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Quasiparticle interference (QPI) imaging is a powerful tool for the study of the low energy electronic structure
of quantum materials. However, the measurement of QPI by scanning tunneling microscopy (STM) is restricted
to surfaces and is thus inherently constrained to two dimensions. QPI has proved immensely successful for
the study of materials that exhibit a quasi-two-dimensional electronic structure, yet it raises questions about
how to interpret QPI in materials that have a highly three dimensional electronic structure. In this paper we
address this question and establish the methodology required to simulate and understand QPI arising from three
dimensional systems as measured by STM. We calculate the continuum surface Green’s function in the presence
of a defect, which captures the role of the surface and the vacuum decay of the wave functions. We find that
defects at different depths from the surface will produce unique sets of scattering vectors for three dimensional
systems, which nevertheless can be related to the three-dimensional electronic structure of the bulk material. We
illustrate the consequences that the three-dimensionality of the electronic structure has on the measured QPI for
a simple cubic nearest-neighbour tight-binding model, and then demonstrate application to a real material using
a realistic model for PbS. Our method unlocks the use of QPI imaging for the study of quantum materials with
three dimensional electronic structures and introduces a framework to generically account for kz-dispersions
within QPI simulations.

I. INTRODUCTION

Quasiparticle interference (QPI), the spatial perturbation
to the local density of states (LDOS) in the presence of de-
fects or boundaries, is an important phenomenon that enables
Scanning Tunneling Microscopy (STM), a real-space tech-
nique, to uncover information about electronic states in mo-
mentum space1,2 with unparalleled energy resolution3. The
perturbations due to QPI arise as a direct result of scatter-
ing between two electronic states and therefore measuring
the Fourier transform of these spatial perturbations provides
a route to uncover the electronic structure of a material4,5.

These measurements have been immensely successful in
understanding materials with a highly 2D electronic struc-
ture, such as the cuprates6–8 and ruthenates9,10, where a com-
parison between experimental measurements and theoreti-
cal models is rather straightforward. On the other hand, in
anisotropic materials with non-negligible interlayer hopping,
such as the iron-based superconductors11–13 or heavy Fermion
systems14–16, it has become apparent that the resulting three-
dimensionality of the electronic structure results in visible
changes to the measured QPI beyond a simple 2D model17,18.

The challenge to understand QPI of 3D electronic struc-
tures is fundamentally linked to the fact that STM is a surface-
sensitive technique, limited to measuring the LDOS at sur-
faces and in two spatial dimensions. This raises an im-
portant question about how to interpret Fourier transforms
of QPI measurements in systems that have a notable three-
dimensional electronic structure.

Previous theoretical and experimental work studying the
QPI of 3D electronic structures have shown that the direction
and intensity of the QPI standing wave patterns are controlled
by the Fermi velocity of the electronic states19–21. More re-
cently, in conjunction with the experimental constraint that
STM is a local technique, it has been argued that any standing
waves generated by electronic states which have finite group

velocity in the z-direction20, will actually traverse into the
bulk of the material and therefore not generate coherent long
range QPI signal that would be noticeable as sharp peaks in
the Fourier transform18,22.

So far however, these arguments have not considered the
role that the surface has on the electronic states, where kz
is no longer a good quantum number. In this paper, we ad-
dress this issue by theoretically studying the consequence that
the surface has on the formation of QPI. By utilising the re-
cently developed continuum LDOS (cLDOS) technique23,24,
which takes into account the inter-unit cell superposition of
the electronic states above the surface of a material, we show
that information about the bulk 3D electronic structure can be
readily obtained from experimental QPI measurements. We
additionally show that defects at different distances from the
surface will produce unique QPI patterns and that a full com-
parison between theory and experiment requires the consid-
eration of defects at both different sites and depths from the
surface.

II. THEORETICAL FRAMEWORK

To simulate Fourier transformed QPI, we begin by calculat-
ing the cLDOS ρ(r, ω) using the continuum Green’s function
G(r, r, ω) following refs. 10, 23, and 24,

ρ(r, ω) = − 1

π
ImG(r, r, ω). (1)

Here, r is a 3D continuous real space vector, ω is the energy
and the continuum Green’s function is defined via the contin-
uum transformation of the discrete lattice Green’s function,
G(R,R′, ω), in the presence of a point-like impurity
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G(r, r′, ω) =
∑
R

∑
R′

G(R,R′, ω)W (R− r)W (R′ − r′).

(2)
Here R is the discrete lattice vector and W (R− r) is a

localized Wannier function connecting the discrete and con-
tinuous space.

The discrete lattice Green’s function in the presence of a de-
fect is obtained from the unperturbed lattice Green’s function
G0(R, ω) using the T -matrix formalism,

G(R,R′, ω) = G0(R−R′, ω)+G0(R, ω)T (ω)G0(−R′, ω)
(3)

where T (ω) describes the scattering from a single point-like
defect

T (ω) = V̂ [1̂− V̂ G0(R = 0, ω)]−1. (4)

Here, we use V̂ = 100 meV and G0(R, ω) is the Fourier
transform of the non-interacting Greens function G0(k, ω)
obtained from

G0(k, ω) = [(ω + iΓ)1̂−H(k)]−1 (5)

For the nearest neighbour cubic model discussed here, we
use an isotropic s-wave Gaussian Wannier function,

W (r) = e−r2/2C2σ2

, (6)

with C =
√
2 ln 100 as the Wannier function. A Gaus-

sian of this form ensures that the correct radial decay for the
atomic wavefunctions at surfaces is captured, whilst allowing
us to tune the overall radius of the Gaussian by using the pa-
rameter σ, where W (r = σ) = 0.01. Here we choose a value
of σ = 1.8, in units of the lattice constant, to ensure suf-
ficient overlap between nearest neighbour atoms, whilst en-
suring next-nearest neighbour overlap can be neglected. The
choice of this parameter does not affect the qualitative be-
haviour of the QPI vectors as we show in the supplemental
material25.

The cLDOS, Eq. (2), is then calculated on a large real-
space grid over rx and ry at a fixed height rz = h, and the 2D
Fourier transform is taken to generate ρ̃(q∥, ω) which can be
compared with experimental measurements.

To understand the influence of the 3D electronic structure
on QPI measurements, we begin by considering the simple
cubic lattice with nearest neighbour hopping,

H(k) = tx cos(kx) + ty cos(ky) + tz cos(kz). (7)

We then consider two scenarios, one where the defect is lo-
cated deep in the bulk of the material, as sketched in Fig. 1(a),
and the second for a defect located at the surface of a large
slab, as sketched in Fig. 1(b). For the former we calculate

Eq. (1) using the Hamiltonian in Eq. (7), whereas for the sur-
face calculation we first perform a coordinate transformation
to an N -layered slab,

H(k∥) =

H0(k∥) H1(k∥) H2(k∥) ...
H1(k∥) H0(k∥) H1(k∥) ...
H2(k∥) H1(k∥) H0(k∥) ...

... ... ... ...

 , (8)

where we have separated the Hamiltonian such that each
row and column in the N × N block matrix describes a one-
unit-cell thick layer along the z axis and the crystallographic
momentum is now defined parallel to the x-y-plane (k∥ =
(kx, ky)). The individual elements are then defined as

HRz (k∥) =
∑
R∥

H(R∥, Rz)e
ik∥R∥ . (9)

For the nearest neighbour cubic model, H(±1, 0, 0) = tx,
H(0,±1, 0) = ty , H(0, 0,±1) = tz .

Without loss of generality we assume that the surface does
not distort the physical structure, nor induce any charge imbal-
ance. To describe these would require modification of H0(k∥)
for the surface layer(s) in Eq. (8).

III. RESULTS

We begin by comparing the QPI pattern in the cLDOS
(cQPI) at the Fermi level expected from a bulk or surface cal-
culation when out-of-plane hopping is neglected (tz = 0). We
find that the two dimensional square Fermi surface (Fig. 1(c))
will produce a square QPI pattern, regardless of whether a
bulk or surface defect is considered. This is shown in the left
and right hand sides of Fig. 1(d) respectively. This is expected,
as the slab Hamiltonian of Eq. (8) will be diagonal in the ab-
sence of out of plane hopping (H1(k∥) = 0). As tz is in-
creased, however, the differences between a bulk and surface
cQPI simulation become increasingly apparent. Bulk simu-
lations, shown on the left hand side of Fig. 1(f, h), produce
several sharp scattering vectors, which can be linked predom-
inately to nesting of states with kz = 0 or kz = π, shown as
red lines in Fig. 1(e, g), as well as some broader intensity ema-
nating from the center due to poorly nested scattering between
the states with different kz . Surface cQPI simulations do not
produce such sharp scattering vectors. Whilst the qualitative
features do resemble those observed for bulk calculations, the
uncertainty in kz produces much broader scattering vectors
and this broadness increases with increasing tz .

As all experimental measurements are performed above the
surface of a material, this implies that measurements on mate-
rials with a highly three dimensional electronic structure will
observe broad QPI scattering patterns from surface defects.
Nevertheless, the presence of a surface also creates an addi-
tional consideration about the position of the defect. Whilst in
a bulk material, defects in different unit cells will only induce
a phase shift in the simulated cQPI, near the surface, the depth
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FIG. 1. Consequence of out of plane hopping on the bulk and sur-
face QPI patterns. (a, b) Sketch of the two scenarios considered, (a)
a defect situated in the bulk of a material, (b) a defect at the surface
of a material. Here h refers to the 2D plane used to study the Fourier
transformation of the local density of states. (c, d) 3D Fermi surface
and cQPI ρ̃(q∥, ω) at rz = h, calculated for the bulk defect (left
half) and surface defect (right half) for the nearest neighbour cubic
model with tx = ty = 0.1 and tz = 0. (e, f) Equivalent simulations
for tz = 0.05, (g, h) tz = 0.1 (isotropic case). The surface projected
spectral functions are plotted in Fig. S2 in ref. 25.

of the defect generates unique environments (Fig. 2(a)). This
will alter the possible scattering vectors that can be observed.
To illustrate this, we plot in Fig. 2(b) the partial spectral func-
tion Az(k∥, ω) for the surface and sub-surface layers of the
nearest neighbour cubic model with isotropic hopping,

Az(k∥, ω) = − 1

π
ImGzz(k∥, ω), (10)

with Gzz being the matrix element of the non-interacting
Green’s function for the z-th layer of the N -layer slab25. Here,
we observe that the electronic states at the surface have a very
different spectral density depending on whether we are look-
ing at the surface unit cell (left hand side of Fig. 2(b)) or the
sub-surface unit cell (right hand side of Fig. 2(b)). At the sur-
face, the spectral weight is spread out over the entire range of
k∥ spanned by the bulk 3D Fermi surface (Fig. 1(g)) with a
maximum intensity at kz = π

2 , whereas the sub-surface spec-
tral function exhibits a suppression of spectral weight around
kz = π

2 and maximum intensity around kz = π
4 and 3π

4 . It is
also found that the projected spectral function at deeper lay-
ers will introduce additional nodes which eventually converge
to the bulk kz averaged spectral function for large number of
layers N in the slab, as shown in Fig. S2 in ref. 25.

This effect is a consequence of quantum interference in the
z-direction due to the surface breaking the translation sym-
metry resulting in resonator-like states in the vicinity of the
surface, much like the quasi-particle interference of a one-
dimensional defect in a 2D electron gas1. This has a pro-
nounced effect on the spectral function, modulating the spec-
tral density of the states in different depths and thus the
strength with which scattering vectors for defects located at
certain depths are observed. QPI scattering vectors arising
from sub-surface and deeper defects will produce qualitatively
different patterns compared to surface defects, as shown in
Fig. 2(c) and these scattering vectors can be related to the
full-three dimensional electronic structure of the bulk material
by analysing the corresponding spectral function at a specific
depth from the surface. For defects at a known depth, one
may use this knowledge to extract information about the kz
dispersion of the full three dimensional electronic structure,
or, conversely, for a known electronic structure the scattering
pattern can be used to determine the defect depth. We note
that this is a general phenomenon resulting in a modulation of
the spectral function Az(k∥, ω) as a function of depth z.

It is worth noting that the intensity of the QPI from sub-
surface defects is rather weak. As illustrated in Fig. 2(c), the
intensity of QPI arising from a sub-surface defect in this toy
model is only 10% of that from a surface defect. Nevertheless,
this does not imply that the QPI from these defects can not
be observed. In fact, it implies that if one wishes to directly
reproduce experimental measurements of QPI arising from 3D
systems, then one needs to sum the contribution of all types
of defects, i, not just of different elements, but from different
sites and depths, to the total cLDOS (ρi(q, ω)) and multiply
these by a realistic approximation for the different number of
each type of defect

ρexp(q∥, ω) =
∑
i

αiρ
i(q∥, ω). (11)

In some systems, it may be sufficient to only consider sur-
face defects, however this will be dependent on the materials



4

(a)

ry

(b) (c) x1 x10
surface sub-surface surface sub-surface

rx kx qx

qykyrz

π-π-π

π

h

-2π 2π

-2π

2π

0

0

0

0

FIG. 2. Consequence of defect position for measured QPI. (a) Sketch of defects at different positions from the surface. (b) Partial spectral
function of the surface layer (left half) and sub-surface layer (right half). (c) cQPI ρ̃(q∥, ω) for a defect located at the surface (left half, red
atom in (a)) and sub-surface (right half, blue atom in (a)). The intensity of the simulated cQPI due to a sub-surface defect has been enhanced
by a factor of 10 for comparison with the surface cQPI pattern.

chemical composition and the relative number of each type of
defect. For intrinsic bulk defects, αi should be approximately
equal and independent of i.

To illustrate this, in Fig. 3 we present equivalent cQPI slab
calculations for a density functional theory (DFT) derived
tight binding model of PbS, a semiconducting rock-salt mate-
rial shown in Fig. 3(a) where QPI measurements have recently
been reported22. The valence bands of this material are dom-
inated by the p-orbitals of Pb and at an energy of 1 eV above
the Fermi level exhibits a 3D electronic structure with no
states around kz = 0, as shown in Fig. 3(b). This model was
generated using Quantum Espresso26 and Wannier9027, de-
tails can be found in the supplemental material25. In Fig. 3(c),
we present the result of calculating Eq. (11) for a 16-unit cell
thick slab of PbS, for the (100) surface, assuming all Pb and
S defects are equally likely. This produces a complex pattern
which is in good qualitative agreement with the experimental
QPI measurement from Ref. 22 at a similar energy (0.8 eV)
shown in Fig. 3(d).

Fig. 3(e-h) reveals the power of the methodology employed
here. Each Pb defect (left) and S defect (right) that was con-
sidered produces a unique QPI scattering pattern depending
on the relative distance from the surface, and it can be seen
that some scattering patterns (e.g. left hand side in Fig. 3(f)
and 3(h)), are remarkably similar to the experimental mea-
surement. This could suggest an uneven distribution of αi

in this system Ref.22 and highlights that this numerical sim-
ulation technique can be used to identify not only the three
dimensional electronic structure of a system but also the rel-
ative concentration of unique defects at or below the surface,
assuming the electronic structure is sufficiently well under-
stood. To confirm if this defect anisotropy is generic, one
could perform DFT-based slab calculations and study the en-
ergy of each type of defect. However this is beyond the scope
of the present work.

IV. DISCUSSION

Our analysis of cQPI simulations for three dimensional sys-
tems highlights an important consideration regarding the com-
parison and interpretation of QPI measurements. Defects of
the same type, but at different distances from the surface will
produce unique sets of scattering vectors governed by unique
regions of kz . It implies that if one wishes to truly compare
and understand the electronic structure of 3D materials us-
ing QPI, one needs to compare the experimental measurement
with a simulation that takes into account multiple defects not
just of different types, but at different depths from the sur-
face. Additionally, unless surface states are present28–30, if
the system exhibits non-negligible out-of-plane hopping, the
sharpest QPI features present in Fourier transformed measure-
ments will originate not from defects at the surface but from
sub-surface defects. In cases where a surface state exist, e.g
on the noble metal (111) surface31 the surface state scattering
will dominate the scattering intensity.

These details were not captured in previous theoretical
studies of three dimensional systems18,22,28,32, due to the use
of discrete, site-centered, Greens functions. The continuum
transformation employed here is therefore a very useful tool
to reliably and accurately compare STM measurements with
theoretical simulations for generic materials.

In this work, we performed the continuum transformation
assuming Gaussian-or Slater-type orbitals, and left the radii of
these orbital as a free parameter which could be fit to exper-
imental measurements25, however it is also possible to more
accurately capture the orbital overlap and decay into vacuum
by explicitly calculating the Wannier orbitals, e.g from density
functional theory10,23,24. This may be required in more com-
plex systems with multiple atomic elements, particularly in
systems where the surface layer does not contribute any states
to the Fermi level.
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FIG. 3. cQPI calculation for the rocksalt structure PbS. (a) Crystal structure of PbS, with larger black atoms as Pb and smaller orange
atoms as S. (b) 3D electronic structure taken at E = 1 eV above the Fermi level. (c) Total QPI pattern obtained via calculating Eq. (11) of the
main text with the weights αi set to 1. The sum was performed over four Pb defects from the top four surface layers and four S defects from
the top four surface layers. (d) Experimental differential conductance QPI image of PbS from Ref.22, taken at V = 0.80 eV. The individual
contributions to (c) are shown in panels (e-h). The scattering patterns originating from Pb-site defects at a specific depth are shown on the left
hand side of each panel and the ones originating from S defects are shown on the right hand side. The maximum intensity of the colorscale
has been defined relative to the left hand side of panel (e).

To summarise, we have studied how out-of-plane hopping
modifies the electronic response in realistic simulations of
QPI. Our results provide a generic framework to understand
this behaviour, and highlight the importance of defect depth,
position and type on experimental observables. The methods
introduced here unlocks the ability to understand the three
dimensional electronic structure of materials using scanning
tunneling microscopy. The formalism presented here can be
used analogously to describe the behaviour of magnons33 or
phonons near surfaces, providing a broader framework to de-

scribe how quasi-particles can be detected at surfaces.
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