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Preface and acknowledgements 

Although every group is a semigroup, groups are by no means typical examples 
of semigroups. For this reason it is not customary to date the beginnings of 
semigroup theory together with the beginnings of group theory. Neverthless, the 
concept of a semi group presentation is almost identical to the concept of a group 
presentation. In this sense semigroup presentations are older than semi group 
theory itself. 

Both the theory of group presentations and semi group theory have had a 
dynamic development over the years. Slightly surprisingly, the theory of semi­
group presentations has stayed somewhat behind. The majority of results about 
semigroup presentations have been obtained in connection with so called de­
cidability problems, most notably with the word problem. Other achievements 
include Adian's embeddability results, Alzenstat's and Popova's presentations for 
some semigroups of mappings, Redei's treatment of commutative semigroups and 
the modification of the Todd-Coxeter enumeration procedure by Neumann and 
Jura. 

The original results presented in this thesis constitute an attempt at a fur­
ther development of the theory of semi group presentations, which is built on the 
above mentioned foundations. This research has been done during my research 
studentship at the School of Mathematical and Computational Sciences of the 
University of St Andrews, under the supervision of Professor John M. Howie 
and Dr Edmund F. Robertson. At first the research started in two separate ar­
eas: finding presentations for common semigroups and investigating the structure 
of semigroups defined by presentations. Soon, however, some ideas common for 
both approaches emerged. The most important ones are the use of computational 
methods and semi group constructions. 

Most of the results presented here have been or will be published in papers 
Campbell, Robertson, Ruskuc and Thomas (1994), (1994a), (1995), (19~.5a), 
(1995b), (1995c), (1995d), Campbell, Robertson, Ruskuc, Thomas and Unlii 
(1995), Howie and Ruskuc (1994), Ruskuc (1994), (1995). However, the the­
sis is not a compilation of these papers. The main reason for this is that the 
papers have been written as the research progressed, so that special results have 
been followed by more general ones. Here this order is completely reversed: the 
special results are proved as consequences of the general ones. I hope that this 
will make more apparent the strength of various results and connections that 
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exist between different areas of research in semigroup presentations. However, I 
have tried to retain some of the flavour of the original research by commenting 
frequently on the history and motivation for the main ideas. 

The thesis begins with an introduction to semi group presentations and general 
problems that are considered in the text. The first of these problems-finding gen­
erators and defining relations for common semigroups-is considered in Chapters 
4 and 5. Presentations for various semi group constructions are given in Chapter 
6, and a detailed discussion on presentations for subsemigroups is given in Chap­
ters 7 and 10. Chapters 8, 11, 12 and 13 contain applications of these general 
results to various semigroups defined by presentations, while in Chapter 10 con­
nections between the semigroup and the group defined by the same presentation 
are explored. Chapter 14 contains a discussion of Todd-Coxeter type computa­
tional methods for semi group presentations. The elementary facts of semi group 
theory which we use in the main text are given in Appendix A, and Appendix B 
contains a list of all open problems posed in the main text. 

Mathematical statements in this thesis are classified as theorems, corollaries, 
propositions and lemmas. Theorems are the main original results of the thesis. 
Corollaries are consequences of theorems. Propositions are relevant results by 
other authors, included here for the reasons of completeness, or general well­
known results which cannot be attributed to any particular author. Lemmas 
are technical results that are needed for the proof of a theorem. The black 
square symbol (.) denotes the end of a mathematical argument, and is typically 
found at the end of a proof or an example. The black square at the end of a 
theorem, corollary, proposition or lemma means that the statement will have no 
proof. With few exceptions, mappings are written on the right. The list of open 
problems in Appendix B is not intended as a complete list of open problems in the 
field; it is rather a list of the author's unsuccessful attempts in proving theorems. 

There are several reasons for the success of the research described in this 
thesis. First of all I would like to mention the contribution of my supervisors 
Professor John M. Howie and Dr Edmund F. Robertson, whose ideas, guidance, 
patience and support has been essential at all stages. I would also like to thank 
my supervisors for giving me an insight into their perception of mathematics, for 
hours of mathematical and non-mathematical conversation, for careful reading of 
the drafts of various papers and this thesis, and for trying unsuccessfully to teach 
me how to use the words 'the' and 'a' in the English language. 

Next I would like to thank Dr Colin M. Campbell, Professor J.M. Howie, Dr 
Edmund F. Robertson and Dr Richard M. Thomas, who are co-authors of the 
various results appearing here, for most enjoyable time I have had working with 
them, and for enabling me to use what is a result of their work as well as mine 
in this thesis. I sincerely hope that this thesis is not the end of our cooperation, 
but merely a stage of it (see Appendix B). 

I also gratefully acknowledge the financial support of the University of St 
Andrews Research Scholarship and ORS award. 
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Abstract 

In this thesis we consider in detail the following two fundamental problems for 
semigroup presentations: 

1. Given a semi group find a presentation defining it. 

2. Given a presentation describe the semigroup defined by it. 

We also establish two links between these two approaches: semi group construc­
tions and computational methods. 

After an introduction to semigroup presentations in Chapter 3, in Chapters 4 
and 5 we consider the first of the two approaches. The semigroups we examine in 
these two chapters include completely O-simple semigroups, transformation semi­
groups, matrix semigroups and various endomorphism semigroups. In Chapter 6 
we find presentations for the following semi group constructions: wreath product, 
Bruck-Reilly extension, Schiitzenberger product, strong semilattices of monoids, 
Rees matrix semigroups, ideal extensions and subsemigroups. We investigate in 
more detail presentations for subsemigroups in Chapters 7 and 10, where we prove 
a number of Reidemeister-Schreier type results for semigroups. In Chapter 9 
we examine the connection between the semi group and the group defined by the 
same presentation. The general results from Chapters 6, 7, 9 and 10 are applied 
in Chapters 8, 11, 12 and 13 to subsemigroups of free semigroups, Fibonacci 
semigroups, semi groups defined by Coxeter type presentations and one relator 
products of cyclic groups. Finally, in Chapter 14 we describe the Todd-Coxeter 
enumeration procedure and introduce three modifications of this procedure. 
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Chapter 1 

Introduction: semigroups and their 
presentations 

1. Semigroups 

Semigroup theory, in its half century or so of history, has undergone a big change: 
from a study of various generalisations of groups it has become a separate scien­
tific subject with a great number of published results, its own journal, a growing 
number of monographs and many open research fronts. The main reason for 
this development is that semigroups appear naturally in almost all mathematical 
contexts, and information about semigroup(s) related to a mathematical object 
yields some information about the object itself. 

The monograph Howie (1976) is an excellent introduction to semigroup theory. 
Parts of this theory which we will need in this text can be found in Appendix A, 
while in this section we content ourselves with listing some important examples 
of semigroups. The main objective in doing this is to introduce specific types of 
semigroups that we will be dealing with throughout the text. However, we hope 
that the examples will also illustrate different mathematical contexts in which 
semlgroups appear. 

Transformation semigroups 

The trivial fact that the composition of functions is associative gives rise to 
one of the most important families of semigroups-transformation semigroups. 
For a set X, the set of all mappings X ----+ X is denoted by Tx, and called 
the full transformation semigroup. If X = {I, ... , n} then we write Tn for Tx. 
The importance of the full transformation semigroups lies in the fact that every 
semigroup is isomorphic to a subsemigroup of Tx. The proof of this is trivial, and 
is based on the fact that any semigroup S acts faithfully by postmultiplication on 
S with an identity adjoined; the corresponding representation is usually called the 
right regular representation. This parallels the Cayley theorem for groups which 
asserts that every group is isomorphic to a subgroup of a suitable symmetric group 
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2 Semigroup Presentations 

s x. In the following chapters we shall encounter various important subsemigroups 
of Tn. 

Some generalisations of the full transformation semigroup are: 

• the partial transformation semigroup PTx , consisting of all partial map­
pings on X; 

• the symmetric inverse semigroup Ix, consisting of all one-one partial map­
pings on X; 

• the semi group Ex of all binary relations on X. 

Richer algebraic structures as semigroups 

Probably the simplest examples of semigroups are additive and multiplicative 
semigroups of various number sets. Also, as we already mentioned, every group is 
a semigroup. There is a strong link between group theory and semi group theory. 
Group theory, being an older discipline, has a larger body of results and methods. 
Generalising these results for semigroups is a widespread direction of research in 
semigroup theory, and we shall frequently embark on it. For instance in Chapters 
6 (Section 7), 7, 8, 9 we shall show how Reidemeister-Schreier results for groups 
(see Magnus, Karrass and Solitar (1966)) can be generalised to semigroups. 

On the other hand, the fact that groups are much better understood than 
semigroups justifies attempts to describe semigroups in terms of groups. Almost 
all structure theories for various classes of semigroups have this idea in common. 
We shall exploit this idea in the later chapters, where we shall describe the 
structure of various finitely presented semi groups by examining their subgroups. 

Slightly more surprisingly, methods of semi group theory are becoming in­
creasingly relevant for some aspects of group theory. Examples of this link can 
be found in Baumslag et a1. (1991), Epstein et a1. (1992) and Sims (1994), where 
the connection between semigroups, formal languages and rewriting systems has 
been exploited for investigations about group presentations. 

Semigroup theory is also strongly related to ring theory. The theory of ideals 
of semi groups (the beginnings of which can be found in Appendix A) is directly 
influenced by the corresponding theory for rings. On the other hand the family 
of so called semi group rings is an important and interesting family of rings; see 
Okninski (1990). 

Endomorphisms of mathematical structures 

Just as the set of all automorphisms of a mathematical structure forms a 
group, so the set of all endomorphisms of such a structure forms a semigroup­
the endomorphism semigroup of the structure. Endomorphism semigroups are the 
main link between semi group theory and other branches of mathematics, and are 
very common objects of investigation in semi group theory. The best understood 
ones are 
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• endomorphisms of vector spaces over fields; see Dawlings (1980), (1982); 

• endomorphisms of linearly ordered sets; see Alzenstat (1962), Howie (1971), 
Howie and Schein (1973), Schein (1975/76) and Gomes and Howie (1990); 

• endomorphisms of boolean algebras; see Magill (1970) and Howie and Schein 
(1985); 

• endomorphisms of independence algebras; see Gomes and Howie (1995) and 
Fountain and Lewin (1992), (1995). 

Note that the full transformation semi group Tx is also an example of an endo­
morphism semigroup: it is the endomorphism semi group of the set X with no 
operations defined on it, or, alternatively, of the set X with one trivial unary 
operation (i.e. x f-t x). 

Free semigroups 

For a set A (often called alphabet), we denote by A* the set of all (finite) 
words over A, and by A + the set of all non-empty words in A *. Thus A * = 
A + U {E}, where E denotes the empty word. The sets A * and A + can be made 
into semigroups if we define multiplication of words to be the concatenation. 

The semigroup A + is obviously generated by A. Moreover, it is freely generated 
by this set in the following sense: 

Proposition 1.1. Let A be a set, and let S be any semigroup. Then any mapping 
¢ : A --+ S can be extended in a unique way to a homomorphism 1) : A + --+ S, 
and A + is determined up to isomorphism by these properties .• 

We say that A+ is the free semi group on A. Proposition 1.1 has the following 
important consequence: 

Proposition 1.2. Every (finitely generated) semigroup S is a homomorphic im­
age of a (finitely generated) free semigroup .• 

The proofs for both Proposition 1.1 and Proposition 1.2 are standard, and 
can be found in Lallement (1979). 

In a similar way, A* is a free object in the category of all monoids (i.e. al­
gebraic structures with one associative binary operation and one constant acting 
as an identity). If we adjoin a zero to A+ or to A*, we obtain a free semigroup 
with zero At and a free monoid with zero A~, with obvious meanings. Results 
analogous to Proposition 1.1 and Proposition 1.2 hold for these free objects as 
well, and are straightforward to prove. 

So far we have seen various examples of semigroups. It is clear, however, that 
in itself the listing of specific examples is not a particularly hopeful method for 



4 Semigroup Presentations 

studying wider classes of semigroups. There are three main approaches that one 
might adopt in an attempt at such a study. The first is to try and construct 
new semigroups out of the known ones. This approach is usually called structure 
theory. The other possibility is to investigate subsemigroups of full transformation 
semigroups, since every semigroup is isomorphic to such a semigroup. This is 
particularly fruitful in the case of finite semigroups, since in this case it is possible 
to use various computational techniques; see Lallement and McFadden (1990) and 
Howie and McFadden (1990). Finally, one can consider homomorphic images of 
free semigroups, again because of the fact that every semi group is isomorphic to 
such a homomorphic image (Proposition 1.2). In this thesis we concentrate on this 
last approach, and in the next section we shall see that semi group presentations 
are a very natural tool in this type of investigation. 

2. Presentations 

Let A be an alphabet. A semigroup presentation is an ordered pair (A 1 91), 
where 91 ~ A + x A +. An element a of A is called a generating symbol, while 
an element (u, v) of 91 is called a defining relation, and is usually written as 
u = v. Also if A = {al, ... ,am } and 91 = {UI = Vl, ... ,Un = Vn }, we write 
(al,"" am 1 UI = VI,···, Un = vn ) for (A 1 91). It is important to note at this 
stage that a presentation is a purely syntactical device-it. is just a sequence of 
symbols. 

The semigroup defined by a presentation (A 1 91) is A+ / p, where p is the 
smallest congruence on A + containing 91. More generally, a semi group S is said 
to be defined by the presentation (A 191) if S ~ A+ / p. Thus, elements of S are 
in one-one correspondence with the congruence classes of words from A +, or, to 
put it differently, each word from A + represents an element of S. It is customary, 
although sometimes confusing, to identify words and elements they represent. To 
lessen the likelihood of confusion, for WI, W2 E A + we write WI = W2 if WI and 
W2 are identical words, and WI = W2 if they represent the same element of S 
(i.e. if (WI, W2) E p). Thus, for example, if A = {a, b} and 91 is {ab = ba}, then 
aba = a2 b but aba 1= a2 b. 

Let T be any semigroup, let B be a generating set for T, and let <p : A -----7 B 
be an onto mapping. By Proposition 1.1 the mapping <p can be extended in 
a unique way to an epimorphism ¢) : A+ -----7 T. The semi group T is said to 
satisfy relations 91 if for each (u, v) E 91 we have u¢) = v¢), or, in other words, if 
91 ~ ker(¢»). Note that by definition the semi group S defined by (A 191) satisfies 
relations 91. Actually, from the minimality of p, we obtain the maximality of S 
among all semigroups satisfying 91, in the following sense: 

Proposition 2.1. Let (A 191) be a presentation, let S be the semigroup defined 
by this presentation, and let T be a semigroup satisfying 91. Then T is a natural 
homomorphic image of S .• 
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Let WI, W2 E A + be two words. We say that W2 is obtained from WI by one 
application of one relation from ryt if there exist a, /3 E A * and (u, v) E ryt such 
that WI = au/3 and W2 _ av/3. We say that W2 can be deduced from WI if 
there is a sequence WI = aI, a2, ... , ak-I, ak _ W2 of words from A + such that 
ai+1 is obtained from ai by one application of one relation from ryt; alternatively, 
we say that WI = W2 is a consequence of ryt. A straightforward modification of 
Proposition 1.5.9 in Howie (1976) gives the following 

Proposition 2.2. Let (A I ryt) be a presentation, let S be the semigroup defined 
by it, and let WI, W2 E A +. Then WI = W2 in S if and only if W2 can be deduced 
from WI .• 

Actually, a stronger result holds: 

Proposition 2.3. Let S be a semigroup generated by a set A, and let ryt ~ 

A+ X A+. Then (A I ryt) is a presentation for S if and only if the following two 
conditions are satisfied: 

(i) S satisfies all the relations from ryt; and 

(ii) if u, v E A + are any two words such that S satisfies the relation u = v, then 
u = v is a consequence of ryt. 

PROOF. (=?-) If (A I ryt) is a presentation for S, then S satisfies all the relations 
from ryt by the definition, while (ii) follows from Proposition 2.2. 

( ¢) Let 4Y : A + ---t S be the epimorphism extending the identity mapping 
id : A ---t A, and let TJ be the smallest congruence on A + containing ryt. Since 
S satisfies all the relations from ryt we have ryt ~ ker4Y, and hence TJ ~ ker4Y. On 
the other hand, if (u, v) E ker4Y, then S satisfies the relation u = v, and so u = v 
is a consequence of ryt, which implies (u, v) E TJ by Proposition 2.2. Therefore, 
TJ = ker4Y, and hence S ~ A+ jker4Y = A+ h is defined by (A I ryt) .• 

As we said before, presentation is a syntactical concept. Sometimes it is 
fruitful to manipulate with presentations in a syntactical manner, i.e. without 
referring to the semigroups defined by them. Proposition 2.2 is the key result in 
this approach. 

Now we give some examples of semi group presentations and semigroups de­
fined by them. 

Example 2.4. The smallest congruence on A+ containing the empty set is the 
diagonal relation {( W, w) I W E A +}, and thus the semi group defined by the 
presentation (A I ) is the free semigroup A+ .• 

Example 2.5. The presentation (a I a2 = a) defines the trivial semigroup; the 
corresponding congruence is obviously the full congruence on {a} + .• 



6 Semigroup Presentations 

Example 2.6. The presentation (a I an+! = a) defines the cyclic group of order 
n. Obviously, each word ak can be transformed by using an+! = a into a word 
from {a, a2 , •• • , an}, and so the semi group S defined by (a I an+1 = a) has at most 
n elements. On the other hand, if we note that, modulo n, the exponent of a is 
an invariant of the relation an+1 = a and recall Proposition 2.2, we see that all 
a, a2 , ••• ,an represent distinct elements of S, and thus S is the cyclic group of 
order n. More generally, the presentation (a I an+T = aT) defines the monogenic 
semigroup of order n + r - 1 and period n .• 

Example 2.7. Let T be any semigroup. Let A = {at It E T} be an alphabet, 
let 9\ be the set of all relations of the form axay = axy , where x, yET, and let 
S denote the semi group defined by (A I 9\). The semigroup T satisfies relations 
from 9\ by the choice of our relations, and so there is a natural epimorphism 
<P : S ----t T, at J--t t, by Proposition 2.2. Let WI, W2 E A+, and assume that 
WI<P = W2<P. It is clear that there are x, yET such that WI = ax and W2 = ay 
hold in S. Thus we have ax<p = ay<p, i.e. x = y, so that ax = ay. Therefore, <P is 
an isomorphism, and T is defined by the presentation (A 19\) .• 

Example 2.7 in effect asserts that every semi group can be defined by a pre­
sentation. Besides, if the semi group is finite, both the set of generators and the 
set of defining relations can be chosen to be finite. 

One should note the difference between Examples 2.6 and 2.7. To prove that 
certain words represent different elements in Example 2.6 we used certain (syn­
tactic) invariants of the presentation, while in Example 2.7 we found a semigroup 
satisfying all the relations, in which the words represented different elements. 

If in the definitions at the beginning of this section we replace A + by A *, 
At or A;; we obtain notions of monoid presentations, presentations of semigroups 
with zero and presentations of monoids with zero respectively. Both Propositions 
2.1 and 2.2 have straightforward modifications in all these cases. 

All these four types of presentations are closely related one to each other. For 
example, every semi group presentation is a monoid presentation as well. If S is 
the semigroup defined by (A 19\), then the monoid defined by (A 19\) is S with an 
identity adjoined to it. If S possesses an identity, represented by a word e E A +, 
then (A 19\, e = 1) is a monoid presentation for S. If M is the monoid defined 
by a monoid presentation (B I 6), then M can be defined as a semi group by 
(B, e 16, e2 = e, eb = be = b (b E B)), where 6 is obtained from 6 by replacing 
every relation of the form W = 1 by the relation W = e. Similar connections hold 
between any other two types of presentations. 

Most of the material in this thesis will be presented in terms of semigroup 
presentations. Sometimes, however, we will use other types, usually without 
explicitly stating this, but having in mind the above-mentioned connections. 

Frequently we shall also encounter another type of presentations-group pre­
sentations. We assume the reader's familiarity with the basic concepts and results 
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of combinatorial group theory; see Magnus, Karrass and Solitar (1966). If a group 
G is defined by a group presentation (A 191), then G can be defined by the monoid 
presentation (A,A-1 191,aa-1 = a-1a = 1 (a E A)), where A-l = {a-1 

1 a E A} 
is a new alphabet in one-one correspondence to A, and disjoint from A. On 
the other hand each semi group presentation (and each monoid presentation) is 
a group presentation, but the connection between the group and the semi group 
defined by the same semi group presentation is much harder to determine. Chap­
ter 10 will be devoted to this task. 

3. Combinatorial semigroup theory 

In the previous section we have seen that presentations are a means of defining 
semigroups as homomorphic images of free semigroups. The main advantage of 
presentations when compared to other ways of defining semigroups (such as Cay­
ley tables or transformation semigroups) is that they allow us to study a larger 
class of semigroups, including various infinite semigroups. However, one should 
note that, although theoretically every semigroup can be defined by a presen­
tation (see Example 2.7), not every semigroup can be defined 'nicely' in such a 
way. The most plausible class of semign;mps for analysis via presentations are 
so called finitely presented semigroups, i.e. semigroups which can be defined by 
presentations (A 191), where both A and 91 are finite. We have already encoun­
tered examples of finitely presented semigroups: finite semigroups (Example 2.7), 
free semigroups (Example 2.4), and monogenic semigroups (Example 2.6). Less 
trivially, every finitely generated commutative semi group is finitely presented; see 
Redei (1965) or Clifford and Preston (1967). 

It is important to note that the property of being finitely presented does not 
depend on the choice of a generating set. 

Proposition 3.1. Let S be a semigroup, and let A and B be two finite generating 
sets for S. If S can be defined by a finite presentation in terms of generators A, 
then S can be defined by a finite presentation in terms of generators B as well. 

PROO F . Since B is a generating set for S, for each a in A there exists a( E B+ 
such that a and a( represent the same element of S. The mapping a I-t a( 
can be extended to a homomorphism ( : A+ ----+ B+ by Proposition 2.1. This 
homomorphism obviously has the property that wand w( represent the same 
element of S for each w E A +. Similarly, for each b in B there exists b'TJ E A + 
such that band b'TJ represent the same element of S, and this mapping can be 
extended to a homomorphism 'TJ : B+ ----+ A + with the property that wand W'TJ 
represent the same element of S for each w E B+. 

Let (A 191) be a finite presentation defining S in terms of the generating set 
A, and let 91( denote the set {u( = v( 1 (u = v) E 91}. We shall show that the 
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(finite) presentation 
~ = (B 191(, b = bT/( (b E B)) 

defines 5 in terms of the generating set B. The semigroup 5 certainly satisfies 
the relations from the above presentation because of the definitions of ( and T/. 
By Proposition 2.3, to finish the proof, it is enough to prove that if a relation 
WI = W2 holds in 5 then it is a consequence of~. 

Let WI, w2 be words from B+ representing the same element of 5. Then 
the words WIT/ and W2T/ belong to A + and represent the same element of 5. 
Since (A 191) is a presentation for 5, W2T/ can be obtained from WIT/ by applying 
relations from 91. Hence W2T/( can be obtained from WIT/( by applying relations 
from 91(. Now suppose that WI = bIb2 ... bk, where bi E B, 1 :::; i :::; k. Then 
WIT/( = (bIT/()(b2T/()'" (bkT/() , since both T/ and ( are homomorphisms, and we 
see that the relation WI = WIT/( is a consequence of relations b = bT/( (b E B). 
Similarly, we can obtain the relation W2 = W2T/(, and so the relation WI = W2 is 
a consequence of ~ as required .• 

However, the class of finitely presented semigroups is far from covering all 
semigroups. First of all, every finitely presented semi group is finitely generated, 
but there are even finitely generated semigroups which are not finitely presented, 
as the next example shows. 

Example 3.2. Let 5 be the semigroup defined by the presentation 

~ = (a, b 1 abia = aba (i EN)). 

Suppose that 5 is finitely presented. Then, by Proposition 3.1, 5 can be defined 
by a finite presentation (a, b 1 91) in terms of the generators a and b. Since the 
relation abia = aba holds in 5 for each i E N, aba can be obtained from abia by 
applying relations from 91. On the other hand, it is not possible to apply any 
relation from ~ to the word abi. Therefore, the word abi does not satisfy any 
non-trivial relations, in the sense that abi = W in 5 implies abi = w. Similarly, 
the word bia does not satisfy any non-trivial relations. The conclusion from all 
this is that for each i > 1, 91 must contain a relation whose left-hand side or right 
hand side is identical to abia, so that 91 is infinite, a contradiction .• 

The situation is complicated further by various undecidability results. Here 
are the best known of them: 

• there exists no algorithm for testing if two presentations define isomorphic 
semigroups; see Markov (1951); 

• there exists no algorithm for deciding if a given presentation defines a finite 
semigroup; see Markov (1951a); 

• there exists a finitely presented semi group for which there is no algorithm 
which decides equality of two words in the semigroup; Markov (1947) and 
Post(1947);. 
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We say that the isomorphism problem, the finiteness problem and the word 
problem all are not soluble for semi group presentations. 

On the other hand, the experience of combinatorial group theory, where the 
same anomalies are present, suggests that despite these problems semigroup pre­
sentations might be a powerful tool for handling semigroups, and we hope that 
the results of this thesis will add some evidence for this view. These results can 
be grouped into two main types: 

1. given a semi group find a presentation defining it; 

2. given a presentation describe the semigroup defined by it. 

Actually, we have already encountered both types of results. In Examples 2.4, 
2.5, 2.6 and 2.7 we found presentations for some well known semigroups, while 
in Example 3.2 we defined a semi group by a presentation, and then went on to 
prove some properties of this semigroup. 

It should be noted that both 1 and 2 are far too general to be considered 
as mathematical problems; they rather mark two relatively separated areas of 
research in the theory of semigroup presentations. The purpose of this thesis is 
to present some new work in both these areas, and link it to the already existing 
results. Thus, Chapters 4, 5 and 8 will mainly contain results related to 1, while 
Chapters 10, ll, 12 and 13 will be concerned with finding the structure of various 
semigroups defined by presentations. 

We shall also seek to establish connections between these two approaches to 
semi group presentations. Connections are many, but we shall concentrate on 
two of them: presentations for semi group constructions, and the use of computa­
tional methods. We review existing computational methods for finitely presented 
semigroups, and present some new ones in Chapter 14. These methods have been 
frequently used during this research, although the statements and proofs of the fi­
nal results do not depend on the computational evidence. Nevertheless, we shall 
give a number of examples which, we hope, will illustrate how computational 
techniques were used to obtain various results. 

When semi group constructions are concerned, in Chapters 6, 8 and 9 we shall 
consider various special cases of the following general problem: 

3. Suppose that the semigroups Si, i E I, are defined by presentations (Ai 19ti), 
and that a semi group S is obtained from the family Si, i E I, by applying 
a semi group construction. Find a presentation for S. 

The connection between 1 and 3 is clear, since constructions are means for 
creating new semi groups out of existing ones. We also link 2 and 3 via sub­
semigroups and Rees matrix semigroups. The main idea here is to investigate 
a finitely presented semigroup S by investigating some distinguished subsemi­
groups of S, which have a simpler structure (e.g. are groups, or Rees matrix 
semi groups ). We first find a presentation for such a substructure, and then try 
to derive information about the substructure from its presentation. 



Chapter 2 

Generating sets for common 
• semlgronps 

The first step in finding a presentation for a semi group S is to find a generating 
set for S. In this chapter we give generating sets for various semigroups that 
will be considered in the next two chapters. In doing so it is natural to seek the 
'best possible' generating set. Since, unlike for vector spaces, minimal generating 
sets of a semi group do not necessarily have the same cardinality, it is reasonable 
to look for a generating set with the minimal possible number of elements; the 
cardinality of such a set is usually called the rank of S, and i~ denoted by rank(S). 
Ranks of various transformation semigroups have been calculated by Gomes and 
Howie (1986), (1990), and Howie and McFadden (1990). 

After introducing in Section 1 a class of completely O-simple semigroups, which 
we call connected completely O-simple semigroups, we find formulae for the rank 
of such a semi group in Sections 2 and 3. Sections 4, 5 and 6 contain various 
applications of these formulae. In Section 4 we find the minimal rank of a finite 
completely O-simple semigroup, given the rank of its Schiitzenberger group. In 
Section 5 we show how the results of Howie and McFadden (1990) about the 
ranks of principal ideals of a full transformation semi group can be obtained as 
corollaries of our results about connected O-simple semigroups, and in Section 6 
we obtain similar results for matrix semigroups. Finally, in Section 7 we consider 
some interesting semigroups which are not finitely generated. 

The results of Sections 1 to 5 have been published in Ruskuc (1994), and the 
results of Section 6 will appear in Ruskuc (1995). The results of Section 7 appear 
here for the first time. 

1. Connected completely O-simple semigroups 

We shall introduce the class of connected completely O-simple semigroups by a 
number of equivalent conditions (Theorem 1.2). All the background facts about 
completely O-simple semigroups that we need can be found in Appendix A. A 
more complete introduction to these semigroups can be found in Howie (1976). 

10 
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We use the notation for completely a-simple semi groups introduced in Section 
2 of Appendix A. Thus, for a completely a-simple semigroup S, R~, i E I, denote 
the a-minimal right ideals of S, and L~, A E A, denote a-minimal left ideals of 
S. The semigroup S has two V-classes S - {a} and {a}. The non-zero R-classes 
of S are Ri = R~ - {a}, i E I, the non-zero £-classes of S are L).. = L~ - {a}, 
A E A, and we have 

S - {a} = URi = U L)... 
iEI )..EA 

When I is finite we assume that I = {I, ... ,m}. Similarly, if A is finite, we write 
A = {I, ... n}. Nevertheless, sometimes we will need to assume that I n A = 0 
and in that case we will distinguish elements of I and A by putting appropriate 
subscripts, e.g. II E I, lA E A etc. Any two distinct Ri and Rj , as well as any 
two distinct L).. and Lp" are disjoint. The intersection of ~ and L).. is denoted 
by Hi).. (i E I, A E A). Each Hi).. (i E I, A E A) is either a group or it is a set 
with the zero multiplication by Proposition A.2.1 (vi). If Hi).. is a group, then ei).. 
will denote its identity. All the (non-zero) group 'H-classes are isomorphic. The 
group to which they are all isomorphic is called the Schiitzenberger group of S. 
When considering completely simple semigroups, we sometimes assume (without 
explicitly stating this) that such a semi group has a zero adjoined to it, making 
it into a completely a-simple semigroup. E(S) and F(S) denote the set of all 
idempotents of S, and the subsemigroup generated .by that set respectively, for 
an arbitrary semi group S. 

In what follows we shall frequently refer to the following properbes of com­
pletely a-simple semigroups. 

Lemma 1.1. Let S be a completely O-simple semigroup. 

(i) If x E Hi).. and y E Hjp, then xy i= a if and only if Hj).. is a group) in which 
case xy E Hiw 

(ii) If xa i= a for some x E L).. then ya i= a for all y E L)... Dually) if ax i= a 
for some x E ~ then ay i= a for all y E Ri . 

(iii) ala2'" at = a if and only if at least one of products ala2, a2a3, at-lat zs 
equal to zero. 

(iv) If p E F(S) then every inverse of p also belongs to F(S). 

PROOF. (i), (ii) and (iii) can be easily deduced from Proposition A.2.1 (ix) and 
(x). For (iv) see Fitz-Gerald (1972) .• 

For an arbitrary completely a-simple semi group S we define a graph f(S) as 
follows. The set of vertices of f(S) is 

((i,A) E I x A I Hi).. is a group}. 

Two vertices (i, A) and (j, /1) are adjacent if and only if i = j or A = /1. 
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Theorem 1.2. The following conditions are equivalent for any completely 0-
simple semigroup S: 

(i) f( S) is a connected graph. 

(ii) L)..F(S)Ri = S for every i E I and every A E A. 

(iii) F(S) n Hi).. of- 0 for every i E I and every A E A. 

(iv) For every i,j E I and every A,fl E A there exist p(i,A,j,fl), q(i,A,j,fl) E 
F(S) such that the mapping ¢(i,A,j,fl): Hi).. ---7 HjjJ- defined by 

¢( i, A, j, fl) (x) = p( i, A, j, fl )xq( i, A, j, fl) (1) 

is a bijection. 

If both Hi).. and HjjJ- are groups) then the elements p(i,A,j,fl), q(i,A,j,fl) can 
be chosen so that 

¢(i, A,j, fl)-I = ¢(j, fl, i, A) 

and ¢(i, A,j, fl) is a group isomorphism. 

PROOF. (i)~(ii) L)..F(S)Ri is a two-sided ideal, and therefore is equal to {O} 
or S. By Proposition A.2.1 (viii), L).. contains at least one group H-class, say 
Hj)... Similarly, there exists a group HijJ- within Ri. Since f(S) is connected there 
exists a path (j, A) -+ (kl , VI) -+ .,. -+ (kt , Vt) -+ (i, fl) connecting (j, A) and 
(i, fl). Now, by Proposition A.2.1 (ix), we have 

because in every case the two factors are either in the same R-class or in the same 
£-class. By Lemma 1.1(iii) we have ej)..ek1Vl ... eijJ- of- O. However, ej)..ek1Vl ... eijJ- E 
L)..F(S)Ri' and thus L)..F(S)Ri of- {O}. 

(ii)~(iii) Both Ri and L).. contain at least one group H-class, say HijJ- and Hj)... 
From LjJ-F(S)Rj = S and Lemma 1.1(ii) it follows that there exists p E F(S) 
such that xpy of- 0 for every x E LjJ- and any y E Rj. In particular eijJ-pej).. of- 0, 
and therefore eijJ-pej).. E Hi).. n F(S). 

(iii)~(iv) Each of Ri, Rj, L).., LjJ- must contain at least one group H-class, say 
Hiv , Hj7r , Hk).., HZjJ- (see Figure 1, in which group H-classes are shaded). By (ii) 
there exist p(i,A,j,fl) E Hjv n F(S) and q(i,A,j,fl) E HkjJ- n F(S). Proposition 
A.2.1 (xi) and Lemma 1.1(iv) imply the existence of p(j, fl, i, A) E Hi7r n F(S) 
and q(j, fl, i, A) E Hz).. n F(S) which are inverses of p(i, A,j, fl) and q(i, A,j, fl) 
respectively. 

If we now define mappings ¢(i,A,j,fl) and ¢(j,fl,i,A) by the rule (1), it is 
obvious that they map Hi).. into HjjJ- and HjjJ- into Hi).. respectively, and that they 
are inverses one of each other. 
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i,A) 

-I- I I -I-
Rk I l -.l - -

I 

R[ i,A) 
-I- T I 
-1- -I- -+ -I-

I I I I 

R-
:J 

Figure 1. 

If both HiA and HjJ.L are groups, p(i, )..,j, f.l) can be chosen from HjA' and then 
for q( i,).., j, f.l) we can choose its inverse from Hiw By Green's theorem </J( i, A, J., f.l) 
is a group isomorphism from HiA onto Hjw 

(iv)=}(i) Let (i, A) and (j, f.l) be any two vertices of the graph f(S). This 
means that HiA and HjJ.L are groups. Let p(i, A,j, f.l), q(i, )..,j, f.l) E F(S) be such 
that 

</J(i, A,j, f.l) : x f-t p(i, A,j, f.l)xq(i, )..,j, f.l) 

is a bijection. Ifp(i,A,j,f.l) = eilAlei2A2 ... eisAs then i l =j becausep E Rj . Also, 
all Hi2A1 , Hi3A2' ... ' HisAs_l' HiAs are groups, because of p(i, A,j, f.l)HiA =1= {O} and 
Lemma 1.1(i). But then 

(j,f.l) -7 (j,AI) -7 (i2 ,AI) -7 (i2,A2) -7 ... 

-7 (is, As-I) -7 (is, As) -7 (i,As) -7 (i,A) 

is a path connecting (j,f.l) and (i,A) in the graph f(S) .• 

Definition 1.3. If a completely O-simple semigroup 5 satisfies any of the (equi­
valent) conditions of Theorem 1.2 we say that 5 is connected. 

We finish this section by giving examples of both connected and non-connected 
completely O-simple semigroups. 
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Example 1.4. If S is a completely simple semigroup, then all Hi). are groups; 
see Proposition A.2.2 (iv). Therefore ei). E F(S) n H)., so that S is connected by 
Theorem 1.2. The set of vertices of the graph r(S) is the whole set I x A .• 

Example 1.5. The second principal factor P2 of the full transformation semi­
group T4 is a completely O-simple semigroup. The egg-box picture of this com­
pletely O-simple semi group is given in Figure 2; see also Table 3 in Clifford and 
Preston (1961). From this egg-box picture it is easy to compute the graph r(P2 ). 

Figure 3 represents this graph with loops omitted. In particular, P2 is connected. 
This is actually a special case of a more general situation: any principal factor of 
any finite full transformation semi group is a connected O-simple semigroup; see 
Lemma 5.5 .• 

1 2 3 4 

Figure 2. 

Example 1.6. A Brandt semigroup is defined as a completely O-simple inverse 
semigroup; see Petrich (1984). The product of any two distinct idempotents of 
a Brandt semigroup is zero (Lemma 11.3.2 in Petrich (1984)), and therefore a 
Brandt semigroup is not connected, unless it is a group with zero adjoined. If S 
is a Brandt semi group with III non-zero R-classes, then r(S) has III vertices and 
all the edges are loops. • 

2. Ranks of connected completely O-simple semigroups 

The main purpose of this section is to establish a formula for the rank of a finite 
connected O-simple semigroup. First, however, we find a generating set for a 
general completely O-simple semigroup, which we will use in Chapter 6. 
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(5,4) 

(1,1) 

(4,4) 

Figure 3. 
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(2,3) 

Theorem 2.1. Let S be a completely O-simple semigroup, and let io E I, AO E A 
be such that Hio>..o is a group. If A ~ Hio>"o generates Hio>..o as a semigroup, and 
if b>.. E Hio>.., A E A - {AO}, and Ci E Hi>..o, i E I - {io}, are arbitrary, then the set 

x = AU {b>..1 AO #- A E A} U {Ci I io #- i E I} U {O} 

generates S. 

In order to prove Theorem 2.1 we need the following 

Lemma 2.2. Let S be a completely O-simple semigroup, let T be a subsemigroup 
of S, and assume that Hio>..o is a group. If 0 E T, Hio>..o ~ T and Tn Hi>.. #- 0 for 
all i E I, A E A, then T = S. 

PROOF. Let i E I, A E A be arbitrary. For x E Tn Hio>.. we have Hio>"ox = Hio>.., 

since Hio>..o is a group (Proposition A.2.1 (x)), so that Hio>" ~ T. A similar 
argument shows that Hi>..o ~ T. Now Hi>..oHio>.. '1= {O}, since Hio>..o is a group 
(Lemma 1.1); hence Hi>.. = Hi>..oHio>.. ~ T by Proposition A.2.1 (x). Finally, we . 
have 

S = {O} U ( U Hi>..) ~ T, 
iEI,>"EA 

which completes the proof. • 

PROOF OF THEOREM 2.1. Since Hio>..o is a group, we have Cib>.. E Hi>.., i E I, 

A E A, by Lemma 1.1(i). Therefore (X) n Hi>.. #- 0 for all i E I and all A E A, 
and the theorem follows from Lemma 2.2 .• 
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As a corollary we obtain an upper bound and a lower bound for the rank of 
an arbitrary completely O-simple semigroup. 

Corollary 2.3. If 5 is a completely O-simple semigroupJ then 

max(III, IAI) :::; rank(5) :::; rank(G) + III + IAI- 1, 

where G is the Schiitzenberger group of 5. 

PROOF. The first inequality has been proved in Howie and McFadden (1990), 
although they state it with less generality. We prove it here again for the sake of 
completeness. 

First note that, if a E Ri and bE 5, then either ab E Ri or ab = 0 by Lemma 
1.1(i). Therefore, each generating set A of 5 must have a non-empty intersection 
with each non-zero R-class, and thus has at least III elements. Similarly, IAI 2: 
IAI, and hence IAI 2: max(III, IAI), as required. 

The second inequality is a direct consequence of Theorem 2.1. • 

The following two examples show that both bounds can be attained. 

Example 2.4. Let 5 be the five element semigroup defined by the following 
multiplication table: 

o a b c d 
0 0 0 0 0 0 
a o a b 0 0 
b o a b a b 
c 0 c d 0 0 
d 0 c d c d 

Alternatively, 5 can be considered as the semi group consisting of the following 
five matrices 

It is easy to see that 5 is O-simple, and thus completely O-simple, since it is finite. 
It has two non-zero R-classes R1 = {a, b}, R2 = {c, d}, as well as two non-zero 
£-classes L1 = {a, c} and L2 = {b, d}. S obviously is not monogenic, but it is 
generated by {b, c}, so that 

rank(5) = 2 = max(III, IAI) .• 

Example 2.5. Let G be a group, and let 5 be G with a zero adjoined. 5 is 
obviously a completely O-simple semi group with III = IAI = 1. Every generating 
set for 5 has the form AU {O}, where A is a (semigroup) generating set for G, 
so that 

rank(5) = rank(G) + 1 = rank(G) + III + IAI- 1. • 
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Now we continue to work towards an exact formula for the rank of a finite 
connected completely O-simple semigroup, and first we establish some technical 
lemmas. In all of them we assume the notation for completely O-simple semi­
groups and connected completely O-simple semigroups from Section 1. In par­
ticular, if S is a connected completely O-simple semigroup, we assume that the 
elements p(i, ).,j, fl), q(i, ).,j, fl), as well as the mappings ¢(i, ).,j, fl) are fixed in 
accord with Theorem 1.2. 

Lemma 2.6. Let S be a connected completely O-simple semigroup. Then for all 
i,j E I, )., fl E A, and all a E Hi>., 

a E F(S)[¢(i, ).,j, fl)(a)]F(S). 

PROOF. Since ¢(i,).,j,fl)-l = ¢(j,fl,i,>") we have 

as required .• 

a ¢(j,fl,i,>..)(¢(i,).,j,fl)(a)) 

p(j, fl, i, >")[¢(i, >..,j, fl)(a)]q(j, fl, i, >..) 
E F(S)[¢(i, >..,j, fl)(a)]F(S), 

Lemma 2.7. Let S be a completely O-simple semigroup. If Hi>. is a group then 

PROOF. (2) If p E Hi>. n F(S) then p = ei>.pei>. (since ei>. is the identity of the 
group Hi>.) and therefore p belongs to ei>.F(S)ei>' - {OJ. 

(~) This inclusion follows from Lemma 1.1(i) .• 

Lemma 2.8. Let S be a connected completely O-simple semigroup, let A = {aI, 
... ,aT } ~ S with aj E Hi)>'j, j = 1, ... ,r, and let Hi>. be a group. If we write 

then 
(F(S) U A) n Hi>. = ((F(S) n Hi>.) U B). 

PROOF. (2) From B ~ Hi>. and F(S) n Hi>. ~ Hi>. it follows that 

On the other hand, we have 

F(S) n Hi>. ~ (F(S) U A), 
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which together with 

B ~ F(S)AF(S) ~ (F(S) U A) 

gIVes 
((F(S) n Hi>.) U B) ~ (F(S) U A). 

(~) By Lemma 2.6 we have 

A ~ F(S)BF(S) ~ (F(S) U B), 

and therefore 

(F(S) U A) n Hi>. C (F(S) U (F(S) U B)) n Hi>. 
(F(S) U B) n Hi>. 
ei>.( (F(S) U B) n Hi>.)ei>. 

C ei>. (F(S) U B)ei>. n Hi>. 
C (ei>.F(S)ei>' U B) n Hi>. 

((ei>.F(S)ei>. - {OJ) U B) n Hi>. 
((Hi>. n F(S)) U B) n Hi>. 
((Hi>. n F(S)) U B), 

since ((Hi>. n F(S)) U B) ~ Hi>. .• 

(B ~ Hi>.) 
(0 (j. Hi>.) 
(Lemma 2.7) 

Lemma 2.9. Let S be a connected completely O-simple semigroup, let i,j E I and 
let >',/1 E A. If both Hi>. and Hj/L are groups then </J(i,>.,j,/1) maps F(S) n Hi>. 
onto F(S) n Hj/L isomorphically. 

PROOF. Certainly, </J( i,)., j, /1) is a homomorphism by Theorem 1.2. It is clear 
that 

</J(i, ).,j, /1)(F(S) n Hi>.) ~ F(S) n Hj/L) 

since both p( i, >., j, /1) and q( i, >., j, /1) are products of idempotents. The converse 
inclusion follows from 

p = </J(i,>.,j,/1)(</J(j,/1,i,>.)(p)), 

and the result follows .• 

Definition 2.10. Let S be a semi group and let T be a subsemigroup of S. The 
rank of S modulo T, denoted by rank(S : T), is the least possible cardinality of 
all sets A ~ S for which (A U T) = S. 

Lemma 2.11. Let S be a connected completely O-simple semigroup, let i E I and 
let>. E A. If Hi>. is a group then 

rank(S) 2 rank(Hi >. : Hi>. n F(S)). 
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PROOF. Let A be any generating set of 5, and define B ~ Hi>. as in Lemma 2.8. 
Then Lemma 2.8 implies that 

Hi>. = 5 n Hi>. = (A) n Hi>. = (F(5) U A) n Hi>. = ((F(5) n Hi>.) U B), 

and therefore 
IAI 2 IBI 2 rank(Hi>. : F(5) n Hi>.), 

as required .• 

Remark 2.12. Although Hi>. is a group, rank(Hi>. : Hi>.nF(5)) retains its semi­
group meaning as in Definition 2.10. In other words, it is the minimal cardinal 
number of all sets A such that A U (Hi>. n F(5)) generates Hi>. as a semigroup. 
However, this possible source of confusion is going to disappear in a minute, when 
we are going to assume that 5, and hence Hi>., is finite: a subset of a finite group 
G generates G as a group if and only if it generates G as a semigroup. 

Lemma 2.13. Let 5 be a finite completely O-simple semigroup! let Hi>. be a 
group! and let 

t = max(III, IAI,rank(Hi>. : Hi>. n F(5)). 

Then there exists A ~ 5 with IAI = t such that 5 - {O} ~ (A). 

PROOF. First we prove that there exist iI, ... ,it E I and )1}, ... ,At E A such that 
for any choice of qk E Hik>'k' k = 1, ... ,t, and any j E I, /1 E A, the intersection 
Hjp, n (q1, . .. , qt) is non-empty. Let {(j1, /11)' ... ,Us, /1s)} be a maximal set of 
ordered pairs having the property that all Hj1 /1-1'· •• , HjsP,s are groups, jI, .. . ,js 
are all different, and /11, ... ,/1s are all different. It is clear that this set contains 
at least one pair and that for any group Hjp, either j E {j1, ... , js} or /1 E 
{/1I, ... , /1s}. Since t 2 max(III, IAI) we can choose i1, ... ,it E I and AI, .. . ,At E 
A so that the following conditions hold: 

i1 =js, i2 =jI, ... ,is =js-1, {i s+1, ... ,it}=I-{i}, ... ,is}' 

Al = /11, A2 = /12, ... ,As = /1s, {AsH,···, At} = A - {A}, ... , As}. 

Let qk E Hik>'k' k = 1, ... ,t, be arbitrary and let j = iz E I and A = Am E A. If 
1 :::; sand m :::; s the product qZqZ+1 ... qm (with the subscripts reduced modulo 
s) is non-zero because HjlP,l' .. ·' Hjm_1 P,m-l are groups, and so qZqZ+1··· qm E 
Hjp, n (qI, . .. , qt). Consider now the case when 1 2 s + 1 and m :::; s. The 
£-class L>'l contains at least one group Hik>'l. But now k :::; sand m :::; s so 
that Hik>'m contains an element q from (qI, ... , qt). The product qzq is non-zero 
since Hik>'l is a group, and so qzq E Hjp, n (qI, . .. , qt). The case when 1 :::; sand 
m ;::: s + 1 can be treated similarly. Finally, if 1 2 s + 1 and m 2 s + 1 we choose 
any group Hik>'r with k, r :::; s. Then there exist q1 E Hil>'r n (q1, ... , qt) and 
q2 E Hik>'m n (q1, . .. , qt), so that q1q2 E Hi>. n (qI, . .. , qt). 
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Since rank(HiA : F(5) n HiA ) :S t, there exists a set B = {bt, . .. , btl ~ HiA 
such that 

((F(5) n HiA ) U B) = HiA . (2) 

(3) 

and denote {at, . .. ,at} by A. The choice of iI, ... ,it and AI, ... ,At gives 

(A) n HjJL i= 0, for all j E I, IL E A. (4) 

Since 5 is finite so are all non-zero group 1{ classes, and (4) implies F(5) ~ (A), 
which, together with (3), gives B ~ (A). Now Hi>. ~ (A) by (2), and the result 
follows from (4) and Lemma 2.2 .• 

Now we are in the position to prove the main result of this section. 

Theorem 2.14. Let 5 be a finite connected O-simple semigroup) let {Ri liE I} 
and {LA I A E A} be the sets of all non-zero R- and £-classes respectively) and let 
HiA = Ri n L>. be any non-zero 1{-class which is a group. 

(i) If 5 has divisors of zero then 

rank(5) = max(III, IAI,rank(HiA : HiA n.F(5))). 

(ii) If 5 has no divisors of zero then 

rank(5) = max(III, IAI,rank(Hi>. : Hi>. n F(5))) + l. 
PROOF. (i) In this case 5 - {O} ~ (A) implies (A) = 5 for any A ~ 5, so that 
result follows from Corollary 2.3 and Lemmas 2.11 and 2.13. 

(ii) In this case 5 - {O} is a semigroup of rank max(III, IAI, rank(Hi>. : HiA n 
F(5))) by Corollary 2.3 and Lemmas 2.11 and 2.13, and zero cannot be avoided 
as a generating element .• 

Remark 2.15. Lemma 2.9 implies that the number max(III, IAI, rank(HiA : HiAn 
F(5))) does not depend on the choice of Hi>.. 

Remark 2.16. From the proof of Lemma 2.13 it is clear that the condition that 
5 is finite in Theorem 2.14 can be replaced by the weaker condition that the 
Schiitzenberger group of 5 is periodic. 

Remark 2.17. If we consider a completely O-simple semi group 5 as a semi group 
with zero, so that the zero is automatically included in any subsemigroup, then 
Theorem 2.14 simply says that 

rank(5) = max(III, IAI, rank(Hi>. : Hi>. n F(5))). 
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An important consequence of Theorem 2.14 is a formula for the rank of any 
finite simple semigroup. 

Corollary 2.18. If S is a finite simple semigroup then 

rank(S) = max(III, IAI,rank(Hi>. : Hi>. n F(S))), 

where III and IAI are the numbers of minimal right ideals and minimal left ideals 
respectively, and Hi>. is the intersection of any two of them. 

PROOF. Since S is finite and simple, it is necessarily completely simple. Adjoin­
ing a zero to S results in a completely O-simple semigroup T, which is connected 
(see Example 1.4), and has no divisors of zero. The rank of such a semi group is 
given in Theorem 2.14(ii). The corollary now follows from the observation that 
each generating set of T necessarily has the form AU {O}, where A is a generating 
set for S .• 

The formula from Corollary 2.18 takes a particularly pleasing form when 
Hi>. n F(S) is a normal subgroup of Hi>.: 

Theorem 2.19. If S is a finite simple semigroup such that Hi>. n F(S) <l Hi>. 
for some 1i-class Hi>., then 

rank(S) = max(III, IAI, rank(S/ p(S))) 

where III and IAI are the number of minimal right ideals and the number of 
minimal left ideals respectively, and p( S) is the least group congruence on S. 

Remark 2.20. Every completely simple semi group is regular, and thus possesses 
a least group congruence. However, non-regular semigroups do not necessarily 
have a least group congruence; see Exercise 5.26 in Howie (1976). 

In order to prove Theorem 2.19 we have to introduce some more notation and 
technical results. 

Following Higgins (1992) we say that a subsemigroup T of an arbitrary semi­
group S is full if it contains all the idempotents of S. Also, T is said to be 
self-conjugate if aTa' ~ T for any pair of mutually inverse elements a, at (i.e. 
aa'a = a, a'aa' = a'). Since the intersection of any family of full self-conjugate 
subsemigroups of any semi group S is again full and self-conjugate, there exists a 
least such subsemigroup, which we will denote by C(S). 

Lemma 2.21. Let S be a completely O-simple semigroup, let Hi>. be a group, and 
let N i>. be the normal subsemigroup of Hi>. generated by Hi>. n F(S). Then 
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PROOF. (2) This inclusion is obvious. 
(~) Let a E Hi>.. n (Ni>.. U F(S)) be arbitrary. Then there exist a natural 

number 1 and elements PI, ... ,PI,PZ+I E F(S), nlJ ... , nl E Ni>.. such that a = 
PI nIP2n2 ... PlnIPI+!· Since ei>.. is the identity of Hi>.., and since a, nl, ... ,nz E Hi>.., 
we have 

so that 
a = ei>..aei>.. = ei>..PIei>..nIei>..P2ei>..n2ei>.. ... PZei>..nZei>..PZ+Iei>... 

N ow if we note that 

ei>"PIei>..,···, ei>"PZ+Iei>.. E F(S) n Hi>.. ~ Ni>.., 

we obtain a E Ni>.., as required .• 

Lemma 2.22. Let S be a connected completely O-simple semigroup, and let Hi>.. 
and N i>.. be as in the previous lemma. Then 

C(S) = (Ni>.. U F(S)). 

PROOF. Let us denote (Ni>.. U F(S)) by T. Clearly, T is fulL We want to show 
that T is self-conjugate as welL Let a, a' E S be any pair of mutually inverse 
elements and let t E T. If ata' = 0 then, clearly, at a' ,E T. Therefore the 
nontrivial case is when ata' =I- O. If a E H jv and a' E H kJ1.' then both Hkv and 
H j J1. are groups by Proposition A.2.2 (vii), and we have 

for tl = ekvtekv E Hkv n T. By Theorem 1.2 we have 

tl = p(j, f.1, k, V)t2q(j, f.1, k, v), 

for some t2 E H j J1.; also t2 = p(k, v,j, f.1)t I q(k, v,j, f.1) E T. Hence 

atIa' = ap(j, f.1, k, v)t2q(j, f.1, k, v)a' 
ap(j, f.1, k, v)ejJ1.t2ejJ1.q(j, f.1, k, v)a' = bt2c, 

for b = ap(j, f.1, k, v)ejJ1.' c = ejJ1.q(j, f.1, k, v)a'. Clearly b, c E H j J1. and 

(5) 

(6) 

(since <jJ(j, f.1, k, v) is an isomorphism), so that band c are inverses of each other 
in the group Hj J1.' By Theorem 1.2 

<jJ( i, ).., j, f.1 ) ( <jJU, f.1, i, )..) (bt2C) ) 
p(i, )..,j, f.1)[<jJ(j, f.1, i, )")(b) . <jJ(j, f.1, i, )..)(t2)· 

. <jJ(j,f.1,i,)..)(c)]q(i,)..,j,f.1) 
p(i,)..,j,f.1)[<jJ(j,f.1,i,)")(b)· p(j,f.1,i,)..)t2 

q(j, f.1, i,)..) . <jJ(j, f.1, i, )..)(c)]q(i, )..,j, f.1). 

(7) 
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By Lemma 2.21, the product p(j, /L, i, )..)t2q(j, /L, i,)..) belongs to Ni>.. The elements 
¢(j,/L,i,)")(b) and ¢(j,/L,i,)..)(c) are inverses of each other in the group Hi>., since 
¢(j, /L, i,)..) is an isomorphism. Therefore 

¢(j, /L, i, )")(b) . p(j, /L, i, )..)t2 q(j, /L, i,)..)· ¢(j, /L, i, )..)(c) E Ni>. 

(because N i >. is normal), and thus 

p( i, A, j, /L) [¢(j, /L, i, )..) ( b) . p(j, /L, i, ).. )t2 
q(j,/L,i,)..)· ¢(j,/L,i,)..)(c)]q(i,A,j,/L) E T. 

From (5), (6), (7) and (8) it follows that T is self conjugate. 

(8) 

To prove that T is the least self conjugate subsemigroup of 5, let Tl be any 
other such semigroup. Tl contains F(5), and therefore contains Hi>.nF(5). Since 
it is closed under conjugation, Tl must contain all conjugates of Hi>. n F(5) in 
Hi>., i.e. it must contain Ni>., and thus (Ni>. U F(5)) = T .• 

The following lemma gives a description of the least group congruence p( 5) 
on a regular semigroup 5. It was proved in Feigenbaum (1979). 

Lemma 2.23. If 5 is a regular semigroup then 

p(5) = {(a,b) E 5 x 5 I xa = by for some X,y E C(5)} .• 

As our next lemma, we prove the following relation among 5, p(5), Hi>. and 
Ni >. for any completely simple semigroup 5: . 

Lemma 2.24. If 5 is a completely simple semigroup then 

51 p(5) eE Hi>.INi>.. 

PROOF. Let G be the group 51 p( 5) and let e : 5 ----t G be the natural epi­
morphism. Since Hi>. = ei>.5ei>. it is easy to show that e rHiA is also onto. 
Now we show that ker(e rHiJ = N i >. and the lemma then follows from the 
first isomorphism theorem for groups. Clearly, e(F(5)) = {lG} , and there­
fore F(5) n Hi>. ~ ker(e rHiJ so that Ni>. ~ ker(e rHiJ. On the other hand, if 
a E ker(e rHiJ, then (a, ei>.) E p(5), and by Lemmas 2.22 and 2.23 there exist 
x, y E C(5) = (Ni>. U F(5)) such that xa = ei>.Y. The standard £-R argument 
proves that x E Ri and y E L>.. But then xa = ei>.Y implies (xei>.)a = ei>.Y. Since 
xei>., ei>.Y E (Ni>. U F(5)) n Hi>., Lemma 2.21 implies that xei>., ei>.Y E Ni>., and 
thus a E Ni>.. Therefore ker(e rHiJ ~ Ni>. .• 

Now we are in the position to prove Theorem 2.19. 

PROOF OF THEOREM 2.19. Since Hi>. n F(5) <J Hi>., we have Ni>. = Hi>. n F(5), 
and Corollary 2.18 implies 

rank(5) = max(III, IAI,rank(Hi>. : Ni>'))' 

If we note that rank(Hi >. : Ni>.) = rank(Hi>.INi>.) and apply Lemma 2.24, the 
result follows .• 
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Corollary 2.25. If the Schiitzenberger group of a finite simple semigroup S zs 
abelian (or, more generally, hamiltonian) then 

rank(S) = max(III, IAI, rank(Sj p(S))). 

PROOF. The proof follows from Theorem 2.19 and the fact that every subgroup 
of an abelian (hamiltonian) group is normal. • 

Remark 2.26. No result similar to the previous ones holds for O-simple semi­
groups, even if zero is adjoined, since S j p( S) is always trivial in that case. 

We finish this section by posing the following 

Open Problem 1. Find a formula for the rank of a general (finite) completely 
O-simple semigroup. 

In addition to Corollary 2.3 and Theorem 2.14, the following result of Gomes 
and Howie (1987) is highly relevant for this problem. 

Proposition 2.27. If S is a Brandt semigroup with n non-zero R-classes, and 
if G is the Schiitzenberger group of S, then 

rank( S) = n + rank( G) - 1. • 

3. Rees matrix semigroups 

By the Rees-Suschkewitsch Theorem (Proposition A.2.3) every completely 0-
simple semi group is isomorphic to some Rees matrix semi group MO[G; I, A; P] 
with the regular Rees matrix P = (P>.i)AEA,iEI. Regularity means that there is no 
column or row consisting entirely of zeros. Using this representation we are able 
to obtain a more concrete formulation for Theorem 2.14 and Corollary 2.18. 

Let S be a Rees matrix semi group MO[G; I, A; P], with P regular. Howie 
(1978) defined a bipartite graph on the set I U A (assuming I and A are disjoint) 
in which i E I and A E A are adjacent if and only if P>.i =f. o. We shall denote 
this graph by r( P). Two vertices x and y of r( P) are connected (x f"V y) if there 
exists an oriented path starting in x and ending in y. If 1f = Zl -+ Z2 -+ ... -+ Zt 
is a path in r( P) then the value of 1f is defined as 

V(1f) = (Zl' Z2)</J· (Z2, Z3)</J ..... (Zt-l, Zt)</J, 

where 
(i, A)</J = p")}, (,\, i)</J = P>.i (i E I, A E A). 

The value of the zero path from Z to Z is 1, the identity of G. Define Pxy to be 
the set of all paths connecting x and y, and and then let 

VXy = {V(1f)I1f E Pxy}. 

With this notation the following result was proved in Howie (1978): 
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Lemma 3.1. The subsemigroup generated by the set of all idempotents of a Rees 
matrix semigroup S = MO[G; I, A; Pl is 

F(S) = {(i,a,.\) Ii rv .\,a E ViA} .• 

It is possible to express the connectedness of S (Definition 1.3) as a condition 
on the graph r(p): 

Theorem 3.2. Let S be the Rees matrix semigroup MO[G; I, A; Pl. The semi­
group S is connected if and only if the graph r(p) is connected. 

PROOF. By Theorem 1.2 the semigroup S is connected if and only if HiAnF(S) # 
o for any i E 1,.\ E A. However, this is true if and only if i rv .\ in r(p), by 
Lemma 3.1 .• 

N ow we start with establishing the facts needed to prove the main result of this 
section (Theorem 3.6). In the following lemmas S will denote a finite connected 
O-simple Rees matrix semigroup MO[G; I, A; Pl. Without loss of generality we 
also assume that Pu # 0, so that Hu is a group. (Notice that here Pu and Hu 
stand for PlAIr and HlrlA respectively, where II E I and 1A E A.) 

Lemma 3.3. The mapping 1.jJ : Hu --+ G defined by 

(l,g, 1)1.jJ = gpu 

is a group isomorphism. It maps Hu n F(S) onto ViIPU. 

PROOF. Since 

((l,g, 1)(1, h, 1))1.jJ = (l,gPuh, 1)1.jJ = gpnhPl1 = (l,g, 1)1.jJ· (1, h, 1)1.jJ, 

1.jJ is a homomorphism. It is easy to see that it is bijective. The second part is a 
consequence of Lemma 3.1. • 

Since S is connected, for any .\ E A there exists a path 'TrA connecting II 
and .\. Analogously, for each i E I there exists a path 'Tri connecting i and 1A. 
Certainly, we can choose both 'Trl r and 'TrIA to be equal to the path II -+ 1A . For 
any i E 1,.\ E A we define 

Note that qAi = 0 if and only if PAi = 0. 

Lemma 3.4. If 
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PROOF. Since 7r is a path, all P>'1 I J,P>'l i2, ••• ,PIA i t are different from zero, so 
that all the corresponding q's are different from zero as well. 

Now we have 

as required .• 

Lemma 3.5. V1IPll is generated by the set {q>.ili E I,).. E A}. 

PROOF. The lemma is a direct consequence of Lemma 3.4 .• 

Now we can prove the main result of this section: 

Theorem 3.6. Let S = MO[G; I, A; PJ be a finite connected Rees matrix semi­
group, with regular matrix P, Pll =J 0 and PJ1-j = 0 for some j E I, J..l E A. Let also 
7ri and 7r>. (i E I,).. E A) be paths connecting i and lA, and II and)" respectively, 
with 7rIJ = 7rIA = II -+ 1A and let 

q>.i = V(7r>JP>.iV (7ri)Pll. 

If H is the subgroup of G generated by the set {q>.i I ).. E A, i E I, q>.i =J O} then 

rank(S) = max(III, IAI,rank(G: H)). 

If PJ1-j =J 0 for all j E I and J..l E A (the completely simple case) the rank of S 
is greater by one, while 

rank(S - {O}) = max(III, IAI,rank(G: H)). 

PROOF. The theorem is a direct consequence of Theorem 2.14 and Lemmas 3.3 
and 3.5 .• 

We can obtain an even nicer result for the completely simple case. In that 
case the matrix P can be chosen to have normal form, i.e. 

P>'l = Pli = 1, i E I,).. E A 

(Proposition A.2.6), and to have no zero entries. 

Theorem 3.7. Let S = M [G; I, A; PJ be a finite Rees matrix semigroup with P 
in normal form. Then 

rank(S) = max(III, IAI,rank(G: H)) 

where H is the subgroup of G generated by {P>.i 11 =J i E I, 1 =J ).. E A}. 
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PROOF. Since all entries in P are non-zero, we can choose 7ri = i ---t lA and 
7r,\ = II ---t A, so that 

q,\i = V(7r,\)P,\i V (7ri)Pll = P~iP'\ipi/Pll = P,\i 

because P is normal. By Theorem 3.6 

rank(S) = max(III, IAI,rank(G: H)) 

where H is the subgroup of G generated by 

{q,\i I A E A, i E I} = {P,\i I A E A, i E I}. 

However, P'\l = P1i = 1, and the theorem follows .• 

4. An extremal problem 

In Section 3 we established a formula for the rank of certain types of finite com­
pletely O-simple Rees matrix semigroups. This formula expressed the rank of 
S = MO[G; I, A; P] as a function of III, IAI, G and P. It is therefore interesting 
to ask how each of these factors influences the rank. For example, if we fix I, 
then 

rank(S) ~ III 

by Corollary 2.3. Actually, by choosing G to be trivial and varying A, we see 
that rank(S) can take any value ~ III. Similar considerations show that, if we 
fix A, rank(S) can take any value ~ IAI. 

In this section we consider the case when we fix the group G. Our first 
observation is that rank( S) may well be less than rank( G). 

Example 4.1. Let G be any finite group of rank 9 with generators 91,··· ,99, 
and let S be the Rees matrix semigroup M[G; I, A; P] where 

I = A = {1,2,3,4} 

and 

P = [~ :1 :2 :3]·. 
1 94 95 96 
1 97 98 99 

Then the subgroup of G generated by the entries of P is G, so that, by 
Theorem 3.7, 

rank(S) max(III, IAI,rank(G: G)) 
max(4,4, 1) = 4 < 9 = rank(G) .• 
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This can raise the following question: For a given finite group G, what is 
the minimal possible rank of a (O-)simple Rees matrix semigroup M[G; I, A; P] 
(MO[G; I, A; P])? 

First we consider the completely simple case. As remarked before, in this 
case we may suppose that P has normal form without loss of generality. For a 
real number x, r xl denotes the least integer which is not less than x. Thus, for 
example, r V21 = 1, r51 = 5, etc. 

Theorem 4.2. If G is a finite group of rank r then for every Rees matrix semi­
group M[G;I,A;PJ, with P normal, 

r
1 + J4r - 31 rank(M[G; I, A; P]) ~ 2 . 

There exists a semigroup M [G; I, A; P] with rank r 1+~1. 
PROOF. If 

then 
1 + J4r - 3 

m - 1 < 2 ::; m, 

which is equivalent to 

m 2 
- 3m + 3 < r ::; m 2 

- m + 1. (9) 

For an arbitrary simple Rees matrix semi group S = M[G;I,A;P] with Pin 
normal form, let t denote its rank, and let H be the subgroup of G generated by 
{p>-iI1 i- .\ E A, 1 i- i E I}, so that, by Theorem 3.7, 

t = max(III, IAI,rank(G: H)). 

Since 
rank ( G : H) ::; t and rank( G) = r 

we have 
rank(H) ~ r - t. (10) 

On the other hand H is generated by (III-1)(IAI-1) elements, and, since III ::; t 
and IAI ::; t, we have 

(t - 1)2 ~ rank(H). (11) 

From (10) and (11) it follows 

t 2 
- t + 1 - r ~ O. 
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Since l' > 0 we deduce that 

t>1+V4r-3 1+V4m2 -12m+9_ 
- 2 > 2 -m-1 

((9) was used in proving the last inequality), so that t 2:: m. 
Let {91, ... , 9r} be a generating set for G. Define I = A = {I, ... , m} and 

let P be the matrix with ones in the first row and the first column, and elements 
91,··· ,9(m-I)2 as remaining entries. If l' < (m -1)2, the entries 9r+I,·.· ,9(m-l)2 

may be arbitrary. Then it is easy to see that 

rank(G: H) = { l' - (m - 1)2 if l' > .(m -1)2 
o otherwIse, 

where H is the subgroup of G generated by {91, ... ,g(m-I)2}. Since 

l' - (m _1)2 :::; m2 - m + 1 - (m _1)2 = m 

(because of (9)), we obtain 

rank(M[G; I, A; P]) = max(III, IAI, rank(G : H)) = m, 

as required .• 

Surprisingly, if we consider O-simple semigroups (rather than simple), the 
bound remains the same. 

Corollary 4.3. If G is a finite group of rank l' then for every O-simple Rees 
matrix semigroup S = MO[G; I, A; P] 

PROOF. If P is obtained from P by replacing all zero entries by 1, then 

rank(M[G; I, A; P]) :::; rank(MO[G; I, A; P]) 

since every generating set of MO[G; I, A; P] generates M[G; I, A; P] as well. The 
corollary now follows from Theorem 4.2 .• 

5. Transformation semigroups 

Transformation semigroups have been studied extensively over the years, and 
ranks for many important classes are known. In the following proposition we list 
some well known results; all of them have very easy proofs. 
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Proposition 5.1. (i) The full transformation semigroup Tn, n ~ 2, has rank 3. 
It is generated by any set {a, b, t}, where a, b are two permutations generating the 
symmetric group Sn, and i is any mapping of rank n - 1. 

(ii) The semigroup of partial transformations PTn, n ~ 2, has rank 4. It 
is generated by any set {a, b, i, s}, where a, b, i are as above, and IDom( s) I 
IImsl = n-l. 

(iii) The symmetric inverse semigroup In, n ~ 2, has rank 3. It is generated 
by any set {a, b, s}, where a, b, s are as above .• 

The rank of the semi group of singular mappings Singn is more difficult to 
determine; see Gomes and Howie (1987). Even more difficult are the ranks of the 
sem1groups 

K(n,r) = {a E Tn IIImal :S r}, 1 :S r:S n, 

which were determined by Howie and McFadden (1990). In this section we show 
how our results about ranks of completely O-simple semi groups can be used to 
obtain alternative proofs for the results of Gomes and Howie (1987) and Howie 
and McFadden (1990). The following is the key lemma for doing this. 

Lemma 5.2. Let S be a semigroup, let J be a maximal J -class of S, and let J 
be the corresponding principal factor. If (J) = S then rank(S) = rank(J). 

PROOF. Note that if Sl, S2 E Sl and i E S - J, then Slis2 tf. J, since J is 
maximal. Hence, for any generating set A of S, J ~ (A n J), which implies 

rank(S) ~ rank(J). 

Assume now that B is a generating set of J having the minimal possible 
cardinality. Since (J) = S we see that either S = J, or J has divisors of zero. In 
any case we may assume that 0 tf. B, or, equivalently, B ~ J. Now in S we have 
S ~ (J) ~ (B), and thus 

rank(S) :S rank( J), 

which completes the proof .• 

Let us now recall the Green's structure of the full transformation semigroup. 
For more details and proofs the reader is referred to Clifford and Preston (1961). 
It is well known that 

aRj3 {::=} Ker a = Ker 13, 
a£j3 {::=} 1m a = 1m 13, 
aVj3 {::=} aJj3 {::=} IImal = IImj3l. 

We see that Tn has n J -classes: 

J(n,r) = {a IIImal = r}, r = 1, ... ,n, 

(12) 
(13) 
(14) 
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which form a chain. The corresponding principal ideals are precisely the semi-
groups K(n, r), r = 1, ... , n, while the corresponding principal factors will be de-
noted by J(n, r), r = 1, ... , n. Note that K(n, n) = Tn and K(n, n -1) = Singn . 

Each J( n, r) is a V-class as well. The number of R-classes in J( n, r) is 
equal to the number of equivalence relations on the set {I, ... ,n} with exactly r 
equivalence classes; this number is known to be the Stirling number of the second 
kind S(n, r); see Riordan (1958). The number of L-classes in J(n, r) is equal to 

the number of r-element subsets of {I, ... ,n}; this number is (~). 
An important observation about K (n, r) is that it inherits the Green's struc­

ture from Tn. 

Lemma 5.3. Green's relations R, L, V and .:J in K(n, r) are gwen by (12), 
(13), (14). 

PROOF. We prove the lemma just for R; the assertions about L, V and .:J can 
be proved similarly. In one direction the lemma is obvious: if two mappings are 
R-equivalent in K(n, r), they are R-equivalent in Tn as well, and so they have 
the same kernel. For the converse suppose that Ker a = Ker (3. This means that 
aR(3 in Tn, or, in other words, a, = (3 and (36 = a for some ,,6 E Tn. Now note 
that 

I(Ima)!1 = IIm(31 = IImal, 

so if we define ,1 by 

X,l = x if x E Ima, X,l E Ima if x tJ. Ima, 

we have a,l = a and 

Therefore, for ,2 = ,1" we have ,2 E K (n, r) and a,2 = (3. Similarly, there 
exists 62 such that 62 E K(n,r) and (362 = a, and hence aR(3 in K(n,r) .• 

Now we show that K(n, r) satisfies the conditions of Lemma 5.2. 

Lemma 5.4. The semigroup K(n, r), r = 1, ... , n -1, is generated by its maxi­
mal .:J -class J( n, r). 

PROOF. The lemma is a direct consequence of the fact that any mapping a with 
IImal = r ~ n - 2 can be written as a composition of two mappings of rank 
r + 1; see Lemma 4 in Howie and McFadden (1990) .• 

Our next goal is to prove that the principal factor ] (n, r) is a connected 
completely a-simple semigroup. To do this we recall the following result of Hall 
(1973). 
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Lemma 5.5. A regular semigroup S is idempotent generated if and only if every 
principal factor of S is idempotent generated .• 

Lemma 5.6. J(n, r), r = 1, ... , n -1, is a connected completely O-simple semi­
group. 

PROOF. The semigroup Singn is generated by its idempotents (Howie (1966)), 
and J(n, r) is a principal factor of Singn (Lemma 5.3), so that J(n, r) is idempo­
tent-generated as well by Lemma 5.5. 

A principal factor of a semi group is either O-simple or is a null semigroup; see 
Proposition A.4.7. Since J( n, r) contains idempotents, it is O-simple, and since it 
is finite it has to be completely O-simple. Moreover, since J(n, r) is idempotent­
generated, each non-zero 1{-class has a non-empty intersection with F(J( n, r)), 
so that J ( n, r) is connected. • 

Now we have all the ingredients for an alternative proof of the following the­
orem from Howie and McFadden (1990): 

Theorem 5.7. rank(K(n, r)) = S(n, r), r = 1, ... , n - 1. 

PROOF. By Lemmas 5.2 and 5.4 we have rank(K(n,r)) = rank(J(n,r)). By 
Lemma 5.6 J( n, r) is a finite connected completely O-simple semigroup, and hence 
its rank is given in Theorem 2.14. The number of R-classes in J(n, r) is S(n, r), 
while the number of £-classes is (~). Finally, the subsemigroup of J( n, r) gen­

erated by the idempotents is J(n, r) itself by Lemma 5.5, and so we have 

rank(J(n,r)) = max(S(n,r), (~)). 

It is well known that S( n, r) 2: (~), and the result follows .• 

Note that S(n, n -1) = (~), and since K(n, n -1) = Singn, Theorem 5.7 has 
as a consequence Theorem 2.1 from Gomes and Howie (1987). 

We finish this section by mentioning that the rank of the semi group On of 
endomorphisms of a finite chain was determined in Gomes and Howie (1990). 
The rank of the semi group En of binary relations on a finite set is not yet known. 
Devadze (1968) proved that rank(En) 2: n + 1. Actually, as noted in Kim and 
Rousch (1977), rank(En) grows at least exponentially with n. 

6. Matrix semigroups 

In this section we consider semigroups of matrices over a field in a similar way as 
we did with transformation semigroups in Section 5. 



Generating sets 33 

Let us first introduce some notation. Let F be a field. The set of all d x d 
matrices over F with non-zero determinant is a group, with respect to the usual 
multiplication of matrices. We denote this group by GL( d, F) and call it the 
general linear group. Another important group of matrices is the special linear 
group SL( d, F), consisting of all d x d matrices with determinant 1. It is a normal 
subgroup of GL( d, F); it is the kernel of the determinant homomorphism det : 
GL( d, F) --+ F, so that GL( d, F) jSL( d, F) is isomorphic to the multiplicative 
group F - {O}. For details on linear groups see Rotman (1965). 

The set of all d x d matrices over F is a semi group with respect to the mul­
tiplication of matrices; we denote this semi group by GLS( d, F) and call it the 
general linear semigroup. It is a semi group analogue of GL( d, F). The semigroup 
analogue of SL( d, F) is the special linear semigroup SLS( d, F), consisting of all 
matrices having determinant 0 or 1. We also note that GL(d,F) and GLS(d,F) 
are isomorphic to the automorphism group and the endomorphism semi group 
respectively of the vector space Fd. 

The Green's structure of GLS( d, F) closely resembles that of Tn. In particular, 
for any two matrices A, B, we have 

ARB <===? Ker A = Ker B, 

A£B <===? ImA = 1mB, 

A'DB <===? dim(ImA) = din;t(ImB) 

(see Exercise 2.2.6 in Clifford and Preston (1967)). We also have 

Theorem 6.1. J = 'D in GLS(d, F). 

(15) 
(16) 

(17) 

PROOF. The vector space F d, being finite-dimensional, satisfies the descending 
chain condition on subspaces. Therefore, both the set of R-classes and the set of 
£-classes satisfy the descending chain condition, and thus J = 'D by Proposition 
1.11 of Howie (1976) .• 

GLS (d, F) has d + 1 principal two-sided ideals 

l(r, d, F) = {A I dim(ImA) ~ r}, r = 0, ... , d. 

The corresponding J -classes are 

J(r, d, F) = {A I dim(ImA) = r },: r = 0, ... , d, 

and the corresponding principal factors will be denoted by J(r, d, F). The semi­
group l(d-1, d, F) consists of all singular matrices, and we denote it by Sing(d, F). 
It is clear that 

GLS(d,F) = GL(d,F) U Sing(d, F), 

SLS(d, F) = SL(d, F) U Sing(d, F). 

The main technical result needed for determining ranks of various matrix 
semigroups is the following: 
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Lemma 6.2. The semzgroup Sing( d, F) zs generated by its maximal .:J -class 
J(d - 1, d, F). 

PROOF. We show that each matrix A of rank r, r ::; d - 2, can be written as 
BC, where Band C have rank r + 1. 

Let {aI,"" ad} be a basis for the vector space F d, and let us write aiA = bi, 
i = 1, ... ,d. The subspace V of Fd generated by {bI, ... , bd} has dimension r, and 
therefore {bI, ... , bd} contains an r-element basis for V. Without loss of generality 
we assume that bb"" br are linearly independent; hence br+b' .. , bd are linear 
combinations of bI, . .. , br. Let Cr+b"" Cd be such that {bI, ... , br, Cr+b"" Cd} 
is a basis for Fd. Let Band C be matrices such that 

aiB = bi if i #- r + 1, ar+IB = Cr+I; 

biC = bi for 1 ~ i ~ r, Cr+I C = br+I, Cr+2C = Cr+2, cjC = 0 for j ~ r + 3. 

1m B is generated by {bI, .. . , br, Cr+I, br+2, ... ,bd} and has dimension r + 1; 
1m C is generated by {bI, ... , bTl br+I, Cr+2} and has dimension r + 1 as well. 
Finally, it is clear that A = BC, which completes the proof .• 

Now we are in the position to find the ranks of GLS(d,F) and SLS(d,F). 

Theorem 6.3. If S E GLS( d, F) is any matrix of rank d ...:. 1) then 

(GL(d,F) U {S}) = GLS(d,F). 

In particular 
rank(GLS(d,F)) = rank(GL(d, F)) + 1. 

PROOF. For any matrix T of rank d - 1 there exist non-singular matrices P 
and Q such that PTQ = diag(I, ... , 1,0). In particular, PTQ = PISQI (= 
diag( 1, ... , 1, 0)) for some non-singular matrices PI and QI, so that we have 
T = p-I PI SQI Q-I, and the first part of the theorem follows from Lemma 6.2. 
The second part now follows from the fact that Sing( d, F) is an ideal in GLS( d, F), 
so that each generating set for G LS ( d, F) necessarily contains a generating set 
for GL(d, F) .• 

Slightly more surprisingly we have 

Theorem 6.4. If 5 E GLS(d, F) is any matrix of rank d - 1 then 

(SL(d,F) U {S}) = SLS(d, F). 

In particular 
rank(SLS(d, F)) = rank(SL(d, F)) + 1. 
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PROOF. Let T be any matrix of rank d - 1, so that PTQ 
1,0) for some non-singular matrices P and Q. Then 

T p-Idiag(l, ... , 1, O)Q-I 
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diag(l, ... , 

p-Idiag(l, ... ,1, det(P)) . diag(l, ... , 1,0) . diag(l, ... , 1, det( Q) )Q-I 

Pdiag(l, ... ,1, O)Q, 

where P = p-Idiag(l, ... ,l,det(P)) and Q = diag(l, ... ,l,det(Q)) Q-I are 
matrices of determinant 1. The rest of the proof is the same as in Theorem 6.3 . 

• 
Now we turn our attention to the principal ideals I(r, d, F) of GLS( d, F). 

Again, as in the full transformation semigroup, the principal ideals inherit the 
Green's structure from the semigroup. 

Lemma 6.5. Green's relations R, ,c and 1) in I(r, d, F) are given by (15), (16), 
(17), and J = 1). 

PROOF. The lemma can be proved by an argument analogous to the proof of 
Lemma 5.3 .• 

As an immediate corollary of Lemmas 5.2, 6.2 and 6.5 we obtain 

Lemma 6.6. rank(I(r, d, F)) = rank(J(r, d, F)) .• 

Now, however, we have to distinguish the case when F is an infinite field from 
the case when F is finite. 

Theorem 6.7. If F is an infinite field then the semigroup I(r, d, F), r = 1, ... , 
d - 1, is not finitely generated. 

PROOF. The semi group J(r, d, F), being a principal ideal, is either O-simple, 
or it is a null semigroup. It is, however, easy to see that J(r, d, F) contains 
idempotents, and hence it is O-simple. Moreover, it is completely O-simple, since 
Fd satisfies the descending chain condition on subspaces. By Corollary 2.3 we 
have 

rank(J(r, d, F)) ~ max(III, IAI), 

where I is the number of non-zero R-classes, and IAI is the number of non-zero 
'c-classes in J(r, d, F). By (16), the number of non-zero 'c-classes in J(r, d, F) is 
equal to the number of subspaces of Fd of dimension r; we shall show that this 
number is infinite. The theorem will then follow from Lemma 6.6. 

For fin F, consider the set 
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where 
ai(J) = (0, ... ,0,1,0, ... ,0,1). ---- ----i-I d-i-I 

Semigroup presentations 

It is obvious that al (J), . .. ,ar(J) are linearly independent; let V(J) denote the 
r-dimensional subspace of Fd generated by B(J). 

We claim that, for f =1= g, we have V(J) =1= V(g). Indeed, if V(J) = V(g), 
then al (g) is a linear combination of al (J), ... , ar (J): 

which gives 

or, in other words, f = g .• 

Now we turn our attention to the case where F is a finite field. For the infor­
mation on finite fields the reader is referred to Lidl and Niederreiter (1983). In 
particular, each finite field has order pn, where p is a prime, and, up to isomor­
phism, there exists exactly one field of order pn; this field is usually denoted by 
GF(pn). If n = 1 then GF(pn) is simply Zp, the field of integers modulo p. 

If F = GF(pn), we will write GLS(d,pn) for GLS(d, F). We will also use 
analogous notation for all other matrix groups and semigro~ps introduced so far. 
With this notation we have 

Theorem 6.8. The semigroup I(r, d,pn)) r = 1, ... , d - I) has rank 

N r d n _ (pnd - 1)(pn(d-l) - 1) ... (pn(d-r+l) - 1) 
( , ,p) - (pnr _ 1)(pn(r-l) -1) ... (pn - 1) . 

In particular) Sing(d,pn) has rank (pnd - l)j(pn - 1). 

PROOF. By Lemma 6.6 the rank of I(r, d,pn) is equal to the rank ofthe principal 
factor J(r, d,pn). As before, J(r, d,pn) is a finite completely O-simple semigroup. 
Actually, it is connected as well. To prove this we recall that the semi group 
Sing(d,pn) is idempotent generated; see Erdos (1967). By Lemma 5.5, J(r, d,pn) 
is also idempotent-generated, and so the intersection of any non-zero 1{-class 
with F(J(r, d,pn)) is the whole 1{-class. By Theorem 2.14, J(r, d,pn) has rank 
max(p, A), where p and A are respectively the number of non-zero R-classes and 
the number of non-zero £-classes in J(r, d,pn) (or, equivalently, in J(r, d,pn)). As 
in Theorem 6.7, the number of R-classes of J(r, d,pn) is equal to the number of 
subspaces of GF(pn)d of dimension d-r, and the number of £-classes of J(r, d,pn) 
is equal to the number of subspaces of GF(pn)d of dimension r. 

Any subspace of GF(pn)d of dimension r is generated by r linearly independent 
vectors, VI,"" Vr say. Since VI can be any non-zero vector, there are pnd - 1 
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possible choices for VI. Having chosen VI, V2 can be any vector which is not a 
scalar multiple of VI; there are pnd - pn such vectors. By repeating this argument 
we see that there are exactly (pnd -1 ) (pnd - pn) ... (pnd - pn(r-I)) different linearly 
independent sets of r vectors in GF(pn)d. By the same argument, each subspace 
of dimension r has exactly (pnr - l)(pnr - pn) ... (pnr - pn(r-I)) different bases. 
Therefore there are exactly 

(pnd _ l)(pnd - pn) ... (pnd - pn(r-I)) N d 
(pnr _ l)(pnr _ pn) ... (pnr _ pn(r-I)) = (r, ,pn) 

different subspaces of dimension r. Finally, note that N(r, d,pn) = N(d-r, d,pn), 
and the result follows. • 

Remark 6.9. Dawlings (1980) and (1982) proved that the idempotent rank (i.e. 
the minimal number of idempotent generators) of Sing( d, pn) is (pnd - 1) / (pn -
1). Therefore, the rank and the idempotent rank of Sing(d,pn) are equal. This 
parallels the results of Gomes and Howie (1987) for the semi group Singn . 

7. Some infinitely generated semigroups 

On the basis of Proposition 5.1 and Theorem 6.3 one might be tempted to con­
jecture that the endomorphism semi group of an algebraic structure is always gen­
erated by the automorphism group together with one additional endomorphism. 
Of course, this is not so, and in this section we show that the conjecture fails 
even for some 'tame' algebraic structures, such as free semigroups, free abelian 
groups and free groups. 

In what follows, Aut(21) and End(21) denote the automorphism group and the 
endomorphism semi group of an algebraic structure 21. 

Theorem 7.1. Let A be a finite set and let F = A + be the free semigroup on 
A. The group Aut(F) is isomorphic to the symmetric group on A, while the 
semigroup End(F) is not finitely generated. 

PROOF. Let f : F ---+ F be an automorphism, and assume that Af g; A. 
Then there exists a E A - Af. However, since Ixfl 2 Ixl for each x E F, we 
have a ¢:. Imf, a contradiction. Therefore, each automorphism of F induces 
a permutation on A. On the other hand, each permutation on A induces an 
automorphism on F by Proposition 3.1.1. 

For the second part of the theorem, consider the set B(p), p prime, consisting 
of all endomorphisms f : F ---+ F, such that af = bP for some a, b E A and 
(A - {a})f = A - {b}. We prove that if an element f of B(p) is a product of 
two endomorphisms, then one of those endomorphisms also belongs to B(p). As 
a consequence we obtain that each generating set of End(F) has a non-empty 
intersection with each set B(p), so that End(F) is not finitely generated. 
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So, let us assume that f E B(p) with 

af = lJP, (A- {a})f = A- {b}, 

and that f = gh. Then clearly Ixgl = 1 for every x E A-{ a}, so that (A-{ a})g = 
A - {e} for some e E A, since A is finite. Similarly, (A - {e})h = A - {b}, so 
that ag does not contain any letter from A - { e}; hence ag = em for some m. For 
a similar reason, eh is a power of b; let us say eh = bn

. But then 

Since p is a prime, we have either m = p or n = p, so that either g E B(p) or 
hE B(p) .• 

The proof for free abelian groups is even simpler. 

Theorem 7.2. Let F = zn be a finitely generated free abelian group. Then the 
group Aut(F) is finitely generated) but End(F) is not finitely generated. 

PROOF. F is a free Z-module, and therefore End(F) is isomorphic to the semi­
group GLS(n, Z) of all n x n integer matrices, while Aut(F) is isomorphic to the 
group GL(n, Z) of all such matrices with determinant 1 or -1; see Blyth (1990). 
It is well known that GL(n, Z) is finitely generated-this ·fact can be deduced 
from the fact that each integer matrix can be transformed to a diagonal matrix 
by applying elementary transformations; see again Blyth (1990). 

On the other hand, the determinant homomorphism det : GLS(d, Z) ---+ 

Z maps GLS( d, Z) onto Z. The multiplicative semi group of Z is not finitely 
generated since there are infinitely many primes, and therefore GLS(n, Z) is not 
finitely generated either. • 

Theorem 7.3. Let F be the free group on a finite set A. The group Aut(F) is 
finitely generated) while the semigroup End( F) is not finitely generated. 

PROOF. The proof of the first part of the theorem can be found in Magnus, 
Karrass, Solitar (1966). 

For the second part assume that A = {Xl, . .. , xn}, and let {Yl,' .. ,Yn} be the 
natural free basis for the free abelian group zn. Let <p : F ---+ zn be the natural 
epimorphism induced by Xi I---t Yi. Define a mapping 

by 
Yi(f~) = (xd)<p· (18) 

We shall prove that ~ is an epimorphism, and the second part of the theorem 
then follows from Theorem 7.2. 
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Obviously (18) defines a homomorphism (J'lj;) E End(Zn), since zn is free, 
and Yl, ... , Yn is its basis. We want to prove that 'Ij; is a homomorphism. Let 
f, 9 E End(F), and let f act on the generating set {Xl, ... , xn} as follows: 

where Wi is a (group) word. Then 

and 

Yi((Jg)'Ij;) (Xi(fg))¢ = ((xd)g)¢ = (Wi(Xl, ... ,xn)g)¢ 
= (Wi(Xlg, ... , xng))¢ = Wi((Xlg)¢, ... , (xng)¢), 

(Yi(J'lj;))(g'lj;) = ((xd)¢)(g'lj;) = ((Wi(Xl, ... ,Xn))¢)(g'lj;) 

(Wi(Yl,···,Yn))(g'lj;) = Wi(Yl(g'lj;),···,Yn(g'lj;)) 
Wi((Xlg)¢, ... , (xng)¢), 

proving that 'Ij; is a homomorphism. 
To prove that 'Ij; is an epimorphism let h E End(Zn) and let 

Define f E End(F) by 

Then 
Yi(J'lj;) = (xd)¢ = (Wi(Xl, ... ,Xn))¢ = Wi(Yl,···,Yn) = Yih, 

so that f'lj; = h .• 



Chapter 3 

Defining relations for common 
• semlgroups 

In this chapter we will work on the first of our two fundamental problems for 
semigroup presentations: given a semigroup find a presentation for it. 

After reviewing already known results for groups and semigroups in Section 
1, in Section 2 we describe different methods for approaching the above problem. 
Two of these methods are then used in Sections 3 and 4 to find presentations for 
the special linear semi group SLS(2, p) and the general linear semi group GLS(2, p). 
Finally, in Section 5 we describe how computational methods can be used in this 
area, and consider the interdependence of our defining relations for SLS(2, p) and 
GLS(2,p). 

Sections 1 and 2 have an introductory character. The results of Sections 3 and 
4 and a shorter version of the discussion from Section 5 will appear in Ruskuc 
1995. 

1. Known presentations 

'Nice' presentations for many interesting groups have been known for a long time. 
Here we give some examples, which we will need later. More examples can be 
found in Coxeter and Moser (1980). 

One of the earliest presentations for the symmetric group Sn is the following 
presentation given by Moore (1897); see also Coxeter and Moser (1980). 

Proposition 1.1. The presentation 

defines Sn in terms of generators (1 2L (1 2 ... n) .• 

If we consider the larger generating set (12), (23), ... , (n - 1 n) we obtain 
a larger, but more symmetrical set of defining relations; see again Coxeter and 
Moser (1980): 

40 
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Proposition 1.2. The presentation 

(al, ... ,an I at = (ajaj+l? = (akaz)2 = 1 

(1 ::; i ::; n - 1, 1 ::; j ::; n - 2, 1 ::; k ::; l - 2 ::; n - 3)) 

defines Sn in terms of generators (12), (23), ... , (n - 1 n) .• 

The first presentation for the alternating group An was given by Moore(1897): 

Proposition 1.3. The presentation 

(al, ... , an -2 I a{ = aJ = (ai_lai)3 = (ajak)2 = 1 

(1 < i ::; n - 2, 1 ::; j < k - 1 ::; n - 3)) 

defines An in terms of generators (12)(i + 1 i + 2), i = 1, ... , n - 2 .• 

Another presentation for An is due to Carmichael (1923): 

Proposition 1.4. The presentation 

defines An in terms of generators (i n - 1 n), i = 1, ... , n - 2 .• 

Linear groups have particularly nice presentations in dimension 2. 

Proposition 1.5. If p > 2 is a prime then the presentation 

defines SL(2, p) in terms of generators 

(i ~), (~1 ~). • 
The above presentation is due to Sunday (1972), and an alternative presenta­

tion can be found in Campbell and Robertson (1980). A presentation for GL(2, p) 
can be obtained from Proposition 1.5 by adjoining another generator 

where ~ is a primitive root of 1 modulo p, and specifying the action of this 
generator on a and b: 
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Proposition 1.6. If p > 2 is a prime) then the presentation 

defines GL(2,p) .• 

A more general (and necessarily more complicated) presentation for SL(n, F), 
where F is a division ring, was given by Green (1977). Corollary 10.3 in Milnor 
(1971) gives a finite presentation for the special group SL(n, Z) over the ring of 
integers. Since SL(n, Z) has index 2 in GL(n, Z), this means that GL(n, Z) is also 
finitely presented. This is in contrast to the case of the semigroups GLS (n, Z) 
which are not finitely generated by results from Section 4.7, let alone finitely 
presented. 

Turning our attention to 'proper' semigroups, we see that much fewer presen­
tations are known. Alzenstat (1958) gives the following presentation for the full 
transformation semi group Tn: 

Proposition 1.7. Assume that (a, b 191) is any (semigroup) presentation for the 
symmetric group Sn in terms of generators 0 = (1 2) and f3 = (1 2 ... n). Then 
the presentation 

(a, b, t 191, ct = bn-2ab2tbn-2ab2 = babn-labtbn-lababn-l = (tbabn- l )2 = t, 
(bn- l abt)2 = tbn-labt = (tbn-lab?, (tbabn- 2ab)2 = (babn- 2ata)2) 

defines the full transformation semigroup Tn in terms of generators 0) (3 and 

T = • (
123 ... n) 
1 1 3 ... n . 

A nice feature of the above presentation is that, in addition to the 'group 
relations' 91, it requires just seven 'semigroup relations'. It is natural to ask if 
this is the minimal number of relations: 

Open Problem 2. Find the minimal number k such that there exists a presen­
tation of the form (A, B 191, 6) for the full transformation semigroup Tn, where 
the presentation (A 191) defines the symmetric group Sn and 161 = k. 

Another interesting question concerning the full transformation semi group is 
to find presentations for its principal ideals (generating sets of these semigroups 
were considered in Section 4.5): 

Open Problem 3. Find presentations for the semi groups Singn and K(n, r). 
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A presentation for the semi group PTn of partial transformations in terms 
of the generating set given in Proposition 4.5.1(ii), was found by Popova (1961). 
The following presentation for the symmetric inverse semi group is given in Meakin 
(1993), where it is attributed independently to Popova, Lipscomb and Easdown 
and Meakin: 

Proposition 1.8. Let (aI, ... , an-I I~) be any (semigroup) presentation for the 
symmetric group Sn in terms of generators (12), ... , (n -1 n). Then the presen­
tation 

(at, .. . an-I, t I~, t 2 = t, tai = ait , tan_It = tan-Itan-I, 

tan-It = an-Itan-It (1::; i ::; n - 2)), 

defines the symmetric inverse semigroup in terms of generators (12), ... , (n -1 n) 
and 

(
12 ... n-1 n) .• 
1 2 ... n-1 -

A similar presentation for the alternating inverse semigroup was gIVen III 

Lipscomb (1991). 
In contrast with Alzenstat's presentation for Tn, the number of 'semigroup' 

relations in the above presentation grows with n. -So it is sensible to ask the 
following question: 

Open Problem 4. Can In be defined by a presentation ofthe form (A, tl~n' 6 n), 
where (A I ~n) is a presentation for Sn, and 16n l does not depend on n? If yes, 
what is the minimal possible cardinality for 6 n ? 

Finally, let us mention that presentations for some semigroups of endomor­
phisms of linearly ordered sets were given by Alzenstat (1962) and Popova (1962). 

2. General methods for finding presentations 

There are three main general methods for finding presentations for a semi group S: 

• direct method (guessing and proving); 

• Tietze transformations; 

• using semi group constructions. 

The direct method is most commonly used-all the presentations mentioned 
in Section 1 have been obtained by using this method. Although there are slight 
variations, it usually consists of the following steps: 

• find a generating set A for S; 
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• find a set 91 of relations which are satisfied by the generators A, and which 
seem to be sufficient to define S; 

• find a set W ~ A +, such that each word from A + can be transformed to a 
word from W by applying relations from 91; 

• prove that distinct words from W represent distinct elements in S. 

In the following theorem we prove that (A 191) is indeed a presentation for 
S. The set W satisfying last two conditions is often called a set of canonical (or 
normal) forms for S. 

Proposition 2.1. Let S be a semigroup, let A be a generating set for S, let 
91 ~ A+ X A+ be a set of relations, and let W ~ A+. Assume that the following 
conditions are satisfied: 

(i) the generators A of S satisfy all the relations from 91; 

(ii) for each word W E A + there exists a word W E W such that W = W is a 
consequence of91; 

(iii) if u, v E W, u :t v, then u =J v in S. 

Then the presentation (A 191) defines S in terms of generators A. 

PROOF. Let WI, W2 E A + be any two words such that the relation WI = W2 holds 
in S. By condition (ii) we have that WI = WI and W2 = W2 are consequences of 
91, and by condition (iii) we have WI W2. Hence WI = W2 is a consequence of 
91, and it now follows from Proposition 3.2.3 that the presentation (A 191) defines 
S .• 

A very common modification of the described method, which can be applied 
when S is finite, has the same first three steps, and the fourth step consists of 
proving that IWI ~ lSI. 

Proposition 2.2. Let S be a finite semigroup, let A be a generating set for S, let 
91 ~ A + x A + be a set of relations, and let W ~ A +. Assume that the following 
conditions are satisfied: 

(I) the generators A of S satisfy all the relations from 91; 

(II) for each word W E A + there exists a word W E W such that W = W is a 
consequence of 91; 

(III) IWI ~ lSI. 
Then (A 191) is a presentation for S. 

PROOF. We prove that conditions (I), (II) and (III) imply conditions (i), (ii) and 
(iii) of Proposition 2.1, and the result will follow. Since (I) and (II) are identical 
to (i) and (ii) respectively, we are left with proving that (iii) follows from (I), 
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(II) and (III). Since the generators A satisfy relations 91, each element of S is 
represented by a word from W by (II). Hence IWI ~ lSI, so that (III) implies 
IWI = lSI, which means, since S is finite, that distinct elements of W represent 
distinct elements of S, as required. • 

Remark 2.3. It is worth pointing out again that finding a generating set for S, 
the problem we discussed in detail in Chapter 4, is the first step in the direct 
method for finding a presentation for S .• 

Remark 2.4. The described method has obvious modifications if we consider 
monoid presentations, or presentations of semigroups with zero, or presentations 
of monoids with zero .• 

The second method, Tietze transformations, is possible to apply only if we 
already know a presentation (A 191) for S, and then it yields alternative presen­
tations for S. The idea is to transform the presentation (A 191) by applying some 
elementary moves, but without changing the semi group defined by the presenta­
tion. These elementary moves, usually called elementary Tietze transformations, 
are: 

(Tl) adding a new relation u = v to (AI91), providing that u = v is a consequence 
of (A 191); 

(T2) deleting a relation (u = v) E 91 from (A I 91), providing that u = v is a 
consequence of (A 191 - {u = v}); 

(T3) adding a new generating symbol b and a new relation b = w for any non­
empty word w E A+; 

(T4) if (A 191) possesses a relation of the form b = w, where b E A, and w E 
(A - {b})+, then deleting b from the list of generating symbols, deleting the 
relation b = w, and replacing all remaining appearances of b by w. 

Proposition 2.5. Two finite presentations define the same semigroup if and 
only if one can be obtained from the other by a finite number of applications 
of elementary Tietze transformations (Tl), (T2), (T3), (T4). 

PROOF. First we show that a single application of an elementary Tietze trans­
formation to a presentation does not change the semigroup it defines. We prove 
this for transformations (Tl) and (T3); the proofs for (T2) and (T4) are very 
similar. 

Let (A 191) be a presentation, let "l be the corresponding smallest congruence 
on A +, and assume that the relation u = v is a consequence of 91. Consider the 
presentation (A 191, u = v), and let ( be the corresponding smallest congruence 
on A+. Since 91 ~ (, we have "l ~ (. On the other hand, (u, v) E "l, since u = v 
is a consequence of 91, and thus ( ~ "l. 
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Consider now two presentations (A 191) and (A, b 191, b = wI, where wE A+, 
and let Sand T denote the semi groups defined by these two presentations. Then 
the identity mapping id : A --+ A induces a homomorphism ¢ : S --+ T by 
Proposition 3.2.1. Actually, ¢ is onto since b is a redundant generator in T. Now 
let WI, W2 E (AU{b})+ be two words such that WI = W2 in T. This means that the 
relation WI = W2 can be deduced by using relations 91 U {b = w} by Proposition 
3.2.2. However, if we omit all the applications of the relation b = W from this 
deduction, we obtain a deduction of WI = W2 by using just 91. Therefore, WI = W2 

holds in S, and hence ¢ is an isomorphism. 
Now we prove the converse: if two finite presentations (A 191} and (B 1 6) 

define isomorphic semigroups Sand T then (BI6) can be obtained from (AI91) by 
applying elementary Tietze transformations. Let e : S --+ T be an isomorphism. 
For a E A let a E B+ be such that ae = a in T. Similarly, for b E B let be-I = b, 
b E A +. Let ¢ : A + --+ B+ and 'ljJ : B+ --+ A + be homomorphisms extending 
a 1--7 a and b 1--7 b respectively. (The homomorphisms ¢ and 'ljJ can be thought 
of as rewriting mappings: they rewrite each word in one generating set into a 
corresponding word from the other generating set.) 

Now, start from the presentation (A 191). All the relations from the set 

6'ljJ = {u'ljJ = v'ljJ 1 (u = v) E 6} 

certainly hold in S, and therefore are consequences of 91: Similarly, the rela­
tions a¢'ljJ = a are consequences of 91. By adding all these relations to (A 1 91) 
(transformation (Tl)) we obtain 

(A 191, 6'ljJ, a = a¢'ljJ). 

Now we introduce new generating symbols B by means of the relations b = b'ljJ 
(transformation (T3)), and by using these relations and 6'ljJ we obtain 6 (trans­
formation (Tl)). Now we eliminate 6'ljJ, all relations of which are consequences 
of 91 (transformation (T2)), and obtain 

(A, B 191, 6, a = a¢'ljJ, b = b'ljJ). 

This presentation defines S in terms of generators A U Be- I (or, equivalently, 
it defines T in terms of generators Ae U B), so that the relations a¢ = a, a E 
A are consequences of it, and we can add these relations to the presentation 
transformation (Tl)): 

(A, B 191, 6, a = a¢'ljJ, b = b'ljJ, a = a¢). 

Now we eliminate generators A by using a = a¢ (transformation (T4)), and 
obtain 

(B 191¢, 6, b = b'ljJ¢). 
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Finally we note that all the relations from rytq) as well as all the relations b = b'lj;q), 
bE B, hold in T, and therefore are consequences of 6, so that we can eliminate 
them by using (T2), leaving the presentation (B 16) as required .• 

The third method for finding a presentation for a semigroup S is via semi group 
constructions. Here we try to express S in terms of some other (usually simpler) 
semigroups Ti , i E I. Then we find presentations for the semigroups Ti , i E I, 
and the way they combine to give a presentation for S. 

In the next two sections we will use the first two methods to find presenta­
tions for some general and special linear semigroups, while in Chapter 6 we will 
concentrate on the developing the third method. 

3. Special linear semigroups SLS (2, p) 

Let us recall that the special linear semi group SLS(2,p) consists of all 2 x 2 
matrices over the field Zp which have determinant 0 or 1. By Theorem 4.6.4 it is 
generated by any generating set for the special linear group SL(2, p) together with 
any matrix of rank 1. It is well known that any special linear group is generated 
by transvections, i.e. by matrices having ones on the diagonal and exactly one 
other non-zero entry; see Rotman (1965). Hence, SL(2,p) is generated by the 
matrices 

A = (~ ~), B = (~ ~'). 
Two natural choices for the additional matrix of rank 1 are 

where ~ = ~(p) is a primitive root of 1 modulo p (i.e. ~ is a generator for the 
cyclic multiplicative group Zp - {O}). As the main results in this section we are 
going to prove the following two theorems. 

Theorem 3.1. Let (a, b I ryt) be any (monoid) presentation for SL(2, p) with re­
spect to generators A and B. Then 

Sf)l = (a,b,slryt, bs = sa = s, sbaP-1s = 0, bae-1s = a1- c1 s2, sbe-1a = s2b1- C1 ) 

is a presentation for SLS (2, p) with respect to generators A, Band S. 

Theorem 3.2. Let (a, b I ryt) be any (monoid) presentation for SL(2,p) with re­
spect to generators A and B. Then 

Sf)2 = (a, b, t I ryt, t 2 = bt = ta = t, tbaP-1t = 0, b~-latb = ac1 tb~al-Cl) 

is a presentation for SLS(2,p) with respect to generators A, Band T. 



48 Semigroup presentations 

Remark 3.3. By Proposition 1.5 the presentation 

defines SL(2, p) as a group in terms of the generators A and 

However, if we note that 

we can use (group) Tietze transformations to obtain the following presentation 
in terms of A and B: 

(a, b I aP = 1, b = aba-1ba, (ba-1b)2 = (aba-1b? = (a4ba-lba~ba-lb)2). 

A semi group (or monoid) presentation for SL(2,p) can be obtained from this 
presentation as is described in Section 3.3. A simpler presentation is 

(a, blaP = bP = 1, b = abaP- 1ba, (baP- 1b)2 = (abaP- 1b)3 = (a4baP-lba~baP-lb)2). 

The plan of the proof of Theorem 3.1 and Theorem 3.2 rs to prove first Theo­
rem 3.1 by using the direct method, and then to prove Theorem 3.2 by applying 
Tietze transformations to the presentation 911 . Before that, however, we consider 
the case p = 2, which is somewhat exceptional. 

Theorem 3.4. Let (a, b 191) be a presentation for GL(2, 2) (= SL(2, 2)) in terms 
of generators A and B. Then 

(a, b,s 191, S2 = bs = sa = s,sbas = 0) (1) 

is a presentation for GLS(2, 2) (= SLS(2,2)) in terms of the generators A) B 
and S (= T). 

PROOF. We prove the theorem by using the direct method, or, more precisely, 
its variant described in Proposition 2.2. By Theorem 4.6.4 the matrices A, B, 
S generate SLS(2,p), and it is a routine matter to verify that these generators 
satisfy relations (1). The relations a2 = b2 = 1 and aba = bab hold in GL(2,p), 
and therefore are consequences of (1). Hence each word from {a, b, s}* U {O} can 
be transformed by using (1) to a word from the set 

VV = {l,a,b,ab,ba,aba,s,sb,sba,as,asb,asba,bas, basb, basba, 0 }. 

Now we have 
IGLS(2,p)1 = 16 = IVVI, 
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and the result follows by Proposition 2.2 .• 

Note that, for p = 2, both ~I and ~2 are equivalent to the presentation 
(1). Thus for the rest of this section we concentrate on the case p 2 3. As we 
already mentioned, we aim to apply Proposition 2.1, so that we have to check 
that the conditions (i), (ii) and (iii) of that theorem are satisfied. The condition 
(i) requires that A, Band S generate SLS(2,p), which we proved in Theorem 
4.6.4. The second condition does not pose any problems either: 

Lemma 3.5. The generators A, B, S of SLS(2,p) satisfy all the relations from 

~I· 

PROOF. The lemma can be proved by a straightforward matrix calculation .• 

N ow we need a set of canonical forms. Let WI ~ {a, b} * be a set of canonical 
forms for SL(2,p). Since (a, b 191) is a presentation for SL(2,p), this means that 
for each W E {a, b}* there exists w E WI such that w = w is a consequence 
of 91. On the other hand, distinct elements of WI represent distinct elements 
of SLS(2,p), since they represent distinct elements of SL(2,p), and SL(2,p) is a 
subsemigroup of SLS(2,p). Therefore we have: 

Lemma 3.6. For each w E {a, b}* there- exists w E WI such that w = w is a 
consequence of~l. Distinct words of WI represent distinct elements ofSLS(2,p) . 

• 
Let us now consider the following words: 

cfl(i,j, k) = aisJbk, 
cf2(i,j) = lJP-Iasibi, 
cf3(i,j) = aisJbaP-I, 
cf4 ( i) = lJP-IasibaP-I, 

cf5 = 0, 

i,k = 1, ... ,p, j = 1, ... ,p-1, 
i = 1, ... ,p -1, j = 1, ... ,p, 

i = 1, ... ,p, j = 1, ... ,p-1, 
i=l, ... ,p-l, 

and let W2 be the set of all these words. We aim to prove that W = WI U W2 

is a set of canonical forms, i.e. that each word from {a, b, s} * U {o} is equal to 
a word from W, and that distinct words from W represent distinct elements of 
SLS(2,p). The latter of these assertions is easier to prove: 

Lemma 3.7. The elements of W represent distinct matrices in the semigroup 
SLS(2,p). 

PROOF. We have already proved the assertion for WI (Lemma 3.6). The words 
cf1(i,j, k), cf2(i,j), cf3 (i,j), cf4 (i) and cf5 in SLS(2,p) respectively represent 
matrices 
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which are clearly all distinct. Finally, since any WI E WI represents a non-singular 
matrix, while any W2 E W2 represents a singular matrix, we see that they cannot 
represent the same element in SLS(2,p) .• 

In order to prove the former assertion we first need to establish some conse­
quences of s,p-I, which we shall then use to transform any word to its canonical 
form. 

Lemma 3.8. If u, v E {a, b} * are such that u = v holds in SL(2, p)! then u = v 
is consequence of s,p-I. 

PROOF. Since (a, b 191) is a presentation for SL(2,p), u = v is a consequence of 
91. On the other hand, s,p-I contains 91, and the result follows .• 

Lemma 3.9. The following relations are consequences of s,p-I: 
(i) babP-Ia2b = bP-Iaj 

(ii) abP-1ab = bP-Iaj 

( ... ) b em+1-em1..v-I -e+2-e-mbP- 1 l-e-lbem+2-em+l+e l-e-m - 1 > 1 zzz a if a a = a ! m _ . 

PROOF. By Lemma 3.8 it is enough to check that the matrices A and B satisfy 
relations (i), (ii), (iii), which can be done by a straightforward matrix calculation . 

• 
Lemma 3.10. The following relations are consequences of s,p-I: 

(i) baem- I s = al - e-
m 

sI+m! for all m 2: 1 j 

(ii) sP = Sj 

(iii) baP-ls = bP-Ias~j 
(iv) abP-Ias = bP-Iasj 

(v) sbP-1as = O. 

PROOF. (i) We prove this relation by induction on m. For m = 1 it is the 
relation bae- 1 s = al - e-

1 
S2, which is in s,p-l. Let us assume that it is true for some 

m 2: 1. Then 

baem+1-1s 
baem+l-em aem- 1 s 
baem+l-em bP-1 baem- 1 s 
baem+l-embP-lal-e-m sl+m 

baem+l-em bP-Ia1- e- m a1-eae- 1 ssm 
_ baem+l-em bP-la-e+2-e-m bP-1bae- 1 ssm 

(the hypothesis) 

baem+l-embP-la-e+2-CmbP-lal-e-l s2 sm (by bae-1s = a1- e- 1 S2) 
baem+l-em bP-Ia-e+2-cm bP-Ia1-C1 bem+2-em+1 Hs2+m 

l-e-m - 1 2+m as. 
(relation bs = s) 
(by Lemma 3.9(iii)) 
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(ii) This relation can be obtained from relation (i) for m = p - l. 

(iii) In this case we have 

(by (i)) 
E=..!. E=..!. (e 2 = e- 2 = -1) 

(relation bs = s) 

(by Lemma 3.9(i)) 

(iv) Now we use the relation bs = s and Lemma 3.9(ii) to obtain 

(v) Using (ii) and (iii) we obtain 

1 1 E±l. E=..!. E=..!. E=..!. sbP- as = sbP- as 2 s 2 = sbaP- 1ss 2 = Os 2 = 0 

which completes the proof of the lemma .• 

Let us now define a mapping 

by 

¢ : {a, b, s } * U {O} ----+ {a, b, s } * U {O} 

¢(a) = b, ¢(b) = a, ¢(s) = s, ¢(O) = 0, ¢(c) = c, 
¢(a1a 2 ... a k) = ¢(ak) ... ¢(a2)¢(a1), 

, 
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where aI, ... ,ak E {a, b, s}. Since it is obvious that ¢2 is the identity mapping, we 
will refer to wand ¢( w) as dual words. It is obvious that the matrix represented 
by the word ¢( w) is the transpose of the matrix represented by the word w. 

Lemma 3.11. Let u, v E {a, b, s}* U {O}. If u = v is a consequence of ~1 then 
so is ¢( u) = ¢( v ) . 

PROOF. It is obviously enough to prove the lemma when u = v is any relation 
from the presentation ~1. If u = v belongs to 91, then u and v represent the same 
matrix X in SL(2,p). But then both ¢(u) and ¢(v) represent XT. Therefore the 
relation ¢( u) = ¢( v) holds in SL(2, p), and is a consequence of 91. The relations 
bs = s and sa = s, and ba~-l s = a1-~-1 S2 and sb~-la = s2b1-~-1 are dual in pairs. 
Finally, the relation sbaP-

1 s = 0 is dual to the relation sbP-1as = 0, which is a 
consequence of ~1 by Lemma 3.10(v) .• 
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Lemma 3.12. For any word w E {a, b, s}* U {O} there exists a word w E W such 
that w = w holds in SLS(2,p). 

PROOF. If w E {a, b}* then this is Lemma 3.6. So we assume that w contains 
s, and prove the lemma by induction on the length of w. 

If Iwl = 1 then w - s = cfl(p, l,p) E W. For Iwl > 1, w can be written in one 
of the forms w'a, w'b, w's, aw', bw' or sw', where w' also contains s. Therefore, 
it is enough to show that the product of any element of Wand any generator 
a, b or s is equal to another element of W. Note that, with respect to the anti­
isomorphism cP, the words cfl(i,j,k) and cfl(k,j,i), and cf2(i,j) and cf3 (j, i) are 
dual in pairs, and that the words cf4 ( i) and cf5 are self-dual. It follows that it 
is enough to show that premultiplying of a word from W by a generator yields a 
word which is equal in S to another word from W-the result for postmultiplying 
follows by applying cP and Lemma 3.11. Using Lemma 3.10 and relations from 
Sf)1 it is easy to see that: 

a· cfl(i,j, k) = cfl(i + 1 (mod p),j, k), 

b· cfl(em 
- 1 (mod p),j, k) = cfl (1- em (mod p),j + m (mod p - 1), k), 

b· cfl(p - l,j, k) = cf2 (j + p; 1 (mod p - 1), k), 

s . cfl(i,j, k) = cfl(p,j + 1 (mod p - 1), k), 
a· cf2 (i,j) = cf2 (i,j), 

b· cf2 ( i, j) = cfl (1, i, j), 
s . cf2 (i,j) = cf5 , 

a· cf3 (i,j) = cf3 (i + 1 (mod p),j), 

b· cf3 (em 
- 1 (mod p),j) = cf3 (1 - em (mod p),j + m (mod p - 1)), 

b· cf3 (p - 1,j) = cf4(j + p; 1 (mod p - 1)), 

s . cf3(i,j) = cf3(p,j + 1 (mod p - 1)), 

a· cf4(i) = cf4(i), 

b· cf4(i) = cf3 (I, i), 

s . cf4(i) = cf5 , 

a . cf5 = b· cf5 = S . cf5 = cf5 . 

The calculations modulo p and modulo p-l have been performed with the values 
in the sets {I, ... ,p} and {I, ... ,p -I} respectively, and the fact that 

{~m _ 1 (mod p) I mEN} = {I, ... ,p - 2, p} 

has been used .• 

Now we have all the ingredients for proving the first of our main theorems. 
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PROOF OF THEOREM 3.1. For p = 2 the result follows from Theorem 3.4 and 
the remark after it. For p 2 3 the matrices A, B, S generate SLS(2,p) by 
Theorem 4.6.4, and satisfy all the relations from ~l by Lemma 3.5. Each word 
from {a, b, s}* U {O} is equal to a word from W by Lemma 3.12, and distinct 
elements of W represent distinct elements of SLS(2, p) by Lemma 3.7. Therefore, 
conditions (i), (ii), (iii) of Proposition 2.1 are satisfied, and the result follows by 
that theorem. • 

We prove Theorem 3.2 by applying Tietze transformations to the presenta­
tion ~l. First, however, we need to establish some consequences of the presen­
tation ~2. 

Lemma 3.13. ffu = VJ U,V E {a,b}*J is a relation which holds in SLS(2,p)J 
then u = v is a consequence of ~2. 

PROOF. The proof is exactly the same as the proof of Lemma 3.8 .• 

Lemma 3.14. The following relations are consequences of~2: 

(0) _~-1+~-2+~-i-l_~-i-2b~ 1-~-lb~i_2 bCi_~-i-l _ b~i+l_l f. . > O. • a a a - aJ Jor z _ J 

(ii) ba~-2b-~+la~-1 be-2~ = al-~-l; 

(iii) a~-1-c2 be-~a~-l b-~+2-~-1 = b~-la; 

(iv) a~-2b~al-Cl b-~-l = b~-la. 

PROOF. By Lemma 3.13 it is enough to check that the matrices A and B satisfy 
all the relations (i) to (iv) .• 

Lemma 3.15. The following relations are consequences of~2: 

(i) (tb~-lat)k = tb~k-lat for k 2 1; 

(ii) ba~-ltb~-lat = al-~-l (tb~-lat)2; 

(iii) tb~-latb~-la = (tb~-lat)2bl-e-l . 

PROOF. (i) We prove this relation by induction on k, the case k 
obvious. Suppose the relation is true for some k 2 1. Then 

(tb~-lat)k+l 

tb~-latbe-lat (by the hypothesis and t2 = t) 
tb~al-cl b~k-2at (since b~-latb = aCltbeal-cl and ta = t) 
ta-e-l+e-2+e-k-l-e-k-2b~al-~-lbek-2ab~-k-e-k-lt 

(since ta = bt = t) 
tb~k+l-lat. (by Lemma 3.14(i)) 

1 being 
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(ii) Now we have 

ba~-Itb~-Iat 

ba~-2(atb)b~-2at 

_ ba~-2b-~+IaCltb~al-~-1 b~-2at (since b~-Iatb = a~-ltb~al-Cl) 
ba~-2b-~+la~-lb~2-2~ta-~-1+~-2+~-2-~-3b~al-~-lb~-2ab~-1_~-2t 

(since ta = bt = t) 
al-Cltbe-lat (by Lemma 3.14(i) for i = 1 

and Lemma 3.14(ii)) 
al - c1 (tb~-lat)2. (by (i)) 

(iii) In this case 

(tb~-lat)2bl-Cl 

tbe-Iatbl-cl (by (i)) 
tbe - I (atb )b-C1 

tbe-Ib-~+la~-ltb~al-~-l b-C1 (since b~-Iatb = aCltb~al-~-l) 
ta~-1-~-2b~2-~a~-lb-~+2-~-lta~-2b~al-~-lb-~-1 

(since ta = bt = t) 

where Lemma 3.14(iii) and (iv) have been used .• 

PROOF OF THEOREM 3.2. Let us add to the presentation ~I a new generating 
symbol t, and the relation t = sp-I (elementary Tietze transformation (T3)). 
The matrix represented by t in SLS(2,p) is 

T=(~ ~). 
Since we know (Theorem 3.1) that ~I defines SLS (2, p), and since all the relations 
from ~2 hold in SLS(2,p), we can also add all these relations to ~I (transfor­
mation (Tl)). Finally we add the valid relation s = tb~-Iat and obtain the 
presentation: 

(a, b, s, t 1 R, bs = sa = s, sbaP- 1 s = 0, 
ba~-I s = al - c1 S2 sb~-Ia = s2bl- C1 t = Sp-I S = tb~-Iat , '" 

t 2 = bt = ta = t, tbaP-It = 0, b~-Iatb = a~-ltb~al-Cl). 

Now we eliminate s by using s = tb~-Iat (transformation (T4)) and obtain the 
presentation: 

(a, b, t 191, btb~-Iat = tb~-Iata = tb~-Iat, tb~-Iatbap-Itb~-Iat = 0, 
ba~-Itb~-Iat = al-~-l (tb~-lat)2, tb~-Iatb~-Ia = (tb~-lat)2bl-~-1, 

t = (tb~-Iat)p-\ t 2 = bt = ta = t, tbaP-It = 0, b~-Iatb = a~-ltb~al-~-l). 
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Then we use the transformation (T2) to eliminate the first six relations (after 91) 
as consequences of the remaining five. The first three of them are easy conse­
quences of bt = t, ta = t and tbaP-It = ° respectively. The next two follow from 
Lemma 3.15 (ii) and (iii) respectively, while the relation t = (tb~-lat)p-I follows 
from Lemma 3.15 (i) for k = p - 1. The obtained presentation 

(a, b, t 191, t2 = t, bt = ta = t, tbaP-It = 0, b~-latb = a C1 tb~al-e-l) 

is obviously s.p-2 .• 

4. General linear semigroups GLS(2, p) 

As mentioned before 8L(2,p) is a normal subgroup of GL(2,p), and is in fact 
the kernel of the determinant homomorphism det : GL(2,p) --+ Zp. Therefore 
GL(2, p) /8L(2, p) is isomorphic to the multiplicative group of Zp. As Zp is a finite 
field, its multiplicative group is cyclic, and we denote by ~ an arbitrary generator 
of this group. Thus, GL(2,p) is generated by 8L(2,p) and another matrix of 
determinant e. Here it will be convenient to choose this matrix to be 

c= (~n 
The main result of this section is the following 

Theorem 4.1. Let (a, b, cl91) be any (monoid) presentation for GL(2,p) in terms 
of generators A) Band C. Then the presentations 

s.p-3 = (a, b, e, s 191, es = se = s, sbaP- 1 s = 0, 
bae-Is = al-C1 S2, sbe-Ia = s2bl - e- 1

) 

and 

s.p-4 = (a, b, e, t 191, t2 = ct = te = t, tbaP-It = 0, be-Iatb = ae-ltbeal-e-l) 

define the semigroup GL8(2,p) in terms of generators A) B) C) 5 and A) B) C) 
T respectively. 

Remark 4.2. By Proposition 1.6 the presentation 

(a, b, e 1 aP = 1, b2 = (ab? = (a4ba~b)2, eP -
1 = 1, 

e-Iae = ae, e-Ibe = ba-e- 1 ba-eba-~-l b). 

defines GL(2, p) in terms of generators 

(10) - ( ° A = 1 1 ' B = -1 
1) - (~O) ° ' C= ° 1 . 

It is not difficult, however, to modify this presentation into a presentation which 
would define GL(2,p) in terms of A, Band C .• 
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PROOF OF THEOREM 4.1. For p = 2 both presentations ~3 and ~4 are equiva­
lent to the presentation (1), and the theorem follows by Theorem 3.4. To prove 
the theorem for p ~ 3 we first show that the presentation 

m - (a b e s I ru- bs - sa - es - se - s sbaP-ls - 0 1-'3 - ", :.Il, - - - -, - , 

bae-Is = al-e-1 s2, sbe-Ia = s2bl-e-1), 

which has been obtained from ~I by adding a new generating symbol e and two 
new relations es = sand se = s, defines GLS(2,p). The matrices A, B, C, S 
generate GLS(2,p) by Theorem 4.6.4, and it is easy to check that they satisfy all 
the relations from ~3. 

Let WI ~ {a, b, e}* be a set of canonical forms for GL(2,p), and let W2 be the 
set of canonical forms for Sing(2,p) as defined before Lemma 3.7. We claim that 
the set W = WI U W2 is a set of canonical forms for GLS(2,p). That distinct 
elements of W represent distinct elements of GLS(2,p) follows as in Lemmas 3.6 
and 3.7. In order to prove that each word from {a, b, e, s} * U {O} is equal to a 
word from W, we first note that each word from {a, b, e} * is equal to a word from 
WI since WI is a set of canonical forms for GL(2,p), and ~3 contains defining 
relations 9l for GL(2,p). Also, each word from {a,b,s}* is equal to a word from 
W2 by Lemma 3.12, since ~3 contains defining relations for SLS(2,p). 

If w E {a, b} * is any word, then we = CWI and cw = W2C for some WI, W2 E 
{a,b}*, because SL(2,p) is a normal subgroup of GL(2,p). But then swe = 
seWI = SWI and ews = W2CS = W2S. This can be used to prove that every 
word involving s can be transformed by using relations from ~3 to a word not 
involving c, and hence can be transformed to a word from W2 • Therefore, ~3 
defines GLS(2, p) by Proposition 2.l. 

Now we eliminate the relations bs = s and sa = s. If we use the relation 

(2) 

which is a consequence of bae- I s = al - c1 S2, together with the relations ca = aec 
and cb = be-

1 
e, which are true in GL(2,p), we obtain 

(3) 

From (2) and (3) it follows that 

(4) 

since a-e+Ib-Ia-e+2-cl be- 1 ae-e = b-C1 +e-2 holds in GL(2,p). Since p is a prime 
number greater than 2, we have -e- I + e-2 =1= 0, so that (4) implies bs = s, and 
this relation can be eliminated from ~3 by using Tietze transformation (T2). 
Note that in eliminating the relation bs = s we have not used the relation sa = s, 
so that sa = s can be eliminated as well by a dual argument. Hence, ~3 is a 
presentation for GLS(2,p). 
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Now we prove that ~4 is a presentation for GLS(2,p). The argument proving 
that ~3 is a presentation for GLS(2,p) can be essentially repeated to prove that 
the presentation 

~4 = (a, b, c, t I R, t Z = bt = ta = ct = tc = t, 
tbaP-1t = 0, b~-latb = a~-ltb~al-~-l) 

is a presentation for GLS(2,p) as well. To eliminate the relation bt = t we use 
the relation 

t = a-lb-~+1a~-l tb~al-~-l b-l, (5) 

which is a consequence of the last relations of ~4. Premultiplying (5) by c gives 

(6) 

Combining (5) and (6) gives 

t = a-~-l b~-la-~+lb-1+~-l at = b(~-l)\ (7) 

since a-C1 b~-la-~+1b-lH-l a = b(~-1)2 holds in GL(2,p). The relation (7) implies 
bt = t, since p > 2. Again, we have not used the relation ta = t, so that a dual 
argument shows that this relation is redundant as well. • 

Remark 4.3. Inclusion of 'group relations' 91 in all presentations ~l' s.:JJz, ~3 and 
s.:JJ4 does not cause any loss of generality. Since Sing(2,p) is an ideal in GLS(2,p) 
(respectively, in SLS(2,p)), and since GLS(2,p) - Sing(2,p) = GL(2,p) (respec­
tively SLS(2,p) - Sing(2,p) = SL(2,p)) is a subsemigroup, any presentation for 
GLS(2,p) (respectively SLS(2,p)) has the form (A, B 191, 6), where (A 191) is a 
presentation for GL(2,p) (respectively SL(2,p)). 

As in the case of full transformation semigroups it seems reasonable to pose 
a problem about finding minimal presentations. 

Open Problem 5. Find the minimal number k such that there exists a pre­
sentation of the form (A, B 191, 6) for the special linear semi group SLS(2, p) 
(respectively, for the general linear semi group GLS(2, p)) such that the presen­
tation (A 191) defines the special linear group SL(2,p) (respectively, the general 
linear group GL(2,p)) and 161 = k. 

It would be also interesting to find presentations for some more general matrix 
semlgroups. 

Open Problem 6. Find presentations for the semi group GLS( d, R) of all d x 
d matrices over the ring R for various d and various R. In particular, find 
presentations for GLS( d, R) in the following cases: 

(i) d = 2, R = GF(pn)-a general finite field; 

(ii) d = 2, R = Zm-the ring of integers modulo m; 

(iii) d> 2, R = Zp, p prime. 
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5. Using computational tools 

Computational techniques can be used very successfully as an aid in the type of 
investigation we have described in previous sections. 

First of all these techniques can be used to predict results. The most impor­
tant algorithm in this context is the Todd-Coxeter enumeration procedure. This 
procedure is described in detail in Chapter 14, but, for the moment it is sufficient 
to think about it as the simple program illustrated in Figure 4. 

INPUT: 
a finite semigroup presentation 
(defining a semi group S) 

S finite 

OUTPUT: 
order of S + 

TC 

the Cayley table 

Figure 4. 

S infinite 

runs forever 

So, if we are looking for a presentation for a finite semigroup 5, and if we have 
a 'candidate' ~, then we can test our conjecture by inputting ~ into the Todd­
Coxeter enumeration procedure. If the procedure terminates with the result 
equal to 151, then ~ is a presentation for 5 by Proposition 2.2; if the procedure 
terminates with the result different from 151 then ~ is not a presentation for S. 
However, if the procedure does not terminate after finite time we cannot draw 
any conclusions: we do not know if the procedure will never terminate or it will 
terminate eventually. 

Actually, if we are looking for a presentation for a single semigroup, a satisfac­
tory output from the program is a proof (if we trust the actual implementation). 
For example, this would be an alternative way to prove Theorem 3.4. 

However, in Sections 3 and 4 we were dealing with infinite families of semi­
groups SLS(2,p) and GLS(2,p), p prime. In this case we cannot expect a com­
puter to prove theorems for us, as it cannot check our presentation for infinitely 
many pnmes. We can, however, check our conjectured presentations for small 
values of p. 
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Suppose, for the sake of an example, that we are looking for a presentation 
for SLS(2,p) in terms of generators A, Band T (and without knowing the results 
of Section 3). It is well known that 

IGL(2,p)1 = (p2 _ 1)(p2 _ p) 

(see Rotman (1965)), so that 

ISL(2,p)1 = IGLI = p(p2 - 1). 
p-1 

Also, IGLS(2,p)1 = p\ and hence 

ISLS(2,p)1 = IGLS(2,p)I-IGL(2,p)1 + ISL(2,p)1 = p4 - (p2 _1)(p2 -p) +p(p2 -1). 

We also know (see Remark 4.3) that any presentation for SLS(2,p) contains 
defining relations for SL(2, p); let us denote by 91(p) a set of such relations. 

To begin with we choose p = 3, so that ISLS(2,p)1 = 57. If we take obvious 
relations t 2 = at = tb = t and input the presentation 

(a, b, t 191(3), t2 = at = tb = t), (8) 

the procedure does not terminate in a reasonable tim,e. Although we cannot draw 
any conclusions from this, it is reasonable to expect that the semigroup defined 
by (8) is infinite. If we add the relation tba2t = 0, we obtain the presentation 

(a, b, t 191(3), t 2 = at = tb = t, tba2t = 0), (9) 

which still seems to define an infinite semigroup. Finally, if we add the relation 
batb = a2tb2a2 we obtain a semigroup of order 57. Thus 

(a, b, t 191(3), t2 = at = tb = t, tba2t = 0, batb = a2tb2a2) (10) 

defines SLS(2, 3). 
Now we consider p = 5. An analogue of (10) for p = 5 might look like 

And indeed, (11) defines a semi group of order 265, which is the same as ISLS(2, 5) I. 
After this we might hope that 

E±l 2 E±l (a, b, t 191(p), t 2 = at = tb = t, tbaP-1t = 0, batb = a 2 tb a 2) (12) 

is a presentation for SLS(2,p). 
However, for p = 7 the presentation (12) becomes 
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and if we input this presentation into the Todd-Coxeter program, the procedure 
does not terminate. Actually, we can prove that (13) does not define SLS(2, 7), 
for, if we add the relation 

to (13) we obtain a semigroup of order 1105, while ISLS(2, 7)1 = 72l. 
The first plausible explanation for this is that presentation (12) worked for 

p = 3 and p = 5 just because they are small enough, while, in general, some 
more relations are needed. However, if we test presentation (12) for p = 11 and 
p = 13, we obtain semigroups of orders 2761 and 4537 respectively, which is the 
same as the orders of SLS(2, 11) and SLS(2,13) respectively. Presentation (12) 
fails again for p = 17. 

On the other hand, if we replace the relation batb = a4tb2a4 in (13) by b2atb = 
a5tb3a3 we obtain a semigroup of order 721 = ISLS(2,7)1. Similarly, we see 
that batb = a9tb2a9 in the presentation (12) for p = 17 should be replaced by 
b2atb = a6tb3a12. 

Let us now recall the fact that ~ = 2 is a primitive root of 1 modulo p, for 
p = 3,5,11,13, but is not a primitive root of 1 for p = 7,17, in which cases ~ = 3 
is a primitive root. Therefore one might expect that the last relation of (12) 
should be replaced by a relation depending on ~. In view of the above discussion, 
it seems that the left-hand side of the new relation should. be b~-latb, and it is 
then easy to see that the right-hand side should be a~-ltb~al-~-l. Therefore, we 
arrive at the presentation 

which indeed is a presentation for SLS(2, p )-the fact which we prove in Section 3. 

Possibilities of using computational techniques do not stop here. In the pro­
cess of proving a conjecture various computer algebra packages (such as GAP) 
can be used to perform calculations. 

For instance, in the proof of Lemma 3.12 we have a list of relations, some 
of which are too complicated to be guessed by looking at the presentation s:}Jl. 
However, the main point of this lemma is to show that multiplying of a canonical 
form by a generator results in a word equal to another canonical form. By means 
of a GAP routine writing a singular 2 x 2 matrix in its canonical form, it is 
possible to see what the resulting canonical form is, and therefore to obtain a list 
of relations which we needed to prove. For example, consider the canonical word 
cf1(i,j, k) = aisjbk ; it represents the matrix 
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as noted in Lemma 3.7. Premultiplying this matrix by B gives 

We see that X is equal either to cf1(i,j, k) for some i,j, k, or to cf2 (i,j) for some 
i, j, depending on whether i =I- p - 1 or i = p - 1; thus we obtain the second and 
the third relation from the list in the proof of Lemma 3.12. 

A similar GAP routine helped us to find canonical forms of elements of Sing(2, p) 
in terms of generators A, B, T. These canonical forms are 

cf1(i,j, k) = aibajtbk , 

cf2(i,j) = bP-1atbiabi, 
cf3(i,j) = aibajtbaP-l, 
cf4(i) = biai-1tbaP-\ 

cf5 = o. 

i, k = 1, ... ,p, j = 1, ... ,p - 1, 
i = 1, ... ,p - 1, j = 1, ... ,p, 
i = 1, ... ,p, j = 1, ... ,p - 1, 
i=I, ... ,p-l, 

Finally, after we have found presentations for our semigroups, computational 
techniques can be used to investigate the interdependence of our relations. Here 
we shall show that the presentations ~l' ~2' ~3, ~4 have no redundant relations 
for p = 7 (with e = 3). 

The orders of GLS(2, 7) and SLS(2, 7) are 2401 and 721 respectively. Consider 
the presentation 

from the proof of Theorem 4.1. Let ~l, ~6, ~7 be the presentations obtained 
from ~4 by replacing t 2 = t, tba6t = 0, b2atb = a5tb3a3 respectively by t 3 = t, 
tba6tb = tba6t, tb2atb = tb3a3 respectively, and let ~2' ~3, ~4' ~5 be obtained 
from ~4 by omitting the relations bt = t, ta = t, ct = t, tc = t respectively. 
The orders of the semigroups defined by ~i, i = 1, ... , 7, are 2786, 2401, 2401, 
4321, 4321, 2408 and 4321 respectively. This shows that no relation from ~4' 
except bt = t and ta = t, is redundant. Consequently, the presentation ~4 has no 
redundant relations, and the presentation ~2 has no redundant relations except, 
possibly, bt = t and ta = t. However, if we replace the relation bt = t in ~2 by six 
relations tbit = t, i = 1, ... ,6, the resulting semi group has order 3025, showing 
that bt = t is not redundant. Similarly, replacing ta = t by tait = t, i = 1, ... ,6, 
yields a semigroup of order 3025, and ta = t is not redundant either. Similar 
considerations show that, in general, there are no redundant relations in either 
~l or ~3. 



Chapter 4 

Constructions and presentations 

In this chapter we work on the following general problem: 

Problem. If (Ai I ~i)' i E I, are presentations for semigroups 5i, i E I, and if 
the semigroup T is obtained from the family 5i , i E I, by applying a semigroup 
construction, find a presentation for T. 

For example, if the monoids 51 and 52 are given by presentations (AI I ~1) 
and (A2 I ~2), and if T is the direct product 51 X 52, then T has a presentation 

(1) 

while the free product 51 * 52 has a presentation 

(2) 

It is worth noting that if 51 and 52 are assumed to be semigroups rather than 
monoids, then (1) fails to be a presentation for 51 x 52 in general. For example if 
51 = 52 = N, the free monogenic semigroup, then both 51 and 52 can be defined 
by the presentation (a I ). The direct product 51 x 52, however, is not even 
finitely generated, let alone finitely presented: all the elements (1, n), n E N, are 
indecomposable, and so every generating set for 51 x 52 must contain all of them. 

The constructions considered in this chapter are: 

• the wreath product of two monoids (Section 1); 

• Bruck-Reilly extension of a monoid (Section 2); 

• Schiitzenberger product of two monoids (Section 3); 

• strong semilattices of monoids (Section 4); 

• Rees matrix semigroups over a monoid (Section 5); 

• ideal extensions of a semi group by another semi group (Section 6); 

• subsemigroups of semigroups (Section 7). 

62 
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The results of the last section are of crucial importance for the rest of this 
thesis. They, together with the results of Sections 5 and 6, will be used in the 
following chapters to investigate the structure of semigroups defined by presen­
tations. 

It is also worth noting that the results of the first five sections do not generalise 
naturally to semigroups, for reasons similar to those mentioned for the direct 
product. 

The results of Sections 1-5 will appear in Howie and Ruskuc (1994), the result 
of Section 6 will appear in Campbell, Robertson, Ruskuc and Thomas (1995d), 
and the results of Section 7 will appear in Campbell, Robertson, Ruskuc and 
Thomas (1995b). 

1. The wreath product 

In this section we are going to find a presentation for the (restricted) wreath 
product of two monoids. We shall do this by using the direct method described 
in Section 5.2 (Proposition 5.2.1). First, however, we recall the definition of the 
wreath product; for more details see Eilenberg (1976). 

Let 5 and T be two monoids. The cartesian product of ITI copies of the 
monoid 5 is denoted by 5 xT , while the corresponding direct product is denoted 
by 5fJJT. One may think of 5 xT as the set of all functions from T into 5, and of 
5fJJT as the set of all such functions f with finite support, that is to say, having 
the property that xf = Is for all but finitely many x E T. If we equip 5 XT and 
5fJJT with the componentwise multiplication, we obtain two monoids, both having 
the function 

I: T ----+ 5, xl = Is, 

as the identity. 
The unrestricted wreath product of the monoid 5 by the monoid T, denoted 

by 5WrT, is the set 5 xT x T with the multiplication defined by 

(j, t) (g , t') = (j l , tt'), 

where l : T ----+ 5 is defined by 

xl = (xt)g, x E T. 

The restricted wreath product of the monoid 5 by the monoid T, denoted by 
5 wr T, is the set 5fJJT x T, with the same multiplication. Both 5 Wr T and 
5 wr Tare monoids with the identity (I, IT). Also, 5 Wr T = 5 wr T if and only 
if 151 = 1 or T is finite. 

We shall find a presentation for 5 wr T, and the first step is to find a generating 
set. It is clear that the sets {(j, IT) If E 5fJJT} and {(I, t) It E T} are submonoids 
of 5 wr T isomorphic to 5fJJT and T respectively. Moreover, for f E 5fJJT and t E T, 

(j, IT )(1, t) = (j, t), 
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and so S wr T is generated by these two submonoids. 
For s E Sand t E T we now define St : T --+ S by 

_ {s if x = t 
XSt = . 

Is otherwIse. 

Notice that if f : T --+ S has finite support then 

Notice also that if the monoid S is generated by a set A, so that every S E S is 
expressible as a product a(1)a(2) ... a(n) of elements of A, then 

___ (1)_(2) _(n) 
St - at at ... at , 

for all t E T. We therefore have 

Lemma 1.1. Suppose that the monoids Sand T are generated by sets A and B 
respectively) and let 

At = {(at, IT) I a E A}, t E T, 

B = {(1, b) I b E B}. 

Then the set (UtET At) U B generates A wr B .• 

Unlike the wreath product of groups (see Johnson (1980)), the above gener­
ating set is, in general, the best possible for monoids. If the identity Is of S is 
indecomposable in the sense that 

then the submonoid 
T' = {(1, t) I t E T} 

of S wr T has the property that 

xy E T' ::=;. x E T' and YET', 

and so every generating set for S wr T must contain a generating set for T'. 
Similarly, if IT is indecomposable in T, then each generating set for S wr T must 
contain a generating set for 

and UtET At is, in general, the smallest such set. 
For any tI, t2 E T let t1f;;1 denote the set {t E T I tt2 = td· 
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Theorem 1.2. Suppose that the monoids Sand T are defined by presentations 
(A I 91) and (B I 6) respectively. For each t E T, let At = {at I t E T} be a 
copy of A, and let 91t be the corresponding copy of 91. The presentation having 
generators (UtET At) U B and relations 

91t (t E T); 6; 

ata~ = a~at (a,a' E A, u,t E T, u =1= t); 

bat=( II au)b(aEA, bEB, tET); 
uEtb-1 

defines S wr T in terms of the generators (UtET At) U B. 

(3) 
(4) 
(5) 

Remark 1.3. Relations (4) imply that a product atlat2'" atk' where {tl, ... , tk} 
= X ~ T and all t I , ... ,tk are distinct, does not depend on the order of its factors. 
Therefore, we may use notation I1tEX at, as in relations (5). 

PROOF OF THEOREM 1.2. The correspondence a f-t at between A and At can 
be extended to a bijection between A* and A;; for a word W E A*, Wt will denote 
its image in A; under this bijection. Since the generators UtET At generate the 
submonoid {(f, IT) If E SST} ~ SST, ~e see that, for each W E A* and each 
t E T, the word Wt represents the element (Wt, IT) ?f S wr T, where Wt is given 
by 

_ {w if x = t 
XWt= 

Is otherwise. 

Hence, these generators satisfy all the relations 91t , t E T, as well as all the rela­
tions (4). Similarly, from the fact that the generators B generate the submonoid 
{(I, t) It E T} ~ T, we deduce that they satisfy all the relations 6. 

To establish relation (5), note first that 

Now, for each x in T 

x7f t 

Thus 

and so 

{
a if xb = t 

(xb)at = Is otherwise 

II xau = x( II au). 
uEtb-1 uEtb-1 

~ = II au, 
uEtb-1 

if x E tb- I 

otherwise 

(I,b)(at, IT) = ( II (au,IT))(I,b), 
uEtb-1 
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as required. 
Now let w be any word in the letters from the alphabet (UtETAt) U B. By 

using relations (5) it is possible to transform w into a word of the form w'w", 
where w' E (UtETAt)* and wIt E B*. Furthermore, by using relations (4), the 
word w' can be transformed into a product I1tETW(t)t, where w(t) E A*, and 
only finitely many of the words w(t), t E T, are non-empty. 

Let WI ~ A * denote a set of canonical forms for S, let WI,t ~ A;, t E T, 
be the corresponding copy of WI, and let W2 be a set of canonical forms for T. 
Each word from A;, t E T, can be transformed into a word from WI,t by using 
relations 9tt , and every word from B* can be transformed into a word from W 2 

by using relations 6. We have just proved that each word from ((UtET At) U B)* 
can be transformed into a word from the set 

W = {(I1tETWI(t)t)W21 W2 E W2, WI(t) E WI for all t E T, 

WI(t) = to for all but finitely many t E T} 

by using relations (3), (4), (5). 
To finish the proof of the theorem we prove that different words from W rep­

resent different elements of S wr T. (Here, again, words from W which differ only 
in order of terms WI(t) are considered equal.) So suppose that (I1tETWI(t)t)W2 
and (I1tETW~(t)t)w~ represent the same element of SwrT, that is to say 

(II (WI (t)t, 1r) )(1, W2) = (II (w~ (t)t, IT) )(1, w;), 
tET tET 

which is equivalent to 

tET 

Therefore 

tET 

II WI(t)t = II w~(t)t in SffiT, 
tET tET 

I· T W2 = W2 In . 

(6) 

(7) 

Since W2 is a set of canonical forms for T, we have W2 = w~, while from (6) we 
obtain, for x E T, 

x(II WI(t)t) = x(II w~(t)t), 
tET tET 

so that WI (x) = w~ (x) holds in S. Since WI is a set of canonical forms for S we 
must have WI(X) - w~(x). The result now follows from Proposition 5.2.1. • 

We can obtain a much nicer presentation in the case where T is a group. It is 
a generalisation of the presentation for the wreath product of two groups given 
in Johnson (1980). 
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Corollary 1.4. Let S be a monoid and let T be a group. If (A 191) and (B 16) 
are monoid presentations for Sand T respectively! then the presentation 

(A, B 191, 6, a(r1a't) = (t-1 a't)a (a, a' E A, t E T)) 

defines S wr T. 

PROOF. If we denote a1T by a then it is easy to see that the relations 

a(r1a't) = (r1a't)a (a, a' E A, t E T), 

at = r 1at (a E A, t E T), 

(8) 

(9) 

(10) 

hold in S wr T. Therefore, we can add these relations to the presentation (3), 
(4), (5). Next we eliminate at, a E A, t E T - {1T} by using (10). A general 
relation Ut = Vt from 91t, t E T, becomes t-1ut = r 1vt, and is equivalent to 
U = v. Therefore, all the relations 91t can be replaced by 91. The relations 6 do 
not change as they involve only letters from B. Finally, relations (4) and (5) are 
consequences of (9) and (10) since 

and 

ata~ r 1atu-1a'u = r 1a( ur1 t 1a'( ur1)t = r1( ur1 t 1a'( ur1)at 
u-1a'ur1at , 

Hence we can eliminate these relations from our presentation, thus obtaining 
presentation (8) .• 

2. The Schiitzenberger product 

Let Sand T be monoids. For X ~ S x T, s E S, t E T, we define 

sX = {(SX1,X2) I (Xl,X2) EX} 
Xt = {(X1,X2t) I (X1, X2) EX}. 

The Schiitzenberger product of Sand T, denoted by SOT, is the set S xP(S xT) x 
T, where P(S x T) denotes the set of all subsets of S x T, with the multiplication 

(S1, Xl, t1)(S2, X2, t2) = (Sl S2, X1t2 U Sl X 2, t1t2). 

SOT is a monoid with identity (1s, 0, 1T). This construction plays an important 
role in language theory, especially in the theory of so called star-free languages; 
for details see Howie (1991). 

In this section we find a presentation for SOT, when Sand T are finite 
monoids. First, as usual, we find a generating set. 



68 Semigroup presentations 

Lemma 2.1. If finite monoids 5 and T are generated by sets A and B respec­
tively) then 5<)T is generated by the set 

{(a, 0, lr) I a E A} U {(Is, 0, b) I b E B} U {(Is, {(s, tn, lr) Is E 5, t E T}. 

PROOF. Let s E 5, t E T and let X ~ 5 x T be arbitrary. Since A is a 
generating set for 5, s can be written as s = ala2··. ak, with al, ... , ak E A; 
similarly t = bl b2 ... bl, with bI, ... , bl E B. Also, since both 5 and T are finite, 
X can be written as a union X = UiEI{( Si, tin, where I is a finite set and Si E 5, 
ti E T for all i E I. Now we have 

(s,0,lT) = (aI,0,l T)(a2,0,lT) ... (ak,0,lT), 

(1s, 0, t) = (1s, 0, bl )(ls, 0, b2 ) .•• (1s, 0, bl), 

(ls,X,lT) = II(ls,{(si,td},lT), 

(s, X, t) = (Is, 0, t)(ls, X, IT)( s, 0, IT), 

and the lemma follows .• 

In general this is the best possible generating set for 5<)T. Indeed, if all 
the elements of the set A U {Is} and B U {IT} are indecomposable in Sand T 
respectively, then all the generators for 5<)T from Lemma 2.1 are indecomposable 
in 5<)T, and therefore must belong to every generating set. 

Theorem 2.2. Let 5 and T be finite monoids defined by presentations (A 191) 
and (B 16) respectively. The 5chiitzenberger product 5<)T is then defined by the 
presentation with generating symbols C = A U B U {cs,t I s E 5, t E T} and 
relations 

91; 6; 
2 Cs,t = Cs,t; Cs,tCSl,tl = CS1 ,tl Cs,t; 

aCs,t = cas,ta; 

Cs,t b = bCs,tb; 
ab = ba; 

where a E A) bE B) S,Sl E 5) t,tl E T. 

(11) 

(12) 

(13) 

(14) 
(15) 

PROOF. It is easy to see that the generators {(a, 0, IT) I a E A} generate the 
submonoid {( s, 0, IT) Is E 5} which is isomorphic to 5, and, since 91 is a set of 
defining relations for 5, they satisfy all the relations from 91. Similar arguments 
show that the generators {(Is, 0, b) I b E B} satisfy relations 6, and that gener­
ators {(Is, {( s, tn, IT) I s E 5, t E T} satisfy (12). Next we check that relations 
(13), (14), (15) hold in 5<)T: 

(a,0,l T)(ls ,{(s,tn,lT) = (a, {(as, tn, IT) = (ls,{(as,tn,lT)(a,0,lT), 

(ls,{(s,tn,lT)(ls,0,b) = (ls,{(s,tbn,b) = (ls,0,b)(l s ,{(s,tbn,lT), 

(a,0,lT)(l s ,0,b) = (a,0,b) = (ls,0,b)(a,0,lr). 
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Let WI and W2 be sets of canonical forms for Sand T respectively. We shall 
show that the set 

W = {w2(II csi,dwI I WI E WI, W2 E W2, I is finite, Si E S, ti E T} 
iEI 

is a set of canonical forms for SOT. 
First we show that each word w E C* can be transformed by using relations 

(11)-(15) to a word from W. We do this by induction on Iwl, the case Iwl :::; 1 
being obvious. If Iwl > 1 then w has one of the forms w'a, a E A, or w'b, 
b E B, or w'Cs,t, S E S, t E T, where w' is of shorter length than w. By the 
inductive hypothesis w' can be transformed into a word W~(DiEI cSi,dw~ from 
W. If w = w'a we have 

w = w;(II cSi,dw~ a = w;(II csi,dWI, 
iEI iEI 

where WI E lIVI is the canonical form for w~ a. In the case w _ w'b we have 

w W~(DiEI cSi,dw~ b 
W~(DiEI CSi,ti)bw~ 
w~b(DiEI cSi,tib)W~ 
w2(DiEl csi,tib )w~, 

(by (15)) 
(by. (14)) 

where W2 E W2 is the canonical form for w~b. Finally, if w = w'Cs,t, we have 

w = w;(II cSi,dw~ Cs,t = w;((II cSi,dcWls,t)W~, 
iEI iEI 

by using (13). 
N ow we prove that different words from W represent different elements of 

SOT. SO assume that 

w;(II cSi,dw~, w~(II CSj,tJw~ E W 
iEI jEJ 

represent the same element of SOT. Then we have 

(w~, U{( Si, ti)}' w;) = (w~, U {(Sj, tj)}, w~). 
iEI jEJ 

Since WI is a set of canonical forms for S, from w~ = w~ in S it follows that 
w~ == w~. Similarly, we have w~ == w~. Finally, {(Si' ti) liE I} = {(sj, tj) I j E J} 
implies that DiEI Csi,ti = DjEJ CSj,t;-

The theorem now follows by Proposition 5.2.1. • 
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3. The Bruck-Reilly extension 

Let S be a monoid, and let e : S ---+ S be an endomorphism. Define a binary 
operation on the set N° x S x N° by 

(m, s, n )(p, t, q) = (m - n + r, (ser-n)(wr- p
), q - p + r), 

where r = max(n,p). It is an elementary exercise to show that this operation is 
associative and that (0, Is, 0) is a neutral element. Hence N° x S x N° with this 
operation forms a monoid, which we denote by BR(S, e). 

If S is the trivial semigroup, BR(S, e) is the bicyclic monoid; see Howie (1976). 
More generally, if S is not necessarily trivial, but the endomorphism e satisfies 
se = Is for all s E s, BR(S, e) coincides with Bruck extension of S; see Bruck 
(1958). If S is a group then BR(S, e) is known as Reilly extension of S; see 
Reilly (1966). Finally, if the image of e is contained in the group of units of S, 
we obtain a general Bruck-Reilly extension of S, which is a generalisation of all 
previously mentioned extensions, and which was introduced by Munn (1970). All 
these constructions play important roles in the theory of inverse semigroups; see 
Howie (1976). 

Lemma 3.1. If A is a generating set for the monoid S, then 

{(O,a,O) I a E A} U {(O,l s ,I),(I,ls ,On 

is a generating set for B R( s, e). 

PROOF. Let m, n E N°, s E S be arbitrary. Since A is a generating set for S, s 
can be written as s = ala2 ... ak, where al, . .. ,ak E A. Now we have 

so that 

(0, s, 0) = (0, ala2 ... ak, 0) = (0, aI, 0)(0, a2, 0) ... (0, ak, 0), 
(m,l s ,O) = (1,ls,Or, (O,ls,n) = (O,ls,l)n, 

(m,s,n) = (m,ls,O)(O,s,O)(O,ls,n) 

implies the lemma .• 

The obtained generating set is again the best possible in general. For example, 
if e is the constant mapping s f---t Is, then BR(S, e) is the direct product of Sand 
the bicyclic monoid, and cannot be, in general, generated by fewer than IAI + 2 
elements. 

Theorem 3.2. Let S be the monoid defined by a presentation (A 191), and let 
e : S ---+ S be an endomorphism. The monoid BR(S, e) is then defined by the 
presentation 

~ = (A, b, c 191, be = 1, ba = (ae)b, ae = e(ae) (a E A)) 

in terms of the generators {(O, a, 0) I a E A} U {(O, Is, 1), (1, Is, O)}. 
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In order to prove the theorem we first deduce some consequences of the given 
relations. 

Lemma 3.3. The following relations are consequences of~: 

(i) bw = (wO)b, wE A*; 

(ii) we = c(wO), wE A*; 

(iii) bna = (aOn)bn, n E N, a E A. 

PROOF. (i) If w _ al ... ak then we have 

as required. 

(ii) The proof is analogous to (i). 

(iii) This follows by a multiple application of (i), since, for a word w E A*, the 
word wO is in A * as well. • 

PROOF OF THEOREM 3.2. The set {(O, a, 0) I a E A} generates the submonoid 
{(O, s, 0) I s E 5} ~ 5 of BR(5,0), and, since ~ are defining relations for 5, 
we conclude that they hold in BR(5,0) as well. N~xt, we check the remaining 
relations from ~: 

(0,15,1)(1,15,0) = (0 - 1 + 1, (1501-1 )(1501-1), ° -1 + 1) = (0,15,0), 

(0,15,1)(0, a, 0) = (0, (lsOO)(aO), 1) = (0, aO, 1) = (0, aO, 0)(0,15,1), 

(0, a, 0)(1,15,0) = (1, aO, 0) = (1,15,0)(0, aO, 0). 

Let WI be a set of canonical forms for 5. We shall show that the set 

is a set of canonical forms for BR(5,0). First we show that each word w E 

(A U {b, c})* can be transformed into a word from W by applying relations from 
~. We do this by induction on Iwl, the case Iwl ~ 1 being obvious. If Iwl > 1 
then w can be written either as w'a, a E A, or as w'b, or as w'c. By the inductive 
hypothesis w' can be transformed into a word cmw~bn from W. Now, if w _ w'a, 
a E A, then 

w - cmw'bna 
cmw'(aOn)bn (Lemma 3.3(iii)) 
cmwlbn, 

where WI E WI is the canonical form for w'(aOn). In the case w _ w'b we have 

m 'bn+1 E W w = C WI . 



72 

Finally, for W = w' c we have 

Now, if n = 0 then 

m 'bn W = C WI C. 

cmW~c = cm+l( W~ (1) 

Semigroup presentations 

by Lemma 3.3(ii), and by reducing the word w~ E A* to a canonical form in WI 

we reduce W to a word from W. If n 2: 1, we use the relation bc = 1 and obtain 

To finish the proof we note that a typical element CmWI bn of W represents 
the element (m, WI, n) of BR(S,O), from which it easily follows that different 
elements of W represent different elements of BR(5, 0) .• 

It is worth pointing out that the presentation ~ from Theorem 3.2 has IAI + 2 
generating symbols and 1911 + 21AI + 1 relations, so that we have the following 

Corollary 3.4. If 5 is a finitely presented monoid, and if 0 is an endomorphism 
of 5, then the Bruck-Reilly extension BR(5,O) is finitely presented .• 

4. Strong semilattices of monoids 

Let Y be a semilattice, and let 50:, 0: E Y, be a family of (disjoint) monoids 
indexed by Y. Denote by 10: the identity of the monoid 50:, 0: E Y. Suppose 
that for any two elements 0:, (3 E Y, with °: 2: (3, there is a homomorphism 1>0:,(3 : 
50: ---7 5(3, and that these homomorphisms satisfy the following two conditions: 

( a) 1>0:,0:, 0: E I, is the identity mapping; 

(b) 1>0:,(31)(3,''1 = 1>o:m for all 0:, (3" E Y with °: 2: (3 2: ,. 

The set 5 = Uo:EY So: can be made into a semigroup by defining 

for a E So: and b E 5(3. (Notice that the product on the right hand side of 
the above equation is a product within 50:(3.) We denote this semi group by 
5(Y; 50:,1>0:,(3), and call it the strong semilattice Y of monoids So: with homomor­
phisms 1>0:,(3' The multiplication in this semigroup extends multiplications from 
monoids 50:, 0: E Y, because of the condition (a), so that 5(Y; 50:, 1>0:,(3) is a 
disjoint union of monoids So:. 

Strong semilattices of semigroups provide one of the main tools for the struc­
ture theory of semigroups. Probably the best known result in this field is that a 
semi group is a Clifford semigroup (i.e. a regular semi group in which the idempo­
tents are central) if and only if it is a strong semilattice of groups; see Clifford 
(1941) and Howie (1976). 
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Theorem 4.1. Let Y be a semilattice, let SCI., 0' E Y, be a family of disjoint 
monoids, and let ¢>CI.,(3, 0', /3 E Y, 0' 2 /3, be a family of homomorphisms satisfying 
(a) and (b). Suppose that the monoid SCI., 0' E Y, is defined by a semi group 
presentation (ACI. 191Cl.), with ACI. n A(3 = 0 for 0' =F /3. Let A = UCl.EY ACI.' 91 = 
UCl.EY 91Cl.' and let 1C1. E At be a word representing the identity of SCI.. Then 

~ = (A 191, 1C1.1(3 = 1(31C1.' loa = a10 = a¢>-y,o 

(0',/3",8 E Y, 0' =F /3, ,> 8, a E A-y)) 

is a presentation for S(Y; SCI., ¢>CI.,(3). 

Remark 4.2. Although SCI., 0' E Y, are monoids, the semigroup S(Y; SCI., ¢>CI.,(3) , 
is not necessarily a monoid. This is the reason why in the above theorem we use 
semi group presentations rather than monoid presentations. 

PROOF OF THEOREM 4.1. Let S denote the semi group S(Y; SCI., ¢>CI.,(3). Since S 
is a disjoint union of semigroups SCI., 0' E Y, it is certainly generated by the set 
A = UCl.EY ACI.. Also, since 91Cl. is a set of defining relations for SCI., the generators A 
satisfy all the relations from 91 = UCl.EY 91Cl.. It is easy to check that the remaining 
relations from ~ also hold in S: 

1C1.1(3 = (lCl. OCl.,CI.(3)(l(30(3,CI.(3) = 1C1.(31C1.(3 = ~CI.(3 = 1(3C1. = 1(31C1.' 

loa = (1 000,00) (aO,,-yo) = 10( aO-y,o) = aO-y,o = a10· 

Let WCI.' 0' E Y, denote a set of canonical forms for SCI.. We shall show that 
the set 

is a set of canonical forms for S. Let w == a1a2 .. . ak be an arbitrary word from 
A+, with ai E ACl.i' O'i E Y, i = 1, ... ,k. If we note that, for a E ACI., the relations 

are consequences of~, since 1C1. represents the identity of SCI. and that the defining 
relations 91Cl. for SCI. are included in ~, we have 

w a1 a2· .. ak 
(1C1.1a1)(1C1.2a2) ... (lC1.k ak ) 
(1C1.11C1.2·· .1C1.k)(a1 a2 ... ak) 
1C1.1C1.2 ... Cl.ka1a2 . .. ak 

- 1~a1a2'" ak 
(l(3a1) (1(3a2) ... (l(3ak) 
(a1¢>Cl.b(3)(a2¢>Cl.2,(3)··· (ak¢>Cl.k,(3)· 

(relations loa = a10) 
(relations lCl.l(3 = lCl.(3) 
(relations 91(3, /3 = 0'1' . . O'k) 
(relations loa = a10) 
(relations loa = a¢>-y,o) 

Since the last word is from A~, it can be reduced to a canonical form from 
W(3 ~ W by applying relations 91(3 ~ 91. 
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Finally, from the fact that S is a disjoint union of monoids Sa, a E Y, and 
that Wa is a set of canonical forms for Sa, it follows that different elements of W 
represent different elements of S. The theorem now follows by Proposition 5.2.l. 

• 
5. Rees matrix semigroups 

We have already encountered Rees matrix semigroups over a group in Chapter 4. 
Basic facts about these semi groups can be found in Appendix A. Here we consider 
a more general situation of a Rees matrix semi group over a monoid, with the Rees 
matrix not necessarily regular. First we recall the relevant definitions. 

Let S be a monoid, let 0 be an element not belonging to S, let I and A be 
two index sets, and let P = (p>.ihEA,iEI be a IAI x III matrix with entries from 
S U {O}. The Rees matrix semigroup MO[S; I, A; P] is the set (I x S x A) U {O} 
with multiplication 

( . , )(. , ) _ { (i1, SIP>'li2S2, >'2) 
ZI, S1, /\1 Z2, S2, /\2 - 0 

O(i,s,>.) = (i,s,>.)O = 00 = O. 

if P >'1 i2 =J. 0 
otherwise, 

If all the entries of P are equal to 0, MO[S; I, A; P] is the semi group of order 
IIIISIIAI + 1 with zero multiplication; the simplest presentation for such a semi­
group is its multiplication table. In the rest of this section we will consider the 
non-trivial case where P contains at least one non-zero entry. Furthermore, we 
will assume that P contains at least one unit (i.e. invertible element) of S; when 
this condition is not satisfied generating sets for MO[S; I, A; P] strongly depend 
on the semi group S and the particular choice of the matrix P, and finding a rea­
sonable general generating set seems to be a difficult problem. The assumption 
that P contains at least one unit is equivalent to assuming that P has an entry 
equal to Is. For if P has an invertible entry, which without loss of generality 
we may denote by Pll, then the map (i,s,>.) f--t (i,spn,>') is an isomorphism 
between MO[S; I, A; P] and MO[S; I, A; pi], where 

and evidently P~1 = Is. Rees matrix semigroups over groups (such as completely 
O-simple semigroups; see Appendix A) trivially satisfy this additional restriction. 

Lemma 5.1. Let S be a monoid, let A be a set of semigroup generators for S, 
let P = (P>.i)>'EA,iEI be a IAI x III matrix with entries from S U {O} (0 ¢ S), and 
with Pn = Is. The Rees matrix semigroup is then generated by the set 

{(l,a,l) I a E A} U {(i,ls,l) 11 =J. i E I} U {(l,ls,>') 11 =J. >. E A}. 
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PROOF. Let i E I, A E A, s E S. Since A is a generating set for S we have 
s = al az ... ak, all ... ,ak E A. Therefore, 

(i,S,A) (i, 1SPl1 alPl1 az .. . Pl1akP111S, A) 
(i, 1s, 1)(1, aI, 1)(1, az, 1) ... (1, ak, 1)(1, 1s, A), 

and hence the lemma .• 

Remark 5.2. The generating set in Lemma 5.1 is a straightforward generali­
sation of the generating set given in Theorem 4.2.1 for the completely O-simple 
semlgroups. 

Remark 5.3. Although this is again the best possible choice of generators in 
general (e.g. consider the case where all entries of P except Pll are equal to 0), in 
most cases, including the completely O-simple case, it is far from being optimal; 
see Section 3 in Chapter 4 .• 

Theorem 5.4. Let T = MO[S; I, A; P] be a Rees matrix semigroup, where S is 
a monoid, P = (P)..i) .. EA,iEI is a IAI x III matrix with entries from SU {O} (0 tj. S) 
and with Pl1 = 1s. Let (A 191) be a semigroup presentation for S, let e E A+ be 
a non-empty word representing the identity 1s of S, and let 

B = AU {bi 11 =J i E I} U {c).. 11 =J A E A} 

be a new alphabet. Then the presentation 

~ = (B 191, bie = bi, ebi = Pli, c)..e = P)..l, ec).. = c).., c)..bi = P)..i 

(1 =J i E I, 1 =J A E A)) 

defines T as a semigroup with zero. 

Remark 5.5. This time we opt for presentations of semigroups with zero, as T 
does have a zero, but does not necessarily have an identity. The presentation ~ 
has no relations of the form w = 0 if and only if the matrix P has no entries equal 
to 0, i.e. if and only if 0 is indecomposable in T. In this case, by considering ~ as 
a semi group presentation, we see that it defines the semigroup T - {O}. In this 
way, in particular, we obtain presentations for completely simple semigroups. 

PROOF OF THEOREM 5.4. The set {(1, a, 1) la E A} generates the subsemigroup 
{(l,s,l) Is E S} 2:' S, and hence satisfies the defining relations 91 of S. Also, 
we see that a word w from A+ represents the element (1, w, 1) of T, and, in 
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particular, e represents (1, Is, 1). Now we check that the remaining relations 
from s.:}3 also hold in T: 

(i, Is, 1)(1, Is, 1) = (i, IsP111s, 1) = (i, Is, 1), 

(1 1 1)(· 1 1) = { (1, ISPli 1S, 1) = (1, Pli, 1) ,s, z, s, 0 

(1 1 ),)(1 1 1) = { (l,p,\l,l) if P'\l =f 0 
,s, ,s, 0 if P'\l = 0, 

(1, Is, 1)(1, Is,)') = (1, Is, ),), 

(1 1 ),)(. 1 1) = { (l,p'\i, l) if P,\i =f 0 
,s, z, s, 0 if P,\i = O. 

if Pli =f 0 
if Pli = 0, 

Let WI be a set of canonical forms for S. We shall show that the set 

W = {biWlC,\ liE I, ), E A, WI E Wd U {O}, 

where bl and Cl are defined to be equal to the empty word, is a set of canonical 
forms for T. 

Let W E B+ be an arbitrary word. By induction on Iwi we prove that W can 
be transformed into a word from W by using relations from s.:}3. The case Iwi = 1 
is obvious; so let us suppose that Iwi > 1. Then either w == w'a, a E A, or 
w = w'bi , 1 =f i E I, or w = w'c,\, 1 =f ), E A, where w' E Bt is a word of shorter 
length than w. By the inductive hypothesis w' can be transformed into a word 
bjw~ CJ.L from W by using relations from s.:}3. If w == w' a we have 

w bjw~cJ.La 
= bjw~cJ.Lea 
= bjW~pJ.Lla. 

(relations 91) 
(relation CJ.L e = P J.Ll ) 

If PJ.Ll = 0 then the last word is equal to 0; otherwise, W~PJ.Ll a is a word from 
A +, which can be transformed into a canonical form WI E WI by using relations 
91, thus transforming the word w into the word bjWlCl E W. If w - w'bi, we 
distinguish the case J.l = 1, in which 

b 'b b' b b' { bjWl Cl if Pli =f 0 W = jWl i = jWl e i = jWlPli = 0 ·f 
1 Pli = 0, 

where WI E WI is the canonical form for W~Pli E A+, and the case J.l =f 1, where 

b ' b b' { bjWl Cl if PJ.Li =f 0 
W = jWl CJ.L i = jWlPJ.Li = 0 ·f· - 0 

1 PJ.Lt - , 

where WI E WI is the canonical form of W~PJ.Li E A+. Finally, if W = w'c,\, we 
have 
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where W1 E W1 is the canonical form for W~PtL1 E A +. 
In order to prove that different elements from W represent different elements 

from T it is enough to note that a typical element biw1c>. of W represents the 
element (i, W1,),) of T. The theorem now follows from Proposition 5.2.1. • 

If we note that the presentation Sf) has IAI + III + IAI - 2 generators and 
1911 + 2111 + 21AI + (111- l)(IAI- 1) relations we obtain the following 

Corollary 5.6. Let S be a finitely presented monoid, and let I and A be both 
finite. Then the Rees matrix semigroup MO[S; I, A; P], with matrix P containing 
at least one invertible entry, is finitely presented. 

Later, in Section 2 of Chapter 10, we will see that in the completely a-simple 
case the converse of this corollary is true as well. 

6. Ideal extensions 

Let S be a semigroup with zero, and let I and T be semigroups. We say that T is 
an ideal extension of I by S if T contains an ideal J isomorphic to I such that the 
Rees quotient (see Appendix A) T I J is is~morphic to S. Ideal extensions are not 
constructions in the strictest sense: not only is there no 'recipe' for obtaining T 
given S and I, but T may not even exist or it may not be unique. For a detailed 
introduction to ideal extensions and examples illustrating the above assertions 
see Petrich (1973). 

Here we just prove the following result which we will need in Chapter 8. 

Theorem 6.1. Let S be a semigroup and let I be an ideal of S. If both I and 
S I I are finitely presented then S is finitely presented as well. 

PROOF. Suppose that I and SI I are defined by (semigroup) presentations (XI9t) 
and (Y I 6) respectively. Suppose for the moment that no generator from Y 
represents the zero of the semigroup S I I. In this case S is obviously generated 
by the set XU Y. Each word w E Y+ which represents the zero of S I I represents 
an element of I in S, and so there exists a word a w E X+ such that w = a w in 
S. Also, for each x E X and each y E Y the words xy and yx represent elements 
from I in S; let /3xy, /3yx be words from X+ such that xy = /3XY and yx = /3yx 
hold in S. Let us fix a word z E Y+ representing the zero of SI I. We define the 
following new sets of relations: 

6 1 = {( u = v) E 6 : u =I z in S I I}, 
6 2 = {( u = v) E 6 : u = z in S I I}, 
6 2 ={u=au ,v=av : (u=v)E6 2 }U{z=az }, 

6 3 = {xy = /3xy,Yx = /3yx : x E X,y E Y}, 
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and let T denote the semi group defined by the presentation 

(16) 

We claim that S ~ T. It is obvious that S satisfies all the relations from 91 U 
6 1 U 6 2 U 6 3 , and hence there is a natural epimorphism <p : T ---+ S. 

Assume now that two words WI, W2 E (X U Y)+ represent the same element 
of S. If both WI and W2 contain a letter from X then we can use relations from 
6 3 to find words WI, W2 E X+ such that WI = WI and W2 = W2 in T. Since the 
relation WI = W2 holds in I, it can be deduced from 91, thus giving WI = W2 in 
T. If WI E Y+ and WI represents an element of I in S then WI = z holds in S / I, 
and so z can be obtained from WI by applying relations from 6. If no relations 
from 6 2 are needed in this deduction then WI = Z = Qz holds in T. Otherwise, 
instead of the first application of a relation from 6 2 we can use the corresponding 
relation from 6 2 and thus obtain a word WI containing a letter from X such that 
WI = WI holds in T. Applying a similar argument to W2, if necessary, we reduce 
this case to the case where both WI and W2 contain a letter from X. Finally, 
if WI does not represent an element of I in S then WI = W2 can be deduced by 
just using relations from 6 1 , and again WI = W2 holds in T. Therefore, <p is an 
isomorphism and T ~ S as required. 

Let us now suppose that Y contains generators representing the zero in S / I, 
and let Yo be the set of all non-zero generators from Y. 'If the zero of S / I is 
a product of two non-zero elements from S / I then Yo generates S / I and the 
argument above can be repeated. Otherwise a similar argument would show that 

(17) 

is a presentation for S. 
Finally, note that if both presentations (X I 91) and (Y I 6) are finite so are 

the presentations (16) and (17) .• 

7. Presentations for subsemigroups-a general rewriting 
theorem 

The problem of finding presentations for subsemigroups can be formulated as 
follows: given a semigroup S defined by a presentation (A I R)! and given a set of 
words X ~ A+! find a presentation for the subsemigroup T of S generated by X. 

The analogous problems for groups and their subgroups is solved by theorems 
of Reidemeister and Schreier; see Magnus, Karrass and Solitar (1966). The main 
idea there is that of rewriting: the relations defining the group are rewritten under 
certain rules to give a presentation for the subgroup. 

In this section we develop the idea of rewriting for semigroups, and give a 
general solution to the above problem. As in the case of groups, with this degree 
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of generality, one may not expect a very satisfactory solution. For example, the 
presentation obtained will have to be infinite, even when the semi group is finitely 
presented and the subsemigroup is finitely generated, since a finitely generated 
subsemigroup of a finitely presented semi group may be not finitely presented; see 
Example 8.1.2. The real significance of the presentation obtained is that it gives 
rise to a 'recipe' for obtaining presentations for subsemigroups in various special 
cases. We shall use this recipe in Chapters 7 and 9 to find presentations for ideals 
of finite index and maximal subgroups of (0- )minimal ideals of a semigroup. 

Let S be the semi group defined by a presentation (A 191), and let T be the 
sub semi group of S generated by a set X = {~i 1 i E I}, where each ~i is a word 
from A +. We seek a presentation for T in terms of the generators X. 

Although so far we have been identifying words in an alphabet with elements 
that these words represent in a particular semigroup, in the case of the semi group 
T we may not do so-generators X of T are already words (not letters) from 
the alphabet A. So we choose a new alphabet B = {bi 1 i E I} in one-one 
correspondence with X. Intuitively, bi is an abstract image of of the generator 
~i. In other words, a word bi1 bi2 .•• bik E B+ represents the element ~il ~i2 ... ~ik 
of T. This can be made more formal by introducing the mapping 'lj; : B+ ----+ A + 
defined by 

(18) 

which we call the representation mapping. Note that 'lj; is defined constructively 
(if A, 91 and X are defined constructively), and that it is a homomorphism. 

On the other hand, each word from A + which represents an element of the 
sub semi group T is equal in S to a product of elements of X, which is in turn 
represented by the corresponding word from B+. Thus we have a mapping 

cP : L( A, T) ----+ B+, 

where L(A, T) denotes the set of all words from A+ which represent elements of 
T, satisfying 

(wcP)'lj; = w in S (19) 

for all w E L(A, T). Since cP 'rewrites' each word representing an element of T 
into a corresponding product of generators of T, we call cP a rewriting mapping. 

Note that the existence of a rewriting mapping is a consequence of the Axiom 
of Choice. However, unlike the representation mapping, a rewriting mapping is 
not necessarily unique, it is not necessarily a homomorphism and it is not defined 
constructively by (19). 

The main result of this section is 

Theorem 7.1. Let S be the semigroup defined by a presentation (A 191), and let 
T be the subsemigroup of S generated by X = {~i 1 i E I} ~ A +. Introduce a new 
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alphabet B = {bi 1 i E I}, and let 'IjJ and ¢ be the representation mapping and a 
rewriting mapping. Then T is defined by generators B and relations 

bi = ~i¢' i E I, 
(WIW2)¢ = Wl¢' W2¢, 

(W3UW4)¢ = (W3VW4)¢, 

(20) 

(21) 

(22) 

where WI, W2 E L(A, T), U = v is any relation from 91, and W3, W4 E A* are any 
words such that W3UW4 E L(A, T). 

We prove the theorem by using Proposition 3.2.3: we prove that relations 
(20), (21), (22) hold in T and that any other relation which holds in T is a 
consequence of (20), (21), (22). We do this in three lemmas. 

Lemma 7.2. If 0: = (3 is any of relations (20), (21), (22), then 0:'IjJ = (3'IjJ holds 
in 5. 

PROOF. If we use definition (19) of a rewriting mapping and the fact that 'IjJ is 
a homomorphism we obtain 

as required. • 

bi'IjJ = ~i = (~i¢)'IjJ, 

((WIW2)¢)'IjJ = WIW2 = (Wl¢)'IjJ· (W2¢)'IjJ = (w~¢· W2¢)'IjJ, 

((W3UW4)¢)'IjJ = W3UW4 = W3VW4 = ((W3VW4)¢)'IjJ, 

Lemma 7.3. If 0:, (3 E L(A, T) are any two words such that the relation 0: = (3 
holds in 5, then the relation o:¢ = (3¢ is a consequence of (20), (21), (22). 

PROOF. Since (A 191) is a presentation for 5, there exists a sequence 

0: = 11, 12, ... , Ik = (3, 

of words from A + such that li+l can be obtained from Ii by one application of 
one relation from 91, for all i = 1, ... ,k - 1. Therefore, relations (22) contain all 
the relations li¢ = li+1¢, i = 1, ... , k - 1, and we have the sequence 

in which every term can be obtained from the previous one by one application of 
one relation (22) .• 

Lemma 7.4. For any word W E B+ the relation 

W=(w'IjJ)¢ 

is a consequence of (20), (21), (22). 
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PROOF. If W = bi1 bi2 ... bik , with bi1 , ... ,bik E B, then 

w1jJ = eil ei2 ... eik 

81 

(23) 

by (18). Note that ei1, ... ,eik E L(A,T), so that a multiple application of (21) 
gIVes 

(ei1 ei2 ... eik)</J = (ei1 </J)(ei2</J)··· (eik</J)· 
Finally, by (20), we have 

and from (23), (24), (25) we obtain the desired result .• 

(24) 

(25) 

PROOF OF THEOREM 7.1. Relations (20), (21), (22) hold in T by Lemma 
7.2. Let a, f3 E B+ be any two words such that the relation a = f3 holds in 
T. This means that a1jJ = f31jJ holds in 5, and, by Lemma 7.3, we deduce that 
(a1jJ)</J = (f31jJ)</J is a consequence of (20), (21), (22). Finally, by Lemma 7.4, 
both a = (a1jJ)</J and f3 = (f31jJ)</J are consequences of (20), (21), (22), so that we 
conclude that a = f3 is a consequence of (20), (21), (22), as required .• 

Remark 7.5. Theorem 7.1 is a semigroup analogue of Theorem 2.6 in Magnus, 
Karrass and Solitar (1966). Relations (20), (21), (22) correspond respectively 
to relations (5), (7), (8) of that theorem. In the group case one more family 
of relations was necessary: relations of the type </J(WI) = </J(W2), where WI and 
W2 are freely equal words representing the same element of the subgroup. For 
semigroups such a family of relations contains only trivial relations because of 
the nature of the free semigroup .• 

Remark 7.6. The main disadvantages of the presentation from Theorem 7.1 
are that it is always infinite and that neither the rewriting mapping </J nor the 
set L(A, T) have been defined constructively. However, Theorem 7.1 yields a 
uniform method for finding presentations for subsemigroups in various special 
cases. Given a semi group 5 defined by a presentation (A 19\) and a subsemigroup 
T of 5, this method consists of the following three steps: 

• find a generating set X for T, and introduce a new alphabet B in one-one 
correspondence with X; 

• find a (specific) rewriting mapping; 

• find a set 6 ~ B+ X B+ of relations which hold on T and imply all the 
relations (20), (21), (22). 

It is easy to prove that (B I 6) is indeed a presentation for T by using Tietze 
transformations. First, since (20), (21), (22) are defining relations for T, they 
imply relations 6 which hold in T, so that 6 can be added to the presentation 
(20), (21), (22), and then relations (20), (21), (22) can be eliminated from the 
presentation, as they are implied by 6 by assumption .• 



Chapter 5 

Reidemeister-Schreier type theorems 
for ideals 

In this chapter we give presentations for an ideal and a right ideal of a semigroup 
defined by a presentation. The main feature of the obtained presentations is that 
they are finite if the semigroup is finitely presented and the ideal in question 
has finite index. This can be considered as an analogue of the Reidemeister­
Schreier theorem for groups which asserts that a subgroup of finite index in a 
finitely presented group is finitely presented. 

Of course, the obtained presentation for right ideals is a,lso a presentation for 
two-sided ideals. There are two main reasons for giving a separate presentation 
for two-sided ideals. The first reason is that the presentation for two-sided ideals 
is less complicated and in general contains many fewer relations, and therefore 
is more hopeful for further applications. The second reason is that the proofs in 
the two cases are rather different, but both share the common general approach 
outlined at the end of of the previous chapter; we hope that by giving both 
presentations we will illustrate this general approach more successfully. 

The results of Sections 1 and 2 will appear in Campbell, Robertson, Ruskuc 
and Thomas (1995b), while the results of Section 3 will appear in Campbell, 
Robertson, Ruskuc and Thomas (1995d). 

1. A generating set and a rewriting mapping for 
subsemigroups 

If I is a (left, right or two-sided) ideal of a semigroup 5, the index of I in 5 is 
defined to be the number of equivalence classes of the corresponding (left, right, 
two-sided) Rees congruence '(/I; see Section 1 of Appendix A. In effect, the index 
of I in 5 is equal to 15 - II + 1. If I is a two-sided ideal this is equal to the order 
of the Rees quotient 5/1. 

This closely parallels the notion of the index of a subgroup in a group. Let G 
be a group, and let H be a subgroup of G. The index of H in G is the number 

82 
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of (left or right) cosets of H in G, which is equal to the number of equivalence 
classes of the (left or right) congruence associated with H. If H is a normal 
subgroup of G, then the index of H in G is equal to the order of the factor group 
G/H. 

Therefore, the notion of the index of a substructure in a structure is closelv 
related to a (one-sided) congruence of the structure associated with the substruc­
ture, or, to put it differently, to an action of the structure associated with the 
substructure. In the cases of subgroups of a group and ideals of a semigroup, the 
associated actions exist because of the fact that the substructure is an equivalence 
class of a one-sided congruence; for the connection between actions and one-sided 
congruences see Appendix A. 

In the case of subsemigroups of a semigroup, there is no such natural asso­
ciated congruence. A subsemigroup may even fail to be a congruence class of a 
one-sided congruence; an example of this is when S is the free group on generators 
A, and T is the subsemigroup of S generated by A. Therefore, there seems to be 
no natural definition for the index of a subsemigroup in a semigroup. Neverthe­
less, just for the needs of this thesis, we define the index of a subsemigroup T of 
a semigroup S to be IS - TI + I-the definition first introduced by Jura (1978). 
Except for the fact that this agrees with the earlier definition of index for ideals, 
the main justification for this definition lies in Jura's result that a subsemigroup 
of finite index in a finitely generated semi group is .itself finitely generated; see 
Jura (1978). This is very similar to Schreier's result for groups: a subgroup of 
finite index in a finitely generated group is itself finitely generated; see Magnus, 
Karrass and Solitar (1966). 

In this section we give an alternative proof of Jura's result. This proof has two 
main advantages over the original proof: our generating set is smaller (actually, 
it is best possible in general), and its definition is explicit enough to enable us to 
find a corresponding rewriting mapping, which we will then use in the following 
two sections. 

Let S be a semi group generated by a set A, and let T be a subsemigroup of 
S. A set of representatives of S - T is a set n of words from A * such that 

(1) n contains the empty word t; 

(2) each non-empty word in n represents an element of S - T; 

(3) each element of S - T is represented by one, and only one, word in n. 

The empty word t is included in n for technical reasons; since we are dealing with 
semigroups t does not represent an element of S. The representative function 
w r-+ W associates with every element w E S - T its representative wEn (and, 
formally, associates the empty word to the empty word). This definition has the 
following immediate consequences which we will frequently use: 

Lemma 1.1. The representative function has the following properties: 
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(i) W = W for each word w representing an element of 5 - T; 

(ii) if WI, W2 E n represent the same element of 5 then WI - W2; 

(iii) w = w holds in 5 for any word w representing an element of 5 - T. 

The notions of the set of representatives and representative function parallel 
closely these notions in the group context. There is, however, a somewhat hidden 
but important difference. If we are given a finitely presented group G and a 
finite set of generators for a subgroup of finite index H, the Todd-Coxeter 
enumeration procedure for groups (see Todd and Coxeter (1936) and Neubiiser 
(1981)) becomes an algorithm for finding coset representatives for G modulo H. 
At present no such algorithm is known for semigroups. 

Open Problem 7. Find a procedure which will take as its input a finite semi­
group presentation (A I 91) (defining a semigroup 5) and a finite set of words 
X ~ A +, and which would terminate if and only if the subsemigroup T of 5 
generated by X has finite index in 5, and would return in this case a set of 
representatives of 5 - T. 

However, when T is a two-sided ideal then the Todd-Coxeter enumeration 
procedure for semigroups (see Chapter 14) can be used for finding representatives 
of 5 - T. If 5 is defined by a finite presentation (A 191), and if T is given by a 
finite set of words X = {6, ... , ~d ~ A + which generates T as an ideal, then 
the presentation 

(A 191, 6 = ... = ~k = 0) 

defines the Rees quotient SIT. If T has finite index in 5, then the above presenta­
tion defines a finite semigroup, so that the Todd-Coxeter enumeration procedure 
would terminate after a finite number of steps, yielding a set of representatives 
for 5 - T. This can be generalised to right ideals; see Section 3 of Chapter 14. 

Now we find a generating set for a subsemigroup in terms of a set of represen­
tatives. Let us recall that for a semigroup generated by A and a subset T of 5, 
L(A, T) denotes the set of all words from A+ which represent elements from T. 

Theorem 1.2. Let 5 be a semigroup generated by a set A, and let T be a sub­
semigroup of 5. If n is a set of representatives of 5 - T then the set 

generates T. 

PROOF. We prove that each word w E L(A,T) is equal in 5 to a product of 
elements from X. We do this by induction on the length of w. If Iwl = 1 then 
w = a E A and w represents an element of T so that w == WE EX. For 
Iwl> 1 let w = WIaw2 (Wl,W2 E A*, a E A), where wla is the shortest initial 
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segment of w which is in L(A, T). If W2 t/. L(A, T) (in particular, if W2 = €) then 
w = WI aW2 EX. Otherwise w = (WI a )W2 and the assertion follows by induction 
because Wla E X and IW21 < Iwl· • 

This theorem has a certain similarity to Schreier's theorem in groups (see 
Magnus, Karrass and Solitar (1966)); for example it gives a bound for the rank 
(i.e. the minimal cardinality of a generating set) of a subsemigroup. 

Corollary 1.3. Let 5 be any semigroup and let T be a subsemigroup of 5. Then 

rank(T) :::; (15 - TI + 1)2rank(5). 

In particular, if 5 is finitely generated and T has finite index, then T is finitely 
generated .• 

The following example shows that the set X given in Theorem 1.2 IS, III 

general, the best possible generating set for a subsemigroup. 

Example 1.4. Let 5 = A+ be the free semi group on an alphabet A, let k > 1, 
and let 

T = {w E A+ Ilwl ~ k}. 

T is obviously a subsemigroup of 5. Since each element of 5 can be written in 
a unique way as a product of elements of A, the set of representatives of 5 - T 
has to be 

D={wEA*llwl<k}. 

The generating set X given in Theorem 1.2 is 

X {WIaw21 Wl,W2 E A*, a E A, IWII, IW21 < k, IWIal, IWIaw21 ~ k} 
{w E A+ I k :::; Iwl :::; 2k - I}. 

On the other hand, being a subsemigroup of a free semigroup, T has a unique 
minimal generating set 

{w E A+ Ilwl ~ k} - {woE A+ Ilwl ~ 2k} 
{w E A+ I k:::; Iwl :::; 2k -I}; 

see Lothaire (1983). Hence, X is the unique minimal generating set of T .• 

Our next task is to find a rewriting mapping associated with the generating 
set given in Theorem 1.2. (For the definition of rewriting mapping see Section 6 
of Chapter 6.) First we introduce a new alphabet 

B = {bp,a,(T I p, a- E D, a E A, pa, paa- E L(A, Tn (1) 
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in one-one correspondence with X. The representation mapping is now the unique 
homomorphism 'I/; : B+ ---+ A + extending the mapping 

'1/;: bp,a,u 1--+ paO' (p,O' E [2, a E A, pa,paO' E L(A,T)). (2) 

For a word w E L( A, T) let w' a (w' E A *, a E A) be the shortest initial segment 
of w in L(A, T), and let w" be the rest of w. Define 

</J : L(A, T) ---+ B+ 

by 

w</J = { 
lJ:u;,a,w ll if w" ~ L(A, T) 
lJ:u;,a,€(w"</J) if w" E L(A,T). 

(3) 

Lemma 1.5. </J is a rewriting mapping. 

PROOF. We have to prove that 

(w</J)'I/; = w 

holds in S for any wE L(A,T). We do this by induction on Iwl. If Iwl = 1 then 
w = a E A, and a E L(A, T). By (3) we have 

so that 
(w</J)¢ = (b€,a,€)'1/; = EaE - a = w. 

Let Iwl > 1, and, as before, let w = w' aw", where w' a is the shortest initial 
segment of w which belongs to L(A, T). If w" ~ L(A, T) then 

( ,1.,) of, - lr-. -of, - I ----" - I " w'f' 'f' = w',a,w"'f' = W aw - waw 

by Lemma 1.1(iii). If w" ~ L(A, T), then 

(w</J )'1/; (lJ:u;,a,€( w" </J))'I/; 
lJ:u;,a,€ 'I/; . (w" </J)'I/; 
w'a· (w"</J)¢ 
w' a . (w" </J ) ¢ 
w'aw", 

which completes the proof .• 

(by (3)) 
('I/; is a homomorphism) 
(definition of ¢ ) 
(Lemma 1.1(iii)) 
(inductive hypothesis) 

In the following two sections we shall use the generating set X given in The­
orem 1.2 and the above rewriting mapping to find presentations for T, when T 
is a two-sided or one-sided ideal. We finish this section by proving the following 
technical lemma, which gives certain rules for applying </J in the case when T is a 
right ideal. 
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Lemma 1.6. Let T be a right ideal in S, with all the other notation from this 
section. Each word f3 E L( A, T) can be written as 

(4) 

where k 2: 1, f3I, ... ,f3k+1 E A*, aI, ... ,ak E A, f31, ... ,f3k+1 rf. L(A,T), f31a1, ... , 
f3kak E L(A, T), and then 

(5) 

If f3i E A + is such that f3i = f3i in S then 

f3c/J (f31a1 ... f3iai . .. f3k-1 ak-1f3kakf3k+1)c/J 
(f31a1)c/J· .... (f3iadc/J· .... (f3k-1 ak-dc/J . (f3k akf3k+1)c/J. 

(6) 

In particular, 

f3c/J (f31a1 ... f3i ai ... f3k-1 ak-1f3kakf3k+1)c/J 
(f31a1)c/J· .... (;3iai)c/J· .... (f3k-1 ak-1)c/J . (f3k akf3k+1)c/J. 

(7) 

PROOF. The decomposition (4) can be proved by an easy induction, where f31 a1 
should be chosen to be the shortest initial segment of f3 representing an element 
of T. Equality (5) then follows directly from the definition (3) of c/J. To prove (6) 
it is enough to note that no initial segment of f3i can represent an element of T 
since T is a right ideal and f3i = f3i does not represent an element of T. Finally, 
(7) follows from (6) by Lemma 1.1(iii) .• 

2. Two sided ideals of finite index 

In this section we find a presentation for a two-sided ideal I of a semi group S 
defined by a presentation (A 191). The presentation obtained is in terms of the 
generating set obtained in the previous section. We use the general approach 
for finding presentations for subsemigroups outlined in Section 7 of Chapter 
6. This approach, as well as the final result (Corollary 1.3), is similar to the 
Reidemeister-Schreier theorems for groups; see Magnus, Karrass and Solitar 
(1976). 

The Reidemeister-Schreier presentation for a subgroup H of a group G de­
pends crucially on a set of coset representatives of H and the action of G on this 
set. If G is a finitely presented group, and if H is a subgroup of finite index 
given by a finite generating set, then a set of coset representatives of H and the 
action of G on this set can be constructed effectively by using the Todd-Coxeter 
enumeration procedure for groups. 

In what follows we have a similar setting: the set of representatives n of S - I 
plays the role of the set of coset representatives, and S acts on the set n U {O} 
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(where 0 replaces all the elements of I simultaneously), due to the fact that I is an 
ideal; see Appendix A for details. As we mentioned in Section 1, the semi group 
version of the Todd-Coxeter enumeration procedure can be used to find both n 
and the action of 5 on n U {O} if I has finite index in S. 

On the other hand, the actual presentation that we obtain, as well as the 
proofs of technical details are rather different from the group case. This is pri­
marily due to the difference in the nature of the corresponding actions: the action 
of 5 in n U {O} in general does not have any symmetry, and, in particular, is not 
transitive. 

We now state the main result of this section. 

Theorem 2.1. Let 5 be the semigroup defined by a presentation (A 191) J and let 
I be a two sided ideal of s. If n is a set of representatives of 5 - I J and if Band 
<p are defined by (1) and (3) respectivelYJ then I is defined by generators Band 
relations 

(8) 

where 

WI E {PIap2 I PI, P2 E n, a E A, PIa E L(A, In, 

W2 E {PIal ... PkakPk+1 11 :::; k :::; 3, Pi En, aj E A, pIal:·· Pkak E L(A, In, 

and 

where 

(u = v) E 91, W3 En, W3UW4 E L(A,1), 

W4 E {PIal . .. PkakPk+1 I k = 0,1,2, Pi E n, aj E A, 

PI al ... PkakPk+1 tf. L( A, In· 

(9) 

Remark 2.2. Note that, when I is an ideal, the generating set X and the cor­
responding alphabet B can be written as 

X = {paO" I p, 0" E n, a E A, pa E L(A,In, 

B = {bp ,a,<7 I p,O" E n, a E A, pa E L(A,In, 

since pa E L(A, 1) implies paO" E L(A,1). For the same reason we have WI, W2 E 
L(A,I) in the statement of Theorem 2.1. It is also important to note that for 
k = 0, the word W4 takes all the values in n .• 

If all the sets A, 91 and n are finite, then so are the sets of all relations (8) 
and (9). Therefore we have 
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Corollary 2.3 (Reidemeister-Schreier Theorem for ideals) If S is a fi­
nitely presented semigroup, and if I is a two-sided ideal of finite index in S, then 
I is finitely presented. • 

We prove the theorem along the lines set out at the end of Section 7 of 
Chapter 6. Actually, we have already gone a certain way in doing this: in Section 
1 we have found a generating set for I and an associated rewriting mapping. 
Therefore, we are left with proving that all relations (8) and (9) hold in I, and 
that they imply all the relations 

(paa-)</> = bp,a,CT' 

(WI WZ)</> = WI</>' WZ</>, 

(W3 UW4)</> = (W3VW4)</>, 

(10) 

(11) 

(12) 

where p, a- E 0, a E A, pa E L(A,I), WI, Wz E L(A,I), W3, W4 E A*, (u = v) E 91, 
W3UW4 E L(A,1). We do this in a series of lemmas. In all these lemmas we 
assume the notation from Theorem 2.1 and Section l. 

The first of the above assertions is easy to prove. 

Lemma 2.4. Relations (8) and (9) hold 'in I. 

PROOF. In the proof of Theorem 6.7.1 we proved that r~lations (10), (11), (12) 
hold in I. Relations (8) and (9) are special cases of relations (11) and (12) 
respectively, and the lemma follows .• 

It is also easy to show that relations (10) are all implied by (8) and (9); 
actually, with our particular choice of </> relations (10) become trivial: 

Lemma 2.5. bp,a,CT = (paa-)</>, for all p, a- E 0, and all a E A such that pa E 
L(A, 1). 

PROOF. Since I is an ideal, and since p tj. L(A,1), it follows that no initial 
segment of p belongs to L(A,I). Therefore, pa is the shortest initial segment of 
paa- which belongs to L(A,1), and the lemma follows from the definition (3) of 
</> .• 

Relations (11) are much harder to deduce, and we do this in several steps. 

Lemma 2.6. Let Ci, /3",8 E A+ and all az E A be such that Ci, /3",8 tj. L(A, 1), 
CiaI, ,az E L(A, I); then the relation 

is a consequence of (8) and (9). 
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PROOF. Assume first that /3, r:f. L(A,I). Since a r:f. L(A,1), and since I is an 
ideal, no initial segment of a belongs to L(A,1). Similarly, no initial segment 
of either /3, or 8 belongs to L(A,1). On the other hand aal E L(A,I) by a 
condition of the lemma, and /3,a2 E L(A,1) since ,a2 E L(A,I) and I is an 
ideal. Therefore, the decomposition of aal/3,a28 in accord with Lemma 1.6 (4) 
is /3la~/32a~/33, with /31 - a, a~ = al, /32 = /3" a~ = a2, /33 == 8. By Lemma 1.6 
(6) and (7) we have 

(13) 

Now note that a, (3, 1, 8 E n by the definition of the representative function, so 
that the relation 

(aal7J"!a28)<f = (aal(3)<f . C;Ya28)<f 

is one of relations (8). Again by Lemma 1.6 (7) we have 

(aal(3)<f = (aal/3)<f, (1a28)<f - (,a2 8)<f, 

and from (13), (14) and (15) we conclude that 

(aal/3,a28)<f = (aal/3)<f· (,a28)<f 

is a consequence of (8), (9) when /3, r:f. L(A, 1). 

(14) 

(15) 

Let us now assume that /3, E L(A, 1). Then, can be written as , = ,la3,2, 
where /3,1 r:f. L(A,1) and /3,a2 E L(A,1). Obviously,,2 r:f. L(A,1) because 
, r:f. L(A, 1) and I is an ideal. If ,2a28 r:f. L(A, 1), then similarly as above we have 

(aal/3,a 28)<f (aal/3,1 a3,2a28)<f 
(aal(311 a312a28)<f 
(aal(3)<f· (11 a312a28)<f 
(aal/3)<f· (,la3,2 a28)<f 
(aal/3)<f' (,a28)<f. 

(Lemma 1.6 (6), (7)) 
(relation (8)) 
(Lemma 1.6 (6), (7)) 

Finally, if ,2a28 E L(A, 1), then 0 can be written as 8 = 81a402, where ,2a201 r:f. 
L(A,1) and ,2a28la4 E L(A,1). This time 8 r:f. L(A, 1) implies 82 r:f. L(A, 1), and 
we have 

(aal/3,1 a3,2a281 a48z)<f 
(Cia 1 (311 a312a28l a482)<f 
(aal(3)<f· (11 a312a28la482)<f 
(aal/3)<f· (,1 a3,2aZol a402)<f 
(aal/3)<f· (,a28)<f, 

which completes the proof .• 

(Lemma 1.6) 
(relation (8)) 
(Lemma 1.6) 

Lemma 2.7. Let WI E L( A,I) be an arbitrary word, and let ,,0 E A + and 
az E A be such that ,,0 r:f. L(A,I) and ,a2 E L(A, 1). The relation 

(wl,a28)<f = Wl<f· (,a28)<f 

is a consequence of (8) and (9). 
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PROOF. Let 
WI == j31a~ . .. j3ka~j3k+l 

be the decomposition of WI in accord with Lemma 1.6 (4). We prove the lemma 
by induction on k, the case k = 1 being Lemma 2.6. For k > 1 let us denote 131 
by w~ and j32a; . .. j3ka~j3k+l by w~. Then w~ E L(A, /), and we have 

as required. • 

(W~ al w~,a2o)¢ 
(w~al)¢· (w~,a2o)¢ 
(w~al)¢· w~¢· (,a2o)¢ 
(w~ al wn¢ . (,a2o)¢ 
Wl¢· (,a2o)¢, 

(Lemma 1.6) 
(induction) 
(Lemma 1.6) 

Lemma 2.8. For any two words WI, W2 E L(A, /), the relation 

is a consequence of (8) and (9). 

PROOF. Let 
W2 == j31al ... j3kakj3k+l 

be the decomposition of W2 in accord with Lemma 1.6 (4). We prove the lemma 
by induction on k, the case k = 1 being Lemma 2.7. For k > 1 we have 

so that 
(WIW2)¢ - ((wlj31al ... j3k-lak-l)(j3kakj3k+ 1))¢ 

= (wlj31al ... j3k-l ak-l)¢· (j3k akj3k+l)¢ 
(16) 

by Lemma 2.7. Now, by induction we have 

(Wlj31al ... j3k-lak-l)¢ = Wl¢ . (j31 a1 ... j3k-lak-l)¢. (17) 

Finally, from (16) and (17) we have 

Wl¢· (j31 al ... j3k-l ak-l)¢· (j3k akj3k+l)¢ 

WI ¢ . (131 al ... j3kakj3k+l)¢ 

Wl¢ . W2¢ 

by Lemma 1.6 (5) .• 

Now we embark on deducing relations (12), again in several steps. 
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Lemma 2.9. Let 0'.,13 E A+ and (u = v) E 91. 1fa tf. L(A,I) and auf3 E 
L(A,1), then the relation 

(au(3)</J = (av(3)</J 

is a consequence of (8) and (9). 

PROOF. If au tf. L( A,I) then no initial segment of au belongs to L( A,I) since 
1 is an ideal. In other words, if 131 al ... (3kakf3k+l is the decomposition of au(3 in 
accord with Lemma 1.6 (4), then au is an initial segment of f3b and by Lemma 
1.6 (6) we have 

(au(3)</J = (av (3)</J. 

Therefore we may assume that au E L( A, 1). 
If 13 E L(A, 1), then we have 

(au(3)</J = (au)</J . (3</J, 

(avf3)</J = (av)</J· f3</J, 

by Lemma 2.8. Also, since 0'. tf. L(A, 1), by Lemma 1.6 (6) we have 

(au)</J = (au)</J, (av)</J = (av)</J. 

The relation 
(au)</J = (av)</J 

(18) 
(19) 

(20) 

(21) 

is one of the relations (9), for WI = a E nand W2 _ E E n. From (18), (19), (20) 
and (21) we obtain 

(auf3)</J = (av(3)</J. 

So we may assume that (3 tf. L(A,I). 
Now let 

where 

a/I, /2,· .. '/k+l, a8}, 82, ... , 8Z+l tf. L(A, 1), 

a/lal, /2 a2,···, /kak, a8la~, 82a;, ... , 8za; E L(A,I). 

We distinguish the following four cases. 

Case 1. /k+If3 tf. L(A,I) and 8Z+l f3 tf. L(A,I). Since 13 tf. L(A,I), we have 

( au(3)</J (a/lal ... /k ak/k+l(3)</J 
(a/lal ... /kak/k+l7J)</J (Lemma 1.6 (6), (7)) 
( auf3)</J 
(avf3)</J (relation (9)) 
(a8la~ .. . 8zai8I+lf3)</J 
(a8la~ ... 8zai8z+I(3)</J (Lemma 1.6 (6), (7)) 
(av (3)</J. 
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Case 2. ik+l/3 E L(A,I) and DZ+l/3 tf. L(A,I). We can write /3 as /3 = /3la/32, 
where ik+l/3la is the shortest initial segment of ik+l/3 which is in L(A,1). By 
applying Lemma 1.6 and relation (9), similarly as in the previous case, we obtain 

Case 3. ik+l/3 tf. L(A, 1) and DZ+l/3 E L(A,I). This is dual to the previous case. 

Case 4. ik+l/3 E L(A,I) and DZ+l/3 E L(A,I). Let ik+l/3la and DZ+l/3~a' be the 
shortest initial segments of ik+l/3 and DZ+l/3, respectively, which are in L(A, 1), 
and let /3 = /31 a/32 = /3~ a' /3~. If /31 == /3~, then a = a' and /32 = /3~, so that 

by Lemma 1.6 and relation (9). If 1/311 < 1/3~1 then /3 can be written as /3 = 
/3la/32a'/33, and we have 

The case when 1/311 > 1/3~ I is dealt with analogously. 

This completes the proof of the lemma .• 

Lemma 2.10. For any two words W3,W4 E A* and any (u = v) E 9t such that 
W3UW4 E L(A,1) the relation (W3UW4)¢ = (W3VW4)¢ is a consequence of (8) 
and (9). 

PROOF. If W3 tf. L(A,I) this is Lemma 2.9. Suppose that W3 E L(A,I) and 
write W3 = alaI· .. akakak+b where al,·· ., ak+l tf. L(A, 1) and alaI, . .. , akak E 
L(A,I). If ak+l U tf. L(A,I) then (W3UW4)¢ == (W3VW4)¢ by Lemma 1.6, while, if 
ak+lU E L(A,I), we have 

(alaI ... akakak+lUW4)¢ - (alal)¢· .... (akak)¢· (ak+l UW4)¢ 

(alal)¢· .... (akak)¢· (ak+l VW4)¢ - (W3VW4)¢ 

by Lemma 2.9 .• 

We can now prove Theorem 2.1. 

PROOF OF THEOREM 2.1. By Theorem 1.2 the set 

x = {paO" I p,O" E 0, a E A, pa E L(A,J)} 

generates J, and the mapping ¢, defined by (3), is a corresponding rewriting 
mapping. Relations (8) and (9) hold in T by Lemma 2.4, and imply relations 
(10), (11), (12) by Lemmas 2.5,2.8 and 2.10. Therefore the theorem follows from 
Theorem 6.7.1 and Remark 6.7.6 .• 
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As we have already mentioned, defining relations (8), (9) for an ideal are more 
complicated than the Reidemeister-Schreier relations for a subgroup of a group. 
In particular, they seem to be rather hard to use for any practical purposes. This 
prompts us to pose two different types of open problems. First of all, it would 
be interesting to see if there is a simpler presentation for ideals in general, or, if 
not, to find simpler presentations in some special cases. 

Open Problem 8. Find a presentation for an ideal I of a finitely presented 
semigroup 5, which would be finite whenever I has finite index in 5, and which 
is simpler than the presentation given in Theorem 7.2.1. 

Open Problem 9. Find a finite presentation for an ideal I of finite index in a 
finitely presented semigroup 5 if 5/1 is known to be of some special type. In 
particular, find such presentation if 5/1 is 

(i) a group with a zero adjoined; 

(ii) a completely simple semigroup with a zero adjoined; 

(iii) a completely O-simple semigroup; 

(iv) an inverse semigroup. 

It would also be useful to have computational methods for handling large 
presentations. In computational group theory such methods are available in the 
form of so called Tietze transformations programs; see Havas et al. (1984). 

Open Problem 10. Develop a semigroup version of the Tietze transformation 
program for simplifying presentations. 

Apart from the number and nature of defining relations, there are other, more 
striking, differences between ideals of finite index and subgroups. We finish this 
section by pointing out some of them. 

Example 2.11. The action of a group on the cosets of a subgroup can be con­
sidered as an automaton (see Sims (1994)), giving that the set of all words rep­
resenting elements of a subgroup of finite index is a regular language. (For the 
definitions and basic results on finite state automata and regular languages see 
Howie (1991).) Moreover, the converse also holds: if the set of all words repre­
senting elements of a subgroup is a regular language, then the subgroup has finite 
index; see Sims(1994), Corollary 2.2. 

In one direction this also holds for ideals of semigroups. Let 5 be a semi group 
generated by a set A, let I be an ideal of 5, and let 0 be a set of representatives 
of 5 - I. Consider the deterministic automaton M = (OU {O}, A, t, E, {O}), where 

t : (0 U {O}) x A ---+ 0 U {O} 
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is the action of the generators A on 0 U {O}. Then t can be extended naturally 
to a mapping 

t : (0 U {O}) X A+ -+ 0 U {O}, 

and it is obvious that t( E, a) = 0 if and only if a E L( A,I). The automaton M is 
finite if and only if J has finite index in 5, and, in this case, the language L(A, J) 
is regular. 

However, the converse does not hold. For instance, let F = (a, b I ) be the 
free semi group on {a, b}, and let J be the ideal consisting of all words containing 
both a and b. Obviously, the language L(A, 1) (= 1) is regular, but J does not 
have finite index in 5 .• 

Example 2.12. Given a subgroup H of a group G the left (right) congruence 'Tf 
defined by 

X'Tfy {:} x-1y E H (xy-l E H) 

is a unique left (right) congruence having H as an equivalence class. Therefore, 
H is a subgroup of finite index in G if and only if H is an equivalence class of a 
congruence of finite index. 

For an ideal J of a semigroup 5 the Rees congruence 'Tfl does have J as an 
equivalence class. However, in general, it.is not a unique, but only the smallest, 
congruence with this property. If we change our definition of finite index to mean 
that J is an equivalence class of a congruence of finite index, then the analogue of 
Corollary 2.3 fails to hold. To show this, consider the free semi group F = (a, b I ) 
on two generators a, b and its three-element homomorphic image 

5 = (a b I a2 = a b2 = b ab = ba) , , , , 

and let ¢; : F -+ 5 be the natural epimorphism. The congruence ker¢; has three 
congruence classes: 

J{l = {ai Ii 2: I}, J{2 = {bi Ii 2: I}, J{3 = {w I w contains both a and b}. 

J{3 is an ideal of F, and it has 'finite index' (by our alternative definition). 
However, J{3 is not finitely generated, let alone finitely presented-elements abi

, 

i 2: 1 are all indecomposable. • 

Example 2.13. Given a finitely generated group G and a number k 2: 1, there 
are only finitely many subgroups of G with index at most k. If G is finitely pre­
sented, then each of these subgroups is also finitely presented by the Reidemeister­
Schreier Theorem. 

The analogous results are true for ideals: if 5 is a finitely generated semi group 
and k 2: 1, then there are only finitely many ideals of 5 having index at most k 
(see Jura (1978)); if 5 is finitely presented each of these ideals is finitely presented 
by Corollary 2.3. 
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For groups there even exists an algorithm (usually called the Low Index Sub­
group Algorithm) which as its input takes a presentation for G and a number k, 
and gives as its output a list of generating sets for all subgroups of G of index 
at most k; see Dietze and Schaps (1974). Rather surprisingly, an analogous al­
gorithm does not exists for ideals-its existence would imply a solution to the 
finiteness problem; for details see Jura (1980) .• 

3. Right ideals 

In this section we generalise results of the previous section to right ideals. The 
set of defining relations we obtain is both larger and more complicated than in 
the case of two-sided ideals. 

When the parallelism between groups and semigroups is concerned, it is the 
right (and left) ideals that really correspond to subgroups, as both of them give 
rise to one-sided congruences; properties of two sided ideals are closer to nor­
mal subgroups. However, all the comments about this parallelism made in the 
previous section remain valid if the word 'ideal' is replaced by 'one-sided ideal'. 

In this section we work in the same setting as in the previous one. Hence, we 
consider a semi group S defined by a presentation (A 191), and we let R denote 
a right ideal of S. A set of representatives of S - R will be denoted by n. Thus 
n has properties (1), (2), (3) from Section 1. However, here we need to assume 
that n has an additional property: 

(4) each non-empty word of n is a word of minimal length representing the 
corresponding element of S. 

If, as usual, x f-+ X denotes the representative function, then the above condition 
means that 

Ixl ::; lxi, 
for all x E A+ - L(A, R). By Theorem 1.2 the set 

X = {paO" I p,O" E n, a E A, pa E L(A,R)} 

generates R. (Here, as in the case of two-sided ideals, the condition pa E L( A, T) 
automatically implies paO" E L( A, 1).) An abstract image of X is the alphabet 

B = {bp,a,O" I p, 0" E n, a E A, pa E L(A, R)}, 

and associated representation and rewriting mappings are defined by (2) and (3) 
in Section 1. We also define the following six sets of relations: 

911 {(PlalP2)4> . (P3 a2P4)4> = (Plal)4>· (P2P3 a2P4)4> I ai E A, Pi E n, 
PIal, P2P3a2, P3a2 E L(A, R)}; 

912 {(PlalP2)4>· (P3 a2P4)4> = (PlalP2P3a2P4)4> I ai E A, Pi En, 
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PIal, P3a2 E L(A, R), P2P3a2P4 rt L(A, R)}; 

~3 {(PIP2)<P· (P3 ap4PS)<P = (PIP2P3 ap4Ps)<P I a E A, Pi E n, 
PIP2, P3a E L(A, R), P2P3aP4 rt L(A, R)}; 

~4 {(PIP2)<P . (P3P4)<P = (PIP2P3P4)<P I Pi E n, 
PIP2, P3P4 E L(A, R), P2P3 rt L(A, R)}; 

~S {(PIP2ap3P4)<P = (PIP2 ap3P4)<P I a E A, Pi E n, 
PIP2a E L(A, R), P2ap3 rt L(A, R)}; 

~6 = {(PIUp2)<P = (PIVp2)<P I (u = v) E~, Pi E n,PIUp2 E L(A,R)}. 

With this notation we have: 
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Theorem 3.1. If S is the semigroup defined by a presentation (A I ~), and if R 
is a right ideal of S, then R is defined by the presentation (B I ~l' ... '~6). 

Theorem 3.1 has an obvious left-right dual. Hence, if we note that when all 
A, ~ and n are finite then all ~l, ••• , ~6 are finite as well, we have: 

Corollary 3.2 (Reidemeister-Schreier Theorem for one-sided ideals) 
A one-sided ideal of finite index in a finitely presented semigroup is itself finitely 
presented .• 

The relations ~I, ... , ~6 are very complicated. In the case when S is finitely 
presented and R has finite index, we can find a larger but more natural set of 
defining relations. 

Corollary 3.3. Let S be a semigroup with finite presentation (A I ~), let R be a 
right ideal of finite index, let n be a set of representatives of S - R, and let <P be 
the corresponding rewriting mapping. If 

m = max{lpl, lui, Ivll pEn, (u = v) E~} 

then R is defined by the presentation 

~ = (B I (WIW2)<P = Wl<P· W2<P, :W3<P = W4<P 

(WI, W2, W3, W4 E L(A, T), IWIW21, IW31, IW41 S: 5m + 2, W3 = W4 in S)) 

PROOF. All the relations from the given presentation hold in R, since <P is a 
rewriting mapping, and they include all the relations from the presentation given 
in Theorem 3.1. • 

We now embark on the proof of Theorem 3.1. Our general strategy is the 
same as in the previous section: we want to apply Theorem 6.7.1. 

Lemma 3.4. All the relations ~l' ... , ~6 hold in R. 
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PROOF. The lemma follows from the fact that ¢> is a rewriting mapping similarly 
as in Lemma 2.4. For an example we prove that a general relation 

from 912 holds in R. This equivalent to proving that 

holds in S. Since'l/; is a homomorphism and ¢> is a rewriting mapping we have 

((P1 a1P2)¢>' (P3 a2P4)¢»'l/; = P1 a1p2P3a2P4, 

((P1 a1P2P3a2P4)¢»'l/; = P1 a1P2P3a2P4, 

and the assertion follows from Lemma 1.1. • 

Lemma 3.5. (bp,a,u'l/;)¢> - bp,a,(7) for all p, (J" E !1, a E A such that pa E L(A, T). 

PROOF. The proof is exactly the same as the proof of Lemma 2.5 .• 

Lemma 3.6. The following relations are consequences of ~: 

(i) (W1W2)¢> = W1¢>' W2¢>, for all W1,W2 E L(A,R); 

(ii) (aj3,)¢> = (a/3,)¢>, for all a" E A*, 13 E A+, 0'.13, E L(A,R), 13 F/. L(A,R). 

PROOF. We proceed by simultaneous induction on (i) and (ii). First we prove 

(a) (W1W2)¢> = W1¢>' W2¢> if IW1w21 = n, assuming that (U1U2)¢> = U1¢>' U2¢> if 
IU1u21 < n, and that (aj3,)¢> = (a/3,)¢> if 10'.13,1 < n; 

and then we prove 

(b) (aj3,)¢> = (a/3,)¢> if 10'.13,1 = n assuming that (U1U2)¢> = U1¢>' U2¢> if 
IU1 u21 :::; n, and that (b(e)¢> = (bee)¢> if Ib(el < n. 

For n = 1 there is nothing to prove in (a) , while in (b) we have a ==, E 

(the empty word), and 13 E A, and the relation (aj3,)¢> = (a/3,)¢> belongs to 915 • 

Now we prove (a) for a general n. Let W1 - a1a1a2a2 ... akakak+1 and W2 _ 
j31b1j32b2 ... j3zbzj3z+1 as in Lemma 1.6 (4). If k > 1 then 

(a1a1a2a2 ... akakak+1W2)¢> 
(a1a1)¢>' (a2 a2 ... OCkakOCk+1W2)¢> 
(0'.1 a1)¢> . (a2 a2 ... akakOCk+1)¢> . W2¢> 
(0'.1 a1 a2a2 ... akaka k+1)¢> . W2¢> 
W1¢> . W2¢>' 

So we may assume that k = 1, i.e. that W1 - a1a1OC2. 

(by (3)) 
(induction) 
(by (3) ) 
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Suppose that 0:2W2 E L(A, R), so that 

(WlW2)</> == (O:lal)</>' (0:2W2)</> 

by the definition of </>. If 0:2(3lbl ... (3z- l bz- l E L(A,R), then 

(O:lal)</>' (0:2(3lbl ... (3z- l bz- l (3zbz(3z+1)</> 
(O:lal)</>' (0:2(3lbl ... (3z- l bz- l )</>' ((3zbz(3z+1)</> 
(0:1al0:2(3lbl ... (3z- l bz- l )</>' ((3ZbZ(3l+l)</> 
(0:1al0:2)</>' ((3lbl ... (3z- l bz- l )</>' ((3ZbZ(3l+l)</> 
(0:1al0:2)</>' ((3lbl ... (3z- l bz- l (3zbz(3Z+l)</> 
Wl</>' W2</>' 

On the other hand, if 0:2(3lbl ... (3z- l bz- l ~ L(A, R), then 

(WlW2)</> (O:lal)</>' (0:2(3lbl ... (3z- l bz- l (3zbz(3z+1)</> 

(induction) 
(by (3)) 
(induction) 
(induction) 

(O:lal)</>' (0:2(3lbl ... (3z- l bz- l (3ZbZ(3l+l)</> (induction) 
(0:1 al 0:2(31 bl ... (3Z-l bZ- l )</> . ((3ZbZ(3l+l)</> (relations ~l) 

- (0:1al0:2(3lbl ... (3z-1bZ-l)</>· ((3ZbZ(3l+l)</> (Lemma 1.6 (7)) 
(0:1 al 0:2(31 bl ... (3Z-l bZ- l )</> . ((3ZbZ(3l+l )</>. (induction) 

If l = 1, we have finished; otherwise 

(0:1al0:2)</> . ((3lbl ... (3z- l bz- l )</>' ((3zbz(3z+1)</> 

(0:1al0:2)</>' ((3lbl ... (3z- l bz- l (3zbz(3z+1)</> = Wl</>' W2</> 
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by induction. So we may assume that 0:2W2 ~ L(A, R), and hence that no initial 
segment of 0:2W2 is in L(A, R). Now 

(WI W2)</> - (0:1 al 0:2(31 bl ... (3ZbZ(3l+l)</> = (0:1 al 0:2(31 bl ... (3ZbZ(3Z+l )</>, 

by Lemma 1.6 (7), and 

(0:1al0:2)</>' ((3lbl ... (3ZbZ(3Z+l)</> 
(0:1al0:2)</>' ((3lbl )</>· .... ((3z- l bz- l )</>' ((3ZbZ(3Z+1)</> 

(Lemma 1.6 (5), (7)) 
(0:1al0:2(3lbl )</>· .... ((3z- l bz- l )</>' ((3ZbZ(3l+l)</> 

(0:1al0:2(31 b1'" (3z- l bz- l )</>' (~bZ(3Z+l)</> 
(0:1 a1 0:2(31 b1 ... (3Z-1 bZ- 1(3zbz(31+1)</> 
(0:1al0:2(3lb1 ... (3z- l bz- l (3zbz(3l+l)</> 
(W1 W2)</>. 

This completes the proof of (a). 

(relations ~2) 

(relations ~2) 
(relations ~2) 
(Lemma 1.6 (7)) 
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We now start on the proof of (b). First suppose that a E L( A, R), so that 
a = alaI ... akakak+1 as in Lemma 1.6 (4). If ak+l/J, tf. L(A, R), then 

(a{3,)</Y - (alaI .. . akakak+l(3,)</Y = (alaI .. . akakak+17h)</Y - (a/3,)</Y 

by Lemma 1.6 (6), and we are done. If ak+l(3, E L(A, R), then 

(a(3,)</Y = (alaI ... akak)</Y· (ak+1(3,)</Y = (alaI ... akak)</Y· (ak+1/3,)</Y 

= (alaI ... akakak+1/3,)</Y = (a/3,)</Y 

by Lemma 1.6 and induction. Therefore we may suppose that a tf. L(A, R). 
If a{3 tf. L(A, R), the result follows immediately from Lemma 1.6; so suppose 

that a(3 E L(A, R). If, E L(A, R) (in particular, , =f. E), then 

(a{3,)</y = (a(3)</y . ,</y = (a/3)</Y . ,</y = (a/3,)</Y 

by induction; so we may assume that, tf. L(A, R). Since a tf. L(A, R), we may 
write 

a(3 = a{3l bl(32 b2 ... (3k bk(3k+l, 

where a(3lbl is the shortest prefix of a{3 in L(A, R). If k > 1, then 

(a{3,)</y (a(3l bl(32 b2 ... (3k bk(3k+l,)</Y 
(a(3l bl(32 b2 ... (3k-l bk-l)</y . ((3k bk(3k+l , )</Y (Lemma 1.6) 
(a(3l bl (32 b2 ... (3k-l bk-l)</y . ((3k bk(3k+l "I)</Y (Lemma 1.6) 
(a(3lbl (32 b2 ... (3k-l bk-l)</y . C~bk(3k+1 "I)</Y (induction) 
(a(3l bl (32 b2 ... (3k-l bk- l (3kh(3k+l , )</Y (relations 913) 
( a/3"1) </Y. 

Since 1/31 :::; 1(31, a similar argument shows that (a/3,)</Y = (a/3"1)</Y. But /3 = /3 by 
Lemma 1.1, and thus (a(3,)</y = (a/3,)</Y. Hence we may assume that k = 1, so 
that a(3 = a{3lbl (32. If (32, E L(A, R), then the definition of </Y gives that 

(a(3,)</Y = (a(3lbl (32,)</Y = (a(3lbl )</y· ((32,)</y = (Ci(3lbl )</y· ((32')</Y. 

Since (31 bl " tf. L(A, R), we may use induction and relations 914 to get 

(a{3,)</y = (a{3lbl )</y· ((32"1)</Y = (a(3lbl (32,)</Y = (Ci/3"1)</Y. 

As above we obtain (a(3,)</y = (a/3,)</Y. So we may assume that (32, tf. L(A,R). 
Given this, Lemma 1.6 gives that 

(a(3,)</y = (a(3lbl (32,)</Y == (a(3lbl (32"1)</Y, 

and relations 915 then give that 

(a(3,)</Y = (a(3lbl (32,)</Y = (a/3"1)</Y. 

Again we have that 

and this concludes the proof .• 
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Lemma 3.7. The relations 

where (u = v) E R, W3, W4 E A *, W3UW4 E L( A, R), are consequences of ~. 

PROOF. If W3U rf. L(A, R), then W3V rf. L(A, R), and 

(W3 UW4)¢ = (W3UW4)¢ = (W3VW4)¢ - (W3VW4)¢ 

by Lemma 1.6; so we may assume that W3U E L(A, R). 
If W4 E L(A, R) (in particular, W4 =I E), then 

by Proposition 3.6 (i) and induction, so we may assume that W4 rf. L(A, R). 
Assume that W3 E L(A, R); then W3 == alaI ... akakak+l as in Lemma 1.6. If 

ak+l UW4 E L( A, R) then 

(W3 UW4)¢ - (alaI .. . akakak+IUW4)¢ = (alaI .. . akak)¢· (ak+IUW4)¢ 

(alaI ... akak)¢· (ak+1VW4)¢ == (W3VW4)¢ 

by Lemma 1.6, Proposition 3.6 and induction, whiie if ak+luW4 rf. L(A, R) we 
have 

by Lemma 1.6. 
Given that W3 rf. L(A, R) and that W4 rf. L(A, R), we have 

(W3UW4)¢ = (W3UW4)¢ = (W3VW4)¢ = (W3VW4)¢ 

by Proposition 3.6 (ii) and relations 916 as required .• 

PROOF OF THEOREM 3.1. The set X generates T by Theorem 1.2, and ¢ is a 
corresponding rewriting mapping by Lemma 1.5. All the relations from ~ hold 
in T by Lemma 3.4 and imply all relations (20), (21), (22) of Theorem 6.7.1 by 
Lemmas 3.5, 3.6 and 3.7. Therefore, the theorem follows by Theorem 6.7.1 and 
Remark 6.7.6 .• 

As we have seen, ideals of finite index in a finitely presented semigroup are al­
ways finitely presented. Despite numerous attempts the author has not succeeded 
in proving the analogous result for semigroups, so that we have 

Open Problem 11. Is a sub semi group of finite index in a finitely presented 
semi group necessarily finitely presented? 
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It is not even clear what should be conjectured for an answer to the above 
question. On one hand, the definition of index of a subsemigroup is very artifi­
cial, in the sense that it does not correspond to anyone-sided congruence (see 
Section 1), and this might be a reason for a negative answer. On the other hand, 
all the attempts to generalise the results for ideals to subsemigroups have broken 
down on technical details, giving no clear indication for construction of a pos­
sible counterexample. Also, in the following chapter we give a piece of positive 
evidence for the above problem in the case of subsemigroups of free semigroups. 



Chapter 6 

Subsemigroups of free semigroups 

One of the best known applications of the Reidemeister-Schreier theorem for 
groups is a proof of the fact that a subgroup of a free group is itself free-the 
result known as the Nielsen-Schreier theorem; see Magnus, Karrass and Solitar 
(1966). Of course, there is no hope for such a nice result for free semigroups, 
since it is well known that a subsemigroup of a free semigroup need not be free. 
Nevertheless, one might expect that the Reidemeister-Schreier type results of 
the previous chapter can be used to prove some other, weaker, properties of 
subsemigroups of free semigroups, and this is the theme of this chapter. More 
specifically we will consider the following 

Main Problem. Let F be a (finitely generated) free semigroup. 

(i) Is every sub semi group (ideal, one-sided ideal) of F free? 

(ii) Is every subsemigroup (ideal, one-sided ideal) of F finitely generated? 

(iii) Is every subsemigroup (ideal, one-sided ideal) of F which is finitely gener­
ated finitely presented? 

(iv) Is every subsemigroup (ideal, one-sided ideal) of finite index in F finitely 
presented? 

The answers that we obtain can be summarised as in the following table 

II subsemigroups I ideals lone-sided ideals I 
(i) free - - -

(ii) f.g. - - -
(iii) f.g. :::} f.p - + + 
(iv) f.i. :::} f.p. + + + 

The results of this chapter will appear in Campbell, Robertson, Ruskuc and 
Thomas (1995d). 
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1. Subsemigroups 

It is well known that a subsemigroup of a free semi group is not necessarily free; 
see, for example, Lothaire (1983). It can also fail to be finitely generated, as the 
following example shows. 

Example 1.1. Let F = {a, b} + be the free semi group on two generators, and 
consider the sub semi group S of F generated by the set 

x = {ab i I i 2: I}. 

Obviously, no element of X is a product of other elements of X, and therefore all 
the elements of X are indecomposable in S, so that S is not finitely generated. 
Actually, it is easy to show that S is a free semigroup on generators X. Since 
a free semigroup on more that two generators contains F as a subsemigroup, it 
also contains a non-finitely generated subsemigroup. 

However, any subsemigroup S of the free monogenic semigroup N is finitely 
generated. To see this, first note that S is isomorphic to the semi group 

{sjdlsES}, 

where d is the greatest common divisor of all elements of S, and hence we may 
assume that d = 1. This means that there are numbers S1, . .. , Sk E S such that 
g.c.d.(sl, ... , Sk) = 1. It is well known that if a, bEN are coprime then every big 
enough positive integer can be written as a positive linear combination o:a + j3b, 
0: > 0, j3 > 0, of a and b; see Rose (1988). A straightforward generalisation 
of this gives that every big enough positive integer can be written as a positive 
linear combination of S1, ... ,Sk. In other words, all but finitely many elements 
of S belong to the subsemigroup of S generated by {S1, . .. , sd, and hence S is 
finitely generated .• 

Also, a finitely generated subsemigroup of a free semigroup may be not finitely 
presented. 

Example 1.2. Let F be the free semigroup on three generators a, band c, and 
let S be the subsemigroup generated by v = ba, w = ba2

, x = a3
, y = ac and 

z = a2c. Clearly, S is finitely generated, and we claim that it is not finitely 
presented. 

First recall that, if a semi group is finitely presented with respect to one gen­
erating set, then it is finitely presented with respect to any finite generating set; 
see Proposition 3.3.1. So it is sufficient to show that S is not finitely presented 
with respect to the particular generating set {v, w, x, y, z}. 

Decomposing the word 0: = ba3(n+1)c in two different ways, we see that the 
relations vxn z = wxny (n 2: 0) hold in S, and so any set of defining relations 
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must imply these. Since any proper subword of a representing an element of S 
can be expressed as an element of {v,w,x,y,z}+ in only one way, there is no 
non-trivial relation holding in S which we can apply to a proper subword of vxnz 
or wxny. So any set of defining relations for 5 must include all the relations 
vxnz = wxny, and so 5 is not finitely presented. 

Since a free group on two generators contains a free sub semi group on count­
ably many generators (Example 1.1), it contains a free sub semi group on three 
generators, and hence it contains a finitely generated subsemigroup which is not 
finitely presented. 

On the other hand, all subsemigroups of the free monogenic semi group N 
are finitely presented. This follows from the fact that every finitely generated 
commutative semigroup is finitely presented (see Redei (1965)), and the fact that 
each subsemigroup of N is finitely generated (Example 1.1) .• 

Remark 1.3. If, instead of ordinary semi group presentations, we consider so 
called Malcev presentations (i.e. presentations of semigroups embeddable into 
groups), then we have a completely different situation-every finitely generated 
subsemigroup of a free semi group can be defined by a finite Malcev presentation; 
see Spehner (1989). 

The main result of this section gives an affirmative answer to part (iv) of Main 
Problem in the case of subsemigroups. It also give~ some positive evidence for 
Open Problem 29 from Chapter 7. 

Theorem 1.4. If F = A+ is a finitely generated free semigroup and 5 is a 
subsemigroup of F of finite index, then 5 is finitely presented. 

Let us recall that the index of 5 in F is defined to be IF - 51 + 1. The crucial 
fact for the proof of this theorem is the following 

Lemma 1.5. If F = A+ is a finitely generated free semigroup and 5 is a sub­
semigroup of F of finite index, then there is an ideal I of finite index in F with 

I ~ 5. 

PROOF. Let F - 5 = {a1, ... , ad, and let 

p = max { I ai 111 ~ i ~ k}. 

Let I be the set of all words from F of length at least p + 1; then certainly I ~ 5. 
Also, it is easy to see that I is an ideal in F, and since 

F - 1= {w E F Ilwl ~ p}, 

I has finite index in F .• 

PROOF OF THEOREM 1.4. Let I be an ideal of F of finite index, such that 5 ~ I 
(Lemma 1.5). By Corollary 7.2.3 I is finitely presented. On the other hand, I 
has finite index in 5 as well; in other words, 5 is an ideal extension of I by a 
finite semigroup; see Section 6 of Chapter 6. Therefore, 5 is finitely presented by 
Theorem 6.6.1. • 
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2. Ideals 

In this section we consider the Main Problem for two-sided ideals of free semi­
groups. We show that the first two questions have negative answers, and that the 
third question has a positive answer. The fourth question has a positive answer 
by Corollary 7.2.3. 

In what follows there is a possibility of confusion over the use of the word 
'generate': an ideal can be generated by a set as a semigroup or as an ideal. 
We introduce the convention that 'generate' will always mean 'generate as a 
semigroup' unless stated otherwise. 

Theorem 2.1. Let F = A+ be a free semigroup and let I #- F be a proper 
two-sided ideal of F. Then I is not free. 

PROOF. Let a E A - I, and let W be an element of I of minimal length. Both 
words aw and wa belong to I since I is a two-sided ideal, and neither of them 
is a product of two elements of I; hence each generating set for I contains both 
these words. But then w( aw) = (wa)w is a non-trivial relation holding in I, and 
I is not free. • 

Example 2.2. Let F = {a, b} + be the free semigroup on two generators, and let 
I be the ideal generated (as an ideal) by a, i.e. 

1= {Wlaw2j Wl,W2 E {a,b}*}. 

Each word abi, i 2:: 1, belongs to I, and is indecomposable in I. Therefore, I is 
not finitely generated .• 

Now we show that finitely generated ideals of a free semi group are finitely 
presented. Actually, we can prove a more general statement: 

Theorem 2.3. If I is a finitely generated ideal in a free semigroup F, then I 
has finite index in F. 

PROOF. We show that if I has infinite index in F, then I is not finitely generated. 
Suppose that I has infinite index in F, and let WI, W2, .. . be distinct elements 

of F - I. Let x be an element of I of minimal length, so that XW1, XW2, . .. 
are elements of I. If xWi = uv with u, v E I, then x is a prefix of u (by the 
minimalityof jxj), so that v is a suffix of Wi; since v E I, we have that Wi E I, 
a contradiction. So XWi cannot be expressed as a non-trivial product of elements 
of I, and hence any generating set for I must contain all XW1, XW2, . ... So I is 
not finitely generated .• 

Corollary 2.4. If I is a finitely generated ideal in a finitely generated free semi­
group F, then I is finitely presented. 

PROOF. I has finite index in F by Theorem 2.3, and is therefore finitely pre­
sented by Corollary 7.2.3 .• 
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3. One-sided ideals 

In this section we consider the Main Problem for one-sided ideals of free semi­
groups. We give negative answers to questions (i) and (ii), and a positive answer 
to question (iii). However, the proof of this last fact is completely different fro~ 
the proof of the corresponding result for two-sided ideals, since a finitely gener­
ated one-sided ideal of a free semigroup does not necessarily have finite index. 
Question (iv) has a positive answer as a direct consequence of Corollary 7.3.2. 

Theorem 3.1. Let F = A+ be a free semigroup and let R # F be a proper right 
ideal. If R is finitely generated as a semigroup then it is not free. 

PROOF. Since F # R there exists a E A such that a tt R. Suppose that ai tt R 
for all i ~ 1. Let w be an element of R of minimal length. Then wa i E R, 
i ~ 1, since R is a right ideal, but wa i is not a product of two elements of R. 
Therefore, each generating set of R contains all the words wa i , i ~ 1, and R is 
not finitely generated, a contradiction. Thus R contains some power of a. Let a i 

be the minimal such power; obviously i > 1. The word ai+1 belongs to R since R 
is a right ideal, but ai+l is not a product of two elements of R since i > 1; hence 
each generating set for R contains both a i and a i+1 . Since a i and ai+l satisfy the 
non-trivial relation aiai+1 = ai+lai , R cannot be free .• 

Example 3.2. Let F be the free semi group on two generators {a, b}, and let 
R = aFl be the principal right ideal generated (as a right ideal) by a. The set 
{ab i I i ~ O} is a unique minimal generating set for R, and it is easy to see that 
R is free on this generating set .• 

The previous example also shows that a right ideal of a finitely generated free 
semi group is not necessarily finitely generated. 

We devote the rest of this section to proving that a finitely generated right 
ideal of a free semi group is always finitely presented. We prove this directly, 
by finding an explicit presentation, but first we prove a necessary and sufficient 
condition for an ideal of a free semigroup to be finitely generated. 

Theorem 3.3. Let F = A+ be a free semigroup, let aI, ... , am E F, and let 

(1) 

be the right ideal generated (as a right ideal) by {aI, ... , am}. Then R is finitely 
generated (as a semigroup) if and only if there exists a constant N such that each 
word of F of length at least N + 1 contains some ai as a subword. 

PROOF. (=?) Assume that R is finitely generated. Without loss of generality we 
may assume that no ai is a prefix of an aj for i # j; for, otherwise, ajF1 ~ aiF \ 
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and we could omit ajFl from (1). For any word T/ E F, the word aiT/, 1 ~ i ~ m, 
belongs to R; conversely, every word from R has the form aiT/ for some i and 
some 'fJ. Since R is finitely generated, there is an upper bound on the length of 
generators in a finite generating set for R. In particular, for some constant N, R 
is generated by the set 

(2) 

Let ( be any element of F, and consider the element al ( of R. Since:E is a 
generating set for R, we may write 

for some iI, ... , i k and some 'fJI, ... , T/k with T/j ~ N, j = 1, ... , k. (Note that, in 
a free semi group both symbols = and = have the same meaning, and we prefer 
using the former.) Since al is not a proper prefix of ail and vice versa, we have 
al = ail' so that 

( = T/l a i2T/2··· aikT/k· 

If 1(1 > N, then, since IT/II ~ N, we have k 2: 2, and hence ai2 is a subword of (, 
thus proving this half of the theorem. 

(~) Suppose that R = alFl U ... U a mFl, and that there exists a constant N 
such that every word of F of length at least N + 1 contains some ai as a subword. 
We show that :E, as defined by (2), is a (finite) generating set for R. 

Let (3 be an arbitrary element of R, say (3 = ail 11 , with 1 ~ il ~ m, 11 E Fl. 
If hI I ~ N then (3 E :E and we have finished. Otherwise, let 81 be the prefix of 
11 consisting of the first N + 1 letters of 11. By the hypothesis, 81 contains some 
ai2 as a substring, and so we have (3 = ail T/l ai212 for some T/l and 12 in Fl with 
IT/II ~ N. Continuing in this way yields 

expressing (3 as a product of elements of :E, as required .• 

Remark 3.4. Since every right ideal which is finitely generated as a semigroup is 
also finitely generated as a right ideal (with the same generating set), Theorem 3.3 
in effect gives a necessary and sufficient condition for a right ideal of a free 
semi group to be finitely generated as a semigroup. 

Of course, Theorem 3.3 has a dual for left ideals. The two put together give 
the following, rather surprising, connection between finitely generated left and 
right ideals of a free semigroup. 

Corollary 3.5. If F is a free semigroup and aI, a2, ... , am E F, then the right 
ideal alFl U a2Fl U ... U a mFl is finitely generated as a semigroup if and only 
if the left ideal F lal U F l a2 U ... U Flam is finitely generated as a semigroup .• 
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Also as a consequence of Theorem 3.3, we can see that finitely generated 
right ideals of a free semi group do not necessarily have finite index (compare 
with Theorem 2.3). 

Example 3.6. Let F = {a, b} + be the free semi group on a and b, and let 

Since any word of length at least 3 must contain a2, ab or b2 as a subword, 
R is a finitely generated right ideal of F by Theorem 3.3. However, the set 
F - R = {a, b} U baFl is not finite; in other words R does not have finite index 
in F .• 

Finally, we prove the main result of this section. 

Theorem 3.7. If R is a right ideal of a free semigroup F! and if R is finitely 
generated as a semigrouP! then R is finitely presented. 

PROOF. Let F = A + be the free semi group on A. Since R is finitely generated 
and each generator of R involves only finitely many elements from A, and since 
Ra ~ R for each a E A, we see that A is finite. Let A = {aI, a2, . .. ,an}. 

Let R be generated by {aI, a2, . .. ,am}, where a:i E A+ for each i, and let B 
be the alphabet {bl, b2, . .. , bm}, where bi represents the generator ai of R. Let 
M = max{!ai!!l ~ i ~ m}. We have a relation 

in R if and only if 

in A+. Vve define the weight of the relation [(bl , b2,· .. , bm) = 5(bl , b2,· .. , bm) 
to be the length of the word [( aI, a2, ... , am) in A +. Let 91 denote the set of 
all relations [(bI, b2, .. . ,bm) = 5(bI, b2).··, bm) of weight at most 3M that hold 
in R. We claim that (B !91) is a presentation for R (and the proof will then be 
completed, since 91 is finite). 

We need to show that any relation [(bI, b2 , • •• ,bm) = 5(bI, b2 , ••• , bm) which 
holds in R is a consequence of 91. So suppose we have a relation 

(3) 

holding in R, so that 



110 Semigroup presentations 

in A+. We argue by induction on the weight of relation (3), the case of weight 1 
being a relation in ryt. If ail - ajl' we have bi2 bi3 ... bir = bj2 bj3 ... bjs ' and the 
result follows by the inductive hypothesis. So suppose that laill < lajll, so that 
ail is a proper prefix of ajl' say ajl == ail (. We now have 

so that 

If ai2 is a prefix of ( then ( E R, and so 

Both relations 

and 
bjl = bil bkl ... bkt 

are of lower weight than (3), and hence are consequences of ryt by the inductive 
hypothesis. Now we have 

which shows that (3) is a consequence of ryt as well. So let us assume now that ( 
is a proper prefix of ai2. Then we have 

for some q and e, where e is a prefix of ajq. Since (aj2aj3 ... ajq_l e represents an 
element of Rand (aj2aj3 ... ajq_l e is a prefix of (aj2aj3 ... ajq' we see, since R is 
a right ideal, that (aj2 ah ... ajq represents an element of R. So 

Now 

lajl aj2 aj3 ... ajq_l ajq I lail (aj2 aj3 ... ajq_l ajq I 
< laill + l(aj2 a j3 ... ajq-lel + lajq I 
< 3M. 
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and the corresponding relation bj1 bj2 ... bjq_ 1 bjq = bi1 bk1 bk2 ... bkt is a relation of 
weight at most 3M, and so is in 9t by definition. So we may use this relation 
from 9t to transform the relation 

to bi1 bi2 bi3 ..• bir = bi1 bk1 bk2 ..• bkt bjq+1 bjq+2 •.. bjs · So we only need to deduce the 
relation 

bi2 bi3 ... bir = bk1 bk2 ... bkt bjq+1 bjq+2 ... bjs ' 

which is of lower weight than our original relation, and the result follows by 
induction .• 



Chapter 7 

Sernigroup and group presentations 

For a little while we are going to depart from our theme of finding presentations 
for subsemigroups of semigroups, in order to consider the following, seemingly 
completely different, question: given a semigroup presentation s,p- = (A I~) what 
is the connection between the semigroup S(s,p-) defined by s,p- and the group G(s,p-) 
defined by s,p-? In Section 1 we review the elementary facts related to the above 
question, and we also mention the existing results about conditions for G(s,p-) to 
contain S(s,p-) as a subsemigroup. In Section 2 we prove a necessary and sufficient 
condition for the minimal two-sided ideal of S(s,p-) to be a disjoint union of copies 
of G(s,p-)-a phenomenon first suggested by studying the computer evidence. This 
main result is comparatively easy to prove, but it has far reaching consequences. 
First of all, it will prove very useful in studying the structure of semigroups 
defined by presentations; first easy examples of this type of investigation are in 
Section 3, but this theme will be developed fully in Chapters 11, 12 and 13. The 
main result will also serve as a motivation for another Reidemeister-Schreier 
type rewriting theorem, which we give in Chapter 10. 

Section 1 has an introductory character. The results of Section 2, including 
the main result (Theorem 2.1), will appear in Campbell, Robertson, Ruskuc and 
Thomas (1995). The examples in Section 3 are special cases of examples given 
in the same paper, but are explained here in more detail. 

1. Some known connections 

Let s,p- = (A I~) be a semigroup presentation, and let S = S(s,p-) be the semi group 
defined by s,p-. Obviously, s,p- can be considered as a group presentation as well, 
and we denote by G = G(s,p-) the group defined by s,p-. 

At the first glance the question about connections between S(s,p-) and G(s,p-) 
does not seem to be particularly promising; connections, if there are any at all, 
seem to be very loose. First of all, different presentations defining the same group 
can be defining different semigroups. For example, take 

m (I i+1 i). > 1 1-'i = a a = a ,2 _ . 

112 
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Then G(~d is the trivial group for all i, while S(~i) is the aperiodic monogenic 
semi group of order i. Moreover, the presentation 

(a, b 1 a2 = a, b2 = b), 

which also defines the trivial group, defines an infinite semi group in which all 
the words (ab)i, i = 1,2, ... , are distinct. As noted in Campbell, Robertson and 
Thomas (1993a), a 'dual' example does not exist: 

Proposition 1.1. Let ~ be a semigroup presentation. If G(~) is infinite then 
so is S(~) .• 

The reason for this is that the natural homomorphism 

<P : S(~) ---7 G(~), 

which extends the identity mapping id : A ---7 A, and which exists by Proposition 
3.2.1 and the definition of G(~), is an epimorphism when S(~) is finite. It is 
wrong, however, to assume that <p is always an epimorphism; the most that we 
can say is that the image of <p is the subs~migroup of G(~) generated by A, and 
this is not necessarily equal to G(~). For example, take ~ to be (a I). Then 
S(~) is the free monogenic group N, while G(~) is the free cyclic group Z, and it 
is clear that <p is not an epimorphism. A more general example is provided by the 
presentation (al,' .. , an 1 ), which defines the free semi group Fn on n generators 
and the free group FGn on n generators respectively. 

However, Fn and FGn are strongly related in a different way: FGn contains 
a subsemigroup isomorphic to Fn, or, in other words, Fn can be embedded into 
FGn . The problem of determining whether a given semi group is embeddable into 
a group is very old, and has received much attention over the years; see Adian 
(1966), Kashintsev (1992) and Guba (1994). This problem is also strongly related 
to our main question of this chapter, because of the following, easily proved result. 

Proposition 1.2. Let ~ be a semigroup presentation. The semigroup S(~) is 
embeddable into a group if and only if the natural homomorphism <p : S(~) ---7 

G(~) is an embedding .• 

Probably the best known sufficient condition for this to happen is what is 
usually called Adian's embeddability theorem. For a given semi group presenta­
tion (A 191), define the graph L(~) (usually called the left Adian's graph of ~) 
as follows. The set of vertices of L(~) is A. Two vertices aI, a2 E A are adjacent 
in L(~) if and only if 91 contains a relation of the form al u = a2v or a relation 
of the form a2U = alV, where u, v E A*. The right Adian graph R(~) of ~ is 
defined dually, by considering last letters of relations from 91. Then we have 
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Proposition 1.3. Let s,p- be a semigroup presentation. If neither of the graphs 
L(s,p-) nor R(s,p-) contains a loop, then the natural homomorphism <p : S(s,p-) ----t 

G(s,p-) is an embedding .• 

This theorem was proved by Adian (1966). An immediate consequence of it 
is that the semigroup S(s,p-) defined by the presentation 

s,p- = (A 1 aub = cvd) , 

where u, v E A *, a, b, c, d E A, a =1= c, b =1= d, has a soluble word problem, since 
it can be embedded into the one-relator group G(s,p-), and since everyone-relator 
group has a soluble word problem by the theorem of Magnus; see Magnus, Karrass 
and Solitar (1966). 

There are many generalisations of Proposition 1.3. One direction of gen­
eralisation is to presentations satisfying so called small overlap conditions; see 
Higgins (1992). This theory has a certain similarity to small cancellation theory 
for groups; see Lyndon and Schupp (1977). Another generalisation is to so called 
relative presentations-a way of combining semi group and group presentations; 
see Pride (1995). 

Of course, the theory of embeddable semigroups has certain limitations, since 
embeddable semigroups are very special in the class of all semigroups. In par­
ticular, it does not say anything interesting for finite semigroups, since a finite 
semi group is embeddable into a group if and only if it is a group. 

In a separate and much more recent development, a group of mathematicians 
around E.F. Robertson used an implementation of the Todd-Coxeter enumera­
tion procedure for semigroups to investigate semigroups defined by various well 
known group presentations. One of the most striking observations made during 
the course of this research was that in many cases the semi group in question 
contained a number of copies of the corresponding group. A closer examina­
tion showed that these groups were the Schiitzenberger groups of the minimal 
two-sided ideal. The following result by Robertson and Unlii (1993) explains the 
phenomenon in the case where there is only one copy of the group. 

Proposition 1.4. Let s,p- = (A 191) be a semigroup presentation. If S(s,p-) has a 
minimal ideal M which is a group then M is isomorphic to G(s,p-) .• 

The phenomenon was also explained in various particular cases in Campbell, 
Robertson and Thomas (1993) and Walker (1992). In the following section we 
give a general explanation, i.e. we give a necessary and sufficient condition for the 
Schiitzenberger group of the minimal ideal of a semigroup defined by a presenta­
tion to be isomorphic to the group defined by the same presentation. In Section 
3, as well as in Chapters 11, 12, 13 we have examples showing how this result 
can be used in describing the structure of semigroups defined by presentations, 
and in solving the word and finiteness problems. 
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2. An isomorphism theorem 

In this section we are going to consider the semi group S(~) defined by a pre­
sentation ~ = (A 191), and, in addition, we are going to assume that S(~) has 
both minimal left ideals and minimal right ideals. Some basic facts about such 
semigroups can be found in Section 3 of Appendix A. In particular, S(~) has a 
(unique) minimal two-sided ideal M, which is the disjoint union of all minimal left 
ideals, as well as the disjoint union of all minimal right ideals, and is a completely 
simple semigroup. For basic facts about completely simple semi groups the reader 
is referred to Section 2 of Appendix A. In particular, the intersection of any min­
imalleft ideal and any minimal right ideal is a group (called the Schiitzenberger 
group of M), and all these groups are isomorphic. Here we investigate when the 
Schiitzenberger group of M is isomorphic to the group G(~) defined by ~. 

Theorem 2.1. Let ~ = (A 191) be a semigroup presentation, and assume that 
the semigroup S(~) defined by ~ has both minimal left ideals and minimal right 
ideals. Let L be an arbitrary minimal left ideal, and let R be an arbitrary minimal 
right ideal of S(~), so that H = RnL is the Schiitzenberger group of the minimal 
two sided ideal M of S(~). Finally, let G(~) be the group defined by~, and let 
<p : S(~) ---7 G(~) be the natural homomorphism. Then: 

(i) <p is an epimorphism. 

(ii) <p IH: H ---7 G(~) is an epimorphism. In other words, the group defined by 
~ is a homomorphic image of the Schiitzenberger group of M. 

(iii) <p IH is an isomorphism if and only if the idempotents of M are closed under 
multiplication. In this case, M is the disjoint union of IIIIAI copies of the 
group G(~), where III is the number of minimal right ideals of S(~), and 
IAI is the number of minimal left ideals of S(~). 

PROOF. To simplify notation we will write S for S(~) and G for G(~). Also, 
to avoid confusion, we assume that A = {aj I j E J}, and then denote generators 
of G by B = {bj I j E J}. After this the definition of <p becomes 

aj<p = bj (j E J). (1) 

Also, since M is a completely simple semi group (Proposition A.3.3) we adopt the 
notation for these semigroups introduced in Section 2 of Appendix A. Thus, L>., 
A E A, is the family of all minimal left ideals of S (and hence of M as well; see 
Proposition A.3.3), and Ri is the family of all minimal right ideals of S. For i E I 
and A E A the group Ri n L>. is denoted by Hi>., its identity is denoted by ei>., 
and we have 

(2) 

Finally, without loss of generality we may assume 

R = Rl, L = L1 , H = Hll , e = ell· 
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(i) As we noted before, <jY is well defined by (1), and its image is the subsemigroup 
of G generated by B. So, to prove the first part of the theorem, we have to show 
that every element of G is represented by a word from B+. Obviously, it is enough 
to show this for the inverse b"t of an arbitrary element bj of B. Consider the 
element eaje of S; by (2) it belongs to the group H, and hence has an inverse 
Wj E H: 

Since e is an idempotent of S we have e<jY = 1G, so that 

and the inverse of bj in G is represented by the positive word w<jY E B+, as 
required. 

(ii) For any 9 E G there exists s E S such that s<jY = 9 by (i). The element ese 
belongs to H by (2), and we have 

(ese)<jY = (e<jY)(s<jY)(e<jY) = s<jY = g, 

showing that <jY fH is onto. 

In order to prove the third (and most important) part of the theorem, we 
need the following technical lemma: 

Lemma 2.2. If the idempotents of M are closed under multiplication then: 

(i) eilAlei2A2ei3Aa = eilAlei3A3' for all il,i2,i3 E I and all '\1,'\2,'\3 E A. 
(ii) For any i E I, ,\ E A, the mapping 'TJ : x ~ eiAxeiA is an epimorphism from 

S onto HiA . 

PROOF. (i) By Proposition A.2.2 (iv) we have eilAl ei2A2 E Hil A2' and, smce 
idempotents are closed, it must be the identity eil A2 of H ilA2 . Similarly, 

and the result follows. 

(ii) Let x, yES be arbitrary. Since eiA E M, and M is an ideal, we have 
eiAX E M, so that 

for some il E I and some '\1 E A. Hence 

for some SI E S, and, similarly, 
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for some i2 E I, ).2 E A and some S2 E S. Now, if we use (i), we have 

(xry )(yry) ei).xei).ei).yei). = ei).xei).yei). = ei1).1 SI ei1).1 ei).ei2).2s2ei2).2 

ei1).1 SI ei1).1 ei2).2 S2ei2).2 = ei).xyei). = (xy)ry, 

and hence ry is a homomorphism. That ry is onto follows directly from (2) .• 

Now we can prove the last part of Theorem 2.l. 
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(iii) ({:=) If the set of idempotents of M is closed under multiplication, then, by 
Lemma 2.2 (ii), the set {eaje I j E J} generates the group H = eSe, and these 
generators satisfy all the relations from 91. Since G is the group defined by ~, 
there exists an epimorphism 'ljJ : G --+ H such that 

Now we have 

(bj'ljJ)</> = (eaje)</> = (e</»(aj</»(e</» = IGbjlG = bj , 

(( eaje)</»'ljJ = bj'ljJ = eaje, 

so that </> IH o'ljJ and 'ljJ 0 </> IH are identity mappings, and hence </> IH is an 
isomorphism. 

(=?) Let us suppose that </> IH is an isomorphism, but that ei1).1 ei2).2 is not an 
idempotent for some iI, i2 E I and some ).1,).2 E A. Certainly, 

by Proposition A.2.2 (iv). By Proposition A.2.2 (vii) there exist 

such that 

and the mapping 

s's - e - , 

C : Hi1 ).2 --+ Hu , xC = s'xs, 

is an isomorphism; see Figure 5. 
In particular, we have 

On the other hand 

(s'</» ( ei1).1 </»( ei2).2 </»( s</» = (s'</» ( s</» 

(ss')</> = e</> = IG, 

which contradicts the assumption that </> rH is an isomorphism .• 
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L"-2 

$~ 
/ eu • s 
/sei A{i2"-2s 

/(// / 
G-fV;: • • ·s' eil Al eil A ei2 "-2 

R· • ~ ei2 "-2 

Figure 5. 

Remark 2.3. If the set of idempotents E of a completely simple semigroup T 
is closed, then, by Proposition A.2.4 (ii), T is isomorphic to the Rees matrix 
semi group M[H; I, A; P], where H is the Schiitzenberger group of T, and all 
entries of P are equal to 1H. This Rees matrix semi group is, in turn, easily 
seen to be isomorphic to the direct product RZj x H X LZA , where RZj is the 
semi group of right zeros (i.e. a semigroup satisfying xy = x for all x and all y) of 
order III, and LZA is the semi group of left zeros of order IAI. Therefore, in the 
notation of Theorem 2.1, if the idempotents of M are closed under multiplication, 
then M ~ RZj x G(Sf') X LZA . 

In order to use Theorem 2.1 for investigating the structure of the minimal ideal 
M of a semi group 5 defined by a presentation Sf', first we have to find all the 
minimal left and right ideals of 5, then to find IIIIAI idempotents of M, and then 
to check that these idempotents are closed under multiplication; in the following 
section we shall illustrate all three stages on concrete examples. However, the 
third stage tends to be rather tedious, since there are roughly (IIIIAI)2 products 
to be examined. Fortunately, there is a special case, which we will encounter 
frequently, in which this step can be omitted: 
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Corollary 2.4. Let ~ be a semigroup presentation, and assume that the semi­
group S(~) defined by ~ has minimal left ideals and a unique minimal right ideal 
(or, dually, minimal right ideals and a unique minimal left ideal). Then every 
minimal left ideal (every minimal right ideal) is a group isomorphic to the group 
G(~) defined by ~. 

PROOF. Let R (= RI ) be the unique minimal right ideal of S(~). Then R is the 
minimal two-sided ideal as well, since the minimal two sided ideal is the union of 
all minimal right ideals; see Propositions A.3.3 and A.2.2 (ii). If LA, ,\ E A, are 
the minimal left ideals of S(~), then, by the same theorems, R = RI = UAEA LA, 
so that HIA = RI n LA = LA' Finally, the idempotents of a single minimal 
right ideal form a semi group of right zeros by Proposition A.2.2 (viii), and, in 
particular, are closed under multiplication. Hence, each HD = LA is isomorphic 
to G(~) by Theorem 2.1 (iii) .• 

Remark 2.5. It is easy to see that the minimal ideal M of a semi group S is a 
group if and only if S has a unique minimal left ideal and a unique minimal right 
ideal. Therefore, Proposition 1.4 is a special case of Corollary 2.4. 

3. Examples: presentations defining A5 

In this section we illustrate how the results of the previous section can be used 
to investigate the structure of semigroups defined by presentations. We shall 
consider several presentations which, when considered as group presentations, all 
define the alternating group As of degree 5, and we shall describe the semi groups 
defined by these presentations. In Chapters 11, 12 and 13 we will have further 
examples of using Theorem 2.1 in describing the structure of various semigroups. 
The considerations there will be more complicated, but will proceed roughly along 
the same lines as the considerations in this section. 

It is well known that As is defined by the following (group) presentation: 

Of course, ~I is not a semigroup presentation. (It is, however, a monoid presen­
tation, but it is easy to see that the monoid defined by this presentation is again 
As.) Let us consider the following semi group modification of ~I: 

The first step towards applying Theorem 2.1 is to identify minimal left ideals 
and minimal right ideals. This is a task that we shall be often faced with. In 
the following proposition we give some useful criteria for the (one-sided) ideal 
generated by an element to be minimal. 
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Proposition 3.1. Let 8 be a semigroup, and let s E 8. 

(i) s generates a minimal left (right) ideal if and only if for each SI E 8 there 
exists S2 E 8 such that S2S1 s = 8 (88182 = 8). 

(ii) 8 generates the unique minimal left (right) ideal if and only if for each 
81 E 8 there exists 82 E 8 such that 8281 = 8 (8182 = 8). 

PROOF. (i) The left ideal generated by 8 is 8 1
8; see Section 1 of Appendix A. 

For an arbitrary 81 E 8 consider the left ideal 8818. Certainly, 8818 ~ 8
1 s, and 

8 18 is a minimal ideal if and only if this inclusion is never proper, i.e. if and only 
if for each 81 E 8 there exists 82 E 8 such that 82818 = 8. 

(ii) (=}) Assume that 8 generates a unique minimal left ideal L, and let 81 E 8 

be arbitrary. By Proposition A.3.2 (i), L is the minimal two-sided ideal of 8, so 
that 881 E L, i.e. 881 = 8~ 8 for some 8~ E 8

1
. By (i) there exists 8; E 8 1 such 

that S;8~ 8 = 8, so that, for S2 = 8;8 E 5, we have 

as required. 

( -¢=) Since for any 81 E 8 there exists 82 E 5 such that 82( SI 8) = 8, 8 generates a 
minimal left ideal L = 5 1

8 by (i). Assume that 8 possesses another minimal left 
ideal Ll = 8 1

81. Then L n Ll = 0 by Proposition A.3.2 (i): On the other hand, 
since there exists 82 E 8 such that 8281 = 8, we see that 8 E L n L1, which is a 
contradiction. Therefore, L is a unique minimal left ideal of 8. 

Proofs for right ideals are dual. • 

Now we return to our presentation >;J3"2. 

Lemma 3.2. The element a generates the unzque minimal left ideal L in the 
semigroup 8(>;J3"2). 

PROOF. By Proposition 3.1 (ii) it is enough to prove that for each word w E 

{a,b}+ there exists a word WI E {a,b}+ such that WIW = a holds in 5(>;J3"2)' We 
prove this by induction on the length of w. If Iwl = 1 then either w = a, and we 
have 

or w b, in which case 

For Iwl ~ 2, we can write w == w'w", where Iw'l = 2 and w" E {a, b}*. Note 
that law"l < Iwl and Ibw"l < Iwl, so that by the inductive hypothesis there exist 
WI, W2 E {a, b} + such that the relations 

" b " WI aw = a, W2 w = a 
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hold in S (Sf)z). There are four possibilities for W': w' = aZ, w' = ab, w' = ba and 
w' _ bZ• Now we have 

WI a . aZw" = WI a3w" = WI aw" = a, 

( b)4 b" - (b)5" Z " " wla a . a W = wla a W = wlaa W = wlaw = a, 

( b)4 b ,,- (b)5" Z" " WI a a· aw = WI a aw = wla aw = wlaw = a, 

wzbz . bZw" = wZb4w" = wzbw" = a, 

which completes the inductive argument .• 

Lemma 3.3. L is the unique minimal two sided ideal of S(Sf)z). A word w rep­
resents an element of L if and only if w contains the letter a. 

PROOF. The first assertion follows from the fact that the minimal two-sided 
ideal is the union of all minimal left ideals and the fact that L is the unique 
minimal left ideal. Since a E L, and since L is a two-sided ideal, it is clear that 
every word which contains a represents an element of L. For the converse, note 

that for any two words WI and Wz which represent the same element of S(Sf)z), 
WI contains a if and only if Wz contains a. On the other hand, if bi E L for some 

i = 1,2,3, then the minimality of L would imply the existence of a word w such 
that wabi = bi , which is impossible. • . 

The fact that S(Sf)z) has a unique minimal left ideal does not automatically 
allow us to apply the results from the previous section. We need to show that 
S(Sf)z) has minimal right ideals as well. 

Lemma 3.4. For each word WI E {a, b} + there exists a word Wz E {a, b} + such 
that the relation 

PROOF. We prove the lemma by induction on the length of WI. If IWII = 1 then 
either WI = a, and we have 

- a3 aa· a = = a, 

or WI _ b, in which case 

If IWII ~ 2 then WI can be written as WI - w~w~, where w~ E {a,b}* and 
Iw~1 = 2. By the inductive hypothesis there exist w~, w~ E {a, b} + such that the 
relations 

(3) 
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hold in S(s,p-2)' There are four possibilities for w~: w~ == a2, w~ = b2, w~ = ab 
and w~ = ba. In the first three of them we have 

So there remains only the case WI == W~ ba to be considered. First note that 
usmg 

it is easy to prove 
(4) 

for any i ~ 1. Now, if w~ is a power of b, say w~ bi , 1 ::; i ::; 3, then by using 
(4) we obtain 

abi+Ia2b3-i(ab)4a = ab4(ab)4a 

ab(ab)4a = (ab)Sa = a2a = a. 

Otherwise w~ can be written as w~ = w~/abi, where ° ::; i ::; 3, and, similarly as 
above, we have 

by using (3) and (4) .• 

Lemma 3.5. Let Ri be the right ideal of S(s,p-2) generated by bia for i = 0,1,2,3. 
These ideals are the only minimal right ideals of S(s,p-2) and are all distinct. 

PROOF. Each Ri is a minimal right ideal by Proposition 3.1 (i) and Lemma 
3.4. Since each word containing b is equal to a word ending with bia for some 
i = 0,1,2,3, we have L = Ro U RI U R2 U R3 by Lemma 3.3, so that S(s,p-2) has 
no minimal right ideals other than Ri, i = 0,1,2,3. Finally, note that S(s,p-2) has 
the following property: 

flawl = bk aw2 ===? j = k = ° or j,k > ° and j = k (mod 3). 

This implies that all Ri , i = 0,1,2,3, are distinct .• 

If we combine Lemmas 3.2, 3.3, 3.4, 3.5 and Corollary 2.4 we obtain 

Theorem 3.6. The semigroup S(s,p-2) defined by the presentation 

s,p-2 = s,p-2(2,3,5) = (a,bl a3 = a, b4 = b, (ab)S = a2) 

has a unique minimal left ideal L, which is a disjoint union of four minimal right 
ideals, each of which is isomorphic to the alternating group As of degree 5. The 
set S(s,p-2) - L is a cyclic group of order 3. The semigroup S(s,p-2) is finite of order 
243 and is a union of groups .• 
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The presentation ~2(2, 3, 5) is a special case of the following presentation 

~2(l, m, n) = (a, b I al+1 = a, bm +1 = b, (ab)n = al
). 

The group defined by this presentation is usually denoted by (I, m, n); for details 
on these groups see Coxeter and Moser (1980). Theorem 3.6 does not depend on 
the particular choice of the parameters 1 = 2, m = 3, n = 5. In other words we 
have 

Theorem 3.7. The semigroup S (~2) defined by the presentation 

~2 = ~2(l,m,n) = (a,b I al+1 = a, bm
+1 = b, (abt = al

), 

where l, m, n 2 I, has a unique minimal left ideal L which is a disjoint union of 
m + 1 minimal right ideals, each of which is isomorphic to the group (l, m, n). 
The set S(~2) - L is the cyclic group of order m. The semigroup S(~2) is a 
union of groups and is finite if and only if the group (I, m, n) is finite .• 

For a sketch of a proof of the above theorem the reader is referred to Campbell, 
Robertson, Ruskuc and Thomas (1995). This theorem has an obvious left right 
dual: 

Theorem 3.8. The semigroup S(~3) defined by the presentation 

~3 = ~3(1,m,n) = (a,b I al
+1 = a, bm +1 == b, (ab)n = bm

), 

where l, m, n 2 I, has a unique minimal right ideal R which is a disjoint union of 
1 + 1 minimal right ideals each of which is isomorphic to the group (l, m, n). The 
set S(~3) - L is the cyclic group of order 1. The semigroup S(~2) is a union of 
groups and is finite if and only if the group (1, m, n) is finite. • 

In particular, the presentation 

~3(2, 3, 5) = (a, b I a3 = a, b4 = b, (ab)S = b3) 

defines a semi group of order 182 consisting of three copies of As and one copy of 
C2 • 

We finish off this section by considering one more modification of the presen­
tation ~1: 

~4 = (a, b I a3 = a, b4 = b, ab3a = a2, ba2b = b2, a(ab)Sa = a2). 

It is clear that the group G(~4) defined by ~4 is again isomorphic to the al­
ternating group As. We are going to determine the structure of the semi group 
S(~4) defined by ~4. An easy inductive argument based on the relations 

a . a2 = a, b2 . b2 = b, 

b3a . ab = b2ba2b = b2b2 = b, 

a2b2 . ba = aab3a = aa2 = a, 
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proves that both a and b generate minimal left ideals in this semigroup; we denote 
these ideals by La and Lb respectively. Next we note that the last letter of a word 
is an invariant of the presentation qJ4, so that La # Lb. Each word from {a, b}+ 
ends either with a or with b, so that S(qJ4) = La U Lb. In particular, S(qJ4) 
has no proper two-sided ideals by Proposition A.3.2, so that S(qJ4) is simple. 
A dual argument shows that a and b generate minimal right ideals Ra and Rb 
respectively, that Ra # Rb and that S(qJ4) = Ra U Rb. Therefore, S(qJ4) is a 
completely simple semigroup with two minimal left ideals and two minimal right 
ideals. 

Let Ha,a, Ha,b, Hb,a, Hb,b denote the groups Ra n La, Ra n Lb, Rb n La, Rb n Lb 
respectively. Now we need to find the four idempotents which are the identities 
of these groups. Two of them obviously are a2 E Ha,a and b3 E Hb,b' The other 
two are a2b3 E Ha,b and b3a2 E Hb,a because of 

a2 b3 a2 b3 == a(ab3 a)ab3 = aa2ab3 = a2 b3
, 

b3 a2 b3 a2 = b2 (ba 2 b)b2a2 = b2b2 b2a2 = b3 a2
• 

Finally, similar easy calculations prove that these four idempotents are closed 
under multiplication, so that by Theorem 2.1 we have 

We have proved the following 

Theorem 3.9. The semigroup S(qJ4) defined by the presentation 

qJ4 = (a, b I a3 = a, b4 = b, ab3 a = a2
, ba2 b = b2

, a(ab)Sa = a2
) 

is a completely simple semigroup with two minimal left ideals and two minimal 
right ideals) and is a disjoint union of four copies of the alternating group As .• 



Chapter 8 

Minimal ideals 

In Section 3 of the previous chapter we have seen that understanding the struc­
ture of the minimal two-sided ideal M of a semi group 5 defined by a presen­
tation ~ can be a big step towards understanding the structure of the whole 
semigroup. The crucial piece of information about M concerns the nature of its 
Schutzenberger group H, since M is a disjoint union of copies of H. Theorem 
9.2.1 asserts that if the idempotents of M are closed under multiplication, then 
H is isomorphic to the group G defined by the presentation~. However, this 
theorem gives very little information about H when the idempotents of M are not 
closed. In this chapter we develop another Reidemeister-Schreier type rewriting 
method, giving a presentation for H regardless of whether or not the idempotents 
are closed. 

Actually, we shall consider a more general situation where M is a O-minimal 
ideal which is a completely O-simple semigroup. This is indeed a generalisation of 
the case where M is a minimal two-sided ideal with minimal left and right ideals; 
for if M is a minimal two sided ideal of 5 with minimal left and right ideals, and 
if we adjoin a zero to the semi group 5, then M U {OJ is a (unique) O-minimal 
two-sided ideal of 5 U {O}, and is a completely O-simple semigroup. 

The reason for this generalisation is that it widens possibilities for applications 
in the investigation of the structure of semigroups defined by presentations. For 
suppose that M is the minimal ideal of 5. After we have described the structure 
of M, the natural way to proceed in investigating 5 would be to form the Rees 
quotient 51 = 5/ M, and to investigate 51' However, the semigroup 51 has a 
zero, which is a trivial minimal ideal, so that a theory of minimal ideals alone 
will not give any further information on 51' On the other hand, with a theory 
of O-minimal ideals one has a hope of continuing: if 51 has a O-minimal ideal M1 
we would investigate M1 and then form the quotient 52 = 51 / M1 and so on. 

The results of Sections 1 and 2 will appear in Campbell, Robertson, Ruskuc 
and Thomas (1995b). Section 3 contains a new result (Theorem 3.2), and a sketch 
of an alternative rewriting theorem which will appear in Campbell, Robertson, 
Ruskuc and Thomas (1995a). The example in Section 4 appears for the first time 

12.5 
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in this thesis. 

1. A generating set for the Schiitzenberger group 

Let S be a semi group with zero and let ~ = (A 19t) be a semigroup presentation 
for S. Suppose that S has a O-minimal two-sided ideal M. By Proposition A.3.1 
M is either a semi group with zero multiplication or it is a O-simple semigroup. 
Here we are interested in the latter case. Moreover, we assume that M is a 
completely O-simple semigroup. 

We adopt our standard notation for completely O-simple semigroups; see Sec­
tion 2 of Appendix A. Thus, L~, A E A, are all O-minimalleft ideals of M, and 
R~, i E I, are all O-minimal right ideals of M. By Proposition A.3.4 these ideals 
are O-minimal in S as well. We also let 

Ri = R~ - {O}, L,\ = L~ - {O}, Hi'\ = Ri n L,\ (i E I, A E A). 

For any i E I and any A E A either Hi'\ is a group, in which case we denote by 
ei,\ a word representing the identity of this group, or Hi'\ U {O} is a semi group 
with zero multiplication. Each Ri contains at least one group Hip, and each L,\ 
contains at least one group H j ,\. In particular M contains at least one group, 
and there is no loss of generality if we assume that this gro:up is Hll . We write 

Hll = H, e = ell, Rl = R, Ll = L. 

If Hi'\ is a group, then it is isomorphic to H. We call H the Schiitzenberger group 
of M. In this section we find a generating set for H, and in the following section 
we find a presentation for H in terms of this generating set. 

Let 
Ao = AU {O}, 

(where we assume 0 tf. A), and define 

Lo = {O}. 

Then S acts by postmultiplication on the set {L,\ I A E Ao}; see Proposition A.3.4. 
This means that there exists a mapping 

pz : Ao x A+ ----t Ao 

such that 
L,\ w = L(,\,W)Pl' (1) 

for all A E Ao and all w E A +. To simplify notation, we shall write just AW 
instead of (A, w) pz, so that (1) becomes 

(2) 
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Since pz is an action, it satisfies 

(3) 

for any WI, W2 E A +, and hence it is completely determined by the values ).a 

(). E Ao, a E A). Also, since Ao = {OJ, we have 

Ow = 0, (4) 

for all W E A+. 

For each), E A, let x>. E A+ be a word representing an element of HI>. 

R n L>.; we choose Xl to be identical to e. Since H = Hn is a group, we have 

by Proposition A.2.1 (x), or, in other words, 

Ix>. = )., ). E A. (5) 

Each L>. contains at least one group Hi>.. Therefore, there exists a function 

such that Hi>.>' is a group for every). E A. Since Hn ~ LI is a group we can 
define 

(6) 

Finally, since both Hn and Hi>.>' are groups, Hi>.l contains a unique (semigroup) 
inverse of x>. by Proposition A.2.1 (xi). This means that there exists a word 
x~ E A+ which represents an element of Hi>.l, and such that the relations 

hold in S; see Figure 6. 
Obviously, since Xl _ e and i l = 1, we can define 

,_ 
Xl = e. 

With this notation we have the following description of H: 

Lemma 1.1. H = {x>.wx~w I). E A, wE A+, ).w =I- OJ. 

PROOF. Let us denote the set 

by I<, and consider a typical element x>.wx~w of I<. Since ).w =I- 0, we have 

(7) 

(8) 
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R 

Figure 6. 

and since x). E Hu = R n L)., we have 

On the other hand, 
x~w E Hi>.w1 = Ri>.w n L, 

and since Hi>.w,).w is a group, we have 

x).wx~w E Hll = H 

by Proposition A.2.1 (ix). Hence f{ ~ H. 
Now let W E A+ be any word representing an element of H (w E L(A, H) 

in our usual notation). Then obviously L1w = L 1 , so that 1w = 1, and since e 
represents the identity of H, we have 

- ,- 'E}" w = ewe = X1WX1 = X1WX1w ~. 

Hence we have H ~ J{, and the lemma follows .• 

Now we can prove the main result of this section. 

Theorem 1.2. The set 

generates H as a semigT'Oup. 

PROOF. By Lemma 1.1 we have X ~ H, so that we only have to prove that each 
element of H can be written as a product of elements of X. Again by Lemma 
1.1, any element of of H is equal to a word of the form x).wx~w' where A E A, 
W E A+ and AW =I 0, and to prove the lemma it is sufficient to prove that this 
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word is equal in 5 to a product of elements of X. We do this by induction on 
the length of w. 

If Iwl = 1 then w _ a E A, so that x.\wx~w E X. Assume that Iwl > 1, so 
that w = awl, where a E A, WI E A +. Also let ,\ E A be such that '\w =J 0; in 
particular we have '\a =J 0, because of (3) and (4). This means that 

(9) 

Since HiAa,.\a is a group, its identity eiAa,.\a is a right identity for L.\a (see Propo­
sition A.2.1 (xii)), and hence 

(10) 

Now note that by (7) we have 

(11 ) 

(12) 

Since 
('\a)wl = '\(aw],) = '\w =J 0, 

the word X.\aWIX(.\a)wl is equal in 5 to a product of elements of X by the inductive 
hypothesis, and since x.\ax~a EX, (12) yields a decomposition of x.\wx~w into a 
product of elements of X .• 

Obviously, Theorem 1.2 has a left-right dual. In order to formulate it we need 
some more notation. Let 10 = 1 U {O}, where 0 (j. 1, and let Ro = {O}. Then the 
action of 5 on the set {Ri liE 10} (see Proposition A.3.4) can be described by 
means of a mapping 

pr: A+ X 10 -+ la, (w,i) 1-+ wi, 

such that 
WRi = Rwi. 

For each i E 1 let Yi E A+ be a word representing an element of Hil = ~ n L, let 
'\i E A be such that Hi.\i is a group,and let Y~ be a word representing a unique 
inverse of Yi in H lAi . In addition, let 

- , 1 ,_ 
Yl = e, Al = 'Yl = e. 

Then we have 

Theorem 1.3. The set 

generates H as a semigroup .• 



130 Semigroup Presentations 

Although at the beginning of this section we assumed that S is defined by 
the presentation ~ = (A 191), so far we have only used the assumption that A 
generates S. Therefore, as a consequence of Theorems 1.2 and 1.3 we have the 
following 

Corollary 1.4. Let S be a semigroup with zero having a O-minimal ideal M 
which is a completely O-simple semigroup. If M has III O-minimal right ideals 
and IAI O-minimalleft ideals, and if H is the Schiitzenberger group of M then 

rank(H) ~ rank(S) . min(III, IAI). 

In particular, if S is finitely generated, and M has finitely many O-minimal right 
ideals or finitely many O-minimal left ideals then H is finitely generated as well . 

• 
Now we want to find a rewriting mapping associated with the generating set 

X given in Theorem 1.2. First we introduce a new alphabet 

B = {b,\,a I A E A, a E A, Aa =J O} 

in one-one correspondence with X. The representation mapping is the unique 
homomorphism 

such that 
(13) 

N ext we define a mapping 

¢:{().,w)IAEA, wEA+, Aw=JO}--+B+ 

inductively by 
(A, a)¢ = b,\,a, 
(A,aw)¢ = b,\,a· (Aa,w)¢. 

(14) 

If w E L(A, H), then lw = 1 =J 0, so that we can define 

cP: L(A, H) --+ B+ 

by 
wcP = (1, w)¢. (15) 

Lemma 1.5. Let A E A and w E A+ be arbitrary. If AW =J 0 then the relation 

(()., w)¢)1jJ = x,\wx~ 

holds in S. In particular, cP is a rewriting mapping. 
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PROOF. We prove the first part of the lemma by induction on the length of w. 
If Iwl = 1 then w = a E A, and we have 

For Iwl > 1 we can write w = aWl, where a E A, WI E A+, and then 

((A, w );j)7j; 
(by (14)) 
(7j; is a homomorphism) 
(by (13)) 
(induction) 
(by (7)) 
(Proposition A.2.1 (xii)) 
(by (3)) 

as required. To prove that <jJ is a rewriting mapping we have to prove that 

(w<jJ)7j; = w 

holds in S for any w E L(A, H); see Section 7 of Chapter 6. Note that w E 
L(A, H) implies lw = 1, so that by the first part of .the lemma we have 

(w<jJ)7j; == ((1, w);j)7j; = XIWX~w _ XIWX~ = ewe = w, 

since e represents the identity of H .• 

2. A Reidemeister-Schreier type theorem for 
the Schiitzenberger group 

In this section we use all the notation introduced in Section 1. In particular, S 
denotes a semi group with zero having a O-minimal ideal M which is a completely 
O-simple semigroup, and ~ = (A 191) is a presentation for S. We are going to find 
a presentation for the Schiitzenberger 'group H of M in terms of the generating 
set X given in Theorem 1.2. In doing this we make use of the mapping ;j defined 
by (14) and the rewriting mapping <jJ defined by (15). 

Our main result is the following 

Theorem 2.1. The presentation 

.Q = (B I (x).ax~a)<jJ = b).,a, (fL,U);j = (fL,V);j 

()..,fL E A, a E A, (u = v) E 91, Aa # 0, fLU # 0)) 

defines H (as a semigroup) in terms of generators X. 
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Before proving the above result we give some corollaries and remarks. 
First of all we remark that Theorem 2.1 has a left-right dual, which gives 

a presentation for H in terms of generators Y from Theorem 1.3. In order to 
formulate this result, we need to define objects dual to B, 'lj;, ¢; and <p. The 
definitions are as follows: 

Now we have 

c = {Ca,i I a E A, i E I, ai =1= O}, 
'lj;r : c+ ~ A+, Ca,i'lj;r = y~iaYi, 

¢;r : {(w,i) I wE A+, i E I, wi =1= O} ~ B+, 

(a, i)¢;r = Ca,i, (wa, i)¢;r = (w, ai)¢;r . Ca,i, 
<Pr: L(A,H) ~ B+, 

W<pr = (w, l)¢;r. 

Theorem 2.2. The presentation 

Dr = (C I (Y~iaYi)<pr = Ca,i, (u,j)¢;r = (v,j)¢;r 
(i,j E I, a E A, (u = v) E 91, ai =1= 0, uj =1= 0)) 

defines H (as a semigroup) in terms of the generators Y .• 

Both D and Dr are semigroup presentations for H. However, a semi group 
presentation for an arbitrary group is a group presentation for that group, so that 
.0 and Dr are group presentations for H as well. 

Next we note that if the sets A, 91 and A are all finite, then the presentation 
.0 is finite as well; alternatively, if the sets A, 91 and I are finite, then the 
presentation Dr is finite. Therefore we have 

Corollary 2.3. Let S be a semigroup with zero, let M be a O-minimal ideal of S 
which is a completely O-simple semigroup, and let H be the Schiitzenberger group 
of M. If S is finitely presented and if M has finitely many O-minimal left ideals 
or finitely many O-minimal right ideals, then H is finitely presented as well. • 

We obtain another consequence of our main result if we combine Corollary 
2.3 with Corollary 6.5.6. 

Corollary 2.4. Let S be a semigroup with zero, and let M be a O-minimal ideal 
of S which is a completely O-simple semigroup. If S is finitely presented and if M 
has finitely many O-minimal left ideals and finitely many O-minimal right ideals 
then M is finitely presented as well. 
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PROOF. Being a completely O-simple semigroup, M is isomorphic to a Rees 
matrix semi group MO[H; I, A; P], where H is the Schiitzenberger group of M, 
III is the number of O-minimal right ideals of M, IAI is the number of O-minimal 
left ideal of M, and P is a regular IAI x III matrix with entries from H U {O}; see 
Proposition A.2.4. Under the conditions of the corollary, the group H is finitely 
presented by Corollary 2.3, so that M is finitely presented by Corollary 6.5.6 .• 

Actually, we can do even better: we can find a representation for M as a Rees 
matrix semigroup, provided that we know representatives of all Hl>" ). E A, and 
all Hill i E I. 

Corollary 2.5. For each), E A and each i E I let x). be a word representing 
an element of HI)., and let Yi be a word representing an element of Hil . The 
O-minimal ideal M is isomorphic to the Rees matrix semigroup MO[H; I, A; P], 
where H is the group defined by the presentation .0, and 

where O¢ is defined to be O. 

PROOF. The corollary follows directly from Theorem 2.1 and Proposition A.2.4 . 

• 
(Note that the representative x)., ). E A, is arbitrary, and is not necessarily 

equal to x)..) 
Now we are also in a position to fulfill the promise given at the end of Section 5 

in Chapter 6, and prove the converse of Corollary 6.5.6 for completely O-simple 
semlgroups. 

Corollary 2.6. Let S be a completely O-simple semigroup with O-minimal left 
ideals L~, ). E A, and O-minimal right ideals R~, i E I, and let H be the 
Schiitzenberger group of S. Then S is finitely presented if and only if H is finitely 
presented and both sets I and A are finite. 

PROOF. (::::}) Let S be finitely presented. In particular, S is finitely generated, 
so that from 

rank(S) ~ max(III, IAI) 

(Corollary 4.2.3) we conclude that both I and A are finite, and then it follows 
that H is finitely presented by Corollary 2.3. 

(-¢=) By Proposition A.2.3, the semi group S is isomorphic to a Rees matrix semi­
group MO[H; I, A; P], with a regular matrix P. In particular P contains at least 
one entry from H, and hence this implication follows from Corollary 6.5.6 .• 

Finally, we would like to point out the similarity between Theorems 2.1 and 
2.2 and the Reidemeister-Schreier theorem for groups; see Magnus, Karrass and 
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Solitar (1966). Unlike the case of ideals of finite index (Chapter 7), this time even 
the actual presentation is more like the usual Reidemeister-Schreier presentation 
for a subgroup of a group. This is primarily due to the fact that H itself is a 
group, as well as to the fact that the action of a semigroup on the O-minimalleft 
ideals of a O-minimal two-sided ideal is much more symmetrical, and in particular 
is transitive. 

Now we embark on the proof of Theorem 2.1. The main idea is again to 
apply the general method for finding presentations for subsemigroups described 
in Remark 6.7.6. We have already found a generating set (Theorem 1.2), and a 
corresponding rewriting mapping (Lemma 1.5). So there remains to prove that 
all the relations from the presentation .0 hold in H, and that they imply the 
relations 

b).,a = (x).ax~a)</>, 

(WI W2)</> = WI </> . W2</>, 

(W3 UW4)</> = (W3VW4)</>, 

(16) 

(17) 

(18) 

where A E A, a E A, Aa =I 0, WI,W2 E L(A,H), W3,W4 E A+, (u = v) E 91, 
W3UW4 E L(A, H). We do this in several steps. 

Lemma 2.7. All the relations from.Q hold in S. 

PROOF. We have to prove that for any relation 0: = (3 from .0, the relation 
0:'ljJ = (3'ljJ holds in S. Let A E A, a E A, with Aa =I O. Since x).ax~a E L(A, H), 
we have Ix). aX~a = 1, and by Lemma 1.5 we have 

((x).ax~a)</»'ljJ = ((1, x).ax~a)¢;)'ljJ = xlx).ax~ax~ == ex).ax~ae = x).ax~a = h,a'ljJ. 

Similarly, for (u = v) E 91 and J1, E A with J1,U =I 0, we have 

((J1"u)¢;)'ljJ = XILUX~U = XILVX~v = ((J1"v)¢;)'ljJ, 

as required .• 

Lemma 2.8. Let A E A, WI,W2 E A+, be such that AWIW2 =I o. Then 

(A, WIW2)¢; = (A, WI)¢;· (AWl, W2)¢;. 

PROOF. We prove the lemma by induction on IWII, the case IWII = 1 being the 
definition (14) of ¢;. For IWII > 1 let WI = aw~, so that 

as required .• 

(A, aw~ W2)¢; 
(A, a)¢; . (Aa, w~ W2)¢; 
(A, a)¢; . (Aa, wD¢; . (Aaw~, W2)¢; 
(A, aw~)¢;· (Aaw~, W2)¢; 
(A, WI)¢;· (AWl, W2)¢;, 

(by (14)) 
(induction) 
(by (14)) 
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Lemma 2.9. IfwI,w2 E L(A,H) then 

(WIW2)<P == WI<p· W2<P. 

PROOF. Since WI E L(A, H), we have 1WI = 1, so that 

(WIW2)<p (l,WIW2)¢ == (l,WI)¢· (lwbw2)¢ = (l,WI)¢· (1,w2)¢ 
WI<p· W2<P 

by Lemma 2.8 .• 

135 

Lemma 2.10. Let W3,W4 E A+ and (u = v) E!R. Ifw3uw4 E L(A,H) then the 
relation 

is a consequence of .0. 

PROOF. Since U = v holds in 5, we have AU = AV, and hence 

as required .• 

(1, W3UW4)¢ 
(1, W3)¢· (lw3, u)¢. (lw3u, W4)¢ 
(1, W3)¢ . (1 W3, v)¢ . (1 W3V, W4)¢ 
(1, W3VW4)¢ 
( W3VW4)<p, 

(Lemma 2.8) 
(relation (/1, u)¢ = (/1, v)¢) 
(Lemma 2.8) 

PROOF OF THEOREM 2.1. The set X generates H by Theorem 1.2, and <p is a 
corresponding rewriting mapping by Lemma 1.5. All the relations from .0 hold in 
H by Lemma 2.7. Relations (16) are included in the presentation .0, the relations 
(17) are identically true by Lemma 2.9, and the relations (18) are consequences 
of .0 by Lemma 2.10. Therefore, .0 is a presentation for H by Theorem 6.7.1 and 
Remark 6.7.6 .• 

In the following section we are going to see how Theorem 2.1 can be modi­
fied to give a presentation for the Schiitzenberger group of a minimal two-sided 
ideal, and in Section 4, as well as in Chapters 11 and 13, we will use one of these 
modifications to determine the structure of various semigroups. Unfortunately, 
we do not have any 'nice and natural' examples of calculating the Schiitzenberger 
group of a particular O-minimal ideal (although it would not be difficult to con­
struct artificial examples). Nevertheless, as we mentioned in the introduction to 
this chapter, we believe that Theorem 2.1 can be a powerful tool for investigating 
the structure of more complicated semigroups, just as the Reidemeister-Schreier 
theorem is in groups. However, applying the latter has been made much easier 
by implementing it on computers and making it a part of all major group theory 
systems; see Schonert et al. (1993). This, once again, highlights the need for the 
development of computational methods for semigroups. We make some initial 
steps in this direction in Chapter 14, where we will also pose certain computa­
tional problems related to possible implementations of Theorem 2.1. 
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3. Minimal two-sided ideal 

Let us now consider the situation where our semi group 5 does not necessarily 
have a zero, but has a (unique) minimal two-sided ideal M which is a completely 
simple semigroup. This is equivalent to assuming that 5 has both minimal left 
ideals and minimal right ideals. Adjoining a zero to 5 yields a semigroup 5° 
with zero, in which the set MO = M U {OJ is a (unique) O-minimal ideal. It is 
obvious that MO is a completely O-simple semigroup, and we can use for MO all 
the notation introduced in the previous two sections. Since MO is obtained from 
M by adjoining a zero, we see that L).., ). E A, are minimal left ideals of M, 
and hence are the minimal left ideals of 5 by Proposition A.3.3. Similarly, R i , 

i E I, are the minimal right ideals of 5. Also, since M is completely simple, each 
Hi).. = Ri n L).. is a group. 

If ~ = (A 191) is a presentation for 5, then 5° can be defined by the presen­
tation 

~O = (A,O 191, 00 = 0, aO = Oa = 0 (a E A)). 

The Schiitzenberger groups for M and MO are identical, and the rewriting de­
scribed in the previous section can be applied to the presentation ~o to obtain 
a presentation for this group, which we again denote by H. For any word wand 
any). E A we have ).W = 0 if and only if w contains 0 since 0 is indecomposable 
in 5°. Therefore, Theorem 2.1 takes the following form in the case of a minimal 
ideal: 

Theorem 3.1. The presentation 

,Q = (B 1 (x )..ax~a)¢ = b)..,a, (/1, u)-;j; = (/1, v)-;j; 
().,/1EA, aEA, (U=V)E91)) 

defines H (as a semigroup) in terms of generators X .• 

However, by a careful choice of representatives x)., ). E A, and their inverses 
x~, ). E A, we can obtain a simpler presentation for H. First of all, since all the 
sets Hi). are groups, it is natural to choose x).. E HI>. to be the identity of the 
group HI>.: 

x). == eI>.. 

Now we invoke Proposition A.2.2 (iii), which asserts that the idempotents eI>., 
). E A, of R form a semigroup of right zeros, so that we have 

Therefore, for the inverse x~ of x).. we can choose 

1_ _ 

x). = ell = e. 

With this choice of representatives we have 
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Theorem 3.2. The presentation 

'r = (B I (IL, u)({; = (IL, v)({;, ().., e)({; = 1 (A, IL E A, (u = v) E ~)) 

defines H as a monoid. 

PROOF. It is easy to check that the given relations hold in H. For the relations 

this has been proved in Lemma 2.7, while for the other group of relations we have 

((A, e)({;)'lj; = x).ex~e = el).ellen = ell _ e, 

by Lemma 1.5. Now we want to show that the given relations imply 

for all A E A and all a E A, and the theorem will follow from Theorem 3.1. 
First note that Lemma 2.10 has been proved by using only the relations 

(IL, u)({; = (IL, v)({;. Therefore, the relations 

W3, W4 E A +, (u = v) E ~, are consequences of the presentation 'r as well. This, 
in turn, implies that if W5, W6 E L(A, H) represent the same element of H then 
the relation 

W5¢ = W6¢ 

is a consequence of 'r. In particular, since 

holds in S, we have 

1 (1, e)({; = ell¢ = (el).en)¢ _ (1, euell)({; 

(1, eu)({;· (leI)', ell)({; = (1, el)')({;· ().., ell)({; = (1, eu)({;, 

where the relations ().., e)({; = 1 and Lemma 2.8 have been used. Finally we have 

as required .• 

(1, euaen)({; _ (1, eu)({;· (leI)., a)({;. (leua, ell)({; 

1· ().., a)({;·l = b).,a, 

The presentation 'r has some clear advantages over the presentation .Q from 
Theorem 3.1: not only does it have fewer relations (IAI(I~I + 1), as compared 
to IAI(I~I + IAI)), but it also does not require us to know exact expressions for 
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the representatives X,x, A E A. The only information it uses is the action of 5 
on its minimal left ideals (which is built into the definition of 4», and a word 
representing an idempotent of the minimal two-sided ideal of 5. This makes 
it easier to apply, so that, whenever we are faced with the task of finding a 
presentation for the Schiitzenberger group of a minimal two-sided ideal, we will 
use the presentation 'I. 

We finish off this section by mentioning another rewriting theorem for the 
Schiitzenberger group of the minimal two sided ideal introduced in Campbell, 
Robertson, Ruskuc and Thomas (1995a). It gives a presentation for H in terms 
of generators 

{eae I a E A} U {el,xeill i E I,A E A}. 

As always, first we introduce a new alphabet in one-one correspondence with the 
given generating set: 

BI = {ba I a E A} U {C,xi I A E A, i E I}. 

N ext we define a mapping 
<PI: A+ -r Bt 

inductively by 

a(h = ba , 

(aW)<pI = baCla,wl(W<P), 

a E A, W E A +. It is important to note that this rewriting mapping depends 
both on the action of 5 on its minimal left ideals and on the action of 5 on its 
minimal right ideals. We also need words g,xi E A +, A E A, i E I, such that 

holds in 5, and which satisfy 

g,xl = gli - e. 

With this notation Campbell, Robertson, Ruskuc and Thomas (1995a) proved 
the following 

Theorem 3.3. The presentation 

it = (BI I (ueid<pI = (veil)<P, (eeil)<p = eil<P, (g,xiejl)<P = c,xi(ejl<P) 

((U=V)E~, i,jEI, AEA)) 

defines H as a group .• 
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This theorem yields a finite presentation for H if and only if S is finitely pre­
sented and has finitely many minimal left ideals as well as finitely many minimal 
right ideals, which is a weaker result than Corollary 2.3. This was the main rea­
son for the author to consider this presentation 'worse' than the presentation .0 
from Theorem 3.1. A closer analysis, however, shows that the sizes of two presen­
tations are not comparable in general. The presentation.o has IAIIAI generators 
and IAI(1911 + IAI) relations, while the presentation it has IAI + IIIIAI generators 
and 111(1911 + IIIIAI + 1) relations. The presentation X from Theorem 3.2 has the 
same number of generators as .0, but it has fewer relations than either .0 or it. 

Nevertheless, the presentation it does have certain disadvantages when com­
pared with both .0 and X. First of all, it is less general, as it does not generalise 
naturally to O-minimal ideals. It also requires more 'input data', since we have 
to know two actions of S and all the idempotents eil, e.\l, i E I, ,\ E A. However, 
it should be pointed out that the particular examples that we give in this thesis 
can be solved with more or less the same degree of difficulty by using any of the 
given presentations. The reason why we opt for the presentation X in all these 
examples is that we wish to emphasise its generality, rather than to develop a 
separate rewriting procedure for each particular example. 

4. Example: another presentation for A5 

In Section 3 of Chapter 9 we showed how Theorem 9.2.1 can be used for investi­
gating the structure of semigroups defined by presentations. All the presentations 
considered there were, when considered as group presentations, presentations for 
the alternating group A5 of degree 5. In this section we illustrate the general the­
ory developed in the previous three sections on a further presentation defining A5: 

q35 = q35(2, 3, 5) = (a, b I a3 = a, b4 = b, b(ab)5 = b, ba2b = bab3ab). 

(N otice that the last relation is redundant in the group case.) 
Our aim is to determine the structure of the semi group S = S(q35) defined 

by the above presentation. Similarly as in Section 3 of Chapter 9 we begin by 
determining minimal left ideals and minimal right ideals of S. 

Lemma 4.1. For any word WI E {a, b} + there exists a word W2 E {a, b} + such 
that 

W2WI b = b (respectively bWI W2 = b) 

holds in S. In particular each of the words b, ba, ba2 (respectively b, ab, a2b) 
generates a minimal left (respectively right) ideal. All these minimal left (right) 
ideals are distinct, and they are the only minimal left (right) ideals of S. 

PROOF. It is easy to see that, by applying relations a3 = a and b4 = b, WI can 
be written as 
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where 

(If WI is a power of a then we ought to take k = 0, while if WI is a power of b 
we ought to take k = 1, i l = i2 = 0.) We prove the first part of the lemma by 
induction on k. 

For k = 0, we have WI = ail, and hence 

Now let k ~ 1. By the inductive hypothesis we have 

for some w~ E A+. Now, if ik = 1, then we have 

w;(ba)4b4-jkb(ab)4a3-ik+l . wIb 

w;(ba)4b4-jkb(ab)4a3~ka~k-laik-l ... ~lailb 

w;(ba)4b4-jkb(ab)5~k-Ia~k-laik-l ... ~lailb 

w;(ba)4b4a~k-laik-l ... ~lailb 

w;b( ab )5~k_l-1 aik- l ... ~l ail b 

W;~k-l aik- l ... ~l ail b 

b, 

while if ik = 2 we have 

w;(ba)4b(ba)4b4-jkb(ab)4a3-ik+l . wIb 

w;(ba)4b(ba)4b4-jkb(ab)4a3~ka2~k-laik-l ... ~lailb 

w;(ba )4b(ba )4b4- jk b( ab )5 ~k-Ia2 ~k-l aik- l ... ~l ail b 

w;(ba)4b(ba)4b4a2~k-laik-l ... ~lailb 

w;(ba )4b(ba )4ba2~k-l aik- l ... ~l ail b 

w;(ba)4b(ba)4bab3a~k-laik-l ... ~lailb 

w;(ba)4bb3a~k-laik-l ... ~lailb 

w;(ba)5~k-laik-l ... ~lailb 

W;~k-l aik- l ... ~l ail b 

b, 

thus proving the first part of our lemma. 
It now follows from Proposition 9.3.1 that the left ideals generated by b, ba 

and ba2 are all minimal; we denote these ideals by LI, L2 and L3 respectively. 
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In order to see that L1 , L2 and L3 are the only minimal left ideals of S, let 
w E A + be an arbitrary word. Then the word bw contains a letter b, and is 
therefore equal to a word of the form W1 ba i, 0 ::; i ::; 2. By the first part of the 
lemma, there exists a word W2 such that 

Hence, if w generates a minimal left ideal it must be L i+1, since the minimal left 
ideals of a semigroup are disjoint. 

To prove that L1, L2, L3 are all distinct, first we note that the last letter of 
a word is an invariant of the presentation $5, and hence 

Also, the last power of a modulo 2 is also an invariant of $5 (i.e. if w1 bai = w2baj 

then i = j (mod 2)), so that 

The assertions about minimal right ideals can be proved in a similar way .• 

As in the above proof, let LA, ). E A = {I, 2, 3}, denote the (minimal) left 
ideals of S generated by b, ba, ba2 respectively, and let Ri , i E I = {I, 2, 3}, 
denote the (minimal) right ideals generated by b, ali, a2 b respectively. As in the 
previous sections, we let 

We are now going to find a presentation for H by applying Theorem 3.2. Since 
S has two generators and three minimal left ideals, the presentation ':r will have 
6 generators, which we denote by 

(Notice that we use the letter t rather than b in order to avoid having, say, b1,b 

as a generator.) We also need to describe the action of S on its minimal left 
ideals. As we already noted in Section 1, this action is determined by the actions 
of thegenerators, which are easily seen to be 

L1a = Slba = L2, 

L2a = Sl ba2 = L3, 

L3a = Slba3 = Slba = L2, 

L1 b = Slb2 = L1 , 

L2b = Slbab = L1, 

L3b = Slba2b = L1 · 
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The above information can be given more compactly in the form of the following 
table: 

a b 
1 2 1 
2 3 1 
3 2 1 

Finally, we need a word e representing the identity of H, and it is easy to see 
that b3 satisfies these conditions. 

A presentation for H is obtained by rewriting the defining relations for Sand 
the word b3

• The definition (14) of the rewriting mapping 

~ : A x A + ---+ B+ 

in the particular case of the semi group S becomes 

()., a)~ = i)',a, ('\, b)~ = i)',b, 

()., aw)~ = i)',a • ('\a, w)~ 

('\,bw)~ = i)',b· ('\b,w)~, 

where'\ E A, w E {a, b} +. Therefore, if w == 0:10:2 ... O:k E A+, where 0:1, . .. ,O:k E 
A, we can calculate ('\, w)~ by means of the following table 

0:1 0:2 ... O:k 

,\ i),l,C>l i),2,C>2 ... i),k,C>k 

where '\1, ... ,'\k are obtained recursively by 

First we rewrite the relations from ~5: 

a a a - a -

1 i 1,a i 2,a i 3,a - 1 h,a -

2 i 2,a i 3 ,a i 2,a - 2 i 2,a -

3 i3,a i2,a i3,a - 3 i 3 ,a 

b b b b - b -

1 i 1,b i 1,b il,b i 1,b - 1 i1,b -
2 i 2,b h,b i1,b i1,b - 2 i 2,b -
3 i 3 ,b i1,b i1,b i1,b - 3 i 3,b -

b a b a b a b a b a b - b -
1 i1,b i1,a i 2,b i1,a i 2,b h,a i 2,b i1,a i 2,b i1,a i 2,b - 1 il,b -

2 i 2,b i1,a i 2,b i1,a i 2,b i1,a i 2,b i1,a i 2,b i1,a i 2,b - 2 i 2,b -

3 i 3 ,b i1,a i 2,b i1,a i 2,b i1,a i 2,b i1,a i 2,b i1,a i 2,b - 3 i 3 ,b -
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b a a b - b a b b b a b -
1 h,b i1,a i 2,a t3,b - 1 t1,b t1,a t 2,b t1,b t1,b t1,a t 2,b -
2 t 2,b t1,a i 2,a t3,b - 2 t 2,b t1,a t 2,b tl,b t1,b t1,a t 2,b -
3 i 3,b t1,a t 2,a t 3,b - 3 t3,b t1,a t 2,b t1,b t1,b t1,a t 2,b -

and then we rewrite the word b3 : 

b b b 
1 t1,b t1,b t1,b - 1 
2 t 2,b t1,b t1,b - 1 -
3 i 3,b i1,b t1,b - 1 -

The resulting presentation 

(t1,a, t 2,a, t 3,a, t1,b, i 2,b, h,b I i 1,at 2,at3,a = t1,a, t 2,at 3,at 2,a = t 2,a, 

t3,at 2,at3,a = t 3,a, ti,b = t1,b, t 2,bt i,b = t 2,b, t3,bt i,b = t3,b, t 1,b(t1,ai 2,b)5 = i1,b, 

t 2,b(i1,at2,b)5 = t 2,b, t3,b(t1,ai 2,b)5 = t3,b, t1,bt l,a t2,at3,b = il,btl,at2,bti,bil,at2,b, 

t 2,bi l,at 2,at 3,b = t2,bil,at2,bti,btl,at2,b, t3,bt l,at 2,at 3,b = t3,btl,at2,bti,bil,at2,b, 

ii,b = 1, t 2,bt i,b = 1, t3,bti,b = 1) 

143 

is a monoid presentation for H by Theorem 3.2. H.owever, as we noted before, 
this is also a group presentation for H, and in what follows we treat it as such. 
N ow the three relations 

obtained by rewriting a3 = a, are equivalent to the single relation 

t2,at3,a = 1. 

We can easily see that rewriting any other relation from ~5 gives only one rela­
tion, while rewriting b3 gives two more relations, so that we obtain the following 
presentation for H 

(h,a, t 2,a, t3,a, h,b, t 2,b, t 3,b I t 2,at 3,a = 1, ti,b = 1, (t1,at 2,b)5 = 1, 

i2,at3,b = h,bti,bh,at2,b, t2,bti,b = 1, t3,bii,b = 1). 

Now by using the first, fifth and sixth relations we can eliminate t 3,a, t 3,b and t 2,b 

as 
i 3,a = i2,!' t 2,b = t3,b = tl,b, (19) 

and we obtain 
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Next, by using the last relation 

we eliminate i z a and obtain , 

(i1,a, i1,b I ii,b = 1, (i1,ail,b)S = 1). 

Finally, if we introduce new generators x and y by 

x = i1,b, Y = i1,ail,b, 

and then eliminate i1,a and i1,b by using 

i i -I Z 
l,b = x, l,a = yx = yx , 

we end up with the presentation 

(x, y I x3 = 1, yS = 1), 

(20) 

(21) 

(22) 

which defines the free product C3 * Cs of a cyclic group of order 3 and a cyclic 
group of order 5. 

Therefore, the Schiitzenberger group H of the minimal two-sided ideal M of 
S is isomorphic to C3 * Cs, while the minimal ideal itself consists of nine copies 
of this group. 

We can be more precise and express M as a Rees matrix semi group by using 
Corollary 2.5. To this end we need representatives xA of Hn, A = 1,2,3, as well 
as representatives Yh of Hi!, i = 1,2,3. One choice of these representatives is 

- b - b - b Z - b - b - Zb 
Xl = ,Xz - a, X3 = a, YI = ,Yz - a 'Y3 a. 

The entries of a Rees matrix 

are obtained by rewriting the words xAYk For example, rewriting XIYI = bZ yields 

b b 
1 il,b il,b 

so that Pu = ii,b' Similarly 

PIZ = (XIYz)<jJ = (bab)<jJ - il,bil,aiZ,b, 

Pl3 = (XIY3)<jJ - (baZb)<jJ == h,bi l,ai Z,ai3,b, 

PZI = (XZYI)<jJ = (bab)<jJ = il,bil,aiZ,b, 

PZZ = (xzYz)<jJ - (baZb)<jJ = i l ,bi l,ai Z,ai3,b, 

PZ3 = (XZY3)<jJ = (ba3b)<jJ = il,bil,aiz,ai3,aiz,b, 

P31 = (X3YI)<jJ = (baZb)<jJ = h,bi l,ai Z,ai3,b, 

P3Z = (X3Yz)<jJ = (ba3b)<jJ = il,bil,aiz,ai3,aiz,b, 

P33 = (X3Y3)<jJ (ba4 b)<jJ = il,bil,aiz,ai3,aiz,ai3,b. 
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By using (19), (20), (21) we can express these entries in terms of generators x 
and y: 

Therefore 

t 2 2 
Pn = l,b = X , 

Pl2 = P21 = it,bt l,at 2,bx yx
2
x = xy, 

Pl3 = P22 = P31 = tl,bt l ,at 2,at3,b = tl,bti,atl,b = xyx2yx2x = xyx2y, 

P23 = P32 = tl,btl,at2,at3,at2,b = tl,btl,atl,atl,!tl,b = xyx2x = xy, 

P33 = tl,btl,at2,at3,at2,at3,b = tl,btl,atl,atl,!tl,atl,b = xyx2y. 

P = ( ;~ X::2y X~~2Y). 
xyx2y xy xyx2y 

Moreover, P can be transformed into the normal form by Propositions A.2.5 
and A.2.6. To do this we first premultiply the rows by x, y4x2 and y4x 2y4x 2 
respectively, and then we postmultiply the columns by 1, y4x and y4xy4x, and 
we obtain 

P = ( ~ ~ y4:y4X ) . 
1 y4xy4x y4xy4x 

Finally, we determine S - M. First we note that b E M, so that every word 
which contains a letter b represents an element of M. Conversely, if a word w 

represents an element of M then w contains b, for the letter b is an invariant of 
the presentation ~5. Therefore, a and a2 are the only elements of S - M, and 
S - M is a cyclic group of order two. 

We have proved 

Theorem 4.2. The semigroup S defined by the presentation 

~5 = (a, b I a3 = a, b4 = b, b(ab)5 = b, ba2b = bab3ab) 

has a minimal two-sided ideal M, which is isomorphic to the Rees matrix semi­
group 

M[H; {I, 2, 3}, {I, 2, 3}; P], 

where 
H = (x, y I x3 = 1, y5 = 1) 

is the free product C3 * C5 and 

S - M is a cyclic group of order 2. The semigroup S is infinite, and is a union 
of groups .• 
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Further applications of our rewriting theorem to structural investigations can 
be found in Chapters 11 and 13. 



Chapter 9 

Fibonacci semigroups 

In this chapter we apply methods developed in the previous two chapters to 
investigate the structure of semi groups defined by presentations for the Fibonacci 
groups and generalised Fibonacci groups. 

Section 1 contains definitions and some historical remarks. The results of Sec­
tions 2 and 4 will appear in Campbell, Robertson, Ruskuc and Thomas (1995a), 
and the results of Section 3 have appeared in Campbell, Robertson, Ruskuc and 
Thomas (1994). However, the proofs of many theorems have been altered in order 
to bring them in line with our general theory. 

1. Definitions and history 

In this chapter we consider semi groups S (r, n) defined by presentations 

and, more generally, semigroups S(r, n, k) defined by presentations 

s.:}J(r, n, k) = (aI, . .. , an I aiai+l ... ai+r-l = ai+r+k-l (i = 1, ... ,n)), 

where r, n, kEN, and all subscripts are reduced modulo n. It is obvious that the 
presentation s.:}J(r, n) is identical to the presentation s.:}J( r, n, 1). 

The groups F(r, n) defined by s.:}J(r, n) are called Fibonacci groups. These 
groups have been a subject of extensive investigation over the years. This inves­
tigation began by a question of Conway (1965) as to whether or not the group 
F(2,5) defined by the presentation 

s.:}J(2,5) = (aI, a2, a3, a4, as I ala2 = a3, a2a3 = a4, a3a4 = as, 

a4aS = aI, aSal = a2) 

is cyclic of order 11. It was quickly determined that this was indeed the case; 
see Conway et al. (1967). At the same time it was observed that this can 
be proved without using inverses or cancellation laws, so that the semigroup 

147 



148 Semigroup presentations 

S(2,5) is also isomorphic to ell. Thus the connection between Fibonacci groups 
and semigroups S(r, n), which we shall call Fibonacci semigroups, has attracted 
attention at the earliest stage of the research. 

Much of the research on the Fibonacci groups has been motivated by the 
finiteness problem: for which r, n E N is the group F(r, n) finite? For example, 
F(2, 1) and F(2,2) are trivial groups, F(2,3) is the quaternion group, F(2, 4) is 
cyclic of order 5, F(2,5) is cyclic of order 11, F(2, 6) is infinite, F(2, 7) is cyclic of 
order 29 and F(2, n) is infinite for n 2:: 8. For a survey and extensive bibliography 
on the Fibonacci groups the reader is referred to Thomas (1991). In particular, 
this paper contains the information known at that time on orders of the groups 
F(r, n), for 2 ~ r, n ~ 10; see Table 1. 

I r\n II 2 I 3 I 4 5 6 7 8 9 

2 1 8 5 11 (X) 29 (X) (X) (X) 

3 8 2 (X) 22 1512 ? (X) ? (X) 

4 3 63 3 (X) ? ? ? ? (X) 

5 24 (X) 624 4 (X) ? (X) (X) ? 
6 5 5 125 7775 5 (X) ? ? (X) 

7 48 342 (X) ? 76 - 1 6 (X) ? (X) 

8 7 (X) 7 ? (X) 87 
- 1 7 (X) ? 

9 80 8 6560 (X) ? (X) 98 -1 8 (X) 

10 9 999 4905 9 ? ? (X) 109 
- 1 9 

Table 1. 

The question of connections between Fibonacci groups and Fibonacci semi­
groups arose again with the development of computational methods for finitely 
presented semigroups, since presentations ~(r, n) provided natural and interest­
ing examples of semi group presentations. A record of this research can be found 
in Campbell,Robertson and Thomas (1992), where the authors produced a table 
with orders of semigroups S(r, n), 2 ~ r, n ~ 10; see Table 2. This prompted 
a conjecture made in Campbell, Robertson and Thomas (1993a) that the order 
of a Fibonacci semigroup S(r, n) is equal to g.c.d.(n, r) times the order of the 
corresponding Fibonacci group F(r, n). This conjecture was proved in Campbell, 
Robertson, Rui§kuc and Thomas (1994), by showing that S(r, n) is a completely 
simple semi group which is a disjoint union of g.c.d.(n, r) copies of F(r, n). In this 
chapter we prove this result by using Theorem 9.2.1 and Corollary 9.2.4. How­
ever, it should be noted that the actual result is older than Theorem 9.2.1, and 
that it has actually motivated Theorem 9.2.1. This is an example of how com­
puting methods can be used as tools for experimenting in mathematics, and how 
the results of such experiments can point to more general and purely theoretical 
theorems. 
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I r\n II 2 3 4 5 6 7 8 9 110 I 
2 2 8 10 11 00 29 00 00 00 

3 8 6 00 22 4536 ? 00 ? 00 

4 6 63 12 00 ? ? ? ? 00 

5 25 00 624 20 00 ? 00 00 ? 

6 10 15 250 7775 30 00 ? ? 00 

7 48 342 00 ? 76 -1 42 00 ? 00 

8 14 00 28 ? 00 ? 56 00 ? 

9 80 24 6560 00 ? 00 ? 72 00 

10 18 999 9810 45 ? ? 00 ? 90 
Table 2. 

Rather than considering Fibonacci semigroups S(r, n), for most of this chapter 
we will be considering their generalisations S(r, n, k), which we call generalised 
Fibonacci semigroups. The corresponding groups F(r, n, k), usually called gener­
alised Fibonacci groups, were introduced in Campbell and Robertson (1974). A 
survey of results and bibliography for these groups can again be found in Thomas 
(1991). We do not consider this generalisation just for the sake of generalisation, 
but because of the fact that the generalised FibonacCi semigroups show a greater 
variety of behaviour. Apart from the already mentioned situation where S(r, n, k) 
is a finite union of disjoint copies of F(r, n, k), we will see that there are two more 
different situations: S(r, n, k) can be a finite union of a number of disjoint copies 
of some group which is not necessarily isomorphic to F(r, n, k), and which is 
infinite regardless of whether or not F(r,n,k) is infinite, or S(r,n,k) can be a 
semi group without any minimal (left, right or two-sided) ideals. 

In Section 2 we find for which values of r, n, k the semi group S(r, n, k) has 
minimal ideals, and prove that for these values S(r, n, k) is a completely simple 
semigroup. A straightforward application of Corollary 9.2.4 gives then a structure 
theorem for the Fibonacci semigroups S(r, n) in Section 3. Finally, in Section 4 we 
apply the Reidemeister-Schreier type rewriting technique developed in Chapter 
10 to find a presentation for the Schiitzenberger group of S(r, n, k) in the case 
when S(r, n, k) is a completely simple semigroup,: and prove that this group is 
infinite regardless of whether or not the group F(r, n, k) is infinite. 

2. Minimal ideals of generalised Fibonacci semigroups 

In this section we begin describing the structure of the generalised Fibonacci 
semigroups S(r,n,k). Let us recall that S(r,n,k) is defined by the presentation 
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where all the subscripts are reduced modulo n. Let us also define 

d1 = g.c.d.(n, k), 
d2 = g.c.d.(n, 1" + k - 1), 

d = g.c.d.( dI, d2 ) = g.c.d.( n, k, 1" + k - 1). 

Our strategy is to use the general theory developed in Chapters 9 and 10, 
whichever is appropriate. Both these methods have the same beginning-detection 
of minimal left and right ideals, and this is the main theme of this section. 

We begin by considering the case where there are no minimal ideals at all, 
and, within this case, we start by considering the case 1" = 1, which is somewhat 
exceptional. 

Theorem 2.1. Let n, k E fir be arbitrary, and let d1 = g.c.d.(n, k). Then 
S(I,n,k) is the free semigroup of rank d1 , and F(I,n,k) is the free group of 
rank d1 . 

PROOF. For 1" = 1 the presentation ~(r, n, k) becomes 

~(I,n,k) = (al, ... ,an I ai = ai+k (i = 1, ... ,n)). 

Therefore we have 

for any i = 1, ... , n and any p ~ O. Since the subscripts are reduced modulo n, 
and since d1 = g.c.d.(n, k), we have 

(1) 

On the other hand, all the relations ai = ai+k are consequences of (1), so that 
~(I,n,k) is equivalent to 

(aI, ... , an I ai = ai+d1 (i = 1, ... , n)). 

The relations of the above presentation can be used to eliminate generators 
ad1 +1, ad1+2, ... , an, SO that we are left with the presentation 

which defines the free semigroup of rank d1 and the free group of rank d1 respec­
tively .• 

Next we deal with the general case where there are no minimal ideals. 

Theorem 2.2. Let 1", n, k E fir, 1" > 1, be arbitrary, and let d = g.c.d.(n, k, 1" + 
k - 1). If d > 1 then the semigroup S (1", n, k) has no minimal (left, right or 
two-sided) ideals. 
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PROOF. The existence of minimal left ideals or minimal right ideals implies the 
existence of a minimal two-sided ideal by Proposition A.3.2. Therefore, to prove 
the theorem, it is sufficient to prove that S (r, n, k) has no minimal two-sided 
ideals. 

Actually, we consider the homomorphic image T of S(r, n, k) obtained by 
adding the relations 

ai = ai+d, i = 1, ... , n, 

to s,p-(r, n, k). After eliminating generators ad+l, ad+2, ... , an we obtain the fol­
lowing presentation for T: 

where 1 = (r - 1) / d and the subscripts are reduced modulo d. We prove that 
T has no minimal two-sided ideals. Since a homomorphic image of a minimal 
ideal is again a minimal ideal, it will then follow that S has no minimal two-sided 
ideals either. 

For a word W _ ail ai2 ••• aip ' we denote by ,( w) the number of pairs (ij, i j +1), 
1 ::; j < p, such that 

Since 
,((aiai+I'" ai_2ai_I)lai) = 0 ~ ,(ai), 

and since the first and the last letters of a word are invariants of the presentation 
(2), we conclude that ,( w) is also an invariant, i.e. if two words WI and W2 

represent the same element of T then ,(WI) = ,(W2)' We also note that 

for any two words WI, W2· 
Assume now that T has a minimal two-sided ideal M, and let W be a word 

representing an element of M. Consider the word aiw. It also represents an 
element of M, and, because of minimality, there exist words W3, W4 such that 

holds in T. Note that 

and so we have 

which is a contradiction .• 

N ow we come to the main result of this section. 
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Theorem 2.3. Let 1', n, k E 91, l' > 1, be arbitrary, let d1 = g.c.d.(n, k), d2 = 
g.c.d.(n, l' + k - 1) and assume that d = g.c.d.(n, k, l' + k - 1) = 1. 

(i) Each generator ai of 5(1', n, k) generates a minimal left ideal, as well as a 
minimal right ideal. 

(ii) Two generators ai and aj generate the same minimal left (respectively right) 
ideal if and only if i = j (mod d1) (i == j (mod d2)). 

(iii) 5(1', n, k) is a completely simple semigroup with d1 minimal left ideals and 
d2 minimal right ideals. 

In order to prove the theorem we need some technical lemmas. In all of them 
we assume the conditions given in the theorem. 

Lemma 2.4. For each i, 1 :::; i :::; n, there exist words 01(i) and 02(i) such that 
the relations 

(3) 

hold in 5(r,n,k). 

PROOF. It is enough to take 

as both relations (3) then become defining relations of 5(r,.n, k) .• 

Lemma 2.5. For each i, 1:::; i:::; n, and for each 12: 1, there exist words (31(i,l) 
and (32 ( i, 1) such that the relations 

(31 ( i, I) . ai = ai+ldll ai' (32 ( i, I) = ai+ld2 

hold in 5(r,n,k). 

PROOF. Since d1 = g.c.d.( n, k) there exist 1', sEN such that 

rk = Id1 + sn. 

Now let 
(31(i, I) - 01(i + (1' -1)k)· .... 01(i + k) . 01(i). 

By Lemma 2.4 we have 

01(i + (1' -1)k) ..... 01(i + k)· 01(i)· ai 

01 (i + (1' - 1) k) ..... 01 (i + k) . ai+k 

01(i + (1' - l)k) . ai+(r-1)k 

since the subscripts are reduced modulo n. 
The construction for (32(i, I) is dual. • 
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Lemma 2.6. For any i,j with 1 ~ i,j ~ n, there exist words 11(i,j) and 12(i,j) 
such that the relations 

hold in S(r,n,k). 

PROOF. Since g.c.d.(d1 ,d2 ) = 1, there exist s,t E N such that 

i + sd1 = j + td2 - 1 (mod n). (4) 

Now, by Lemma 2.5, we have 

so that 
(6) 

and therefore 

/31(i,s)·aiaj = ai+sd1aj+td2·/32(j+td2,n-t) = aj+td2-1aj+td2·/32(j+td2,n-t), (7) 

by (6), Lemma 2.5 and (4). Next note that 

aj+td2-r+1aj+td2-r+2 ... aj+td2-2 . aj+td2-1aHtd2/32(j + td2, n - t) 
= aj+td2+k/32(j + td2, n - t) 

by a relation from ~(r, n, k), and also that 

/31(j + td2 + k, n - ~) . aj+td2+k . /32(j + td2, n - t) 

aj+td2+k+nd1-k . /32(j + td2, n - t) = aj+td2 . /32(j + td2, n - t) = aj 

by Lemma 2.5 and (5). From (4)-(9) it follows that for 

k 
11 (i, j) - /31 (j + td2 + k, n - d

1
) . aj+td2-r+1 ..... aj+td2-2 . /31 (i, s) 

we have 

exactly as required. 
The construction for 12(i,j) is dual. • 

(8) 

(9) 

PROOF OF THEOREM 2.3. We prove all statements for left ideals; the proofs for 
right ideals are dual. 

(i) In order to prove that ai generates a minimal left ideal it is enough to prove 
that for any word WI there exists a word W2 such that the relation 
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holds in S(r, n, k); see Proposition 9.3.1. This, however, follows easily from 
Lemma 2.6 by induction on the length of WI. 

(ii) Let 

i = j (mod dd. 
Without loss of generality we may assume that i < j, so that 

i + rd1 = j 

for some r E N. By Lemma 2.5 we have 

/31 ( i, r) . ai = ai+rd1 = a j, 

/31 (j, n - r) . aj = aj+nd1-rd1 = aj-rd1 = ai, 

and we conclude that ai and aj generate the same (minimal) left ideal. 
For th~ converse assume that ai and aj generate the same (minimal) left ideal, 

so that 

(10) 

for some words WI and W2. Note that the subscript of the last letter modulo d1 

is an invariant of s;p-(r, n, k), in the sense that 

In particular, from (10), we have 

as required. 

(iii) This part of the lemma is a direct consequence of parts (i) and (ii) .• 

3. The structure of Fibonacci semigroups 

The results of this section are easy consequences of the main result of the previous 
section and Corollary 9.3.4. However, we include them in a separate section, 
mainly because we consider them as 'nice', but also because they are the earliest 
of all the results presented in this thesis. 

Let us recall that the Fibonacci semi group S (r, n) is defined by the presenta­
tion 

s;p-(r, n) = (all ... , an I aia i+l··· ai+r-l = ai+r (i = 1, ... , n)), 

and that the group defined by s;p-(r, n) is denoted by F(r, n). 
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Theorem 3.1. Let r,n E N! l' > 1 be arbitrary! and let d2 = g.c.d.(n, 1'). The 
Fibonacci semigroup 5(1', n) is a completely simple semigroup with one minimal 
left ideal (5(1', n) itself) and d2 minimal right ideals! each of which is a group 
isomorphic to the Fibonacci group F(r, n). In particular! 5(1', n) is a disjoint 
union of d2 copies of F(r, n). 

PROOF. Note that ~(r,n) = ~(r,n,l), and since 

d = g.c.d.(n, 1,1') = 1, 

5(1', n, k) is a completely simple semi group by Theorem 2.3. By the same theorem, 
the number of minimal left ideals is d1 = g.c.d.(n, 1) = 1, while the number of 
minimal right ideals is d2 • Finally, each of these minimal right ideals is a group 
isomorphic to F(r, n) by Corollary 9.2.4 .• 

An immediate corollary of this theorem is the reduction of the finiteness prob­
lem for Fibonacci semigroups to the same problem for Fibonacci groups. 

Corollary 3.2. A Fibonacci semigroup 5(1', n) is finite if and only if the corre­
sponding Fibonacci group F(r, n) is finite. 

PROOF. If l' > 1, the corollary follows from Theorem 3.1. For l' = 1, 5(1', n, k) 
and F(r, n, k) are the free monogenic semi group and free cyclic group respectively, 
and are both infinite .• 

Similarly, we have 

Corollary 3.3. A Fibonacci semigroup 5(1', n) has a soluble word problem if and 
only if the corresponding Fibonacci group F(r, n) has a soluble word problem .• 

Here we have a surprising connection with Adian's results mentioned in Sec­
tion 1 of Chapter 9. There we had conditions for a semi group to be embeddable 
into the group with the same presentation, thus reducing the word problem for 
the semigroup to the word problem for the group. Here, again, we have the word 
problem for a semi group reduced to a word problem for the corresponding group, 
but for the opposite reason: the semi group consists of a finite number of copies 
of the group. 

Another connection with Adian's results is th~t Theorem 3.1 generalises to 
presentations whose Adian graphs (see Section 1 of Chapter 9) satisfy certain 
technical conditions. 

Theorem 3.4. Let 

be a presentation in which each CXi is a word of length at least two and each ai 
occurs as the first! second and last letter of three (not necessarily distinct) CXj. 
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Assume further that the right Adian graph ofq3 is connected, while the left Adian 
graph has d components. Then the semigroup S defined by q3 is a completely 
simple semigroup with a unique minimal left ideal and d minimal right ideals, 
each of which is a group isomorphic to the group defined by q3. In particular, S 
is finite if and only if G is finite, and S has a soluble word problem if and only if 
G has a soluble word problem .• 

4. Generalised Fibonacci semigroups 

Now we return to investigating the generalised Fibonacci semigroups S(r, n, k), 
i.e. the semigroups defined by the presentations 

q3(r, n, k) = (al,"" an I aiai+l'" ai+r-l = ai+r+k-l (i = 1, ... , n)). 

As before we let 

dl = g.c.d.(n, k), d2 = g.c.d.(n, r + k - 1). 

We already know that if r = 1 or g.c.d.( n, k, r + k - 1) > 1 the semi group 
S(r, n, k) is infinite and does not have any minimal ideals; see Theorems 2.1 and 
2.2. Hence, in this section we concentrate on the case where r > 1 and 

g.c.d.(n, k, r + k - 1) = g.c.d.(dl , d2 ) = 1. 

In this case we know that S(r, n, k) is a completely simple semi group with dl 

minimal left ideals and d2 minimal right ideals; see Theorem 2.3. In particular, 
S(r, n, k) is a disjoint union of dl d2 copies of its Schiitzenberger group H(r, n, k). 
Here we apply the general Theory from Chapters 9 and 10 to find the group 
H(r, n, k). 

The case dl = 1 or d2 = 1 is easy. 

Theorem 4.1. Let r, n, kEN, r > 1, be arbitrary, and let dl = g.c.d.(n, k) and 
d2 = g.c.d.(n, r + k - 1). If dl = 1 (respectively d2 = 1) then the generalised 
Fibonacci semigroup S(r, n, k) has a unique minimal left (right) ideal and d2 (dl ) 
minimal right (left) ideals, each of which is isomorphic to the generalised Fi­
bonacci group F(r, n, k). In particular, S(r, n, k) is finite if and only if F(r, n, k) 
is finite. 

PROOF. The proof is exactly the same as the proof of Theorem 3.1. • 

In the rest of this section we consider the case dl > 1 and d2 > 1. First we give 
an example which shows that the Schiitzenberger group H(r, n, k) of S(r, n, k) 
may be not too closely related to F(r, n, k). 
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Example 4.2. Let us consider the semigroup 5(2,6,2). It IS defined by the 
presentation 

s:J3'(2, 6, 2) = (aI, a2, a3, a4, as, a61 ala2 = a4, a2a3 = as, a3a4 = a6, 

a4a S = aI, aSa6 = a2, a6a l = a3). 

Note that here dl = 2 and d2 = 3. Also note that the group F(2, 6, 2) is easily 
seen to be cyclic of order 7. 

By Theorem 2.3, 5(2,6,2) is a completely simple semigroup with two minimal 
left ideals and three minimal right ideals (see Figure 7). 

L 1 ~ 

PI .a4 

.as .a2 

.a3 .a6 

Figure 7. 

We are going to apply Theorem 10.3.2 in order to find a presentation for the 
Schiitzenberger group H(2, 6, 2) of 5(2,6,2). 

Since 5(2,6,2) has six generators and two minimal left ideals, the obtained 
presentation will have twelve generators which we denote by bA,ai = bA,i, ). = 1,2, 
i = 1, ... ,6. By Theorem 2.3 we have that the action of 5(2,6,2) on its minimal 
left ideals LA, ). = 1,2, has the following simple form: 

1121212 
2121212 

Now we rewrite the defining relations for 5(2,6,2) using the same method as in 
Section 4 of Chapter 10. 

al a2 - a4 - a2 a3 - as -
1 bll bl2 - 1 bl4 - 1 bl2 b23 - 1 blS -

2 b21 bl2 - 2 b24 - 2 b22 b23 - 2 b2S -

a3 a4 - a6 - a4 as - al -
1 bl3 bl4 - 1 bl6 - 1 bl4 b2S - 1 bll -
2 b23 bl4 - 2 b26 - 2 b24 b2S - 2 b21 -
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as a6 
1 bIS bI6 
2 b2S bI6 

N ext we note that 

- a2 - a6 aI - a3 -
- 1 bI2 - 1 bI6 b2I - 1 bI3 -
- 2 b22 - 2 b26 b21 - 2 b23 -

a4a4aSa4aI = a4a4a2a3a4aI = a4a4a2a6aI 

a4a4a2a3 = a4a4aS = a4 a1, 

so that a4aI represents an idempotent of 5(2,6,2). We now rewrite this idempo­
tent: 

a4 aI 
1 bI4 b21 - 1 -

2 b24 b21 - 1 -

By Theorem 10}.2 the presentation 

(bl1 , b12 , b13 , b14 , bIS , b16 , b2I , b22 , b23 , b24 , b2S , b26 \ bll b12 = b14 , b21 bl2 = b24 , 

bI2 b23 = bIS , b22 b23 = b2S , b13bI4 = b16, b23b14 = b26 , b14b2S = bn, b24 b2S = b21, 

bIS bI6 = b12 , b2S b16 = b22 , bl6 b21 = b13 , b26 b21 = b23 , bI4 b2I = 1, b24 b2I = 1) 

is a monoid presentation for H(2, 6, 2), and, again, we consider it as a group 
presentation for H(2, 6, 2). 

Let us first eliminate bIS , b16 , b2S , b26 by using 

so that we obtain the presentation 

(bn , b12 , b13, b14 , b2I , b22 , b23 , b24 \ bll b12 = b14 , b2I bI2 = b24 , bI4b22b23 = bn, 

b24b22b23 = b2I , b23b13b14 = 1, b14b2I = 1, b24 b2I = 1). 

Next we eliminate bI4 and b24 by 

and we obtain 

(bn , b12 , b13 , b21, b22 , b23 \ bnbI2b2I = 1, b2Ib12b2I = 1, 

b22 b23 = b2I bII , b22b23 = b~I' b23bI3 = b2I ). 

Now we can eliminate b2I by 

and obtain 

(11) 

(12) 

(13) 
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The remaining three relations can be used to eliminate bZ3 , b13 and bIZ as 

(14) 

leaving the presentation 
(x, y I ), 

where 

x = bll , Y = bzz · (15) 

Therefore, the Schiitzenberger group H(2, 6, 2) of S(2, 6, 2) is isomorphic to 
the free group of rank 2, and S(2, 6, 2) is a disjoint union of six copies of this 
group. 

It is possible to use Corollary 10.2.5 to obtain a representation of S(2, 6, 2) 
as a Rees matrix semi group over the free group of rank two. One choice of 
representatives is 

The entries of a Rees matrix P = (p>.ih99,1:Si9 are obtained by rewriting the 
words x>.fh and writing the result in terms of x and y, by using (11)-(15). The 
obtained matrix is 

and S(2, 6, 2) is isomorphic to the Rees matrix semigroup 

M[FGz; {I, 2, 3}, {I, 2}; P], 

where FGz is the free group on x and y .• 

Let us now return to the general case where we have r, n, kEN, r > 1, 
d1 > 1, dz > 1 and d = 1. By Theorem 2.3, S(r, n, k) has d1 minimal left ideals; 
we denote them by LA, A E A = {I, ... , dd, so that 

Similarly as in Example 4.2, the action of S(r, n, k) on its minimal left ideals is 
given by 

Aai = i (mod d1 ). 

Along the lines of Section 1 of Chapter 10, we introduce a new alphabet 

B = {bAi I ,\ E A, 1 ::; i ::; n}, 
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where b)',i stands for b)"ai' The rewriting mapping ~ is defined by 

('\, ai)~ = b)',i, 

('\,aiw)~ = b)',i' ('\ai'w)~, 

where 1 :::; z < n, ,\ E A, w E {all"" an} +. If we introduce the following 
convention 

b)',i = b), (modd1 ), i (modn)' 

('\, w)~ = (,\ (mod d1 ), w)~, 

where '\, i E N, the definition of the rewriting mapping ~ becomes 

('\, ad~ = b)',i, 
(,\,aiw)~ = b)',i' (i,w)~. 

(16) 

Also we have 
(17) 

see Lemma 10.2.S. 
Let H = H(r, n, k) denote the Schiitzenberger group of S(r, n, k). By The­

orem 2.3, S(r, n, k) is a disjoint union of d1dz copies of H., By Theorem 10.3.2, 
the presentation 

'I = (B I ('\, aiai+l··· ai+r-l)~ = (,\, ai+r+k-l)~' (,\, e)~ = 1 

(A E A, i = 1, ... ,n)), 

where e is a word representing an idempotent of S(r, n, k), defines H as a monoid 
and also as a group. Note that 'I has nd1 generators and nd1 + d1 relations. 

The author has not succeeded in his attempt to transform the presentation 'I 
into a presentation from which it would be possible to describe H. Therefore we 
pose the following 

Open Problem 12. Describe the group defined by the presentation 'I. For 
which r, n, kEN is this group: 

(a) free? 

(b) isomorphic to F(r, n, k)? 

Nonetheless, it is possible to reduce the number of relations in 'I enough to 
prove that H is always infinite. 

Theorem 4.3. If r, n, kEN, with r > I, d1 > I, dz > 1 and d = I, then the 
Schiitzenberger group of S(r, n, k) is infinite. 
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PROOF. First we introduce some notation: 

n 
s= -

dz' 

ui = ai+lai+Z·· . ai+r-I, i = 1, ... , n. 
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(18) 

(19) 

With this notation a general Fibonacci relation aiai+l ... ai+r-l = ai+r+k-l be­
comes 

(20) 

With (16) in mind, relations 

become 
(21 ) 

A E A, i = 1, ... , n. 
For i E fir, 1 ::; i ::; n, let us consider the following subset of relations (21): 

b>"i+l(r+k-1) . (i + 1(r + k - 1), Ui+l(r+k-l))~ = b>"i+(l+l)(r+k-l) 

(AEA,1=0, ... ,s-I). 
(22) 

Since dz = g.c.d.( n, r + k - 1), it is easy to see that there are exactly dz such 
subsets. We split relations (22) into two further groups: 

and 

b>"i+l(r+k-l) . (i + 1(r + k -1), Ui+l(r+k-l))~ = b>"i+(l+l)(r+k-l) 

(AEA,1=0, ... ,s-2), 

b>"i+(s-l)(r+k-l) . (i + (s - 1)(r + k - 1), Ui+(s-l)(r+k-l))~ = b>"i+s(r+k-l) 

(A E A). 

(23) 

(24) 

Since s = njdz, and since r+k-l is divisible by dz, relations (24) can be written 
as 

b>"i+(s-l)(r+k-l) . (i + (s - 1)(r + k - 1), Ui+(s-l)(r+k-l))~ = b>"i (A E A). (25) 

We are now going to show that in the set of relations (22) relations (25) can be 
replaced by a single relation 

(26) 

Note that the last letter of Ui is ai+r-I, and also note that 

r - 1 = r + k - 1 (mod d1 ), 
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since d1 = g.c.d.(n, k), so that (26) can be written as 

(i, ui)¢·(i+1'+k-1, Ui+r+k-l)¢'" .·(i+(s-1)(1'+k-1), Ui+(s-l)(r+k-l))¢ = 1. (27) 

First we have 

b>.,i· (i, ud¢' (i + l' + k -1, Ui+r+k-l)¢' ... 
·(i + (s - 1)(1' + k - 1), Ui+(s-l)(r+k-l))¢ 
b>.,i+r+k-l (i + l' + k - 1, Ui+r+k-l)¢ .... 
·(i + (s - 1)(1' + k - 1), Ui+(s-l)(r+k-l))¢ (by (23)) 

b>.,i+(s-l)(r+k-l) . (i + (s - 1)(1' + k - 1), Ui+(s-l)(r+k-l))¢ 
b>.,i, (by (25)) 

and hence (27) is a consequence of (23) and (25), since we are dealing with a 
group presentation. Now we prove that (27) and (23) imply (25). First note 
that, by (23), 

b>.,i+(s-l)(r+k-l) = b>.,i+(s-2)(r+k-l) . (i + (s - 2)(1' + k - 1), Ui+(s-2)(r+k-l))¢' 

By iterating this we obtain 

b>.,i+(s-l)(r+k-l) = b>',i' (i, Ui)¢· ... · (i + (s - 2)(1' + k -1), Ui+(s-2)(r+k-l))¢' (28) 

On the other hand, 

(i, Ui)¢' .... (i + (s - 2)(1' + k - 1), Ui+(s-2)(r+k-l))¢ 
= [(i + (s - 1)(1' + k - 1), Ui+(s-l)(r+k-l))¢l-l 

by (27), so that from (28) and (29) we obtain 

b>.,i+(s-l)(r+k-l) . (i + (s - 1)(1' + k - 1), Ui+(s-l)(r+k-l))4J = b>.,i, 

as required. 

(29) 

To summarise what we have done, a set of d1 relations (24) can be replaced 
by a single relation. There are d2 such sets, and after each has been replaced by a 
single relation, 'I' becomes a presentation on nd1 generators and nd1 +d1 +d2 -d1 d2 

relations. Since d1 > 1, d2 > 1 and d = g.c.d.( d1 , d2 ) = 1, we conclude that at 
least one of d1 and d2 is greater than 2, so that dd2 > d1 + d2. In other words, H 
can be presented by a presentation having fewer relations than generators, and 
hence H is infinite .• 

Remark 4.4. In Campbell, Robertson, Ruskuc and Thomas (1995a) the authors 
prove the above result by the same method, but they use the rewriting defined 
at the end of Section 3 in Chapter 10. In this way they obtain a presentation on 
n + (d1 - 1) (d2 - 1) generators and n relations 
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This is certainly a nicer presentation than the one we presented here. This adds 
some evidence to our claim that the two rewriting theorems are not comparable 
in strength. 

We end this chapter by summarising all the information about generalised 
Fibonacci semigroups we obtained. 

Theorem 4.5. Let r, n, kEN, and let d1 = g.c.d.( n, k), d2 = g.c.d.( n, r + k -1), 
d = g.c.d.(n, k, r + k - 1). 

(i) If r = 1 then S( r, n, k) is the free semigroup of rank d1 . 

(ii) If r > 1 and d > 1 then S(r, n, k) does not have any minimal (left, right or 
two-sided) ideals. 

(iii) If r > 1 and d1 = 1 then S(r, n, k) is a completely simple semigroup with 
a unique minimal left ideal and d2 minimal right ideals, each of which is a 
group isomorphic to the generalised Fibonacci group F(r, n, k). 

(iv) If r > 1 and d2 = 1 then S(r, n, k) is a completely simple semigroup with 
a unique minimal right ideal and d1 minimal left ideals, each of which is 
isomorphic to the generalised Fibonacci group F(r, n, k). 

(iv) If r > 1, d1 > 1, d2 > 1 and d = 1 then S(r, n, k) is a completely simple 
semigroup with d1 minimal left ideals and d2 minimal right ideals, and is a 
union of d1 d2 copies of an infinite group. 

(v) If d1 = 1 or d2 = 1! then S (r, n, k) is finite if and only if the corresponding 
group F( r, n, k) is finite; otherwise S( r, n, k) is infinite regardless of whether 
F(r, n, k) is finite or infinite .• 



Chapter 10 

Semigroups defined by Coxeter type 
presentations 

In this chapter we investigate the structure of semigroups defined by a semi group 
variant of Coxeter type presentations for groups. The results of this chapter will 
appear in Campbell, Robertson, Ruskuc and Thomas (1995c). 

1. Coxeter graphs and presentations 

Let r be a digraph with a finite set of vertices 

A = A(r) = {ai 1 i E I}, 

which satisfies the following three conditions: 

(r1) r has no directed circuits; 

(r2) every vertex ai of r is labelled by a natural number Pi > 0; 

(r3) every edge (ai, aj) is labelled by a natural number Pij > O. 

(Note that condition (r1) implies that for any ai, aj E A at least one of (ai, aj) 
or (aj, ad is not an edge in r.) 

With every such graph we associate a presentation 

where 

with 

~(r) = (A 191), 

91 = {afi+l = ai 1 i E I} U {a(i,j) 1 i,j E I}, 
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if (ai, aj) is an edge 
if (aj, ai) is an edge 
otherwise. 

(1) 
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If I = {I, ... , n}, Pi = 2 for all i E I, and if we consider ~(r) as a group 
presentation, then it is equivalent to the presentation 

where 
if (ai, aj) is an edge 
if (aj, ai) is an edge 
otherwise. 

These presentations are usually called Coxeter presentations, and the groups 
defined are called Coxeter groups. They were first introduced by Coxeter (1936), 
and it soon turned out that many important classes of groups can be presented 
as Coxeter groups, with possibly a few additional relations. 

Here we will be interested in semigroups S(r) defined by (1). The semigroup 
defined by (1) for a particular graph r will be denoted by S (r), while the cor­
responding group will be denoted by G(r). We often refer to G(r) as a Coxeter 
type group. 

After introducing some more definitions and examples in this section, in Sec­
tion 2 we go on to prove that S(r) has a minimal two-sided ideal which is a 
disjoint union of copies of G(f). In Secti,on 3 we prove that S(r) is a union of 
groups and find a necessary and sufficient condition for S(r) to be finite. Finally, 
in Sections 4 and 5 we consider two classes of pr~sentations (1) which, when 
considered as group presentations, define alternating and symmetric groups re­
spectively. We determine both the structure and the orders of the semi groups 
defined by these presentations. 

First, however, we give some examples of graphs and associated presentations. 

Example 1.1. Let I = {I, ... , n}, and let r be the empty graph on A = 
{ aI, ... , an}. The associated presentation is 

The semi group S(r) and the group G(r) are both finite and abelian. Actually, 
S(r) has a minimal two-sided ideal which is isomorphic to G(r); see Campbell, 
Robertson, Ruskuc and Thomas (1995c) .• 

Example 1.2. Let I = {I, ... , n}, and let r = r~ be the oriented simple path 
on all' .. , an; in other words, the set of edges of r is 

Let the labels of r be 

Pi = 2, pj,j+l = 3 (1 ~ i ~ n, 1 ~ j < n). 
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The presentation ~(r) is 

~(f) = (al, ... , an I ar = ai, (ajaj+I)3 = a;, akaZ = aZak 

(1 ~ i ~ n, 1 ~ j < n, 1 ~ k < 1-1 < n)). 

The group G(r) defined by r is the symmetric group Sn+1 of degree n + 1; see 
Moore (1897) or Coxeter and Moser (1980). The structure ofthe semi group S(r) 
will be described in Section 5 .• 

Example 1.3. Let I = {I, ... , n}, and let the graph f 
A = {al, ... , an}, edges 

and labels 
Pi = 3, Pjk = 2 (1 ~ i ~ n, 1 ~ j < k ~ n). 

The presentation ~(r) is 

r~ have vertices 

~(r) = (al, ... ,an I at = ai, (ajak)2 = a] (1 ~ i ~ n, 1 ~ j < k ~ n)). 

The group defined by this presentation is the alternating group An+2 of degree 
n + 2; see again Moore (1897) or Coxeter and Moser (1980). The semi group 
defined by ~(f) will be described in Section 4 .• 

Example 1.4. Let 1= {1,2,3,4}, and let r be the following graph: 

3 5 3 
.~.~.~. 

2 2 2 2 

The group G(f) is not finite; see Coxeter (1936). However, the homomorphic 
image of G(r) obtained by adding the relation 

is the finite simple group PSL(2, 11); see Soicher (1987) .• 

For any digraph f satisfying (fl), (r2), (r3), we denote by Al = AI(r) the 
set of initial vertices of r, i.e. 

AI(r) = {ai E A I (aj,ai) is not an edge in r for any j E I}. 

Since r has no directed circuits, and since A(r) is finite, it follows that 
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Next we define recursively a sequence of sets An = An(r), n E N, as follows: 

Again, since f does not have directed circuits, there exists no E N such that 

for all n ~ no; we also have 

A graph is said to be finitely related if the group G(f) is finite. It is obvious 
that all the graphs from Examples 1.1, 1.2 and 1.3 are finitely related, while 
the graph from Example 1.4 is not. We define strongly finitely related graphs 
recursively as follows: 

(SFR1) every graph with one vertex is strongly finitely related; 

(SFR2) a graph f with n + 1 vertices is strongly finitely related if and only if 
it is finitely related and every subgraph f - {ai}, ai E Al(r), of f is 
strongly finitely related. 

The following example shows that there are finitely related graphs which are 
not strongly finitely related. 

Example 1.5. Let f be the graph 

3 1 3 

a 

3 

The corresponding presentation is 

~(f) = (at, a2, a3 I at = at, ai =: a2, ai = a3, 

ala2 = a{, ala3 = a{, (a2a3)3 = a~). 

The group G(f) defined by ~(r) is obviously cyclic of order 3, and hence f is 
finitely related. 

The set of initial vertices of f is Al (f) = {ad· The graph f - {ad is 

3 3 3 
• • • 
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and the corresponding presentation 

defines (3,3,3) group, which is infinite; see Coxeter and Moser (1980). Thus 
r - {al} is not finitely related, and r is not strongly finitely related .• 

However, all the graphs from Examples 1.1, 1.2 and 1.3 are strongly finitely 
related. 

Theorem 1.6. Each of the following graphs is strongly finitely related: 

(i) every finitely related graph with two vertices; 

(ii) every graph without edges; 

(iii) r~) for all n E N; 

(iv) r~) for all n E N. 

PROOF. (i) and (ii) are obvious. For (iii) and (iv) note that 

Al(f~) = Al(f~) = {ad, 

and that 
r~ - {ad ~ f~_l' r~ - {ad ~ f~_l" 

for all n > 1, and the assertions follow by induction .• 

2. Minimal ideals of S(r) 

Throughout this section we assume the notation introduced in the previous sec­
tion. Thus f is a digraph satisfying (f1), (f2), (f3), S-lJ = S-lJ(r) is the associated 
presentation defined by (1), S = S(r) is the semigroup defined by S-lJ(r) , and 
that G = G(r) is the group defined by S-lJ(r). We also assume that the set of 
initial vertices of r is 

Our aim is to prove, via a sequence of lemmas, that S(f) possesses a minimal 
two-sided ideal which is a union of copies of G(r). More precisely, we show that 
S(r) has minimal right ideals and a unique minimal left ideal, and then we apply 
Corollary 9.2.4. 

Lemma 2.1. If ai, aj E AI) then the relation 

holds in S. 
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PROOF. By the definition of AI, neither (ai,aj) nor (aj,ai) is an edge in f, and 
therefore the relation a(i,j) of ~(f) is aiaj = ajai .• 

Lemma 2.2. For any word W E Ai there exists a word WI E At such that the 
relation 

holds in S. 

PROOF. The subsemigroup of 5 generated by Al is commutative by Lemma 2.1, 
and each generator ai E Al generates a cyclic subgroup of 5 of order Pi, so that 
the lemma follows. • 

Lemma 2.3. If (ai, aJ is an edge in f, then the relation 

holds in S. 

PROOF. Since (ai, aj) is an edge of f, the relation a( i,j) of ~ is (aiaj )PiJ = afi, 
and we have 

(a -a _)PiJ+I - (a-a _)Pi j a -a - - aPia-a- - - a-a-
~ J - ~ J ~ J - ~ ~ J - ~ J' 

as required .• 

Lemma 2.4. If ai, aj E A are arbitrary then the relation 

holds in S. 

PROOF. If neither (ai, aj) nor (aj, ai) is an edge, then a(i,j) is aiaj = ajai and 
we have 

If (ai,aj) is an edge, in which case a(i,j) is (aiaj)PiJ = afi, by Lemma 2.3 we 
have 

a -a -aPi - a-a -(a-a _)PiJ - a-a­
tJ~-tJtJ -tJ" 

thus completing the proof .• 
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Lemma 2.5. Let ai E A be arbitrary, and let w E A+ be a word which contains 
letter ai. Then the relation 

holds in S. 

waPi = w , 

PROOF. Since w contains ai, it can be written as 

By Lemma 2.4 we have 

and hence 

w 

thus proving the lemma. • 

Lemma 2.6. For any ai, aj E A there exists a word w E A+ such that the relation 

holds in S. 

PROOF. By Lemma 2.4 it is enough to take w == aiajafi-1 .• 

Lemma 2.7. For any ai E A and any word v E A+ there exists a word w E A+ 
such that the relation 

holds in S. 

PROOF. We prove the lemma by induction on the length of v, the case of length 1 
being Lemma 2.6. Let Ivl > 1, so that v = Vlaj for some VI E A+, aj E A. By 
the inductive hypothesis there exists a word WI E A + such that the relation 

(2) 

holds in S, while by Lemma 2.6 we have 

(3) 

for some W2 E A+. From (2) and (3), for w - WIW2, we obtain 

and hence the lemma .• 
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Lemma 2.8. For any two words u, v E A+ there exists a word W E A+ such that 
the relation 

wu= uv 

holds in S. 

PROOF. We prove the lemma by induction on the length of u, the case lui = 1 

being Lemma 2.7. If lui> 1, then we can write u == Ulai, with UI E A+ and 
ai E A. By Lemma 2.7 there exists a word WI such that 

(4) 

By the inductive hypothesis there exists a word W such that 

(5) 

From (4) and (5) we obtain 

which completes the proof .• 

Let us recall that we have assumed that Al = {ail' ... , ait }. 

Lemma 2.9. For any word U E A+ there exists a word v E A+ such that the 
relation 

holds in S. 

PROOF. Consider the set T ~ A+ of all words W such that the relation w = vu 
holds in 5 for some v E A+. (Notice that we do not require that w be of the form 
VU, but only that it be equal in 5 to such a word.) Let w be a word from T with 
the minimal number of letters from A - AI' We want to show that w E At, and 
the lemma will then follow from Lemma 2.2. 

Suppose that w contains a letter from A - AI' Then w can be written as 

where f3 E A~, aj E A - AI, WI E A*. Since 

A= UA, 
iEW 

we have aj E Ak for some kEN, k > 1. This means that that there exists 
aj1 E A k - l such that (ajIl aj) is an edge in f, and the relation o:(i,j) is 

(a' a .)PJIJ = aPJI 
J1 J J1 . 
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By Lemma 2.8 there exists (31 E A + such that 

(31(3 = (3a· (a· a·)Pllj-1 a · 
Jl Jl J Jl , 

and so we have 

Continuing in this way we obtain words (31,' .. ,(3k-1 E A + such that 

(3k-1 ... (31 W = (3ajk_l WI, 

where ajk_l E AI' The word (3ajk_l WI obviously contains fewer letters from A-AI 
than W = (3ajW1 does. On the other hand if W = vu then 

(3ajk_l WI = (3k-1 ... (31 W = ((3k-1 ... (31 V )u, 

and hence (3ajk_l WI E T, which is a contradiction with the choice of w .• 

Lemma 2.10. The word ail' .. ait generates a unique minimal left ideal in S. 

PROOF. The lemma follows directly from Lemma 2.9 and Proposition 9.3.1. • 

Lemma 2.11. If W E A+ is a word containing all the letters from AI! and if 
aj E A is an arbitrary letter! then there exists a word u. E A + such that the 
relation 

holds in S. 

PROOF. Since 

nEW 

there exists n E N such that aj E An. We prove the lemma by induction on n. 
If aj E AI, then W contains aj, and hence 

by Lemma 2.5. Suppose that the statement is true for all the letters from An, 
and let aj E An+1. Then there exists ak E An such that (ak' aj) is an edge in r. 
By the inductive hypothesis there exists a word U1 such that 

N ow if we choose 

we obtain 

as required .• 
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Lemma 2.12. Let W E A+ be any word containing all the letters from AI' Then 
for any word WI E A+ there exists a word W2 E A+ such that the relation 

holds in S. 

PROOF. We prove the lemma by induction on the length of WI. First we consider 
the case IWII = 1 i.e. WI = aj E A. If aj E Al then W contains aj, so that 

by Lemma 2.5. If aj (j. Al then there exists ak E A such that (ak' aj) is an edge. 
By Lemma 2.11 we have 

for some u E A+, so that 

If IWII > 1 then we can write WI == w~ak' with w~ E A+ and ak E A. The 
word ww~ contains all the letters from AI, so that the above argument shows 
that there exists w; E A + such that 

(6) 

By the inductive hypothesis there exists w~ E A + such that 

(7) 

From (6) and (7) we obtain 

as required .• 

Lemma 2.13. Any word W E A+ which contains all the letters from Al generates 
a minimal right ideal in S. 

PROOF. The lemma is an immediate consequence of Lemma 2.12 and Proposi­
tion 9.3.1. • 

By combining Lemmas 2.10 and 2.13 with Corollary 9.2.4 we obtain the fol­
lowing: 

Theorem 2.14. Let f be a digraph satisfying (f1), (f2), (f3), and let ~(f) be 
the associated presentation defined by (i). The semigroup S(f) defined by ~(f) 
has a unique minimal left ideal (which is also a unique minimal two-sided ideal). 
This minimal left ideal is a disjoint union of minimal right ideals, each of which 
is a group isomorphic to the group G(f) defined by ~(f) .• 
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Example 2.15. The semigroup S(f) defined by the graph f from Example 1.4 
is infinite, since the group G(f) is infinite. Nevertheless, by Theorem 2.14, S(f) 
has a unique minimal left ideal, which is a disjoint union of minimal right ideals, 
each of which is a group isomorphic to G(f). Let T be the homomorphic image 
of S(f) obtained by adding the relation (aIa2a3)5 = ai to the presentation ~(f). 
Being a homomorphic image of S(f), T has minimal right ideals and a unique 
minimal left ideal. Hence, by Corollary 9.2.4, the minimal left ideal of T is a 
disjoint union of copies of the group defined by the same presentation; in this 
case the group in question is PSL(2, 11). Computer evidence shows that T is a 
finite semigroup of order 133880 containing 201 copies of PSL(2, 11) .• 

3. Structure and finiteness of S(r) 

As in the previous section, f denotes a digraph satisfying (f1), (f2), (f3), ~(f) 
denotes the corresponding presentation (1), S(f) denotes the semi group defined 
by ~(f) and G(f) denotes the group defined by ~(f). By Theorem 2.14, S(f) 
has a unique minimal left ideal, which we denote by L(f). This ideal is also a 
minimal two-sided ideal of S(f), and is a union of copies of G(f). Theorem 2.14, 
however, does not give any information as to the number of copies of G(f) in 
L(f). A natural way for further investigation of S(f) is to ~onsider the following 
two questions. 

(i) How many copies of G(f) does L(f) contain? 

(ii) What is the structure of the Rees quotient S(f)/ L(f)? 

In this section we prove some initial general results on the previous two ques­
tions, and then in the following two sections we look at two special cases, where 
we obtain the full description. 

The following is the crucial technical result that we shall need. 

Lemma 3.1. Let ai E AI, and let u, v E A+ be such that the relation u = v holds 
in S(f). Then u contains ai if and only if v contains ai. 

PROOF. Since ai E AI, every relation of ~(f) which contains ai has one of the 
forms afi+I = ai or (aiaj)Pij = afi or aiaj = ajai, and hence contains ai on both 
its sides. The result now follows from the fact that S(f) is defined by~ .• 

As before we assume that Al = {ail' ... , ai t }. 

Lemma 3.2. A word w E A+ represents an element of the minimal left ideal 
L(f) (or, equivalently, an element of a minimal right ideal) if and only if w 

contains all the leiters of AI. 
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PROOF. First note that the assertion for L(r) and the assertion for minimal 
right ideals are indeed equivalent, since L(f) is a disjoint union of all minimal 
right ideals of S(r). 

Let us now assume that W represents an element of L(f). Then so does the 
word ail . .. ait w, and since L(r) is minimal we have 

for some word WI. The word wlail ... aitW contains all the letters from AI, and 
hence so does W by Lemma 3.1. Therefore, we have proved the direct part of our 
lemma. The converse part is an immediate consequence of Lemma 2.13 .• 

Lemma 3.3. Let ai E AI. The subsemigroup Si(r) of S(f) generated by the set 
A - {ad is isomorphic to the semigroup S (f - {ad). 

PROOF. The presentation ~(f - {ai}) can be obtained from ~(r) by removing 
the generating symbol ai, as well as all the relations containing this generating 
symbol. Hence Si(f) satisfies all the relations from the presentation ~(f - {ad). 
Assume now that u, v E A+ are arbitrary words representing the same element 
of Si(f). This means that v can be obtained from u by applying relations from 
~(f). By Lemma 3.1, neither u nor v contains ai, and hence none of the applied 
relations contains ai either. Therefore v can be obtained from u by applying 
relations from ~(f - {ai}). The lemma now follows from Proposition 3.2.3 .• 

t 

Lemma 3.4. L(r) - S(f) = U Sij. 
j=l 

PROOF. This follows from Lemma 3.2 .• 

The information about S(r) that we have gathered so far is sufficient to prove 
the following: 

Theorem 3.5. S(f) is a union of (Coxeter type) groups. 

PROOF. We prove the theorem by induction on the number of vertices of f. If 
f has only one vertex aI, then 

and, obviously, both S(f) and G(r) are isomorphic to the cyclic group of order 

Pl· 
Assume now that f has at least two vertices. By Theorem 2.14, S(f) has a 

unique minimal left ideal L(r), which is a union of copies of (the Coxeter type 
group) G(r). The set S(r) - L(f) is a union of semi groups Sij' 1 :S j :S t, by 
Lemma 3.4. Each Sij is isomorphic to S(f - {aiJ) by Lemma 3.3, and hence is 
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a union of (Coxeter type) groups by the inductive hypothesis. Therefore, S(r) 
itself is a union of (Coxeter type) groups .• 

Now we concentrate on minimal right ideals, with the aim of finding an upper 
bound for the number of these ideals. 

Lemma 3.6. Any minimal right ideal R of S(r) is generated by a word of the 
form uai, where ai E AI, u E A*, and u does not contain ai, but it contains all 
the other letters from AI. 

PROOF. Let w be a word representing an element of R. Then w contains all 
the letters from Al by Lemma 3.2. Let uai be the shortest initial segment of 
w containing all the letters from AI' Then it is clear that ai E AI, and that u 
contains all the letters from Al except ai. The word uai represents an element 
of a minimal right ideal by Lemma 3.2, and it is obvious that this minimal right 
ideal has to be R. Because of its minimality, R is generated by any of its elements, 
and, in particular, is generated by uai .• 

Theorem 3.7. The number of minimal right ideals of S(r) is not greater than 

t 

(2:: IS(r - {aiJ)I) + l. 
j=1 

PROOF. The theorem is a direct consequence of Lemmas 3.3 and 3.6. The 
additional term 1 has to be added to cover the case where IAII = 1, in which case 
the only element of Al also generates a minimal right ideal. • 

As a consequence we have an upper bound for the order of S(r), as well as a 
necessary and sufficient condition for S(r) to be finite. 

t t 

Theorem 3.8. (i) IS(r)I:::; ((2:: IS(r-{aiJ)I)+l)'IG(r)I+ 2:: IS(r-{aiJI· 
j=I j=1 

(ii) S(r) is finite if and only if r is strongly finitely related. 

PROOF. (i) This inequality is an immediate consequence of Theorems 2.14 and 
3.7 and Lemmas 3.3 and 3.4. 

(ii) We prove this part of the theorem by induction on the number of vertices 
of r. If r has one vertex, then it is strongly finitely related and the semi group 
S(r) is finite. Hence the assertion holds in this case. 

Let us now consider the case where r has at least two vertices, and let us 
assume first that r is strongly finitely related. This means that that r is finitely 
related, i.e. that the group G(r) is finite, and that each of the graphs r - {aij}, 
1 :::; j :::; t, is strongly finitely related. By the inductive hypothesis, the latter 
condition implies that each semi group S(r - {ai

J
}), 1 :::; j :::; t, is finite, and hence 

S (r) is finite by (i). 
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For the converse, assume that r is not strongly finitely related. Then either 
G(r) is infinite, or ~(r - {aiJ}) is not strongly finitely related for some j, 1 ~ 
j ~ t. In the former case, S(f) is infinite since it contains a copy of G(r) by 
Theorem 2.14. In the latter case the semigroup S(r - {aiJ) is infinite by the 
inductive hypothesis, and hence S(f) is infinite by Lemmas 3.3 and 3.4 .• 

Remark 3.9. In the following section we shall see that both bounds from The­
orems 3.7 and 3.8 can be achieved, and in Section 5 we shall see that there are 
cases when they are not achieved. 

4. Semigroups defined by Coxeter type presentations for 
alternating groups 

Let us recall from Example 1.3 that the graph r~, n 2:: 1, has vertices { aI, ... , an}, 
edges (ai, aj), 1 ~ i < j ~ n, and labels 

Pi = 3, Pjk = 2 (1 ~ i ~ n, 1 ~ j < k ~ n). 

The graph r1 is shown in Figure 8. 

3 2 3 
al.------~a2 

2 2 

Figure 8. 

The presentation associated with r~ is 

The group defined by this presentation is the alternating group An+2 of degree 
n + 2. We denote the semi group defined by this presentation by SA(n). Note 
that this semi group is finite by Theorems 1.6 and 3.8. In this section we shall 
determine the exact order and the structure of SA(n). 

By Theorem 2.14, SA(n) has a unique minimal left ideal, which we denote by 
LA (n), and this ideal is a disjoint union of minimal right ideals each of which 
is isomorphic to An+2 • As outlined at the beginning of the previous section, 
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we describe SA(n) by describing SA(n)JLA(n) and determining the number of 
minimal right ideals in LA(n). The first of these tasks is easy to achieve. If we 
note that aI is the unique initial vertex of r~, by Lemmas 3.3 and 3.4 we have 

Lemma 4.1. SA(n) - LA(n) ~ SA(n - 1) for all n ~ 2 .• 

In order to determine the number of minimal right ideals in LA(n), we first 
define two mappings on words: 

</J: {aI, a2, a3,·· .}+ -+ {a2' a3, a4,·· .}+, 
(ail ai2 ... aiJ</J = ail +1 ai2+1 ... ais+I, 

'l/; = </J-I. 

These mappings will be used in the following section as well. 

(8) 

Lemma 4.2. (i) Ifu,v E {aI, ... ,an}+ are any two words such that the rela­
tion u = v holds in SA (n)) then the relation u</J = v</J holds in SA (n + 1). 

(ii) If u, v E {a2,' .. , an} + are any two words such that the relation u = v holds 
in SA(n) then the relation u'l/; = v'l/; holds in SA(n - 1). 

PROOF. (i) This part of the lemma follows from the fact that applying </J to both 
sides of a relation from $(r~) yields a relation from $(r~+I)' 

(ii) Since u = v holds in SA (n), v can be obtained from u by applying relations 
from $(r~). None of these relations contains aI by Lemma 3.1. Applying'l/; to 

both sides of a relation not containing aI yields a relation from $(r~_I)' and 
hence the result .• 

Lemma 4.3. Let WI, W2 E {a2, ... , an} *. The words WI al and W2aI generate the 
same minimal right ideal in SA (n) if and only if WI = W2 = t (the empty word)) 
or WI'l/; = W2'l/; holds in SA(n - 1). 

PROOF. Both WI al and W2aI certainly generate minimal right ideals by Lemma 
3.2. Also, by Lemma 4.2, if WI'l/; = W2'l/; holds in SA(n -1), then WI'l/;</J = W2'l/;</J 
holds in SA(n). Since'l/; = </J-I, we have WI = W2 in SA(n), and wIaI and W2aI 
indeed generate the same minimal right ideal. 

For the converse, assume that WI al and W2aI generate the same minimal right 
ideal. Then 

WIaIW3 = W2 aI, 

for some W3 E {aI, ... , an} *. This means that W2aI can be obtained from WI al W3 
by applying relations from $(r~). If a relation is applied to a subword of WI aI W3 
which contains a letter from WI, then this relation does not start with aI, and 
hence is at = ai for some i, 2 :s; i :s; n, or is (ajak)2 = aJ for some j, k, 2 :s; 
j < k :s; n. In either case the applied relation does not contain aI, and is hence 
applied solely to WI. Therefore, we obtain that either WI _ W2 = t, or WI = W2 
holds in SA(n), in which case WI'l/; = W2'l/; holds in SA(n - 1) by Lemma 4.3 .• 

Now we have the following theorem describing the structure of SA(n). 
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Theorem 4.4. The semigroup SA(n), n 2:: 2, possesses a unique minimal left 
ideal LA (n) which is a disjoint union of 1 SA (n -1) 1 + 1 minimal right ideals, each 
of which is isomorphic to the alternating group A n+2 • The set SA (n) - LA (n) 
is a semigroup isomorphic to SA(n - 1). The semigroup SA(n) is a union of 
alternating groups A 3 , ••• , A n +2 • It is finite, and its order is given recursively 
by 

ISA(1)1 = 3, 

ISA(n + 1)1 = (ISA(n)1 + 1) (n ~ 3)! + ISA(n)l. 

PROOF. The theorem follows from Theorem 2.14 and Lemmas 3.6, 4.1 and 4.3 . 

• 
The semi group SA(4) is shown in Figure 9. It has 4 V-classes, each of which 

has exactly one £-class. Note that in this figure, contrary to the convention, £­
classes are represented by rows, and R.-classes are represented by columns. The 
order of this semigroup is 1145091. 

Jl3 1 

~ ~ ~ ~ 4 

Jls Jls . . . Jls Jls 52 

~ ~ ~ . . . ~ ~ ~ 3172 

Figure 9. 

5. Semigroups defined by Coxeter type presentations for 
symmetric groups 

Now we investigate the structure of the semigroups S(r~), n 2:: 1; see Example 
1.2. The graph r~ has vertices {al, ... ,an }, edges (ai,ai+l), 1 ~ i < n, and 
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labels 
Pi = 2, Pj,j+l = 3 (1::; i::; n, 1 ::; j < n). 

The graph r~ is shown in Figure 10. 

2 3 2 3 2 3 2 
• ~ • ~ • ~ • 
al a2 a3 a4 

Figure 10. 

The presentation associated with r~ is 

~(r~) = (al, ... , an I at = ai, (ajaj+I)3 = a;, akaZ = aZak, 

(1 ::; i ::; n, 1 ::; j < n - 1, 1 ::; k < 1- 1 ::; n - 1)). 

The group G(r~) defined by this presentation is the symmetric group Sn+l of 
degree n + 1. We denote by Ss(n) the semi group defined by this presentation. 

We investigate the semi group Ss(n) along the same lines as we did for SA(n) 
in the previous section: we find the number of minimal right ideals in the unique 
minimal left ideal Ls(n), and we describe Ss(n) - Ls(n). However, the technical 
side of the argument is more complicated than in the previous section. In it we 
make use of the mappings <p and 7jJ defined by (8) in the previous section, as well 
as of the following recursively defined sequence of sets of words: 

WI = {ad, 

Wn+l = {(w<p)aiai-l ... al I wE Wn, 1 ::; i ::; n + I} U {ad· 

Clearly, 

so that Wn can be considered as a subset of 5 s( n). 
Again, al is the only initial vertex of r~. In particular, the minimal left ideal 

Ls(n) consists of all words containing al; see Lemma 3.2. Hence every word from 
Wn represents an element of Ls(n). We aim to prove that each minimal right 
ideal of Ss(n) contains one and only one element from W n . 

We begin with some technical results. 

Lemma 5.1. If i ::; j ::; n then there exists a word w E {all ... , an} + such that 
the relation ai = waj holds in Ss(n). 

PROOF. If i = j, we can choose WI = aT, because of the relation at = ai. So 
assume that i i- j. Let Wk, 1 ::; k < n, denote the word ak(akak+l)2ak. Then we 
have 
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and hence, for W = Wi . .. Wj-2Wj-l, we have 

as required .• 

Lemma 5.2. The relation 

holds in Ss(n) for any k, 1:::; k < n. 

PROOF. Note that by Lemma 2.4 we have 

and hence 

as required .• 

(akak+I)3ak+Iakak+1 = ak(ak+Iak)2a~+lakak+1 
ak(ak+Iak)2akak+1 = (akak+I)2a~ak+1 
(akak+I)2 ak+1 = akak+Iak~~+1 = akak+Iak, 
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Lemma 5.3. (i) If u, v E {al, ... ,an} + are any two words such that the rela­

tion u = v holds in Ss(n), then the relation u<p = v<p holds in Ss(n + 1). 

(ii) If u, v E {a2, . .. ,an} + are any two words such that the relation u = v holds 

in Ss(n) then the relation u'lj; = v'lj; holds in Ss(n - 1). 

PROOF. The proof is exactly the same as the proof of Lemma 4.2 .• 

Lemma 5.4. For any three words u, WI, W2 E {ab . .. , an} * the words ual WI and 
uaIW2 generate the same minimal right ideal in Ss(n). 

PROOF. As a direct consequence of Lemma 3.2, both ual WI and ual W2 generate 
the same minimal right ideal as the word ual .• 

Lemma 5.5. Let WI, W2 E Wn, with 

WI,W2 E Wn- I , 1:::; i,j:::; n. If WI and W2 generate the same minimal right ideal 
in S s( n) then WI and W2 generate the same minimal right ideal in S s (n - 1). 
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PROOF. If WI and W2 generate the same minimal right ideal in Ss( n), then there 
exists a word v E {al, ... , an} * such that the relation 

holds in Ss(n). Therefore, W2V can be obtained from WI by applying relations 
from ~(r~). Since WI contains aI, so does any word representing the same 
element in Ss(n) by Lemma 3.1. Thus we have a sequence of words 

in which every word Uk+laIVk+b 1 :S k < s, is obtained from Ukalvk by one 
application of one relation from ~(r~), and in which the words Ub ... ,Us do not 
contain al. 

Since UI - (WI <p )ai ... a2, we have 

so that UI'I/J contains al and hence generates a minimal right ideal in Ss(n - 1). 
We now prove by induction that for every k, 1 :S k :S s, the words uk'I/J and UI 'I/J 

generate the same minimal right ideal in Ss(n - 1). Note that there is nothing 
to prove for k = 1, and assume that the statement is true· for some k 2: 1. We 
distinguish the following four cases, depending on which relation is applied to 
Ukalvk to obtain Uk+1aIVk+l, and to which part of Ukalvk this relation is applied. 

Case 1. The relation is applied to a subword of Uk. This means that Uk = Uk+l 

in Ss(n), and hence uk'I/J = Uk+I'I/J in Ss(n -1) by Lemma 5.3. It now follows by 
the inductive hypothesis that Uk+I'I/J and UI'I/J generate the same minimal right 
ideal in Ss(n - 1). 

Case 2. The relation is applied to a subword of Ukal Vk which contains al and 
at least one letter from Uk. Since Uk does not contain aI, it must be of the form 
Uk - ukai with i > 2, and the applied relation must be al ai = aiab so that 
Uk+l = Uk· By the inductive hypothesis uk'I/J and UI'I/J generate the same minimal 
right ideal in Ss(n - 1). In particular, Uk'I/J contains al by Lemma 3.2. On the 
other hand 

Since i > 2, uk1/; also contains aI, and hence generates a minimal right ideal 
in S s( n - 1). This minimal right ideal is the same as the minimal right ideal 
generated by uk'I/J by Lemma 5.4, and the assertion follows by induction. 

Case 3. Vk has the form Vk = aivk' i > 2, and the applied relation is alai = aial. 

Then Uk+1 = Ukai, so that Uk+l 'I/J = (Uk'I/J )ai-b and Uk+1 'I/J generates the same 
minimal right ideal as uk'I/J by Lemma 5.4. 
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Case 4. One of the relations ay = ai or (ajaj+l)3 = a; is applied to a subword of 
alVk· In this case Uk = Uk+ll and the assertion follows by induction. 

What we have just proved implies, in particular, that UI¢ and us¢ generate 
the same minimal right ideal in Ss(n - 1). On the other hand, we have 

Since WI E Wn - l , WI contains aI, and hence UI ¢ and WI ¢ generate the same 
minimal right ideal by Lemma 5.4. Similarly, us¢ and W2 generate the same 
minimal right ideal, which finally implies that WI and W2 generate the same 
minimal right ideal, exactly as required .• 

Let 
TJ : A * ---+ Sn+l 

be the unique homomorphism such that 

aiTJ = (i i + 1), i = 1, ... , n. 

Since Sn+1 is the group defined by the presentation ~(r~), it follows that TJ 
induces an epimorphism from Ss(n) onto Sn+l; we denote this epimorphism also 
by TJ. For a word W E {al,' .. ,an} + which contains letter aI, by t( w) we denote 
the longest initial segment of W not containing all -and by T( w) we denote the 
terminal segment of W starting immediately after the first al' Therefore, we have 

Lemma 5.6. Let u, v E {al,"" an} + be two words which both contain al and 
which represent the same element of Ss( n). Then 

(t(U)T(U))TJ = (t(V)T(V))TJ 

holds in Sn+1' 

PROOF. Since Ss(n) is defined by ~(r~), it follows that v can be obtained from 
U by applying relations from ~(r~). The letter al is an invariant of ~(r~) by 
Lemma 3.1, so that all the words obtained in this process contain al, and hence it 
is enough to prove the lemma in the case where U and v differ by one application 
of one relation from ~(r~). 

So we suppose that v is obtained from U by applying a relation u' = v' from 
~(r~). Notice that we have 

I I UTJ=VTJ, 

since Sn+1 satisfies all the relations from ~(r~). Therefore, if u' = v'is applied 
to a subword of T( u), then we have t( u) = t( v) and (T( u))TJ = (T( v) )TJ, so that 

(t(U)T(U))TJ = (t(u))TJ' (T(U))TJ = (t(v))TJ' (T(V))TJ = (t(V)T(V))TJ· 
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N ext assume that u' = v'is applied to a subword of L( u). Since L( u) does not 
contain aI, it follows that the relation u' = v' does not contain al either, and 
hence applying u' = v'to L( u) yields L( v); we also have r( u) = r( v). Similarly as 
in the previous case we now obtain (L(u)r(u))1] = (L(v)r(v))ry. 

Now consider the case where u' = v' has been applied to a subword of u 
containing the first appearance of al. If the relation u' = v'is ai = aI, then either 
t(u)r(u) - L(v)air(v) or L(u)air(u) L(v)r(v), and in any case the assertion 
follows from airy = (1 2)(1 2) = (1). If u' = v'is aIaj = ajaI, j > 2, then 
t( u )r( u) = L( V )r( v), and the result follows trivially. Finally, if u' = v'is (al a2)3 = 
ai then L( u) = L( v) and either 

aIr(u) = aiuI, aIr(v) = (aIa2)3vI, 

or 
aIr(u) = (aIa2)3uI, aIr(v) = aivI, 

for some words UI, VI. In both cases the result follows from (a2( aIa2)2)ry = (12) = 
aIry. This completes the proof of the lemma .• 

Lemma 5.7. Each minimal right ideal of Ss(n) contains exactly one element 
ofWn • 

PROOF. We prove the lemma by induction on n. For n = 'I, Ss(n) is the cyclic 
group of order 2, and is its own unique minimal right ideal, so that that the 
assertion holds in this case. 

Let us now assume that n > 1, and let R be any minimal right ideal of 
Ss(n). First we prove that R contains an element from Wn . By Lemma 3.6, R 
is generated by a word of the form WI al with WI E {a2,"" an} *. Let W = WI al 
be such a word of the minimal possible length. If WI is the empty word then 
W _ al E Wn . So we may assume that WI is non-empty, and we can write 

where i 2: 2. 
If i > 2 then 

By Lemma 5.4, W2aI belongs to R, which is a contradiction to our choice of w. 
Therefore we may assume that i = 2, i.e. that 

The word W2a2 does not contain al and hence the word (W2a2)'l/; represents 
an element of S s (n - 1). Moreover, since 
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(W2a2)'I/J generates a minimal right ideal R in Ss(n - 1). By the inductive hy­
pothesis R contains a word u E Wn - 1 • The minimality of R implies that there 
exists a word v such that 

holds in Ss(n - 1). Then 

by Lemma 5.3, and thus 
u¢> . v¢> . al = W E R. 

Let v E {a2, ... , an }* be a word of minimal length such that (U¢»val E R. 
We shall now prove that val = aiai-l ... al for some i, 1 ~ i ~ n. Suppose not. 
Let 

and let k be the least positive integer such that 

Certainly we have k =J. 0, as ail = al. Let also 

so that 

We now distinguish the following three cases. 

Case 1. j > k + 1. In this case we have 

By Lemma 5.4, it follows that (u¢> )Vl akak-l ... al E R, which is a contradiction 
with the choice of v. 

Case 2. j < k. Now we have 

(u¢»vlajakak-l ... alaj+l 

(u¢»vlakak-l ... aj+2ajaj+lajaj+laj-l ... al 

(u¢> )vlakak-l ... aj+2a~ajaj+l ajaj+l aj-l ... a}, 

by Lemma 2.5, since u¢> contains a2. By Lemma 5.1 there exists a word f3 such 
that 
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so that 

(U~)Vlakak-1 ... aj+2a~ajaj+lajaj+laj_1 ... al 

(u~)vlakak-l ... aj+2a2!3ayaj+lajaj+laj-1 ... al 
(u~ )vlakak-l ... aj+2a2!3ajaj+lajaj-1 ... al (Lemma 5.2) 

- (u~)vlakak-l ... aj+2a~aj+lajaj_1 ... al 
(u~ )vlakak-l ... al, (Lemma 2.5) 

where Lemma 5.2 has been used. We have proved that 

which is a contradiction since 

Case 3. j = k. Similarly as in the previous case we have 

(u~ )VI atak-l ... al 

(u~ )VI a~atak-l ... al 

(u~ )VI a2!3akatak-1 ... al 

(u~ )VI a2!3akak-1 ... al 

(u~)vla~ak-l ... al 

(u~)vlak-l ... ai, 

which is again a contradiction to the choice of v. 

We have proved that 

(Lemma 2.5) 
(Lemma 5.1) 

(Lemma 2.5) 

for some i, and therefore (u~ )val belongs to both Wn and R, as required. 

Now we prove uniqueness. Assume that R contains two distinct words WI and 
W2 from Wn . Neither of WI or W2 is identical to al. To prove this it is enough 
to note that application of any relation from ~(r~) to a word of the form ualV, 

where u is a word which does not contain al but contains a2 yields another word 
of the same form, and that all the words of Wn , except aI, have this form. 

Therefore we may assume that 

for some Wl,W2 E Wn - l and some i,j, 1:::; i,j:::; n. By Lemma 5.5, WI and W2 

generate the same minimal right ideal in Ss(n - 1), and hence we have 

by the inductive hypothesis. 
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N ow we have to prove that i = j. Since WI and W2 both belong to R the 
relation 

(WI<P)ai ... aIV = (w2<P)aj ... al 

holds in S s( n - 1) for some word v. If, as before, 'I] denotes the unique epi­
morphism {al, ... , an}* --t Sn+l extending the mapping ai 1-+ (i i + 1), then we 
have 

((WI<P)ai ... aIV)'I] = ((w2<P)aj ... al)'I], 

from which it follows easily that 

V'I] = (12)(23) ... U j + 1)(i i + 1) ... (2 3)(12) = 0", 

since WI and W2 are identical. On the other hand, Lemma 5.6 gives 

so that 

(9) 

V'I] = (23)(34) ... U j + 1)(i i + 1) ... (34)(23) = 7. (10) 

From (9) and (10) we have 
0" = 7. 

Now we can see that it is impossible to have i < j b'ecause then we would have 

10" = j + 1 -# 1 = 17. 

Similarly, i > j would imply 

(i + 1)0" = 1 -# 2 = (i + 1 )7. 

Therefore we have i = j, so that WI == W2, thus completing the proof. • 

Lemma 5.B. Ss(n) has Cn minimal right ideals, where the sequence (cn)~=l ZS 

defined recursively by 

CI = 1, cn+1 = (n + l)cn + 1. 

PROOF. Ss(n) has exactly IWnl elements by Lemma 5.7, and this is easily seen 
to be equal to Cn . • 

Finally, as in Section 4, the fact that al is the only initial vertex of r~ together 
with Lemmas 3.3 and 3.4 gives the following 

Lemma 5.9. Ss(n) - Ls(n) ~ Ss(n - 1) for all n > 1. • 

By combining Lemmas 5.8 and 5.9 with Theorem 2.14 we obtain 
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Theorem 5.10. The semigroup Ss(n), n 2: 1, has a unique minimal left ideal 
Ls( n) which is a disjoint union of Cn minimal right ideals, each of which is 
isomorphic to the symmetric group Sn+l' For n 2: 2, the set Ss( n) - Ls( n) is a 
semigroup isomorphic to Ss(n -1). The semigroup Ss(n) is a union of copies of 
the symmetric groups S2, S3,' .. ,Sn+l' It is finite and its order is 

n 

ISs(n)1 = :L:Ci(i + I)!. • 
i=l 

The egg-box picture (again with £-classes shown as rows and R-classes shown 
as columns) of the semigroup Ss(4) is shown in Figure 11. The order of this 
semigroup is 5180. 

~ 1 

I 

~ ~ ~ 3 

I 

S4 S4 . . . S4 10 

I 

S5 S5 . . . S5 41 

Figure 11. 



Chapter 11 

Certain one-relator products of cyclic 
groups 

In this chapter we consider various special cases of semigroups defined by presen­
tations of the form 

(a, b I aP+1 = a, bq+l = b, CY = (3), (1) 

where p, q E N, CY, (3 E {a, b} +. The semi group S defined by (1) can be viewed as 
the semi group free product Cp * Cq of a cyclic group of order p and a cyclic group 
of order q factored by the smallest congruence containing (CY, (3). We classify the 
semigroups S we consider with respect to the following three properties: 

(F1) S has a minimal two-sided ideal which is a disjoint union of copies of the 
group defined by (1); 

(F2) S has a minimal two-sided ideal which is a disjoint union of copies of a 
group which is not isomorphic to the group defined by (1). 

(F3) S has no minimal (left, right or two-sided) ideals. 

The results of Section 1 have appeared in Campbell, Robertson, Ruskuc and 
Thomas (1994a) and the results of Section 2 will appear in Campbell, Robertson, 
Ruskuc, Thomas and Unlii (1995). 

1. Semigroups defined by presentations (a, b I a 3 a, 
bq+1 = b, abr ab2 = b2 a ) 

In this Section we consider the semigroup S defined by the presentation 

(2) 

We assume that q is even, that r is odd and that 1 :::; r :::; q. 

We are going to apply the general theory developed in Chapter 10 to determine 
the structure of S. It will turn out that S has two minimal left ideals and three 
minimal right ideals. After rewriting presentation (2) into a presentation for the 

189 
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Schiitzenberger group H of the minimal two-sided ideal M of S we will see that 
this group is finite metabelian, thus enabling us to find the order of S. A closer 
analysis will show that H is isomorphic to the group G defined by (2) if and only 
if q = 2r. 

Semigroups defined by (2) were one of the first to be investigated by using 
computational methods, and these investigations made a significant influence 
on the general theory from Chapters 9 and 10. This is the primary reason for 
including these, rather special, semi groups in this thesis. 

As usual, we begin by determining minimal left and right ideals of S. This 
turns out to be a rather tedious job, and we need several technical results. 

Lemma 1.1. The following relations hold in S: 

(i) babq = ba; 

(ii) ba2 bq = ba2; 

(iii) a2b2ia = b2ia) i E W; 

(iv) bab2ia2 = bab2i ) i E W; 

(v) ba2b2ia2 = ba2b2i ) i E W; 

(vi) (bqa2)2 = bqa2; 

(vii) b2 . ba2 = ba2 . b2; 

(viii) (abT a)2 = bqa2. 

PROOF. (i) We have 

(ii) Using (i) we have 

(iii) We prove (iii) by induction on i. For i = 1 we have 

Now if 

then 
a2b2i+2a = a2b2i b2a = a2b2iabT ab2 = b2iabT ab2 = b2i+2a, 

thus completing the inductive argument. 

(iv) Let s = q - 2. We prove by induction that 

(3) 
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for all i E N. Since g.c.d.(q,s) = 2 and since bq+1 = b, (iv) will then follow. 
For i = 1 we have 

bq-Ib2abq-2a2 = bq-IabT abqa2 = bq-IabT a3 

bq-IabTa = bq-IabTabq = bq-Ib2abq-2 = babs , 
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where (ii) has been used. Now assume that (3) holds for some i. Then we have 

babisbsa2 = babisa2bsa2 = babis-2b2aabsa2 = babis- 2abT ab2absa2 

babis- 2abT ab2abs = babis-2b2a2bs = babisa2bs = bab(i+l)s , 

thus completing the inductive argument. 

(v) Using (i) and (iv) we have 

(vi) By (ii) we have 

(vii) By (iii) and (v) we have 

(viii) By (i) and (vii) we have 

since q - 2 is even. • 

(abTabq)2 = (abTab2bq- 2)2 = (b2abq- 2)2 

b2abq-2b2abq-2 = b2abqabq- 2 = b2a2bq- 2 = bqa2 , 

Lemma 1.2. For any word WI E {a, b} + there exists a word W2 E {a, b} + such 
that the relation 

W2Wlba = ba 

holds in S. 

PROOF. We prove the lemma by induction on the length of wlba. However, in 
this case it is convenient to define the length of a word to be its length in the free 
product {a}+ * {b}+. Thus, for example, both words aba and b3 a2b5 have lengths 
3, while the word ababa has length 5. 

If the length of wlba is 2, then wlba has the form bia for some i E N, so that 
premultiplying by a suitable power of b yields ba. If the length of w1ba is greater 
than 2, then WI ba can be written as 

b bi jbk I 
WI a = a aWl' 
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where 0 :S i :S q, 1 :S j :S 2, 1 :S k :S q, w~ E {a, b }*, and w~ is either empty 
or ends with ba. We shall show that by premultiplying the word biaibka we can 
obtain the word ba. The lemma will then follow by induction, since baw~ is 
shorter than bi ai bk a w~ . 

First of all, by premultiplying biaibka by bq+I-i we obtain the word baibka. 
Next by premultiplying by bq- 1abr ab we obtain 

By repeating this we obtain the word babka = babq+ka. Now premultiplying by 
bq- 1abr - 1 yields 

By repeating this we obtain the word bab2a if k is even or babr a if k is odd. We 
now consider these two cases separately. 

First we consider the word bab2a, and we premultiply it by bq- 1abr - 1 to obtain 

and then we premultiply ba2 by bq- 1abr ab: 

Now we consider the word babr a, and we premultiply it by bq- 1abr ab to obtain 

and then we premultiply it by babr - 1: 

babr
-

1 . ba2 br a = b( abr a)2 = bq+1 a2 = ba2. 

Again premultiplying by bq- 1abr ab yields ba .• 

Lemma 1.3. Let L1 and L2 be the left ideals of S generated by ba and bab re­
spectively. Then L1 and L2 are the only two minimal left ideals of 5) and the 
action of 5 on {L1,L2} is given by 

t:tb 
112 
2 1 1 

PROOF. That L1 and L2 are minimal left ideals follows from Lemma 1.2 and 
Proposition 9.3.1. To prove that L1 =f. L2 note that for any i, j ~ 0 and any 
Wl,W2 E {a,b}* we have 
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so that we can never have ba = wbab. 
Finally, to prove that LI and L2 are the only minimal left ideals of S, we 

show that for any word WI E {a, b} + there exists a word W2 E {a, b} + such that 
W2WI E LI UL 2· First we premultiply WI, to obtain a word of length at least three. 
This word has the form w~ bail). By Lemma 1.2 this word can be premultiplied 
to give bail). Next, from 

it follows that we may assume that i = 1. Now if we premultiply the word bal) 
by bq-Iabr - l we obtain 

By continuing in this way we obtain the word ba E LI if j is even or bab E L2 if 
j is odd. 

The given action of S on {LI, Lz} follows from the above argument .• 

Lemma 1.4. S has a unique minimal two-sided ideal M. A word W E {a, b} + 
represents an element of .AI if and only if W contains ba as a subword. The set 
S - M has exactly 3q + 2 elements, and these elements are represented by the 
non-empty words of the form ail), 0 :::; i :::; 2, 0 :::; j :::; q. 

PROOF. The existence of M is a consequence of the fact that S has minimal 
left ideals; see Lemma 1.4 and Proposition A.3.2. By the same theorem we 
have AI = LI U L2 . In particular, M is generated by ba, and hence every word 
containing ba as a subword represents an element of AI. For the converse note 
that we have the following invariant of presentation (2): if WI, W2 E {a, b} + are 
such that WI = W2 holds in S then WI contains ba as a subword if and only if W2 

contains ba as subword. Therefore, a word not containing ba as a subword does 
not represent an element of M. There are exactly 3q + 2 such words, and they 
are ail), 0 :::; i :::; 2, 0 :::; j :::; q, i =I 0 or j =I O. All these words represent distinct 
elements of S since the only relations that can be applied to ail) are a3 = a and 
bq+1 = b .• 

Lemma 1.5. For any word WI E {a, b} + there exists a word W2 E {a, b} + such 
that the relation 

holds in S. 

PROOF. We prove the lemma by induction on the length of bawl, where the 
length is again taken in the free product sense. In the case of length 2 we have 
bawl _ bai, so that postmultiplying by a suitable power of a yields ba. 
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If the length of bawl is greater than 2, then bawl can be written as w~ baibi ak , 

where 1 ~ i ~ q, 1 ~ j ~ 2, ° ~ k ~ q, w~ E {a,b}* and w~ is either empty or 
ends with ba. Similarly as in Lemma 1.2, we show that baibiak can be reduced 
by postmultiplying to ba, and the lemma will follow by induction. 

First of all, by postmultiplying baibi ak by an appropriate power of a, we can 
obtain the word baibia. Next we postmultiply baibia by bT ab2 and obtain 

Continuing in this way yields baibqa if j is even or baibT a if j is odd. Note that 
baibqa = bai+1 by Lemma 1.1 (i), and postmultiplying by a2- i yields ba. Let us 
now consider the word baibT a, and let us postmultiply it by b2

; we obtain 

If i = 1, the obtained word is b3a, and this word can be transformed into bq+1 a = 
ba by repeatedly postmultiplying by bT ab2• If i = 2, then we have the word bab2a, 
which is of the form baibiak with j even, and we have already shown that such a 
word can be reduced by postmultiplication to ba .• 

Lemma 1.6. Let RlJ R2) R3 be the right ideals of 5 generated by ba) aba) a2ba 
respectively. Then RlJ R2) R3 are the only three minimal right ideals of s. 

PROOF. That RI, R2, R3 are minimal follows from Lemma 1.5 and Proposition 
9.3.1. To prove that they are distinct first note that for any i,j 2: 0, and any 
WI,W2 E {a,b}*, we have 

Therefore, RI :j:. R2 and RI :j:. R3. In order to prove that R2 :j:. R3 we have 
to note a less apparent invariant of s.:}1: for any i, k 2: 0, any j, 1 2: 1, and any 
WI, W2 E {a, b} *, where WI and W2 do not start with b, we have 

Finally, every word containing ba as a subword has the form aibi aw, where i 2: 0, 
j 2: 1, and hence M = RI U R2 U R3, so that RI , R2 and R3 are the only minimal 
right ideals of s. • 

Lemma 1.7. The minimal two-sided ideal M of 5 is a completely simple semi­
group) and is a union of six copies of a group. 

PROOF. The lemma follows directly from Lemmas 1.3 and 1.6 and Proposition 
9.3.1. • 
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Lemma 1.8. The Schiitzenberger group H of the minimal two-sided ideal M of 
S is defined by the presentation 

( I 2 1 q/2 1 -1( -1 )2 1) X, y, z x = ,y =, xyxy xy xy = . 

It is a meiabelian group of order q(2q/2 - 1). 

PROOF. We find a presentation for H by rewriting the presentation (2) for Sin 
accord with Theorem 10.3.2. Since S has two generators and two minimal left 
ideals we need four new generating symbols, which we denote by i1,a, i 2,a, t1,b, 
t 2,b. The action of S on its minimal left ideals is given in Lemma 1.3. 

We rewrite the defining relations for S as follows: 

a a a - a -
1 i1,a i1,a t1,a - 1 t1,a -
2 i 2,a i1,a t1,a - 2 i 2,a -

b b b - b ... -
1 i1,b i 2,b i1,b - 1 i1,b ... -

2 i 2,b il,b i2,b - 2 i2,b ... -

a b b ... b a b b - b b a 

1 i1,a i1,b t2,b i1,b t 2,a i1,b i 2,b - 1 t1,b i 2,b i1,a ... -
2 i 2,a i1,b t2,b t1,b t 2,a t1,b t 2,b - 2 i 2,b t1,b i 2,a ... -

The word bqa 2 represents an idempotent by Lemma 1.1 (vi), and it is obvious 
that this idempotent belongs to M. Rewriting bqa2 gives 

b b ... b a a 
1 i1,b i2,b ... i2,b il.a t1,a - 1 
2 i 2,b tl,b i1,b i 2,a i1,a - 1 ... -

Thus we obtain the following presentation for H: 

If we use 

(i1,a, i 2,a, t1,b, i 2,b I tL = 1, (t1,bi2,b )q/2 = 1, 

i1,a (il,bt2,b )(r-1)/2h,bt 2,at l,bi2,b = h,bi 2,bi 1,a, 

i 2,a (i1,bi2,b )(r-1)/2i1,bi2,ai1,bi2,b = i2,bi1,bi2,a, i2,ai1,a = 1). 

i2 a = i 1-
1
a = t1 a , , ' 

to eliminate i 2,a, and if we denote i1,a, h,b, i2,b by x, z, i respectively, we obtain 
the presentation 

(x, z, i I x 2 = 1, (zi)q/2 = 1, x(zt)(r-1)/2zxzi = ztx, x(zt)(r-1)/2zxzt = izx). 
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From the last two relations we obtain 

zt = tz. 

Now we introduce a new generator y by 

zt = y, 

and then eliminate t, so that we obtain 

(x, y, z I x 2 = 1, yq/2 = 1, xy(r-1)/2zxy = yx, yz = zy). 

N ext we introduce a new generator 

U 
- y(r-1)/2_ 
- "'-, 

eliminate z by using this generator, and obtain 

(x, y, u I x 2 = 1, yq/2 = 1, xuxy = yx, yu = uy). 

Finally, by eliminating u, we obtain the desired presentation: 

(x, y I x 2 = 1, yq/2 = 1, xyxy-1(xy-1xy)2 = 1). 

To see that H is metabelian (i.e. that the derived subgroup H' is abelian) we 
introduce a new generator 

-1 
V = xy xv, 

after which our presentation becomes 

(x, y, v I x 2 = 1, yq/2 = 1, v = xy-1 xy , xvx = v-1, zvz-1 = v2), 

so that H' is the cyclic group generated by v. From the second and the last 
relations it follows that the order of v divides 2q

/
2 - 1, and it is relatively easy 

(using the Reidemeister-Schreier Theorem, say) to prove that v indeed has order 
2q

/ 2 -1. Since the group HI H' is clearly isomorphic to C2 x Cq/ 2 , it follows that 
IHI = q(2q

/
2 - 1), as required .• 

If we combine Lemmas 1.3, 1.4, 1.6 and 1.8 we obtain the following: 

Theorem 1.9. Let q, r E N, and assume that q is even and r is odd. The 
semigroup S defined by the presentation 

(a, b I a3 = a, b
q+1 = b, abr ab2 = b2a) 

has a unique minimal two-sided ideal M, which is a completely simple semigroup 
with two minimal left ideals and three minimal right ideals. The Schiitzenberger 
group H of M is the metabelian group of order q(2q/2 - 1) defined by the presen­
tation 

(4) 

S is a finite semigroup of order q2q/2 + 2q + 2. The egg-box picture of S is shown 
in Figure 12. 
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aM 

Figure 12. 

As we have already mentioned, presentation (2) is rather special when com­
pared to the other presentations considered in this thesis. Nevertheless it had a 
big influence on the general theory from Chapters 9 and 10. There are several 
reasons for this. First of all, every presentation (2) (with q even and r odd) de­
fines a finite semi group of relatively small order; see Theorem 1.9, and compare 
with Theorems 11.4.5, 12.4.4 and 12.5.10. Hence these semigroups are very con­
venient for a computational investigation using the Todd-Coxeter enumeration 
procedure. 

Next, unlike Coxeter type semigroups and (non-generalised) Fibonacci semi­
groups which all have a unique minimal left ideal or a unique minimal right ideal, 
a semi group S defined by (2) has two minimal left ideals and three minimal right 
ideals. This opens up a possibility for the Schiitzenberger group H of the minimal 
two-sided ideal M not to be isomorphic to the group G defined by (2). Actually, 
it was quickly discovered by E.F. Robertson that both possibilities H ~ G and 
H 1E G occur for various values of q and r, and it was conjectured that H ~ G 
if and only if q = 2r. Walker (1992) proved this conjecture in one direction: if 
q = 2r then H ~ G. 
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Using Theorem 1.9 we can prove the whole conjecture. If G is the group 
defined by 

(a, b I a2 = 1, bq = 1, abr ab2 = b2a), 

from the last relation we see that br is conjugate to a, so that b2r = 1. If 
we let 8 = g.c.d.(q/2, r), then we see that b2s = 1. Since r is odd we have 
r = 8 (mod 28), and so we have the following presentation for H: 

(5) 

The group defined by the above presentation is Hs,2,-2 in the notation from 
Campbell, Coxeter and Robertson (1977). Theorem 8.2 from the same paper 
implies that this group is metabelian of order 28(2S - 1). Now, if q =J. 2r, then 
8 < q/2, so that IHI > IGI, so that Hand G are not isomorphic. On the other 
hand, it is a routine matter to check that presentations (4) and (5) indeed define 
isomorphic metabelian groups for q = 2r. 

Early computational evidence enabled E.F. Robertson to establish the follow­
ing multiplication table for the products of idempotents of the minimal two-sided 
ideal M of S: 

el e2 e3 e4 e5 e6 
el el el el e4 e4 e4 bq 2r 

e2 e2 e2 e2 e5 e5 e5bq- 2r 

e3 e3 e3 e3 e6b2r e6b2r e6 
e4 el el el b2r e4 e4 e4 
e5 e2 e2 e2 b2r e5 e5 e5 
e6 e3bq- 2r e3bq- 2r e3 e6 e6 e6 

where 

el = bqa2, e2 = abqa, e3 = b2r-la2ba2, 

e4 = b2r-2a2ba2b, e5 = a2b2r-la2b, e6 = bQ- 1a2b. 

With Lemma 1.1 in mind it is easy to see that these idempotents are closed 
under the multiplication if and only if q = 2r. In this way the computer evidence 
suggested Theorem 9.2.1. 

Considering the non-isomorphic case q =J. 2r was the first step towards a 
general rewriting theory for the Schiitzenberger group of the minimal two-sided 
ideal developed in Chapter 10. (Note that the generalised Fibonacci semi group 
S(2, 6, 2) from Section 3 of Chapter 11, although 'nice', was not a suitable working 
example, since it is infinite and does not admit a straightforward investigation 
by using Todd-Coxeter enumeration procedure.) Note that, for q = 2r, the 
idempotent e = el has the property 
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for any words WI, W2; see the proof of Theorem 9.2.1. If q i= 21', e does not have 
this property (as it would imply H ~ G). However, it was noted that e has the 
following weaker property: 

giving rise to an obvious rewriting mapping, and later to a presentation for H. 
A generalisation of this approach yielded the following more general, but very 
technical, rewriting theorem: 

Theorem 1.10. Let S be the semigroup defined by the presentation 

where nI, n2, m > 0, and each ai and each f3i is a non-empty word in al and a2. 
Let S have both minimal left ideals and minimal right ideals, let M be the minimal 
two-sided ideal of S and let H be the Schiitzenberger group of M. Suppose that 
there exists an idempotent e from M satisfying the following two conditions: 

(Ei) ea~a2 = ea~ea2' for 1 ~ i ~ nl; 

(E2) ea~aI = ea~eaI' for 1 ~ i ~ n2· 

Let e = af/, where t E {1,2}, and I is a word which does not start with at. Let 
B be the alphabet {Xi,j 11 ~ i ~ 2, j E fir}, with the convention that Xi,j = Xi,k if 
j = k (mod ni)' We define a mapping 4>{aI,a2}+ ----+ B+ by 

Then H is defined by the presentation (B I 91), where 91 is the following set of 
relations: 

(i) 
(ii) 

(iii) 

(iv) 

(aJ:aiaJn4> = (aJ: f3iaJ~)4>, for 1 ~ jp ~ 2, 1 ~ kp ~ njp' 1 ~ i ~ m; 

(aJe)4> = aJ4>, for 1 ~ j ~ 2, 1 ~ k ~ nj; 

(eak )).. = a~).. +01' 1 < J' < 2 1 < k < n·· J 'f' J 'f', J' - - , - - J' 

Xt,q+p = Xt,qXt,p if e is of the form af oai (otherwise there zs no relation 
here) .• 

(For details on the above theorem and for a proof see Campbell, Robertson, 
Ruskuc and Thomas (1994a).) 

Due to the lack of feasible examples, the authors hoped for a while that it 
is always possible to find an idempotent satisfying conditions (El) and (E2) (or 
their left-right duals). However, as the following example shows this is not the 
case. 
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Example 1.11. Let S be the semi group defined by the presentation 

(a, b I a3 = a, b3 = b, (ab)3 = (ab)2, ab2aba2b = ab2a2b, 

bab2aba = (ba)2, ba2b2a2ba = ba2ba, ab2bab = ab2ab, abab2ab = abab, 

(b2a2)3 = b2a2, (ab2? = (ab2)2, (ba2)2(ba)2(ab)2a2b2 = (ba2)2b2). 

L t - il jl , kl II d - i2 j2 , k2 12 b t d h { } e WI = Xl YI WIZI UI an W2 = X2 Y2 W2Z2 U2 e wo wor s, were XI, YI = 
{X2' Yd = {ZI, ud = {Z2' U2} = {a, b}, w~ does not begin with YI and does not 
end with Zl, and w~ does not begin with Y2 and does not end with Z2. From the 
nature of our presentation we see that if WI = W2 holds in S then we have 

Xl = X2, YI = Y2, Zl = Z2, UI = U2, 

i l = i2 (mod 2), jl = j2 (mod 2), kl - k2 (mod 2), h = 12 (mod 2). 

By using the Todd-Coxeter enumeration procedure we can see that S is finite of 
order 224. In particular, S has minimal left ideal and minimal right ideals. Let e 
be a word representing an idempotent of the minimal two-sided ideal M of S. It 
is clear that e must contain both a and b. Also, it is clear that e can be chosen 
to have the .length (in the free product sense) at least three. Let us assume that 
e = e'a2aia~, where 1 ::; i,j ::; 2. Then for k i= i we have 

k _, i j k -I.' i j k' i j+l _ k 
eal a2 = e a2al a2al a2 -; e e2al a2al e a2al a2 = eal ea2, 

and e does not satisfy condition (E1). Similarly, if e = e' al a~aL the e does not 
satisfy (E2) .• 

The above example, as well as the fact that Theorem 1.10 is technically very 
complicated, prompted a search for a 'better' presentation for the Schiitzenberger 
group of a minimal two-sided ideal. The first such result is Theorem 10.3.3, where 
the idempotents of the minimal two-sided ideal and their interaction still play an 
important role. However, work on Theorem 10.3.3 suggested that the notion of 
rewriting mapping is at least as important as the idempotents, thus paving the 
path for the general rewriting theory described in Section 7 of Chapter 6, which, 
in turn, lead to Reidemeister-Schreier type results in Chapters 7 and 10. 

2. Semigroups defined by presentations (a, b I a3 = a, 
bq+1 = b, a = br

) 

In this section we consider semigroups defined by presentations 

(a b I a3 - a bq+l = b a = bT
) , -, , , (6) 

where q,r E N, a E {a,b}+, and we classify them with respect to the properties 
(F1), (F2), (F3); see the introduction to this chapter. 

A typical procedure for determining the type of a semigroup S defined by a 
presentation (6) consists of the following steps: 
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1. checking if S has minimal left and right ideals; 

2. determining the number of minimal left ideals and the number of minimal 
right ideals; 

3. if there is more than one minimal left ideal and more than one minimal 
right ideal then rewriting (6) into a presentation for the Schiitzenberger 
group of the minimal two sided ideal. 

Except for the case 0: _ a2
, the type of a semi group S defined by (6) depends 

only on 0: and not on q and r. More precisely, the type of S crucially depends on 
the beginning and ending of 0:. Therefore, we consider the following cases 

0: = a, 0: = a2
, 0: _ ab(3ba, 0: _ ab(3b, 0: = b(3ba, 0: = ab(3ba2 

0: = a2b(3ba, 0: = b(3ba2
, 0: = a2b(3b, 0: = b(3b, 0: = a2b(3ba2

, 

where (3 E {a, b} *. Note that because of the relations a3 = a and bq+1 = b the 
above cases cover all the possibilities for 0:. 

The number of cases can be reduced further by using the following obvious 

Lemma 2.1. Let q,r E N) let 0: E {a,b}+) and let o:R be the reverse of 0: (i.e.) 
if 0: = X1X2.· .Xk) with Xi E {a,b}, then o:R = Xk •.. X2Xl). The semigroup S 
defined by the presentation 

( b I 3 bq+1 = b, '" = bT
) a, a = a, u. 

is anti-isomorphic to the semigroup SR defined by the presentation 

( b I 3 bq+1 = b, ",R = bT
) •• a, a = a, u. 

Hence, for example, the case 0: = ab(3b is dual to 0: _ b(3ba, and we shall 
consider only the former. In what follows Sand G will always denote the semi­
group and the group defined by the considered presentation. We will be omitting 
most technical details, for which the reader is referred to Campbell, Robertson, 
Ruskuc, Thomas and Unlii (1995). 

The case a = a 

In this case we consider the semigroup S defined by the presentation 

( b I 3 bq+1 = b, a = bT
), a, a = a, (7) 

which, after eliminating a, becomes 

(b I b3T = b, bq
+1 = b). 



202 Semigroup presentations 

Therefore, S is isomorphic to the cyclic group of order g.c.d.(q,2r). In partic­
ular S has a unique minimal left ideal and a unique minimal right ideal and is 
isomorphic to the group defined by (7). 

The case Q = a 2 

N ow we have the presentation 

( b I 3 bq+1 = b, a 2 = bT
). a, a = a, (8) 

Let us first assume that g.c.d.(q, r) = 1. Choose k such that kr = 1 (mod q), 
and introduce a new generator c = bT

• Then we may delete generator b = ck to 
obtain 

(a, c I a3 = a, Ck (q+l) = ck , c = a2). 

Next we delete c, and obtain 

so that S is the cyclic group of order 2. In particular, S has a unique minimal 
left ideal and a unique minimal right ideal and is isomorphic to the group defined 
by (8). 

Now we consider the case where g.c.d.( q, r) = s =f. 1. Let T be the homomor­
phic image of S obtained by adding the relation bs+1 = b to (8). Therefore, T is 
defined by 

which is equivalent to 

so that T is the monoid free product of the cyclic group C2 of order 2 and the 
cyclic group Cs of order s. In particular, T has no minimal (left, right or two­
sided) ideals, which implies that S does not have minimal (left, right or two-sided) 
ideals. 

The case a = abf3ba 

In this case S is defined by the presentation 

The element b generates a minimal left ideal L and a minimal right ideal R. 
Also, we have L = R, and this is the minimal two-sided ideal of S. This minimal 
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two-sided ideal is isomorphic to G by Corollary 9.2.4. 5 - L has exactly two 
elements a and a 2

, so that 151 = IGI + 2, and 5 is finite if and only if G is finite. 

The case a = ab(3b 

The presentation (6) in this case becomes 

Element b again generates a unique minimal right ideal R. However, in this 
case 5 has three minimal left ideals Lt, L2 and L3 generated by b, ba and ba2 

respectively. By Corollary 9.2.4, each of Lt, L2, L3 is a group isomorphic to G. 
5 - R again has two elements a and a2

, and 151 = 31GI + 2. 5 is finite if and only 
if G is finite. 

The case a - ab(3ba2 

In this case 5 is defined by 

As in the previous two cases b generates a unique minimal right ideal R, but now 
5 has two minimal left ideals L1 and L2 generated by band ba respectively. Each 
of L1 , L2 is a group isomorphic to G. The order of 5 is given by 151 = 21GI + 2, 
and 5 is finite if and only if G is finite. 

The case a - b(3ba2 

Now 5 is defined by 

( b I 3 bq+1 = b, b;3ba2 = bT
\. a, a = a, / 

Assume that 

with k 2:: 0, it, ... , i k+1 E {I, ... , q}, j1, ... ,jk E {1,2}. 
First we consider the case k = 0 or k > 0 and )1 = j2 = ... = jk = 2. Let T 

be the homomorphic image of 5 defined by the presentation 

(a, b I a3 = a, bq+1 = b, b;3ba2 = bT
, ba2 = a2b = b2 = b). 

This presentation is clearly equivalent to 

(a, b I a2 = 1, b2 = b). 

Therefore T is the monoid free product of the cyclic group C2 and the two-element 
semilattice (b with 1 adjoined to it), and hence does not have minimal (left, right 
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or two-sided) ideals. Therefore, if k = 0 or jl = ... = jk = 2, then S has no 
minimal (left, right or two-sided) ideals. 

Now we consider the case where k > 0 and jz = 1 for some 1. It is possible 
to show that S satisfies the relation ba2 = b, so that S can be defined by a 
presentation 

where I 2: 1, ml, ... , mz E {I, ... , q}. S has two minimal left ideals LI and L2 
generated by band ba respectively; it also has three minimal right ideals R I , R2 
and R3 generated by b, ab and a2b respectively. The action of S on LI and L2 is 
given by 

ttb 
1 2 1 
2 1 1 

Rewriting the relations a3 = a and bq+l = b in accord with Theorem 10.3.2 gives 

(9) 

while rewriting ba2 = b does not give any new relations. The word bq represents 
the idempotent of LI n RI ; rewriting this word gives 

(10) 

With (9) and (10) in mind, we see that rewriting ba2 = b, bm1 abm2 a . .. bmlabml+l = 
bT gives 

tm1 t tm2 t t tm1+1 tT 

l,b l,a l,b l,a··· l,a l,b = l,b· 

Therefore, H is defined by the presentation 

It is easy to see that H can be both finite and infinite, depending on I and 
m}, .. . ,mZ+I. S is finite if and only if H is finite and lSI = 61HI + 2. 

The case a = bj3b 

In this case S is defined by the presentation 

Let us assume that 

where k 2: 0, i l , ... , ik+l E {I, ... , q}, jl,··· ,jk E {1,2}. If k = ° then S is 
the semi group free product of two cyclic groups, and hence has no minimal (left, 
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right or two-sided) ideals. When k > 0, all the words (ba3
- j1 )lb, 1 2 1, generate 

distinct right ideals, and all the words b(a3- jk b)l, 1 2 1, generate distinct left 
ideals. Hence S has no minimal left ideals and no minimal right ideals. However, 
S might have minimal two-sided ideals. For instance, if S is defined by 

(a, b I a3 = a, b2 = b, baba2b = b), 

then b generates a minimal two-sided ideal. 

N ow we have the presentation 

(11) 

This case is very similar to the case 0: == b(3ba2
• Let us assume that 

If k = 0 or if j1 = j2 = ... = jk = 2, then S has no minimal (left, right or 
two-sided) ideals. If k > 0 and at least one js is 1, then (11) is equivalent to 

S has two minimal left ideals L1 and L2 which are generated by band ba respec­
tively, and it has two minimal right ideals R1 and R2 which are generated by b 
and ab respectively. The Schiitzenberger group H of the minimal two-sided ideal 
M of S has a presentation 

S is finite if an only if H is finite, and we have lSI = 41HI + 2. 

The results from this section are summarised in Table 3. 
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s comments I size of m.i. I 

a (Fl) 1 x 1 

a2 (Fl) if g.c.d.(q, r) = 1 1 x 1 
(F3) if g.c.d.( q, r) > 1 

ab(3ba (Fl) 1 x 1 

ab(3b (Fl) 1 x 3 

b(3ba (Fl) 3 x 1 

ab(3ba2 (Fl) 1 x 2 

a2 b(3ba (Fl) 2 x 1 

b(3ba2 (F2) if b(3b contains bab 3 x 2 

(F3) otherwise 

a2 b(3b (F2) if b(3b contains bab 2x3 
(F3) otherwise 

b(3b (F3) may have minimal two-sided ideal 

a2 b(3ba2 (F2) if b(3b contains bab 2x2 
(F3) otherwise 

Table 3. 



Chapter 12 

Computational methods 

Many results of the previous chapters have been influenced by computational 
evidence obtained from an implementation of the Todd-Coxeter enumeration 
procedure running on computers at the University of St Andrews. By comment­
ing on this influence we hope to have underlined the usefulness of computational 
methods in the study of semigroup presentations and semigroups in general. How­
ever, the formulation and the proofs of the results did not depend on any com­
putational evidence, and so the over-simplified abstraction of the Todd-Coxeter 
enumeration procedure shown in Figure 4 .sufficed for the needs of the first eleven 
chapters. In this chapter we give due credit to the Todd-Coxeter enumera­
tion procedure by describing it in detail, and by giving three modifications of 
this procedure. These modifications enumerate Rees quotients by one-sided ide­
als, minimal one-sided ideals and the idempotents of minimal two-sided ideals. 
These procedures can be combined with the Reidemeister-Schreier type results 
of Chapters 7 and 10, giving these results a more computational flavour. We 
also pose several open problems which we consider important for the further 
development of computational methods for semi group presentations. 

In Section 1 we give a brief summary of the development of computational 
methods in semigroup theory. In Section 2 we establish the notation that we 
need to describe various Todd-Coxeter type procedures, and we describe the 
standard Todd-Coxeter enumeration procedure. In Sections 3, 4 and 5 we give 
the mentioned three modifications of this standard procedure. The notation from 
2 and the results from 4 and 5 will appear in Campbell, Robertson, Ruskuc and 
Thomas (1995a). The result from Section 3 appears here for the first time. 

1. A short history 

As we mentioned in Chapter 3, semigroup theory draws a significant amount of 
motivation and ideas from group theory. Therefore it is natural to look at compu­
tational group theory for hints on the development of computational semi group 
theory. 

207 
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Computational group theory is a relatively young mathematical discipline; 
Neubiiser (1995) dates the beginning of its history to 1953, which is the year of 
the first implementation of the Todd-Coxeter enumeration procedure for groups. 
However, the same author points out that the 'prehistory' of computational group 
theory began at the same time as group theory itself, thus implying that the delay 
in development was not due to lack of interest. The main reason for the delay is 
that computational group theory requires well developed theoretical group theory, 
as well as advanced computers, and it was only in the second half of this century 
that both these requirements were met. The result has been rather dramatic: 
the number of results has been growing so rapidly, that an intention of writing a 
book on the subject in 1970 resulted in 1994 in the book of Sims (1994) dealing 
exclusively with group presentations. This book is the best reference available 
for computational methods for group presentations. For a general discussion 
on computational group theory and its development the reader is referred to 
Neubiiser (1995). 

The first applications of computational techniques to semigroups seem to 
have been the determination of semigroups of small orders; see Forsythe (1955), 
Tetsuya et al. (1955) and Plemmons (1967), (1970); see also Chapter 15 in 
Jiirgensen et al. (1991). In these papers the authors develop computational 
methods for handling semigroups defined by their multiplication tables. How­
ever, as we mentioned in Chapter 3, multiplication table~ do not seem to be 
the best way to approach semigroups in general. The other two approaches­
transformation semigroups and semigroups defined by presentations-although 
harder to develop, seem more promising in the long term. 

Lallement and McFadden (1990) give a collection of algorithms for investigat­
ing finite transformation semigroups, as well as a bibliography containing earlier 
partial attempts in this field. The algorithms of Lallement and McFadden give 
the structure of a transformation semi group 5 (given by its generators) in terms 
of Green's relations: they calculate all V-classes of 5, and for each V-class D they 
determine whether or not it is regular, find the number of £-classes and 1?-classes 
of D and find a generating set for the Schiitzenberger group (as a permutation 
group) of D. A computer implementation of these algorithms is described in 
Champarnaud and Hansel (1991). Konieczny (1994) generalised these results to 
semigroups of binary relations. 

The development of computational methods for semigroups defined by pre­
sentations has been concentrated around the two main procedures: the Knuth­
Bendix rewriting procedure (introduced in Knuth and Bendix (1970); see also 
Sims (1994)) and the Todd-Coxeter enumeration procedure, which is the main 
theme of this chapter. 

The origins of the Todd-Coxeter enumeration procedure are in Todd and 
Coxeter (1936), where they described the procedure for groups. Neumann (1967) 
showed how this procedure can be used for semigroups, but he did not prove 
the validity of the modification. This gap was filled by Jura (1978). The first 
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computer implementation of the procedure is attributed to J .M. Parrington by 
Cannon (1969). The first FORTRAN version of the Todd-Coxeter enumera­
tion procedure running in St Andrews was by E.F. Robertson and Y. Unlu; see 
Robertson and Unlu (1993). An improved C version is due to T.G. Walker; see 
Walker (1992). Two modifications of the Todd-Coxeter enumeration procedure 
for enumerating minimal one-sided ideals and idempotents of the minimal two­
sided ideal are described in Campbell, Robertson, Ruskuc and Thomas (1995a). 
Also in Campbell, Robertson, Ruskuc and Thomas (1994a), (1995a) and (1995b) 
foundations are laid for a Reidemeister-Schreier type theory for semigroups, 
which has also been a topic of a detailed discussion in this thesis. 

2. Todd-Coxeter enumeration procedure 

We begin this section by describing certain data structures and actions on these 
data structures, in terms of which we will describe the Todd-Coxeter enumera­
tion procedure and various modifications of this procedure. 

Let A = {al, ... , an} be a finite alphabet, and let 00 be a symbol. We define 
the following three data structures. 

Dl A finite set C of non-negative integers contain~ng ° and l. 

D2 A mapping 
r:(CU{oo}) xA-tCU{oo}, 

such that 
(O,a)r = 0, (oo,a)r = 00, 

for all a E A. 

D3 A set f{ which is a subset of C xC. 

The elements of C are called eosets. In the standard version of the Todd­
Coxeter enumeration procedure they are simply names for elements of the enu­
merated semi group S. The cosets ° and 1 do not represent elements of S. They 
are included in C for technical reasons, and can be conveniently thought of as 
representing an adjoined zero and an adjoined identity. In the variants of the 
procedure described in Section 3 cosets are names for the elements of a Rees 
quotient S / L, where L is a left ideal of S, while in Section 4 cosets are names for 
minimal left ideals of S. 

The mapping r is called the coset table. This mapping extends to a mapping 

r: (C U {oo}) X A+ -t C U {(X)} 

by 
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An equality (i, W)7 = j means that the coset i multiplied by the word W gives 
the coset j. An equality (i, W)7 = 00 means that the result of multiplication of i 
by W has not yet been defined. We say that row i of the coset table is complete 
if (i,a)7 =1= 00 for all a E A. 

The set K is called the coincidence set. Intuitively, it consists of pairs (i, j), 
i,j E C, which have been found to be equal during the course of the procedure. 

The terms 'coset' and 'coset table' originate from computational group the­
ory, as the Todd-Coxeter enumeration procedure for groups enumerates cosets 
of a subgroup in a group. We have retained them here for historical reasons. 
The terms 'element' and 'ideal' instead of 'coset' may suit better the particular 
procedures described here. 

Now we introduce five actions on the above data structures. 

EI Make a new definition. Suppose that the coset table has a row which 
is not complete. Let i be the first such a row, and let j be the least suffix 
such that iaj = 00. If k is the greatest natural number which has belonged 
to C during the procedure, add k + 1 to C, redefine (i, aj)7 = k + 1 in the 
definition of the coset table, and define (k + 1, a)7 = 00, for all a E A. 

E2 Push a row of a relation. For i in C and a relation U = v, with u, v E A +, 
we compare (i, U)7 and (i, V)7 and make them equal as. follows. Let U - Ula 
and v = Vlb, with a, bE A. 

(i) If (i,U)7 = 00, (i,V)7 = k =1= 00 and (i,Ul)7 = I =1= 00 then redefine 
(I, a)7 = k in the definition of the coset table. 

(ii) If (i,U)7 = k =1= 00, (i,V)7 = 00 and (i,vd7 = l =1= 00, then redefine 
(I, b)7 = k in the definition of the coset table. 

(iii) If (i,U)7 = k =1= 00, (i,V)7 = l =1= 00 and k =1= I, then add the pair (k,l) 
to the coincidence set K. 

E3 Push a row of a I-word. Let I E A+ and i E C. We force (i,J)7 to be 
equal to 1 as follows. Let I == II a, a E A. 

(i) If (i,11)7 = k =1= 00 and (i,J)7 = 00, then redefine (k,a)7 = l. 
(ii) If (i,J)7 = k tf. {1,00} then add the pair (l,k) to the coincidence set 

K. 

E4 Push row 1 of a O-word. Let IE A+. We force (1, J)7 to be equal to 0 
as follows. Let I = II a, a E A. 

(i) If (1,11)7 = k =1= 00 and (i,J)7 = 00 then redefine (k,a)7 = O. 

(ii) If (1, J)7 = k tf. {O, oo} then add the pair (0, k) to the coincidence set 
K. 

E5 Process a coincidence. Let (i, j) be an element of the coincidence set 
K. We examine the consequences of identifying i and j as follows. If i = j 
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then remove (i, j) from K and end the action. If i > j then replace (i, j) 
by (j, i) and continue. If i < j then do the following three steps. 

(i) For each a E A with (j, a)T = k i- 00 do the following two steps: 

(a) if (i,a)T = 00 then redefine (i,a)T = k; 

(b) if (i,a)T = 1 rj. {oo,k} add the pair (l,k) to K. 
(ii) Replace j by i in the definition of the coset table and in the remaining 

elements of K. 

(iii) Remove j from C and (i,j) from K. 

Let 

be a finite semi group presentation. The standard Todd-Coxeter enumeration 
procedure (shortly, TC) is defined as follows. 

Start with 

C = {O,l}, K = 0, (O,a)T = 0, (l,a)T = 00 (a E A). 

A single pass of the procedure consists of the following three steps: 

(1) EI; 

(2) for every i E C and every Uj = Vj from 91 do E2; 

(3) repeat E5 until K = 0. 

The passes are repeated until the data structures DI, D2, D3 all stabilise (i.e. 
until a pass not changing any of them is performed). 

The following proposition asserts that the TC procedure does enumerate ele­
ments of the semi group defined by ~. 

Proposition 2.1. Let 

be a finite semigroup presentation, and let S be the semigroup defined by ~. The 
Todd-Coxeter enumeration procedure terminates after a finite number of passes 
if and only if S is finite. Men the procedure stops, the final coset table C gives 
the right regular representation of S acting on S with a zero and an identity 
adjoined, and ICI- 2 is the order of s .• 

A proof of the above theorem can be found in Jura (1978a). One may note 
that the coset ° is superfluous in the TC procedure: at any stage of the procedure 
we have ia = ° if and only if i = 0, because the procedure does not involve action 
E4. The TC procedure, as described above, has straightforward modifications 
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for enumerating monoids (in which case relations of the form U = 1 are allowed), 
semigroups with zero (in which case relations of the form u = 0 are allowed) and 
monoids with zero (where both above types of relations are allowed). Finally, 
we note that the TC procedure is not an algorithm, since it does not necessarily 
terminate. 

3. Enumerating one-sided Rees quotients 

As before, let us have a finite semigroup presentation 

~ = (A 191) = (al, ... , am 1 UI = VI,···, Un = vn ), 

and let 5 be the semigroup defined by~. In addition, let us have a finite set of 
words 

x = {~l, ... ,~r} ~ A+, 

and let R be the right ideal of 5 generated by X. Let 5* be the semi group 5 
with an identity adjoined to it (regardless of whether 5 has an identity or not). 
Obviously, R is a right ideal of 5*, and there is an action 

0" : 5* / R x 5 ----t 5* / R 

of 5 on the set 5*/ R = (5* - R) U {O}, given by 

( ) { 
xs if x E 5* - Rand xs E 5 - R 

xsO"= , 0 otherwise 

(see Appendix A). 
In this section we describe a modification of the Todd-Coxeter enumeration 

procedure, which we call the RQ (Rees quotient) procedure, and which termi­
nates if and only if R has finite index in 5, and gives the index of R in 5, the 
action 0" and a set of representatives of 5 - R; see Chapter 7 for definitions of the 
above concepts. Of course the described procedure has a left-right dual, for enu­
merating the Rees quotient of a semigroup by a left ideal. These procedures can 
be used in conjunction with the Reidemeister-Schreier type results from Section 
3 of Chapter 7, thus giving effective finite presentations for one-sided ideals of 
finite index. Finally, we note that to obtain an effective finite presentation for 
the minimal two-sided ideal I of 5 generated by X, we have to enumerate the 
two-sided Rees-quotient R/ I, which is equivalent to enumerating (by using the 
TC procedure) the semigroup defined by the presentation 

(ab···,am 191,6 = 0, ... , ~r = 0). 

The RQ procedure is based on the data structures and actions introduced in 
the previous section. The initialisation of the procedure is the same as for the 
TC procedure: 

C={O,l}, J{=0, (O,a)T=O, (l,a)T=oo (aEA). (1) 



Computational methods 

One pass of the procedure consists of the following four steps: 

(1) E1; 

(2) for all i E C and all Uj = Vj in 9t do E2; 

(3) for every ~i E X do E4; 

(4) repeat E5 until J{ = 0. 

The passes are repeated until all the data structures D1, D2, D3 stabilise. 

213 

During the procedure to each i E C we assign a word Zi by the following 
rule: Zl is the empty word E; Zo == 6; if i has been defined as i = U, ak)r then 
Zi Zjak· It is easy to check that 

for all i E C - {OJ. 
Now we start working towards our main result (Theorem 3.10), which asserts 

that RQ does indeed enumerate the Rees quotient S / R. 

Lemma 3.1. For every k ~ 0 there exists no E N such that one of the following 
two statements is true: 

(i) for every n ~ no we have k tf. C after the nth pass of the procedure; or 

(ii) the nth pass of the procedure, n ~ no, does not change any of the values 
(k,aj)r, 1::; j::; m. 

PROOF. The only action which adds a new element to C is E1, but the added 
element is always greater than any other previously used element of C. Therefore, 
if k is removed from C at some stage of the procedure, it will never be added to 
C again, and (i) holds. 

So assume that at some stage we add k to C, and that we never remove it after 
it. For a fixed j, 1 ::; j ::; m, the values (k, aj)r can change during the procedure, 
but they always decrease. Therefore, (k, aj)r will take only finitely many values, 
and will eventually stabilise. Consequently, any of (k, aj)r, j = 1, ... , m, will 
take only finitely many values and they will all eventually stabilise, so that (ii) 
holds .• 

When case (ii) occurs we say that row k has stabilised. Lemma 3.1 in effect 
says that each row of the coset table will eventually disappear or stabilise. How­
ever, as noted in Neubiiser (1982), Lemma 3.1 does not imply that we can predict 
when this is going to happen, as this would yield a solution to the finiteness 
problem. 

Lemma 3.1 enables us to 'take the limit of the procedure' in the following 
sense. First we define D ~ N U {O} to be the set of all eventually stable rows, i.e. 

i ED{::=:;> case (ii) of Lemma 3.1 holds for i. 
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Next we define a mapping 
a: D X A+ -----t D 

by 
(i, w)a = (i, W)T, after row i has stabilised. 

It is clear that a is an action of A + on D. In the following lemma we prove that 
a induces an action of S on D. 

Lemma 3.2. Let WI, Wz E A +. If Wl = Wz holds in S then 

(i, wl)a = (i, wz)a, 

for all i ED. In other words, a defines an action of S on D. 

PROOF. The lemma is a direct consequence of the fact that the action E2 is a 
part of the RQ procedure .• 

Our main task is to prove that the action a is actually equivalent to the action 
P; for the definition of equivalent actions see Appendix A. To do this we need 
several technical results. 

Lemma 3.3. If at some stage of the RQ procedure the coset table satisfies the 
property 

i = (j, ak)T ====? (1, Zi)P = (1, Zjak)p, 

for all i,j E C and all k = 1, ... , m, then it satisfies 

i = (j, W)T ====? (1, Zi)p = (1, Zjw)p, 

for all i,j E C and all W E A+. 

(2) 

PROOF. We prove the lemma by induction on the length of w, the case JwJ = 1 
being (2). Let us assume that JwJ > 1, so that W - akWl, with ak E A, and let 
us have 

i = (j,W)T. (3) 

Let us denote 
(4) 

so that (2) gives 
(5) 

Also, from (3) we have 

i = (j, akwl)T = ((j, ak)T, Wl)T = (1, Wl)T, 

and by the inductive hypothesis we have 

(1, z;)p = (1, Z/Wl)P. (6) 
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Finally, from (5) and (6) we deduce 

exactly as required .• 

(1, Zjakwl)P = ((1, Zjak)p, Wl)P = ((1, zz)p, Wl)P 

(1, ZZWl)P = (1, Zi)p, 
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Lemma 3.4. After any pass of the RQ procedure the coset table satisfies the 
following property 

i = (j,w)r ==? (l,zi)p = (l,zjw)p, 

for all i,j E C and all W E A+. 

(7) 

PROOF. We prove the lemma by induction on the number of passes. The coset 
table before the first pass is defined by (1), and obviously satisfies (7). We prove 
that applying one pass of the procedure to a coset table satisfying (7) yields 
another coset table also satisfying (7). In fact, by Lemma 3.3, it is enough to 
prove that the new table satisfies (2). From the definition of the RQ procedure 
it is clear that the coset table is changed only in steps E1, E2(i), E2(ii), E4(i), 
E5. We consider each of these steps separately, showing that they do not affect 
property (2). 

El. Let 
i = (j, ak)r 

be a definition. Then Zi is defined to be 

and we have 
(1, Zi)p = (1, Zjak)p. 

Since the new coset table is identical to the previous one, except for the entry 
(j, ak)r, we see that the new table satisfies (2). 

E2(i). Suppose that 
i = (j, ak)r 

has been obtained by pushing row l of the relation Up = Vp. This means that 

By the inductive hypothesis we have 

N ext note that 
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since up = vp holds in S, so that we have 

(1, zdp 

as required. 

(1, z/vp)p = (1, z/up)p = (1, Z/Upak)p = ((1, z/up)p, ak)p 

((1, Zj)p, ak)p = (1, Zjak)p, 

E2(ii). This action is analogous to the previous one. 

E4(i). Suppose that 
i = (j, ak)T 

has been obtained by pushing the first row of the zero word ~p EX. This means 
that 

~p = (pak, (1, (p)T = j, (j, ak)T = 00, i = o. 
Also, since ~p represents an element of R, we have (1, ~p)p = 0, so that 

by induction. 

(1,6)p = 0 = (1,~p)p = (l,(pak)p = ((l,(p)p,ak)p 

((1, zJp, ak)p = (1, Zjak)p, 

E5. Now we consider processing a coincidence (iI, i2). If. this coincidence has 
been obtained by pushing a row of a relation or by pushing row 1 of a zero word, 
it is easy to repeat the argument above to prove that 

If (iI, i2 ) is a consequence of another coincidence jl = j2 satisfying 

then we have 
i l = (jl, ak)T, i2 = (j2, ak)T, 

for some k, 1 :::; k :::; m, so that 

by induction. Therefore, in any case, (8) holds. 

(8) 

Now, if i l < i2 , then i2 is removed from C (possibly producing more coinci­
dences), and every occurrence of i2 is replaced by i l . For example, i2 = (i,ak)T 
becomes i l = (i, ak)T. Now we have 

which completes the inductive step .• 
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Lemma 3.5. Action (J satisfies the property 

for all i,j E D and all wE A+. 

PROOF. The lemma is an immediate consequence of the definitions of D and (J 
and Lemma 3.4 .• 

Lemma 3.6. If i E D) i =I- 0) then (1, Zi)P =I- 0 in 5* j R. 

PROOF. If (1, Zi)p = 0 in 5* j R, then Zi represents an element of R in 5, so that 
Zi = ~jW for some j, 1 :::; j :::; r, and some wE A+. By Lemma 3.2 we have 

which is a contradiction .• 

Lemma 3.7. Ifw E A+ is such that (l,w)p =I- 0 in 5*jR then (l,wk =I- O. 

PROOF. If (l,w)(J = 0 then by Lemma 3.5 we have 

0= (l,zo)p = (l,ZlW)P = (l,w)p, 

which is a contradiction .• 

Lemma 3.8. If w E A + does not represent an element of R then the relation 
w = Z(l,w)o- holds in 5. 

PROOF. By Lemma 3.7 we have (1, w)(J =I- O. Now note that 

(1, Z(l,w)o-)(J = (1, w)(J, 

by the definition of words Zj, so that, By Lemma 3.5, we have 

Since W if. R, we obtain Z(l,w)o- = W in 5 .• 

Lemma 3.9. Actions p and (J are equivalent. 

PROOF. Let us define mappings 

<PI : 5* j R -+ D, <P2: D -+ 5* j R 

by 
A- _ { (1, x)(J if x =I- 0 {zx if x =I- 0 

X'!'l - 0 otherwise ' X<P2 = 0 otherwise. 
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These mappings are well defined by Lemmas 3.2 and 3.6. If x E S* / R, x =1= 0, 
then (1, x)o- =1= ° by Lemma 3.7, and we have 

(x<h)<p2 = ((1,x)0-)<p2 = Z(l,x)u = x, 

by Lemma 3.8. Also, if xED, x =1= 0, then Zx rf. R by Lemma 3.6, and we have 

It is clear that 

and so <PI and <P2 are mutually inverse. 
We now want to prove that for each x E S* / R and each s E S we have 

( ( X <PI, s ) 0-) <P2 = (x, s ) p, 

which means that 0- and p are equivalent; see Section 1 of Appendix A. 

If x =1= ° and (x, s)p =1= ° then 

( ( (1, x )0-, s ) 0-) <P2 = (( 1 , x s ) 0-) <P2 

Z(I,xs)O" = XS = (x, s )p. 

If x =1= ° and (x,s)p = ° then (l,xs)o- = ° by Lemma 3.2, and we have 

(( X<PI' s)o- )<P2 = ((1, xs)o- )<P2 = 0<P2 = ° = (x, s )p. 

Finally, if x = 0, we have 

((X<pI,S)0-)<P2 = ((0,S)0-)<P2 = 0<P2 = 0= (x,s)p. 

Therefore, (9) holds in every case, and the lemma follows .• 

Now we can prove our main result. 

Theorem 3.10. Let 

(9) 

be a finite semigroup presentation, let S be the semigroup defined by~, let X = 
{6, ... , er} be a finite subset of A +, and let R be the minimal right ideal of S 
generated by X. The RQ procedure, with ~,X as its input, will terminate if 
and only if R has finite index in S. Men the procedure terminates, the final 
coset table T gives the action of S on S* / R, ICI - 1 is the index of R in S, and 
{Zi I ° =1= i E C} is a set of representatives of S - R. 
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PROOF. If R has has infinite index in 5, then 5 - R is infinite, so that the set D 
is infinite by Lemma 3.9. On the other hand, at any stage of the RQ procedure, 
the set C is finite. Hence, the procedure does not terminate in this case. 

Assume now that R has finite index t in 5, and let {WI, W2, ... , Wt}, with 
Wl = E, be a set of representatives of 5 - R (see Section 1 of Chapter 7). In 
addition, we define Wo to be 6. After finitely many passes of the procedure all 
the cosets lWk, 0 :::; k :::; t, will be defined. Of course, all these cosets are distinct 
(by Lemma 3.9), and will remain distinct in the rest of the procedure. By Lemma 
3.1, after finitely many passes all the rows 1wk, 0 :::; k :::; t, will stabilise. Since 
IDI = 15*/ RI = t + 1 by Lemma 3.9, we conclude that 

D = {lwo, 1wI, ... , 1wt}. 

Since 5 acts on D, it follows that {lwo, 1w1, ... , lwt} is closed under this action. 
Now, for any i E C we have 1zi = i, and since 1 = 1w1 E D, we conclude that 
i E D as well. Therefore, at this stage of the procedure we have C = D, so that 
there are no new definitions to be made, and hence the procedure terminates. 
The remaining assertions follow from Lemma 3.9 .• 

As we already mentioned, the TC procedure, the RQ procedure, and the 
obvious left-right dual of the RQ procedure can be combined with Theorems 
7.2.1 and 7.3.1 to give the following: 

Theorem 3.11. Let 5 be a finitely presented semigroup) and let ~ be a finite 
presentation for 5. A (left, right or two-sided) ideal I of finite index in 5 is 
finitely presented. If I is given by a finite set of words generating I as an ideal) 
then a finite presentation for I can be effectively found .• 

4. Enumerating minimal left ideals 

In this section we describe another modification of the TC enumeration procedure, 
which we call the Minimal Ideal (MI) enumeration procedure, which enumerates 
minimal left ideals of a finitely presented semigroup. We again start with a finite 
presentation 

and we let 5 denote the semi group defined by~. We also assume that 5 has 
minimal left ideals L;.., A E A. We denote L1 by L, and we assume that a 
word f E A + represents an element of L. 5 acts on the set {L;.. 1 A E A} by 
postmultiplication by Proposition A.3.2; we let 

p: {L;.. 1 A E A} X A+ -+ {L;..I A E A} 
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be this action. 

The MI procedure starts with the same initial data structures as the TC and 
RQ procedures: 

C = {O, I}, ]{ = 0, Oa = 0, 1a = 00 (a E A). 

One pass of the procedure consists of the following four steps: 

(1) E1; 

(2) for all i E C and all Uj = Vj in 9t do E2; 

(3) for all i E C and the word f do E3; 

(4) repeat E4 until ]{ = 0. 

The procedure terminates when all the data structures stabilise. 

Similarly as in the TC procedure, the coset 0 is superfluous. To each i E C, 
i =1= 0, we assign a word Zi E A *, such that Zl == E and Zi == Zjak if the coset i has 
been defined by i = (j, ak)T. With this notation we have 

Theorem 4.1. Let 

be a finite semigroup presentation, let S be the semigroup defined by $, and let 
f be a word representing an element of a minimal left ideal L of S. The MI 
procedure terminates if and only if S has finitely many minimal left ideals, and 
in this case the following statements are true. 

(i) The number of elements of the final coset table C is equal to the number of 
the minimal left ideals of S. 

(ii) The final coset table T defines an action of 5 on C, and this action zs 
equivalent to the action of 5 on its minimal left ideals. 

(iii) The set {Zi liE C} is a set of representatives of minimal left ideals of S .• 

This theorem can be proved almost identically as Theorem 3.10. The only 
difference would be in the proof of Lemma 3.4, where, instead of considering 
the effect of the action E4, we would have to consider the action E3. A slightly 
different proof of Theorem 4.1 can be found in Campbell, Robertson, Ruskuc and 
Thomas (1995a). 

Theorem 4.1 (and its obvious left-right dual) can be used in conjunction with 
the Reidemeister-Schreier type theorems from Section 3 of Chapter 10, thus 
gIVIng 
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Theorem 4.2. Let S be a finitely presented semigroup, let s,p- be a finite presen­
tation for S, and assume that S has minimal left ideals and minimal right ideals. 
If S has finitely many minimal left ideals or finitely many minimal right ideals 
then the Schiitzenberger group H of the minimal two-sided ideal of S is finitely 
presented. If we are given a word representing an element of the minimal two 
sided ideal, a finite presentation for H can effectively be found .• 

At the moment we do not have an enumeration procedure which could be 
used together with the Reidemeister-Schreier type rewriting theorems for the 
Schiitzenberger group of a a-minimal two-sided ideal which is a completely 0-
simple semigroup; see Sections 1 and 2 of Chapter 10. Therefore we pose the 
following 

Open Problem 13. Find an enumeration procedure which would enumerate 0-
minimal left ideals of a a-minimal two-sided ideal which is a completely a-simple 
semlgroup. 

It would also be interesting to investigate whether the assumption that we 
know a word representing an element of L is essential for the MI procedure: 

Open Problem 14. Is there a procedure which takes as its input a finite semi­
group presentation s,p-, and terminates if and only if the semigroup S defined by s,p­
has a minimal left ideal, in which case it returns a word representing an element 
of this ideal? Does such a procedure exist if S is known to have minimal left 
ideals? 

Another possible way for the further development of TC based computational 
methods is to develop methods to investigate the global structure of finitely 
presented semigroups. The most natural way to approach this problem seems 
to be via Green's relations. 

Open Problem 15. Is there a procedure which would enumerate all V-classes 
of a finitely presented semi group give by a finite presentation? 

Open Problem 16. Find a procedure which would enumerate £-classes (respec­
tively R-classes) of a V-class which is given by a :word representing an element 
in this V-class. 

A potentially serious difficulty in Problem 33 is that in general V is not a 
one-sided congruence, so that a semi group S does not act on the set of all its V­
classes in a natural way. By way of contrast, Rand £ are one-sided congruences, 
so that the following problem might be more hopeful: 

Open Problem 17. Find a procedure which enumerates all R-classes (£-classes) 
of a finitely presented semigroup. 
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We also pose the following problem from Campbell, Robertson, Ru:§kuc and 
Thomas (1995a), which might turn out to be related to the above problem: 

Open Problem 18. Suppose that we use an arbitrary word f (not necessarily 
representing an element of a minimal left ideal) as the initial data for the MI 
procedure. Under which conditions does the procedure terminate after a finite 
number of passes, and what conclusions about the algebraic properties of Scan 
be drawn from the final coset table? 

5. Enumerating the idempotents of a minimal right ideal 

We again suppose that S is the semigroup defined by the presentation 

and we assume that S has a minimal right ideal R and finitely many minimal left 
ideals LA, A E A = {I, ... , q}. We also assume that a word g E A+ representing 
an element of R is given. We describe an algorithm, which we denote by ID, and 
which gives words representing the idempotents of R (i.e. the identities of the 
groups R n LA, A E A). 

We note that if S has finitely many minimal right ideals R i , i E I = {I, ... ,p}, 
then an obvious left-right dual of the ID algorithm can be used to find the idem­
potents of L1 . This, together with the actions of S on its minimal left ideals 
and minimal right ideals, transforms the Reidemeister-Schreier type rewriting 
described in Theorem 10.3.3 into another effective way for obtaining a finite pre­
sentation for the Schiitzenberger group of the minimal two-sided ideal. Also, the 
ID algorithm can be used to enumerate the idempotents of every R i , i E I, thus 
enumerating all the idempotents of the minimal two-sided ideal-a result of some 
interest on its own. 

The ID algorithm consists of the following steps: 

(1) Perform MI with ~ and g; let p : A x S -7 A be the obtained action of S 
on its minimal left ideals. 

(2) Perform TC for ~ together with defining words Zi, i E C, such that lzi = i, 
until If has been defined. 

(3) Let X = Y = 0. 
(4) Perform one pass of TC. 

(5) Construct the following digraph r, depending on the coset table. The set 
of vertices of r is C. Two vertices i,j E C are joined by an oriented edge 
(i -7 j) if and only if j = iak for some ak E A. 

(6) For every k E C such that there exists an oriented path from Ig to k do 
the next step. 
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(7) If kZk = k and if (1, Zk)PZ rf- Y then add Zk to X and add (1, Zk)p to Y. 

(8) Repeat the steps 4, 5, 6, 7 untillYI = q. 
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Theorem 5.1. The ID algorithm terminates after a finite number of steps. Af­
ter ID has terminated, the set X consists of words representing the idempotents 
idempotents from R n L1, ... , R n Lq. 

We give a sketch of proof of the above theorem. 

Lemma 5.2. If, at any stage of ID, we have IW1 = IW2 for some WI, W2 E A+, 
then W1 = W2 holds in S. 

PROOF. The lemma follows from the fact that the underlying procedure in ID 
is Te .• 

Lemma 5.3. At any stage ofID the elements of X represent distinct idempotents 
of R. 

PROOF. From kZk = k it follows that IZk = IZk, and hence zk = Zk holds in S 
by Lemma 5.2. From the condition that there exists an oriented path from Ig 
to k it follows that 19w = k for some w E A+, so that gw = Zk by Lemma 5.2. 
Hence Zk E R. Finally, the condition (1, Zk)PZ rf- Y ensures that each element of 
X belongs to a different minimal left ideal. • 

PROOF OF THEOREM 5.1. Let W1, gW2, ... , gWq be words representing the 
idempotents from R n L1 , R n L2 , ••. , R n Lq respectively. After a finite number 
of steps all cosets IgwI, Igw2' ... , Igwq will be defined. Suppose that these 
cosets have numbers k1' ... ,kq respectively. Again after finitely many steps the 
cosets k1zI," . ,kqzq will be defined. If Zki = bi1 bi2 ... bit" where all bij are from 
A, let 

k = max( {k1' ... , kq } U {k i bi1 ... bit 11 ::; i ::; q, 1 ::; t ::; ti} ). 

After a finite number every row i, i ::; k, in the coset table will stabilise. At that 
stage IZ~i must be equal to IZki because zt = Zki holds in S. Therefore, at worst, 
the algorithm will terminate at that stage. It now follows easily from Lemma 5.3 
that X contains all q idempotents from R .• 
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Semigroups and their ideals 

Here we list standard definitions and results that we use in the main text. All 
the results are well known and can be found in any introductory book on semi­
group theory, such as Clifford and Preston (1961) and (1967), Howie (1976) and 
Lallement (1979). 

1. Basics 

Let 5 be a semigroup. A non-empty sub~et 0 #- T ~ 5 is a subsemigroup of 5 
if it is closed under multiplication, i.e. if for any {l, t2 E T we have t1t2 E T. 
If Ti, i E I, is a family of subsemigroups of 5, and if niEI Ti #- 0, then niEI Ti 
is a subsemigroup of 5. For a non-empty subset X ~ 5, the intersection T of 
all subsemigroups of 5 which contain X is the subsemigroup generated by X; we 
write T = (X). An alternative description of (X) is 

A non-empty subset R of 5 is a right ideal if r s E R for all r E R and all 
s E 5. Again, a non-empty intersection of right ideals is a right ideal. The right 
ideal generated by a set 0 #- X ~ 5 is the intersection of all right ideals of 5 
which contain X. For a semi group 5, by 51 we mean 5 if 5 has an identity, and 
5 with an identity adjoined to it otherwise. With this notation the right ideal 
generated by X is 

X51 = {xs I x E X, s E 51}. 

Left ideals are defined dually. The left ideal generated by a set X is 51 X. A set 
I is a two sided ideal (or simply idea0 if I is both a left ideal and a right ideal. 
The two sided ideal generated by a set X is 51 X 51. Note that any (left, right 
or two-sided) ideal is automatically a subsemigroup. 

Let 51 and 52 be two semigroups. A mapping cjJ : 51 --+ 52 is a homomor­
phism if 

(xy)cjJ = (xcjJ)(ycjJ) 
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for all x, y E S1. A homomorphism which is one-one (respectively onto, a bi­
jection) is called a monomorphism (respectively epimorphism, isomorphism). If 
8 1 = 8 2 then any homomorphism is called an endomorphism, and any isomor­
phism is called an automorphism. 

A congruence on a semigroup 8 is an equivalence relation 'f/, which is compat­
ible with the multiplication in 8: 

(S1' S2) E 'f/, (t1' t2) E 'f/ ===} (Slt1, S2t2) E 'f/. 

If 'f/ is a congruence on 8, then the factor set 81 'f/ is a semi group under the 
multiplication 8182 = SlS2, where 8 denotes the 'f/-class of s. There is the usual 
connection between congruences and homomorphisms: if 'f/ is a congruence, then 
81'f/ is a homomorphic image of 8 under the natural homomorphism 'f/q : s H- 8; 
if 1 : 8 ----+ T is a homomorphism then the kernel 

ker1 = {(Sl,S2) I S1, S2 E 8, s11 = s21} 

of 1 is a congruence on 8 and 8/ker 1 ~ Im1; also ker 'f/q = 'f/ and (ker 1) q = 1. 
A left congruence is an equivalence relation on 'f/ ~ 8 x 8 which is left com­

patible: 
s E 8, (S1,S2) E 'f/ ===} (SSl,SS2) E 'f/. 

A right congruence is defined dually. A binary relation is a c~:mgruence if and only 
if it is both a left congruence and a right congruence. The index of a (left, right 
or two-sided) congruence is the number of equivalence classes of that congruence. 

Each ideal I of a semi group 8 gives rise to a congruence 

(1) 

usually called the Rees congruence. The Rees quotient 81 'f/ I, which is usually 
denoted by 81 I, can be thought of as the set (S - 1) U {O} with the multiplication 

It is important to note that Rees congruences by no means exhaust the class of 
all congruences of a general semigroup. If I is a left or right ideal, then (1) defines 
a left or right Rees congruence on 8. The index of a (left, right, two-sided) ideal 
is the index of the corresponding Rees congruence. 

A right action (or simply action) of a semi group 8 on a set X is a mapping 
p : X x 8 ----+ X with the property 

((x, Sl)p, S2)p = (x, SlS2)P. 

When there is no danger of confusion we write just xs for (X,8)p. A left action 
is defined dually. An action is faithful if 

(\Ix E X)(XS1 = XS2) ===} 81 = 82· 
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Any semi group acts on itself by postmultiplication, but this action is not neces­
sarily faithful. Any semi group acts faithfully by postmultiplication on the set 51. 
Also, a semi group 5 acts on a factor set 5/Tf, where Tf is a right congruence, with 

st = st (5 E 5/Tf, t E 5). (2) 

Conversely, for any action p : X X 5 ---+ 5 and any x EX, the relation 

(3) 

is a right congruence on 5. 
Actually, there is a one-one correspondence between right congruences on a 

semigroup 5 and cyclic actions of 5 with an indecomposable generator. (An ac­
tion p : X X 5 ---+ X is cyclic if x 0 51 = X for some Xo EX; Xo is indecomposable 
if Xo tj. xo5.) To see this assume first that Tf is a right congruence on 5. Let 5* 
denote the semi group 5 with an identity 1 adjoined to it (regardless of whether 
5 already has one). Then Tf U {( 1, I)} is a right congruence on 5*. The corre­
sponding action (2) of 5 on 5* h is cyclic, with an indecomposable generator 
I. Conversely, if p : X X 5 ---+ X is a cyclic action with an indecomposable 
generator Xo, then corresponding relation (3) is a right congruence on 5, and it 
is easy to see that this indeed establishes the desired one-one correspondence. 

Assume that we have two actions 

p : X X 5 ---+ X, (J": Y X T ---+ Y. 

The actions p and (J" are said to be equivalent if there exists an isomorphism 
<P : 5 ---+ T and a bijection 'IjJ : X ---+ Y such that 

for all x E X and all s E 5. 

2. Simple and O-simple semigroups 

A semigroup is said to be simple if it has no proper ideals. A semi group 5 with 
zero is O-simple if 0 and 5 are the only ideals o{ S. For technical reasons the 
trivial semigroup and the two-element semi group with the zero multiplication are 
not included among either simple or O-simple semigroups. Adjoining a zero to a 
simple semigroup yields a O-simple semigroup, but there are O-simple semi groups 
which cannot be obtained in this way. 

It is clear that the set of all left (respectively right, two-sided) ideals of a 
semigroup 5 is partially ordered under inclusion. The minimal elements of this 
poset (if they exist) are called minimal left (respectively right, two-sided) ideals. 
Minimal non-zero left (respectively right, two-sided) ideals in a semi group with 
zero are called O-minimal left (respectively right, two-sided) ideals. 
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If a (0- )simple semi group satisfies the descending chain conditions for both left 
and right ideals it is said to be completely (O)-simple. In particular, every finite 
(0-) simple semigroup is completely (0-)simple. In the following theorem we list 
the properties of completely O-simple semigroups that we use in the main text. 
The theorem is a compilation of results from Rees (1940) and Clifford (1941). 
Most of the results are the special cases of more general theorems about Green's 
relations given in Section 4. Nevertheless, we state them separately because a 
big part of the main text does not require familiarity with Green's relations. 

Proposition 2.1. Let 5 be a completely O-simple semigroup. Then 

(i) 5 possesses both O-minimal left ideals and O-minimal right ideals. 

Let L\, ). E A, be all O-minimal left ideals of 5, let R~, i E I, be all O-minimal 
right ideals of 5, and let L).. = L\ - {O} and Ri = R~ - {O}. 

(ii) 5 = (UiEI Ri) U {O} = (U)..EA L)..) U {O}. 
(iii) Ri n R j = L).. n Lp, = 0, for i =f. j and), =f. f1. 

(iv) Every set Hi).. = Ri n L).. is non-empty. 

(v) I Hi).. I = IHjp,1 for all i,j E I and all >., f1 EA. 

(vi) For any i E I and any). E A either Hi).. is a group (in which case ei).. 
denotes its identity), or Hi).. U {O} is a semigroup with zero multiplication. 

(vii) If Hi).. and Hjp, are groups then Hi).. ~ Hjp,-

(viii) Each Ri contains at least one group Hip,- Each L).. contains at least one 
group Hj)... 

(ix) For 81 E Hi).. and 82 E Hjp, we have 81S2 E Hip, if Hj).. is a group, and 
S1 S2 = 0 otherwise. 

(x) Let s E Hi)... If Hj).. is a group for some j E I, then sRj = Ri and 
sHjp, = Hip, for all f1 E A. If Hip, is a group then Lp,s = L).. and Hjp,s = Hj).. 
for all j E I. 

(xi) If Hi).. and Hjp, are groups then for any s E Hj).. there exists (a unique) 
8' E Hip, such that ss's = 8 and 8' ss' = s' j also ss' = ej p, and s's = ei)... 
s' is uniquely determined by any of the previous four conditions, and the 
mapping x f-t s'xs is an isomorphism from Hjp, onto Hi)... 

(xii) If Hi).. is a group then ei).. is a left identity for Ri and a right identity for 
L)... 

(xiii) Hi).. U {O} = ei)..Sei).. for all i E I, ). E A .• 

Often a completely O-simple semigroup is visualised as a so called egg-box 
picture. In Figure 13 we have an example of such a picture. The completely 
O-simple semi group in question has eight O-minimal right ideals (rows) and ten 
O-minimalleft ideals (columns). All the intersections Hi).. = Ri n L).. are non­
empty, and are of the 'same size'; those of them which are groups are shaded. 
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L, Lg ~ LIO 

/1 

t' • 

Each Ri and each L>. contains at least one group. The product SlS2 of Sl E H27 

and S2 E H53 belongs to H 23 since H57 is a group, but S2S1 is zero since H 23 is 
not a group. Since both H46 and H68 are groups, an arbitrary element t E H66 

has a unique 'inverse' t' E H 48 . 

Adjoining a zero to a completely simple semi group yields a completely 0-
simple semigroup, so that each statement of Proposition 2.1 has a corollary for 
completely simple semigroups. We state these corollaries separately, since fre­
quently in the main text we deal with simple semigroups rather than with 0-
simple semigroups. 

Proposition 2.2. Let S be a completely simple semigroup. Then 

(i) S has both minimal left ideals and minimal right ideals. 

Let L>., A E A, be all minimal left ideals of S, and let Ri, i E I, be all minimal 

right ideals of S. 

(ii) S = UiEI Ri = U>'EA L>.. 

(iii) Ri n R j = L>. n LJI = 0 if i =I j and A =I fl· 
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(iv) The set Hi). = R n L). = RiL). is non-empty and is a group for all i E I 
and all A EA. 

We denote by ei). the identity of the group Hi).. 

(v) Hi). rv Hjp, for all i,j E I and all A,/1 E A. 

(vi) If s E Hi). then sRj = Ri, Lp,s = L)., sHjp, = Hip" Hjp,s = Hj).. 

(vii) For any i,j E I, any A, /1 E A and any s E Hip, there exists (a unique) 
s' E Hj). such that ss's = s, s'ss' = s', ss' = ejp, and s's = ei).. s' is 
uniquely determined by any of the previous four conditions and the mapping 
x I-t s'xs is an isomorphism from Hjp onto Hi).. 

(viii) ei). is a left identity for Ri and a right identity for L).. 

(ix) Hi). = ei).Sei). for all i E I, A E A .• 

There exists a nice structure theory for completely O-simple semigroups due 
to Suschkewitsch (1928) and Rees (1940). Let C be a group and let I and A be 
two index sets. Let also P = (P).i);..EA,iEI be a IAI x III matrix (usually called Rees 
matrix) with entries from C U {O}, with the additional property (usually called 
regularity) that each row and each column of P contains at least one non-zero 
entry. The set (I x C x A) U {O} can be made into a semi group by defining 

( " A)("h )={(i,gp).jh,/1) z,g, ), ,/1 0 

(i,g, A)O = O(i,g, A) = 00 = o. 

if P).j i= 0 
otherwise, 

(4) 

(5) 

This semi group is denoted by MO[C; I, A; Pl and is called a Rees matrix semi­
group. 

Proposition 2.3. (i) Let C be a group, let I and A be two index sets, and let 
P = (P).i);..EA,iEI be a regular IAI x III matrix with entries from CU {O}. Then the 
Rees matrix semigroup MO[C; I, A; Pl is a completely O-simple semigroup. 

(ii) Let 5 be a completely O-simple semigroup, with all the notation from 
Proposition 2.1. Assume that Hio).o is a group. For each i E I and each A E A 
choose Si E Hi).o and t). E Hio )., and let P = (t).Si);..EA,iEI' Then P is regular 
and 5 rv M O [Hio).o; I, A; Pl. In particular, every completely O-simple semigroup 
is isomorphic to a Rees matrix semigroup .• 

If the matrix P does not contain any zeros, then the zero is indecomposable in 
MO[C; I, A; Pl. Removing the zero from this semi group yields another semi group 
which we denote by M[C; I, A; Pl. 

Proposition 2.4. (i) Let C be a group, let I and A be two index sets, and let 
P = (P).i);..EA,iEI be a IAI x III matrix with entries from C. Then the Rees matrix 
semigroup M[C; I, A; Pl is a completely simple semigroup. 
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(ii) Let S be a completely simple semigroup, with all the notation from Propo­
sition 2.2, and let io E I and ),0 E A be arbitrary. For each i E I and each 
), E A choose Si E Hi>. 0 and t>. E Hio>., and let P = (t>.Si) \ A' I' Then /\E ,zE 
5 ~ M[Hio>.o; I, A; Pl. In particular, every completely simple semigroup is iso-
morphic to a Rees matrix semigroup .• 

The following theorem gives a necessary and sufficient condition for two Rees 
matrix semi groups to be isomorphic. 

Proposition 2.5. Two Rees matrix semigroups MO[G; I, A; P] and MO[K; J, 
M; QJ are isomorphic if and only if there exist an isomorphism e : G ----+ K, 
bijections 'Ij; : I ----+ J, X : A ----+ M and elements Ui, v>. E K (i E I,)' E A) such 
that 

for all ), E A and all i E I. • 

As an immediate consequence we have the following result for simple semi­
groups. 

Proposition 2.6. Every completely simple semigroup is isomorphic to a Rees 
matrix semigroup M[G; I, A; P] with P in normal form, i.e. with Pil = PI>. = 1a 
for all i E I and all ), EA. • 

Finally, we remark that (4) and (5) define an associative binary operation 
even if G is not a group, but a semigroup, and P is not regular. The obtained 
semigroup, which we also call Rees matrix semigroup, is no longer O-simple, but 
has many similarities with O-simple semigroups. 

3. Semigroups with minimal ideals 

As we said before, a (left, right, two-sided) ideal I of a semigroup 5 is said to be 
minimal if it contains no other (left, right, two-sided) ideals of 5, and is said to 
be O-minimal if there are no (left, right, two-sided) ideals of 5 properly contained 
between {O} and I. A semigroup does not necessarily have minimal or O-minimal 
ideals of any kind. Also it can have several minimal left ideals and several minimal 
right ideals, or several O-minimal ideals of any kind. However, it can have at most 
one minimal two-sided ideal, because of the fact that the intersection of two two­
sided ideals II and 12 is always non-empty as it contains Id2. There is a strong 
link between (0-)minimal ideals and (0- )simple semigroups. 

Proposition 3.1. (i) The minimal two-sided ideal of a semigroup is either trivial 
or is a simple semigroup. 

(ii) A O-minimal ideal of a semigroup is either a O-simple semigroup or is a 
semigroup with zero multiplication .• 
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Of particular interest for this thesis are the semigroups which have minimal 
one-sided ideals. The following two propositions state the main properties of such 
semlgroups. 

Proposition 3.2. Let S be a semigroup and assume that S has minimal left 
. (right) ideals L)..) ). E A (Ri) i E I). Then: 

(i) S has a minimal two-sided ideal which is the disjoint union of all minimal 
left (right) ideals of S; 

(ii) for any s E S and any). E A (i E I) the set L)..s (SRi) is a minimal left 
(right) ideal of S; in other words) S acts by postmultiplication (premultipli­
cation) on the set of all minimal left (right) ideals .• 

Proposition 3.3. Let S be a semigroup and assume that S has both minimal left 
ideals and minimal right ideals. Let L)..; ). E A) be all minimal left ideals) and let 
Ri; i E I; be all minimal right ideals of S. 

(i) The minimal two sided ideal 1\1 of S is a completely simple semigroup. 
Minimal left and right ideals of 1\1 coincide with minimal left and right 
ideals of S. 

(ii) If ei).. is the identity of the group Hi).. = Ri n L).. then Hi).. = ei)..S ei).. .• 

Slightly surprisingly, the analogues of Propositions 3.2 and 3.3 for semigroups 
with O-minimal one-sided ideals do not hold; see Clifford and Preston (1967). 
However, we have 

Proposition 3.4. Let M be a O-minimal ideal of a semigroup S; and assume that 
M is a completely O-simple semigroup; with all the notation for these semigroups 
from Section 2. 

(i) Each L~ is a O-minimal left ideal of S and each Ri is a O-minimal right 
ideal of S. 

(ii) For each), E A (i E I) and each s E S) the set L)..s (SRi) is either 
{O} or else is L/1 (Rj) for some J-l E A (i E I). In other words; S acts 
on the set {L).. I). E A} U {O} ({Ri liE I} U {O}) by postmultiplication 
(premultiplication). • 

4. Green's relations 

Green's relations were introduced in Green (1951), and have since then become 
a standard tool for investigating the structure of semigroups. Most of the results 
of the previous two sections can be interpreted in terms of these relations. 

Let S be a semigroup. Two elements a, b E S are C-equivalent (aCb) if they 
generate the same left ideal, i.e. if Sla = SIb, i.e. if there exist c, d E SI such 
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that ca = b and db = a. Obviously, £ is an equivalence relation. It is easy to 
see that it is even a right congruence. In a similar way, two elements a, b E S are 
R-equivalent (aRb) if aSl = bSl , and R is a left congruence. 

The intersection of £ and R is denoted by 1i, while the smallest equivalence 
containing both £ and R is denoted by v. Since £ and R commute (i.e. £ 0 R = 
R 0 C), we have V = £ 0 R. Finally, two elements a, b E S are J -equivalent if 
SlaSl = SlbSl . Relations 1i, V and J are in general only equivalences. For an 
element a E S, La, R a, Ha, Da and Ja respectively denote the equivalence classes 
of a with respect to equivalences £, R, 1i, V and J. 

The usefulness of Green's relations comes from the fact that we are able to 
describe the structure of a V-class with some precision. First of all, a V class is 
a disjoint union of R-classes, as well as a disjoint union of £ classes. Now, since 
V = £ 0 R, we see that the intersection of an R-class and an £-class within the 
same V-class is non-empty, and is an 1i class, so that a V class can be visualised 
as an egg box picture, with rows, columns and squares representing respectively 
R-classes, £-classes and 1i-classes. 

Proposition 4.1 (Green's Lemma) Let S be a semigroup and let a, bE S. 

(i) If aRb with 
as = band bs' = a, 

where s, s' E Sl, then the mappings 

As : x J--t xs and As' : x J--t xs' 

are mutually inverse R-class preserving bijections from La onto Lb and vice 
versa. 

(ii) If aLb with 
sa = b and s'b = a, 

where s, s' E Sl, then the mappings 

Ps : x J--t sx and ps' : x J--t s'x 

are mutually inverse £-class preserving bijections from Ra onto Rb and vice 
versa .• 

An immediate consequence of this is: 

Proposition 4.2. If aVb then IHal = IHbl· • 

Proposition 4.3 (Green's Theorem) If H is an 1i-class of a semigroup S, 
then either H2 n H = 0 or H is a subgroup of S .• 
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An element a of a semi group S is said to be regular if there exists an element 
b E S such that aba = a. An element a' E S is an inverse of a if aa'a = a and 
a'aa' = a'. It is possible to show that an element is regular if and only if it has 
an inverse. A semi group is regular if all its elements are regular. 

Proposition 4.4. If an element a of a semigroup S is regular, then so are all 
the elements of its V-class Da· • 

If all the elements of a V-class D are regular, we say that D is a regular 
V-class. 

Proposition 4.5. Let D be a regular V-class of a semigroup S, and let a, b, c E 
D. 

(i) Each .£-class and each R-class in D contains at least one idempotent, and 
hence at least one group H-class. 

(ii) ab E D if and only if La n Rb is a group, in which case ab E Ra n Lb. 

(iii) If a' is an inverse of a then a' ED; also aa', a' a ED, and H-classes Ra n Lat 
and Rat n La are groups with identities aa' and a' a respectively. 

(iv) If H-classes Ra n Le and Re n La are groups, then the H-class He contains 
one and only one inverse a' of a. The mapping x 1-+ ax a' is an isomorphism 
between Re n La and Ra n Le. 

(v) All group H-classes of D are isomorphic .• 

Proposition 4.6. Let S be a completely a-simple semigroup with all the notation 
from Proposition 2.1. Then S has exactly two V-classes: {a} and S - {a}; both 
of them are regular. R, .£ and H-classes of S - {a} are respectively Ri (i E 1), 
L).. ()... E A) and Hi).. (i E 1, )... E A). Also :J = V in S .• 

Let S be a semi group and let s E S. Consider the set 

1a = {x E S I SIXSI s;; SlaSI}. 

1a is an ideal of SlaSI and the Rees quotient Pa = SlaSI / Ia is called a principal 
factor of S. Pa can be thought of as the :J-class Ja with a zero adjoined to it, 
and the multiplication defined by 

If a belongs to the minimal ideal M of S then 1a is empty, and Pa is defined to 
be Ja = M. 

Proposition 4.7. Each principal factor of a semigroup is either a simple semi­
group, a a-simple semigroup or a semigroup with zero multiplication .• 



Appendix B 

Open problems 

In this appendix we list all the open problems posed in the main text, with 
references to the pages they appear. 

Open Problem 19. (Page 24) Find a formula for the rank of a general (finite) 
completely O-simple semigroup. 

Open Problem 20. (Page 42) Find the minimal number k such that there exists 
a presentation of the form (A, B I 91, 6) for the full transformation semigroup 
Tn, where the presentation (A 191) defines the symmetric group Sn and 161 = k. 

Open Problem 21. (Page 42) Find presentations for the semi group Singn of 
all singular mappings on the set {I, ... , n}, and for the semi group J{ (n, r) of all 
mappings on {I, ... , n} of rank at most r. 

Open Problem 22. (Page 43) Can the symmetric inverse semi group In be de­
fined by a presentation of the form (A, t 191n , 6 n ), where (A 191n ) is a presentation 
for the symmetric group Sn, and 16n l does not depend on n? If yes, what is the 
minimal possible cardinality for 6 n ? 

Open Problem 23. (Page 51) Find the minimal number k such that there 
exists a presentation of the form (A, B 191, 6) for the special linear semi group 
SLS(2, p) (respectively, for the general linear semi group GLS(2, p)) such that the 
presentation (A 191) defines the special linear group SL(2,p) (respectively, the 
general linear group GL(2,p)) and 161 = k. 

Open Problem 24. (Page 51) Find presentations for the semi group GLS( d, R) 
of all d x d matrices over a ring R for various d and various R. In particular, find 
presentations for GLS( d, R) in the following cases: 

(i) d = 2, R = GF(pn)-a general finite field; 

(ii) d = 2, R = 2m-the ring of integers modulo m; 

(iii) d> 2, R = 2 p, p prime. 
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Open Problem 25. (Page 84) Find a procedure which will take as its input a 
finite semigroup presentation (A 191) (defining a semigroup 5) and a finite set of 
words X ~ A +, and which would terminate if and only if the subsemigroup T of 
S generated by X has finite index in S, and would return in this case a set of 
representatives of S - T. 

Open Problem 26. (Page 94) Find a presentation for an ideal I of a finitely 
presented semi group 5, which would be finite whenever I has finite index in 5, 
and which is simpler than the presentation given in Theorem 7.2.1. 

Open Problem 27. (Page 94) Find a finite presentation for an ideal I of finite 
index in a finitely presented semigroup S if 5/1 is known to be of some special 
type. In particular, find such presentation if 5/1 is 

(i) 
(ii) 

(iii) 

(iv) 

a group with a zero adjoined; 

a completely simple semi group with a zero adjoined; 

a completely O-simple semigroup; 
. . 

an Inverse semlgroup. 

Open Problem 28. (Page 94) Develop a semigroup version ofthe Tietze trans­
formation program for simplifying presentations. 

Open Problem 29. (Page 101) Is a subsemigroup of finite index in a finitely 
presented semi group necessarily finitely presented? 

Open Problem 30. (Page 160) Describe the structure of the Schiitzenberger 
group of the generalised Fibonacci semi group 5(r, n, k), where r, n, kEN, r> 1, 
g.c.d.(n, k, k + r - 1) = 1. For which r, n, k is this group: 

(a) free? 

(b) isomorphic to F(r, n, k)? 

Open Problem 31. (Page 221) Find an enumeration procedure which would 
enumerate O-minimalleft ideals of a O-minimal two-sided ideal which is a com­
pletely O-simple semigroup. 

Open Problem 32. (Page 221) Is there a procedure which takes as its input a 
finite semigroup presentation ~, and terminates if and only if the semigroup S 
defined by ~ has a minimal left ideal, in which case it returns a word representing 
an element of this ideal? Does such a procedure exist if 5 is known to have 
minimal left ideals? 

Open Problem 33. (Page 221) Is there a procedure which would enumerate all 
V-classes of a finitely presented semigroup given by a finite presentation? 
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Open Problem 34. (Page 221) Find a procedure which would enumerate £­
classes (R-classes) of a V-class which is given by a word representing an element 
of this V-class. 

Open Problem 35. (Page 221) Find a procedure which enumerates all R-classes 
(£-classes) of a finitely presented semigroup. 

Open Problem 36. (Page 222) Suppose that we use an arbitrary word f (not 
necessarily representing an element of a minimal left ideal) as initial data for 
the MI procedure. Under which conditions does the procedure terminate after a 
finite number of passes, and what conclusions about the algebraic properties of 
5 can be drawn from the final coset table? 
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Table of notation 

Here we list mathematical notation that we have used in the main text. Each 
entry is followed by a short definition and a reference to the page in the main 
text where it is defined, or, if it is not explicitly defined, a reference to the first 
page where it appears. 

restriction of a mapping to a set 23 
00 undefined coset in a coset table 209 
Ie the identity of G 23 
A* the set of all words over A; the free monoid on A 3 
A+ the set of all non-empty words over A; 

the free semi group on A 3 
A* 0 the free monoid with zero on A 3 
A+ 0 the free semi group with zero on A 3 
A1(r) the set of initial vertices of r 166 
A(r) the set of vertices of r 164 
An the alternating group of degree n 41 
(A 191) semi group presentation with generating symbols A 

and defining relations 91 4 
BR(S,0) Bruck-Reilly extension 70 
Aut(2L) the automorphism group of 2L 37 
Bx semigroup of all binary relations on X 2 
Cn the cyclic group of order n 123 
C(S) the least full self-conjugate subsemigroup of S 21 
D Green's relation 233 
ei>. the identity of Hi>. 228 
End(2L) the endomorphism semigroup of 2L 37 

rt Q the natural homomorphism 226 

rtf the Rees congruence 226 
c the empty word 3 
E(S) the set of idempotents of S 11 

F(r,n) Fibonacci group 147 
F(r,n,k) generalised Fibonacci group 149 
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F(S) the subsemigroup of S generated by its idempotents 11 
fA n Coxeter graph for An+2 166 
fS n Coxeter graph for Sn+I 165 
f(P) the graph associated to a Rees matrix 24 
f(S) the graph associated to a completely O-simple 

semI group 11 
GF(pn) the finite field with pn elements 36 
G(f) the group defined by Sf)(r) 165 
GL(d,F) the general linear group of d x d matrices over F 33 
GL(d,pn) GL( d, F) with F = GF(pn) 33 
GLS(d,F) the general linear semigroup of d x d matrices over F 33 
GLS(d,pn) GLS(d, F) with F = GF(pn) 33 
1{ Green's relation 233 
G(Sf)) the group defined by the presentation Sf) 112 
Hi).. Ri nL).. 228 
H(r,n,k) the Schiitzenberger group of S(r, n, k) 156 
I(r, d, F) the ideal of all matrices from GLS(d, F) of rank 

at most r 33 
In I X for X = {1, ... , n} 43 
Ix the symmetric inverse semigroup on X 2 

:J Green's equivalence 233 
J(r, d, F) the set of all matrices from GLS(d, F) of rank 

equal to r 33 
J(n,r) the set of all mappings from Tn of rank exactly r 31 
ker the kernel 226 
K(n, r) the semigroup of all mappings of rank at most r 30 
£, Green's relation 232 
L(A,T) the set of all words from A + representing elements 

of T 79 
L(r) the unique minimal left ideal of S(r) 174 
L).. a minimal left ideal; L~ - {O} 228 
L' ).. a O-minimalleft ideal 228 
L(Sf)) left Adian's graph of Sf) 113 
M[G; I, A; P] Rees matrix semi group over G 230 
MO[G; I, A; P] Rees matrix semi group over G U {O} 230 
N the set of natural numbers (positive integers); 

the free monogenic semi group 8 
Ni).. the normal subsemigroup of Hi>. generated 

by Hi>. n F(S) 21 

(;) n!j(r!(n - r)!) 31 

n set of representatives of S - T or S - I or S - R 83 
Sf)(f) the presentation associated to f 164 
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<p(i, ).,j, f-l) a bijection Hi). -1- Hjll 12 
s:Jj(r,n) Fibonacci presentation 147 
s:Jj(r,n,k) generalised Fibonacci presentation 147 
PSL(2,11) projective special linear group 166 
P(5 x T) the set of all subsets of 5 x T 67 
PTn PT x for X = {I, ... , n} 43 
PTx the partial transformation semigroup 2 
R Green's relation 233 
rank(5) the rank of the semigroup 5 10 
rank(5 : T) the rank of 5 modulo T 18 
p(5) the least group congruence on 5 21 
Ri a minimal right ideal; R~ - {O} 228 
R~ 

t a O-minimal right ideal 228 
R(s:Jj) right Adian's graph of s:Jj 113 
5* 5 with an identity adjoined to it 212 
51 5 if S has an identity, 5* otherwise 225 
5A (n) the semi group defined by s:Jj(r~ ) 177 
5(r) the semigroup defined by s:Jj(r) 165 
Sing(d, F) the semi group of singular d x d matrices over F 33 
Sing( d, pn) Sing(d, F) with F = GF(pn) 33 
Sing( n) the semigroup of all singular mappi.ngs 30 
SL(d, F) the special linear group of d x d matrices over F 33 
SL( d, pn) SL( d, F) with F = GF(pn) 33 
SLS(d, F) the special linear semi group of d x d matrices over F 33 
SLS(d,pn) SLS(d, F) with F = GF(pn) 33 
Sn 5 x for X = {I, ... , n} 40 
S(s:Jj) the semi group defined by the presentation s:Jj 112 
S(n, r) Stirling number of the second kind 31 
S(r,n) Fibonacci semi group 147 
S(r,n,k) generalised Fibonacci semi group 147 
Ss(n) the semigroup defined by s:Jj(r~) 180 
5 xT the cartesian product of ITI copies of S 63 
SffiT the direct product of ITI copies of S 63 
SOT the Schiitzenberger product of Sand T 67 
SWrT the unrestricted wreath product of S by T 63 
SwrT the restricted wreath product of S by T 63 
Sx the symmetric group on X 2 
5(Y; Sa, <Pa,(3) strong semilattice of monoids 72 
Tn Tx for X = {1, ... ,n} 1 
Tx the full transformation semi group on X 1 
V(7r ) the value of a path 7r 24 
VXY the set of values of all paths from x to y 24 
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IWI 
WI = W2 

WI = W2 

(X) 
rxl 
~(p) 
X T 

Z 
Zp 

Semigroup presentations 

the length of a word W 

the word WI is identical to the word W2 

the words WI and W2 represent the same element 
the subsemigroup generated by X 
the least integer which is not less than x 
the primitive root of 1 modulo p 
the transpose of matrix X 
integers 
integers modulo p 

52 
4 
4 
225 
28 
41 
51 
42 
47 
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action, 83, 226 
equivalence of, 227 
faithful, 226 
left, 226 
of a group on cosets of a sub-

group, 87, 94 
on O-minimalleft ideals, 126, 232 
on O-minimal right ideals, 129, 232 
on a Rees quotient, 88, 95, 212, 

218 
on data structures, 210 
on minimal left ideals, 220, 232 
on minimal right ideals, 232 
right, 226 

Adian 
embeddability theorem of, 114 
graphs, 113, 155 

alternating group 
presentation for, 41, 119, 123, 139, 

166, 177 
automaton, 94 
automorphism, 2, 226 
automorphism group, 2, 37 

of a free abelian group, 38 
of a free group, 38 
of a free semigroup, 37 
of a vector space, 33 

bicyclic monoid, 70 
Brandt semigroup, 14 

rank of, 24 
Bruck extension, 70 
Bruck-Reilly extension, 70-72 

finitely presented, 72 
generating set for, 70 
presentation for, 70 

251 

canonical forms, 44 
Cayley Theorem, 1 
Clifford semigroup, 72 
completely O-simple semigroup, 10, 126, 

228 
as a Rees matrix semigroup, 230 
connected, 13, 14, 25 
elementary properties of, 228 
finitely presented, 77, 133 
generating set for, 15 
presentation for, 75 
rank of, 16, 20 

completely simple semigroup, 124, 152, 
155-156, 163, 228 

as a Rees matrix semigroup, 230 
elementary properties of, 229-230 
is connected, 14 
presentation for, 75 
rank of, 21, 24 

computational group theory, 207 
computational methods, 9, 58-61, 135, 

148, 174, 207-223 
as a method of proof, 58 
for full transformation semigroups, 

208 
for groups, 207 
for: semigroups of binary relations, 

208 
for semi groups of small orders, 208 
history of, 207-209 
results suggested by, 58-60, 148, 

197-200 
congruence, 226 

index of, 226 
least group, 21, 23 
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left, 226 
one-sided, 83 
Rees, 226 
right, 226 

consequence (of a presentation), 5 
constructions, 9, 62 
Coxeter groups, 165 
Coxeter presentations, 165 
Coxeter type group, 165 
Coxeter type presentation, 164-188 

associated to a graph, 164 
for PSL(2, 11), 166 

semi group defined by, 174 
for a symmetric group, 165, 180 

semigroup defined by, 188 
for an abelian group, 165 
for an alternating group, 166, 177 

semi group defined by, 179 
semigroup defined by 

finite, 176 
minimal ideal of, 173 
number of minimal right ideals 

of, 176 
structure of, 174 
union of groups, 175 

defining relation, 4 
redundant, 61 

egg-box picture, 228 
embeddability, 113 
endomorphism, 2, 226 
endomorphism semigroup, 2, 37 

of a boolean algebra, 3 
of a free abelian group, 38 
of a free group, 38 
of a free semigroup, 37 
of a linearly ordered set, 3, 32 
of a vector space, 3, 33 
of an independence algebra, 3 

epimorphism, 226 

Fibonacci group, 147, 155 
generalised, 149 

Semigroup presentations 

orders of, 148 
Fibonacci semigroup, 147-163 

finite, 155 
free, 150 
generalised, 149 
infinite, 160 
minimal ideals of, 149-154 
orders of, 148 
structure of, 154-163 
with no minimal ideals, 150 
word problem, 155 

Fibonacci semi group 
5(2,6,2), 157-159 

finite field, 36 
finitely presented, 7, 8 

O-minimal ideal, 132 
Bruck-Reilly extension, 72 
completely O-simple semigroup, 77, 

133 
ideal extension, 77 
ideal of a free semigroup, 106, 109 
ideal of finite index, 89, 94, 97 
one-sided ideal of a free semigroup, 

109 
one-sided ideal of finite index, 97 
Rees matrix semigroup, 77 
Schiitzenberger group, 132, 139 
subsemigroup of a free semigroup, 

105 
subsemigroup of finite index (open 

problem), 101 
finitely related graph, 167 
finiteness problem, 9, 96, 148, 155, 

160, 176 
formal languages, 2 
free monoid, 3 
free monoid with zero, 3 
free product 

C3 * Cs, 144 
semigroup, 189 

free semigroup, 3, 85,103-111 
automorphism group of, 37 
endomorphism semigroup of, 37 
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ideal of, 95, 103, 106-111 
finitely presented, 106 
not finitely generated, 106 
not free, 106 
of finite index, 106 

one-sided ideal of, 103, 107-111 
finitely generated (as a seml-

group), 107, 108 
free, 107 
not free, 107 
of infinite index, 109 

presentation for, 5, 150 
subsemigroup of, 85, 103-105 

finitely presented, 105 
not finitely presented, 104 
of finite index, 105 

free semi group with zero, 3 
full transformation semigroup, 1 

computational methods for, 208 
Green's relations, 30 
presentation for, 42 
principal factors of, 31 
rank of, 30 

general linear group, 33 
presentation for, 42, 55 

general linear semigroup, 33 
generators for, 34, 55 
Green's structure of, 33 
presentation for, 55 
rank of, 34 

Generalised Fibonacci semigroup, see 
Fibonacci semi group 

generating symbol, 4 
graph 

associated to a completely O-simple 
semigroup, 11 

associated to a Rees matrix semi­
group, 24 

Coxeter type presentation associ­
ated to, 164 

Green's relations, 232 

253 

enumeration procedures for (open 
problems),221 

homomorphism, 225 
natural, see natural homomorphism 

ID,222-223 
termination, 223 

ideal, 225 
o minimal, see O-minimal ideal 
O-minimal, see O-minimal ideal 
finitely presented, 89, 94, 97 
generated by a set, 225 
index of, 82, 226 
left, see left ideal 
minimal, see minimal ideal 
of a free semigroup, 103, 106-111 
of finite index, 89, 94, 95, 97 

an effective presentation for, 219 
presentation for, 88, 94 
right, see right ideal 

ideal extension, 77-78 
finitely presented, 77 
presentation for, 78 

idempotents 
closed under multiplication, 115, 

118, 198 
in a regular V-class, 234 
multiplication table of, 198 

index, 83 
of a congruence, 226 
of a subgroup in a group, 82 
of a subsemigroup, 83 
of an ideal, 82, 226 

inverse, 234 
isomorphism, 226 
isomorphism problem, 9 

Knuth-Bendix procedure, 208 

left ideal, 225 
generated by a set, 225 

(1, m, n) groups, 123 
Low Index Subgroups Algorithm, 96 
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Magnus, theorem of, 114 
Malcev presentation, 105 
MI, see minimal ideal, enumeration 

procedure 
minimal ideal, 136, 145, 227, 231 

enumeration procedure, 219-222 
termination, 220 

is simple, 231 
left, see minimal left ideal 
of a Fibonacci semigroup, 152 
of a semigroup defined by a Cox­

eter type presentation, 173 
right, see minimal right ideal 

O-minimal ideal, 126, 227, 231 
as a Rees matrix semigroup, 133 
enumeration procedure for (open 

problem),221 
finitely presented, 132 
left, 126, 227, 231 

action on, 126 
right, 126, 227, 231 

action on, 129 
minimal left ideal, 115, 120, 136, 227, 

231 
action of a semi group on, 142, 232 
unique, 118, 120 

minimal right ideal, 115, 120, 136, 
227, 231 

unique, 118, 120 
minimal two-sided ideal, see minimal 

ideal 
monoid, 3 

presentations, 6 
monomorphism, 226 

natural homomorphism, 113, 115, 226 
Nielsen-Schreier theorem, 103 

one relator product of cyclic groups, 
189 

structure of, 196, 200-205 
one-relator group, 114 
one-sided ideal 

Semigroup presentations 

finitely presented, 97 
of a free semigroup, 103, 107-111 
of finite index, 97 

partial transformation semigroup, 2 
presentation for, 43 
rank of, 30 

presentation, 4 
group, 6 
monoid, 6 
of monoids with zero, 6 
of semi groups with zero, 6 
semi group and group defined by 

the same, 112-124 
semigroup defined by, 4, 9 

presentations for As, 119-124, 139-
146 

principal factor, 234 

rank, 10 
of S modul? T, 18 

Rees matrix, 230 
in normal form, 26, 231 
regular, 24, 230 

Rees matrix semigroup, 24,74-77,118, 
133, 145, 159, 230 

connected, 25 
finitely presented, 77 
generating set for, 74 
isomorphism of, 231 
presentation for, 75 
rank of, 26-29 

Rees quotient, 77, 226 
enumeration procedure, 212-219 

termination, 218 
regular 

V-class, 234 
language, 94 
semigroup, 234 

Reidemeister-Schreier theorems (for 
groups), 2, 78, 82, 87, 133 

Reidemeister-Schreier type results (for 
semigrou ps ), 200 
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Reidemeister-Schreier type theorems 
(for semigrou ps ) 

for ideals, 88, 89 
for one-sided ideals, 97 
for right ideals, 97 
for Schiitzenberger group, 132, 136-

138 
for subsemigroups, 79 

Reilly extension, 70 
representation mapping, 79 

for Schiitzenberger group, 130 
for subsemigroups, 86 

representative function, 83, 96 
rewriting, 78, 142, 157 
rewriting mapping, 46, 79, 199 

for a subsemigroup, 86 
for Schiitzenberger group, 130 

rewriting systems, 2 
right ideal, 225 

generated by a set, 225 
index of, 82 
presentation for, 97 

right regular representation, 1 
RQ, see Rees quotient, enumeration 

procedure 

Schiitzenberger group, 11, 114, 115, 
126 

an effective presentation for, 221 
finitely generated, 130 
finitely presented, 132, 139 
generating set of, 128, 129 
metabelian, 196 
of 5(2,6,2) is free, 159 
presentation for, 131, 132, 136-

138, 199 
rank of, 130 
rewriting mapping for, 138 

Schiitzenberger product, 67-69 
generating set for, 68 
presentation for, 68 

Schreier's theorem, 85 
semlgroup 

255 

defined by a presentation 
minimal ideal of, 115, 173 
structure of, 122-125, 145, 163, 

179, 188, 196 
defined by presentation 

structure of, 155 
presentation for, 5, 6, 9, 44, 62 

methods for finding, 43 
semi group of binary relations, 2 

computational methods for, 208 
rank of, 32 

semi group of singular mappings 
presentation for (open problem), 

42 
rank of, 30 

semigroup of singular matrices, 33 
idempotent rank of, 37 
rank of, 36 

set of representatives, 83, 87, 96 
simple semigroup, 227 

rank of, 21, 24 
O-simple semigroup, 227 
special linear group, 3:3 

presentation for, 41, 48 
special linear semigroup, 33 

generating set for, 34, 47 
presentation for, 47, 48 
rank of, 34 

Stirling numbers, 31 
strong semilattice of monoids, 72-74 

presentation for, 73 
strongly finitely related graph, 167, 

168, 176 
subsemigroup, 78-81, 225 

finitely generated, 85 
finitely presented (open problem), 

101 
full, 21 
generated by a set, 225 
generating set for, 84 
index of, 83 
of a free semigroup, 85, 103-105 
of finite index, 101 
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finitely presented, 105 
presentation for, 79, 81 
self-conjugate, 21 

support, 63 
symmetric group, 2 

presentation for, 40, 41, 165, 180 
symmetric inverse semigroup, 2 

presentation for, 43 
rank of, 30 

TC, see Todd-Coxeter enumeration 
procedure 

Tietze transformations, 43, 45 
elementary, 45 
programs, 94 

Todd-Coxeter enumeration procedure, 
84, 197, 200, 208-223 

actions on data structures, 210 
data structures for, 209 

coincidence set, 210 
coset table, 209 
cosets, 209 

description of, 211 
modifications, 207, 212, 219, 222 
termination, 211 

two-sided ideal, see ideal 

undecidability results, 8 
union of groups, 145, 175 

word problem, 9, 114, 155 
wreath product, 63-67 

restricted, 63 
generating set, 64 
presentation for, 65, 67 

unrestricted, 63 

zero-minimal ideal, see O-minimal ideal 
zero-simple semi group , see O-simple 

semlgroup 
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