satellite galaxies (right). For
the former, this is depicted as a function of halo mass, and for the latter, as a function of subhalo
mass. The original TNG dataset’s datapoints are presented in red and predictions of the networks
are depicted in blue. Red and blue errorbars display the median and 15th and 85th percentiles
of stellar mass in halo mass bins, while blue and red datapoints represent individual galaxies.
The similarities between the shape and scatter of the two SHMRs suggest that the star formation
histories are predicted similarly overall.
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Figure 3.4: Stellar-halo mass relations for central galaxies (top panels) and satellites (bottom
panels) are presented in 2D histograms which are coloured in accordance with the mean redshift
per bin at which the central or satellite halo’s final mass is produced. Plotting according to the
individual star masses allows each SHMR to be seen independently for both the original TNG
data and the predictions made by the networks. The network’s predictions for this dependence of
halo formation redshift on the SHMR are consistent with the original data for both central and
satellite galaxies. The reader should be aware that the low occupancy of bins on the borders of the
SHMRs makes them susceptible to slight variations in scatter, which deceptively gives the SHMRs
an apparent distortion.

of the neural networks in recovering the total mass of stars formed in a galaxy’s history.

The accuracy is reflected in a median absolute residual between original and predicted

stellar masses of 0.079 dex for central galaxies and 0.094 dex for satellite galaxies.

We show in fig. 3.4 that these stellar masses are predicted with respect to di↵erent halo

mass accretion histories. These show the central and satellite SHMRs as 2D histograms,

where samples are weighted according to the redshift at which half of their final mass was

formed for the first time. This is a key property of the SHMR which signifies the tendency
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Figure 3.5: Similar figure to fig. 3.4, instead showing the dependence of the mass-weighted stellar
ages of galaxies of the SHMR. These results show that this relationship, in which the galaxy age
correlates positively with both mass and scatter, is captured by the neural networks and shows in
the models’ predictions.

for larger galaxies to manifest in rapidly growing halos (Tojeiro et al., 2017; Artale et al.,

2018; Zehavi et al., 2019). It is also worth noting that the half-mass formation is not

included as an input parameter in either network, signifying that this result has been

derived independently from the mass accretion histories.

Star Formation Regimes

Similar to the halo mass formation redshift, we show in fig. 3.5 that the mass-weighted

ages, defined in eq. (2.25), are also distributed similarly across the two SHMRs for both

original and predicted datasets. The MWA is a measure of the geometry of the star

formation history and of the time at which most of the stellar mass is acquired, and is

indicative of the di↵erent growth regimes of galaxies of a given mass, e.g. merger-driven
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Figure 3.6: The graph displays the relationship between the mass-weighted age of galaxies and
their mass, for both central galaxies (diamond points, solid lines) and satellite galaxies (hexagonal
points, dashed lines). Each plotted point and error bar represents the median and interquartile
range of age values for a specific range of masses. The ages estimated from the predicted history
of stellar mass assembly (blue) match the overall trend of ages with respect to mass, as computed
from the original data (red). However, some error bars have been shifted or reduced, indicating
that some of the samples have significant di↵erences in their mass assembly geometry.

growth vs. smooth accretion.

This figure shows the tendency for galaxy age to increase with halo and stellar mass

and the scatter of the SHMR, again being predicted by the neural networks. In short,

the results shown in figs. 3.4 and 3.5 indicate that the distinct evolutionary regimes of

galaxies modulated by the historical halos or subhalos which host them are encoded in

the machine learning models.

When we compare ranges of calculated mass-weighted ages in bins of stellar mass,

shown in fig. 3.6, we a�rm this correlation between mass and age, but we see that the

network’s predictions result in a mass-weighted age which is biased towards higher values,

particularly at high mass. For high mass galaxies, star formation histories are typically

largest at early times, and as these galaxies are quenched their star formation rate becomes

insignificant. In the original data there are some small, secondary spikes in this declining
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Figure 3.7: In a similar format to fig. 3.3, this figure shows the mass-metallicity relation for central
galaxies (left) and satellite galaxies (right), where the original and predicted galaxies are shown in
red and purple, respectively, and the errorbars indicate the median and 15th and 85th percentiles
of stellar metallicity in a given bin of stellar mass. These results show that the neural networks
predict a similar MZR shape in both datasets, but the scatter in metallicity is underpredicted,
particularly at high mass.

SFH at later times, which as established in section 3.2.1 are seldom predicted by the neural

network. Failing to predict these secondary features can serve to over-predict the age of

quenched galaxies.

Mass-Metallicity Relation

When computing the mass-metallicity relations of the data, shown in fig. 3.7, we see that

for both central and satellite galaxies, the correlation between stellar mass and metallicity

is established in the predictions of the neural network. However, the scatter in metallicity is

noticeably smaller in the predicted data, owing to the lack of variability on short timescales

in both the metallicity history itself and the star formation history which sources these

metals.

3.2.3 Comparing Network Designs

In section 2.2 we motivate the design of a semi-recurrent neural network for incorporating

static and temporal input variables simultaneously, and including multiple variables with

multiple timesteps in a framework which explicitly models causal e↵ects, without adding

many thousands of degrees of freedom to the model.

To demonstrate the performance of a semi-recurrent design over a conventional neural

network, we train two simplified networks to predict star formation histories of central
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Figure 3.8: Comparison of the predictions for the mean star formation history of central galaxies
across six halo mass bins. The predictions were generated by two neural network models: a basic
dense neural network shown in green, and a semi-recurrent architecture shown in purple. The
median and interquartile ranges of the predicted mean SFH are plotted for both networks, based
on ten independent runs of each network. The true mean star formation history in each bin is shown
in blue, while the averaged mass accretion history is shown in red. The di↵erence in interquartile
ranges between the predictions of the two networks demonstrates a significant superiority of the
semi-recurrent model to converge accurately.

galaxies, using only the following input variables: M
z=0

h , Ṁh, tstart and | Ṁh |. One is a

semi-recurrent network which includes the mass accretion historry in its temporal input

layer, and others in its static input layer. The other is a simple neural network which

includes all variables in its solitary input layer.

In fig. 3.8 we show the consistency of ten independent predictions of the two networks

in six bins of halo mass. The networks both show similar correlations between the halo and

galaxy formation histories, in terms of both amplitude and shape, representing total mass

and formation times respectively. However, the variance in predictions of the simple neural

network is clearly larger than that of the semi-recurrent network; in fact this is usually an

order of magnitude or two larger. The semi-recurrent network therefore has much faster

convergence speed as a result of its enforced causal connections, and this justifies our use

of a semi-recurrent design, in addition to the ability to add multiple temporal variables

without significantly increasing the multiplicity of the parameter space associated with

the network.
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3.2.4 Quality Of Predictions

Outcome

The direct predictions of galaxy formation history have proven to be fruitful in the syn-

thesis of SFHs and ZHs of both central and satellite galaxies, in a manner which self-

consistently replicates principal relationships between galaxies and halos which encap-

sulate the di↵erent regimes of galaxy-halo coevolution. For instance, the scatter of the

SHMR is correlated with the halo formation time, indicating the importance of rapid dark

matter accretion in growing galaxies, in both the original and predicted datasets. The

network can therefore be used to reproduce this relationship in N-body applications, and

may be used to make additional insights into the galaxy-halo connection in future.

Despite this outcome, the network scarcely predicts the details of these star formation

and metallicity histories which take place on smaller timescales, which have adverse ef-

fects on the calculation of metallicity scatter and stellar age, and on derived observable

quantities (see chapter 4). The model can therefore be used to predict the evolutionary

regimes of galaxy formation across cosmic time, but not the properties of quick events

such as starbursts or rapid quenching.

Despite similar results of the prediction quality of star formation and metallicity his-

tories, the calculation of mass-weighted metallicity su↵ers when compared with integrated

stellar mass. The chemical content of a massive galaxy can be enhanced by a combination

of events occurring on short timescales, from merger events to rapid star formation or

gas accretion. The overall lack of metallicity scatter may be attributed to the abscence

of these high frequency features in the predicted data, to which high mass galaxies with

large metallicity scatter may be particularly sensitive.

This illustrates that the shortcomings of the predictions of the neural network, namely

the lack of variability in a single star formation or metallicity history, have negative impacts

on the true evolution of the star formation over time, and on the final metallicity of the

galaxy. These errors are reflected in our metrics of the quality of prediction, such as

mass-weighted age; and will contribute to systematic errors in physical quantities which

are derived from these results, such as the galaxy’s stellar luminosity. Mitigating these

results is therefore desirable for more accurate galaxy catalogues and mocks.
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Centrals vs. Satellites

We find that the quality of the predictions of the satellite galaxy model are marginally

better than those of the central galaxy model in the following respect. After examining the

star formation histories of quenched galaxies, it appears that the decline in star formation

and the rate of that decline match well for satellite galaxies, and not necessarily for central

galaxies.

The satellite network specifically includes variables pertaining to their infall, which

of course have notable e↵ects on the star formation history, such as satellite quenching.

This implies that the star formation history of satellites is naturally more constrained

than central galaxies, and thus easier to predict. Though the infall parameters are them-

selves derived from the mass accretion histories of the satellite subhalo and host halo, the

relationship between these quantities is potentially valuable to the network.

Specifically, the relationship between amax and ainfall can indicate the time in the

subhalo’s growth history at which it is acquired by a larger halo. Where amax is larger, for

instance, the subhalo is continuing to accrete mass and form stars as it becomes bound;

unlike quenched satellites which acquire most of their mass in the central phase. The mass

ratio and velocity upon infall can provide a measure of the subsequent rate of mass loss,

yet this is also dependent on the mode of accretion at the time, therefore their relationship

with amax and ainfall are potentially important to the network.

On the contrary, the deduction made by scaled time quantities may be inferred from the

growth histories of the subhalo and host halo, suggesting that they are not so important to

the model. Shi et al. (2020) concluded that star formation rates behave di↵erently between

rapidly and slowly growing subhalos, which can be derived from their mass accretion

histories. The merger histories that correlate with their scaled formation time can be

inferred from overdensity and skew histories. Thus, while the relationship between infall

properties may be a useful constraint on galaxy evolution for the satellite model, it is not

strictly a unique constraint.

Improving High Frequency Predictions

It is possible that the inclusion of additional variables may have improved the quality of

these predictions. It is widely accepted that the properties of the gas in the progenitor
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subhalos are crucial to subsequent star formation (Hani et al., 2020; Trevisan et al., 2021;

Sorini et al., 2022). While these gas properties depend on the local environment, these

studies show that the environment is not a distinguishing factor and that numerous other

processes such as stellar feedback can influence the subhalos’ a�nity for enhanced star

formation.

Alternatively, a direct measure of the merger history, such as the dimensionless merger

and smooth accretion proxies used by Dhoke & Paranjape (2021) may have predicted the

enhancement in star formation owing to major merger events. As written in section 2.4.1,

static variables relating to merger activity have been di�cult to implement and fruitless

in improving predictions, motivating the use of skew as a temporal interaction parameter.

These dimensionless accretion parameters are direct measures of the mass acquired

by major and minor collisions, and may be useful in predicting the star formation driven

by these forms of accretion separately. However, these do not capture close interactions

which trigger tidal distortions as skew does, and thus is not a complete replacement of the

interaction history. These accretion rates are also implicitly dependent on dynamical time

intervals between snapshots and on the matter power spectrum, therefore being potentially

unsuitable for use in simulations of di↵erent cosmological parameters and spatial and

temporal resolution.

In section 3.3 we outline how the successful prediction of the power spectra of galaxy

formation histories has advocated stochastic amendments to the original predictions of

the neural network, which replicate the noisy behaviour of the original star formation and

metallicity histories.

3.3 Stochastic Corrections

3.3.1 Motivation

The fiducial predictions of the neural network have shown that predicting the features

of star formation histories on short timescales is di�cult. The processes which drive the

fluctuations are numerous and dependent on e↵ects ranging from cosmic ray and pho-

toionisation feedback to mergers and stellar winds on timescales below the scales captured

by the neural networks (Kannan et al., 2022; Robaina et al., 2010; Iyer et al., 2020). An
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accurate model of this high frequency star formation variability over the galaxy’s complete

evolutionary history would be beneficial in applications to N-body simulations as it can

be used to compute the e↵ects of halos and environment on these events, and would result

in more accurate observational features which are used to constrain these e↵ects.

The same dark matter properties and an identical network design were used to pre-

dict the absolute amplitude of the Fourier transforms of star formation and metallicity

histories, or the square root of their power spectra, for central and satellite galaxies. The

stacked Fourier transforms shown in fig. 3.9 exhibit similar degrees of precision as the

star formation and metallicity histories themselves are found in the structure of the power

spectrum and correlation of its amplitude with halo mass. Therefore, a model that pre-

dicts these Fourier transforms and produces a stochastic signal could be created to reduce

the errors in our SFH and ZH predictions, including in N-body applications. We use

this method to recompute summary statistics such as the SHMR (see section 3.3.3) and

observational statistics (see chapter 4).

3.3.2 Methodology

Consider an additive relationship between time-dependent signals denoted h(t), represent-

ing a star formation or metallicity history:

h(t)true = h(t)pred + h(t)stoc (3.1)

where h(t)true represents the ideal temporal signal, h(t)pred is the signal predicted by

the neural network, and h(t)stoc is the desired correction term.

We consider the Fourier transforms of the temporal signals from the TNG data and

the neural network, respectively:

H(f)true ⌘ F [h(t)true]

H(f)pred ⌘ F [h(t)pred]
(3.2)

where f ⌘ t
�1, and we exploit the fact that the transformed signals are additive

provided that the original signals are additive, as in eq. (3.1):
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Figure 3.9: The amplitudes of the Fourier transforms of the star formation histories (top panels)
and metallicity histories (bottom panels) for central galaxies (left column) and satellite galaxies
(right column), in three narrow bins of stellar mass. This shows the Fourier amplitudes for the
original TNG data (red) against the Fourier amplitudes predicted by the neural network when
trained to fit said amplitudes (blue). The quality of the predicted Fourier transforms constitute a
superior fit to the original data than the star formation or metallicity histories predicted directly by
the network (see fig. 3.2), and therefore the network can be used to produce a stochastic amendment
to its own predictions.
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H(f)true = H(f)pred +H(f)stoc (3.3)

where H(f)true is the Fourier transform predicted by the neural network, H(f)pred

is the Fourier transform of the predicted temporal quantity, and H(f)stoc is the Fourier

transform of the desired stochastic signal.

Fourier tranforms are complex functions of real-valued amplitude and phase, and can

represented as follows:

H(f)true = Atruee
i✓true = Atrue cos ✓true + iAtrue sin ✓true

H(f)pred = Aprede
i✓pred = Apred cos ✓pred + iApred sin ✓pred

H(f)stoc = Astoce
i✓stoc = Astoc cos ✓stoc + iAstoc sin ✓stoc

(3.4)

By substituting the expanded terms of eq. (3.4) into eq. (3.3), we obtain expressions

for the real and imaginary components of the true Fourier transform:

< [H(f)true] = Atrue cos ✓true = Apred cos ✓pred +Astoc cos ✓stoc

= [H(f)true] = Atrue sin ✓true = Apred sin ✓pred +Astoc sin ✓stoc

(3.5)

which can be rearranged to solve for the variables Astoc and ✓stoc:

Astoc =
q

H
2

real
+H

2

img

✓stoc = tan�1

✓
Himg

Hreal

◆ (3.6)

where,

Hreal = Atrue cos ✓true � Apred cos ✓pred

Himg = Atrue sin ✓true � Apred sin ✓pred

(3.7)

Thus, by computing the amplitude and phase of the stochastic component of the

Fourier transform, as in eq. (3.6), we can obtain the temporal stochastic signal simply by

applying an inverse Fourier transform:

85



Chapter 3. Neural Network Predictions

h(t)stoc = F�1 [H(f)stoc] = F�1

h
Astoce

i✓stoc
i

(3.8)

We thus compute the desired stochastic signal by using the amplitude and phase of

the transformed temporal predictions as Apred and ✓pred, and the Fourier amplitudes pre-

dicted by the neural network as Atrue. The network cannot be used to predict the phase

information of the transforms, so we apply a small, semi-random shift to the true phases:

✓true = ✓pred + � (3.9)

where � is sampled from a zero-centered Gaussian distribution of width 0.1 radians,

restricted to a range of
⇥
�⇡

4
,
⇡
4

⇤
radians.

The star formation and metallicity histories are thus applied to this method to return

a stochastic SFH or ZH component. These are then added to the predicted star formation

and metallicity histories to produce a modified result. We then use these modified star

formation and metallicity histories to reproduce key galaxy-halo relations to assess the

validity of the stochastic amendment.

As we intend to retain the smooth shapes of the star formation and metallicity histories,

which have been predicted accurately, we apply this correction only to high frequencies,

where variability is lost. Specifically, the geometry is preserved up to a Fourier frequency

of approximately 0.18Gyr�1, corresponding to the approximate scale of information loss

seen in fig. 3.2.

3.3.3 Results

In fig. 3.10, we show the star formation history and metallicity history of a single satel-

lite galaxy, including the original TNG sample, the network’s fiducial prediction and the

modified result. This shows that the stochastic correction can be used to reproduce the

fluctuative behaviour seen in the original star formation and metallicity histories. How-

ever, the SFH and ZH is not significantly reshaped by the stochastic correction. It does

not contain a number of high amplitude features seen in the original sample, which will

influence the predicted mass, optical spectrum and other key features of the galaxy.

As the neural network predicts the Fourier amplitudes in similar detail to the SFHs and
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Figure 3.10: Star formation histories (solid lines) and metallicity histories (dashed lines) of
an exemplary intermediate mass satellite galaxy, showing the original TNG sample (red), the
prediction of the neural network (blue) and the stochastically modified result (green). This shows a
typical result where the fluctuative behaviour of the original galaxy is reproduced by the stochastic
amendment, yet the overall shape of the star formation and metallicity histories is not significantly
changed to match the target SFH and ZH.

ZHs themselves, it is possible that missing features of the Fourier transforms correspond

to critical information relating to the shape of predictions in the time domain. While the

Fourier amplitudes have well-defined shapes, some samples have additional fluctuations in

the Fourier spectra which are not necessarily captured by the model, which can be seen by

example in fig. 3.11. Infrequent events such as massive starbursts may be entailed by such

fluctuations and consequently may be absent from modified results. For this example,

the power spectrum of the modified SFH is not fully recovered at the highest frequencies,

which would explain the lack of short peaks in the SFH itself.

Comparing the SHMRs of the modified data with predictions and true data in fig. 3.12,

we see that the stochastic amendment has made some modest improvements. The median

points and errorbars in fig. 3.12 show that the modified SHMR is closer in amplitude

and scatter to the original data than the network predictions, for most of the central and

satellite data. The exceptions are high mass objects in both datasets, where sample size

is low; and low mass satellites, where modified masses are overpredicted. Figure 3.9 shows

that predicted Fourier transforms are o↵set for the lowest mass galaxies, which contributes

to both centrals and satellites, but the e↵ect is greater for the latter.
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Figure 3.11: Absolute-valued Fourier transforms of the data in fig. 3.10, adopting the same
choice of colours and linestyles, with the additional field of the Fourier amplitude predicted by the
neural network shown in purple. This shows that the stochastic modification brings the Fourier
transforms of the star formation and metallicity histories of this sample close to that of the TNG
data, yet the predicted transform itself does not include distinctive features seen in the original
transform, which in turn is absent from the modified result.

Figure 3.12: Stellar-halo mass relations, showing the original TNG data (red), the predictions of
the neural network (blue) and the stochastically modified results (green). For each dataset, indi-
vidual points represent samples, whereas errorbars indicate the median and 15th � 85th percentile
ranges of stellar mass in bins of halo mass. The stochastic correction shows a modest improvement
to the amplitude and scatter of the precdicted SHMR.

88



3.3. Stochastic Corrections

Figure 3.13: Stellar mass-metallicity relations, showing the original TNG data (red), the predic-
tions of the neural network (blue) and the stochastically modified results (green). For each dataset,
individual points represent samples, whereas errorbars indicate the median and 15th � 85th per-
centile ranges of metallicity in bins of stellar mass. The stochastic correction provides a significant
improvement to the scatter of the MZR for central galaxies, yet it performs poorly for low mass
satellite galaxies.

The scatter of the SHMRs may have been visibly improved by the stochastic correction,

yet the scatter of the target SHMR is not fully reproduced by the modified data. As

established, the correction does not completely recover the original star formation histories,

and does not include important features such as high mass spikes in the star formation

history. These, of course, influence the final stellar mass of the galaxy, and therefore

contribute significantly to the SHMR scatter.

Inspecting mass-metallicity relations in fig. 3.13, we see improved results for central

galaxies, where the scatter in metallicity, which was poorly predicted by the neural net-

work, is much more reminiscent of the scatter of the TNG simulation. Satellite metal-

licities, on the contrary, are not significantly improved by the modification, and some

subpopulations of the data have highly distorted metallicities which separate from the

MZR. This applies predominantly to low mass galaxies with a high stellar to subhalo

mass ratio, which correspond to samples with high predicted Fourier amplitudes, and

have fluctuations larger than those of the original TNG data. The majority of satellite

samples, however, are not disrupted this way.

For low mass satellite galaxies, however, the mass-metallicity relations do not di↵er

substantially between the TNG and network results, and so the ideal stochastic correction

may only make minor improvements to these galaxies. For high mass satellites, on the

other hand, the metallicity scatter is visibly improved, but only by a small margin. The
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Figure 3.14: Median and interquartile ranges of mass-weighted ages as a function of stellar mass
for central and satellite galaxies, showing the original TNG data (red), the predictions of the neural
network (blue) and the stochastically modified results (green). Median stochastic mass-weighted
ages are closer to that of the original data for most samples, showing that the correction improves
the inferred geometry of the star formation histories; yet its smaller ranges show that these shapes
are too generalised.

method therefore has the potential to refine the satellite mass-metallicity relation as well.

Like the SHMRs, however, neither of the two MZRs are completely recovered by the

stochastic amendment, due to the lack of large transient features in the modified star

formation and metallicity histories. The size and adequacy of the adjustment of the MZR

scatter, however, di↵ers for galaxies of di↵erent masses. This suggests that the optimal

frequency range over which to apply the correction varies according to the mass and

evolutionary regime of the galaxy.

Finally, in fig. 3.14 we compare the mass-weighted ages of central and satellite galaxies

before and after modification, in order to measure the e↵ect of the modification on SFH

geometry. This shows that for most stellar mass bins, the stochastic amendment brings the

median ages closer to those of the TNG data, suggesting that the adjustment is capable

of recovering star formation features at specific times accurately. However, this is, for the

most part, a small e↵ect. The ages of galaxies in a given mass bin are more likely to be
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influenced by large features which the stochastic correction does not predict. Photometric

quantities may not be visibly adjusted due to the galaxy ages being mostly una↵ected by

the correction.

3.3.4 Interpretation

These results e↵ectively demonstrate that the variability in the amplitudes of various

frequency components is necessary to obtain histories of the same accuracy and detail of

the TNG data. The level of detail of the predicted Fourier transforms and the rarity of

features have profound e↵ects on the SFHs and ZHs.

The correction may be improved by the inclusion of input variables which may influ-

ence events on certain timescales, such as the inclusion of merger ratios to predict star

formation events of certain timescales irrespective of their phase. However, with the size

and timescale of some star formation events depending on baryonic factors such as the

gas richness of mergers and accretion, it is possible that constraining such SFH features

cannot be achieved by this stochastic method, particularly for events within the phase

error margin. An alternative correction may be based on wavelet transforms, which unlike

Fourier transforms capture local frequency information, thus capturing transient signals

which correspond to isolated events which shape the SFHs and ZHs.

This project is a work in progress, and in recent months, e↵orts have been made

to correlate the phases of the stochastic component with the mass accretion history of

the galaxy’s halo, as well as simultaneously sampling phases from star formation and

metallicity histories to preserve any correlation which exists between them, and drawing

from the phase distributions associated with bins of mass, metallicity and age. This

approach has thus far introduced some star formation history features which are closer in

time to those of the TNG galaxy, making small improvements for intermediate-mass star-

forming galaxies. However, it struggles to constrain the amplitude of high mass galaxy

spectra, and biases the mass-weighted ages of these galaxies toward lower ages. While

this strategy may not be complete, it may in future replicate high frequency SFH and

ZH features with a realistic time domain, which may be used to compute age-dependent

galaxy features such as emission line luminosities more accurately.

The stochastic correction has nonetheless shown that missing variability in the fiducial
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predictions of the neural network can be partially recovered by means of a stochastic

component generated from the Fourier spectra predicted by a network of the same design

and input data. This variability has been shown here to make valuable improvements to

the statistics of physical galaxy properties, and in chapter 4 we show the influence that

this has on observational quantities.

3.4 Feature Importance

Having developed a machine learning model capable of predicting galaxy evolution via the

galaxy-halo connection, we wish to investigate the properties which control these predic-

tions. This section describes the methodology used to identify the input features of each

neural network that have the most predictive power over star formation and metallicity

histories, in e↵ect modulating the scatter of the relations of galaxy properties with halo

mass.

Using a common algorithm to determine feature importance, such as a Random Forest

Regressor (RFR), is inadequate for this task because of the complex interplay between

the variables and the final result; specifically, the multidimensional influence of temporal

and static variables is impractical to characterise with a simple, scalar quantity. Instead,

we conduct a test where the network is trained multiple times, while groups of similar

features are scrambled to eliminate their signal.

This method is similar to permutation importance, but it di↵ers in that the summary

statistics are derived from predictions of the network when trained with scrambled data,

and compared to those from the predictions of the complete model. This allows one to

measure physical properties of the data after scrambling and identify the importance of

randomised quantities on these properties, regardless of whether they are explicitly given

as model parameters.

3.4.1 Connected Input Properties

Quantities used for predictions in the neural network are usually related in some way; the

mass accretion rate integrates to give the final halo mass, and overdensities evaluated on

di↵erent scales are inevitably correlated. In order to measure the e↵ects of related groups

of variables, we retrain the neural networks where physically connected parameters are
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simultaneously scrambled, whether temporal or static. We refer to these sets of shu✏ed

variables as “shu✏e groups”.

For each input variable in the neural networks, their shu✏e groups are indicated by

the “shu✏e” column in table 2.2, which includes full details of the shu✏e groups. The five

shu✏e groups are as follows:

• Group 1 Mass and growth history of the main halo. Includes mass accretion history,

final halo mass, accretion gradient, etc.

• Group 1a Defined only for the satellite data. Akin to shu✏e group 1 for the satellite

subhalo, while group 1 refers to its host halo. Includes mass accretion history for

the subhalo, as well as infall variables which derive from this mass accretion history.

For central galaxies the halo and subhalo accretion histories are congruent and infall

variables do not apply, making this group redundant.

• Group 2 Environment group. Includes overdensity histories and cosmic web distances.

• Group 3 Halo substructure group. Includes half-mass radius and circular velocity.

• Group 4 Interaction history group. Consists of radial skew and distance to closest

external subhalo.

3.4.2 Methodology

Diverging Scatter

For each shu✏e group, the neural networks are retrained where one of the shu✏e groups is

individually randomised. Specifically, as the data is normalised by quantile transformation

to a normal distribution (see section 2.5.1), the input data is replaced with Gaussian

random noise prior to training.

In order to measure the e↵ect that these shu✏e groups have on the predictions of

the neural network, for each trained network we compute the scatter in stellar mass,

mass-weighted metallicity and mean metallicity history as a function of halo or subhalo

mass, and compare this with the fiducial result. By computing these three quantities,

we are e↵ectively measuring the di↵erence in overall accuracy of the star formation and

metallicity histories, as well as the mass-weighted metallicity value which depends on them
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both, thereby measuring the importance of these quantities for predicting star formation,

full chemical enrichment and metal synthesis independently of mass.

We conduct ten independent runs for each data randomisation, and assess the signifi-

cance of each shu✏e group using the median and interquartile ranges in the di↵erence in

scatter. Specifically, we define the quantity ⌅:

⌅ ⌘
⌧
log10

����1�
�x

�0

����

�
(3.10)

where �x is the characteristic scatter of the baryonic variable in dex when scrambling

shu✏e group x, and �0 is the scatter of the fiducial relation. �0 is calculated using the

predictions of the model and not the original simulation data, such that ⌅ qualifies as a

measure of the influence of specific features, not a measure of the irrelevant systematic

errors in the neural network, such as the lack of short-timescale information.

The scatter in a target quantity is computed using a running standard deviation filter

with a window size of 500 samples. ⌅ is then calculated by binning the scatter ratio �x/�0

in 80 loguniform bins of halo mass, and computing the average “local ⌅” value, weighted

by the occupancy of each bin in order to minimise the bias from bins of low sample size.

This operation is indicated by the angled brackets in eq. (3.10). Similarly, local ⌅ values

are discarded when they are smaller than -2, as this can bias the results. This typically

happens when the di↵erence in scatter is both small and regularly fluctuates to either side

of the fiducial value.

The value of ⌅ indicates the characteristic size of the divergence in predicted stellar

mass, metallicity, etc. when the information from the given shu✏e group is lost. Where the

scatter in fiducial and disrupted models are identical, ⌅ assumes a value of negative infinity,

which would indicate that the shu✏e group has no influence on the model whatsoever. As

⌅ increases in value, it indicates larger di↵erences between the average scatter of the two

relations, showing that the scatter is supported by a parameter or multiple parameters in

the given shu✏e group.

However, di↵erences in this scatter are small, and some di↵erences from a given run

may be a spurious result of random errors in the network’s coe�cients. This is why we

run each network ten times, and compute the median and interquartile range of ⌅ values.
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A small interquartile range compared with the median suggests that this shift in scatter

is significant, while a large interquartile range suggests it is spurious.

To determine the important variables of a particular shu✏e group, one can repeat this

methodology where only the quantity of interest is randomised, which determines whether

the variable has a significant e↵ect on predictions, despite being physically related to

other members of the shu✏e group. We demonstrate this in the results subsection with

two examples; where we consider the role of overdensity and the cosmic web in the central

galaxy data, and infall properties of satellite halos in contrast with their full accretion

history.

Diverging Distributions

As well as measuring the e↵ect of the shu✏e groups on the scatter, we measure their

influence on the fits to the relations themselves. To do this, we calculate the median filter

of each relation and replace the scatter in eq. (3.10) with the logarithmic median of each

baryonic variable. Unlike the scatter o↵sets, these o↵sets in the amplitudes of the relations

are not significant for any shu✏e group, implying that no single input parameter has a

unique influence on the shapes of the relations themselves.

Despite this, the di↵erences in the scatter illustrated by ⌅ ultimately serve to shift the

distribution of the baryonic properties. If this distortion is closer to the distribution of

the original training data, this implies that the neural network performs better without

this shu✏e group, and that one or several of its parameters are negatively influencing the

model. On the contrary, if the fiducial prediction is closer to the original data than the

disrupted prediction, it implies that the data contained in the shu✏e group is critical to

accurate prediction of this output quantity.

To assess the importance of the shu✏e groups in the accuracy of predictions, we com-

pare distributions of the median predictions of each network with those of the TNG data.

Specifically, we compare the distributions of calculated stellar mass, mass-weighted metal-

licity and mass-weighted age for central and satellite galaxies. The underpredicted scatter

in mass and metallicity results in subtly narrower and o↵set predicted distributions for

all of these quantities, and the distortions of each disrupted network can indicate whether

any of the input variables are responsible.
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Figure 3.15: The ⌅ values of the stellar-halo mass relation, mass-metallicity relation, and mass-
metallicity history relation for each shu✏e group are presented in the top, middle, and bottom
rows, respectively; for both the central model (left) and satellite model (right). The median and
interquartile range of ⌅ values obtained from ten independent runs of each network are displayed
in each cell’s text. Illustrating the most critical shu✏e groups, grid cells with smaller ⌅ values are
shaded in dark blue, transitioning to bright green as the median ⌅ becomes larger. Higher ⌅ values
indicate that the given shu✏e group is more important as the model determines the galaxy-halo
relation, while a smaller interquartile range indicates greater significance of this result.

3.4.3 Results & Discussion

Scatter In Stellar Mass

Tabulated values of the median and interquartile range of ⌅ for each shu✏e group in the

central and satellite datasets are shown in fig. 3.15, showing results for the stellar mass,

mass-weighted metallicity and metallicity history as a function of halo mass for central

galaxies and subhalo mass for satellites. Cells which are greener in colour have larger

median ⌅, while smaller ⌅ values are shown in blue.

For central galaxies, the ⌅ values indicate that shu✏e groups 1 and 3, entailing variables

relating to mass accreton history and halo substructure, are the groups with the most

significant e↵ect on the SHMR. This can be explained by the tendency for the early

forming structure of a halo to influence the initial growth of its galaxy. In particular, the

frequency and size of merger and accretion events will have governed the mass, size and

shape of the newly formed halo to di↵erent extents, driving the dynamics of star forming

gas. As the final mass of galaxies is strongly connected to their mass at early times, this

likely has significant e↵ects on the trajectory of galaxy evolution. The continued growth

of internal structure would continue to influence the galaxy over time, constraining their

stellar mass. McGibbon & Khochfar (2022) show that measures such as circular velocity

and velocity dispersion for z < 2 do indeed have such an e↵ect on the stellar mass at
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z = 0.

For satellite galaxies, the results are similar for the SHMR, implying that the mass

accretion and internal structure are equally important for star formation over time. How-

ever, satellites have two key di↵erences from centrals. First, shu✏e group 1a, describing

the history of the satellite subhalo, is considered important for the satellite SHMR, unlike

shu✏e group 1, describing the history of the central halo. Second, there is an additional

importance of shu✏e group 2, i.e. overdensity history, which can be reconciled with satel-

lite quenching and other environmental e↵ects on satellite star formation.

The satellite network therefore favours properties of the satellite subhalo and its sur-

roundings over those of its host, yet it may prove in a future study that properties other

than the host halo’s mass history, such as its size and centre of mass relative to the subhalo,

will o↵er additional constraints on the galaxy’s satellite phase evolution. The fact that

the halo’s interior environment is influenced by the abundance of satellites (Bose et al.,

2019) would suggest the use of assembly bias in satellite predictions.

Scatter In Stellar Metallicity

The ⌅ values for metallicity and metallicity history show that shu✏e group 4, relating to

interaction history, is the group with the strongest influence by far. The skew parameter

is believed to influence chemical enrichment by tracing the infall of subhalos which may

be metal-rich or gas-rich, which in relation to the halo itself influences the metal content

acquired by the galaxy during accretion or mergers.

The distinction between the influence of skew and overdensity, encompassed by shu✏e

groups 4 and 2 respectively, is that the skew is important for both the metallicity history

and mass-weighted metallicity, whereas overdensity is important only for the latter. It is

likely that the overdensity is measuring the most major interaction events by tracing the

concentration of mass in the vicinity of the target halo, which are expectedly more frequent

in denser regions (L’Huillier et al., 2015). The skew parameter is independent of the mass

of the surrounding subhalos, and measures the concentration of subhalos around the target

halo over time, regardless of their mass. As minor interaction events are more frequent,

it is feasible that these events are contributing significantly to the galaxy’s metallicity,

as well as secondary, smaller chemical enrichment e↵ects which show in the unweighted
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metallicity history.

In the satellite data, the influence of overdensity is more significant, while skews are

no longer significant. This can be reconciled with a tight correlation between the gas

phase metallicity of satellites with their local densities, potentially owing to the satellites

enriching their circumgalactic medium (Peng & Maiolino, 2013; Genel, 2016). The e↵ect

may be likened to environmental quenching, restricting the continued in situ synthesis of

metals, which is not an e↵ect which is common to central galaxies. On the contrary, these

density-driven quenching e↵ects are strongest for low mass satellites (Bluck et al., 2020),

and their metallicities and star formation rates may be influenced by their mass.

High mass galaxies are in general quenched by AGN feedback. The mass and growth

rates of AGN are tightly correlated with circular velocity and velocity dispersion (Davies

et al., 2019; Bluck et al., 2020), and in fact the third shu✏e group, relating to internal

dynamics, has a great e↵ect on stellar mass and a modest e↵ect on metallicity in both

datasets.

We argue that it is the circular velocity and not the half-mass radius in this shu✏e

group which a↵ects the predictions of metallicity. While the physical size of the halo has

been shown to influence quantities such as gas and black hole mass, which can influence the

growth of a galaxy in future (Lovell et al., 2021), these quantites can also be determined by

halo mass and environmental properties. As well as influencing the scatter in metallicity,

the circular velocity can distort the distribution of metallicities on sample scales; something

which no other quantity does. It is unclear whether this e↵ect improves or degrades the

quality of predictions, but it does suggest that the circular velocity has an e↵ect which is

noticeably independent of halo mass.

The under-prediction of high metallicity objects is decreased and the MZR is fit more

accurately if the network is run using the baryon-sensitive maximum circular velocity in-

stead of our virialised proxy. Our dark matter variables therefore cannot fully account for

the metal enrichment of TNG galaxies, which also depend on purely baryonic phenomena,

and the metallicity scatter in a pure dark matter simulation will be undermined by our

model. If our networks were trained on a semi-analytic model simulation, or a hydrody-

namical model with an alternative prescription of chemical enrichment which the network

can more accurately identify, and this model provides appropriate metallicities despite the
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dark matter controlled rotation curve in such a simulation, then this may justify the use

of an alternative model in refining future predictions.

To summarise these two subsections on distorted scatter, it is the shu✏e groups which

relate to the mass accretion history of the target subhalo and the internal structure as a

function of time which have the greatest influence on the scatter in stellar mass, indepen-

dently of halo mass. This is most likely a measure of the quantity of accreted star-forming

gas and the conditions within the galaxy to promote star formation. Environmental quan-

tities control the scatter in metallicity at fixed halo mass: in the form of interaction rates

for central galaxies and local mass density for satellite galaxies, illustrating the impor-

tance of subhalo infall and flybys, and the concentration of massive, metal-rich subhalos,

respectively.

It should be stressed, however, that no single shu✏e group or input quantity has made a

unique e↵ect on the baryonic outputs, and that some mechanisms in which these variables

play a role can, in principle, be inferred from other model parameters; e.g. the mass-

concentration relation of halos is strongly a↵ected by the local environment and location

of halos in the cosmic web (Hellwing et al., 2021). Nevertheless, the presence of shu✏e

groups with significant ⌅ values in fig. 3.15 shows that the neural network models rely on

the variables of these shu✏e groups to constrain baryonic predictions, and that the input

quantities which are members of said shu✏e groups are considered to play a physical role

in the galaxy-halo connection.

Subgroup Quantities

As described above, shu✏e groups are arranged in accordance with physically related

quantities, such as mass accretion history and final halo mass. While they are physically

related, their relationship is not necessarily straightforward, and so the influence of a

shu✏e group on the network’s predictions may be dominated by just one or few of its

member parameters. We show this with two examples in fig. 3.16, where we scramble

one input variable before training the network, do this for the remainder of the shu✏e

group and compare their ⌅ values, illustrating the importance of these parameters in the

shu✏e group. As before, we conduct ten independent runs per shu✏e and characterise

their significance by the median and interquartile range of the ⌅ distortions.
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Figure 3.16: The tables presented in this section are similar to fig. 3.15, but instead highlight the
e↵ects of shu✏ing particular subsets within a shu✏e group. Each table has three columns: the left
column displays the results for the entire shu✏e group, as shown in fig. 3.15. The center column
shows the results for the input parameters being analysed, and the right column displays the results
for the remaining components of the shu✏e group. These tables indicate that overdensity is the
primary factor in the second shu✏e group for central galaxies, while the infall parameters in group
1a have a discernible impact on the satellite galaxy model.

The mass-independent scatter of star formation histories and the amount of metals

present in gas within the TNG model are influenced by gas inflows which depend signif-

icantly on the galaxy’s position in the cosmic web (Torrey et al., 2019; Hellwing et al.,

2021; Van Loon et al., 2021; Donnan et al., 2022). In the central model, we randomised

the distances between points in the cosmic web and compared the predicted results with

those obtained by scrambling overdensities. The ⌅ values from this test are shown in the

left panel of fig. 3.16.

Although the there is a subtle correlation not shown by these tables between cosmic

web distances and high-mass galaxies, the overall conclusion is that the cosmic web has

little impact on the metal content of stars. In contrast, randomising the overdensity

components has had a more noticeable e↵ect on the metallicity scatter; in fact the ⌅

values for the full shu✏e group 2 are close to those from overdensity alone, while the

cosmic web produces very small deviations in scatter. Therefore, the machine learning

model for central galaxies appears to give more weight to overdensity components than to

the cosmic web when predicting the mass weighted metallicity of central galaxies.

The lack of influence of the cosmic web on our predictions may be physical or simply

numerical. On the one hand, the lack of sampling of halos of a given mass or the cosmic web

features defined by the DisPerSE algorithm may a↵ect their importance in the network. On

the other hand, the size of the filaments or the number of small filaments can have e↵ects

which either enhance or suppress star formation and chemical enrichment, depending very
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specifically on the scale and geometry of the local cosmic web (Galárraga-Espinosa et al.,

2023). It may prove useful in a future study to include further properties of the local cosmic

web in relation to the target halo in order to truly characterise its influence, however, these

e↵ects are also correlated with halo mass and merger activity (Hellwing et al., 2021), which

is measured using environmental quantities such as overdensity and skew. These variables

include temporal information, and therefore may be a better constraint on the structure

growth history which the zero-redshift cosmic web distances e↵ectively generalise.

In addition to assessing the influence of the cosmic web in the central galaxy model, we

conducted experiments on the satellite network to examine the impact of infall parameters;

namely the scaled infall time, scaled formation time and infall mass ratio. While these

factors may be significant for satellite star formation histories, the right-hand panel of

fig. 3.16 shows that the di↵erence in ⌅ values between these infall parameters and the rest

of the data in shu✏e group 1a is minimal, indicating that they have little e↵ect on the

performance of the satellite network. This could be due to the target’s transition from a

central to a satellite subhalo being inferred from the growth histories of the subhalo and

its host.

Despite the apparent insignificance of the infall parameters, the deviation from scram-

bling infall parameters is more significant, suggesting that explicitly utilising these param-

eters can be useful. Additionally, while the metallicity deviation associated with infall-only

is poorly constrained, it is larger than other factors, which may indicate some significance

of infall quantities. In fact we stress in section 3.2.4 that the quality of prediction of

the star formation histories of satellite galaxies is marginally superior to that of central

galaxies, probably due to the inclusion of infall parameters constraining their quenching

timescale.

Distorted Distributions

By evaluating ⌅, we have evaluated the e↵ect of removing predictive information on the

output of the network relative to the fiducial result, yet this does not indicate whether it is

closer to, or further from, the original simulation data, and therefore a more or less phys-

ically accurate result. In fig. 3.17, we compare the distributions of mass, metallicity, and

mass-weighted metallicity in an intermediate halo mass range for each network and each

shu✏e group, alongside the median of ten fiducial predictions and the original simulation
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Figure 3.17: Smoothed probability density functions of the baryonic data in an intermediate
halo/subhalo mass bin; for stellar mass, metallicity, and mass-weighted age; based on the pre-
dicted star formation and metallicity histories. The distributions are obtained from the original
TNG data (grey), the median of ten standard predictions (black), and the median of each ran-
domisation (coloured lines). The distributions resulting from each randomisation do not exhibit
a clear improvement over the fiducial data, nor do they bring the network any closer to the true
distributions from the TNG simulations. If the horizontal axis is logarithmic, the PDF is a function
of the logarithmic value labelled on the figure.

data. As established in section 3.2.2, we observe that the network somewhat underesti-

mates the scatter in stellar masses and metallicities, resulting in a discrepancy between

the true distributions and our predictions. Specifically, our predictions yield histograms of

stellar mass which are slightly narrower than those from TNG, and metallicity histograms

which are o↵set from the desired result. If any shu✏e group presents a distribution which

is closer to the true distribution, it may indicate that a member of this shu✏e group is

misleading the network, whereas larger di↵erences may suggest that the group contains

essential information for predicting accurate distributions.

The clear similarity between the distributions in fig. 3.17 illustrates our conclusion:

we have not discovered any evidence of a shu✏e group which enhances or derails the

network’s performance when randomised, as indicated by our evaluation of a ⌅ analogue

for median data values. However, we did observe a slight variation in the shape of satellite

MWA distributions when shu✏e group 3 was scrambled. While the scatter ratio shows

the dependence of other shu✏e groups in di↵erent halo mass regimes, our analysis of

data in a narrow halo mass range reveals that shu✏e group 3 is useful for distinguishing

between similar samples. Nonetheless, it is unclear whether this dissimilarity deforms the

predictions, indicating that the shu✏e group contains an essential detail of the galaxy-halo

connection, or whether these features are correlated with the TNG distributions, which

would imply that shu✏e group 3 misleads the satellite network.

This di↵erence between true and predicted data, regardless of any scrambled data,
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implies that the inaccuracies of the model cannot be rectified by the exclusion of any

of the existing input parameters. Including alternative prescriptions of the galaxy-halo

connection, such as including temporal measures of merger history or progenitor data, may

result in a closer match to the original data. It may prove, however, that these results

represent the limit of what can be derived concerning the baryonic evolution of galaxies

from dark matter alone, and improvements may constitute numerical methods such as

the stochastic corrections discussed in section 3.3, which have shown to accurately model

the variability of SFH and ZH which was missing from the fiducial model, can be used to

improve the fit to the original GHC. Alternatively, the discrepancies between simulations

and predictions may be a numerical artifact of the model, and perhaps an alternative

machine learning design will improve upon these predictions.

3.5 Summary

In this chapter, we have applied the neural networks described in detail in chapter 2 to the

hydrodynamical TNG simulations, comparing the physical properties of the output star

formation and metallicity histories of the trained model with the original simulation data.

We additionally apply a stochastic model to improve the quality of predicted galaxy prop-

erties, and evaluate the importance of di↵erent input variables by retraining the networks

with scrambled subsets of the input data. This has led to the following conclusions:

1. Accurate predictions can be made for the full range of star formation histories in

both central and satellite galaxy datasets. In section 3.2.1, it is demonstrated that

the geometries of the predicted star formation histories match those of the original

simulation, from continually growing star-forming galaxies to quenched satellites and

high-mass galaxies. The integrated stellar mass derived from these star formation

histories correlates well with their values in the TNG data, as does the stellar mass

taken from their merger trees. It is shown by fig. 3.3 that our predicted star formation

histories fully recover the SHMR.

2. Although the network model has yielded positive results, it has limitations in predict-

ing star formation events that occur rapidly, such as star formation bursts or rapid

quenching. The lack of high-frequency information is reflected by the predicted fea-

tures of star formation and metallicity histories such as those shown in fig. 3.1, and
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the declining Fourier transforms of these predictions in fig. 3.2. The absence of these

features can lead to numerical stellar mass estimates which are systematically lower

than their actual value, and impacts the scatter of the MZR shown in fig. 3.7. This

is a more prevalent shortcoming for central galaxies, where such features are more

frequent.

3. As the network is capable of predicting the Fourier amplitudes of these historical

properties, as shown by fig. 3.9, these predicted Fourier transforms were used to con-

struct a corrective stochastic component to add to the predicted star formation and

metallicity histories, which is discussed in section 3.3. This has improved estimates

of the stellar mass of most samples, and recovered the previously compromised scat-

ter in the MZR. However, this correction does not recover the full star formation

and metallicity histories, still failing to produce short-timescale events containing a

high rate of star formation. The quality of the modified results depends on the size

of the missing features, which depends on the halo mass regime, and therefore the

correction may be improved if the frequency range to which it is applied is optimal.

4. In section 3.4 we assess the importance of the input variables of the neural networks

in replicating key galaxy-halo statistics, by grouping variables according to physi-

cal relationships with one another, and retraining and testing the neural networks

where these groups are replaced with random Gaussian noise, e↵ectively removing

their signal from the model. This has shown that for both central and satellite

galaxies, variables relating to the halo’s mass and substructure, such as mass accre-

tion history and half-mass radius, are most important to predicting the SHMR, i.e.

the star formation histories; while environmental quantities, such as skewness and

overdensity, are correlated with metallicity histories and the MZR. Previous studies

concerning a single redshift have struggled to measure the e↵ects of these variables

on galaxy properties, demonstrating the value of historical input data.

5. While the deviations in scatter which manifest from scrambling input data highlight

the data which influences certain results, these deviations are usually small. The

summary statistics, particularly the SHMR, can be inferred by the neural network via

the connection between scrambled and non-scrambled datasets. When we scramble

subsets of a single group, however, we find that an individual quantity, such as infall
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parameters or overdensities, can dominate the influence of the given group. These

results show that the model may be used to identify the most significant parameters

in the galaxy-halo connection, which will be supported by much larger datasets when

applied to high fidelity N-body simulations.

The direct predictions of the neural network indicate that it is possible to develop a

predictive machine learning model which models the full evolutionary history of galaxies

using historical halo and environmental data, and can be used in future studies to investi-

gate the temporal nature of the galaxy-halo connection for galaxies of assorted properties

and evolutionary regimes. However, the predictions of the model are subject to inaccu-

racies, which require a robust correction to produce accurate statistics and observables.

Plus, the low sample size makes it di�cult to thoroughly investigate the various regimes

of halo-galaxy coevolution with TNG predictions alone.

The practical limitations of the model as it stands are discussed further in chapter 4,

where we discuss how the model may complement observational studies of the galaxy-

halo connection; and in chapter 5, where we evaluate the e↵ects of applying the model to

pure dark matter simulations, with a lower mass resolution and alternatively defined halo

properties.
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This chapter is based on the observational results of Chittenden &

Tojeiro (2022) and Behera, Chittenden, & Tojeiro (in prep.).

4
Observables

4.1 Introduction

In observations of galaxies, the spectroscopic and photometric features of a galaxy, i.e.

the luminous flux received from the galaxy decomposed as a wavelength spectrum and in

di↵erent wavelength bands, trace the properties of the stellar, gas and dust components

of the galaxy, and can inform a plethora of information relating to its evolutionary past

(Tinsley, 1980; Kennicutt & Evans, 2012; Sánchez Almeida et al., 2012). The luminosity

of a galaxy, for instance, owes to the sum of luminosities from all of its stars, which may be

used to derive the galaxy’s total stellar mass and current star formation rate (Curtis-Lake

et al., 2012; Johnson et al., 2013b). The di↵erence in luminosities between wavelength

bands, interpreted as colour, can infer the abundance of cool, red stars and hot, blue

stars (Liao & Cooper, 2022; Whitler et al., 2023), as well as the abundance of gas and

dust (Berta et al., 2016; Wang et al., 2017). Ionising radiation which permeates the gas

reservoir also creates emission lines in the galaxy’s spectrum, whose relative fluxes can
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inform the metallicity of the gas (Kobulnicky & Phillips, 2003; Mouhcine et al., 2005;

Nagao et al., 2011), while the width of these lines can be used to trace the kinematics of

the gas (Maseda et al., 2014; Kewley et al., 2019). These are all observational features

of galaxies which can be combined to construct a more complete picture of the galaxy’s

evolutionary history; for example, a bright, blue galaxy with high velocity dispersion likely

underwent a merger which accelerated its star formation.

Mock surveys are a powerful tool with which to test theoretical models of galaxy evo-

lution on cosmological scales, providing a simulated dataset of galaxies of assorted masses,

colours and other properties at di↵erent times in the universe’s history (for examples

see Kau↵mann et al., 2020; Ferrero et al., 2021; Snyder et al., 2022; More et al., 2023).

As described in section 1.2.1, these galaxy evolution models may be based on empirical

relations between galaxies and N-body simulations of large scale structure, or by the prop-

agation of a set of equations of motion governing the coevolution of galaxies and halos.

The properties of the simulated galaxy population can be used to comprehensively inves-

tigate the prevalence of the physical processes which influence them, and by comparing

these galaxies with those observed in real galaxy surveys, astronomers can test the va-

lidity of di↵erent theoretical models and gain insights into the physical processes which

drive galaxy evolution. The advent of larger, more sensitive surveys (proposed or ongoing

examples including Euclid Collaboration, 2013; DESI Collaboration, 2016; Dunlop et al.,

2021; Malkan et al., 2021) has allowed for these galaxy statistics to be studied in greater

detail, motivating the need for equally large, detailed mocks to complement them, which

is one of the key motivations for the predictive model outlined in this thesis.

In order to produce accurate mocks, the machine learning model must predict the

baryonic properties from which observational features are derived to an adequate level of

precision. This is because the physical properties of galaxies influence these observables in

various ways. Galaxies which formed most of their mass at early times, for instance, will

have a greater population of cold stars with long lifespans such as red giant and red dwarf

stars, and thus the galaxy is more likely to appear redder in colour and have stronger

absorption features. Galaxies with ongoing star formation, on the contrary, will have an

abundance of young stars, including hot, short-lived, UV-luminous stars emitting ionising

radiation, such that the galaxy appears bluer in colour and exhibits strong emission lines,

where the radiation from these UV-luminous stars has ionised the surrounding gas. With
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thorough modelling of the spectroscopic and photometric signatures of galaxy evolution,

one can produce a catalogue of spectra, magnitudes, colours and emission lines from an

existing catalogue of star formation and metallicity histories, which can be used to compare

the observational statistics of the neural networks with the hydrodynamical simulations.

The Flexible Stellar Population Synthesis (FSPS) code (Conroy et al., 2009; Conroy

& Gunn, 2010) is a software which generates a spectral energy distribution from a stellar

population by encoding empirical parameterisations of the distribution of stellar masses,

abundance of ionising radiation and other features which determine the spectral properties

of the population, which has been used in multiple studies to investigate the influence

of galaxy evolution on its observational features (Chaves-Montero & Hearin, 2021; Pan

et al., 2023; Pfe↵er et al., 2023). In this chapter, we discuss how we use FSPS to emulate

spectroscopic and photometric data, from the star formation and metallicity histories

from TNG, and from the predictions of the artificial neural network models, which we use

to assess the model’s capability of producing data for mock surveys. Having discussed

various successes and shortcomings of the predictive power of the neural networks in

chapter 3, we discuss here the consequent e↵ects on synthetic spectra and photometry, and

the benefits of improving the model for observational purposes. This chapter entails the

methods of constructing and manipulating zero-redshift spectra in section 4.2, comparing

observables between original, predicted and stochastically modified data in section 4.3,

and summarising our findings in section 4.4.

4.2 Calculated Observables

As has been established in section 4.1, the emission spectrum of a galaxy encodes plenty

of information relating to its evolutionary properties, and so simulated galaxy properties

can be used to produce model spectra. We evaluate such spectral energy distributions

from the predicted SFHs and ZHs of our neural network, using the Python FSPS wrapper

for the FSPS Fortran code (Johnson et al., 2013a), and compare these spectra with those

of the original TNG simulations. We also show improvements to these results from the

stochastic corrections outlined in section 3.3.
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4.2.1 Spectral Energy Distributions

In the FSPS code, a galaxy spectrum is constructed as a composite stellar population

(CSP), in which the histories of star formation and chemical enrichment quantify a weighted

sum of a set of basic spectra corresponding to stars of identical age and metallicity, known

as a simple stellar population (SSP) (Conroy, 2013). This spectrum can then be used

to calculate photometric magnitudes, emission line luminosities and other observational

quantities used in galaxy surveys to evaluate the physical and evolutionary properties of

galaxies.

The SSP modelling in FSPS consists of a summation of stellar spectra of di↵erent

masses, weighted according to an initial mass function (IMF). These stellar spectra are

considered at a fixed isochrone: a population along the Hertzsprung-Russell diagram of

controlled age and metallicity, whose mass, surface temperature and self-gravity are tightly

related (Tinsley, 1980). The core ingredients of a SSP spectral synthesis model are there-

fore the choice of IMF, isochrones and stellar spectra as a function of mass (Conroy, 2013).

Specifically, the SSP spectrum of a given isochrone is given by integrating mass over the

given isochrone:

f(�; Z, t) =

Z Mmax

Mmin

f⇤(�; M, Z, t) �(M) dM (4.1)

where � is the IMF of the zero-age main sequence population of stars, f⇤ is the stellar

spectrum of stars of a certain mass and isochrone, and Mmin and Mmax are the lowest

and highest star masses along the stellar evolutionary tracks which define the isochrones;

usually ranging from the hydrogen burning limit of ⇠ 0.1M� to a maximum of ⇠ 100M�

(Conroy, 2013).

Adding SSP spectra from successive stellar ages while parameterising each spectrum

according to metallicity and star formation rate is typically used to construct a CSP:

a more complex ensemble of stars of varying ages, temperatures, chemistries and lumi-

nosities; ranging from stellar clusters, to galactic disk and bulge components, to the full

evolution of galaxies.

For each time step in our SFHs and ZHs, we emulate a SSP spectrum assuming an IMF

corresponding to the Chabrier (2003) model, the MILES spectral library (Falcón-Barroso

110



4.2. Calculated Observables

Figure 4.1: The response functions of the five optical filters used in the SDSS project. These
are the weighting functions used to compute band fluxes from the spectra computed from our
star formation histories. These filters are adjusted for atmospheric transmission with a typical
airmass of 1.2 (Fukugita et al., 1996). The grey, vertical lines indicate the approximate range of
optical wavelengths, showing that some of these these filters are sensitive to ultraviolet and infrared
wavelengths. Each line is coloured according to the approximate perceived monochromatic colour of
the band’s e↵ective wavelength, with the exception of the z band, which has no optical wavelengths.

et al., 2011) and MIST isochrone model (Choi et al., 2016). The SSPs are parameterised

by the current age and metallicity of the galaxy, and weighted according to the total

stellar mass formed in the time interval between the present and previous time steps (see

eq. (2.26)); which produces a full CSP spectrum, which we associate with the galaxy at

z = 0. Given a set of SSP spectra fj , defined in eq. (4.1), the full spectrum F is calculated

as follows:

F(�) =

NsnapX

j=1

Mj fj(�; Zj , tj) (4.2)

These CSP spectra are parameterised by the complete star formation and metallicity

histories of their galaxies, and therefore this calculation is a self-consistent method with

which to test the suitability of the predicted galaxy formation histories for accurate mock

spectroscopy. Furthermore, the following observational quantities are calculated from

these SEDs, illustrating the e↵ects of the quality of the network predictions on photometry.
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Band Region Range (Å) �e↵ective (Å)

u UV 2980 - 4130 3551
g Green 3630 - 5830 4686
r Red 5390 - 7230 6166
i Near-IR 6430 - 8630 7480
z IR 7750 - 11230 8932

Table 4.1: Characteristics of the five SDSS bands for which we calculate photometric magnitudes
from our galaxy spectra (Fukugita et al., 1996; SDSS Collaboration, 2002).

4.2.2 Photometric Luminosity And Colour

Using the SEDs whose derivation is outlined above, we calculate the magnitudes in the

photometric bands used by the SDSS Collaboration (2002). We mimic the flux passing

through the five bandpass filters used in the survey (Fukugita et al., 1996), by integrating

the spectrum over the response functions shown in fig. 4.1. Specifically, if a given band

has a dimensionless filter function ⌘(�), the band flux density F from the spectrum F(�)

is defined:

F =
1

4⇡D2

L

Z 1

0

⌘(�) F(�) d� (4.3)

where we assume a luminosity distanceDL = 10pc, abiding by the definition of absolute

magnitude. The absolute band magnitude m is defined:

m = �5

2
log10 F (4.4)

where F is converted to the maggie unit of flux density, which calibrates to the AB

system filters in SDSS. The key properties of these five band filters are shown in table 4.1.

Using these derived magnitudes, we evaluate di↵erences between magnitudes in sep-

arate bands to compute colours, and compute galaxy colour-mass diagrams. The distri-

bution of colours from several combinations of bands is bimodal, where “blue” galaxies

have ongoing star formation, “red” galaxies are quenched, and galaxies in the transition

phase from blue to red are members of the “green valley” (Nelson et al., 2017). A predic-

tive model which recovers this property therefore recognises the photometric distinction

between star-forming and quiescent galaxies.
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4.2.3 Emission Line Luminosity

A feature of the stellar libraries used to define SSP spectra is the empirical calculation

of emission line luminosities, which can be achieved by correlating the density of ionising

photons with galaxy properties such as stellar mass and star formation rate (Baugh et al.,

2021). In the FSPS code, nebular line and continuum emission are implemented by using

template SSP spectra to ionise the gas clouds whose mass and metallicity are empirically

inferred. The resulting nebular emission is added to the SSP spectra themselves (Byler

et al., 2017).

The Python FSPS library includes a function which returns various line luminosities

of atomic and ionised transitions for each SSP spectrum. To assess the quality of emission

lines derived from our predictions, we calculate the total H↵ luminosity of each galaxy,

typically the strongest emission line, by evaluating the sum of SSP luminosities weighted

by their star formation history, in the same manner as the full spectrum:

L
H↵
gal

=

NsnapX

j=1

Mj L
H↵
j (Mj , Zj , tj) (4.5)

4.3 Results

4.3.1 Spectral Energy Distributions

In fig. 4.2 we display the mean and standard deviation of galaxy spectra for both central

and satellite galaxies in bins of stellar mass. The shape and amplitude of the spectra in

most bins are similar in both the original and predicted galaxies. In high mass galaxies,

however, the networks underpredict the mean and variance in the high frequency luminos-

ity, and at low masses, the amplitude of the spectra themselves are slightly underpredicted.

This inaccuracy is somewhat more prevalent for central galaxies as satellite galaxies tend

to have more well-defined, smooth star formation histories due to satellite quenching.

The mass-to-light ratio of an SSP is correlated with its metallicity and stellar age

(Gallazzi & Bell, 2009), explaining inaccurate luminosities in samples of underpredicted

variance in SFH and ZH. However, the stochastic corrections make a modest improvement

to the spectra, particularly for intermediate mass central galaxies, and most satellites.
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Figure 4.2: The mean and standard deviation for stacked central (top row) and satellite (bottom
row) spectra in bins of stellar mass, shown for predicted star formation and metallicity histories
in green, and TNG data in blue. Emission lines have been omitted from these plots for clarity.
In the majority of samples, the continuum is generally well recovered, and is of similar amplitude.
However, for high mass objects there is a reduced variance at short wavelengths, and lower mass
galaxies have a smaller variance overall. This represents a poorer prediction of central galaxy
spectra, with lower mean amplitudes and smaller variance than the spectra evaluated from TNG
data.

The increase in the mean amplitude of the spectra can be likened to the increase in stellar

mass providing a closer match to the original SHMR, and the increased variance in SEDs

coinciding with increased scatter in stellar mass and metallicity.

The use of the stochastic correction method to rectify the total luminosity is motivated

by fig. 4.3, which shows the correlation between the fractional errors in high frequency

Fourier modes of central and satellite star formation histories, evaluated as the average

amplitude of the absolute Fourier transform above a frequency of ⇠ 0.3Gyr�1; and the

total luminosity of their spectra, evaluated by integrating the SED over all wavelengths.

For galaxies of high star formation rate at z = 0, there is a clear correlation between these

residuals, which shows that a star formation history with a stronger power spectrum at

high frequencies provides necessary constraints on the spectrum of an individual galaxy.

When the stochastic correction is applied, the Spearman correlation between these resid-

uals with respect to the original TNG data is reduced from 0.527 to 0.159 for central

galaxies and 0.614 to 0.294 for satellites, while the luminosity residuals themselves are

reduced by up to an order of magnitude, signifying the improvement made.

Despite the success of the stochastic amendment in improving the accuracy of the

SEDs, where the median amplitudes of the spectra in low and intermediate mass bins are

closer to the original result after modification, fig. 4.2 shows that the correction does not

fully recover the variance in spectra of the original TNG data, particularly for central
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Figure 4.3: 2D histograms of the fractional di↵erence between true and predicted total galaxy
luminosity and the mean high-frequency Fourier amplitudes of their star formation histories. These
are shown for galaxies between the 75th and 95th percentiles of z = 0 star formation rate, and
shows data within a frequency range of 0.3-1.2 Gyr�1, i.e. a timescale range of 0.8-3.3 Gyr. This
correlation between the two residuals indicates the dependence of the calculated luminosity on
high-frequency star formation events.

galaxies. This can be likened to the incomplete star formation histories even after modi-

fication, which were shown in section 3.3.3. The remaining correlation between residuals

signifies that the remaining features will introduce further correction to these observables.

The modified star formation histories, despite showing similar fluctuations to the orig-

inal TNG data, do not contain fluctuations which include a large quantity of stellar mass,

contributing significantly to the total luminosity. As discussed in section 3.3.4, the lack

of high amplitude features in the modified SFH may owe to the features of the Fourier

transforms which can be predicted by the neural network, or the frequencies of the cor-

rection required for di↵erent samples, and may be improved by implementing variables

which a↵ect galaxy evolution on di↵erent timescales.

4.3.2 H↵ Line Luminosity

In fig. 4.4, we show that the general trend of the total H↵ line luminosity with stellar mass

is recovered by the network for both central and satellite galaxies, however the variance in

this line luminosity is small by comparison with the original data. However, the range of

H↵ luminosities is visibly increased by the stochastic amendment, closely matching some

of the contours of the TNG data.

Unlike the total luminosity of the galaxy, Balmer line luminosities are particularly

dependent on SSPs of a low age and metallicity (Bruzual & Charlot, 2003; Byler et al.,

2017); therefore it would be practical to constrain the star formation history at late times
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Figure 4.4: Distribution of positive H↵ luminosities evaluated from the original and predicted
spectra, shown in relation to stellar mass, with contour lines indicating the tenth and ninetieth
percentiles of the distribution of data, indicated by the legend at the bottom of the figure. Only
galaxies with positive H↵ fluxes are shown. Predictions show a modest fit to the mass-H↵ lumi-
nosity relations for central and satellite galaxies, yet the scatter in both is underpredicted due to
missing star formation points.

to gain better predictions of the H↵ luminosity. This late star formation rate is not

strictly constrained by the neural network, nor is it explicitly modelled by the stochastic

correction. Predictions of emission line luminosities would therefore be improved if the

network were trained to model this late star formation more explicitly, either by weighting

the star formation history at late times, or rebinning the star formation histories to include

more samples of young stars, if the objective were to model ongoing photoionisation more

accurately.

Despite the recent star formation not being modelled by the stochastic correction,

fig. 4.5 shows that, similarly to fig. 4.3, residuals in high frequency Fourier modes are cor-

related with residuals in this line luminosity. The Spearman coe�cient between residuals

as described in section 4.3.1 is reduced from 0.233 to 0.112 for centrals, and 0.189 to 0.055

for satellites; with the residuals in H↵ luminosity reduced by a factor of 2.5 on average.

This reflects the utility of the stochastic method in improving H↵ predictions. Improved

metallicity histories may also be used to improve predictions of metal emission lines, and

despite the particular sensitivity of H↵ to recent star formation, historical formation his-

tories may be used to trace emission lines which are more valuable probes of high-redshift

star formation (Stark et al., 2010; Suzuki et al., 2016; Lagache et al., 2018; Madden et al.,

2020).

It should be stressed nonetheless that the stochastic amendment has both positive and

negative consequences on the H↵ data. On the one hand, the modelling of fluctuations
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Figure 4.5: For the same galaxies as in fig. 4.3, this figure shows the correlations between residuals
of their high frequency SFH data and their total H↵ line luminosity. This indicates the importance
of measuring short-timescale star formation events as in fig. 4.3, in particular at low stellar ages
with the largest contribution of ionising photons.

contributing to line emission has rectified the lack of such emission in the predicted data,

and reproduced the distribution of line luminosities, highlighting its utility in computing

emission lines in future work. However, some predicted Fourier transforms will lack the

necessary properties to accurately constrain the phases of such fluctuations, and this can

introduce unwanted line emission, or lack thereof. Thus, the stochastic amendment is a

practical tool for recovering line emission, but is subject to errors originating from the

predicted Fourier spectra. A more robust method of stochastic modelling, potentially one

which computes the phases of fluctuative signals, would therefore be of benefit to these

predictions.

4.3.3 Band Magnitudes

Evaluating the SDSS band magnitudes using the formulae and filters in section 4.2.2, we

show the dependence of absolute magnitudes in the five bands on the stellar mass of the

galaxies in fig. 4.6. The challenge of predicting brightness at shorter wavelengths, as seen

in fig. 4.2, causes noticeable deviations in the bluer photometric bands such as u or g. In

the network-predicted data, the lack of scatter in stellar mass and metallicity, as well as

the lack of variance in SEDs in di↵erent mass bins, is reflected in the smaller range in

their contour diagrams.

Despite this, the adjustment to the spectra at these wavelengths through stochastic

correction brings the contours of mass-magnitude distributions marginally closer to those

of the TNG data, corresponding to samples with better estimates of stellar mass and
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Figure 4.6: Estimates of the five SDSS band magnitudes from the true and predicted spectra of
both central and satellite galaxies, shown as a function of stellar mass, with contour lines indicating
the tenth, fiftieth and nineteenth percentiles of their 2D distribution. These show a reasonable
similarity in all bands despite a slight reduction in the variance of magnitudes in the predicted
data. In both central and satellite data, the bimodal distribution of magnitudes can be seen in
relation to mass.
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Figure 4.7: Photometric colour distributions across the five bands, showing the di↵erences be-
tween two consecutive bands. The distributions, mostly bimodal, are in rough agreement between
datasets, however there are clear o↵sets in some of the data, such as bluer red galaxies in g � r,
and significantly smaller predicted ranges.

metallicity. However, the edges of the modified mass-magnitude distribution remain far

from the TNG target, again emphasising that the stochastic method does not completely

rectify the lack of variance in galaxy brightness, having a distinct lack of large fluctu-

ations, and that more direct implementation of dark matter quantities which influence

star formation events and their timescales more precisely may be necessary for accurate

photometry in mocks.

4.3.4 Photometric Colours

We display the colour distributions of the three galaxy datasets in fig. 4.7, which exhibit the

anticipated two-peak pattern in various band di↵erences, for central and satellite galaxies.

As a result, the network models di↵erentiate between “blue” galaxies that are actively

forming stars and “red” galaxies with quenched star formation. The tendency for high

mass galaxies to be quiescent and low mass galaxies to be star-forming is shown by the

colour-mass diagrams in fig. 4.8.

The SEDs in fig. 4.2 reveal the challenge of predicting luminosity at shorter wave-

lengths, which leads to systematic deviations in the bluer photometric bands in the net-

work output data. This is evident in fig. 4.7 with colour distributions such as u � g and

g � r, where numerous red galaxies are shifted towards bluer colours. The stochastic cor-

rection makes a small improvement to the distribution of colours of central galaxies, such

as increasing the “redness” of quiescent galaxies; but on the contrary, the distribution

of satellite colours is distorted. However, the change in the colours with respect to the
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Figure 4.8: Colour-mass distributions of the three galaxy datasets, shown for central and satellite
galaxies, and for four colours evaluated from neighbouring band magnitudes. This shows the
distinction between low mass “blue” galaxies and high mass “red” galaxies in all datasets, showing
that the network predicts this relationship. However, there is a smaller range of colours in the
predicted data which is not noticeably improved by the stochastic amendment. Contour lines
indicate the tenth, fiftieth and nineteenth percentiles of the 2D distribution of each dataset.

network’s predictions are not substantial, and this is most likely due to the correction’s

lack of constraint on recent or high mass features, which can have a profound e↵ect on

these colours. As mentioned in section 3.3.3, the lack of reshaping of the SFHs and ZHs

and small change in mass weighted ages per stellar mass bin can explain this small change

in photometry.

In fig. 4.9, we illustrate that errors in the g � r colour, like the total luminosity of

the galaxy, are proportional to residual Fourier modes. However, unlike the errors in

luminosity, this correlation is also evident for the Fourier modes in metallicity history.

Deviations in absolute colour residuals are similar in magnitude to visible deformations

of the g � r distributions shown in fig. 4.7, which may be explained by the absence of

short timescale events, resulting in narrower peaks of the distribution. Nonetheless, high-

frequency metallicity history features are uncommon in metal-rich galaxies with under-

estimated metallicities, and their colour error may be due to inaccurate star formation

histories instead.

The stochastic correction has nonetheless failed to rectify the errors in photometry to

the same extent as spectroscopy or physical properties of the galaxies. While the Spearman

coe�cients between SFH and colour residuals for centrals and satellites are reduced from

0.408/0.400 to 0.122/0.133 respectively, the changes to the residuals are not significant,

indicating that the colours cannot be rectified using only this high frequency component
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Figure 4.9: For the data shown in figs. 4.3 and 4.5, this figure shows 2D histograms of the
absolute di↵erence between true and predicted g� r colours and the mean high-frequency Fourier
amplitudes of their star formation histories (top row) and metallicity histories (bottom row). This
clear correlation indicates the importance of measuring short-timescale star formation and chemical
enrichment events in the aim to calculate accurate colours.
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of the star formation history.

The short-lived bursts of star formation which we aim to model have a consider-

able impact on the accuracy of photometric colours, especially when they occur recently

(Chaves-Montero & Hearin, 2021; Fraser, Tojeiro, & Chittenden, 2022). However, the

stochastic model does not predict large fluctuative events in the formation histories, nor

does it strictly constrain late-time features, which contribute significantly to the spectral

shape, and thus the colours derived from the spectrum.

While the inclusion of large spikes which the correction fails to reproduce would im-

prove luminosity calculations, the timing of such features would be imperative to accu-

rately determining colours. If a robust Fourier-based correction does not accurately amend

photometric colours, a method with explicit use of time information, such as a wavelet

transform, may prove necessary.

4.4 Summary

This chapter details our investigation of the observational properties which were computed

by applying the FSPS code to three sets of star formation and metallicity histories: those

from the TNG predicted by our neural network model, and those adjusted by the stochastic

model described in section 3.3. Specifically, we examined the spectral energy distributions

of these galaxies from near-ultraviolet to near-infrared wavelengths, and from these derived

photometric band magnitudes and colours, and H↵ emission line luminosities. Based on

these analyses, we have drawn the following conclusions:

1. Predicted spectral energy distributions for galaxies of a given mass are similar in

their average luminosity to their targets, but slightly lower in the mean and variance

of this amplitude. The stochastic amendment is able to rectify this to a varying

extent, being significant for intermediate mass but not high mass galaxies. These

results correspond to the physical properties described in detail in chapter 3, which,

while recovering similar summary statistics to the original simulation, are marginally

improved by the stochastic correction.

2. Central galaxies are more pervious to underpredicted luminosities than satellite

galaxies. We argue that this is due at least in part to the well-defined timescales
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of satellite quenching, and the prevalence of quenched satellites e↵ectively eliminat-

ing errors due to missing SFH and ZH features. The underpredicted luminosities

of most galaxies are partially rectified by the stochastic correction, suggesting that

these missing features are important to the calculated spectrum.

3. Inaccuracies in the network’s predictions, namely the abscence of short-timescale

SFH and ZH features, results in a reduced range of band magnitudes, emission line

luminosities and photometric colours; as well as misaligned UV band photometry.

The residuals in many of these quantities between the TNG and network-predicted

values are strongly correlated with high frequency Fourier modes, illustrating that

this is in fact a consequence of the lack of high frequency information in the net-

work’s predictions. Despite this, the stochastic correction has only a small e↵ect on

photometric quantities. The high mass features which have profound e↵ects on the

total luminosity and thus photometry are not well modelled by the stochastic amend-

ment, whereas smaller features which typically influence emission line luminosities

are modelled more accurately.

We have shown that our neural network which incorporates a causal model of the

galaxy-halo connection can be used to indirectly predict spectroscopic and photometric

galaxy properties, and recover important observational statistics, such as the colour bi-

modality of galaxies as a function of mass. The predictions of the model when applied

to high volume N-body simulations, which we investigate in chapter 5, can therefore be

used to predict observations which reflect the underlying galaxy-halo connection, and by

complementing large, deep galaxy surveys can be used to gain insight into the GHC in

the real universe.

Nevertheless, the SEDs corresponding to neural network predictions contain inaccura-

cies derived from errors in the prediction of physical properties. The stochastic correction

has made some noticeable improvements to the predicted observables, yet this too is sub-

ject to systematic inaccuracies, which result in limited improvements to photometry. This

suggests that a more vigorous correction algorithm is required for comprehensive galaxy

mocks, if not an updated machine learning model.
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This chapter is based on the methodology and results presented in

Chittenden, Tojeiro, & Kraljic (in prep.).

5
Dark Simulations

5.1 Introduction

In previous chapters, the machine learning model predicting galaxy formation histories

in the TNG simulations is described and tested, replicating important physical and ob-

servational galaxy-halo statistics. Having computed these results solely from the dark

matter component of these galaxies, it is in principle possible to reproduce similar galaxy

properties using pure dark matter simulation data, which, as discussed in section 1.3.1, is

a means to producing a highly detailed galaxy formation catalogue on scales beyond the

computational limits of full physics simulations; from which numerous enterprises would

benefit (Habouzit et al., 2022; Johnston et al., 2023; Yuan et al., 2023). In practice, how-

ever, the N-body simulation data di↵ers from its equivalent hydrodynamical model due to

the abscence of baryons (Castro et al., 2020; Anbajagane et al., 2021; Haggar et al., 2021;

Mansfield & Avestruz, 2021; Riggs et al., 2022). Furthermore, alternative models and

parameterisations of the N-body simulation in question can a↵ect the properties of their
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halos, including the simulation resolution (Knebe et al., 2000; Rau et al., 2013; Angulo

et al., 2014), the choice of cosmological parameters (Dooley et al., 2014; Villaescusa-

Navarro et al., 2021), and the algorithms identifying halo and cosmic structures (Onions

et al., 2012; Garćıa & Rozo, 2019; Zhang et al., 2022).

In this chapter, we investigate the e↵ects of applying the machine learning model

to data from dark simulations, in order to assess the suitability of the existing model

for applications involving the scales of high fidelity N-body simulations. Specifically, we

examine the impact of the absence of baryonic physics on the TNG simulations’ dark

counterparts to the hydrodynamical data utilised thus far (hereafter TNG-Dark), and

we investigate the e↵ects of lower resolution or di↵erent measures of halo properties on

the pure dark matter simulation Uchuu (Ishiyama et al., 2021), which assumes the same

Planck Collaboration (2016) cosmological model as all TNG simulations, thus eliminating

any discrepancies relating to matter density, growth timescales or cosmic expansion. For

specifics regarding the simulation parameters and further details of the simulation suites,

see table 2.1.

By computing suitably accurate data in the Uchuu simulation, we e↵ectively demon-

strate that the neural network can be applied to existing high volume N-body simulations,

and reproduce detailed galaxy formation histories reflecting the galaxy-halo connection

in TNG, in volumes exceeding the largest present-day cosmohydrodynamical simulations.

However, a number of logistical challenges are presented. Beside the lack of baryons, the

Uchuu simulation has lower mass resolution than the TNG simulations, and halo vari-

ables including mass and half-mass radius are calculated using di↵erent methods to those

used in TNG. Accounting for alternative data when applying novel methods is common in

galactic astrophysics; yet for a machine learning model trained on a specific dataset, the

failures of the model when applied to another simulation reflect the true versatility of the

model, and provide insights into the necessary adjustments to advocate its practicality in

independent applications.

In this chapter, section 5.2 covers the definitions of the dark matter data in the TNG-

Dark and Uchuu simulations, as well as our data acquisition techniques. We compare and

discuss the input data properties in section 5.3, while section 5.4 focuses on the baryonic

output of the neural networks as well as the derived observational results, highlighting
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di↵erences between the original TNG data and the network’s predictions in the hydro-

dynamical simulations (TNG-Hydro), and the TNG-Dark and Uchuu data. The model’s

ability to e↵ectively model the GHC on gigaparsec scales are debated in section 5.5, with its

successes and failures presented alongside potential changes to the model design. Finally,

we summarise our findings in section 5.6.

Note that the stochastic correction introduced in section 3.3 and evaluated using ob-

servational data in section 4.3 is not discussed in this chapter. As the objective of this

chapter is to compare direct predictions of the neural network under di↵erent simulations

and isolate the causes of resulting discrepancies, adjustments which may add further ef-

fects to the data, potentially depending on the simulation in question, are intentionally

excluded.

5.2 Dark Simulation Data

5.2.1 TNG-Dark

The TNG-Dark simulations have a resolution comparable to their hydrodynamical coun-

terparts, as shown in table 2.1; implying that resolution-related e↵ects can be largely ruled

out. Additionally, the domain of cosmic redshifts at which their snapshots are defined is

identical in both hydrodynamical and dark simulations. The primary distinction between

the two simulations is therefore the lack of baryonic e↵ects on the halos in the TNG-Dark

simulations.

To evaluate the variations between the dark and hydrodynamical TNG simulations,

samples in the dark simulation are obtained by cross-matching SubLink trees (Nelson

et al., 2015; Rodriguez-Gomez et al., 2015) with the hydrodynamical dataset discussed

in previous chapters. Samples in TNG-Hydro without a cross-matched subhalo in TNG-

Dark are disregarded. This selection process has a negligible e↵ect on the z = 0 halo mass

distribution of our data for central halos, yet for satellite objects, the sample count begins

to decline rapidly, below approximately 4⇥ 1010M�.

In general, there are two reasons why objects in one simulation may not be accurately

paired with objects in the other simulation. First of all, halos close to significantly larger

halos may move within the larger halo’s virial radius in one of the two simulations, leading

to central halos being paired with satellites, and vice versa. Second, and especially for
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lower mass objects, the SubFind algorithm may combine two separate subhalos into a single

entity, resulting in one of the low mass subhalos being undefined in the lower resolution

simulation; that being TNG-Dark. These e↵ects collectively result in the removal of 39%

of our satellite subhalos, compared with only 1% of central halos.

The majority of TNG-Dark variables were calculated using the same methods as those

used in the hydrodynamical simulations, i.e. as discussed in section 2.4. However, there

is one exception: the distances to points in the cosmic web at redshift zero, defined us-

ing DisPerSE. Because of the geometric relationship between the hydrodynamical and

dark simulations, these distances are identical to their cross-matched counterparts. Con-

sequently, we attribute the cosmic web characteristics of TNG-Hydro samples to their

cross-matched equivalents in TNG-Dark, as there is no publicly available data for the

latter.

5.2.2 Uchuu

The merger trees within the Uchuu simulation are divided into 2,000 “Forests”, each of

which consists of a collection of merger trees containing all halos which have interacted

with any member of that forest. These forests are situated in a distinct volume of space,

separate from all other forests. As a result, each forest can be analysed separately, as

the Consistent-Trees algorithm (Behroozi et al., 2012b) used to create the merger trees

in Uchuu is executed autonomously in groups occupying a fixed volume. If they interact

or come within 25 Mpc/h of one another, the groups are concatenated to form a forest

(Ishiyama et al., 2021).

For this study, we focus on forest 1411, which is the largest forest in the Uchuu simula-

tion. We obtain comparable samples to the TNG dataset by selecting from the TNG-Dark

halo mass distribution and sampling the Uchuu forest at z = 0 accordingly, as shown in

fig. 5.1. This yields approximately 30,000 central and satellite halos each from the Uchuu

forest.

Given that the selected Uchuu forest has a geometric mean side length of about 234

Mpc, and hence a volume similar to that of the TNG simulations, sampling the (sub)halo

mass distributions e↵ectively approximates the (sub)halo mass functions of Uchuu for

high mass halos. At lower masses, sampling Uchuu in accordance with the TNG-Dark
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Figure 5.1: This graph depicts the distributions of central halo and satellite subhalo masses in the
entire Uchuu forest, shown in purple, and our cross-matched TNG-Dark sample, shown in green.
By drawing samples from the former distribution according to the latter, we derive the distribution
of Uchuu halos used in our study, represented by the orange histogram. The distribution of central
halos closely resembles the TNG-Dark data, but the lack of well-defined satellite subhalos at low
mass results in a skewed distribution of satellite subhalos in our Uchuu dataset.
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distribution makes it possible to compare attributes across multiple mass ranges without

being influenced by sample size. While this selection becomes our test data for the neural

network, environmental quantities are computed using the entire Uchuu forest and are

considered unbiased due to the TNG and Uchuu simulations having identical cosmic matter

density parameters.

We utilise the YTree Python package to extract the MPBs from the Uchuu forest. From

the forest, we directly acquire information on halo mass, half mass radius, positions, and

peculiar velocities. We obtain cosmic web distances by employing the DisPerSE algorithm

on the forest. As the forest is a self-consistent subset of Uchuu, the algorithm does not

need to be executed upon the entire Uchuu simulation. We calculate all other quantities,

such as overdensities, using the same methods as in section 2.4.

In contrast with TNG, there are no SubLink merger trees in Uchuu, and halos along

with their substructures are defined according to the Rockstar algorithm (Behroozi et al.,

2012a). Rockstar calculates a hierarchical series of halo structures which exist within a

larger ensemble. In each Uchuu merger tree, there exists a flag indicating the ID of the

halo which houses the target halo. A “first order” satellite halo is one that is hosted by

a central “zeroth order” halo, a “second order” halo is hosted by a first-order halo, and

so on1. First-order halos are therefore considered satellite halos in this work, while zeroth

order halos are defined as central halos.

The data presented in table 2.1 indicates that the mass resolution of Uchuu is around

ten times lower than that of TNG300 simulations. Consequently, Uchuu has poor resolu-

tion for low mass haloes, and due to the quality control measures discussed in section 2.4,

the number of satellites below approximately 2⇥1011M� is reduced. This is corroborated

by fig. 5.1, showing a very di↵erent distribution of subhalo masses below this threshold.

A second aspect to consider is the variation in the time resolution of the Uchuu snap-

shots when compared to TNG, which is shown in fig. 5.2. Although Uchuu has half as

many snapshots as TNG, the time interval between the snapshots is smaller than TNG

for redshifts ranging approximately from 2 to 4, but larger for other redshifts. In both

simulations, all temporal features are linearly interpolated over the same 33 snapshots

in TNG. However, due to the infrequent nature of these snapshots in Uchuu, there is a

1
See fig. 2.6 for an illustration and description of this hierarchical merger tree structure.
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Figure 5.2: This schematic illustrates the redshifts and cosmic time of the snapshots for the
TNG simulations represented in red, and for the Uchuu simulation in blue. Despite having fewer
snapshots than TNG, Uchuu has a higher temporal resolution during early times and is more
sparsely sampled for z < 2.
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possibility that information pertaining to short time scales may not be captured.

5.3 Halo Variables

The procedures used to obtain input data for each simulation in this chapter are the

same as those described in section 2.4. However, there exist notable di↵erences in the

definitions of properties and their statistics depending on the model, which are a↵ected by

factors such as the exclusion of baryons or the resolution of the data. In this section, we

examine the similarities and di↵erences in the input properties of the neural network in

each simulation, and how these variations can impact the predictions made by the neural

network.

To examine the di↵erences in various evolutionary stages, we compare properties for

central and satellite halos that are sorted into di↵erent mass and accretion history bins.

For central halos, we categorise halos with distinct accretion histories based on the specific

mass accretion gradient �, which Montero-Dorta et al. (2021) have demonstrated to be

linked to gas fraction, quenching timescale, and assembly bias in TNG300. In section 2.4.1

we introduce this parameter both as an input variable to the model, and as a measure to

establish quality cuts for both central and satellite datasets. For modeling satellite subhalo

histories, it is not as e↵ective due to the di↵erent modes of accretion in their central and

satellite phases, hence we use the scaled accretion time amax, which was introduced as an

input variable in section 2.4.1. Like �, amax is explicitly derived from the subhalo mass

accretion history and is linked to satellite galaxy characteristics, as shown by Shi et al.

(2020).

The tabular figures used in this chapter compare di↵erent halos based on their histories.

The subplots are arranged such that each column represents a quintile of halo or subhalo

mass, with the larger masses being on the right side of the plot. Each row represents

a quartile of accretion gradient, with the steepest accretion histories appearing on the

topmost row. For the satellites, the higher amax values are placed on the top row, whereas

central galaxies have the smallest � values on the first row, such that the earliest half-mass

formation times appear on the topmost row in both cases. The percentiles used in this

arrangement are taken from the TNG-Hydro data. All figures of this kind follow this

convention to ensure that the gas-poor halos or subhalos with the earliest formation times
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appear on the top row.

5.3.1 Mass Accretion History

In TNG, the mass of halos and subhalos is determined by adding up the mass of all

the dark matter particles bound to the group, as determined by the FoF and SubFind

algorithms, respectively. While this specific field is not present in the Uchuu merger trees,

there are several definitions of mass that are available. As established in section 2.4.1, the

closest match to the TNG object masses which exists in both TNG and Uchuu is found

to be M200c, defined as the total mass enclosed within a region with an overdensity 200

times that of the critical density of the universe.

The mass accretion histories of halos in TNG-Dark and Uchuu exhibit similar patterns,

leading to similar overall mass distributions, regardless of the chosen halo mass field. As a

result, the neural network predictions are also similar when using M200c to represent halo

masses in TNG, as when using the SubFind mass. As this suggests that the di↵erences

in these halo mass properties has little e↵ect on the predictions of the model, M200c is

chosen as the field to represent halo masses in Uchuu, and calculations which depend on

halo mass, such as overdensities, are performed using this quantity.

Jiang et al. (2014) show that these mass definitions tend to agree well, provided that

there is a unique bijection between FoF and Dhalo merger trees2 for well-resolved halos;

whereas the variance in the ratio of these masses owes predominantly to large substructures

outside the virial radius: usually infalling or di↵use halos. In Millennium-II (Boylan-

Kolchin et al., 2009), an N-body simulation of similar resolution to TNG, Jiang et al.

(2014) show that this is the case for most halos above 109M�, therefore this mass property

can be assumed for the majority of TNG samples in this work, while the abscence of low

mass Uchuu satellites owes to quality cuts of the mass accretion histories (see section 5.2.2),

which likely removed samples with significant halo mass discrepancy.

Figures 5.3 and 5.4 illustrate the median and range between the fifteenth and eighty-

fifth percentiles of the mass accretion histories, separated into bins based on the final

(sub)halo mass and mass accretion gradient. In the majority of bins, the mass accretion

2
The Dhalo algorithm developed by Jiang et al. (2014) is a method of constructing halo merger trees by

linking subhalos over intervals of multiple snapshots, avoiding the false unification of distinct substruc-

tures, which is an issue with some halo finder algorithms.
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Figure 5.3: This schematic illustrates how the mass accretion histories of central halos are
distributed according to the halo mass and specific mass accretion gradient. The horizontal axis
represents the halo mass and increases in value from left to right, while the vertical axis shows the
specific mass accretion gradient and decreases in steepness from top to bottom. The solid lines
display the median mass accretion history for each bin, while the shaded regions represent the
15th � 85th percentile ranges of the binned data. The mass accretion histories for the TNG-Hydro
simulations’ training and testing datasets are presented in red and blue, respectively, while the
green and purple data correspond respectively to the TNG-Dark and Uchuu simulations.
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Figure 5.4: Mass accretion histories of satellite subhalos, categorised similarly to fig. 5.3, with the
satellite subhalo mass mh replacing the central halo mass Mh, and the scaled accretion time amax

replacing the specific mass accretion gradient �. The same colour and percentile schemes used in
the previous figure are adopted here. One significant di↵erence between these accretion histories
and the previous ones is that the satellite subhalos’ accretion approaches zero or becomes negative,
which is uncommon to central halos. The various times at which the growth of the median subhalo
terminates is shown in various growth regimes.

histories are alike between the four datasets. However, there are di↵erences between

the simulations, specifically in low mass and shallow gradient scenarios. In such cases, the

amplitude of the Uchuu mass accretion histories is lowered, while TNG-Dark halos display

increased mass accretion at early times in the low mass regime.

The increase in mass for low-mass halos in the early stages is most likely due to the

lack of baryonic-driven outflows, which significantly impact objects of a high gas fraction.

On the other hand, the lower accretion rates in the Uchuu simulation are attributed to its

lower mass resolution. For shallow gradient bins, the Uchuu accretion histories display a

flat profile, similar to the TNG samples which were discarded by existing quality cuts.

Since Uchuu has lower mass resolution than any of the TNG simulations, the resolu-

tion of low mass halos in Uchuu will be poorer. In the lowest mass quintile, predicting

galaxy evolution accurately from the start may be di�cult due to the sensitivity of TNG’s

star formation algorithm to the number of dark matter particles (Pillepich et al., 2017a).

Montero-Dorta et al. (2021) show that halos with shallower accretion gradients tend to

form later, as seen in our Uchuu data; therefore halos in any given mass bin will be of
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Figure 5.5: This figure illustrates the evolution of the half-mass radius of central halos over time.
It is presented in the same tabular format as in fig. 5.3, with identical halo mass and accretion
gradient bins.

lower mass at most nonzero redshifts, which means that they will be subject to similar

resolution e↵ects. For satellites with shallow accretion, there is a noticeable decrease in the

median accretion rate compared to TNG, which is most likely due to the lack of low-mass

objects being accreted onto the halo.

5.3.2 Half-Mass Radius

The most significant di↵erence between Uchuu and TNG data is the half-mass radius of

the halos. This is shown in figs. 5.5 and 5.6 for central and satellite haloes, respectively.

In low mass and shallow gradient bins, there is a clear di↵erence in the size evolution of

haloes in Uchuu when compared with TNG. However, there are also small but noticeable

di↵erences in most other bins and at most times, with the haloes in Uchuu being slightly

larger.

The central halos in TNG-Dark have a slightly smaller half-mass radius in high mass

bins than the other simulations. This phenomenon could be elucidated by the findings of

Haggar et al. (2021) and Riggs et al. (2022), showing that the number density of halos

which are gravitationally bound to a galaxy group or cluster is underestimated in dark

simulations relative to the hydrodynamical equivalent, within two virial radii of the cluster

or galaxy group. The cause is due to the high density of baryons in the central region of
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Figure 5.6: The half-mass radius growth of satellite subhalos, displayed in a tabular format
similar to fig. 5.4, including the same bins for halo mass and scaled accretion time.

the large object, which subsequently concentrates its density profile.

Chua et al. (2019, 2022) find that the presence of baryons has a notable impact on the

radial profiles and asymmetries of halos in the TNG and Illustris simulations. However,

based on our findings, this e↵ect does not a↵ect the evolution of halo size in TNG-Dark as

compared with the hydrodynamical simulation. To ensure that all variables used in our

model were appropriate for the TNG-Dark simulation, they were compared with the full

physics simulation at all times. However, in Uchuu, the half-mass radius is determined

using the virial mass rather than the SubFind method used in TNG.

In the TNG simulation, the SubFind algorithm is used to determine subhalo boundaries

by identifying a contour of constant density that meets a saddle point in the local density

field (Springel et al., 2001). The half-mass radius is then calculated as the radius enclosing

half of the mass within this boundary. On the other hand, in Uchuu, the half-mass radius

is calculated based on a spherical region which encloses the virial mass (Ishiyama et al.,

2021). This calculation depends on the density profile of the halo, which is derived from

a direct fit of an NFW profile using the Rockstar halo finder (Behroozi et al., 2012a).

As stated in sections 2.4.1 and 5.3.1, the di↵erent algorithms for calculation of halo

mass yield similar results, making little di↵erence to the training and testing of the ma-

chine learning models. We find similarly, in TNG, that the radii of haloes established by
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these means are also tightly correlated. However, the NFW fitting method used in Uchuu

may prove to be an inaccurate measure of the halo’s size and structure at a given mass, due

to non-virial features, e.g. irregular shape owing to merger activity and tidal asymmetry;

and the overlap of distinct halo structures, which can a↵ect the agreement between virial

and FoF mass, as established in section 5.3.1. The concentration of these haloes, scaling

inversely with half-mass radius, may be exaggerated if the halo in question has not under-

gone su�cient internal gravitational collapse; yet figs. 5.5 and 5.6 appear to downplay the

halo concentration instead. The concentration parameter is additionally sensitive to the

resolution of the halo being fit, which arguably has a more substantial influence on the

halo profile. We therefore argue that the simulation resolution has greater e↵ect on the

half-mass radius quantity than the halo finder; and due to the strong agreement between

the FoF and virial masses of most data, the di↵erent mass definitions used in TNG and

Uchuu are also considered less important than the resolution di↵erence, yet this could also

influence the half-mass radius calculation for low mass halos.

Zhao et al. (2009) demonstrated that the increase of the NFW concentration parameter

over time in N-body simulations is dependent on the time of formation of 4% of the

final halo mass, while Prada et al. (2012) find that the concentration is also sensitive

to fluctuations in the linear density field on the scale of the halo’s mass. These factors

rely on the simulation’s resolution, which can impact the growth of halo concentration

by producing more extended mass distributions at late times and smaller radii of low

mass haloes at early times. Ishiyama et al. (2021) show that the smaller, higher resolution

Shin-Uchuu simulation exhibits di↵erent mass-concentration relations relative to the larger

Uchuu model, indicating that structural di↵erences between simulations are resolution-

dependent. Additionally, morphological halo quantities such as virial velocity and axis

ratios are a↵ected by the gravitational softening scale, which is larger in Uchuu than in

TNG, potentially resulting in a flatter Mh � vmax relation at low mass and a similarly

altered mass-concentration relation (Mansfield & Avestruz, 2021).

The smaller, younger halos are most a↵ected by the di↵erence in halo concentration

due to Uchuu’s lower resolution, both for central and satellite halos. These halos are more

likely to experience delayed growth in the Uchuu data because they are growing from low

mass progenitors. The subhalo finder algorithm is unlikely to have a significant impact

on the inferred halo shape, as long as the subhalo has a su�cient number of particles
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(Ho↵mann et al., 2014), which is not the case for low mass, low resolution halos. Thus, the

delayed growth of the half-mass radius is primarily a resolution e↵ect and is independent

of the algorithm used to define the halo. However, Rockstar is believed to be superior

to most algorithms in identifying halo substructures in dense halo centres (Onions et al.,

2012), which can a↵ect the value of the half-mass radius. The larger range of radii seen

in some images from Uchuu for all times suggests that this is also an important factor to

consider.

5.3.3 Maximum Orbital Velocity

Our model employs a proxy for the virial circular velocity of the halo, which is based

on the two aforementioned quantities: halo mass and half-mass radius. The reason for

the use of a proxy despite the definition of orbital velocities in the simulations is the

significant di↵erences between the orbital velocities observed in TNG-Hydro and TNG-

Dark, particularly at high redshifts.

Owing to the displayed discrepancies in these quantities with the Uchuu data, the

median values of the circular velocity are slightly underestimated. Nevertheless, the shape

of the median curve remains consistent with its TNG counterparts. Conversely, the proxy

tends to be overestimated in TNG-Dark for low mass bins, due to excess mass accretion.

A similar trend is observed for high mass centrals, albeit to a lesser extent and as a result

of smaller half-mass radii.

5.3.4 Local Environment

In our neural network model, we have assessed the environmental histories of central and

satellite haloes by considering subhalo overdensities for each snapshot in the simulation.

Additionally, we have introduced a radial skewness (skew) parameter to capture the inter-

action histories of these halos. In section 3.4.3 we argue that, although mass and structure

features are crucial in predicting the star formation histories of the galaxies in these halos,

these environmental properties have been demonstrated to be important in predicting the

metallicity histories of TNG galaxies.

As mentioned previously, the Uchuu catalog defines halo substructure di↵erently by

using hierarchical, nested Rockstar halos in place of subhalos. Consequently, overdensity

and skewness calculations are based on halo tracers.
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Figure 5.7: The histograms in each panel illustrate the probability density functions of logarithmic
dark matter overdensities, contained in a spherical region of 5Mpc radius, surrounding halos at
z = 0 in the four simulation datasets. The distributions of overdensity are comparable for most
mass and accretion histories across the simulations, with the exception of the Uchuu dataset, which
generally has higher densities due to the use of halo tracers.

Figure 5.7 shows that overdensities in Uchuu are marginally larger than those in TNG-

Dark. In simulations with lower resolution, the calculation of environmental properties is

more susceptible to edge e↵ects of the calculation volume, and the calculation of the halo’s

centre of mass by the Rockstar algorithm being sensitive to the positions of the 0.1% most

gravitationally bound particles (Behroozi et al., 2012a), which are of course influenced by

the simulation resolution. These factors may contribute to the di↵erences in overdensity.

However, the skew is not significantly a↵ected by resolution di↵erences. Since the skew

is a mass-weighted quantity and independent of scaling, the di↵erence in overdensities is

most likely due to the mass content of the contributing density tracers. The invariance of

the skew may imply that the ambiguity of the halo centres of mass is insignificant within

the calculation volume, however this is more likely to influence the contribution of low

mass objects, or tracers near the boundary of the calculation volume; which are more

influential to the calculation of overdensity than they are to the calculation of skew.
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Figure 5.8: This figure depicts the star formation histories of central galaxies grouped by halo
mass and specific mass accretion gradient. In low mass bins, TNG-Dark overestimates star forma-
tion rates, while Uchuu underestimates them. In higher mass bins, the di↵erence between the two
simulations becomes less pronounced.

5.4 Galaxy Quantities

In this section, we will describe how incorporating the various simulation variables into the

neural network a↵ects the quality of predictions. After outlining the causes of di↵erences

in halos and environments between simulations in section 5.3, we will examine how these

di↵erences impact both direct predictions and derived halo-galaxy relationships, while also

o↵ering a physical rationale for discrepancies in physical and observational results.

5.4.1 Star Formation History

Figures 5.8 and 5.9 illustrate the median and 15th�85th percentile ranges of projected star

formation histories, categorised by final (sub)halo mass and mass accretion gradient. The

results demonstrate that galaxies in high mass and rapid accretion bins are generally well-

matched, but in low mass bins, there are significant di↵erences. Specifically, star formation

rates in TNG-Dark are overestimated, while in Uchuu, they are underestimated.

Figure 5.9 may give the impression that most Uchuu satellite galaxies have a signifi-

cantly lower predicted stellar mass. However, this is deceptive due to the lack of low-mass

halos. The two lowest mass bins contain only 12% of the satellite galaxies in Uchuu, in

141



Chapter 5. Dark Simulations

Figure 5.9: This figure displays the star formation histories of satellite galaxies grouped in
the same manner as in fig. 5.8. The figure reveals seemingly inadequate predictions for the star
formation histories of low mass galaxies in Uchuu. However, it should be noted that several of
these bins in the Uchuu data have low population and are characterised by low-quality haloes.

contrast to 40% in TNG. Nevertheless, these star formation histories are still strongly

underpredicted, and inadquate for use in Uchuu models. As their halo histories have

demonstrated, these objects acquire their mass at a later time and at a slower rate than

TNG halos of the same evolutionary regime. This is particularly evident for satellite

galaxies, as shown by figs. 5.4 and 5.6.

Table 5.1 displays Spearman correlation coe�cients for halo and galaxy properties in a

narrow, low mass bin, for both central and satellite objects in Uchuu. The results indicate

a strong correlation between final stellar mass and the circular velocity proxy in the Uchuu

data, which is slightly smaller relative to the TNG data. There are also weaker correlations

observed between final stellar mass and half-mass radius and overdensity, both of which

exhibit di↵erences in the Uchuu data.

However, the correlation between underpredicted star formation histories in fig. 5.9 and

undermined mass accretion histories in fig. 5.4 is particularly clear for low mass satellites,

and this would have had a causal e↵ect on their galaxy growth from an early stage in their

evolution. Acquiring star-forming gas is particularly crucial during early times, which

would explain the lack of subsequent star formation in these predictions. Davies et al.

(2019) show that in TNG simulations, low-mass halos exhibit a high gas fraction, hence
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Input Variable
Stellar Mass Metallicity

Central Satellite Central Satellite

Circular Velocity 0.783 0.637 0.693 0.361
Half-Mass Radius -0.566 -0.573 -0.602 -0.314

Overdensity 0.176 0.298 0.174 0.142

Table 5.1: Spearman correlation coe�cients of various halo characteristics with metallicity and
stellar mass, in narrow bins of relatively low (sub)halo mass. All the parameters are evaluated at
the final snapshot of the Uchuu simulation. The centrals are considered in a halo mass range of
11.77 < logMz=0

h < 11.97, whereas the satellites are taken from a mass range of 10.9 < logmz=0
h <

11.1.

the star formation at early times is likely to be sensitive to the lack of accumulation of

low-mass progenitors.

By comparing the neural network’s performance on TNG-Dark with TNG-Hydro, we

observe that the predicted star formation histories are boosted rather than reduced, in

conjunction with excessive mass accretion rates. Sorini et al. (2022) have demonstrated

that gas accretion and stellar feedback processes exert their greatest influence on the size

and shape of halos and large-scale structures at higher redshifts. Furthermore, they suggest

that stellar feedback is the primary cause of the suppression of star formation in low-mass

objects. The absence of stellar feedback in dark simulations would have restricted the

e↵ects resulting in halo mass loss, which are especially prominent for low-mass objects.

The overabundance of mass accretion in TNG-Dark would have led to an overestimation

of the star formation rate.

Figure 5.10 shows the self-consistent and accurate stellar-halo mass relations obtained

by numerically integrating the star formation histories of each simulation, as in eq. (2.24).

There is little di↵erence between the relations predicted by the TNG-Hydro and TNG-Dark

simulations, except for a slight reduction in scatter in the dark predictions. However, the

di↵erence between the Uchuu simulations’ stellar and halo mass distributions is noticeable,

particularly at low masses. While there is a small underprediction of mass and scatter

between intermediate to high masses, the Uchuu SHMR remains well-matched to the

predictions in TNG-Hydro and TNG-Dark.

In the Uchuu simulations, reduced star formation rates lead to a significant bias towards

lower stellar masses at low masses. Although low mass satellite halos have already been

removed from our analysis, distorting the remaining halo mass distribution, there are still
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Figure 5.10: This figure depicts the quantitative SHMR of central galaxies (left) and satellite
galaxies (right) based on numerical integration their star formation rates. Each individual galaxy
is denoted by a data point, and the error bars denote the median and the fifteenth and eighty-fifth
percentiles of stellar mass within a specific halo mass range. The similarity in the shapes of these
relationships implies accurate prediction of the star formation histories in dark simulations.

a considerable number of objects with severely underestimated stellar masses for halo

masses below approximately 2 ⇥ 1011M�, indicating that satellite objects in this mass

range cannot be relied upon.

However, in the high mass bins, the majority of the stellar mass in both dark simulation

datasets forms earlier than in TNG-Hydro. This is illustrated in fig. 5.11 by displaying

the mass-weighted ages of galaxies in bins of stellar mass, indicating a bias towards older

ages for high mass galaxies. This is partly due to a sharp increase in both halo and

stellar mass at earlier times, followed by a more rapid decline in star formation rate, as

shown in figs. 5.8 and 5.9. In TNG-Dark, the star formation histories initially align with

TNG-Hydro, but the decline in star formation rates eventually matches the weaker star

formation observed in Uchuu. In other words, the quenching of these galaxies is more

e�cient than in their hydrodynamical counterparts.

According to Davies et al. (2019), the expulsion of the circumgalactic medium in both

TNG and Eagle simulations is strongly correlated with the central black hole mass of

the galaxy, which in turn influences the specific star formation rate. Observationally,

Bluck et al. (2020) found that the central velocity dispersion, which e↵ectively measures

the AGN mass, is a crucial factor in galaxy quenching in MANGA observations. This

parameter is also correlated with the circular velocity and half-mass radius of the halo.

Donnari et al. (2020) demonstrated that equivalently in TNG, internal feedback quenching

mechanisms dominate central galaxy quenching, while environmental e↵ects dominate
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Figure 5.11: This figure shows the mass-weighted ages of central galaxies (left) and satellite
galaxies (right) as a function of predicted stellar mass for the four simulation datasets, shown
using the median and interquartile range of ages in di↵erent mass bins. This shows accurate
recovery of the trend of age with mass in the dark simulations, yet there is a bias towards higher
ages which increases with mass.

satellite quenching. These findings are in qualitative agreement with other hydrodynamical

and semi-analytic models, as well as low-redshift SDSS data (Donnari et al., 2021).

Figure 5.5 demonstrates that in TNG-Dark, the half-mass radius of high mass halos

is underestimated, which results in an overestimated halo concentration; closely related

to the density and dynamics of the region surrounding the halo centre on sub-kiloparsec

scales, as measured by the velocity dispersion. For galaxies of this mass, it is likely that

an AGN dominates this region. Thus, overestimating the concentration can lead to an

overprediction of AGN feedback, triggering early quenching of these galaxies.

5.4.2 Metallicity History

Figures 5.12 and 5.13 show the median and 15th�85th percentile ranges of the metallicity

histories of central and satellite galaxies in the four datasets. These demonstrate the

inability to predict metallicity histories of low mass objects in Uchuu, exemplified by

underpredicted chemical enrichment in the majority of satellite galaxies. Despite this,

most intermediate to high mass central halos show good agreement between Uchuu and

TNG.

When we compare the metallicity histories seen in TNG-Hydro, TNG-Dark, and Uchuu

with their star formation histories, we find similarities. Given that the gas and metal com-

position of these objects’ progenitors are crucial to early metal production, the suppression

of chemical enrichment in low mass galaxies can be explained by the absence of early accre-
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Figure 5.12: Metallicity histories of central galaxies, tabulated by halo mass and specific mass
accretion gradient. This shows similar characteristics to the star formation histories in fig. 5.8, yet
the low mass Uchuu samples are of particularly poor quality. However, the metallicity histories
derived from dark simulations are generally very similar to the hydrodynamical predictions.

Figure 5.13: Metallicity histories of satellite galaxies, tabulated according to subhalo mass and
scaled accretion time. These show similar characteristics to star formation histories in fig. 5.9,
with overprediction in TNG-Dark and underprediction in Uchuu.
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Figure 5.14: The numerical mass-metallicity relation is presented for central galaxies in the left
panel and satellite galaxies in the right panel, with total stellar mass and mass-weighted metallicity
values obtained by use of eqs. (2.24) and (2.27).

tion. It is also possible to explain the exaggerated metal synthesis in low mass TNG-Dark

galaxies by the absence of stellar feedback, which would cause stars to retain more of their

mass and synthesise metals more e↵ectively.

Similar but weaker relationships between stellar metallicity and structure and density

parameters are observed in small mass bins. However, our findings discussed in section 3.4

imply that chemical enrichment is influenced significantly by environmental history. We

demonstrate that the calculated overdensities in Uchuu are slightly higher than in TNG,

which can a↵ect metallicities by foretelling an excess of mergers and flybys that redis-

tribute the metals into high mass galaxies and thus contribute to quenching. Radial

skews, which are used to track the anisotropic nature of these interactions, are demon-

strated to have a significant impact on metallicity history. These are di�cult to compare

between simulations due to the lack of correlation with other halo properties, however

the low number density of halos surrounding low mass objects can fail to produce the

high skews encountered during close encounters of multiple halos, thereby bypassing some

potentially significant interactions which enrich the interacting galaxies.

By analysing the mass-metallicity relations derived from these star formation and

metallicity histories in fig. 5.14, we can see how both relations are distorted at low mass by

the underpredicted metallicity histories. However, the dark simulation’s shape and scatter

of the relations closely resemble the network’s initial TNG-Hydro predictions. The dark

simulations at high mass do contain a few overpredicted metallicities for centre galaxies,

though. For Uchuu galaxies with stellar masses above 1011.5M�, a Spearman coe�cient
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Figure 5.15: The mean and standard deviation of the evaluated spectra from four simulation
datasets are presented in three bins of low, intermediate, and high stellar mass. The top row
displays the results for central galaxies, while the bottom row shows those for satellite galaxies.
The comparison demonstrates that the two dark simulations for satellite galaxies are well-matched
to the hydrodynamic TNG simulation, as they exhibit similar means and variances in the spectra.
In contrast, the agreement for central galaxies is less robust, especially for high mass galaxies,
where the Uchuu spectra have a higher variance, indicating less constrained stellar mass. To
clearly display the mean continuum from each simulation, emission lines are omitted from these
spectra.

of 0.683 between age and metallicity demonstrates that these are the same galaxies whose

mass-weighted ages are overestimated. As a result, the results have a bigger contribution

from early metallicity histories and a smaller contribution from times of low star formation.

5.4.3 Spectroscopy

The spectral energy distributions of the four simulation datasets are presented in bins of

stellar mass for both central and satellite galaxies in fig. 5.15. As discussed in section 4.3.1,

the smaller variance of the predicted SEDs can be attributed to the absence of variability

in star formation histories and implicit features such as merger-driven starbursts and

quenching timescales. These factors are more prevalent in central galaxies than for satellite

galaxies.

The mean amplitudes of TNG-Dark spectra exhibit subtle di↵erences for low and

intermediate mass central galaxies, being slightly smaller than average, and for satellites,

being slightly larger. The increased amplitude for satellites can be attributed to higher

peaks in star formation histories, as discussed in section 5.4.1. This e↵ect impacts both

networks, but it is particularly notable for satellites, which lack environmental harassment

in the satellite phase (Engler et al., 2020) and do not experience mass loss due to feedback

(Sorini et al., 2022). The reason for the amplitude o↵set in central galaxies is unclear,
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but it may be due to di↵erences in star formation histories and mass-weighted ages. The

o↵set could result from the underpredicted star formation histories observed in Uchuu

predictions.

The Uchuu spectra exhibit lower amplitudes in relation to TNG-Dark spectra, primar-

ily due to lower star formation histories. Low mass central galaxies, on the contrary, have

excess emission and are likely o↵set due to poorly predicted metallicity histories. However,

in high mass bins, the variance in Uchuu spectra exceeds that of any TNG data, due to

larger variance in mass accretion histories. The significant spread of Uchuu overdensities in

high mass bins can deceive the neural network, either enhancing or suppressing star forma-

tion due to the association of overdensity with merger events or environmental quenching.

While the Spearman coe�cient between zero-redshift overdensity and each band magni-

tude is weak for the full sample, it is approximately -0.43 on average for galaxies above

1011.5M�.

5.4.4 Photometry

Figure 5.16 displays the colour-mass diagrams obtained from the four simulation datasets,

highlighting the relationship between the stellar mass and colours computed using neigh-

boring SDSS wavebands, for both central and satellite galaxies. As established in sec-

tion 4.3.4, these diagrams exhibit the bimodal colour distributions of the galaxy popula-

tions and the inclination for high-mass galaxies to be redder in colour, which is a consistent

feature across all predictions of the neural network. However, this study also revealed that

the unconstrained emission at UV frequencies has resulted in underpredicted colours for

u and g bands, which is evident in the dark simulations.

The dark simulations show some notable di↵erences in their predictions compared to

the hydrodynamical simulation. In both dark simulations, the ages of high mass galaxies

are biased towards higher values as depicted in fig. 5.11, leading to a higher fraction of

red galaxies; particularly in u � g and g � r colours, and particularly for Uchuu galaxies

with prematurely declining star formation. This overabundance of red galaxies could be

due to the halo morphology in dark simulations, or the denser environments quenching

interacting or infalling galaxies; as discussed in section 5.4.1.

Another feature of the dark predictions is a greater abundance of galaxies in the
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Figure 5.16: Colour-Mass diagrams from the four simulation datasets, using four colours defined
as the di↵erence between successive SDSS band magnitudes, are shown for central galaxies (left
panels) and satellite galaxies (right panels). The contour lines represent the tenth percentiles
(light-coloured lines) and ninetieth percentiles (dark-coloured lines) of the 2D histograms. All four
datasets show the anticipated photometric colour bimodality and its relationship with mass. The
dark simulations, however, show an excess of samples between the peaks of the colour distributions.

’green valley’ region, particularly in Uchuu. This may be due to variations in the halo

mass accretion history and internal dynamics, leading to a broader range of calculated

magnitudes in this mass range. It has been shown in fig. 4.9 that the variability in star

formation history is an important factor in modelling photometry, and the star formation

histories in Uchuu may have lost additional high frequency information from being based

on temporal predictors that were interpolated over a sparser time domain, shown by

fig. 5.2.

5.5 Future Model Amendments

The performance of the machine learning model, used to predict the star formation and

stellar metallicity histories of TNG galaxies, has been positive in reproducing comparable

results in pure dark matter simulations. The model has established similar quantitative

relations between galaxies and halos, and has connected physical galaxy properties to

observational quantities as in the hydrodynamical simulation. Nonetheless, inconsistencies

exist between the predictions of the two simulations, which result from discrepancies in

the growth and interactions of halos in N-body simulations in contrast to the complete

cosmohydrodynamical model, and in the calculation of halo properties in the simulation

data. This section identifies these crucial di↵erences and suggests how the model may be
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modified in the future to adapt to high volume N-body simulations, while still accurately

characterising the connection between galaxies and halos.

5.5.1 Simulation Resolution

Our findings indicate that the Uchuu simulation, with its lower resolution compared to

the TNG simulations, has negatively impacted the accuracy of predictions for low mass

and slowly accreting galaxies. Notably, there are significant errors in the masses and

metallicities of low mass galaxies, and especially satellite galaxies, which were already

reduced in number by our quality cuts. One of the contributing factors is the power

spectrum e↵ectively being truncated by the lower resolution of Uchuu, which hinders the

establishment of bound structures from small groups of simulation particles, leading to

delayed growth of the lowest mass halos. As a result, low mass samples in Uchuu are not

considered practical for studying the galaxy-halo connection.

The issue of computational resource limits in generating high-volume, high-resolution

simulations has persisted in this field. Li et al. (2021) have introduced a machine learning

model which can address this problem, by enhancement of the matter power spectrum in

N-body simulations, which Ni et al. (2021) show can predictively emulate precise snapshot

data from low-resolution simulation images, accurately reproducing halo substructures

and correlation functions beyond the resolution limit of a coarse N-body simulation. This

method could potentially enhance the Uchuu data in this study, provided that the machine

learning model can construct complete merger trees accordingly. It may be necessary to

develop a similar enhancement model for the merger trees themselves, given the importance

of the properties of progenitor subhalos, such as the mass and metallicity of incoming

gas and stars. Nevertheless, since the matter power spectra, distributions, and velocity

fields can be enhanced through this approach, these properties may be deduced from the

environment generated by the model.

Our findings reveal that the di↵erence in resolution has a significant impact on halos

in Uchuu that have similar masses as the lowest mass halos in TNG. Therefore, it might

be beneficial in a future study to utilise the neural network on Shin-Uchuu: a smaller but

higher resolution version of the Uchuu model, to recover low mass galaxies. Alternatively,

the Uchuu snapshots and merger trees could be improved by leveraging the advanced

resolution of Shin-Uchuu and the techniques proposed by Li et al. (2021). Since the
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distribution of galaxies and the characteristics of their surroundings are influenced by

the growth of large-scale structure, the latter approach could be more appropriate for

producing self-consistent mock catalogues at both gigaparsec and sub-kiloparsec scales.

5.5.2 Input Parameters

Our neural network was designed to employ variables which could describe the growth,

structure, and surroundings of dark matter halos, while being resistant to the influence

of baryons, resolutions, and halo finders. Nonetheless, our findings have revealed that

these di↵erences have resulted in some degree of variation in the predicted galaxy statis-

tics between pure dark matter simulations and the hydrodynamical TNG model, ranging

from minor to significant. As a result, it may be appropriate to implement currently un-

used variables into the neural network model in the future, which could represent more

appropriate indicators of the galaxy-halo relationship for pure dark matter models.

In order to eliminate inaccuracies in predictions due to the di↵ering identification of

halo mass and substructure, it may be necessary to utilise a consistent halo finder in both

the hydrodynamical and N-body simulations. Although several halo finder algorithms

accurately recognise halo structures, only the Rockstar algorithm accurately identifies

substructures in highly dense regions such as the halo centre (Onions et al., 2012). These

substructures can influence the structural variables that impact the stellar mass of both

central and satellite galaxies. In future research, an “Uchuu-friendly” neural network

model could be trained based on the planned TNG halo catalogue based on the Rockstar

halo finder, eliminating this potential source of error.

In this study, another variable which varies between the simulations is the overdensity.

In Uchuu, the overdensity is calculated using halo coordinates and masses, whereas TNG

uses subhalo information. Rather than the direct use of halo tracers, and instead creating

a continuous, position-dependent density field similar to Chen et al. (2020), overdensities

may be smoothed with a Gaussian kernel, which can be adjusted for each simulation’s

resolution or density tracers. Chen et al. (2020) also utilised this method to create a

position-dependent tidal field tensor, which is shown to have a strong correlation with

halo assembly bias.

The behaviour of satellite galaxies is largely influenced by the environment of their
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host halo, making the properties of the host halo important during the satellite phase.

Inclusion of additional properties of the target halo could have improved the model, such

as formation time (Artale et al., 2018), angular momentum (Bose et al., 2019), and halo-

satellite separation (Engler et al., 2020; Montero-Dorta et al., 2022). The location of the

satellite in relation to the host or a central halo in relation to a local cluster can provide

an indication of the local environment, which could be a valuable measure of e↵ects such

as gas stripping and tidal disruption.

Since the skew parameter is not significantly di↵erent between the simulations consid-

ered in this work, and is independent of halo mass, it may be feasible to use a position or

velocity-dependent environmental parameter to address the bias introduced by using over-

densities to characterise local environments. However, the skew parameter still provides

valuable information on halo-halo interactions over time and should be retained in the

model. Nonetheless, the lack of low-mass objects in low-resolution simulations could af-

fect the identification of major interactions based on high or low skew values, as discussed

in section 5.4.2.

5.5.3 Galaxy Clustering

Further to the population statistics derived from star formation and metallicity histories, a

necessary measure of the galaxy-halo connection to complement deep galaxy surveys is the

clustering signal of galaxies and halos. By measuring the spatial correlation statistics of

galaxies of di↵erent mass, luminosity or other observationally determined properties, the

role of the galaxy-halo connection in galaxy evolution can simultaneously be measured on

local and cosmological scales. Future surveys which measure these clustering statistics out

to higher redshifts will investigate precisely the growth history of cosmological structure

and the role of these environments in shaping the distribution of galaxies, hence it is

imperative to replicate these e↵ects on all scales to reconcile the galaxy evolution models

with high fidelity surveys.

The neural network as it currently stands is likely to predict basic clustering infor-

mation; as well as including environmental histories, the model includes variables which

directly correlate with clustering statistics. Montero-Dorta et al. (2021) show that the

specific mass accretion gradient � is a superior metric for halo and galaxy assembly bias

than the traditionally used half-mass formation time, for all masses and redshifts in TNG.
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Furthermore, including measures of the halo’s profile and virial velocity may prove valu-

able to predicting secondary assembly bias (Salcedo et al., 2018; Hadzhiyska et al., 2020).

However, it has been established that these input quantities are influenced by the resolu-

tion of the simulation, which in practice can a↵ect the accuracy of the galaxy assembly

bias predicted in Uchuu. Furthermore, given the sensitivity of clustering to halo concen-

tration (Wechsler et al., 2006), a quantity characterising the profile that is fit to the halo,

the use of a common halo finder algorithm may prove necessary to reproduce this precisely

in future mocks; in spite of its weak influence on the halo’s half-mass radius, discussed in

section 5.3.2.

5.5.4 Comparison With Other Models

Aung et al. (2022) exploit the UniverseMachine (UM) model (Behroozi et al., 2019a) to

calculate galaxy formation histories in the Uchuu simulation, generating statistics such as

stellar mass functions and number density profiles, which Behroozi et al. (2019b) show to

display reasonable consistency with observational stellar mass and luminosity functions.

UM is an empirical model which relies on MCMC optimization of star formation rates,

utilising prior relations between star formation rates and quenched fractions based on the

maximum circular velocity of the halo. It is able to qualitatively reproduce the environ-

mental dependence of star formation without the explicit inclusion of the environment,

suggesting that halo mass accretion is the sole factor contributing to star formation in

dense environments.

Our self-consistent model has the potential to be more valuable for high fidelity mocks

than empirical models like UM. It enables causal modeling of galaxy growth over time,

driven by halo and environmental factors, and can be modified to predict as-yet uncon-

sidered properties such as gas fractions and AGN growth over time. Our model may be

better suited for modelling the dependence of chemical enrichment in high-fidelity mocks,

as UM does not account for metallicity histories, which we have shown to be more reliant

on environmental variables.

However, since quenched fractions are a direct parameter of the UM model, the colour

bimodality in these mocks is likely to be more accurate, making UM more suitable for

observational studies. Our machine learning model has also shown to be sensitive to certain
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e↵ects resulting from the transition to a pure dark matter simulation, such as biased growth

of internal dynamics, resolution issues like delayed collapse and virialisation of haloes, and

potential discrepancies in the calculation of key variables such as halo mass and radius due

to di↵ering halo finder algorithms. Therefore, a high-resolution N-body simulation with

consistent halo definitions may be required to produce accurate self-consistent mocks.

5.6 Conclusion

This chapter focuses on comparing the accuracy of predictions for galaxy star forma-

tion and metallicity histories by applying the semi-recurrent neural network described in

chapter 2 to pure dark matter simulations. Predictions from the hydrodynamical TNG

simulation are compared with cross-matched haloes from their dark equivalents, which

lack baryonic processes, to assess the impact of their absence on predictions. Secondly,

the model is applied to similar halos from the Uchuu N-body simulation to examine the ef-

fects of alternative halo definitions and the lower mass resolution of the Uchuu simulation.

The chapter’s findings can be summarised as follows:

1. For halos of most masses and mass accretion gradients, the important input proper-

ties such as the mass accretion history of a halo are similar for both hydrodynamical

and dark simulations. However, figs. 5.3 and 5.4 demonstrate that the mass accretion

histories of TNG-Dark halos are exaggerated, which may be due to the lack of stellar

feedback contributing to the halo morphology. This has a noticeable, similar impact

on the star formation histories of low mass galaxies, discussed in section 5.4.1. Since

this di↵erence in mass accretion histories occurs at high redshift, the resulting e↵ect

on the star formation histories applies for most of the simulation’s time domain.

2. Quantities pertaining to the internal structure and dynamics of the halos, specifically

the half-mass radius and circular orbital velocity of the halo, are a↵ected in a similar

manner by the absence of baryons; yet they are more significantly influenced by the

lower resolution of the Uchuu simulation. This delay causes the halos’ germination

and initial growth to occur later and at a slower pace, and causes the mass accretion

and concentration of Uchuu halos to appear smaller than their TNG counterparts.

For slowly growing and low-mass halos, these impacts are substantial due to the

sensitivity of these variables to the simulation resolution.
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3. In sections 5.4.1 and 5.4.2, we demonstrate mostly comparable neural network pre-

dictions in the dark simulations to the original hydrodynamical predictions, where

the SHMR and MZR exhibit a close resemblance in shape and scatter. Nevertheless,

the severely underestimated growth of low mass halos in Uchuu results in inadequate

predictions of the star formation and metallicity histories of low mass galaxies. Con-

versely, TNG-Dark outcomes are overestimated due to an excessive amount of mass

accretion during early times. In both cases, the poorest predictions are for the lowest

mass galaxies in any dark matter simulation, suggesting that resolution enhancement

is important for modelling the complete population of high fidelity galaxy catalogues.

4. The neural network’s predictions of the number of quenched galaxies, and in some

cases the rate of declining star formation, are greater than the hydrodynamical

results in both dark simulations. In TNG-Dark, this is due to the di↵erence in

structural parameters, which in hydrodynamical simulations control the AGN feed-

back which quenches galaxies. In Uchuu, this is a consequence of a higher range of

overdensities resulting from the use of Rockstar halo tracers instead of SubFind sub-

halos. This excess quenching corresponds to a greater abundance of photometrically

red galaxies. Furthermore, in Uchuu, the abundance of red galaxies is attributed

to interpolation over a coarser time domain, resulting in more significant informa-

tion loss regarding time variations in their star formation history. Other than this,

the spectroscopic and photometric statistics of the dark matter simulations exhibit

similar physical characteristics to original results, as demonstrated in sections 5.4.3

and 5.4.4.

The ability to construct accurate summary statistics regarding the physical and ob-

servational properties of galaxies using Uchuu data is promising; it suggests that the

semi-recurrent neural network design may be used as the baseline model for a gigaparsec-

volume galaxy catalogue, self-consistently entailing the causal aspects of the galaxy-halo

connection from high redshifts to the present day. At present, the model may be able

to compete with existing and widely used empirical models of the galaxy-halo connection

in N-body simulations. In future, this methodology could pave the way for a future of

AI-based simulations which o↵er a physical understanding of galaxy evolution at both

the cosmological and substructure levels, alongside spectroscopic data to complement the

most ambitious galaxy surveys to date. The vastness of a complete Uchuu galaxy dataset

156



5.6. Conclusion

may be used to produce a sizeable sample of rare objects such as early massive quiescent

galaxies, and discern the nature of groups of small objects such as dwarf galaxies based on

their local cosmology, as well as many further insights into the logistics of galaxy evolution

beyond the realm of present-day cosmic simulations, at a fraction of the computational

cost.

Despite this enthralling premise for a physically motivated galaxy evolution dataset

extending from sub-kiloparsec to gigaparsec scales, we have presented a series of flaws

with the application of the model to pure dark matter simulation data. First of all,

the properties of galaxies are sensitive to the spacial and temporal resolutions of the

simulation; particularly those hosted by small, slowly developing halos. To model small-

scale galaxy growth accurately, the resolution of the simulation will need to be augmented,

which, thankfully, may also be achieved using machine learning. Secondly, various halo

and environmental variables have proven to be a↵ected by the halo finder algorithm or

by the available data to compute the necessary quantities. It may prove decisive to the

performance of a model inspired by ours to create alternative parameterisations of the

halo and environment which are immune to the logistics of di↵erent N-body simulation

codes, or to introduce fine-tuned modifications such as smoothed density fields to eliminate

these e↵ects. We also stress that the data presented in this chapter is not subject to the

stochastic correction entailed in section 3.3, and while this has proven fruitful in amending

errors in the fiducial network predictions in TNG, the predicted Fourier transforms may be

subject to similar errors in Uchuu, hindering the utility of the correction in Uchuu mocks.

Adjusting the model to account for methodical di↵erences between N-body models will

require a detailed comparison of halo and environmental relationships in separate pure

dark matter simulations.
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6
Conclusions & Outlook

In this thesis, an artificial neural network was designed to create a predictive machine

learning model, capable of predicting the evolutionary histories of galaxies by encoding

the galaxy-halo connection in cosmic hydrodynamical simulations. Using these results, we

have analysed the historical and present-day properties of halos and cosmic environment

which describe key statistics of the galaxy-halo connection, computed spectroscopic and

photometric data to assess the quality of mock surveys generated by this model, and tested

the model on pure dark matter simulations to assess the robustness of the neural network

to changes in the simulation model. This research demonstrates the potential of a machine

learning model to compute galaxy properties using high volume N-body simulation data,

which could introduce a new approach to studying galaxy evolution on large and small

scales.
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6.1 Chapter Summaries

Chapter 2: Data, Design & Preprocessing

In this chapter, we introduce the hydrodynamical and pure dark matter simulations used

in this study, describing in detail the publicly available catalogues of halo and galaxy

properties which can be utilised, and our methods of calculating secondary variables such

as star formation histories and environmental densities and skews. We also introduce the

design of a semi-recurrent neural network, with the intent to use a combination of temporal

and static input variables to predict galaxy evolution, and describe the necessary numerical

and physical preprocessing of the data for use in the neural network.

We compute historical halo properties along the main progenitor branch of each sam-

ple’s merger tree, and environmental properties using the GriSPy periodic nearest-neighbour

search algorithm developed by Chalela et al. (2021). Our key baryonic targets, the star

formation and metallicity histories of galaxies, are computed using the mass and metal-

licity weighted stellar age spectra of all stellar particles bound to the halo. We apply a

multiplicative correction as a function of halo mass and time to lower resolution data,

and apply a quantile transformation to most data in the model, including a method of

normalisation accounting for the properties of temporal quantities.

We show in this chapter that the data adjustments which we implement result in

concurrent galaxy properties between the TNG100 and TNG300 data suites, which due to

di↵erences in resolution, have di↵erent star formation e�ciencies (Pillepich et al., 2017a).

We also show that our choice of quantile transformation to a Gaussian distribution is a

practical means to handle sparsely distributed data such as halo mass accretion rates,

while o↵ering two methods of normalising temporal data for di↵erent calculations by the

network. Our neural network design is capable of implementing multiple static quantities

and several temporal variables without exceedingly many degrees of freedom, which we

show in the following chapter to be superior to a more conventional design.

Chapter 3: Neural Network Predictions

In this chapter, we evaluate the quality of predictions of the neural network in relation

to the original TNG simulation data. We show here that accurate statistics such as the

160



6.1. Chapter Summaries

stellar-halo mass relation and stellar mass-metallicity relation can be derived from the

predicted star formation and metallicity histories, further to the development of these

historical properties at di↵erent times being accurately predicted as a function of halo

mass. This indicates that galaxy evolution can be predicted from historical halo data

using our artificial neural network.

However, the neural network is less capable of predicting variability in these star for-

mation histories, which have negative consequences on the calculated scatter in stellar

mass and metallicity. We use an identical neural network to predict the absolute Fourier

transforms of these star formation and metallicity histories, and use these predictions to

compute a stochastic correction, to improve the predicted star formation and metallicity

histories. This method has made notable improvements to the key galaxy-halo relations

and to the predicted geometry of the star formation histories, yet it does not fully repro-

duce the galaxies’ formation histories due to the di�culty in modelling rare, high mass

star formation events.

We assess the importance of input variables in neural networks for replicating galaxy-

halo statistics by replacing groups of variables with random noise, identifying their impact

on the model’s predictions. We find that variables related to halo mass and substructure

predict the scatter of the stellar-halo mass relation, while environmental factors correlate

with the mass-metallicity relation. Previous studies focusing on a single redshift struggled

to measure these e↵ects, highlighting the value of historical input data. While the bulk

of these statistics can be inferred with relatively few parameters, we show that specific

parameters dominate the influence over other physically related variables; which implies

that the model can identify significant parameters in the galaxy-halo connection.

Chapter 4: Observables

In this chapter, we apply the Flexible Stellar Population Synthesis code developed by

Conroy et al. (2009); Conroy & Gunn (2010) to calculate spectroscopic and photometric

data from the predictions of the neural network detailed in the previous chapter. Addi-

tionally, we evaluate the quality of improvement made to observational galaxy statistics by

the aforementioned stochastic correction to our predicted star formation and metallicity

histories. These results show that observational statistics such as the photometric colour

bimodality of the galaxy population can be predicted indirectly by the neural network.
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The shortcomings of the predicted galaxy formation histories, such as the lack of

high frequency features, have influenced the computed observational statistics, resulting

in less variance in luminosities and colours in most mass bins. The stochastic correction

has made considerable improvements, producing more accurate spectral amplitudes in

bins of stellar mass, in accordance with improved scatter in stellar mass and metallicity.

However, just as the correction has limited ability to predict missing high mass features,

the true diversity of galaxy spectra is not fully recovered. While improvements of spectral

amplitude and emission line luminosity are significant, photometry is not largely a↵ected

by the correction.

Chapter 5: Dark Simulations

Finally, we apply the neural network to the TNG-Dark and Uchuu dark matter simulations,

where the similarity of predictions and statistics between these two simulations and the

hydrodynamical simulation data is used to gauge the suitability of the model for use in high

volume N-body simulations; in this case, the Uchuu simulation. By comparing previous

results with those from the TNG-Dark simulation, we measure the e↵ects that the lack of

baryonic physics in the simulation has on the input and output variables to the model. By

comparing all of the above with predictions based on Uchuu data, we investigate the e↵ects

of lower simulation resolution and alternative halo structure properties on the predictions

of the neural network.

Important input properties such as mass accretion history are similar in both dark and

hydrodynamical simulations. However, the mass accretion histories in TNG-Dark halos

are exaggerated due to the absence of stellar feedback. Quantities related to the internal

structure and dynamics of halos, like the half-mass radius and circular orbital velocity, are

also a↵ected by the absence of baryons and lower resolution in the Uchuu simulation. This

delay causes slower growth and smaller mass accretion and concentration in Uchuu halos

compared with TNG halos. This has a noticeable impact on the predicted star formation

histories of low mass, slowly accreting galaxies, suggesting the importance of resolution en-

hancement for accurate modeling of the complete population. Observationally, di↵erences

in formation histories in dark simulations such as excess quenching results in a greater

abundance of red galaxies.
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We argue that the model and the N-body simulation data can be augmented in a

number of ways to minimise the discrepancies we have shown between the data produced

by the neural network in hydrodynamical and dark simulations. First of all, a future

rendition of the neural network may impose alternative quantities, such as a smoothed

density field or distance from a host halo as measures of cosmic environment which do

not depend on the resolution of the simulation or the halo properties acquired by the

algorithm identifying halos and constructing merger trees. Secondly, as the simulation

resolution is an important factor in shaping the model’s predictions, the simulation data

may be enhanced using machine learning techniques such as those employed by Li et al.

(2021).

6.2 Research Outlook

The work presented in this thesis has shown that a predictive machine learning model

designed to emulate galaxy formation histories based on halo catalogues and merger trees

is capable of returning physically congrous and meaningful results in N-body simulations,

in spite of methodical di↵erences between the training and testing data. While certain

corrections will be necessary to emulate reliable data on all mass scales, this work rep-

resents the foundation of a method of e�ciently producing intricate and comprehensive

galaxy catalogues, entailing the physics of the galaxy-halo connection across cosmic time,

and supporting galaxy surveys intending to test theories of galaxy evolution on such scales

in the real universe. Here we contemplate potential applications of such a design in future

research in galaxy evolution and cosmology.

Exploring The Galaxy-Halo Connection

While the predictions of the model may have some limitations in the level of predictable

detail, this presents an opportunity to study the contributions of evolutionary processes.

The stochastic correction method outlined in this thesis may be developed to implement

the correlation between phases of star formation and metallicity histories, providing some

insight into the nature of delays between star formation events and metal synthesis. These

fluctuations may be correlated with input features once accurate observables are made.

Having predicted the power spectrum of star formation and metallicity histories using the

neural network design, a feature importance test could inform the halo and environment
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data which influences galaxy evolution on di↵erent timescales. Iyer et al. (2020) show

how such power spectra are related to baryonic processes such as AGN feedback, galactic

winds and mergers, which could be explained in part by the galaxy-halo connection.

Despite showing that the temporal galaxy-halo connection can be learned via artificial

intelligence, the relationship remains complex and non-intuitive. However, by applica-

tion of the model to a gigaparsec-scale N-body simulation such as Uchuu, a vast dataset

will be generated which can be used to gain an explanation of the exact role of halo

and environmental properties in shaping galaxies over time. (Wadekar et al., 2020) use

symbolic regression techniques to derive analytical expressions for HI mass and assembly

bias as a function of environment and halo substructure per TNG snapshot, which can

be reconciled with empirical HOD models. As the relationships between galaxy and halo

properties become more convoluted, however, larger datasets will be required to generalise

this to mutliple regimes of galaxy-halo coevolution. Alternatively, Shapley explainability

modelling (Lundberg & Lee, 2017) can evaluate the driving parameters of the GHC across

time; for individual samples and for classifications of galaxies, such as galaxies of a specified

mass or morphology.

A catalogue of synthetic galaxies in a high fidelity dark matter simulation may be

very practical for testing the role of dark matter in cosmological star formation, such as

explaining the trends of star formation rates with halo mass and age in SDSS (Scholz-Dı́az

et al., 2022a,b). Furthermore, a similar model may be designed to predict the evolution of

interesting galaxy properties, such as the kiloparsec-scale kinematics of star formation gas,

believed to play a key role in seeding rapid star formation (Förster Schreiber & Wuyts,

2020). However, cosmological simulations tend to produce distinct galaxy statistics due

to di↵erences in the subgrid models governing gas thermodynamics and star formation,

and di↵erent choices of cosmological parameters. Thus far, this neural network has been

based on a single simulation, yet TNG can be less similar to observations than other

simulations, in aspects such as green valley quenching (Angthopo et al., 2020), cold gas

fractions (Davé et al., 2020) and cosmic star formation rate density (Yates et al., 2021). It

may prove insightful to train the neural network on multiple simulations to optimise these

subgrid and cosmic parameters to conform to these observations, thereby illustrating the

importance of baryonic processes in hydrodynamical models; and perhaps produce a suite

of large simulations with varying parameters similar to the CAMELS suite (Villaescusa-
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Navarro et al., 2021), which may inform the role of these processes on scales beyond the

25 Mpc/h limit of CAMELS.

High Redshift Galaxies

In addition to the ongoing high volume surveys such as that conducted by the DESI Col-

laboration (2016), the advent of deep surveys such as those conducted by JWST (Dunlop

et al., 2021; Malkan et al., 2021) has opened the possibility to survey galaxies at increas-

ingly high redshifts. In particular, JWST has the sensitivity necessary to capture resolved

spectroscopy of galaxies forming in the epoch of reionisation: a critical epoch which marks

the most recent major phase change in the universe’s history. Star-forming galaxies have

been identified in abundance at redshifts as high as z ⇠ 8, dominating the ionisation of the

IGM, yet it is unclear how these galaxies evolved, how abundant they were at reionisation

redshifts, and how they contributed to the rapid ionisation of the IGM (Robertson, 2022).

Modelling the evolution of galaxies in the reionisation epoch has been achieved with

a specialised set of cosmological simulations, yet this has also required a tradeo↵ between

small, resolved simulations such as SPHINX (Rosdahl et al., 2018) and large, coarse sim-

ulations such as BlueTides (Feng et al., 2015; Wilkins et al., 2017); or the use of zoom

simulations such as FLARES (Lovell et al., 2020) which by construction under-resolve the

surrounding large scale structure, as discussed in section 1.2.1. While these simulations

reproduce accurate galaxy statistics such as UV luminosity functions and provide practical

insights into the correlations between galaxy properties (e.g. stellar mass and metallicity),

little is known about the detailed mechanics of early galaxy evolution.

Post-reionisation, there are some fascinating and uncommon entities that emerge.

Among them are massive quiescent galaxies, which, based on accepted theories of galaxy

evolution and observations since cosmic noon, become increasingly scarce as we look to

higher redshifts (Brennan et al., 2015); and galaxy clusters, which are uncommon due to

heirachical structure growth, yet serve as valuable indicators of spatial structure during

earlier epochs and foster a distinctive environment that shapes the evolution of galaxies

(Kravtsov & Borgani, 2012).

The growing frequency of the detection of these objects in infrared surveys highlights

the necessity for an advanced model of massive galaxy evolution which accurately captures
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their abundance throughout cosmic history. Moreover, these early quenched galaxies pos-

sess intriguing characteristics, such as their unusually compact nature given their mass

(van Dokkum et al., 2008; Glazebrook et al., 2017). However, their rarity in modern deep

surveys and the di�culty of identifying their emission lines pose challenges when attempt-

ing to measure these properties through observations. JWST is anticipated to observe the

evolution of such galaxies beyond z ⇠ 4, a crucial period when substantial star formation

activity in massive galaxies is believed to take place (Forrest et al., 2020).

With a machine learning model which can predict the evolution of early galaxies in

relation to their halo mass accretion and large scale environment, the growth of galaxies in

the early universe may be computed using a combination of high redshift simulations. By

application of this model to a large N-body simulation, the evolutionary properties of mas-

sive galaxies and clusters and candidates for massive compact galaxies can be investigated.

The complete Uchuu simulation, for example, contains ⇠ 105 merger trees of ⇠ 1012M�

up to z ⇠ 4, providing a great amount of diversity of accretion and interaction histories of

these progenitors. With the forthcoming data from JWST, more of these rare and distant

galaxies are expected to be identified, with enough spectroscopic and photometric data

to infer their star formation histories, verifying the accuracy of the evolutionary model.

Upon concluding this PhD, it is the evolution of early, massive galaxies in JWST which I

will investigate as a PDRA at the Swinburne Centre for Astrophysics and Supercomputing

in Melbourne, Australia.
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Davé, R., Anglés-Alcázar, D., Narayanan, D., Li, Q., Rafieferantsoa, M. H., & Appleby,

S. 2019, MNRAS, 486, 2827

Davies, J. J., Crain, R. A., Oppenheimer, B. D., & Schaye, J. 2019, MNRAS, 491, 4462

Davies, J. J., Pontzen, A., & Crain, R. A. 2022, MNRAS, 515, 1430

Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371
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Somerville, R. S., & Davé, R. 2015, ARA&A, 53, 51
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