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Abstract
A generating set for a finite group G is minimal if no proper subset generates G, and 𝑚(𝐺) denotes the maximal size
of a minimal generating set for G. We prove a conjecture of Lucchini, Moscatiello and Spiga by showing that there
exist 𝑎, 𝑏 > 0 such that any finite group G satisfies 𝑚(𝐺) � 𝑎 · 𝛿(𝐺)𝑏 , for 𝛿(𝐺) =

∑
𝑝 prime 𝑚(𝐺 𝑝), where 𝐺 𝑝 is

a Sylow p-subgroup of G. To do this, we first bound 𝑚(𝐺) for all almost simple groups of Lie type (until now, no
nontrivial bounds were known except for groups of rank 1 or 2). In particular, we prove that there exist 𝑎, 𝑏 > 0 such
that any finite simple group G of Lie type of rank r over the field F𝑝 𝑓 satisfies 𝑟 +𝜔( 𝑓 ) � 𝑚(𝐺) � 𝑎(𝑟 +𝜔( 𝑓 ))𝑏 ,
where 𝜔( 𝑓 ) denotes the number of distinct prime divisors of f. In the process, we confirm a conjecture of Gill and
Liebeck that there exist 𝑎, 𝑏 > 0 such that a minimal base for a faithful primitive action of an almost simple group
of Lie type of rank r over F𝑝 𝑓 has size at most 𝑎𝑟𝑏 + 𝜔( 𝑓 ).

1. Introduction

Since a generating set for a group remains a generating set if additional elements are added, it is
natural to focus on generating sets for which no proper subset is a generating set; we call these minimal
generating sets (they are also known as independent generating sets). A minimal generating set need
not have minimum possible size. For instance, if 𝑛 � 4, then {(1 2), (2 3), . . . , (𝑛 − 1 𝑛)} is a minimal
generating set for 𝑆𝑛, but it has size 𝑛 − 1, which exceeds the minimum size possible size of 2. How
large can a minimal generating set be?

Let G be a finite group. We begin by comparing what is known about the minimum size 𝑑 (𝐺)
and maximum size 𝑚(𝐺) of a minimal generating set for G. If G is a p-group, then 𝑑 (𝐺) = 𝑚(𝐺)
(this follows from Burnside’s basis theorem), so if G is nilpotent, then 𝑑 (𝐺) = max𝑝 prime 𝑑 (𝐺 𝑝) and
𝑚(𝐺) =

∑
𝑝 prime 𝑑 (𝐺 𝑝), where 𝐺 𝑝 is a Sylow p-subgroup of G. In 1989, Guralnick [14] and Lucchini

[23] independently proved that all finite groups G satisfy 𝑑 (𝐺) � max𝑝 prime 𝑑 (𝐺 𝑝) + 1. Do all finite
groups satisfy 𝑚(𝐺) �

∑
𝑝 prime 𝑑 (𝐺 𝑝) + 1? Writing 𝛿(𝐺) =

∑
𝑝 prime 𝑑 (𝐺 𝑝), Lucchini, Moscatiello

and Spiga [24] showed that 𝑚(𝐺) � 𝛿(𝐺) + 1 is false in general, but they conjectured that there exist
𝑎, 𝑏 > 0 such that every finite group G satisfies 𝑚(𝐺) � 𝑎 · 𝛿(𝐺)𝑏 . Our first theorem confirms this
local-to-global conjecture.

Theorem 1. There exist 𝑎, 𝑏 > 0 such that if G is any finite group, then 𝑚(𝐺) � 𝑎 · 𝛿(𝐺)𝑏. Moreover,
this is true for 𝑎 = 1010 and 𝑏 = 10.

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.71 Published online by Cambridge University Press

doi:10.1017/fms.2023.71
https://orcid.org/0000-0002-0056-2914
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.71&domain=pdf
https://doi.org/10.1017/fms.2023.71


2 S. Harper

In [24], Theorem 1 is reduced to a statement about almost simple groups. (A group G is almost
simple if 𝐺0 � 𝐺 � Aut(𝐺0) for a nonabelian simple group 𝐺0.) Even for finite simple groups G, while
it has long been known that 𝑑 (𝐺) � 2 (see [2]), little is known about 𝑚(𝐺). In 2000, Whiston [29]
(using the Classification of Finite Simple Groups) proved 𝑚(𝐴𝑛) = 𝑛 − 2. Later, in 2002, Whiston and
Saxl [30] proved that 𝑚(PSL2 (𝑝 𝑓 )) � max{6, 𝜔( 𝑓 ) +2} with equality if 𝜔( 𝑓 ) � 4, and the exact value
of 𝑚(PSL2 (𝑝)) is given in [16]. (Throughout, 𝜔(𝑛) is the number of distinct prime divisors of n, and
Ω(𝑛) is the number of prime divisors of n counted with multiplicity.) Except for the three-dimensional
classical groups studied in [17], no nontrivial bounds exist for any other finite simple group. This
motivates our second theorem, which we will use to prove Theorem 1.

Theorem 2. There exist 𝛼, 𝛽 > 0 such that if G is an almost simple group of Lie type of rank r over F𝑝 𝑓

(where p is prime), then 𝑚(𝐺) � 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 . Moreover, this is true for 𝛼 = 105 and 𝛽 = 10.

Up to improving the values of 𝛼 and 𝛽, Theorem 2 is best possible since if G is a finite simple group
of Lie type of rank r over F𝑝 𝑓 , then 𝑚(𝐺) � 𝑟 + 𝜔( 𝑓 ) (see Proposition 3.2).

The invariant 𝑚(𝐺) also plays a role in the product replacement algorithm for producing random
elements of G (see [7]). This algorithm involves a random walk on the product replacement graph
Γ𝑛 (𝐺), and Diaconis and Saloff-Coste [8] proved that for large enough n this random walk reaches the
uniform distribution in time |𝐺 |𝑂 (𝑚(𝐺))𝑛2 log 𝑛.

To prove Theorem 2, we relate 𝑚(𝐺) to some well-studied invariants in permutation group theory.
Let G be a finite group acting faithfully on a set X. A sequence (𝑥1, . . . , 𝑥𝑘 ) of points in X is a base
if the pointwise stabiliser 𝐺 (𝑥1 ,...,𝑥𝑘 ) is trivial. This subject has a long history, with many connections
to abstract group theory, computational group theory and graph theory; see the survey [3]. A base
(𝑥1, . . . , 𝑥𝑘 ) is irredundant if we have a proper subgroup chain 𝐺 > 𝐺 (𝑥1) > 𝐺 (𝑥1 ,𝑥2) > · · · >
𝐺 (𝑥1 ,𝑥2 ,...,𝑥𝑘 ) = 1, and it is minimal if no proper subsequence of (𝑥1, . . . , 𝑥𝑘 ) is a base. A minimal base
is irredundant, but the converse need not hold. Let 𝐼 (𝐺, 𝑋) and 𝐵(𝐺, 𝑋) be the maximum size of an
irredundant and minimal base, respectively.

Much is known about the minimum size of a base, for instance the resolutions of Pyber’s conjecture
[9] and Cameron’s conjecture [5], but less is known about 𝐼 (𝐺, 𝑋) and 𝐵(𝐺, 𝑋). However, Gill and
Liebeck [10] recently proved that any almost simple group of Lie type of rank r over F𝑝 𝑓 (where p is
prime) acting faithfully and primitively on X satisfies the bound 𝐵(𝐺, 𝑋) � 𝐼 (𝐺, 𝑋) � 177𝑟8 + Ω( 𝑓 ).
As explained in [10, Example 5.1], 𝐼 (𝐺, 𝑋) must depend on Ω( 𝑓 ), but Gill and Liebeck conjecture
that 𝐵(𝐺, 𝑋) should only depend on 𝜔( 𝑓 ) (see [10, Conjecture 5.2] for a precise statement). Our final
theorem proves this conjecture.

We actually prove a stronger result (also conjectured in [10]) that is more convenient for proving
Theorem 2. For a finite group G acting on X, a sequence S in X is independent if 𝐺 (𝑆′) > 𝐺 (𝑆) for proper
all subsequences 𝑆′ of S, and the height, denoted 𝐻 (𝐺, 𝑋), is the maximum size of an independent
sequence. Note that 𝐵(𝐺, 𝑋) � 𝐻 (𝐺, 𝑋) � 𝐼 (𝐺, 𝑋).

Theorem 3. There exist 𝐴, 𝐵 > 0 such that if G is an almost simple group of Lie type of rank r over F𝑝 𝑓

(where p is prime) acting faithfully and primitively on a set X, then 𝐻 (𝐺, 𝑋) � 𝐴𝑟𝐵 +𝜔( 𝑓 ). Moreover,
this is true for 𝐴 = 177 and 𝐵 = 8.

For a finite group G acting on X, the height 𝐻 (𝐺, 𝑋) is related to the relational complexity 𝑅𝐶 (𝐺, 𝑋)
via the inequality 𝑅𝐶 (𝐺, 𝑋) � 𝐻 (𝐺, 𝑋)+1. Relational complexity arose in model theory, and it has been
the subject recent work, including Gill, Liebeck and Spiga’s recent proof [11] of Cherlin’s conjecture
that classifies the primitive actions satisfying 𝑅𝐶 (𝐺, 𝑋) = 2.

Corollary 4. If G is an almost simple group of Lie type of rank r over F𝑝 𝑓 (where p is prime) acting
faithfully and primitively on a set X, then the following hold:

(i) 𝐵(𝐺, 𝑋) � 177𝑟8 + 𝜔( 𝑓 )
(ii) 𝑅𝐶 (𝐺, 𝑋) � 177𝑟8 + 𝜔( 𝑓 ) + 1.
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2. Preliminaries

2.1. Maximal subgroups of almost simple groups

The maximal subgroups of almost simple groups of Lie type are described by Theorem 2.1, which
combines two theorems of Liebeck and Seitz [19, Theorem 2] and [20, Theorem 2].

Let p be prime, and let X be a linear algebraic group over F𝑝 , which from now on we call an algebraic
group. For a Steinberg endomorphism 𝜎 of X, write 𝑋𝜎 = {𝑥 ∈ 𝑋 | 𝑥𝜎 = 𝑥}. A finite group 𝑂 𝑝′ (𝑋𝜎)
for a simple algebraic group X of adjoint type and a Steinberg endomorphism 𝜎 is usually simple, and
in this case we call it a finite simple group of Lie type. (Here, 𝑂 𝑝′ (𝐺) is the subgroup generated by the
p-elements of G.) In particular, for us, the Tits group 2𝐹4 (2)′ is not a finite simple group of Lie type.
Throughout, by rank we mean untwisted rank.

Theorem 2.1. Let G be an almost simple group of Lie type. Write soc(𝐺) = 𝑂 𝑝′ (𝑋𝜎) for a simple
algebraic group X of adjoint type and a Steinberg endomorphism 𝜎 of X. Let M be a maximal subgroup
of G not containing soc(𝐺). Then M is one of the following:

(I) 𝑁𝐺 (𝑌𝜎 ∩ soc(𝐺)) for a maximal closed 𝜎-stable positive-dimensional subgroup Y of X
(II) 𝑁𝐺 (𝑋𝛼 ∩ soc(𝐺)) for a Steinberg endomorphism 𝛼 of X such that 𝛼𝑘 = 𝜎 for a prime k

(III) a local subgroup not in (I)
(IV) an almost simple group not in (I) or (II)
(V) the Borovik subgroup: 𝑀 ∩ soc(𝐺) = (𝐴5 × 𝐴6).22 with soc(𝐺) = 𝐸8(𝑞) and 𝑝 � 7.

We say that a core-free maximal subgroup of an almost simple group of Lie type has type (I), (II),
(III), (IV) or (V) if it arises in case (I), (II), (III), (IV) or (V) of Theorem 2.1, respectively.

In the remainder of this section, we collect together information about the subgroups appearing in
cases (I)–(V) that we will use in the proof of Theorem 2.

2.2. Aschbacher’s theorem and type (I*) subgroups

One usually categorises the maximal subgroups of an almost simple classical group G via Aschbacher’s
subgroup structure theorem [1]. Following the notation of Kleidman and Liebeck in [18], one can define
a geometric class of subgroups C = C1 ∪ · · · ∪ C8 (see [18, Chapter 3]) and a class S of almost simple
groups (see [18, Section 1.2]) such that for every subgroup H of G not containing soc(𝐺) either 𝐻 � 𝑀
for a maximal subgroup 𝑀 ∈ C or else 𝐻 ∈ S . The subgroups in C are all of type (I), (II) or (III) (with (II)
and (III) broadly overlapping with C5 and C6 subgroups, respectively). However, Case (I) also includes
almost simple groups in S whose socle is a group of Lie type in defining characteristic. Therefore, it is
convenient to make the following definitions.

Let G be an almost simple group of Lie type. If G is classical, then let (I*) be the set of all maximal
subgroups M of G that are in (I) and are in the geometric class C or are twisted tensor product subgroups
(see [27]), and define (IV*) as (IV) without the groups of Lie type in defining characteristic. (It is
natural to include the twisted tensor product subgroups in (I*) as they arise as geometric subgroups of
the ambient algebraic group, see [20, Theorem 2] and the remark that follows it.) If G is exceptional,
then let (I*) be (I) and (IV*) be (IV).

Proposition 2.2. Let G be an almost simple classical group defined over F𝑞 , and let 𝐻 � 𝐺 not contain
soc(𝐺). Then either 𝐻 � 𝑀 for a maximal subgroup M of G of type (I*), (II), (III) or (IV*), or H is an
almost simple group of Lie type defined over a subfield of F𝑞 satisfying rank(𝐻) < rank(𝐺).

Proof. Assume that H does not lie in a maximal subgroup of type (I*), (II), (III) or (IV*). Let 𝑞 = 𝑝 𝑓 ,
where p is prime, and let F𝑛𝑞 be the natural module for G. Since (I*), (II) and (III) cover the entire
geometric class C of maximal subgroups of G, we know that H is not a subgroup of any maximal
subgroup M contained in the geometric class C. Therefore, by the main theorem of [1], we deduce that
H is contained in S . Since H is not in (IV*), H must be a group of Lie type defined over F𝑝𝑒 for some e.
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By [18, Proposition 5.4.6] (which is an application of Steinberg’s twisted tensor product theorem), f
divides 𝑑𝑒, for some 𝑑 ∈ {1, 2, 3}, and the embedding of H in G affords an irreducible F𝑝𝑒𝐻-module V
of dimension 𝑛 𝑓 /𝑑𝑒. Since H is not contained in any maximal twisted tensor product subgroup, by [28,
Corollary 6], we must have 𝑓 = 𝑑𝑒, so H is defined over F𝑝 𝑓 /𝑑 and dim𝑉 = 𝑛.

It remains to prove that rank(𝐻) < rank(𝐺). Referring to the bounds on the dimension of the
minimal module in [18, Proposition 5.4.13], since H has an irreducible module of dimension n either
rank(𝐻) < rank(𝐺) or (𝐻,𝑉) is one of a small number of possibilities all of which arise in the
geometric class C or case (II). For instance, if 𝐺 = PSp𝑛 (𝑞) with 𝑛 > 8, then n is strictly smaller
than the dimension of the minimal module of any finite simple group of Lie type of rank(𝐺) = 𝑛/2
except PSL±

𝑛/2+1 (𝑞) or PΩ±
𝑛 (𝑞), and, by [18, Proposition 5.4.11], the former groups have no irreducible

modules of dimension n and latter groups embed in G as C8 subgroups if at all. However, H is not in C
or (II), so rank(𝐻) < rank(𝐺). �

2.3. Length and type (IV*) subgroups

Let us introduce an invariant that we use throughout the paper. Let G be a finite group. A subgroup
chain of G of length k is a sequence 𝐺 = 𝐺0 > 𝐺1 > · · · > 𝐺𝑘 = 1, and the length of G, written
ℓ(𝐺), is the maximal length of a subgroup chain of G. To see the significance for this paper, note that if
𝑋 = {𝑥1, . . . , 𝑥𝑘 } is a minimal generating set for G, then

𝐺 = 〈𝑥1, . . . , 𝑥𝑘〉 > 〈𝑥2, . . . , 𝑥𝑘〉 > · · · > 〈𝑥𝑘〉 > 1

is a subgroup chain, so 𝑚(𝐺) � ℓ(𝐺). There are many results on length, and we highlight one result
that we will use later. Cameron, Solomon and Turull proved in [6, Theorem 1] that

ℓ(𝑆𝑛) = � 3𝑛−1
2 	 − 𝑏𝑛, (2.1)

where 𝑏𝑛 is the number of ones in the base 2 expansion of n.

Proposition 2.3. There exists 𝐶 > 0 such that if G is an almost simple group of Lie type of rank r and
M is a type (IV*) maximal subgroup of G, then ℓ(𝑀) � 𝐶𝑟 . Moreover, this is true with 𝐶 = 192.

Proof. First, assume that soc(𝑀) is sporadic. Then ℓ(soc(𝑀)) is given in [6, Tables III & IV] (the
‘probable values’ have since been verified), whence we deduce that ℓ(𝑀) � 52.

Next, assume that soc(𝑀) = 𝐴𝑑 for some 𝑑 � 5. If G is exceptional, then 𝑑 � 18 by [22,
Theorem 8], so ℓ(𝑀) � ℓ(𝑆𝑑) + 1 � 28 by equation (2.1), and if G is classical in dimension n, then [18,
Proposition 5.3.7] implies that 𝑑 � 2𝑛 − 1, so ℓ(𝑀) � 3𝑛 − 1 � 6𝑟 + 2, again by equation (2.1).

Finally, assume that soc(𝑀) is a group of Lie type of rank 𝑟0 over F𝑞0 , where 𝑞0 is a power of a
prime 𝑝0. If G is classical in dimension n, then 𝑝0 ≠ 𝑝 and [18, Theorem 5.3.9] implies that 𝑞𝑟0

0 � 𝑛2,

so using the facts that |𝑀 | � 𝑞
12𝑟2

0
0 and 𝑛 � 4𝑟 , we have

ℓ(𝑀) � log2 |𝑀 | � log2(𝑞
12𝑟2

0
0 ) � 12(𝑟0 log2 𝑞0)2 � 48(log2 𝑛)2 � 48(log2 4𝑟)2 � 192𝑟.

If G is exceptional, then there are only finitely many possibilities for M. Consulting [21, Tables 10.3 and
10.4] for the case 𝑝0 ≠ 𝑝 and [22, Theorem 8] for the case 𝑝0 = 𝑝, we see that in all cases |𝑀 | < 2200,
so ℓ(𝑀) � 200 � 100𝑟 . �

2.4. Enumerating maximal subgroups

In this section, we prove the following result, which gives a bound on the number of maximal subgroups
of various types in almost simple groups of Lie type.
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Proposition 2.4. Let G be an almost simple group of Lie type of rank r over F𝑝 𝑓 . Then there are

(i) at most 2𝑟 + 𝜔( 𝑓 ) + 10 maximal subgroups of G that contain soc(𝐺)
(ii) at most 100𝑟 conjugacy classes of maximal subgroups of G that have type (I*), (III) or (V)

(iii) at most (𝑟 + 1) (𝜔( 𝑓 ) + 2) conjugacy classes of maximal subgroups of G that have type (II).

We establish some lemmas before proving Proposition 2.4.

Lemma 2.5. Let H be a subgroup of 𝑆4, and let n be a positive integer. Then 𝐺 = 𝐻 × 𝐶𝑛 has at most
9 + 𝜔(𝑛) maximal subgroups.

Proof. WriteM(𝑋) for the set of maximal subgroups of X and Hom(𝑋,𝑌 ) for the set of homomorphisms
from X to Y. Goursat’s lemma (see [31, (4.3.1)], for example) implies that

|M(𝐺) | = |M(𝐻) | + |M(𝐶𝑛) | +
∑

prime 𝑝 |𝑛
(|Hom(𝐻,𝐶𝑝) | − 1). (2.2)

Note that |M(𝐶𝑛) | = 𝜔(𝑛) and |Hom(𝐻,𝐶𝑝) | = 1 unless 𝑝 ∈ {2, 3}. It remains to check that
|M(𝐻) | + |Hom(𝐻,𝐶2) | + |Hom(𝐻,𝐶3) | � 11, which is easy to do for each 𝐻 � 𝑆4. �

Lemma 2.6. Let m and n be positive integers. Then

(i) any semidirect product 𝐶𝑚:𝐶𝑛 has at most 𝑚 + 𝜔(𝑛) maximal subgroups
(ii) any semidirect product 𝐶𝑚:(𝐶𝑛×𝐶2), where the generator of the 𝐶2 subgroup inverts every element

of the 𝐶𝑚 subgroup, has at most 2𝑚 + 𝜔(𝑛) + 2 maximal subgroups.

Proof. For part (i), write 𝐺 = 〈𝑎, 𝑏 | 𝑎𝑚, 𝑏𝑛, 𝑎𝑏𝑎−𝑘〉 and 𝐻 = 〈𝑏〉 � 𝐶𝑛, and for part (ii) write
𝐺 = 〈𝑎, 𝑏, 𝑐 | 𝑎𝑚, 𝑏𝑛, 𝑐2, 𝑎𝑏𝑎−𝑘 , 𝑎𝑐𝑎, [𝑏, 𝑐]〉 and 𝐻 = 〈𝑏, 𝑐〉 � 𝐶𝑛 × 𝐶2 (in both cases, we assume that
gcd(𝑘, 𝑚) = 1 and 𝑚 | (𝑘𝑛 − 1)).

Let M be a maximal subgroup of G, and write 𝐴 = 𝑀 ∩ 〈𝑎〉. The possibilities for M correspond
to the maximal subgroups of 𝐺/𝐴. If 𝐴 = 〈𝑎〉, then 𝐺/𝐴 = 𝐻, so applying equation (2.2) as in the
proof of Lemma 2.5, we see that the number of possibilities for M is at 𝜔(𝑛) and 𝜔(𝑛) + 2 in cases
(i) and (ii), respectively. Now, assume that 𝐴 < 〈𝑎〉. First, note that M projects into H, for otherwise
𝑀 < 〈𝑎, 𝑀0〉 for a maximal subgroup 𝑀0 of H, contradicting the maximality of M. We next claim that
|〈𝑎〉 : 𝐴| is prime. For a contradiction, suppose otherwise. Then 𝐴 < 〈𝑎𝑝〉 for some prime divisor p
of m. Now, 𝑀 < 〈𝑀, 𝑎𝑝〉. If 〈𝑀, 𝑎𝑝〉 = 𝐺, then 𝑎 ∈ 〈𝑀, 𝑎𝑝〉 = 〈𝑎𝑝〉𝑀 which is impossible since
𝑀 ∩ 〈𝑎〉 = 𝐴 � 〈𝑎𝑝〉, so 𝑀 < 〈𝑀, 𝑎𝑝〉 < 𝐺, which contradicts the maximality of M. Therefore,
|〈𝑎〉 : 𝐴| is a prime divisor of m. To finish, we divide into the cases (i) and (ii).

For (i), if |〈𝑎〉 : 𝐴| = 𝑝, then 𝑀 = 〈𝐴, 𝑎𝑖𝑏〉, where 0 � 𝑖 < 𝑝, so there are at most p possibilities for
M. This means that if 𝑚 = 𝑝𝑒1

1 . . . 𝑝𝑒𝑘𝑘 , where 𝑝1, . . . , 𝑝𝑘 are the distinct prime divisors of m, there are
at most 𝑝1 + · · · + 𝑝𝑘 + 𝜔(𝑛) � 𝑚 + 𝜔(𝑛) maximal subgroups of G.

For (ii), if |〈𝑎〉 : 𝐴| = 𝑝, then 𝑀 = 〈𝐴, 𝑎𝑖𝑏, 𝑎 𝑗𝑐〉, where 0 � 𝑖, 𝑗 < 𝑝. Now, [𝑎𝑖𝑏, 𝑎 𝑗𝑐] ∈ 〈𝑎〉∩𝑀 = 𝐴,
but [𝑎𝑖𝑏, 𝑎 𝑗𝑐] = 𝑎 (1−𝑘) 𝑗−2𝑖𝑘 , so 𝐴𝑎2𝑖𝑘 = 𝐴𝑎 (1−𝑘) 𝑗 , and thus there are at most two choices for i for each
choice of j. Since there are at most p choices for j, there are at most 2𝑝 choices for M. As in the previous
case, if 𝑚 = 𝑝𝑒1

1 . . . 𝑝𝑒𝑘𝑘 , then there are at most 2𝑝1 + · · · + 2𝑝𝑘 + 𝜔(𝑛) + 2 � 2𝑚 + 𝜔(𝑛) + 2 maximal
subgroups of G. �

Lemma 2.7. Let G be an almost simple group with socle PSL𝜀
𝑛 (𝑞). Then G has at most n conjugacy

classes of maximal C7 subgroups.

Proof. Let t be the largest integer such that 𝑛 = 𝑠𝑡 for some integer s. Then every maximal C7 subgroup
of G has type GL𝜀

𝑚(𝑞) 
 𝑆𝑘 , where k divides t and 𝑛 = 𝑚𝑘 and by [18, Tables 3.5.A and 3.5.B], there are
at most 𝑛/𝑚 𝐺-classes of subgroups of a given type. Therefore, the number of G-classes of C7 subgroups
is at most

∑
𝑘 |𝑡 𝑠

𝑡−𝑡/𝑘 �
∑𝑡−1

𝑖=0 𝑠𝑖 = (𝑠𝑡 − 1)/(𝑠 − 1) < 𝑠𝑡 = 𝑛. �
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Proof of Proposition 2.4. First, consider part (i). For now, assume that soc(𝐺) ≠ PSL±
𝑛 (𝑞). Then

Out(soc(𝐺)) = 𝐻 × 𝐶𝑑 𝑓 , where 𝐻 � 𝑆4 and 𝑑 � 3; see [4, Table 2] for exceptional groups and
[15, Section 5.2] for classical groups. Therefore, Lemma 2.5 implies that Out(soc(𝐺)) has at most
𝜔( 𝑓 ) + 10 maximal subgroups. It remains to assume that soc(𝐺) = PSL±

𝑛 (𝑞). In this case, Lemma 2.6
implies that Out(PSL𝑛 (𝑞)) = 𝐶gcd(𝑞−1,𝑛) :(𝐶2 ×𝐶 𝑓 ) has at most 2𝑛+𝜔( 𝑓 ) +2 = 2𝑟 +𝜔( 𝑓 ) +4 maximal
subgroups and Out(PSU𝑛 (𝑞)) = 𝐶gcd(𝑞+1,𝑛) :𝐶2 𝑓 has at most 𝑛 + 𝜔(2 𝑓 ) � 𝑟 + 𝜔( 𝑓 ) + 2 maximal
subgroups. This proves part (i).

For parts (ii) and (iii), an Inndiag(soc(𝐺))-class yields at most |Inndiag(soc(𝐺)) : soc(𝐺) | classes
in G, and |Inndiag(soc(𝐺)) : soc(𝐺) | � 4 unless soc(𝐺) = PSL±

𝑛 (𝑞), in which case we have
|Inndiag(soc(𝐺)) : soc(𝐺) | � 𝑛 = 𝑟 + 1. Part (iii) now follows by the observation that there are
at most 𝜔( 𝑓 ) + 2 classes in Inndiag(soc(𝐺)). Part (ii) is easily verified by consulting [19, Theorem 2]
for exceptional groups and [18, Chapter 3] and [27] for classical groups (we use Lemma 2.7 in the one
slightly more difficult case). �

3. Proofs of the main theorems

3.1. Independent sets for primitive actions of almost simple groups

This section is devoted to proving Theorem 3. In the introduction, we defined height in terms of sequences
of points, but clearly the ordering is irrelevant, so from now on we focus on sets of points. That is, for a
group G acting on a set Ω, a subset 𝑆 ⊆ Ω is independent if 𝐺 (𝑆′) > 𝐺 (𝑆) for all proper subsets 𝑆′ of S,
and the height, denoted 𝐻 (𝐺,Ω), is the maximum size of an independent subset of G on Ω.

Lemma 3.1. Let G be a finite group acting on a set Ω. Let N be a normal subgroup of G such that 𝐺/𝑁
is cyclic. Then 𝐻 (𝐺,Ω) � 𝐻 (𝑁,Ω) + 𝜔(|𝐺/𝑁 |).

Proof. Let Γ ⊆ Ω be an independent set for G of size 𝐻 (𝐺,Ω). Fix Δ ⊆ Γ such that Δ is independent
for N and 𝑁 (Δ) = 𝑁 (Γ) , so, in particular, |Δ | � 𝐻 (𝑁,Ω). This is always possible by [12, Lemma 2.4],
but the argument is short so we give it: If Γ is independent for N, then let Δ = Γ; otherwise, there exists
a proper subset Γ′ ⊆ Γ such that 𝑁 (Γ′) = 𝑁 (Γ) , and we repeat the argument replacing Γ with Γ′.

Let 𝜑 : 𝐺 → 𝐺/𝑁 be the quotient map, and let 𝑝1 < · · · < 𝑝𝑘 be the prime divisors of |𝐺/𝑁 |,
so, in particular, 𝑘 = 𝜔(|𝐺/𝑁 |). Write |𝜑(𝐺 (Γ) ) | = 𝑝𝑒1

1 · · · 𝑝𝑒𝑘𝑘 . Fix 1 � 𝑖 � 𝑘 . Suppose that for all
𝛼 ∈ Γ \ Δ , the 𝑝𝑖-part of |𝜑(𝐺 (Δ∪{𝛼}) ) | strictly exceeds 𝑝𝑒𝑖𝑖 . Then since 𝐺 (Γ) =

⋂
𝛼∈Γ\Δ 𝐺 (Δ∪{𝛼})

and 𝜑(𝐺) is cyclic, the 𝑝𝑖-part of |𝜑(𝐺 (Γ) ) | strictly exceeds 𝑝𝑒𝑖𝑖 , which is a contradiction. Therefore,
there exists 𝛼𝑖 ∈ Γ \ Δ such that the 𝑝𝑖-part of |𝜑(𝐺 (Δ∪{𝛼𝑖 }) ) | is 𝑝𝑒𝑖𝑖 . Thus, |𝜑(𝐺 (Δ∪{𝛼1 ,...,𝛼𝑘 }) ) | =
𝑝𝑒1

1 · · · 𝑝𝑒𝑘𝑘 = |𝜑(𝐺 (Γ) ) |. However, 𝑁 (Δ∪{𝛼1 ,...,𝛼𝑘 }) = 𝑁 (Γ) , so we have 𝐺 (Δ∪{𝛼1 ,...,𝛼𝑘 }) = 𝐺 (Γ) . Since
Γ is independent for G, we deduce that Γ = Δ ∪ {𝛼1, . . . , 𝛼𝑘 }, which implies that 𝐻 (𝐺,Ω) = |Γ| �
|Δ | + 𝑘 � 𝐻 (𝑁,Ω) + 𝜔( 𝑓 ), as sought. �

Proof of Theorem 3. Let G be an almost simple group of Lie type of rank r over F𝑝 𝑓 , where p is
prime, acting primitively on Ω. Let 𝐺0 = soc(𝐺), so 𝐺0 � 𝐺 � Aut(𝐺0). Now, [13, Theorem 2.5.12]
implies that Aut(𝐺0) has a normal subgroup N such that Aut(𝐺0)/𝑁 = 𝐶 𝑓 and |𝑁/𝐺0 | � 6𝑟 . Since
𝐺/(𝐺 ∩ 𝑁) � 𝐺𝑁/𝑁 , by Lemma 3.1,

𝐻 (𝐺,Ω) � 𝐻 (𝐺 ∩ 𝑁,Ω) + 𝜔(|𝐺𝑁/𝑁 |) � 𝐻 (𝐺 ∩ 𝑁,Ω) + 𝜔( 𝑓 ),

and, by [12, Lemma 2.8],

𝐻 (𝐺 ∩ 𝑁,Ω) � 𝐻 (𝐺0,Ω) + ℓ((𝐺 ∩ 𝑁)/𝐺0) � 𝐻 (𝐺0,Ω) + ℓ(𝑁/𝐺0).

Now, ℓ(𝑁/𝐺0) � log2 |𝑁/𝐺0 | � log2(6𝑟) � 3𝑟3, so 𝐻 (𝐺,Ω) � 𝐻 (𝐺0,Ω) + 3𝑟3 + 𝜔( 𝑓 ). While
the action of 𝐺0 on Ω need not be primitive, as explained in the final paragraph of the proof of [10,
Corollary 3], we still have 𝐻 (𝐺0,Ω) � 174𝑟8, so 𝐻 (𝐺0,Ω) � 177𝑟8 + 𝜔( 𝑓 ). �
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3.2. Minimal generating sets for almost simple groups of Lie type

We are now in a position to prove Theorem 2.

Proof of Theorem 2. By Theorem 3 and Proposition 2.3, there exist constants 𝐴, 𝐵, 𝐶 > 0 such that for
all almost simple groups of Lie type G of rank r over F𝑝 𝑓 , where p is prime, the following both hold

(i) if G acts faithfully and primitively on a set Ω, then 𝐻 (𝐺,Ω) � 𝐴𝑟𝐵 + 𝜔( 𝑓 )
(ii) if M is a maximal subgroup of G of type (IV*), then ℓ(𝑀) � 𝐶𝑟 .

Define 𝛼 = max{100𝐴,𝐶} and 𝛽 = 𝐵 + 2 (note that (𝛼, 𝛽) = (17700, 10) is a valid choice here since
(𝐴, 𝐵) = (177, 8) and 𝐶 = 192 are valid for Theorem 3 and Proposition 2.3).

Let G be an almost simple group of Lie type of rank r over F𝑝 𝑓 where p is prime. Then we claim that

𝑚(𝐺) � 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 . (3.1)

Let X be a minimal generating set for G. For each 𝑥 ∈ 𝑋 , write 𝐻𝑥 = 〈𝑋 \ {𝑥}〉 and let 𝑀𝑥 be a
maximal subgroup of G such that 𝐻𝑥 � 𝑀𝑥 . For distinct 𝑥, 𝑦 ∈ 𝑋 note that 𝑀𝑥 ≠ 𝑀𝑦 , for otherwise
〈𝑋 \ {𝑥}〉 � 𝑀𝑥 and 〈𝑋 \ {𝑦}〉 � 𝑀𝑥 , so 𝐺 = 〈𝑋〉 � 𝑀𝑥 , which is impossible.

First, assume that for all 𝑥 ∈ 𝑋 the maximal subgroup 𝑀𝑥 contains soc(𝐺) or has type (I*), (II), (III)
or (V). For a contradiction, suppose that |𝑋 | > 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 . This means that

|𝑋 | > 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 � 100𝐴(𝑟 + 𝜔( 𝑓 ))𝐵+2 � (𝐴𝑟𝐵 + 𝜔( 𝑓 )) · 100(𝑟 + 𝜔( 𝑓 ))2

� (𝐴𝑟𝐵 + 𝜔( 𝑓 )) · (100𝑟 + (𝑟 + 1) (𝜔( 𝑓 ) + 2)) + (2𝑟 + 𝜔( 𝑓 ) + 10).

By Proposition 2.4(i), soc(𝐺) � 𝑀𝑥 for at most 2𝑟 +𝜔( 𝑓 ) + 10 elements x of X. Therefore, 𝑀𝑥 is core-
free for strictly greater than (𝐴𝑟𝐵 +𝜔( 𝑓 )) · (100𝑟 + (𝑟 +1) (𝜔( 𝑓 ) +2)) elements x of X. Now, Proposition
2.4(ii)–(iii) together with the pigeonhole principle implies that there exists a core-free maximal subgroup
M of G and a subset 𝑌 ⊆ 𝑋 such that |𝑌 | > 𝐴𝑟𝐵 + 𝜔( 𝑓 ) and for all 𝑦 ∈ 𝑌 there exists 𝑔𝑦 ∈ 𝐺 such that
𝑀𝑦 = 𝑀𝑔𝑦 .

We claim that
⋂

𝑦∈𝑌 𝑀𝑔𝑦 <
⋂

𝑦∈𝑌 \{𝑦0 } 𝑀
𝑔𝑦 for all 𝑦0 ∈ 𝑌 . To see this, it suffices to fix 𝑦0 ∈ 𝑌 and

show that
⋂

𝑦∈𝑌 \{𝑦0 } 𝑀
𝑔𝑦 � 𝑀𝑔𝑦0 . For a contradiction, suppose otherwise. First, note that 〈𝑋 \ {𝑦0}〉 =

𝐻𝑦0 � 𝑀𝑦0 = 𝑀𝑔𝑦0 , Second note that for all 𝑦 ∈ 𝑌 \ {𝑦0} we have 𝑦0 ∈ 〈𝑋 \ (𝑌 \ {𝑦0})〉 � 〈𝑋 \ {𝑦}〉 =
𝐻𝑦 � 𝑀𝑦 = 𝑀𝑔𝑦 , so 𝑦0 ∈

⋂
𝑦∈𝑌 \{𝑦0 } 𝑀

𝑔𝑦 . Therefore, under the supposition that
⋂

𝑦∈𝑌 \{𝑦0 } 𝑀
𝑔𝑦 �

𝑀𝑔𝑦0 , we deduce that 𝐺 = 〈𝑋〉 � 𝑀𝑔𝑦0 , which is absurd. This establishes the claim.
This means that {𝑀𝑔𝑦 | 𝑦 ∈ 𝑌 } is an independent set for the action of G on 𝐺/𝑀 , so Theorem 3

implies that |𝑌 | � 𝐴𝑟𝐵+𝜔( 𝑓 ) (see (ii) above), but this directly contradicts the fact that |𝑌 | > 𝐴𝑟𝐵+𝜔( 𝑓 ).
Therefore, we deduce that |𝑋 | � 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 .

Next, assume that there exists 𝑥 ∈ 𝑋 such that 𝑀𝑥 has type (IV*). We clearly have the inequalities
|𝑋 | � 𝑚(𝐻𝑥) + 1 � ℓ(𝐻𝑥) + 1 � ℓ(𝑀𝑥) + 1. Proposition 2.3 implies that ℓ(𝑀𝑥) � 𝐶𝑟 � 𝛼𝑟 (see (i)
above), so |𝑋 | � 𝛼𝑟 + 1 � 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 .

We now pause to observe that we have proved equation (3.1) when soc(𝐺) = PSL2 (𝑝 𝑓 ) since in this
case the (I) coincides with (I*) and (IV) coincides with (IV*).

Having established the result in the base case where the rank r is 1, we now complete the proof by
induction. Suppose that 𝑟 = 𝑠 > 1 and that equation (3.1) holds for all groups with 𝑟 < 𝑠.

By Proposition 2.2, it remains to assume that G is classical and 𝐻𝑥 is an almost simple group of Lie
type defined over F𝑝𝑒 ⊆ F𝑝 𝑓 such that rank(𝑀𝑥) < 𝑟 . Now, by induction,

|𝑋 | � 𝑚(𝐻𝑥) + 1 � 𝛼(rank(𝐻𝑥) + 𝜔(𝑒))𝛽 + 1 � 𝛼(𝑟 − 1 + 𝜔( 𝑓 ))𝛽 + 1 � 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 .

Therefore, in all cases |𝑋 | � 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 , as desired. �

We next show that, up to improving 𝛼 and 𝛽, the bound in Theorem 2 is best possible.
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Proposition 3.2. Let G be a finite simple group of Lie type of rank r over F𝑝 𝑓 , where p is prime. Then
𝑚(𝐺) � 2𝑟 + 𝜔( 𝑓 ).
Proof. Let B be a Borel subgroup of G containing a maximal torus T, let Φ be the corresponding
root system of G and let Δ = {𝛼1, . . . , 𝛼𝑟 } be a set of simple roots. We will now construct a minimal
generating set for G. To refer to elements of G, we will use the standard Lie theoretic notation 𝑥𝛼 (𝑡) and
ℎ𝛼 (𝑡); see [13, Theorem 1.12.1], for example.

For 1 � 𝑖 � 𝑟 , let 𝑥𝑖 and 𝑦𝑖 be the root elements 𝑥𝛼𝑖 (1) and 𝑥−𝛼𝑖 (1), respectively. Write 𝑓 =
𝑒𝑎1

1 · · · 𝑒𝑎𝑘

𝑘 , where 𝑒1, . . . , 𝑒𝑘 are the distinct prime divisors of f (so 𝑘 = 𝜔( 𝑓 )). For 1 � 𝑖 � 𝑘 , let
𝑓𝑖 = 𝑒𝑎𝑖𝑖 , let 𝜆𝑖 be a primitive element of the subfield F𝑝 𝑓𝑖 and let 𝑧𝑖 = ℎ𝛼1 (𝜆𝑖).

We claim that 𝑋 = {𝑥1, . . . , 𝑥𝑟 , 𝑦1, . . . , 𝑦𝑟 , 𝑧1, . . . , 𝑧𝑘 } is a minimal generating set for G (since
|𝑋 | = 2𝑟+𝜔( 𝑓 ) this establishes the result). The fact that X generates G follows from [13, Theorem 1.12.1]
and [25, Corollary 24.2]. To see that X is minimal, note that for all 1 � 𝑖 � 𝑘 , the set 𝑋 \{𝑧𝑖} is contained
in the subfield subgroup defined over the subfield F𝑝 𝑓 /𝑒𝑖 , and for all 1 � 𝑖 � 𝑟 , both of the sets 𝑋 \ {𝑥𝑖}
and 𝑋 \ {𝑦𝑖} are contained in parabolic subgroups of type 𝑃𝑖 (corresponding to deleting node i from the
Dynkin diagram of Φ). �

Example 3.3. To elucidate the proof of Proposition 3.2, let us give an explicit description of the minimal
generating set when 𝐺 = PSL3(𝑞) and 𝑞 = 𝑝 𝑓1 𝑓2 for distinct primes 𝑓1 and 𝑓2. Let 𝜆1 and 𝜆2 be primitive
elements of F𝑝 𝑓1 and F𝑝 𝑓2 , respectively. Then we obtain a minimal generating set {𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2},
where

𝑥1 =
���

1 1 0
0 1 0
0 0 1

�	
, 𝑥2 =
���

1 0 0
0 1 1
0 0 1

�	
, 𝑦1 =
���

1 0 0
1 1 0
0 0 1

�	
, 𝑦2 =
���

1 0 0
0 1 0
0 1 1

�	

𝑧1 =

���
𝜆1 0 0
0 𝜆−1

1 0
0 0 1

�	
, 𝑧2 =
���
𝜆2 0 0
0 𝜆−1

2 0
0 0 1

�	
.

3.3. Minimal generating sets for an arbitrary finite group

We now use Theorem 2 to prove Theorem 1. We first require the following reduction theorem, which
was proved by Lucchini, Moscatiello and Spiga [24, Theorem 1.4].

Theorem 3.4. Let 𝑎 � 1 and 𝑏 � 2. Let G be a finite group. Assume that every composition factor 𝑆0
of G and every almost simple group S with socle 𝑆0 satisfies 𝑚(𝑆) − 𝑚(𝑆/𝑆0) � 𝑎 · 𝜔(|𝑆0 |)𝑏 . Then
𝑚(𝐺) � 𝑎 · 𝛿(𝐺)𝑏 .

We have focused on almost simple groups of Lie type since otherwise the required result follows
from existing work in the literature as the following theorem highlights (this is noted in [24, Lemma 4.5]
without an explicit constant).

Theorem 3.5. There exists a constant 𝛾 > 0 such that if G is an almost simple group that is not a group
of Lie type, then 𝑚(𝐺) � 𝛾 · 𝜔(|soc(𝐺) |)2. Moreover, this is true with 𝛾 = 52.

Proof. Let 𝛾 = 52. If soc(𝐺) is sporadic, then 𝑚(𝐺) � ℓ(𝐺) � 52 (see [6, Tables III and IV]), and it is
easy to check that the same bound holds when soc(𝐺) is 𝐴6 or 2𝐹4 (2)′.

We can now assume that soc(𝐺) = 𝐴𝑛 for 𝑛 ≠ 6. In this case, G is 𝐴𝑛 or 𝑆𝑛 and Whiston proved
that 𝑚(𝐺) is 𝑛 − 2 or 𝑛 − 1, respectively [29]. If 𝑛 � 53, then 𝑚(𝐺) � 𝑛 − 1 � 52. Otherwise, by [26,
Corollary 1] we know that 𝜋(𝑛) > 𝑛/log 𝑛, where 𝜋 is the prime-counting function and log is the natural
logarithm. Noting that log 𝑛 <

√
𝑛, these bounds give

𝑚(𝐺) � 𝑛 − 1 < (𝑛/log 𝑛)2 < 𝜋(𝑛)2 = 𝜔(|soc(𝐺) |)2. �

The following lemma relates Theorems 2 and 3.4 for groups of Lie type.
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Lemma 3.6. Let G be an almost simple group of Lie type of rank r over F𝑝 𝑓 (where p is prime). Then

𝜔(|soc(𝐺) |) � max(1, 1
2 (𝑟 − 1)) + 𝜔( 𝑓 ).

Proof. It is easy to check that |soc(𝐺) | is divisible by 𝑝 𝑓 𝑑1 − 1, 𝑝 𝑓 𝑑2 − 1, . . . 𝑝 𝑓 𝑑𝑘 − 1 for some 𝑑1 <
𝑑2 < · · · < 𝑑𝑘 with 𝑘 � max(1, 1

2 (𝑟−1)). Moreover, if 𝑒1, . . . , 𝑒𝑙 are the distinct prime divisors of f, then
|soc(𝐺) | is divisible by 𝑝−1, (𝑝𝑒1 −1)/(𝑝−1), (𝑝𝑒1𝑒2 −1)/(𝑝−1) . . . , (𝑝𝑒1𝑒2...𝑒𝑙 −1)/(𝑝−1). Note that
1 < 𝑒1 < 𝑒1𝑒2 < · · · < 𝑒1𝑒2 . . . 𝑒𝑙 < 𝑓 𝑑2 < 𝑓 𝑑3 · · · < 𝑓 𝑑𝑘 . By Zsigmondy’s theorem [32], for all but at
most one 𝑖 ∈ {1, 𝑒1, . . . , 𝑒1𝑒2 . . . 𝑒𝑙 , 𝑓 𝑑2, 𝑓 𝑑3, . . . , 𝑓 𝑑𝑘 } we may fix a primitive prime divisor of 𝑝𝑖 − 1.
Noting that |soc(𝐺) | is also divisible by p, we deduce that 𝜔(|soc(𝐺) |) � max(1, 1

2 (𝑟 − 1)) +𝜔( 𝑓 ). �

We can now prove Theorem 1.

Proof of Theorem 1. Let 𝛼, 𝛽, 𝛾 > 0 be constants satisfying Theorems 2 and 3.5. Let us define 𝑎 =
max{𝛼 · 3𝛽 , 𝛾} and 𝑏 = max{𝛽, 2} (note that 𝑏 = 10 is a valid choice here since 𝛽 = 10 is a valid choice
in Theorem 2, and using 𝛼 = 105 and 𝛾 = 52 gives 𝑎 < 1010).

Let G be a finite group, let 𝑆0 be a composition factor of G and let S be an almost simple group
with socle 𝑆0. First assume that 𝑆0 is alternating, sporadic or the Tits group. Then Theorem 3.5 implies
that 𝑚(𝑆) � 𝛾 · 𝜔(|𝑆0 |)2. Now, assume that 𝑆0 is finite simple group of Lie type of rank r over
F𝑝 𝑓 , where p is prime. Then Theorem 2 gives us the bound 𝑚(𝑆) � 𝛼(𝑟 + 𝜔( 𝑓 ))𝛽 . By Lemma 3.6,
𝜔(|𝑆0 |) � max(1, 1

2 (𝑟 − 1)) + 𝜔( 𝑓 ) � 1
3 (𝑟 + 𝜔( 𝑓 )), so 𝑚(𝑆) � 𝛼 · 3𝛽 · 𝜔(|𝑆0 |)𝛽 . Therefore, in both

cases, 𝑚(𝑆) � 𝑎 · 𝜔(|𝑆0 |)𝑏 . By Theorem 3.4, this establishes that 𝑚(𝐺) � 𝑎 · 𝛿(𝐺)𝑏 . �
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