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Abstract: The two group IIB complexes [Cd(DMPT)Cl2] (6) and [Zn(DMPT)Cl2] (7) of the tridentate
ligand (DMPT), 2,4-bis(morpholin-4-yl)-6-[(E)-2-[1-(pyridin-2-yl) ethylidene]hydrazin-1-yl]-1,3,5-
triazine were synthesized, and their structural aspects were elucidated with the aid of X-ray crystal-
lography. Both complexes crystallized in the monoclinic crystal system, with P21/n as a space group.
The unit cell parameters for 6 are a = 14.1563(9) Å, b = 9.4389(6) Å, c = 16.5381(11) Å and β = 91.589(5)◦

while the respective values for 7 are 11.3735(14), 13.8707(13), 14.9956(16), and 111.646(2)◦. The unit
cell volume is slightly less (2198.9(4) Å3) in complex 7 compared to complex 6 (2209.0(2) Å3). Both
complexes have a penta-coordination environment around the metal ion, where the DMPT ligand
acts as a neutral tridentate NNN-chelate via the pyridine, hydrazone, and one of the s-triazine N-
atoms. The penta-coordination environment of the Cd(II) in complex 6 is close to a square pyramidal
configuration with some distortion. On the other hand, the ZnN3Cl2 coordination environment is
highly distorted and located intermediately between the trigonal bipyramidal and square pyramids.
Supramolecular structure analysis of 6 with the aid of Hirshfeld calculations indicated the importance
of the Cl. . .H, O. . .H, and C. . .H interactions. Their percentages were calculated to be 20.9, 9.1, and
8.7%, respectively. For 7, the Cl. . .H, O. . .H, C. . .H, and N. . .H contacts are the most important. Their
percentages are 20.3, 9.0, 7.0, and 8.4%, respectively. In both complexes, the major intermolecular
interaction is the hydrogen–hydrogen interactions which contributed 45.5 and 46.6%, respectively.

Keywords: group IIB; 1,3,5-triazine; X-ray crystallography; supramolecular structure; hirshfeld topology

1. Introduction

s-Triazine ligands are an important class of organic compounds that not only have diverse
uses in the field of pharmaceutical chemistry but are also employed as smart materials in
coordination chemistry to construct metal-organic hybrids with interesting molecular and
supramolecular architectures [1]. These metal-organic hybrids have diverse properties, which
allow their use in different fields where the nature of the ligands’ binding sites has great
importance for their chelation power and also for their functional properties. In this regard,
nitrogen heterocyclic compounds, including their Schiff base derivatives, are extensively
reported as powerful chelating agents in the field of coordination chemistry [2–6].

In particular, Schiff bases have exhibited a broad range of applications, including
coordination chemistry, pigments and dyes, industrial food, catalysis transformation,
chemosensors, polymer stabilizers, and as synthons in organic synthesis for many biologi-
cally active compounds [6]. The imine or azomethine group, as the main functionality of
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the Schiff bases, seems to play a critical role in a broad range of pharmacological applica-
tions. In addition, Schiff base metal complexes have been developed and have received a
lot of attention in the last decade due to their electroluminescent effects and many phar-
macological activities, including urease inhibitors, anti-fungal, anti-bacterial, anti-viral,
anti-apoptotic potentials, DNA-binding efficacy, and as intermediates of pharmaceutically
active cocrystals, which additionally showed remarkable NLO (nonlinear optical) and fluo-
rescence applications. Schiff bases have also been employed in the application of organic
photovoltaic compounds, sensors, and polymeric materials [6]. Specifically, Schiff base-
based s-triazine ligands are among this attractive class of organic compounds and were
found attractive by many researchers [1]. This class of organic compounds was utilized as
chelating ligands with many metal ions and also showed exciting biological activities.

Zn(II) and Cd(II) metal ions have flexible coordination environments and could form
metal complexes with diverse coordination numbers. Many Zn(II) and Cd(II) complexes
with Schiff bases and s-triazine ligands were reported in the literature [7–15]. As a represen-
tative example, Ş. Uysal and coworkers designed, characterized, and explored the magnetic
properties of star-shaped metal complexes with triazine core Schiff base ligands [16]. S. R.
Kala reported the synthesis, NLO, and biological activities of metal (II) complexes with
s-triazine-based ligands [17]. Also, the El-Faham research group reported the synthesis,
biological activity (antimicrobial and anticancer) of a new Cd (II) pincer complex with a s-
triazine core ligand [18]. Recently, the same research group designed novel s-triazine-cored
Schiff base ligands, exploring their coordination behavior as well as their biological activity
with different divalent metal ions, including Ni (II), Mn(II), and Cu(II) metal centers [19,20].
In all cases, the s-triazine-cored Schiff base ligands are found to be NNN-tridentate chelates,
leading to different complexes with coordination numbers that depend on the metal ion
(Scheme 1). In addition, the studied ligand has a morpholino substituent in addition to the
aromatic s-triazine core. This morpholine moiety has a number of C-H bonds that could
form C-H. . .π and Cl. . .H intermolecular interactions. These non-covalent forces could play
an important role in the supramolecular structure of the target complexes.
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Supramolecular chemistry is a promising field in chemistry that deals with molecular
systems in which the molecules are connected together by weak non-covalent interactions.
Supramolecular chemistry is important for medical diagnostic sensors [21,22], maintenance-
free materials [23,24], and molecular encapsulation [25,26]. Supramolecular chemistry is
included in everyday items, medicine, sensors, materials, and extraction technologies [27].
In the light of the diverse applications of group IIB complexes and in continuation of our
previous work with this class of s-triazine-cored Schiff base ligands, as well as in order to
explore their coordination chemistry and diverse coordination behavior towards different
metal ions, we reported herein the synthesis and characterization using X-ray crystallogra-
phy, including supramolecular structure investigations with the aid of Hirshfeld surface
analysis, for the Zn(II) and Cd(II) complexes with the same s-triazines ligand (DMPT).

2. Materials and Methods
2.1. Physical Measurements

All the chemicals were bought from Sigma-Aldrich and used without additional
purification. CHN analyses were carried out using a PerkinElmer 2400 Elemental Ana-
lyzer. The metal content was determined with the aid of a Shimadzu atomic absorption
spectrophotometer (AA-7000 series, Shimadzu, Ltd., Tokyo, Japan). FTIR spectra were
recorded at the Central Lab, Faculty of Science, Alexandria University, using a Bruker
Tensor 37 FTIR spectrophotometer (Bruker Company, Karlsruhe, Germany) in KBr pellets
at 4000–400 cm−1 (Figures S1–S3; Supplementary Data).

2.2. Preparation of DMPT

The DMPT was prepared following the procedure reported in our previous work [19].

2.3. Synthesis of Complexes [Cd(DMPT)Cl2] (6) and [Zn(DMPT)Cl2] (7)

An ethanolic solution of the organic ligand DMPT (115.2 mg, 0.3 mmol in 15 mL) was
mixed with an aqueous solution of CdCl2 (55.0 mg, 0.3 mmol in 5 mL) or ZnCl2 (40.9 mg,
0.3 mmol in 5 mL). The clear mixtures were left at room temperature for a couple of days to
slowly evaporate. The complexes [Cd(DMPT)Cl2] (6) and [Zn(DMPT)Cl2] (7) were obtained
as colorless crystals after five days. The target crystals were collected from solutions and
were found suitable for the X-ray single crystal structure measurement.

Complex 6, Anal. Calc. C18H24CdCl2N8O2: C, 38.08; H, 4.26; N, 19.74; Cd, 19.80%.
Found: C, 37.83; H, 4.15; N, 19.67; Cd, 19.71%. IR (KBr, cm−1): 3443 ν(N–H), 2965, 2898
ν(C–H), 1595, 1574 ν(C=N), 1504 ν(C=C), 1257 ν(C–N).

Complex 7, Anal. Calc. C18Cl2N8O2ZnH24: C, 41.52; H, 4.65; N, 21.52; Zn, 12.56%.
Found: C, 41.24; H, 4.54; N, 21.38; Zn, 12.39%. IR (KBr, cm−1): 3446 ν (N–H), 2964, 2910
ν(C–H), 1601, 1568 ν(C=N), 1502 ν(C=C), 1256 ν(C–N).

2.4. X-ray Crystallography

The experimental X-ray crystallographic measurements [28] are provided in the
Supplementary Materials. Crystal data for complexes 6 and 7 is presented in Table 1.

Table 1. Crystal data for complexes 6 and 7.

Identification Code 6 7

CCDC 2278824 22788245
Empirical formula C18H24CdCl2N8O2 C18Cl2N8O2ZnH24
Formula weight 567.76 520.73
Temperature/K 173 173
Crystal system monoclinic monoclinic
Space group P21/n P21/c
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Table 1. Cont.

Identification Code 6 7

a/Å 14.1563(9) 11.3735(14)
b/Å 9.4389(6) 13.8707(13)
c/Å 16.5381(11) 14.9956(16)
α/◦ 90 90
β/◦ 91.589(5) 111.646(2)
γ/◦ 90 90
Volume/Å3 2209.0(2) 2198.9(4)
Z 4 4
ρcalcg/cm3 1.707 1.573
µ/mm−1 1.265 1.393
F(000) 1144 1072
Crystal size/mm3 0.14 × 0.14 × 0.04 0.1 × 0.1 × 0.03
Radiation Mo Kα (λ = 0.71075) Mo Kα (λ = 0.71075)
2Θ range for data collection/◦ 3.736 to 54.97 3.852 to 50.754
Index ranges −18 ≤ h ≤ 18, −12 ≤ k ≤ 12, −21 ≤ l ≤ 21 −13 ≤ h ≤ 13, −16 ≤ k ≤ 16, −18 ≤ l ≤ 18
Reflections collected 22180 26947
Independent reflections 5062 [Rint = 0.0579, Rsigma = 0.0407] 4028 [Rint = 0.0220, Rsigma = 0.0126]
Data/restraints/parameters 5062/1/285 4028/0/285
Goodness-of-fit on F2 1.007 1.087
Final R indexes [I ≥ 2σ (I)] R1 = 0.0300, wR2 = 0.0768 R1 = 0.0204, wR2 = 0.0597
Final R indexes [all data] R1 = 0.0456, wR2 = 0.0822 R1 = 0.0220, wR2 = 0.0602
Largest diff. peak/hole/e Å−3 0.97/−0.73 0.44/−0.34

2.5. Hirshfeld Surface Analysis

The Crystal Explorer Ver. 3.1 program [29] was used to perform this analysis.

3. Results and Discussion
3.1. Synthesis and Characterizations

The self-assembly of the organic ligand (DMPT) [19,20] with different metal(II) salts was re-
ported by our research team. The reaction of this ligand with Ni(NO3)2·6H2O afforded two hexa-
coordinated Ni(II) complexes [Ni(DMPT)(NO3)2]·3H2O; 4 and [Ni(DMPT)(NO3)2]·H2O; 5,
which have a very similar coordination environment but differ in the number of hydration
water molecules (Scheme 1). Using Cu(NO3)2·6H2O as a metal salt, the isolated crystals
were found to be the hexa-coordinated [Cu(DMPT)(NO3)2] complex 3. On the other hand,
the reaction of CuCl2 and MnCl2 with the same ligand using the same reaction conditions
afforded the penta-coordinated complexes [Mn(DMPT)Cl2]; 1 and [Cu(DMPT)Cl2]·H2O; 2
(Scheme 1). Both complexes were found to have a distorted trigonal bipyramidal configu-
ration around the metal(II) center. In this work, the reaction of DMPT with the group IIB
metal salts CdCl2 and ZnCl2 afforded the [Cd(DMPT)Cl2] and [Zn(DMPT)Cl2] complexes
as colorless, high-quality crystals, respectively. Their structures were confirmed using
elemental analysis, FTIR spectroscopy, and X-ray crystallography (Scheme 2). FTIR data
for DMPT, 6 and 7 are presented in Figure S1 (Supplementary Data). The most significant
variations in the FTIR of complexes 6 and 7 compared to that for DMPT occurred in the
ν(C=N) vibrations. The bands detected at 1595 and 1574 cm−1 in 6 and 1601 and 1568
in 7 are assigned to the ν(C=N) vibrations. The corresponding values in DMPT are 1523
and 1492 cm−1, respectively. Hence, the coordination between the DMPT and the metal
ions Zn(II) and Cd(II) shifts the ν(C=N) modes to higher wavenumbers. Additionally, both
structures were determined using X-ray crystallography.
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Scheme 2. Synthesis of complexes 6 and 7.

3.2. X-ray Structure Description

The structure of the heteroleptic complex [Cd(DMPT)Cl2] (6) was proved unambigu-
ously using single-crystal X-ray diffraction. The [Cd(DMPT)Cl2] complex crystallized in
the monoclinic crystal system and P21/n as a space group. The unit cell parameters are
a = 14.1563(9) Å, b = 9.4389(6) Å, c = 16.5381(11) Å and β = 91.589(5)◦. The asymmetric
formula of this complex contains one [Cd(DMPT)Cl2] formula. In the unit cell, there are
four [Cd(DMPT)Cl2] units, where the unit cell volume is 2209.0(2) Å3, while the calculated
density is 1.707 mg/m3. The presentation of the coordination sphere of the [Cd(DMPT)Cl2]
complex (6) is shown in Figure 1.
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Figure 1. Structure of the coordination sphere of the [Cd(DMPT)Cl2] (6) complex.

In the neutral coordination sphere [Cd(DMPT)Cl2] of complex 6, the Cd(II) is penta-
coordinated with one DMPT ligand unit as a neutral tridentate NNN-chelate via the
pyridine, hydrazone, and one of the s-triazine N-atoms. The Cd1-N1, Cd1-N9, and Cd1-N16
distances are 2.387(2), 2.296(2), and 2.491(2) Å, respectively. The bite angles N9-Cd1-N1 and
N9-Cd1-N16 of the DMPT ligand are determined to be 68.31(8) and 69.97(7)◦, respectively
(Table 2). In addition, the Cd(II) is coordinated with two chloride ions, Cl1 and Cl2, where
the Cd to Cl distances are 2.4302(7) and 2.4243(7), respectively, while the Cl1-Cd1-Cl2 angle
is 122.73(3)◦. Hence, the coordination environment of 1 has a distorted CdN3Cl2 penta-
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coordination sphere. The Addison τ5 parameter is used to describe the distortion in the
CdN3Cl2 penta-coordination sphere. The Addison equation: τ5 = −0.01667α + 0.01667β
gave τ5 value of 0.09, where α and β are the bond angles N9-Cd1-Cl2 (132.38◦) and N1-
Cd1-N16 (138.02◦), respectively. Hence, the CdN3Cl2 penta-coordination sphere is closer
to a slightly distorted square pyramid [30,31]. The τ5 values for the [Mn(DMPT)Cl2] and
[Cu(DMPT)Cl2] complexes are significantly higher. In these cases, the τ5 values were
calculated to be 0.332 and 0.235, respectively, indicating more distortion from the ideal
square planar configuration around the pentacoordinated Mn(II) and Cu(II) ions than Cd(II).
Also, the metal-to-nitrogen distances are determined to be 2.264(2), 2.183(1), and 2.428(1) Å,
respectively, in case of the [Mn(DMPT)Cl2] complex while 2.031(4), 1.957(4), and 2.083(4) Å,
respectively, in the [Cu(DMPT)Cl2] complex. Also, the bite angles in the [Mn(DMPT)Cl2]
complex are 71.29(5) and 71.82(5)◦, respectively, while for the [Cu(DMPT)Cl2] complex, the
respective values are 78.184(15) and 80.142(15)◦, respectively. It is clear that the difference
in the geometrical parameters around the coordination sphere of the metal ion is mainly
related to the larger size of the Cd(II) compared to the Mn(II) and Cu(II) ions [19].

Table 2. Bond distances and angles (Å and ◦) for the coordination environment of complexes 6 and 7.

Bond Distance Bond Distance

Complex 6 Complex 7

Cd1-Cl1 2.4302(7) Zn1-Cl1 2.2402(4)
Cd1-Cl2 2.4243(7) Zn1-Cl2 2.2307(5)
Cd1-N1 2.387(2) Zn1-N1 2.1481(13)
Cd1-N9 2.296(2) Zn1-N9 2.0822(12)
Cd1-N16 2.491(2) Zn1-N12 2.563(13)
Bonds Angle Bonds Angle

Cl1-Cd1-N16 97.79(5) Cl1-Zn1-N12 98.27(3)
Cl2-Cd1-Cl1 122.73(3) Cl2-Zn1-Cl1 121.506(18)
Cl2-Cd1-N16 103.34(5) Cl2-Zn1-N12 95.71(3)
N1-Cd1-Cl1 97.07(6) N1-Zn1-Cl1 99.45(3)
N1-Cd1-Cl2 101.03(6) N1-Zn1-Cl2 98.42(3)
N1-Cd1-N16 138.02(7) N1-Zn1-N12 146.99(5)
N9-Cd1-Cl1 104.82(6) N9-Zn1-Cl1 122.10(4)
N9-Cd1-Cl2 132.38(6) N9-Zn1-Cl2 116.21(4)
N9-Cd1-N1 68.31(8) N9-Zn1-N1 75.73(5)
N9-Cd1-N16 69.97(7) N9-Zn1-N12 71.26(4)

The supramolecular structure of the [Cd(DMPT)Cl2] complex is controlled by a num-
ber of O. . .H and Cl. . .H interactions. Information regarding these contacts is given in
Table 3 and shown in Figure 2. It is clear that the O20 and O26 from the morpholine moi-
eties, as well as the coordinate chloride ions Cl1 and Cl2, are the hydrogen bond acceptor
sites. On the other hand, all the hydrogen bond donors belong to C-H bonds. Hence, the
resulting C-H. . .O and C-H. . .Cl interactions belong to weak non-classical hydrogen bonds.
The donor-acceptor distances for the C-H. . .O interactions range from 3.310(3) Å (C27-
H27B. . .O20) to 3.502(3) Å (C4-H4. . .O26). For the C8-H8C. . .Cl1, the donor-acceptor dis-
tance is 3.685(3) Å. The most important hydrogen bond contact is N10-H10. . .Cl2. The cor-
responding hydrogen-acceptor and donor-acceptor distances are 2.530(15) and 3.379(2) Å,
respectively. The packing scheme of the [Cd(DMPT)Cl2] complex via the C-H. . .Cl, C-
H. . .O and N-H. . .Cl interactions is shown in Figure 3. In the case of the structurally related
[Mn(DMPT)Cl2] complex, the corresponding donor-to-acceptor values are 3.635(2), 3.438(2),
and 3.554(2)-3.635(2) Å, respectively [19].
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Table 3. Hydrogen bond geometric parameters in the [Cd(DMPT)Cl2] (1) complex.

D-H. . .A D-H H. . .A D. . .A D-H. . .A Symm. Code

N10-H10. . .Cl2 0.976(9) 2.530(15) 3.379(2) 145(2) 1 − x, 1 − y, 1 − z
C4-H4. . .O26 0.95 2.6 3.502(3) 159 −1/2 + x, 3/2 − y, 1

2 + z
C8-H8C. . .Cl1 0.98 2.74 3.685(3) 162 1 − x, 2 − y, 1 − z
C25-H25A. . .O20 0.99 2.57 3.347(4) 135 1

2 + x, 1/2 − y, 1/2 + z
C27-H27B. . .O20 0.99 2.53 3.310(3) 136 1

2 + x, 1
2 − y,1/2 + z
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Figure 2. Intermolecular contacts in the [Cd(DMPT)Cl2] (6) complex.

The structure of the coordination environment of the [Zn(DMPT)Cl2] complex 7 is
very similar to the Cd(II) analogue 6. Its X-ray structure is presented in Figure 4. Also, it
crystallized in the monoclinic system and the P21/c space group. The unit cell parameters
are a = 11.3735(14) Å, b = 13.8707(13) Å, c = 14.9956(16) Å and β = 111.646(2)◦. The
asymmetric formula is [Zn(DMPT)Cl2] and z = 4. The unit cell volume is slightly less
(2198.9(4) Å3) than complex 6, as is the calculated density (1.573 mg/m3).

Also, Zn(II) is coordinated with one tridentate DMPT ligand as a tridentate ligand
via the pyridine, hydrazone, and s-triazine N-atoms. The order of the Zn-N distance is:
Zn-N(hydrazone) < Zn-N(pyridine) < Zn-N(s-triazine), where the corresponding Zn-N distances
are 2.0822(12), 2.1481(13), and 2.563(13) Å, respectively, which is the same order as in 6.
The bite angles of the DMPT ligand are slightly larger than found in 1. This fact is possibly
attributed to the different sizes of the Zn(II) and Cd(II) central metal ions. The N9-Zn1-N1
and N9-Zn1-N12 bite angles are 75.73(5) and 71.26(4)◦, respectively. The Zn-Cl1 and Zn-Cl2
distances are determined to be 2.2402(4) and 2.2307(5) Å, respectively, while the Cl1-Zn1-Cl2
angle is 121.506(18)◦. Hence, the coordination sphere of 7 has a distorted ZnN3Cl2 penta-
coordination environment. The Addison τ5 parameter is used to describe the distortion in
the CdN3Cl2 penta-coordination sphere. The Addison equation: τ5 =−0.01667α + 0.01667β
gave τ5 value of 0.41, where α and β are the bond angles N9-Zn1-Cl (122.10(4)◦) and
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N1-Zn1-N12 (146.99(5)◦), respectively. Unlike 6, the ZnN3Cl2 coordination environment is
highly distorted and located intermediately between the trigonal bipyramidal and square
pyramids [30,31]. In this case, the results are comparable with those of the structurally
related [Mn(DMPT)Cl2] and [Cu(DMPT)Cl2] complexes [19].
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Figure 4. Structure of the [Zn(DMPT)Cl2] (7) complex.

Similar to 6, the supramolecular structure of the [Zn(DMPT)Cl2] complex 7 is con-
trolled by O. . .H and Cl. . .H interactions (Table 4). These intermolecular contacts are
presented in Figure 5. The most important N10-H10. . .Cl1 hydrogen bond has hydrogen-
acceptor and donor-acceptor distances of 2.74(2) and 3.4417(16) Å, respectively. The other
intermolecular interactions belong to the C-H. . .O and C-H. . .Cl interactions. The shortest
donor-acceptor distances are 3.380(2) Å (C18-H18B. . .O26) and 3.6063(17) Å (C8-H8C. . .Cl2),
respectively. A view of the packing scheme is shown in Figure 6.
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Table 4. Hydrogen bond geometric parameters in the [Zn(DMPT)Cl2] (7) complex.

D-H. . .A D-H H. . .A D. . .A D-H. . .A Symm. Code

N10-H10. . .Cl1 0.76(2) 2.74(2) 3.4417(16) 155.3(17) 1 − x, 1 − y, 1 − z
C8-H8B. . .O26 0.98 2.56 3.500(2) 160 2 − x, 1/2 + y, 3/2 − z
C8-H8C. . .Cl2 0.98 2.7 3.6063(17) 154 1 − x, 1/2 + y, 3/2 − z
C18-H18B. . .O26 0.99 2.58 3.380(2) 137 −1 + x, y, z
C27-H27A. . .Cl2 0.99 2.68 3.6397(18) 165 1 + x, y, z

Crystals 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 6. Packing views showing the hydrogen bonds along ac (A) and bc (B) planes in the 
[Zn(DMPT)Cl2] (7) complex. 

3.3. Analysis of Molecular Packing 
Self-assembly of small groups or ions is driven by many forces that hold these 

fragments within the crystal structure in order to maintain optimum conditions for 
crystal stability. These interactions include hydrogen bonding, π-π stacking, C-H...π, 
anion...π interactions, and others. Hishfeld analysis is important not only to inspect these 

Figure 6. Packing views showing the hydrogen bonds along ac (A) and bc (B) planes in the
[Zn(DMPT)Cl2] (7) complex.



Crystals 2023, 13, 1232 11 of 16

3.3. Analysis of Molecular Packing

Self-assembly of small groups or ions is driven by many forces that hold these frag-
ments within the crystal structure in order to maintain optimum conditions for crystal
stability. These interactions include hydrogen bonding, π-π stacking, C-H. . .π, anion. . .π
interactions, and others. Hishfeld analysis is important not only to inspect these intermolec-
ular interactions but also to calculate their percentages. Different Hirshfeld surfaces for the
[Cd(DMPT)Cl2] complex (6) are shown in Figure 7. The different red spots present on the
dnorm map indicated the presence of significant short contacts, which have shorter distances
than the sum of the van der Waals radii sum of the interacting atoms. These red spots are
related to the Cl. . .H, O. . .H, and C. . .H interactions, which are labeled on the dnorm map
by letters A to C for clarity. A summary of all short contacts along with their distances is
given in Table 5. The O20. . .H27B (2.462 Å), O20. . .H25A (2.505 Å), and O26. . .H4 (2.473 Å)
are the shortest O. . .H interactions. Regarding Cl. . .H interactions, the Cl1. . .H3 (2.725Å),
Cl1. . .H8C (2.643 Å), Cl2. . .H5 (2.715 Å), Cl1. . .H24A (2.814 Å), and Cl2. . .H10 (2.503 Å)
are the shortest, while the C13. . .H25B is the shortest C. . .H contact with an interaction
distance of 2.750 Å. The shape index and curvedness maps show no clear evidence about
the presence of π-π stacking interactions (Figure S4; Supplementary Data).
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Table 5. The short intermolecular interactions in the [Cd(DMPT)Cl2] complex (6).

Contact Distance Contact Distance

[Cd(DMPT)Cl2]; 6

O20. . .H27b 2.462 Cl2. . .H5 2.715
O20. . .H25a 2.505 Cl1. . .H24a 2.814
O26. . .H4 2.473 Cl2. . .H10 2.503
Cl1. . .H3 2.725 C13. . .H25b 2.750
Cl1. . .H8C 2.643

[Zn(DMPT)Cl2]; 7

C13. . .H8A 2.721 Cl2. . .H8C 2.609
O26. . .H8B 2.468 Cl2. . .H22B 2.832
O26. . .H18B 2.517 Cl1. . .H10 2.513
Cl2. . .H27A 2.568 N12. . .H8A 2.576

Also, the Hirshfeld surface analysis of the [Cd(DMPT)Cl2] complex gave the percent-
age of all contacts that occurred in its crystal structure. The intermolecular contacts in the
crystal structure of 1, along with their percentages, are presented in Figure 8. The per-
centages of the Cl. . .H, O. . .H, and C. . .H interactions are 20.9, 9.1, and 8.7%, respectively.
The most major intermolecular interaction in the crystal structure of 6 is the hydrogen–
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hydrogen interactions, which contributed 45.5% of the total contacts in 6. Other minor
and less important contacts, such as N. . .H (7.0%), C. . .N (3.9%), N. . .N (2.0%), and C. . .C
(1.7%), have less significance in the molecular packing of this complex.
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Figure 8. Intermolecular interactions in [Cd(DMPT)Cl2] (6).

Decomposition analysis of the fingerprint plots, such as those shown in Figure 9, not
only gave the percentage of all possible contacts in the crystal structure but also gave clear
evidence on the important contacts. The fingerprint plots of the Cl. . .H, O. . .H, and C. . .H
interactions appeared as sharp spikes, leaving no doubt that these interactions occur at
short distances and are considered important.

On the other hand, Hirshfeld surfaces for the [Zn(DMPT)Cl2] complex (7) are shown
in Figure 10. In this complex, there are four types of short contacts, which are the Cl. . .H
(A), O. . .H (B), C. . .H (C), and C. . .H (D) interactions. A summary of these short contacts
is listed in Table 5. The Cl2. . .H27A (2.568 Å), Cl2. . .H8C (2.609 Å), Cl2. . .H22B (2.832 Å),
and Cl1. . .H10 are the shortest Cl. . .H interactions. There are two short O. . .H interactions,
which are the O26. . .H8B (2.468 Å) and O26. . .H18B (2.517 Å), in addition to the short
C13. . .H8A (2.721 Å) contact. All these contacts are comparable to those detected in
complex 6. Similarly, it has similar interaction distances to those in 6. A new contact
was observed that is not found in complexes; it is the N12. . .H8A interaction, which has
an interaction distance of 2.576 Å. All these contacts appeared in the dnorm as red spots,
indicating their significance.

In Figure 11, a list of all possible intermolecular interactions in the crystal structure
of 7 is shown. Similar to complex 6, the H. . .H contacts are the most dominant. Their
percentages were calculated to be 46.4%. In addition, the short Cl. . .H, O. . .H, C. . .H, and
N. . .H contacts contributed significantly to the molecular packing by 20.3, 9.0, 7.0, and 8.4%,
respectively. The other contacts presented in this figure are found to be of less importance.
Also, the shape index and curvedness maps show the absence of π-π stacking interactions
(Figure S5; Supplementary Data).

The fingerprint plots’ decomposition not only gave the percentage of all possible
contacts in the crystal structure of 7 but also indicated very well the importance of the
Cl. . .H, O. . .H, C. . .H, and N. . .H contacts (Figure 12). All these contacts appeared as
spikes, indicating their importance, which is in accordance with the dnorm map analysis.
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