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Abstract

We present a 3D MHD simulation of two merging flux ropes exhibiting self-generated and self-sustaining turbulent
reconnection (SGTR) that is fully 3D and fast. The exploration of SGTR is crucial for understanding the rela-
tionship between MHD turbulence and magnetic reconnection in astrophysical contexts including the solar corona.
We investigate the pathway toward SGTR and apply novel tools to analyze the structure and topology of the
reconnection layer. The simulation proceeds from 2.5D Sweet–Parker reconnection to 2.5D nonlinear tearing,
followed by a dynamic transition to a final SGTR phase that is globally quasi-stationary. The transition phase is
dominated by a kink instability of a large “cat-eye” flux rope and the proliferation of a broad stochastic layer. The
reconnection layer has two general characteristic thickness scales, which correlate with the reconnection rate and
differ by a factor of approximately six: an inner scale corresponding with current and vorticity densities, turbulent
fluctuations, and outflow jets, and an outer scale associated with field line stochasticity. The effective thickness of
the reconnection layer is the inner scale of the effective reconnection electric field produced by turbulent fluc-
tuations, not the stochastic thickness. The dynamics within the reconnection layer are closely linked with flux rope
structures that are highly topologically complicated. Explorations of the flux rope structures and distinctive
intermediate regions between the inner core and stochastic separatrices (“SGTR wings”) are potentially key to
understanding SGTR. The study concludes with a discussion on the apparent dualism between plasmoid-mediated
and stochastic perspectives on SGTR.

Unified Astronomy Thesaurus concepts: Solar magnetic reconnection (1504); Space plasmas (1544); Magnetic
fields (994); Magnetohydrodynamical simulations (1966); Magnetohydrodynamics (1964); Solar corona (1483);
Solar coronal heating (1989); Solar magnetic fields (1503); Astrophysical fluid dynamics (101); Solar flares (1496)

1. Introduction

Magnetic reconnection is the fundamental process where
field lines in a magnetized plasma change their topology (Priest
& Forbes 2000), and is widely agreed to be a crucial
phenomenon behind explosive dynamic events in the solar
corona, such as solar flares and coronal heating (e.g., Sturrock
1966; Karpen et al. 2012; Klimchuk 2015; Wyper et al. 2017).
This has been the topic of intense research in recent years, as
state-of-the-art numerical simulations have provided mounting
evidence that reconnection in high Lundquist number plasma
is an intrinsically three-dimensional (3D) process where
magnetohydrodynamic (MHD) turbulence plays a crucial role
(e.g., Matthaeus & Lamkin 1985, 1986; Lazarian & Vishniac
1999; Loureiro et al. 2009; Servidio et al. 2009, 2010, 2011;
Eyink et al. 2011, 2013; Kowal et al. 2009, 2012). The con-
nections between turbulence and magnetic reconnection are
currently a highly active field, in which the inherent coupling
between two highly nonlinear, dynamic, and multiscale 3D
processes make investigations challenging, both analytically
and numerically (see reviews by Lazarian et al. 2015; Zweibel
& Yamada 2016; Lazarian et al. 2020; Ji et al. 2022, and
references therein).

Reconnection research was initially centered around the
Sweet–Parker model (Parker 1957; Sweet 1958), which con-
sidered a simple laminar two-dimensional (2D) configuration
involving a thin current sheet of length L and uniform thickness
δ. The reconnection process is assumed to achieve a laminar

steady state, with clear inflow and outflow regions, and the
reconnection rate and aspect ratio are found to scale as
Vrec≈ vAS

−1/2 and δ/L≈ S−1/2, respectively, where vA is the
Alfvén speed, and S= LvA/η is the local Lundquist number
(Priest & Forbes 2000). While the Sweet–Parker model offers a
useful analytic framework for a basic laminar reconnection
process, it has many well-known limitations. Lundquist num-
bers found in astrophysical environments are huge, with typical
values of the order of S∼ 1012–1014 in the solar corona (Huang
et al. 2017) and S∼ 1016 in the interstellar medium (ISM;
Kowal et al. 2009). Observations of the solar corona reveal
much faster reconnection rates estimated up to at least
Vrec∼ 10−3vA (Priest & Forbes 2000), so the Sweet–Parker
prediction has been argued to be unrealistic in most astro-
physical contexts (e.g., Jafari et al. 2018). At the same time,
many solar flare observations are consistent with the global
magnetic topology of Sweet–Parker reconnection, which leads
to the goal of retaining this magnetic topology at the largest
scales, while exploring solutions to the rate problem.
Research therefore shifted toward the development of a

“fast” reconnection model, which could yield a reconnection
rate that is a significant enhancement from the “slow” recon-
nection rate predicted by Sweet–Parker. Here, “fast” means that
the reconnection rate is independent of, or weakly dependent
on, the Lundquist number (Priest & Forbes 2000). Turbulence
has long been viewed as a promising explanation for how
reconnection becomes fast, and this idea was formalized by
Lazarian & Vishniac (1999) who generalized the Sweet–Parker
model by combining its large-scale topology with injected 3D
MHD turbulence consistent with Goldreich & Sridhar (1995)
theory. Here, reconnection was conjectured to be significantly
enhanced via field line wandering or stochasticity, which
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allows multiple small-scale reconnection events to occur
simultaneously, and which broadens of the effective thickness
of the reconnection layer enabling the efficient ejection of
reconnected magnetic flux. The Lazarian–Vishniac model was
subsequently tested with the use of numerical simulations with
driven weak turbulence in Kowal et al. (2009, 2012), finding
strong agreement with theoretical predictions. Important
refinements to the theory of turbulent reconnection have further
been proposed to account for the break down of the Alfvén
(1942) magnetic flux freezing theorem under the influence of
turbulence. In particular, the concept of “spontaneous sto-
chasticity” of Lagrangian particle trajectories was investigated
mathematically by Eyink et al. (2011) and later confirmed
numerically by Eyink et al. (2013), whereas the original
Lazarian–Vishniac model only theorized the spontaneous sto-
chasticity of magnetic field lines.

An important topic that has been attracting considerable
attention recently is whether turbulent reconnection can be self-
generated, i.e., initiated by instabilities in the absence of
imposed turbulent driving. This has also been accompanied by
an associated question of whether turbulent reconnection can
be self-sustaining, i.e., induces a steady state through renewal
of MHD turbulence generated as a byproduct of the recon-
nection process (Strauss 1988; Kowal et al. 2009; Lazarian &
Vishniac 2009). Early turbulent reconnection simulations by
Kowal et al. (2009, 2012) and Loureiro et al. (2009) made use
of imposed turbulent driving, meaning that the dynamics were
dependent on the input injection power. Hence, effectively
simulating and studying self-generated (and self-sustaining)
turbulent reconnection (SGTR) is crucial for effective com-
parisons with astrophysical observations. SGTR poses several
additional barriers to testing, but was successfully demon-
strated in a kinetic simulation by Daughton et al. (2011; also
see Bowers & Li 2007) and an incompressible MHD simula-
tion by Beresnyak (2013, republished as Beresnyak 2017).
Since then, SGTR has been reported in numerous MHD
simulations (Oishi et al. 2015; Huang & Bhattacharjee 2016;
Striani et al. 2016; Kowal et al. 2017, 2020; Yang et al. 2020)
and kinetic simulations for nonrelativistic (Liu et al. 2013;
Pritchett 2013; Nakamura et al. 2013; Daughton et al. 2014;
Dahlin et al. 2015, 2017; Nakamura et al. 2017; Le et al. 2018;
Stanier et al. 2019; Li et al. 2019; Agudelo Rueda et al. 2021;
Zhang et al. 2021) and relativistic (Liu et al. 2011; Guo et al.
2015, 2021; Zhang et al. 2021) plasmas.

The dominant theme in the majority of the previous MHD
studies was the investigation of how SGTR properties, such as
the reconnection rate, scale with the Lundquist number and
other parameters, and comparing the dynamics with Lazarian–
Vishniac, particularly the turbulent statistics. It is also impor-
tant to note that most of these studies have been fast turbulent
analogs of one-dimensional (1D) magnetic annihilation. To the
best of our knowledge, only one study has previously been
reported that explicitly modeled the fast turbulent analog of 2D
Sweet–Parker reconnection including outflow jets (Huang &
Bhattacharjee 2016), even though this scenario is arguably
most relevant to many applications including solar flares.

Simulations of SGTR reveal a highly energetic complex
process with significant temporal variation. Initial current
sheets are observed to develop 2D and 3D instabilities that
generate random perturbations throughout the reconnection
layer. Simultaneously, the thickness of the reconnection layer
rapidly expands, resulting in a broad region of MHD

turbulence. These turbulent regions contain numerous coherent
structures over a broad range of length scales, fragmented
current and vorticity layers threaded by stochastic field lines
(Daughton et al. 2011, 2014), and anisotropic turbulent eddies
(Huang & Bhattacharjee 2016). Once the process saturates, the
evolution continues to be dynamic with coherent structures
being subject to various instabilities and coalescing in a chaotic
manner. This leads to a number outstanding problems,
including: how do instabilities seed stochasticity in the first
place, what are the dominant onset and driving mechanisms
behind SGTR, and what is the internal structure of turbulent
reconnection layers? This paper aims to advance knowledge of
these issues, for 3D SGTR in a Sweet–Parker-type global
magnetic topology.
Efforts to understand SGTR build on extensive previous

work on MHD instabilities. The growth and nonlinear inter-
action of tearing modes have been frequently identified as a
crucial component of the turbulent reconnection onset and
continual generation of turbulence and stochasticity. In 2D
systems, the secondary tearing or plasmoid instability has been
extensively studied (Huang & Bhattacharjee 2010; Huang
et al.2011; Huang & Bhattacharjee 2012; Karlický et al. 2012;
Wan et al. 2013; Huang et al. 2017; Dong et al. 2018; Huang
et al. 2019; Potter et al. 2019), leading to the popular “plas-
moid-mediated” perspective. The plasmoid instability has
also been investigated in detail in 3D systems that permit
oblique modes, which form on resonance surfaces where

=k B 0· (Edmondson et al. 2010; Baalrud et al. 2012;
Edmondson & Lynch 2017; Comisso et al. 2017, 2018; Lingam
& Comisso 2018; Leake et al. 2020). Unlike in 2D systems,
where neat chains of magnetic islands or plasmoids are formed
with nested flux surfaces, nonlinear tearing in three dimensions
appears to completely disrupt the initial laminar current sheet,
producing highly filamentary flux rope structures with turbulent
interiors, where stochasticity dismantles any internal flux sur-
faces (Bowers & Li 2007; Daughton et al. 2014; Oishi et al.
2015; Huang & Bhattacharjee 2016; Beresnyak 2017).
Kink instabilities have also been found to be a significant

mechanism in SGTR, particularly during the explosive onset of
turbulence and fast reconnection (Liu et al. 2011; Dahlin et al.
2015; Guo et al. 2015; Oishi et al. 2015; Striani et al. 2016;
Stanier et al. 2019; Li et al. 2019; Guo et al. 2021; Zhang et al.
2021). Flux ropes generated by tearing have a tendency to kink
(Dahlburg et al. 1992, 2003, 2005; Lapenta & Bettarini 2011;
Leake et al. 2020), and the interchange between kinking and
tearing modes has been recognized to contribute toward the
generation of turbulence (Guo et al. 2015) and chaotic field
lines (Guo et al. 2021; Zhang et al. 2021). Oishi et al. (2015)
noted that a 3D slab-type kink instability along the initial
current layers can occur in the absence of tearing, yet still lead
to fast reconnection. Similar phenomena such as the drift-kink
instability (e.g., Zenitani & Hoshino 2005, 2007, 2008; Zhang
et al. 2021) and lower-hybrid drift instability (e.g., Daughton
2003; Le et al. 2018) have also been observed in SGTR
simulations.
Finally, due to the substantial velocity shear within the

reconnection layer and its boundary, Kelvin–Helmholtz
instabilities have also been frequently proposed as another
major driving process in SGTR (Lazarian et al. 2015), espe-
cially for explaining MHD turbulence production (Oishi et al.
2015; Striani et al. 2016; Beresnyak 2017; Kowal et al. 2017,
2020). Kowal et al. (2020) investigated the statistical influence
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of the tearing and Kelvin–Helmholtz instabilities separately, by
detecting and analyzing regions with intense magnetic or
velocity shear. The authors concluded that while tearing
instabilities made the major contribution to initiating turbulent
reconnection in their simulation, the Kelvin–Helmholtz
instability became the dominant driving component sustaining
the turbulence once the turbulent layer was sufficiently mature.
There has also been extensive research into “vortex-induced”
SGTR for kinetic simulations of the magnetopause (e.g.,
Nakamura et al. 2013; Daughton et al. 2014; Nakamura et al.
2017), where reconnection, turbulent mixing, and secondary
tearing modes are coupled and driven by the compression of
the current layer by Kelvin–Helmholtz instabilities.

To understand turbulent reconnection, an advanced under-
standing of all of these 3D mechanisms and the structure of the
reconnection layer appears to be crucial. Several papers
employing kinetic simulations have applied various tools from
magnetic topology for further insight (Daughton et al. 2014;
Dahlin et al. 2017; Stanier et al. 2019), but these have only
recently been applied to MHD simulations to a lesser extent
(Yang et al. 2020). The filling factor and multiscale nature of
the thickening current and vorticity layers have been briefly
investigated for MHD simulations, with the rate of change of
the characteristic current thickness dδ/dt even being used as a
proxy for the reconnection rate, for turbulent reconnection in
global topologies analogous to 1D magnetic annihilation (Oishi
et al. 2015; Beresnyak 2017; Kowal et al. 2017; Yang
et al. 2020).

The main aim of this paper is to explore the production,
evolution, structure, and topology of the self-generated and
self-sustaining turbulent reconnection layer. Within this, we
want to investigate the pathway toward fast reconnection,
including the instabilities responsible for its onset and gen-
eration, identify the characteristic thickness scales of the
reconnection layer, and determine any relationships to the
global reconnection rate.

The approach of this paper is a numerical experiment in the
style of Huang & Bhattacharjee (2016), from which we borrow
their distinctive initial setup. One of the main challenges in
simulating SGTR in a Sweet–Parker-like configuration is
choosing a suitable initial condition and set of boundary con-
ditions, to allow for the formation of large-scale outflow and
inflow regions within the model, and facilitate the development
of an adequately stable reconnection layer. Many previous
studies of SGTR have in fact started from initial conditions
that, like a standard Harris sheet, are spatially invariant apart
from in the one dimension across the current sheet. When this
slab-type initial condition is combined with periodic boundary
conditions along the reconnection layer parallel to the recon-
necting field, large-scale outflows are prevented, and recon-
nected flux accumulates in the reconnection layer (Oishi et al.
2015; Beresnyak 2017; Kowal et al. 2017, 2020; Yang et al.
2020). Some slab-type studies for kinetic simulations have
aimed to circumvent that problem by using outgoing boundary
conditions, e.g., Daughton et al. (2011; borrowing a technique
from Daughton et al. 2006) and Zhang et al. (2021; applying a
method by Sironi et al. 2016). Both of these papers used
absorbing boundary conditions that mimic open boundaries,
where particles and magnetic flux are allowed to permanently
escape and the electromagnetic fields are prescribed to mini-
mize the reflection of waves leaving the system, to imitate
larger systems. A similar approach was used in closely related

MHD simulations with driven turbulence by Kowal et al.
(2009) and Kowal et al. (2012), where the normal derivatives
of the density and momentum were fixed at zero. However,
these outgoing conditions have their own limitations and may
influence how the reconnection layer and the outflows evolve.
More generally, while slab models may in the best case
approximate SGTR in the central portion of the reconnection
layer, models that treat the outflow jets clearly provide a fuller
picture, including the dynamics of the outflowing parts of the
reconnection layer. We also comment that Oishi et al. (2015),
Beresnyak (2017), and Yang et al. (2020) employed additional
periodic boundaries across the current sheet, which causes the
inflow regions to become disrupted and enables strong
perpendicular fluctuations to influence the dynamics. While
previous MHD studies have made significant contributions to
improving the understanding of SGTR, experience from lami-
nar models suggests that global properties are likely to be
sensitive to the global magnetic topology and to the absence or
presence of reconnection outflow jets. As far as we are aware,
Huang & Bhattacharjee (2016) is the only MHD paper pub-
lished so far that has investigated SGTR in a Sweet–Parker-
type configuration including explicitly modeled reconnection
outflows.
This paper is structured as follows. The numerical simulation

setup is described in Section 2, followed by detailed results in
Section 3. Section 3.1 narrates the dynamic evolution toward
fast reconnection, including the turbulent reconnection onset
and various observed instabilities. In Section 3.2, we provide a
detailed analysis on the mean thickness scales associated with
the reconnection layer and their temporal evolution, and inspect
the magnetic topology inside the SGTR layer. In Section 3.3,
we obtain mean-field properties of SGTR, which confirms the
existence of “inner” and “outer” characteristic scales and
existence of distinct regions that we refer to as the “SGTR
core” and “SGTR wings.” Important properties of the turbulent
reconnection process are explored and discussed in Section 4,
such as Sweet–Parker scalings (Section 4.1), the role and
properties of flux rope structures (Section 4.2), plasmoid-
mediated and stochastic perspectives (Section 4.3), and the
pathway dependence toward SGTR (Section 4.4). The paper
finishes with conclusions in Section 5.

2. Simulation Model

To carry out our 3D compressive visco-resistive MHD
numerical simulation, we used Lare3d (Arber et al. 2001),
which is a Lagrangian remap code employing a staggered
spatial grid with shock viscosity and a numerical scheme
accurate up to second-order derivatives. The governing MHD
equations, in nondimensionalized Lagrangian form, are

r
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where
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=
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=
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=  ´j B
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,

,


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using standard notations: mass density ρ, plasma velocity v,
current density j, magnetic field B, pressure p, resistivity η,
temperature T, specific internal energy density ò, ratio of spe-
cific heats γ= 5/3, and material derivative operator D/Dt.

We replicated the initial setup from Huang & Bhattacharjee
(2016), which considered a thin current sheet between two
twisted flux ropes within a unit cube (x, y, z) ä [−0.5, 0.5]3.
The flux rope merging setup used here is similar to the Gold-
Hoyle solar flare model (Gold & Hoyle 1960); it also has
laboratory applications including merging compression startup
in spherical tokamaks (e.g., Browning et al. 2014). An illus-
tration of this configuration is shown in Figure 1. The current
sheet is initially located on the midplane y= 0.0, with finite
length in the x-direction. The flux ropes are threaded by a
guide-field in the periodic z-direction and have the same left-
handed orientation. The two-and-a-half dimensional (2.5D)
magnetic field at t= 0.0 is set as

y= ´  +B e ex y B, ,z z z( )

where the flux function is

y
p

p p=x y x y
y

h
,

1

2
cos sin 2 tanh ,⎛

⎝
⎞
⎠

( ) ( ) ( )

with current sheet thickness h= 1/300. Huang & Bhattacharjee
(2016) set Bz so that the setup was approximately forced-
balanced. To achieve the same in our case, we set the guide-
field as

p y= +B x y B, 5 ,z z
2 2

,min
2( )

which is an approximate solution derived using the Grad-
Shafranov equation (Grad & Rubin 1958; Shafranov 1966) and
asymptotic matching. The force-balance improves for regions
farther away from the current sheet around y= 0.0. The value

=B 0.75z,min was chosen to ensure that the guide-field
strength within the reconnection layer, where it is at its mini-
mum, was consistent with Huang & Bhattacharjee (2016).
We initialized the plasma to have a uniform temperature

T= 1 and density ρ= 1, which together give constant pressure
p at t= 0.0. To aid the formation of current sheet instabilities
and initiate the 3D turbulent reconnection process, a random
velocity noise of magnitude v∼ 10−3 was applied as part of the
initial condition. The background resistivity was set as
η= 5× 10−6, giving Lundquist number S= η−1= 2× 105,
based on the unit box size and initial current sheet length L≈ 1.
Some reconnection studies instead report S values based on the
current sheet half-length (e.g., Huang et al. 2019; Singh et al.
2019); under that convention, for comparison with such works,
the Lundquist number rescales to S= 105. In practice, this
value is an upper bound on the effective Lundquist number,
which may be reduced by numerical resistivity. We can be
confident that the effective Lundquist number comfortably
exceeds a lower bound of S= 104 (Lapenta & Lazarian 2012),
since the current sheet was unstable to the tearing instability in
production and lower-resolution runs.
The simulation was performed on a uniform grid of resolution

10643. Preliminary work was carried out at a lower resolution of
5003, and this displayed the same phenomena. The boundary
conditions were set as periodic in the z-direction, and perfectly
conducting and free slipping in the x- and y-directions, i.e.,

=n̂ B 0· and =n̂ v 0· on x=±0.5 and y=±0.5. In
Lare3d, these side boundary conditions were imposed with
appropriate symmetry arguments by pairing ghost cells with
domain cells near the boundaries. The simulation was run up to
t= 5.0, with frames recorded every Δt= 0.1.

3. Results

In agreement with Huang & Bhattacharjee (2016), the
simulation undergoes reconnection that is fully 3D, self-gen-
erated, and self-sustaining, and exhibits characteristics of both
plasmoid-mediated and turbulent reconnection. Consistent with
earlier studies of SGTR, which have predominantly considered
analogs of magnetic annihilation (Oishi et al. 2015; Striani
et al. 2016; Beresnyak 2017; Kowal et al. 2017, 2020), we find
that 3D reconnection at S� 104 is qualitatively different to 2D
models. We also find that the global magnetic topology has a
major influence on the reconnection process, as is reasonably
expected from the experience of laminar reconnection models,
and that the SGTR analog of Sweet–Parker reconnection, stu-
died here and in Huang & Bhattacharjee (2016), is distinct in
important respects from the current slab models that have been
more widely studied.
In the following subsections, we discuss the dynamic evol-

ution in detail and provide new analysis on the topology and
structure of the turbulent reconnection regions for SGTR in a
Sweet–Parker-type global magnetic topology.

3.1. Dynamic Phases and Pathway to “Fast” Reconnection

Our simulation shows three major stages: an initial laminar
Sweet–Parker phase of slow reconnection during which 2.5D
instabilities develop, (i) laminar 2.5D phase, followed by

Figure 1. Three-dimensional diagram of the magnetic field at t = 0.0, illus-
trating the position and left-handed orientation of the two flux ropes. The
pseudocolor plot on the midplane z = 0.0 indicates the strength of the guide-
field Bz > 0, which is initially invariant in the z-direction. Isosurfaces of Bz at
two different values are compared along with some sample magnetic field lines
that lie on the corresponding flux surfaces.
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secondary 3D instabilities that seed field line stochasticity, (ii)
transition phase, ending with a quasi-stationary turbulent
phase that is self-sustaining over the long term, (iii) SGTR
phase.

Figure 2 shows the evolution of the global reconnection
rate Vrec and the approximate time intervals for each of
the three main simulation stages. The labeled vertical dotted
lines indicate finer steps in the simulation that will be ela-
borated on later, some of which are specific to this particular
simulation. Here we have calculated the global reconnection
rate as

ò ò= ¢ ¢
Î - - -

=V
d

dt
B dz dxmax ,

x

x

y yrec
0.5,0.5 0.5 0.5

0.5

0∣
[ ]

using the same definition as Huang & Bhattacharjee (2016),
which is the time derivative of one particular approximation of
the reconnected flux. See Appendix A for a discussion on the
evaluation of the reconnection rate and a comparison between
alternative definitions of the reconnected flux. The most
important outcome of Figure 2 is the “switch-on” nature of fast
reconnection; we clearly observe a sudden increase in the
global reconnection rate Vrec, by a factor of six to eight times
from the initial value, after the onset of turbulent reconnection.

To facilitate our description of the simulation phases in the
following subsections, visualizations of the current density
strength =  ´ Bj   are provided in Figure 3 at four part-
icular times. The left and right columns show cross sections
across the reconnection layer at midplanes z= 0.0 and x= 0.0,
respectively. The central column gives a slice at y= 0.0 within
the reconnection layer.

3.1.1. i) Laminar 2.5D Phase: t= 0.0−1.0

The simulation begins with the relaxation of the two large
flux ropes, which immediately begin to merge, causing thin-
ning of the current sheet at the reconnection interface. This first
stage observed, during t= 0.0−0.4 (labels (a)–(b) in Figure 2),
is laminar 2.5D Sweet–Parker reconnection, during which the

dynamics are invariant in the guide-field direction and the
evolution on each z-slice is consistent with the standard laminar
Sweet–Parker slow reconnection model. Clear inflow velocity
regions form above and below the current sheet, and long
symmetric outflow velocity regions develop along y= 0.0.
During this stage, a modest stable reconnection rate
Vrec≈ 0.003−0.0035 is measured, in agreement with Sweet–
Parker and the rate for early times reported by Huang &
Bhattacharjee (2016).
This initial stage is soon interrupted by the formation of a

chain of islands within the current layer by the 2.5D tearing
instability over t= 0.4−0.7 (after label (b) in Figure 2). Three
plasmoids become particularly prominent and are visible from
z-slices of the current density j (top row of Figure 3) and other
variables, the 3D structures of which take the form of long
straight flux ropes extending over the whole z-direction.
These prominent flux ropes slowly grow over t= 0.7−1.0 (up
to label (c) in Figure 2), which we interpret as the develop-
ment of the nonlinear tearing mode, and the leftmost and
rightmost flux ropes gradually move outward. Other plas-
moids with significantly smaller length scales are also
observed in the outflows, their growth being limited by their
expulsion from the reconnection region, while new plasmoids
are generated in their place. However, the largest structure,
which we will refer to as the central flux rope (CFR), persists
at the center (x= 0.0) and has a major influence on the sub-
sequent evolution. Over t= 0.7−1.0, Vrec (Figure 2) gradually
increases as the CFR slowly enlarges with a “cat-eye” cross
section.
The development of a large CFR was not reported in Huang

& Bhattacharjee (2016), nor is one evident to us in their figures.
The reason for this difference between our simulations and
theirs is unclear, but the CFR was also found to form for 2.5D
simulations on the Lare2d code for grid resolutions up to
10,0002, matching the minimum grid sizeΔy= 10−4 employed
in Huang & Bhattacharjee (2016), with or without initial
velocity noise. This implies that the CFR formation in our
simulation is not a numerical artifact due to lower grid reso-
lution. Further, using 2.5D simulations, a visible CFR was
found to develop for effective Lundquist number values above
S= 104, consistent with the widely quoted critical value
Scrit≈ 104 for the Sweet–Parker current layer to be self-
unstable in the absence of sufficiently large perturbations
(Lapenta & Lazarian 2012), and below S= 107, beyond which
the rapid formation of a thin chain of similarly sized plasmoids
was more prominent. These observations reinforce the con-
clusion that the CFR is a robust feature of our Lare simulations
for the Lundquist number we have applied.
In a broader context, the early dominance of parallel tearing

modes in our 3D simulation is consistent with the results of
Oishi et al. (2015), but simulations also exist in which oblique
tearing modes form initially (Daughton et al. 2011; Liu et al.
2013; Huang & Bhattacharjee 2016; Beresnyak 2017; Stanier
et al. 2019). Studies have shown that the fastest growing
tearing modes can be parallel or oblique, with the properties of
the dominant mode depending on critical parameters such as
the length of the current layer and the magnetic shear angle
across the current layer (e.g., Baalrud et al. 2012; Leake et al.
2020). For our initial magnetic field, we evaluated the predicted
linear growth rate for a range of tearing modes characterized by
integers (m,n) corresponding with wavenumbers kx= 2πm and
kz= 2πn, where parallel modes possess n= 0. Here we

Figure 2. Evolution of the reconnection rate Vrec over time. The three general
stages are highlighted in different colors: (i) laminar 2.5D phase (blue); (ii)
transition (red, striped); and (iii) SGTR (green). The vertical dotted lines mark
additional times of interest: (a) 2.5D Sweet–Parker reconnection onset
(t = 0.0); (b) 2.5D nonlinear tearing instability onset (t = 0.4); (c) Kink
instability of central flux rope (CFR) and turbulent reconnection onset
(t = 1.0); (d) CFR breaks down and reconnection layer becomes (almost) fully
stochastic (t = 1.5); (e) CFR remnant ejected (t = 2.4); (f) CFR remnant fully
absorbed at outflows and “pure” SGTR onset (t = 3.0).
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followed the approach in Leake et al. (2020) who applied linear
theory derived from reduced MHD by Baalrud et al. (2012).
The fastest growing tearing mode was found to be parallel with
(m, n)= (1, 0), which supports the formation and dominance of

the CFR that we observed over t= 0.4–1.0 (labels (b)–(c) in
Figure 2). It is possible that subdominant oblique tearing modes
are not sufficiently resolved, causing their nonlinear interaction
and growth to be dampened; however, the pathway to SGTR

Figure 3. Current density strength =  ´ Bj   over time. The left column is a cross section at z = 0.0 through the two large flux ropes; the middle column is a slice
at y = 0.0 inside the reconnection layer; the right column is a slice at x = 0.0 through the current sheet along the guide-field direction. The top row (t = 1.0) shows
three flux ropes on y = 0.0 formed by the tearing instability of the initial current layer. The second row (t = 1.4) is a snapshot during the transition phase while the 3D
kink instability of the CFR is developing. The third row (t = 2.4) shows the highly nonuniform reconnection layer during the SGTR phase while the CFR reaches the
left outflow. The bottom row (t = 4.5) shows how far the pair of initial large-scale flux ropes have merged at an advanced stage of the simulation during “pure” SGTR.

6

The Astrophysical Journal, 940:94 (32pp), 2022 November 20 Beg, Russell, & Hornig



following from parallel tearing modes is an important topic that
we analyze in the next section.

3.1.2. ii) Transition Phase: t= 1.0−2.4

In the second major phase over t= 1.0−2.4 (labels (c)–(e) in
Figure 2), the dynamics undergo a fundamental change in
character: the 2.5D symmetry breaks, 3D instabilities seed the
developing stochasticity of field lines, the system exhibits self-
generated turbulence, and the reconnection rate rapidly increases
to reach a global maximum of Vrec≈ 0.024 (at t= 2.2),
approximately 7.8 times the rate of the initial Sweet–Parker
phase. This “switch-on” behavior is qualitatively and quantita-
tively different to the evolution observed by Huang & Bhatta-
charjee (2016), in which the reconnection rate of the simulation
gradually increased over the simulation runtime and only
reached a maximum of Vrec≈ 0.009. The reason for this dif-
ference appears to be that our simulation and theirs capture
different pathways to SGTR, as we elaborate on below. There
are in fact strong grounds to expect that SGTR can be reached by
a variety of routes that depend on specific circumstances, e.g.,
depending on whether the dominant modes of the tearing
instability are parallel or oblique. An interesting observation
from comparing our simulation to that in Huang & Bhattacharjee
(2016) is that different pathways to SGTR may affect the switch-
on and reconnection rate properties. This may help to explain
why some reconnection events rise rapidly whereas others rise
slowly, e.g., impulsive versus gradual solar flares (Fletcher
et al. 2011).

One of the significant driving mechanisms of this dynamic
stage is the onset of a 3D helical kink instability of the CFR at
t= 1.0 (label (c) in Figure 2) that makes its axis increasingly
coiled. Concurrently, the CFR dislodges from x= 0.0 and
gradually moves to the left, and the two flanking flux ropes
accelerate in opposite directions toward the edges of the
reconnection layer (see second row of Figure 3). The secondary
instability of a flux rope generated from a parallel mode of the
preceding tearing instability is consistent with the simulation

findings of Lapenta & Bettarini (2011) and Oishi et al. (2015).
To detect and investigate this instability, we identify the
magnetic field line that is the axis of the CFR, then trace its
evolution.
We carry out the following procedure. In our simulation,

which has Bz> 0 everywhere, we parameterize field lines by
xB(z)= (xB(z), yB(z), z) with initial point xB(z0)= x0, governed
by

=
x B x

x
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z

B z
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Since the domain is periodic in z, we allow Îz . The 2D field
line mapping from an initial point at z= z0 to z= z0+ n is then
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For our simulation, Fz
n
0
denotes the field line mapping over n

cycles for domain length Z= 1, where we have În , e.g.,
forward traces for n> 0 and backward traces for n< 0. To
analyze the topological properties of the field line mapping, we
consider the color map (Polymilis et al. 2003; Yeates et al.
2010; Yeates & Hornig 2011a, 2011b; Yeates et al. 2015)
defined by
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whose color space corresponds to the displacement vector
between the initial point (x0, y0) and F x y,z

n
0 00

( ). The color map
Cz

n
0
over a complete number of cycles În  can then be used

to identify periodic points of degree n. Boundaries of R-B or
G-Y interfaces are positions of general periodic orbits, with
integer twist about some axis. Points where the four different

Figure 4. Close-ups of the color mapCz
1
0 at the bottom boundary z0 = −0.5 during the 3D kink instability of the CFR. Prior to the turbulent reconnection onset t = 1.0

(label (c) in Figure 2), the CFR is stable and has a cat-eye cross section with an elliptical core. The top-left panel at t = 1.0 also picks up the smaller flux rope to the left
of the CFR, which accelerates to the left and soon exits the close-up window. After t = 1.2, the CFR axis moves to the left, and the cross section becomes increasingly
deformed with a growing outer structure. By t = 1.5 (label (d) in Figure 2), the CFR breaks down; the axis either disappears within the stochastic field or it can no
longer be detected with the color map.
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colors meet are isolated periodic orbits. By topological degree
theory, if the counterclockwise sequence of colors is B-G-R-Y,
it is an elliptic periodic point; if the sequence is Y-R-G-B, it is a
hyperbolic periodic point. The locations of isolated periodic
orbits of interest were identified using the characteristic
bisection method (Vrahatis 1995; Polymilis et al. 2003).
Elliptic periodic points should coincide with axes of flux ropes,
the curves of which form closed loops.

Figure 4 shows the color map Cz
1
0
for the bottom boundary

z0=−0.5, illustrating the topology of the field line mapping
and periodic surfaces within the CFR during the kink instability
(labels (c)–(d) in Figure 2). We identify the elliptic period-1
orbit that intersects (x0, y0)≈ (0, 0) as the axis of the CFR.
During the development of the nonlinear tearing stage over
t= 0.7−1.0 (up to label (c) in Figure 2), the CFR rapidly grows
with a “cat-eye” structure containing a highly elliptical core
possessing an exceptional level of internal twist. The ellipticity
of this expanding core quickly decreases due to magnetic
tension B B( · ) from the high curvature of field lines within
the plasmoid.

The time evolution of the CFR axis on various plane pro-
jections is displayed in Figure 5; this is denoted xaxis(z) and
parameterized by z ä [−0.5, 0.5). For comparison, the
corresponding center of mass xcenter, i.e., the mean coordinate
á ñx z y z,axis axis( ( ) ( )) over z ä [−0.5, 0.5), is also provided. Prior
to the kink instability at t= 1.0 (label (c) in Figure 2), the CFR
axis is initially straight since the system is still 2.5D. The CFR
axis then begins moving to the left, particularly after a dynamic
eruption at t= 1.2, and becomes increasingly kinked. This
deformation is fully 3D with dominant wavenumber kz/
(2π)= 7; the same periodicity can also be observed in other
measures such as the current density strength j (see second row
of Figure 3). Fourier analysis of xaxis reveals that the kink is a
superposition of multiple modes with kz/(2π)= 7n for În ,
which significantly decrease in amplitude for increasing n> 1,
making the instability weakly nonlinear and asymmetric.

In time, as seen from Figure 4, the cross-sectional geometry
becomes increasingly deformed, with some interesting topo-
logical substructure evident by t= 1.4. By t= 1.5 (label (d) in
Figure 2), the laminar core of the CFR breaks down and the
color map no longer detects an axis. Section 4.2 discusses the

topological complexity of “frayed” flux ropes in the recon-
nection layer. Further analyses on this kink instability can be
found in Appendix B.
Accompanying the breaking of 2.5D symmetry by the helical

kink instability, we observe the formation and fast broadening
of a stochastic layer, which are the mixing regions about
y= 0.0 where field lines are no longer laminar but instead
“wander.” From the perspective of magnetic topology, these
distinct stochastic and laminar regions can be approximated
using various tools. Since our simulation is periodic in z, a
Poincaré section (e.g., Borgogno et al. 2008, 2011a, 2011b,
2015; Rubino et al. 2015; Falessi et al. 2015; Veranda et al.
2020a; Borgogno et al. 2017; Di Giannatale et al. 2018a,
2018b, 2021) is an effective initial approach to illustrate this
transitional stage (Daughton et al. 2014; Dahlin et al. 2017;
Stanier et al. 2019). For a collection of seed points (x0, y0) on a
fixed z0-slice, we generate a scatter plot of the orbit points
where the field lines repeatedly intersect the x-y plane as they
cycle around the toroidal space, i.e., the mapping F x y,z

n
0 00

( )
(Equation (2)) for all iterations În  up to some limit
n nmax . In theory, the field lines seeded within a stochastic
region will randomly fill in that particular space statistically as
n→∞ due to ergodicity, whereas field lines seeded within
laminar regions will trace contours of flux surfaces.
Figure 6 shows the Poincaré sections at the bottom boundary

z0=−0.5 up to n= 2000 iterations at t= 1.0 and t= 1.8
during the dynamic transition phase over t= 1.0−2.4 (labels
(c)–(e) in Figure 2). We identify four general regions that are
topologically separate, up to at least n= 2000. First, we have
two laminar regions containing the large flux ropes, i.e., the
“upper” flux rope (in the y> 0 half of the domain) and “lower”
flux rope (in the y< 0 half of the domain); these are illustrated
with black dots using seed lines extending from their respective
axes (the axes having been detected using the color map). The
laminar flux ropes are enclosed by a reconnection-connected
volume (RCV), with a figure-eight cross section, that is topo-
logically associated with the reconnection layer; this domain is
highlighted by multicolored dots corresponding to distinct field
lines seeded along the midplane x ä [−0.42, 0.42] at y= 0.0.
Since field lines that permeate the reconnection layer become
stochastic, the RCV is an effective proxy for observing the
development and spread of stochasticity generated from the

Figure 5. Evolution of the CFR axis xaxis on various plane projections over t = 1.0−1.4. The 3D kink instability occurs at t = 1.0 (label (c) in Figure 2). Solid curves
represent the CFR axis, and the dotted horizontal lines or circles denote the center of mass xcenter of the CFR axis. The CFR evolves from a straight flux rope prior to
t = 1.0 to a fully 3D helical kink, which is asymmetric and weakly nonlinear. The helix rapidly grows in amplitude after t = 1.2 with dominant wavenumber kz/
(2π) = 7 while moving to the left on the x-y plane. At t = 1.5 onward (label (d) in Figure 2), the axis cannot be detected.
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reconnection process. Section 3.2.4 provides a deeper treatment
of alternative tools, discussion on determining whether a field
line is stochastic, and the effectiveness of the Poincaré section
approach. Lastly, we have an outer region that extends to the x
and y boundaries. The evolution of the RCV is demonstrated in
Section 3.2.5.

During the laminar 2.5D phase t= 0.0−1.0 (labels (a)–(c) in
Figure 2), the RCV forms a very thin band around the large flux
ropes (left panel of Figure 6). However, at t= 1.0 (label (c) in
Figure 2), coincident with the 3D kink instability of the CFR,
the RCV rapidly expands and the large laminar flux ropes begin
to shrink (right panel of Figure 6). During this transition, sto-
chastic field lines proliferate throughout the RCV and surround
the flux ropes nested within the reconnection layer. It is cur-
rently difficult to determine whether the kink instability gen-
erates a substantial proportion of stochasticity, or if the
development of a stochastic environment around or within the
CFR makes it kink-unstable.

We refer to t= 1.0 as the turbulent reconnection onset, since
this is when self-generated turbulence begins to develop. After
this, the system is increasingly nonlaminar. Further, the current
sheet becomes fragmented, and the reconnection layer becomes
threaded with numerous small-scale structures resembling
oblique twisted flux ropes and turbulent eddies (see second row
of Figure 3). When the CFR breaks down at t= 1.5 (label (d) in
Figure 2), the whole reconnection layer appears to be made up
almost entirely of stochastic field lines, with the exception of
the left and right plasmoid-type flux ropes. Once these flux
ropes exit the reconnection layer at t= 1.8 (see right panel of
Figure 6), we consider the reconnection layer and the RCV to
be fully stochastic.

For the remainder of the transition phase, the dynamics
inside the reconnection layer are dominated by the production,

merging, and expulsion of flux rope structures that are 3D
analogs of plasmoids, but which lack a detectable axis field
line. The stochastic layer continues to broaden, the (stochastic)
RCV expands toward the x and y boundaries, and the recon-
nection rate remains at an enhanced level. The large structure
produced from the previously laminar CFR continues to grow
while accelerating to the left, before being expelled from the
left outflow at t= 2.4 (label (e) in Figure 2; third row of
Figure 3).

3.1.3. iii) SGTR Phase: t= 2.4−5.0

In this third and final major phase over t= 2.4−5.0 (after
label (e) in Figure 2), the system exhibits self-generated tur-
bulent reconnection that is fully 3D and globally quasi-
stationary.
Within this part of the simulation, the CFR structure is

expelled from the reconnection layer at t= 2.4 (third row of
Figure 3) and it is absorbed at the termination of the outflow jet
by t= 3.0 (labels (e)–(f) in Figure 2). The reconnection layer
appears to be fully turbulent, evidenced by the highly irregular
flow pattern and fragmented current density strength (middle
column of Figure 3). The properties of the turbulence have
previously been investigated in depth by Huang & Bhattacharjee
(2016) and Kowal et al. (2017), and applying their techniques to
our simulation confirms these previous results. On the global
scale, the configuration has a dominant inflow vy toward the
reconnection layer and outflows vx toward the x boundaries,
consistent with the expected reconnection flow pattern for the
global magnetic topology. By t= 3.0 (after label (f) in Figure 2),
the expanding stochastic RCV (see Figure 6) engulfs the outer
topological region (see Section 3.2.5). Further, the reconnection
rate approximately plateaus to a large typical value of

Figure 6. Poincaré sections of the field line mapping Fz
n
0 for all iterations up to n = 2000 at the bottom boundary z0 = −0.5 for two selected times during the dynamic

transition phase t = 1.0−2.4 (labels (c)–(e) in Figure 2). The multicolored dots, seeded over x ä [−0.42, 0.42] at y = 0.0, spread over the RCV that is topologically
identified with the reconnection layer; points with the same color correspond to the same field line. This RCV rapidly expands after the turbulent reconnection onset
t = 1.0 (left panel) and becomes (almost) fully stochastic by t = 1.8 (right panel). The black dots, seeded within the upper and lower flux ropes, lie on simple contours
of laminar flux surfaces.
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Vrec≈ 0.020 for the remainder of the simulation, approximately
6.4 times the rate of the initial Sweet–Parker phase.

We therefore consider that from t= 3.0 onward (after label
(f) in Figure 2), we observe “pure” SGTR in which the system
has settled into quasi-stationary global dynamics. A true
steady state is not strictly achieved since reconnection con-
sumes the merging laminar flux ropes (see bottom row of
Figure 3). If the simulation runtime was extended, we antici-
pate the large laminar flux ropes would fully reconnect and the
reconnection rate would decay to zero. Nonetheless, the
secular merging of the laminar flux ropes is sufficiently slow
compared to the dynamics inside the reconnection layer that a
quasi-stationary conceptualization is instructive, if treated with
due care.

3.2. Reconnection Layer Thickness Scales

Turbulent reconnection is a dynamic 3D multiscale process
involving the interaction of numerous spatial and temporal
scales. Due to the mass conservation argument introduced by
Parker (1957), the thickness δ of the Sweet–Parker layer is
closely related to the reconnection rate Vrec; details of this are
discussed in Section 4.1. Hence, the characteristic thickness
scales of the reconnection layer are important for understanding
the global dynamics, due to the Sweet–Parker-type global
magnetic topology of our simulation. The main aim of this
section is to describe the various thicknesses that characterize
the reconnection layer and compare their evolution over time.
We also make important remarks on the properties of the
magnetic topology inside the SGTR layer in Sections 3.2.3
and 3.2.5.

We detect two major characteristic thickness scales: (a) an
inner thickness scale associated with current and vorticity
densities, reconnection outflows, and turbulent fluctuations;
and (b) an outer thickness scale corresponding to the wider
stochastic layer from a magnetic topology standpoint. The
terms inner and outer scale are restricted to the description of
the averaged thicknesses and properties only. We also identify

flux rope structures inside the SGTR layer that are linked with
both of these thickness scales.
In this section, we determine thickness scales by averaging

many individual measurements of the layer thickness δy using a
variety of quantities of interest. Later in Section 3.3, we
compare the mean profiles of variables during the SGTR phase
when the global dynamics become quasi-stationary. The two
approaches are complementary and determine consistent
thickness scales; the method in this section has the advantage
of displaying the time evolution over the whole simulation,
while the method in Section 3.3 provides additional insights
into the shapes of the mean profiles during SGTR. It will be
shown in Section 4.1 that the observed reconnection rate
connects best with the inner thickness scale; this implies that it
is preferable to interpret SGTR as being controlled by the
thickness of the effective reconnection electric field produced
by turbulent fluctuations, rather than the larger thickness of the
stochastic layer, which includes additional regions referred to
as the “SGTR wings.”

3.2.1. General Approach

The general motivation and procedure of the time-dependent
scale analysis is as follows. The thickness of the reconnection
layer can be measured from many different quantities that all
reflect complementary aspects of the reconnection dynamics.
Common to all of these, the reconnection layer is periodic in
the z-direction, localized away from the x=±0.5 boundaries,
and situated approximately about the x-z plane at y= 0.0.
Therefore, we focus on measuring the layer thickness in the y-
direction, denoted δy. From the onset of the 2.5D tearing
instability at t= 0.4 (label (b) in Figure 2), the surfaces of the
reconnection layer become convoluted and nonuniform, and
the layer slowly shortens in the x-direction. Furthermore, we
are most interested in the thickness at the center of the recon-
nection region, rather than the thickness of the outflow jets.
Hence, we approximate δy over a local region (x, z) ä [−0.15,
0.15]× [−0.5, 0.5), then take the arithmetic mean to obtain a

Figure 7. Comparison of different measures of the characteristic reconnection layer thickness 〈δy〉. The right panel compares 〈δy〉 (left axis) with the global
reconnection rate Vrec (right axis) over time. The left panel is a close-up of the 〈δy〉 curves in the right panel over 〈δy〉 ä [0, 0.012]. Dark red: current density strength j;
orange: vorticity strength ω; yellow: outflow velocity |vx|; light blue: energy of the magnetic field fluctuations E ;m˜ dark blue: energy of the kinetic fluctuations E ;k˜ pink
(dotted): unsigned turbulent electromotive force (EMF) - ~ ´

~
v B ;z∣ ( ) ∣ purple (dotted): positive turbulent EMF - ~ ´

~
v Bmax , 0 ;z{ ( ) } dark green: squashing factor

Qz
100
0 for z0 = −0.5; turquoise: Poincaré section count S for n = 2000 iterations; and black (dashed): global reconnection rate Vrec. The vertical dotted lines mark

times of interest: (b) 2.5D nonlinear tearing instability onset (t = 0.4); (c) turbulent reconnection onset (t = 1.0); (e) SGTR onset (t = 2.4); and (f) “pure” SGTR
onset (t = 3.0).
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single statistical measure of the layer thickness for each
quantity of interest, denoted 〈δy〉. Shorter intervals than
x ä [−0.15, 0.15] yield similar results, but are more sensitive to
the expulsion of the large CFR structure over t= 1.5−2.0.

For a variable f (x), the thickness δy at fixed coordinate (x, z)
is quantified using one of two methods:

(i) Contour thickness—If f (x) exhibits a well-defined nat-
ural boundary that can be estimated using contours of f (x) for
a suitable threshold f0, then the contour thickness can be
found, i.e., the maximum y-distance between intersections of
the major f (x)= f0 contour surface with each line of constant
(x, z).

(ii) Effective FWHM—Otherwise, for f (x) with a more
complicated distribution and/or a less sharp boundary, δy can
be robustly quantified as the full-width at half maximum
(FWHM) of an appropriate bell-curve model g(y). For non-
negative variable f (x)� 0, at fixed (x, z), we evaluate the
FWHM of g(y) satisfying

ò ò= =
- - Î - Î -

x xf dy g y dy g y f, max max
a

a

a

a

y a a y a a, ,
( ) ( ) ( ) ( )

[ ] [ ]

over a sufficiently wide window y ä [−a, a]. We chose a= 0.1.
This approach does not require fitting the chosen bell curve to
the f (x) profile; instead, it redistributes the area under the curve
into a single peak while preserving the maximum value, to
estimate the spread of the f (x) profile. The resultant “effective”
FWHM is most productive when the dominant fluctuations of
f (x) are concentrated about y= 0.0 and not highly granular.
While the effective FWHM is quantitively dependent on the
chosen bell curve, the evolution of 〈δy〉 will be qualitatively
consistent for any Gaussian-like g(y). Using a suitable bell
curve
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If we have f (x)< 0 for some x, then the effective FWHM
can be evaluated after additional processing. For example, to
filter and measure the positive fluctuations only, we used

xfmax , 0{ ( ) }, whereas to quantify the unsigned fluctuations,
we used |f (x)|.
In practice, the δy measurements employing the effective

FWHM were found to be very robust and reliable. Consistent
results for 〈δy〉 were also found using the FWHM of a best-fit
Gaussian distribution to the profile of f (x). However, this
alternative technique was prone to erroneous δy values, mainly
due to errors with fitting a Gaussian distribution to profiles that
exhibit substantial numerical noise or multiple peaks.
The temporal evolution of all of the characteristic thick-

nesses that we will consider in the proceeding subsections is
shown in Figure 7. For comparison, the global reconnection
rate Vrec from Figure 2 has been superimposed.

3.2.2. Inner Thickness Scale

First, we identify an inner thickness scale corresponding
with the mean properties of the current, vorticity, outflows, and
MHD turbulent fluctuations. Due to the fragmented distribution
of the physical variables, we employ the effective FWHM
method, which was found to be suitable for all of the examined
quantities from t= 0.3 onward; these are plotted in Figure 7.
Current and vorticity densities—The mean thicknesses 〈δy〉

of the current density strength =  ´ Bj   (dark red) and
the vorticity strength w =  ´ v  (orange) are mostly qua-
litatively and quantitively consistent. We observe some thin-
ning prior to the 2.5D tearing onset at t= 0.4 (label (b) in

Figure 8. The squashing factor Qz
1
0 with z0 = −0.5 at t = 4.0. The left panel is plotted at the bottom boundary z = −0.5. The right panel is plotted at the midplane

z = 0.0, assuming each field line connecting (x0, y0) to F x y,z
1

0 00 ( ) is identified with value Qz
1
0 .
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Figure 7), followed by rapid broadening around the turbulent
reconnection onset t= 1.0 (label (c) in Figure 7); this corre-
lates with the global reconnection rate Vrec. The ω thickness
does not grow substantially until after t= 1.0 since the
reconnection layer is initially laminar before becoming
increasingly turbulent after the kink instability. A global
maximum is reached around t= 1.8 due to the CFR remnant,
then a significant dip occurs before t= 2.4 (label (e) in Figure
7) while the CFR remnant exits the local averaging region.
The thicknesses reach a mean quasi-stationary value after
t= 3.0 (label (f) in Figure 7) once pure SGTR sets in:
〈δy〉≈ 0.0067 for j and 〈δy〉≈ 0.0061 for ω. A discussion on
the current and vorticity coherent structures that produce these
averages can be found in Section 4.2.

Outflow jets—The reconnection process also forms dis-
tinctive outflow jets in vx that remain robust and roughly
antisymmetric about x= 0.0 during the simulation. To assign a
mean thickness to the central section of these jets, we apply the
effective FWHM to the absolute value |vx| (yellow). The
evolution of this thickness is qualitatively similar to the current
density j and vorticity ω, although the typical value is slightly
larger: after t= 3.0, the mean quasi-stationary value is
〈δy〉≈ 0.011. The use of |vx| returns a thickness that is greater
than the interior core of the jets, i.e., approximate maximum
ridges of vx< 0 for x< 0 and vx> 0 for x> 0, but it was found
to be the most robust approach to measure structures within the
outflows.

MHD turbulent fluctuations—One of the most important
features of SGTR is that the effective reconnection electric field
is provided by MHD turbulence generated by the reconnection
process. To begin with, we can quantify the thicknesses of the
turbulence using energies of the magnetic and kinetic fluctua-
tions defined as

~ =
~

~ =
~B w

E E
2

,
2

,m k

2 2   

respectively, where r=w v (Kida & Orszag 1992). Here,
we follow Huang & Bhattacharjee (2016), who defined the
fluctuating component of variable f (x) to be

~
= -f f f̄ ,

where f̄ denotes the mean or background component. We take
the mean over z ä [−0.5, 0.5) as a proxy for f̄ since the
simulation has approximate translational symmetry over the z-
direction. Therefore, the primary contributions to

~
f correspond

to 3D dynamics within the reconnection layer. The mean
thicknesses of

~
Em (light blue) and

~
Ek (dark blue) are found to

closely track each other and the mean thickness associated with
the vorticity strength ω. The mean quasi-stationary values after
t= 3.0 are 〈δy〉≈ 0.0063 for

~
Em and 〈δy〉≈ 0.0062 for

~
Ek.

Next, we consider the electric field component Ez; this is a
major driver of turbulent reconnection process for our simu-
lation, especially during the SGTR phase. In the quasi-sta-
tionary state, several (although not all) of the core principles of
Sweet–Parker reconnection can be applied, including that the
Ez averaged over time and z is (almost) constant across the
reconnection layer, as a consequence of Faraday’s law. From
Ohm’s Law, we have

h

h

=- ´ +

=- ´ - ´ - ~ ´

- ~ ´ +

~

~

v B

v B v B v B

v B

E j

j

,

, 4

z z z

z z z

z z

( )

( ) ( ) ( )
( ) ( )

after decomposing v and B in terms of their mean and fluctu-
ating components. The important terms in Equation (4) are the
background EMF - ´v B z( ¯ ¯ ) , turbulent EMF - ~ ´

~
v B z( ) , and

resistive EMF ηjz (see Huang & Bhattacharjee 2016). The
turbulent EMF can also be used to quantify the turbulent layer,
by measuring the thickness of the unsigned perturbations
- ~ ´

~
v B z∣ ( ) ∣ (dotted pink) or positive perturbations

- ~ ´
~

v Bmax , 0z{ ( ) } (dotted purple). The mean thickness for

- ~ ´
~

v B z∣ ( ) ∣ closely tracks the inner thicknesses prior to

t= 1.8, especially ω,
~
Em, and

~
Ek which probe the MHD tur-

bulence region. It continues to broaden until levelling after
t= 2.4 (label (e) in Figure 7), where it tracks |vx| and reaches a
mean quasi-stationary value 〈δy〉≈ 0.0096 after t= 3.0. The
mean thickness for - ~ ´

~
v Bmax , 0z{ ( ) } has a similar evol-

ution to - ~ ´
~

v B z∣ ( ) ∣ but is smaller and agrees with j, ω,
~
Em,

and
~
Ek after t= 2.4; its mean quasi-stationary value is

〈δy〉≈ 0.0058 after t= 3.0. Section 3.3 further discusses the Ez

decomposition in Equation (4) and demonstrates that the tur-
bulent EMF dominates over the resistive EMF in our
simulation.

3.2.3. Magnetic Topology Inside the SGTR Layer

A complementary perspective on the interior of the SGTR
layer comes from magnetic topology. In this approach, flux
ropes and other regions of topological complexity can be
identified using tools such as the squashing factor (Titov et al.
2002; Pontin & Hornig 2015; Pontin et al. 2016, 2017; Scott
et al. 2017)

=Q x y
DF

DF
,

det
, 5z

n z
n

z
n0 0
F
2

0

0

0

 
( )

∣ ( )∣
( )

where DFz
n
0
is the Jacobian of the field line mapping Fz

n
0

(Equation (2)), and ∥ · ∥F denotes the Frobenius norm. This is a
metric that quantifies the degree of deformation of the field
lines between two planes, which is useful since reconnection
preferentially occurs at regions where Fz

n
0
possesses large gra-

dients, through the formation of intense current layers (Pontin
et al. 2016). It also indicates regions with substantial turbulence
and field line mixing. In particular, DFz

n
F
2

0
  quantifies the rate

of divergence of field lines emerging from infinitesimally close
foot points at x0, while DFdet z

n
0

∣ ( )∣ quantifies the dilation factor
of an infinitesimal area element at x0 under the field line
mapping. The standard practice is to assign the value
Q x y,z

n
0 00

( ) to the whole field line from (x0, y0) to F x y,z
n

0 00
( ), so

that Qz
n
0
can be plotted on any slice between z= z0 and

z= z0+ n (e.g., Pontin & Hornig 2015). For our simulation, the
determinant term simplifies to the ratio of the normal field
Bz> 0 evaluated at foot point x0 and mapped point

+F x y z n, ,z
n

0 0 00
( ( ) ) (Scott et al. 2017):

=
+

DF x y
B x y z

B F x y z n
det ,

, ,

, ,
.z

n z

z z
n0 0

0 0 0

0 0 0
0

0

∣ ( ( ))∣
( )

( ( ) )

The partial derivatives within DFz
n
0
are approximated by inte-

grating four neighboring field lines about the foot point x0 of
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the main field line then taking central differences
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for sufficiently small step sizes εx and εy.
We consider Qz

1
0
for field lines seeded from the bottom

boundary z0=−0.5, to investigate the distortion of field lines
during a single passage through the simulation domain. The left
panel of Figure 8 shows Qz

1
0
at z=−0.5 over the cross-sec-

tional plane at t= 4.0, revealing an internal region of strong
gradients that highlight flux rope structures and thin recon-
nection layers. Here, the distribution of Qz

1
0
is skewed since the

pair of laminar flux ropes that are merging have a left-handed
orientation, i.e., field lines that possess Q 1z

1
0
 in this figure

include some that rotate and enter the reconnection layer as
they are traced upward from the bottom boundary. To obtain a
symmetrical profile, we plot the same Qz

1
0
sampled at the

midplane z= 0.0. The “frayed” flux rope structures that the
squashing factor picks out inside the reconnection layer show
strong variation along the z-direction (also seen in locally
defined quantities including j and ρ), and the midplane diagram
reveals a superposition pattern of ridges of Qz

1
0
.

While cross sections of the flux rope structures resemble
plasmoids in 2D systems, the field lines they consist of are fully
stochastic and do not form flux surfaces. This is consistent with
many related studies that have explored similarly complex
magnetic topologies, such as filamentary flux rope structures
“hidden” within stochastic field line regions that are otherwise
undetected using Poincare sections (e.g., Borgogno et al.
2011a, 2015; Falessi et al. 2015; Rubino et al. 2015; Borgogno
et al. 2017; Di Giannatale et al. 2018b; Sisti et al. 2019). We
also find that cross sections of the flux rope structures agree
very well with structures observed in cross sections of physical
variables in Section 3.2.2, e.g., for the current density strength j
compare the left column bottom two rows of Figure 3 with
Figure 8. These important structures generate the mean prop-
erties and govern the underlying layer dynamics, e.g., shaping
the SGTR layer and driving the turbulent EMF; they will be
touched upon later in Section 3.2.5, and a detailed examination
and discussion on their possible characterization is left until
Section 4.2.

The squashing factor is very similar to the (maximal) finite-
time Lyapunov exponent (FTLE) of field lines in the z-direction
at fixed time t. Under the field line mapping Fz

n
0
(Equation (2)),

the FTLE is defined as (Haller 2015)

lL =x y
n

G,
1

ln , 6z
n

z
n

0 0 max
1 2

0 0
( ) ( ( ) ) ( )

where l Gz
n

max 0
( ) denotes the maximum eigenvalue of the dis-

placement (or left Cauchy–Green strain) tensor =G x y,z
n

0 00
( )

DF DFz
n

z
n T

0 0
( )( ) . The FTLE measures the average rate of expo-
nential divergence of field lines over an arbitrary distance
(Kantz & Schreiber 2003; Yeates et al. 2012), i.e., for two
seed points x0, x1 at z= z0 with initial separation
δ0= ∥x0− x1∥= 1, the separation d = -x xF Fn z

n
z
n

0 10 0
 ( ) ( ) at

z= z0+ n satisfies d d» L xnexpn z
n

0 00
( ( )) for n? 1.

The squashing factor and FTLE definitions are primarily
characterized by different matrix norms of the Jacobian

(Yeates et al. 2012): Qz
n
0

uses the Frobenius norm
=DF Gtrz

n
z
n

F
1 2

0 0
  ( ) , whereas Lz

n
0
uses the l2-norm (spec-

tral norm) l=DF Gz
n

z
n

2 max
1 2

0 0
  ( ) . In fact, we have the

equivalence L » Q nln 1 2( ) in the limit as Λ? 1 if
»Q DFz

n
z
n

F
2

0 0
  (Yeates et al. 2012; Huang et al. 2014; Pontin

& Hornig 2015); in our case, this agreement is particularly
strong. Another equivalent approach to the FTLE is the expo-
nentiation factor σ or related variations (see Boozer 2012;
Huang et al. 2014; Daughton et al. 2014; Le et al. 2018; Stanier
et al. 2019; Li et al. 2019, etc.); these also give similar results to
the squashing factor.

3.2.4. Outer Thickness Scale

Now, we recognize an outer thickness scale corresponding to
the stochastic layer that develops during the turbulent recon-
nection process, highlighted earlier in Figure 6. We provide
two different topological tools to quantitively measure the
characteristic thickness of the stochastic layer, using the local
separation rate of field lines, or a 3D Poincaré section.
Local separation rate of field lines—One approach to mea-

sure the stochastic layer is to evaluate a metric that indicates
where field lines are stochastic. By utilizing the simulation’s
periodicity in z, the squashing factor Qz

n
0
in Equation (5) for a

long trace distance n is one suitable candidate. Since field lines
that penetrate the stochastic regions are ergodic and eventually
experience strong local separation as they cycle around the
toroidal space, the order of magnitude of Qz

n
0
for n? 1 reveals

laminar =Q 1z
n
0

[ ( )] and stochastic Q 1z
n
0
[ ] regions of

the system. A similar method, employing the exponentiation
factor σ, was used in Daughton et al. (2014).1 Informal justi-
fication for this class of methods comes from the definition of
the maximal Lyapunov exponent L = L¥lim supn z

n
max 0

(e.g., Temam 1988; Borgogno et al. 2011a; Rubino et al. 2015),
where we have L = ¥max for random noise, i.e., stochastic
field lines. The numeric value Qz

n
0
in high-Q regions is not a

quantitative measure of the stochasticity, but it does indicate
the degree to which the field line mapping is sensitive to the
foot points.
After generating samples of Qz

n
0
over regular 2D grids, it was

found that n 10 iterations were sufficient to illuminate the
main structures making up the stochastic layer; these regions
continue to fill and appear to converge, with the distribution of
Qz

n
0
remaining qualitatively consistent up to at least n= 100.

By assuming that Q x y,z
n

0 00
( ) can be assigned to the entire field

line connecting (x0, y0) to F x y,z
n

0 00
( ), we can efficiently

approximate Qz
n
0
throughout the 3D space by exploiting peri-

odicity in z and employing an irregular grid approach. After
evaluating Q x y,z

n
0 00

( ), we store the respective field line over
many grid positions in the z-direction. Repeating this for many
seed points (x0, y0), the final data set is a collection of points,
each weighted by the correspondingQz

n
0
value, on every z-slice.

1 To identify stochastic separatrices (if they exist) throughout nonperiodic
domains, the squashing factor Qz

n
0 and Poincaré section count S approaches

are not applicable. Daughton et al. (2014) provided a fast method to detect
stochastic regions, applicable to both periodic and nonperiodic domains, using
particle mixing as a proxy within the context of kinetic simulations. The results
were found to be consistent with a measurement of the local separation rate of
field lines (see their Figure 4). The particle mixing technique was successfully
employed or similarly adapted in later kinetic simulations (Dahlin et al. 2017;
Le et al. 2018; Stanier et al. 2019) and an MHD simulation by Yang et al.
(2020); however, it has been shown to not be robust in general (e.g., Borgogno
et al. 2017).
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Once this data set is sufficiently dense for large n, Qz
n
0
values at

coordinates that have not been directly sampled can be
approximated using interpolation.

A main challenge in implementing this approximation
method is that suitable seed points need to be chosen to resolve
the interfaces between the stochastic region and large laminar
flux ropes, referred to as stochastic separatrices (Parnell et al.
2010; Pontin 2011; Daughton et al. 2014). The stochastic
separatrices are convoluted and difficult to approximate, pos-
sibly because they form fractals. Further, within the stochastic
layer before t= 1.8, there are some sizeable regions corresp-
onding to insular orbits that require a dense grid of seed points
to ensure sufficient sampling. While these issues were not

major in practice, they limited the resolution that could be
realistically obtained without excessive computational effort.
The approximation method also operates under the

assumption that the Qz
n
0
value associated with a particular field

line is at most weakly dependent on z0 for a sufficiently large
number of iterations n? 1. This holds well for our simulation,
especially for the purposes of an order of magnitude compar-
ison. From comparisons of the 3D approximation with direct
samples of Qz

n
0
over regular 2D grids, we found that they were

in very close agreement for n 50.
Figure 9(a) shows the 3DQz

n
0
at t= 2.5 using z0=−0.5 over

n= 100 iterations. A z-slice (top panel) and x-slice (bottom
panel) through the reconnection layer are provided,

Figure 9. Two-dimensional slices of variables highlighting the stochastic layer, corresponding with the outer thickness scale, at t = 2.5. The top and bottom panels of
each subfigure are slices at z = −0.5 and x = 0.0, respectively. Subfigure (a): squashing factor Qz

100
0 with z0 = −0.5 approximated over 3D space; the stochastic

separatrices are estimated using contours = ´Q 5 10z
100 6
0 (pink). Subfigure (b): Poincaré section count S for n = 2000 iterations; contours of = 0.5S (black)

approximate the boundary of the RCV.
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demonstrating that the stochastic layer becomes highly varied
in its thickness and shape. We find that the stochastic separa-
trices are well defined and can be effectively approximated by
contours of = ´Q 5 10z

100 6
0

, shown in pink.
Figure 7 shows the evolution of mean contour thickness 〈δy〉

of Qz
100
0

(dark green) for = -z 0.50 . Consistent with our
observations in Section 3.1, the stochastic layer is initially thin
then rapidly expands over the transition phase t= 1.0−2.4
(labels (c)–(e)). Most importantly, 〈δy〉 is significantly larger in
magnitude compared to the inner thicknesses in Section 3.2.2,
and hence an outer thickness scale. After t= 3.0 (label (f)), we
obtain the mean value 〈δy〉≈ 0.045, which is broader than the
inner thicknesses by a factor of 4.2−7.6; however, this quasi-
stationary value is more variable than the previous thickness
measurements. Qualitatively, the thickness of Qz

100
0

correlates

well with the (narrower) thicknesses of - ~ ´
~

v B z( ) (dotted

pink and dotted purple) and the global reconnection rate
Vrec; these results suggest that the stochasticity is an essential
part of the global turbulent reconnection properties. The minor
bump between t= 0.4−1.0 (labels (b)–(c)) is also observed in
the thicknesses for the fluctuations

~
Em (light blue),

~
Ek (dark

blue), and - ~ ´
~

v B z( ) (dotted pink and dotted purple). This
bump corresponds to the short-lived occurrence and dis-
appearance of a band of moderately large Qz

100
0

around the early
reconnection layer, coincident with the 2.5D tearing onset
(label (b)); this brief secondary layer may be linked to the
formation of the initial flux ropes and the spread of
stochasticity.
3D Poincaré section—An alternative approach to detect the

stochastic layer is by approximating the RCV, previously
observed in the 2D Poincaré plots (Figure 6). The main idea is
to construct a 3D Poincaré section by directly filling the

Figure 10. Comparison plots of the squashing factor Qz
1
0 with z0 = −0.5 and the RCV boundaries at z = 0.0 over time. The bottom panel is a close-up of the

reconnection layer at t = 2.4. The RCV boundaries are approximated by contours of the Poincaré section count = 0.5S for n = 2000 iterations (white). The interior
contours of the RCV coincide with the stochastic separatrices or laminar flux rope boundaries, whereas Qz

1
0 highlights the flux rope structures within the reconnection

layer.
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ergodic RCV with field lines that occupy it. This is com-
plementary to the squashing factor Qz

100
0

results, and is con-
siderably less computationally expensive, and considerably less
space intensive, since we only need to integrate field lines xB
(Equation (1)). Using seed points x0 along y= 0.0 over
x ä [−0.42, 0.42] at the bottom boundary z0=−0.5, we trace
field lines over a large number of iterations of the mapping Fz

n
0

(Equation (2)) then evaluate their distribution over a regular 3D
grid to obtain a Poincaré section count, denoted S . Points
inside the RCV are distinguished by > 0S . The boundary
surfaces between the RCV and the laminar flux ropes are
approximated using contours of = < 1S S0  , which in turn
approximate the stochastic separatrices, assuming that the
ergodic regions are sufficiently filled and the boundaries are
well-resolved at the chosen grid scale.

Figure 9(b) displays the Poincaré section count S at t= 2.5
using n= 2000 iterations of the field line mapping; for com-
parison with Qz

100
0

in Figure 9(a), the same 2D slices have been
given. We observe that the RCV closely matches the stochastic
layer highlighted by Qz

100
0
, and its boundary can be effectively

estimated by contours of = 0.5S , shown in black. The
thicknesses δy are slightly wider than the Qz

100
0

thicknesses (by
about 6% after t= 3.0), presumably because the computation-
ally lighter S could be evaluated for a higher number of
iterations and therefore better fill the true topological region.

In principle, regions where > 0S may not strictly be
stochastic: the initial seed line may pick laminar islands that
may exist within the otherwise stochastic RCV, and we have
evidence in rare cases of minor numerical leakage into the
laminar regions, which might exaggerate the spread of the
RCV. These issues are not major, and the squashing factor
results Qz

100
0

in Figure 9(a) support that the reconnection layer
becomes almost entirely stochastic after t= 1.8. We also
comment that the boundary detected between the RCV and the
outer topological region (black lines near the x=±0.5
boundaries in Figure 9(b)) is not strictly a stochastic separatrix:
it is only a topological boundary, up to n= 2000 iterations for
our collection of seed points. The outer topological region

quickly becomes high-Q after t= 0.8 and is nearly indis-
tinguishable from the stochastic RCV by t= 2.2 using Qz

n
0
for

n 50. The general agreement is clear by comparing the top
panels of Figure 9(a) and (b).
The evolution of the mean contour thickness 〈δy〉 of S for

n= 2000 is shown in Figure 7 (turquoise). This agrees very
closely with the mean thickness for Qz

100
0

(dark green),
excluding the minor bump between t= 0.4 and 1.0, indicating
that the RCV is, for practical purposes, almost equivalent to the
stochastic layer. The quasi-stationary mean thickness for S
after t= 3.0 (label (f)) is 〈δy〉≈ 0.047, which is 4.5−8.1 times
greater than the inner thicknesses.

3.2.5. Local Magnetic Topology versus Stochasticity

Finally, we refer back to the flux rope structures detected in
Section 3.2.3 and compare them to the larger stochastic layer in
which they are embedded. First, the dual usage of Qz

n
0
for

highlighting the flux rope structures (Section 3.2.3, n= 1) and
characterizing the outer stochastic layer (Section 3.2.4,
n= 100) demonstrates that both constructions are connected
and threaded by the same field lines. Figure 10 overlays the
squashing factor Qz

1
0
with z0=−0.5 at z= 0.0 (from Figure 8)

with contours of = 0.5S for n= 2000 (white). The upper
panels are samples over time, whereas the bottom panel is a
close-up of the reconnection layer at the SGTR phase onset
t= 2.4 (label (e) in Figure 2). Consistent with Section 3.1,
Figure 10 illustrates that the large laminar flux ropes shrink
over time, and the outer topological region is engulfed by the
RCV by t= 3.0 (label (f) in Figure 2). We observe that the
RCV contains the flux rope structures, evidencing that there
exist internal features of the reconnection layer that are smaller
than the stochastic thickness, and detectable using only topo-
logical properties of the magnetic field. Further, the lack of
structural features illuminated by Q 1z

1
0
 within the inter-

mediate blue regions inside the stochastic layer is consistent
with previous observations (e.g., Rubino et al. 2015; Borgogno
et al. 2017; Stanier et al. 2019) and suggests that these inter-
mediate regions have distinct properties from the SGTR core;
Section 3.3 discusses these “SGTR wings” in detail from a
mean-field perspective.

Figure 11. Normalized mean profiles in the y-direction across the reconnection
layer, over the SGTR phase t ä [2.4, 5.0] (after label (e) in Figure 2). Dark red
(dashed): current density strength j; orange: vorticity strength ω; yellow
(dashed): outflow velocity absolute value |vx|; light blue: energy of the
magnetic field fluctuations

~
E ;m dark blue (dashed): energy of the kinetic fluc-

tuations
~
E ;k pink: turbulent EMF- ~ ´

~
v B ;z( ) dark green (dashed): squashing

factor Qz
100
0 for z0 = −0.5; and turquoise: Poincaré section count S for

n = 2000 iterations.

Figure 12. Mean profiles of the fluctuation variables in the y-direction across
the reconnection layer, over the SGTR phase t ä [2.4, 5.0] (after label (e) in
Figure 2). Pink: turbulent EMF- ~ ´

~
v B ;z( ) light blue: energy of the magnetic

field fluctuations
~
E ;m dark blue (dashed): energy of the kinetic fluctuations

~
E ;k

and gray (dotted): turbulent energy fluctuation ratio á
~

ñ á
~
ñE Em k (right axis).
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From 2D slices at z= 0.0, flux rope structures cover
approximately 50% of the total area of the stochastic layer
during SGTR; this area ratio is greater than the ratio 12%–24%
of the inner and outer thickness scales, indicating that the flux
rope structures are not assigned to the mean inner or outer
characteristic scales, but instead drive the properties of both. In
principle, a mean thickness 〈δy〉 could be measured for Qz

1
0
in a

similar style to Sections 3.2.2 and 3.2.4. However, attempting
to do so would be expensive, as squashing factor calculations
would have to be carried out for every z-slice. Section 4.2
provides further analysis and discussion of the flux rope
structures.

3.3. Mean Profiles

Section 3.2 investigated the layer thickness scales by taking
measurements δy in the y-direction, then averaging these over
the central region of the reconnection layer to obtain a mean
thickness 〈δy〉 for different variables f (x) at each simulation
snapshot. A complementary approach is to evaluate the mean
profile of f (x) across the reconnection layer in the y-direction,
using spatial and time averaging to maximize signal to noise.
While this second method is applicable only to the quasi-sta-
tionary SGTR phase of the simulation, it delivers additional
insights into the shapes of the underlying profiles of f (x).

Figure 11 shows the normalized mean profiles of the variables
considered in Section 3.2 over yä [−0.08, 0.08]. For variable
f (x), we take the spatial average over the same local region (x,
z)ä [−0.15, 0.15]× [−0.5, 0.5) used for 〈δy〉. To further reduce
noise, we also take the time average over the SGTR phase
tä [2.4, 5.0] (after label (e) in Figure 7); changing the lower
bound for the time from t� 2.0 to t� 4.0 did not significantly
change the resulting profiles. To aid the comparison, the final
mean profiles á ñf are normalized by their local maximum over
yä [−0.08, 0.08], denoted á ñ = á ñ á ñ*f f fmax .

(a) SGTR (inner) core—The mean profiles for the current
density strength j (dashed dark red), vorticity strength ω

(orange), energy of the magnetic field fluctuations
~
Em (light

blue), and energy of the kinetic fluctuations
~
Ek (dashed dark

blue) are very consistent in the interior region and form a
narrow peak, in agreement with Figure 7. To obtain a mean
profile for the outflow jets, the absolute value |vx| (dashed

yellow) is taken prior to averaging (similar to Section 3.2.2) to
avoid cancellation due to approximate antisymmetry about
x= 0.0. The mean profile of the turbulent EMF - ~ ´

~
v B z( )

(light pink) has also been provided; an FWHM estimation of
the thickness of the positive central peak is very consistent with
the quasi-stationary mean thickness [〈δy〉≈ 0.0096] for
- ~ ´

~
v B z∣ ( ) ∣ measured in Section 3.2.2. While the mean pro-

files for j, ω,
~
Em,

~
Ek, |vx|, and- ~ ´

~
v B z( ) are not identical, the

inner thicknesses obtained in Section 3.2.2 adequately describe
the cores for all of these quantities, further supporting the
existence of an inner scale for SGTR dynamics.
(b) Outer scale—For the squashing factor Qz

100
0

(for
z0=−0.5; dashed dark green) and Poincaré section count S
(for n= 2000; turquoise), the mean profiles show close
agreement with each other, forming a broad indicator-like
distribution. This further confirms the existence of a thicker
layer in which the magnetic field is stochastic and connected to
the interior parts of the reconnection layer; Sections 4.2 and 4.3
discuss this property in detail. Estimating the outer and inner
thickness from the FWHM of the mean profiles shown in
Figure 11 finds that the outer scale is a factor 4.6−9.5 broader
than the inner scale, which overlaps with the scale ratio of
4.2−8.1 determined from 〈δy〉 measurements in Section 3.2.4.
(c) SGTR wings—We refer to the regions between the inner

core and the stochastic separatrices as the SGTR wings. The
amplitude of MHD turbulence (quantified by

~
Em and

~
Ek) is

much lower in the wings than in the core, but while the wings
are less turbulent, they nonetheless are part of the wider sto-
chastic layer that is magnetically connected to the core. We also
see evidence that fluctuations in the wings have a different
nature to fluctuations in the core: Figure 12 shows the mean
profiles of the fluctuation variables and the turbulent energy
fluctuation ratio á

~
ñ á

~
ñE Em k (dotted gray). In the innermost

region, we have a roughly constant ratio of á
~

ñ á
~
ñ »E E 1.7m k ,

previously found by Huang & Bhattacharjee (2016; see their
Figure 3) to be approximately 1.9. In the wings, however, a
significantly greater excess of

~
Em to

~
Ek is found, up to

á
~

ñ á
~
ñ »E E 3.2m k . Further, the mean profile of - ~ ´

~
v B z( ) has

reversals on either side of the central peak, which span the
wings. These empirical results suggest that the SGTR wings
have their own particular dynamics, which could potentially be
important to a fuller understanding of SGTR. This mean prop-
erty is also consistent with Section 3.2.5 where we observed
sizeable voids flanking the core of the reconnection layer that do
not contain flux rope structures highlighted by Q 1z

1
0
 .

Reconnection electric field—To obtain additional insight
into the SGTR layer structure, we also consider remaining
terms from the decomposition of the electric field component
Ez shown in Equation (4). Similar analysis was carried out by
Huang & Bhattacharjee (2016) and in the context of kinetic
simulations by Le et al. (2018) and Liu et al. (2011, 2013). By
taking the spatial average over (x, z) ä [−0.15, 0.15]× [−0.5,
0.5) and time average over t ä [2.4, 5.0], we obtain

há ñ= -á ´ ñ - á ~ ´ ñ+ á ñ~
v B v BE j , 7z z z z( ¯ ) ( ) ( )

i.e., an equation for the mean profiles of Ez, the background
EMF, the turbulent EMF, and the resistive EMF. The reduction
from Equation (4) to Equation (7) is only due to the mean over
zä [−0.5, 0.5) by the definition of the mean f̄ and fluctuating
~
f components.

Figure 13. Mean profiles in the y-direction across the reconnection layer, over
the SGTR phase t ä [2.4, 5.0] (after label (e) in Figure 2), using terms from the
decomposition of the electric field component Ez. Purple (dashed): Ez; blue:
background EMF - ´v B ;z( ¯ ¯ ) light pink: turbulent EMF - ~ ´

~
v B z( ) (see

Figure 11); and dark pink (dashed): resistive EMF ηjz.
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The decomposition in Equation (7) is shown in Figure 13.
The results resemble those found in Huang & Bhattacharjee
(2016; see their Figure 6), although the time average over the
SGTR phase that we have employed produces a cleaner plot
than inspecting the EMF terms at a single snapshot, which
allows for a more confident interpretation and detection of new
features. The ratio between 〈Ez〉 (dashed purple) about the
midplane y= 0.0 and Vrec is approximately one, which is also
consistent with Huang & Bhattacharjee (2016; see their Figures
2 and 6). In an exact steady state, 〈Ez〉 would be constant in y,
but in this simulation, it falls off slightly for increasing |y|, as a
consequence of a gradual decay in |Bx| that occurs as the
laminar flux ropes that merge to drive the SGTR are consumed
on a secular timescale. This departure from a constant 〈Ez〉
model is minor, and our focus is on the changing dominant
contributions to 〈Ez〉. In the outer regions, 〈Ez〉 is strongly
dominated by the background EMF (blue) produced by the
inflow of magnetic flux toward the reconnection region. Near to
the midplane, the background EMF drops greatly as the inflows
stop; the blue curve does not reduce all the way to zero at
y= 0.0 because of the contribution of reconnection outflows
within the region we have averaged over. The difference
required to maintain near constancy of 〈Ez〉 across the recon-
nection region is provided by the turbulent EMF (light pink;
see Figures 11 and 12). By comparison, the resistive EMF
(dashed dark pink) is much smaller, which is an important test
that the reconnection in the SGTR phase of our simulation is
indeed attributable to turbulence, not resistivity. There is also
no significant missing contribution to 〈Ez〉 at y= 0.0, which
evidences that the reconnection is not attributable to numerical
resistivity. Moreover, the results of Figure 13 demonstrate that
during the quasi-stationary SGTR phase, from a mean-field
perspective, our simulation behaves in a manner reconcilable
with a Sweet–Parker type of model, but with the reconnection
electric field provided by turbulence that is generated and
sustained within the reconnection region, instead of by

resistivity. At the same time, the mean profile of the turbulent
EMF also reinforces that the full picture of SGTR is more
complicated than simply invoking a “turbulent resistivity,” due
to the reversal of the turbulent EMF in the SGTR wings.

4. Discussion

4.1. Sweet–Parker Scalings

The results of Section 3.2 have shown that the SGTR layer
displays more than one characteristic thickness 〈δy〉, most
notably an inner scale associated with current density, vorticity,
outflows, and turbulence, and an outer scale associated with
stochastic magnetic field line mixing. Both layer thickness
scales correlate with the global reconnection rate Vrec (Figure
7), in a sense that they rapidly grow at the turbulent recon-
nection onset and approximately plateau during the SGTR
stage. This leads to an important question: what is the “correct”
thickness to predict the global reconnection rate of quasi-sta-
tionary SGTR, using a Sweet–Parker-like estimation of the
reconnection layer aspect ratio?
The classical Sweet–Parker model (Parker 1957; Sweet 1958)

involves a simple laminar 2D configuration containing a thin
extended current sheet of length L and thickness δ with δ= L.
The model assumes that a steady state is obtained where the
inflow velocity of plasma vin balances the outward diffusion rate
of the field lines (Priest & Forbes 2000; Kowal et al. 2012),
which yields the critical approximation vin≈ 2η/δ. Two of the
Sweet–Parker model assumptions do not apply to SGTR,
namely that the magnetic field is laminar and that the recon-
nection electric field is resistive. However, many component
parts of the Sweet–Parker analysis are independent of those
assumptions, and others are readily modified, making it possible
to update Sweet–Parker insights for quasi-stationary SGRT.
Under mass conservation, the total mass flux that enters the

reconnection layer from both sides along length L must equal
the total mass flux that leaves both edges of the reconnection

Figure 14. Overlay plots of the vx (left panel) and vy (right panel) components with the laminar boundaries of the upper and lower flux ropes (black), i.e., stochastic
separatrices, using a sample at z = 0.0, t = 4.0. The laminar boundaries are approximated using contours of the Poincaré section count = 0.5S (for n = 2000
iterations). The mean inflow velocity 〈vin〉 is approximated within the interior of the laminar flux ropes. The common tangents of the laminar boundaries (dashed
green) are used to approximate the mean length 〈L〉 of the reconnection layer.
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layer of thickness δ, yielding the approximation vinL≈ voutδ.
Further, the outflow is found to satisfy vout≈ vA where vA is the
Alfvén speed with respect to the reconnecting inflow field. The
inflow speed is then taken as the reconnection rate Vrec= vin.
Hence, when the densities of the inflow and outflow are similar,
we have the aspect ratio scaling

d
= »V v v

L
, 8Arec in ( )

which does not depend on the processes (e.g., resistive versus
turbulent) inside the reconnection region.

Since the magnetic field in our simulation possesses a
Sweet–Parker-type global magnetic topology, it is insightful to
test the Sweet–Parker scaling (Equation (8)) over time. Under
normalization, we have vA≈ 1. The outflow velocity is con-
sistent with the Sweet–Parker approximation, with |vx|≈ 1.
While our simulation is compressible, the mass density ρ does
not widely fluctuate, with the global range remaining within
ρ≈ 0.73–1.18. The steady-state assumption is only approxi-
mately satisfied for the initial 2.5D laminar stage (labels (a)–(c)
in Figure 2) and the SGTR stage (after label (e) in Figure 2)
where we have the SGTR analog of Sweet–Parker reconnec-
tion, especially during the quasi-stationary phase (after label (f)
in Figure 2). Hence, we do not expect the scaling (Equation (8))
to be a satisfactory approximation during the intermediate
stages of the simulation (labels (c)–(e) in Figure 2).

The inflow velocity vin can be approximated by taking an
appropriate mean of the component vy toward the reconnection
layer within the large laminar flux ropes. The upper Vupper and
lower Vlower flux rope volumes are defined as the regions
enclosed by the corresponding stochastic separatrices; we
approximate the laminar boundaries ∂Vupper and ∂Vlower using
contours = 0.5S of the Poincaré section count for n= 2000
iterations (see Section 3.2.4). Figure 14 shows the laminar
boundaries overlaid on the vx and vy components at z= 0.0,
t= 4.0. We then evaluate the absolute value of the mean á ñvy∣ ∣
over each flux rope volume Vupper and Vlower, then take the
average of these to approximate the mean inflow velocity 〈vin〉.
Other averages of vy were tested and found to be consistent,
e.g., taking various á ñvy∣ ∣ after filtering for vy< 0 in Vupper and
vy> 0 in Vlower.

The layer length L was estimated as follows. Using the
laminar boundaries ∂Vupper and ∂Vlower on every z-slice, we
found the common tangents on the left and right (dashed green
lines in Figure 14). We then approximated L by measuring the
distance between the intersection points of each common tan-
gent with the midplane y= 0.0. The average was then taken
over the whole domain z ä [−0.5, 0.5) to obtain a mean layer
length 〈L〉, the standard error of which was very small. The
mean decreases monotonically over time from 〈L〉≈ 1.0 at
t= 0.0 to 〈L〉≈ 0.51 at t= 5.0 as the laminar flux ropes
reconnect. The evolution is approximately piecewise linear
with distinct changes in the gradient during each general stage
of the simulation ((i), (ii), and (iii) in Figure 2); the steepest
gradient occurs during the transition phase. The common tan-
gents generally align with the outflow termini, at which the
Alfvénic reconnection outflows begin to brake significantly in
vx and are redirected, creating a reversal in vy between the
inflow of the laminar flux ropes and the return flow around
them (see Figure 14). The mean length 〈L〉 can also be
approximated using contours of the outflow vx and inflow vy

velocities directly; these yield consistent results with the
common tangents method but are less stable due to turbulence.
Figure 15 compares the aspect ratios 〈δy〉/〈L〉 for selected

characteristic thicknesses 〈δy〉 evaluated earlier in Section 3.2
(see Figure 7). The 〈δy〉/〈L〉 approximations increase over
time, which is not unexpected since the mean thicknesses 〈δy〉
reach quasi-stationary values while the length 〈L〉 decreases. To
test the Sweet–Parker scaling (Equation (8)), we also plot the
global reconnection rate Vrec (dashed black) and the mean
inflow velocity 〈vin〉 (dashed gray). The 〈vin〉 is comparable in
magnitude with Vrec before the turbulent reconnection onset at
t= 1.0 (label (c)) and during the pure SGTR phase t= 3.0−5.0
(after label (f)), as anticipated. During the transition phase
t= 1.0−2.4 (labels (c)–(e)), the increase in 〈vin〉 lags behind the
increase in Vrec. In this part of the simulation, reconnection is
not quasi-stationary and the laminar flux ropes are eroded by
the expansion of the reconnection layer, such that Vrec can
exceed 〈vin〉. There is then evidence of 〈vin〉 overshooting Vrec

before the system settles into quasi-stationary SGTR; for this
reason, we focus on the mean values after t= 3.0 (label (f)).
During quasi-stationary SGTR, we observe Vrec≈ 0.020 and
〈vin〉≈ 0.023.
The aspect ratio for the Poincaré section count S (for

n= 2000; turquoise) agrees well with Vrec prior to t= 1.3, but
afterward, the aspect ratios for both S and Qz

100
0

(for
z0=−0.5; dark green) exceed Vrec and continue to grow. After
t= 3.0, the aspect ratios using the outer thicknesses are 3.8
−4.0 times Vrec and 3.2−3.4 times 〈vin〉. The aspect ratios for
the inner thicknesses, e.g., current density strength j (dark red),
turbulent EMF - ~ ´

~
v B z( ) (dotted pink and dotted purple),

and outflow velocity |vx| (yellow), also agree well with Vrec and
〈vin〉 prior to t= 1.0. For j and - ~ ´

~
v Bmax , 0z{ ( ) }, the

measured aspect ratios after t= 3.0 are 0.49−0.57 times Vrec

and 0.42−0.48 times 〈vin〉. The best agreement is obtained for
|vx|, which is closely tracked by - ~ ´

~
v B ;z∣ ( ) ∣ the measured

Figure 15. Comparison of the aspect ratios 〈δy〉/〈L〉 for various characteristic
thicknesses 〈δy〉 with the global reconnection rate Vrec and mean inflow
velocity 〈vin〉 over time. Dark red: current density strength j; yellow: outflow
velocity |vx|; pink (dotted): unsigned turbulent EMF - ~ ´

~
v B ;z∣ ( ) ∣ purple

(dotted): positive turbulent EMF - ~ ´
~

v Bmax , 0 ;z{ ( ) } dark green: squashing
factor Qz

100
0 for z0 = −0.5; turquoise: Poincaré section count S for n = 2000

iterations; black (dashed): global reconnection rate Vrec; and gray (dashed):
mean inflow velocity 〈vin〉. The vertical dotted lines mark times of interest: (c)
turbulent reconnection onset (t = 1.0); (e) SGTR onset (t = 2.4); and (f) “pure”
SGTR onset (t = 3.0).
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aspect ratios for these after t= 3.0 are 0.81−0.90 times Vrec and
0.69−0.76 times 〈vin〉. Finally, we comment that since the
Sweet–Parker scaling (Equation (8)) is derived from mass flux
considerations, it is well founded that Vrec and 〈vin〉 should be
closely related to the mean thickness and profile of the outflows
|vx|. Similarly, the induction equation ensures that the char-
acteristic thickness of the outflows should be closely related to
the mean thickness and profile of the dominant source of the
reconnection EMF, which for SGTR is the turbulent contrib-
ution,- ~ ´

~
v B z( ) . Our results in Figure 15 confirm that during

the pure SGTR phase, there is indeed consistency between the
reconnection rate, inflow speed, outflow thickness, and turbu-
lent EMF thickness.

From the Sweet–Parker scaling (Equation (8)), the large
differences between 〈δy〉/〈L〉 for the outer thickness scale and
Vrec or 〈vin〉 imply that the stochastic layer thickness is not the
“effective” thickness to predict the global reconnection rate.
The reconnection rate is instead in agreement with the inner
scale associated with the thicknesses of the current density,
vorticity density, reconnection outflows, and turbulent
fluctuations.

There have previously been two major conceptual models of
how 3D reconnection may be enhanced under turbulence by the
broadening of the effective thickness δ of the reconnection
layer. One of these models, which is found in field line cartoons
similar to Figure 2 of Lazarian & Vishniac (1999), has invoked
broadening of the reconnection layer through field line wan-
dering, leading various studies to focus on identifying the
stochastic or mixing region (e.g., Daughton et al. 2014). The
alternative, which is less convenient to represent in cartoon
form, invokes the broadening of the reconnection layer by
replacing the resistive EMF with the turbulent EMF (see
Equation (7)). Until now, it may have been widely assumed
that the stochastic and turbulent EMF thicknesses would be
equivalent; however, the results of this paper show that these
can differ significantly (by a factor of roughly six in our

simulation), and it is the inner scale associated with the tur-
bulent EMF, i.e., effective reconnection electric field produced
by turbulent fluctuations, that sets the reconnection rate of
quasi-stationary SGTR, not the larger stochastic thickness.
The significance of the inner scale for the reconnection rate

can be understood by observing that, in mean models, fluc-
tuations of relatively large amplitude are located in the SGTR
core, and since they provide the reconnection EMF, the width
of this inner region sets the global reconnection rate. Mean-
while, fluctuations are also present in the SGTR wings, but at
drastically lower amplitudes than in the core (Figures 11 and
12). The relatively weak turbulence in the wings scatters
magnetic field lines, making the field stochastic there as well,
magnetically connecting the core and wings and promoting
mixing of plasma from the two sides of the reconnection layer;
but due to low amplitudes, it does not contribute significantly
to the global reconnection rate. This does not necessarily mean
that the wings are unimportant: the reversed turbulent EMF and
greater á

~
ñ á

~
ñE Em k ratio in the wings compared to the core

(Figures 11, 12, and 13) are evidence that turbulence in the
wings is potentially of a qualitatively different nature to tur-
bulence in the core. The existence of the SGTR wings is an
interesting and unanticipated finding of this study, and their
role in SGTR will be a compelling topic for future research.

4.2. Flux Rope Structures

To work toward a complete understanding of SGTR, it is
important that mean models for the global dynamics (e.g.,
Sections 3.2, 3.3, and 4.1) are complemented with knowledge
of the dynamics within the reconnection layer. For example,
one would like to understand the nature of the turbulence in the
core, especially the source of the nonalignment and dominant
handedness of~v and

~
B required to produce the turbulent EMF,

and why these properties change in the SGTR wings, where the
á
~

ñ á
~
ñE Em k ratio is larger and the turbulent EMF reverses.

Individual snapshots (e.g., Figures 3, 8, and 10) show that

Figure 16. Comparison of color mapsCz
n
0 at t = 3.0. The top and bottom panels show n = 1 and n = 10 at z0 = −0.5, respectively. Although we can identify flux rope

structures within the stochastic field, the field line mapping is too topologically complicated to allow for the detection of distinct flux ropes using color maps,
presumably because they are too small or not structured around a periodic point.

20

The Astrophysical Journal, 940:94 (32pp), 2022 November 20 Beg, Russell, & Hornig



dynamics in the SGTR layer are intimately related to the
generation and interaction of fully 3D structures that have
similarities with plasmoids; however, they have a highly
fragmented internal structure and are “frayed” in the sense that
field lines traced from inside each flux rope are stochastic and
ultimately exit it into the wider stochastic layer. In this section,
we further explore the properties and magnetic topology of
these flux rope structures.

Over t= 0.0−1.8, we were able to successfully identify and
trace the axes of some of the initial ropes that develop within
the reconnection layer with the use of a color map Cz

n
0
in

Equation (3). Examples include the CFR and the two neigh-
boring prominent flux ropes highlighted in Section 3.1. How-
ever, the color map method is ineffective in general, because:
(i) it can only detect flux ropes whose axes form closed loops;
(ii) it fails to identify the flux ropes at the smallest observable
length scales; and (iii) once stochasticity becomes widespread
within the reconnection layer, periodic points are rarely dis-
cernible. The color map is only adequate primarily during the
early stages of the simulation while the magnetic field is still
weakly 2.5D, especially for identifying flux ropes developed
from parallel tearing modes. Figure 16 shows the color mapCz

n
0

at z0=−0.5 over the reconnection region at t= 3.0 for n= 1
and n= 10 iterations of the field line mapping Fz

n
0

(Equation (2)). Although large structures in the magnetic field
can be observed, especially for n= 10 (or greater), the field line
mapping is too topologically complicated to allow for the

identification of any distinct elliptic points. The failure of the
color map method is possibly in part due to limitations in
numerically integrating stochastic field lines over the whole
interval z ä [−0.5, 0.5) to high precision, or resolving intricate
details of Fz

n
0
such as elliptic points at length scales comparable

to the underlying spatial grid of the Lare3d simulation. How-
ever, another consideration is that flux ropes may pre-
dominantly be oblique with axes that form open curves, i.e., do
not coincide with elliptic periodic points.
Alternatively, it is also very likely that the flux ropes in

SGTR are not structured around well-defined axes in the first
place, similar to a braided magnetic field (Wilmot-Smith et al.
2010; Yeates et al. 2010; Pontin et al. 2011; Yeates & Hornig
2011a, 2013; Pontin et al. 2013; Pontin & Hornig 2015; Wyper
& Hesse 2015; Yeates et al. 2015; Pontin et al. 2016, 2017;
Prior & Yeates 2018). In this case, they are better described as
loose stochastic flux bundles (Huang & Bhattacharjee 2016) in
the form of structures that only attain coherence locally in the z-
direction. These crucial properties raise the important problem
of how best to characterize, trace, and analyze these flux rope
structures using topological tools. It also necessitates the local
analysis of the flux rope structures, using the field line mapping
over smaller distances |n| ä (0, 1). Research into this will also
be illuminating for simulations in nonperiodic domains exhi-
biting SGTR.
From the perspective of fluid mechanics, the flux rope

structures we observe in the magnetic field closely resemble

Figure 17. Comparison plots of the maximizing ridges of the forward and backward FTLE Lz
n
0 . Samples over the bottom boundary z0 = −0.5 at t = 3.0 for different

iterations n are shown. The repelling ridges (forward n > 0 in green) and attracting ridges (backward n < 0 in purple) are regions where Lz
n
0∣ ∣ exceeds 50% of the

maximum over the plane for a particular n. Top panel: n = ±0.1. Middle panel: n = ±0.25. Bottom panel: n = ±1.0.
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coherent structures that are widely studied to assess patterns in
unsteady velocity fields. These structures are defined as influ-
ential material surfaces that exhibit considerable temporal
coherence and are independent of the reference frame. A large
collection of tools to rigorously characterize and analyze these
coherent structures exists in the literature.Lagrangian coherent
structures (LCSs) are defined by Lagrangian particle trajec-
tories and correspond to regions in the flow displaying the
strongest shearing, attraction, or repulsion (see review by
Haller 2015, and references therein), whereas objective Euler-
ian coherent structures are defined as the most dominant
material surfaces using properties of the instantaneous velocity
field (e.g., Serra & Haller 2016; Nolan et al. 2020).

Coherent structure tools have been adapted in previous
magnetic reconnection studies and shown to be effective in
illuminating important structures embedded within stochastic
magnetic fields and turbulent plasmas. At fixed snapshots,
Lagrangian tools have frequently been used to reveal LCSs
along magnetic field lines, i.e., in “field line time” (Borgogno
et al. 2011a, 2011b; Rempel et al. 2013; Rubino et al. 2015;
Falessi et al. 2015; Borgogno et al. 2017; Di Giannatale et al.
2018a, 2018b, 2018c; Pegoraro et al. 2019; Veranda et al.
2020a, 2020b; Di Giannatale et al. 2021). The FTLE (e.g.,
Equation (6)) is a common method, equivalent to our earlier
implementation of the squashing factor (Equation (5)). Further,
barriers formed by these coherent structures that temporarily
confine the magnetic field (e.g., Burrell 1997; Tala & Garbet
2006; Connor et al. 2004) have been identified in field line time
by evaluating maximal repulsion-attraction material lines from
Haller (2011; e.g., Onu et al. 2015; Falessi et al. 2015; Di
Giannatale et al. 2018a, 2018b, 2018c, 2021) or second-deri-
vative ridges of the FTLE from Shadden et al. (2005; e.g.,
Borgogno et al. 2011a; Rubino et al. 2015; Pegoraro et al.
2019; Veranda et al. 2020a, 2020b). LCSs have also been
identified using the FTLE along Lagrangian particle trajectories
in two dimensions for observational photospheric data (Yeates
et al. 2012; Chian et al. 2014) and in 3D simulations (Rempel
et al. 2013). Eulerian tools, such as the Q-criterion (e.g., Haller
2005) and related metrics, have additionally been applied to
fixed snapshots of the velocity and/or magnetic fields (Rempel
et al. 2013; Chian et al. 2014).

Identification of alternative surfaces that are closely linked
with LCSs have also been useful in characterizing magnetic field
barriers. Examples of these include: invariant Kolmogorov–
Arnold–Moser (KAM) flux surfaces (e.g., Lichtenberg et al.
1992; Di Giannatale et al. 2021); Cantori (broken KAM flux
surfaces; MacKay et al. 1984; Rubino et al. 2015; Borgogno
et al. 2017; Di Giannatale et al. 2021) or their approximation
through ghost surfaces (Hudson & Breslau 2008; Hudson &
Suzuki 2014); and invariant stable/unstable manifolds corresp-
onding with distinguished hyperbolic trajectories (Haller 2000;
Mentink et al. 2005; Borgogno et al. 2008, 2011a, 2017), i.e., the
3D generalization of hyperbolic lines stemming from X-points in
2D vector fields, or related approximations (e.g., Madrid &
Mancho 2009; Rempel et al. 2013).

Finally, regarding the inner core variables that align with the
flux rope structures, the topic of current and vorticity coherent
structures has also received considerable attention. The detec-
tion, formation, evolution, local or internal structure, and statis-
tical properties of these coherent structures and other important
shear regions have been investigated in detail within turbulent
magnetized plasma in two dimensions (Servidio et al. 2010; Sisti

et al. 2021) and three dimensions (Uritsky et al. 2010; Zhdankin
et al. 2013; Kowal et al. 2020; Sisti et al. 2021; Agudelo Rueda
et al. 2021). Many related studies have also explored the role of
the Kelvin–Helmholtz instability in the generation of these
structures (e.g., Henri et al. 2012; Daughton et al. 2014; Faga-
nello et al. 2014; Borgogno et al. 2015; Sisti et al. 2019; Kowal
et al. 2020). The connection between the coherent current
structures and the development of complex magnetic topologies
and structures has been strongly emphasized in several papers
(e.g., Daughton et al. 2014; Borgogno et al. 2015, 2017; Sisti
et al. 2019).
In our simulation, a simple method to characterize the

instantaneous flux rope structures is by the maximizing ridges
of the FTLE defined earlier as Lz

n
0
(Equation (6)); these are

locations where Lz
n

0
∣ ∣ exceeds a specific threshold, e.g., 50% of

Lmax z
n

0
∣ ∣ over a plane for a particular n (e.g., Chian et al. 2014;

Liu et al. 2018). These ridges are an effective approach to
distinguish surfaces within the reconnection regions where field
lines exhibit strong local convergence/attraction (backward
traces n< 0) or divergence/repulsion (forward traces n> 0)
about a particular z-slice, especially for small |n| ä (0, 1). The
maximizing ridges for Qz

n
0
(Equation (5)) were found to be

almost identical to Lz
n

0
, since both metrics have very close

agreement in our simulation (see Section 3.2.3).
Figure 17 shows the FTLE maximizing ridges at z0=−0.5

for various iterations n at t= 3.0, consistent with Figure 16. In
each panel, the attracting (n< 0 in purple) and repelling (n> 0
in green) ridges are compared for the same |n|; the top, middle,
and bottom panels show n=±0.1, n=±0.25, and n=±1
iterations, respectively. The arbitrary maximizing ridge
threshold was chosen to be 50% for robustness, but values
25%–75% were also effective for visualizing the flux rope
structures.
A 3D diagram is provided in Figure 18 to give a physical

understanding of the relationship between the FTLE structures
and properties of the field lines. The FTLE maximizing ridges
are plotted at z=−0.5 for n=±1 consistent with Figure 17,
and selected bundles of field lines are traced from z=−0.5,
placing seed points in regions where the pressure is low
Îp 1.7, 1.9( ) (see Figure 19). The stochastic separatrices

(black) are also shown on the z=−0.5 and z=−0.85 planes,
approximated using contours of = 0.5S for n= 2000 itera-
tions (see Section 3.2.4). The key idea is that a field line that
passes through an FTLE ridge for a particular n at z=−0.5 will
deviate substantially from nearby field lines as it is traced to
z=−0.5+ n, whereas a field line that passes through a space
without FTLE ridges at z=−0.5 will (typically) remain rela-
tively close to adjacent field lines over the respective distance
in z.
Examining Figure 17, the attracting and repelling ridges

highlight different substructures within the reconnection layer
—a distinction not made when using Qz

1
0
(Figures 8 and 10).

First, the separation rate is not uniform over the plane: some
field lines within the flux rope structures quickly diverge for
small distances from z=−0.5 in the forward and/or backward
directions, while other field lines form coherent braids with
neighboring field lines over longer distances before separating.
For example, the orange flux bundle in Figure 18 intersects
z=−0.5 in a region that is mostly empty of FTLE ridges for
n=±0.1 in Figure 17 except for some faint attracting ridges,
indicating that the field lines are relatively cohesive over
zä [−0.6, −0.4] with some separation in the backward
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direction. However, by n=± 0.25, the traced region in Figure
17 is significantly covered by overlapping attracting and
repelling ridges; in Figure 18, the field lines have separated
substantially once they are traced to z=−0.75 or z=−0.25.

Second, the plasmoid-type cross-sectional structures, iden-
tified earlier from j or Qz

1
0
, are clearly outlined by a thin ske-

leton of field lines displaying strong local deformation for small
trace distances n=± 0.1; by considering longer distances
|n|> 1, we exchange sharpness of the skeleton for greater
coverage within the flux rope structures, due to the topological
complexity of the field line mapping and inherent stochasticity.
Lastly, as the trace distance |n| increases, the flux bundles
slowly mix; the attracting and repelling ridges eventually start
to fill the stochastic regions and coincide in the limit as |n|? 1
(Borgogno et al. 2017). Field lines are therefore temporarily
restricted within the flux rope structures before wandering off
to join other structures or the broader stochastic layer (Bor-
gogno et al. 2011a; Stanier et al. 2019); this frayed property
allows the energetic inner core to be magnetically connected to
the rest of the stochastic layer. From the perspective of SGTR,
these internal local confinement structures are far more relevant

than the asymptotic confinement boundaries represented by the
stochastic separatrices (e.g., Borgogno et al. 2011a).
Finally, we address the connection between the flux rope

structures and the inner and outer scales. Figure 19 is an
ensemble plot comparing different variables over z=−0.5 at
t= 3.0, consistent with Figures 17 and 18, superimposed with
the stochastic separatrices (black): panel (a) shows the FTLE
maximizing ridges for n=±1 (green and purple), panel (h)
shows the pressure p, and the remaining panels plot the phy-
sical variables described in Section 3.2.2. While the plasmoid-
type structures on the z-slice have regions of both low pressure
and high pressure, they do not resemble magnetostatic equili-
bria. Comparing the panels, the maximizing ridges clearly
coincide with prominent features of the physical variables
inside the SGTR layer and disturb the enclosing stochastic
separatrices. This indicates that the flux rope structures detected
from the field line mapping control the dynamics throughout
the SGTR layer, help to shape the stochastic layer and outflow
jets corresponding to vx, and drive the turbulent EMF
- ~ ´

~
v B z( ) . Hence, it is very likely that the dynamics of

the flux rope structures produce the mean-field properties

Figure 18. Sample flux rope structures in the reconnection layer at t = 3.0. The forward (green) and backward (purple) FTLE L
z

1 maximizing ridges (50% of the
maximum over the plane) are shown at z = −0.5 (see Figure 17). The stochastic separatrices (black), approximated using contours of the Poincaré section count

= 0.5S (for n = 2000), are provided on the z = −0.5 and z = −0.85 planes. The field line bundles (multicolored) are traced through selected low-pressure regions
within the flux rope structure cross sections at z = −0.5. Here, flux rope structures are made up of field lines that are locally coherent about z = −0.5 before diverging
at various rates in the positive and/or negative z-direction.
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(Figures 11, 12, and 13), set the inner and outer scales of the
reconnection layer, and play a central role in the enhancement
of the reconnection rate and enabling SGTR. This reflects a
recurring theme in complexity science, that the dynamics of
“microscopic” individuals (in this case, individual flux rope
structures) often give rise to seemingly simpler “macroscopic”
properties (in this case, the mean-field properties of SGTR).

4.3. Dichotomy: Plasmoid-mediated and Lazarian–Vishniac
Perspectives

Our simulation and analysis results show that SGTR pos-
sesses a variety of rich properties in agreement with prior
studies, such as a highly dynamic nonlinear evolution and a
topologically complex and stochastic reconnection layer.
However, we have an apparent dichotomy, since the simulation
exhibits aspects of both nonlinear plasmoid reconnection (e.g.,
Edmondson et al. 2010; Baalrud et al. 2012; Edmondson &
Lynch 2017; Comisso et al. 2017; Lingam & Comisso 2018;
Comisso et al. 2018; Leake et al. 2020) and the Lazarian–
Vishniac model for stochastic reconnection (Lazarian &
Vishniac 1999).

On the one hand, the simulation pathway toward SGTR from
Sweet–Parker reconnection is initiated by the onset of the 2.5D
tearing instability (label (b) in Figure 2). Also, the quasi-sta-
tionary SGTR phase (after label (f) in Figure 2) is distinguished
by the formation and nonlinear interaction of flux rope struc-
tures, due to the development of parallel and oblique tearing
modes (Leake et al. 2020). This is consistent with the plasmoid-
mediated perspective reported in Huang & Bhattacharjee (2016)

and other MHD simulations by Oishi et al. (2015), Striani et al.
(2016), and Beresnyak (2017). This was also observed in several
kinetic simulations in nonrelativistic (Bowers & Li 2007;
Daughton et al. 2011; Liu et al. 2013; Nakamura et al. 2013;
Daughton et al. 2014; Dahlin et al.2015, 2017; Nakamura et al.
2017; Li et al. 2019; Stanier et al. 2019; Agudelo Rueda et al.
2021; Zhang et al. 2021) and relativistic (Liu et al. 2011; Guo
et al. 2015, 2021; Zhang et al. 2021) regimes. However, since
the magnetic field is ergodic within the reconnection layer, the
field lines that constitute the flux rope structures are fully con-
nected into the rest of the stochastic layer. Further, the flux rope
structures are extremely variable and topologically complicated
with highly deformed cross sections, in contrast with 2D simu-
lations where field lines lie neatly on nested flux surfaces
corresponding with chains of laminar plasmoids. This makes it
especially difficult to analyze reconnection locally using the
common proxy ò E ds

xB
 along field lines corresponding to flux

rope axes (e.g., Pontin et al. 2011; Liu et al. 2013; Huang et al.
2014; Gekelman et al. 2020), since most of the axes are non-
trivial to detect and may not be well defined in the first place.
On the other hand, many aspects of the simulation are sen-

sibly interpreted from the perspective of the Lazarian–Vishniac
model for stochastic reconnection, consistent with simulations
by Kowal et al. (2017, 2020), provided a suitable replacement
is made for the applied turbulence originally assumed by
Lazarian & Vishniac (1999). Three-dimensional instabilities
seed stochasticity throughout the reconnection layer, resulting
in the rapid development of a mixing region that is strongly
turbulent, along with the enhancement of the reconnection rate,

Figure 19. Comparison of physical variables, flux rope structures, and stochastic separatrices within the reconnection layer over z = −0.5 at t = 3.0. The interior
contours (black) of the Poincaré section count = 0.5S (for n = 2000 iterations) are superimposed over each plot. Panel (a): maximizing ridges (50% of the
maximum over the plane) of the forward (green) and backward (purple) FTLE L

z
1 (see Figures 17 and 18). Panel (b): outflow velocity vx. Panel (c): current density

strength j. Panel (d): vorticity strength ω. Panel (e): energy of the magnetic field fluctuations
~
Em. Panel (f): energy of the kinetic fluctuations

~
Ek . Panel (g): turbulent

EMF - ~ ´
~

v B z( ) . Panel (h): pressure p.
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before reaching quasi-stationary global dynamics. The sto-
chastic layer plays an important part in the evolution, and its
characteristic thickness correlates well with the global recon-
nection rate. However, the reconnection layer in our simulation
displays distinct inner and outer thickness scales that differ by a
factor of about six, and the SGTR core and SGTR wings
exhibit fundamentally different properties in the direction of the
turbulent EMF and á

~
ñ á

~
ñE Em k ratio, whereas Lazarian &

Vishniac (1999) assumed a single layer thickness and no sub-
structure. Moreover, the stochasticity does not appear to
enhance the reconnection rate by broadening the effective
thickness of the reconnection layer; instead, it is the thickness
of the narrower region of strong turbulence in the SGTR core
that sets the global reconnection rate. We therefore propose that
Lazarian–Vishniac models of SGTR should be modified to
account for the “core and wings” structure found in this study,
and to make the important distinction between the turbulent
EMF (which is the primary driver of SGTR) and magnetic field
line stochasticity.

Both perspectives are currently valuable, and they require
new development before they can fully describe SGTR
dynamics like those analyzed in this paper. This leads to the
important question: are the simulation’s dynamics dominated
by turbulent reconnection or plasmoid reconnection, or do we
obtain an irreducible dualism that is better described by an
existent or new alternative model? Kowal et al. (2020) and
Chitta & Lazarian (2020) have asserted that self-generated
reconnection is dominated by MHD turbulence and the
development of tearing modes is subdued, so the plasmoid
instability is not a significant driver. However, our results
indicate that the problem is not so straightforward to answer,
and that the flux rope structures are an important part of the
dynamics and should be primary targets for analysis to
understand the reconnection within the SGTR layer. Indeed, the
dynamics of the flux rope structures may determine the fluc-
tuations that provide the turbulent EMF of the mean-field
picture of SGTR, making the two perspectives inseparable.

4.4. Path Dependence

Lastly, we found that the formation and kinking of a CFR
was a major component of the turbulent reconnection onset
during our simulation, which was not found in Huang &
Bhattacharjee (2016) upon which this study builds. This raises
a significant question: are the properties of SGTR dependent on
the pathway that sets it up? Further exploration of this, and the
role of kink instabilities within the SGTR context, is crucial. As
an alternative to magnetically driven instabilities, Kowal et al.
(2017) and Striani et al. (2016) have presented simulations in
which they determined that Kelvin–Helmholtz instabilities play
a considerable role. Kowal et al. (2020) later claimed that the
onset and driving mechanism for SGTR is governed by the
Kelvin–Helmholtz instability instead of tearing modes. The
development of a framework that encompasses all of these
possibilities should be an important goal within the magnetic
reconnection community.

5. Conclusions

Throughout this paper, we analyzed the dynamics that occur
when two laminar flux ropes merge in a 10643 3D compressive
visco-resistive MHD numerical simulation. The resultant pro-
cess demonstrates “fast” turbulent reconnection that is fully 3D,

self-generated, and self-sustaining within a global Sweet–Par-
ker-type magnetic topology, consistent with the results of
Huang & Bhattacharjee (2016) from which this study is based
on. Following our results in Section 3 and discussions in
Section 4, the most important outcomes are as follows:

1. Three-dimensional reconnection at S� 104 is qualita-
tively different to 2D models, with fast SGTR initiating in
three dimensions. This result agrees with earlier studies
on SGTR (Oishi et al. 2015; Huang & Bhattacharjee
2016; Striani et al. 2016; Beresnyak 2017; Kowal et al.
2017, 2020).

2. The reconnection process is punctuated by three main
stages: (i) laminar 2.5D phase, (ii) transition phase, and
(iii) SGTR phase. During stage (i), the simulation briefly
experiences slow laminar 2.5D Sweet–Parker reconnec-
tion followed by the development of the 2.5D nonlinear
tearing instability. Stage (ii) is characterized by the sud-
den growth of secondary 3D instabilities, development of
turbulence, fragmentation of the initial current sheet, and
the seeding and spread of stochastic field lines throughout
the broadening reconnection layer. In stage (iii), the
simulation settles into self-sustaining fast turbulent
reconnection and gradually reaches a global quasi-sta-
tionary state.

3. The global reconnection rate Vrec reveals a distinctive
“switch-on” property at the turbulent reconnection onset,
not seen in similar work by Huang & Bhattacharjee
(2016). From an initial Sweet–Parker rate of Vrec≈ 0.003,
Vrec rapidly increases during the transition phase, before
reaching a fast quasi-stationary value of Vrec≈ 0.02
during the SGTR phase, an enhancement by a factor of
approximately 6.4 from the starting rate.

4. The onset of turbulent reconnection occurs at the same
time as a 3D helical kink instability of a large cat-eye flux
rope, i.e., the CFR, and the proliferation of a distinct
topological region corresponding with stochastic field
lines identified with the reconnection layer. The large flux
rope structure has a significant influence on the evolution,
with its expulsion from the reconnection layer marking
the development toward “pure” SGTR.

5. The reconnection layer has two general characteristic
thickness δ scales, evident from the evaluation of the
mean layer thicknesses and mean profiles with respect to
different variables. The inner thickness scale is governed
by an SGTR core associated with the current density,
vorticity density, outflow jets, and turbulent fluctuations.
The outer thickness scale is determined by the stochastic
layer, which is about six times larger than the inner
thickness scale for the simulation analyzed in this paper.
The mean layer thicknesses are found to correlate with
the global reconnection rate, i.e., they sharply increase
during the transition phase and eventually attain quasi-
stationary values during SGTR.

6. Between the SGTR core and stochastic separatrices exist
intermediate regions, i.e., SGTR wings. Within the SGTR
wings, from a mean-field perspective, the turbulent EMF
changes sign, and MHD turbulence is different in char-
acter compared to the core. The “core and wings” struc-
ture could potentially be crucial for a complete
understanding of SGTR, since the weak turbulence within
the SGTR wings generates stochasticity and magnetically
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connects the SGTR core with the rest of the stochastic
layer.

7. From tests of the Sweet–Parker scaling Vrec= vin≈ vAδ/L
during the quasi-stationary SGTR phase, we conclude
that the effective thickness of the reconnection layer is
not the stochastic layer thickness; it is instead the nar-
rower inner thickness of the turbulent EMF, i.e., the
effective reconnection electric field produced by turbulent
fluctuations. This result implies that the Lazarian–
Vishniac model of turbulent reconnection requires
modification.

8. The “frayed” flux rope structures that dominate the
dynamic reconnection layer during SGTR are topologi-
cally complicated, have structural properties reminiscent
of magnetic braids, and consist entirely of stochastic field
lines. These flux bundles may not be structured around
well-defined axes, which means that quantifying a local
reconnection rate, e.g., evaluating ò E ds

xB
 along critical

curves such as flux rope axes, is nontrivial.
9. The flux rope structures, which are “hidden” within the

stochastic layer, can be characterized using attracting or
repelling ridges of the magnetic field over short distances.
Within the SGTR layer, these structures generate the
mean-field properties (including the core and wings),
govern the physical variables, and determine the inner
and outer scales. Ultimately, the coherent field line
arrangements likely have an important function in facil-
itating SGTR and enhancing the reconnection to rates that
are fast. Hence, future local and interior analyses of these
flux rope structures are crucial to understanding the
reconnection inside.

10. Both the plasmoid-mediated and Lazarian–Vishniac per-
spectives of fast reconnection appear valuable for inter-
preting aspects of SGTR; however, both perspectives
require modification to deal with the full complexity of
SGTR simulations like the one analyzed in this paper.

Concerning future research, there are many different poten-
tial avenues to be explored. The dependence of the SGTR
properties on the path from slow to fast reconnection, the role
of different instabilities in sustaining the turbulence, and the
relationship between the dynamics of flux rope structures and
mean turbulence are still open questions. Other research
directions include: the properties of SGTR in different global
magnetic topologies, such as a solar flare model; investigating
how the layer thicknesses, reconnection rate, and pathway
toward SGTR vary with the Lundquist number S; analytical
study of the layer thickness scales that emerge in SGTR; rig-
orous analysis of the flux rope structures that dominate the
SGTR layer; and the exploration of SGTR from the perspective
of the evolution of magnetic helicity.
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Appendix A
Reconnection Rate in Three Dimensions

While the reconnection rate Vrec in 2D configurations has an
established definition, the analogous measure in three dimen-
sions is not trivial to define and is currently a point of dis-
cussion (e.g, Yeates & Hornig 2011b; Daughton et al. 2014;
Huang et al. 2014; Wyper & Pontin 2014; Wyper & Hesse
2015, and references therein). To ensure robust conclusions, we
tested a variety of magnetic flux terms, the rates of change of
which are suitable proxies for the global reconnection rate, with
each flux capturing different nuances of the reconnection pro-
cess. The evolution of these flux measurements is compared in
Figure 20.
The dark blue curve represents the flux definition employed

in this paper and Huang & Bhattacharjee (2016), given by

ò òF = ¢ ¢
Î - - -

=t B dz dxmax ,
x

x

y y1
0.5,0.5 0.5 0.5

0.5

0( ) ∣
[ ]

which is the maximum net flux through a rectangular plane on
y= 0.0 with one boundary at x=−0.5. This is a generalization
of the flux lost from the initial flux ropes in a 2D or 2.5D
geometry under the robust assumption that reconnection pri-
marily occurs across y= 0.0 during the simulation. Over the
long term, Φ1 is dominated by the reconnected flux at large
scales, which forms a growing band of magnetic field around
the pair of merging twisted flux ropes. Therefore, it is a fair
approximation to regard Φ1 as a measure of the magnetic flux
that has finished reconnecting.
However, while Φ1 can effectively evaluate the flux asso-

ciated with a single isolated reconnection event, it fails in
general to incorporate the total flux corresponding with many
simultaneous reconnection processes due to cancellation of the
signed area over the integral of By. For example, for a chain of
same-sized magnetic islands aligned with y= 0.0 in two
dimensions or two-and-a-half dimensions, Φ1 will only mea-
sure the flux in one island; this argument extends to flux ropes
in three dimensions. A useful modification, denoted by the light
blue curve in Figure 20, is

ò òF = ¢ ¢
- -

=t B dz dx
1

2
,y y2

0.5

0.5

0.5

0.5

0( ) ∣ ∣ ∣

which takes the average of the positive and negative magnetic
fluxes through the entire y= 0.0 midplane. Physically, the
major difference is that Φ2 includes all flux ropes that intersect
y= 0.0 as flux that has reconnected but may still be recon-
necting, whereas Φ1 is more focused on global scale flux that
has finished reconnecting. The flux Φ2 displays a significantly
larger gradient than Φ1 over t= 0.4−2.4 (before label (e) in
Figure 20) before reducing to approximate linear growth
similar to Φ1 by t= 3.0 (after label (f) in Figure 20) during the
phase of quasi-stationary SGTR. Practically, the more globally
focused measure of Φ1 is smoother, which is desirable when
quantifying the reconnection rate.
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Since our simulation contains two large merging flux ropes
whose interiors remain laminar, it is also sensible to measure
the poloidal and toroidal fluxes of these. In this case, the rate of
loss of flux from the flux ropes provides an alternative view of
the reconnection rate, such that Vrec=−dΦ/dt. The boundary
surface of each laminar flux rope, i.e., stochastic separatrix, was
identified from interior contours of the Poincaré section count
using = 0.5S (see Section 3.2.4). By Stokes’ theorem, the
magnetic flux over an oriented surface R can be readily eval-
uated using

F = = =  ´
¶

B a A l B Ad d , .
R R

∬ ∮· ·

We require the vector potential A to be periodic in z and suf-
ficiently smooth; otherwise, it is arbitrary; a suitable choice is

ò ò= - ¢ = = ¢
- -

A B dy A A B dy, 0, .x

y

z y z

y

x
0.5 0.5

The poloidal flux in each laminar flux rope is calculated as the
magnetic flux through a periodic ribbon R, such that the
boundary ∂R consists of two loops: one lying on the flux rope’s
boundary surface LS and another coinciding with the flux
rope’s axis Laxis. The flux rope axes were obtained by identi-
fying the associated elliptic periodic points at z=−0.5 using
the color map (see Section 3.1.2) then tracing the corresp-
onding field lines. For simplicity, we considered the flux
through a ribbon R(θ) at a fixed local poloidal coordinate value
θ ä [0, 2π) with respect to each Laxis to ensure that the ribbon
was periodic in the toroidal z-direction. Hence, we evaluated
the poloidal fluxes using

qF = -
q

A l A ld d .P
L LS axis

∮ ∮( ) · ·
( )

Since the poloidal fluxes should be invariant to the measure-
ment angle for both of the laminar flux ropes, we evaluated the
mean 〈ΦP(θ)〉 over many samples θ ä [0, 2π) to estimate the

error, which was found to be very small. In Figure 20, the
losses of poloidal fluxes−ΔΦP from the upper flux rope (light
green) and lower flux rope (dashed dark green) agree well with
each other, with minor fluctuations due to short-term variations
in reconnection between each rope and the turbulent recon-
nection layer. The consistency between both poloidal fluxes
confirms balanced reconnection above and below the recon-
nection region, as expected due to symmetry of the initial setup
about y= 0.0. The poloidal fluxes removed from the laminar
flux ropes approximately track the previous flux measurements,
especially Φ2 during quasi-stationary SGTR (after label (f) in
Figure 20), indicating that the loss rate of the poloidal fluxes
correspond well with the global reconnection rate.
The evaluation of the poloidal fluxes ΦP has close simila-

rities with a method used in Daughton et al. (2014; see also
Yang et al. 2020), who computed a reconnection rate related to
the loss rate of the laminar magnetic flux Φ in regions above or
below their stochastic layer by directly calculating dΦ/dt. In
principle, the time derivative of a flux can be evaluated via the
Leibniz integral rule, Faraday’s law, and Stoke’s theorem,
giving

F
= - + ´

¶
E w B l

d

dt
d ,

R
∮ ( ) ·

which is the electric voltage with an additional contribution
from the velocity w of the surface boundary ∂R. However, in
general, an arbitrary boundary subpath ∂Ri lying on a sto-
chastic separatrix is not comoving with the plasma (w≠ v),
which leaves the difficult task of approximating w, and ∂Ri

does not coincide with a single field line; hence, the
´w B ld· term does not vanish by the usual arguments. We

comment that Equation (4) in Daughton et al. (2014), which
uses the electric voltage only, does not hold since the stochastic
separatrices in their simulation and ours are time dependent,
i.e., the w term cannot be neglected. Further, from comparison
tests between the electric voltage and ΦP in our simulation, the
w term contribution was found to be significant.
The above definitions of Φ track reconnection of the hor-

izontal components of the magnetic field, i.e., the components
that bear strongest analogy to 2D reconnection. For a 3D
magnetic field, one can also examine reconnection of the tor-
oidal flux within each laminar flux rope, which we calculate as
the magnetic flux through a cross-sectional surface R with
closed boundary ∂R= LS lying on the flux rope boundary
surface. We considered the toroidal flux at a fixed z ä [−0.5,
0.5) value for convenience, evaluated using

F = A lz d .T
L zS

∮( ) ·
( )

The mean 〈ΦT(z)〉 was then taken over many samples
zä [−0.5, 0.5), which were confirmed to be very consistent. In
Figure 20, the losses−ΔΦT of the upper (pink) and lower
(dashed purple) toroidal fluxes were found to be significantly
larger than the other flux measurements owing to the relative
strength of Bz compared to the other magnetic field compo-
nents. The ratio between the toroidal and poloidal fluxes dis-
played some minor temporal variation: the ratio gradually
decreases from ΦT/ΦP≈ 2.88 at t= 0.0 before reaching a
quasi-stationary plateau by t= 2.4 (label (e) in Figure 20), with

Figure 20. Comparison plot of different flux functions that can be used as a
proxy to measure the reconnection rate. Dark blue: flux Φ1; light blue: modified
flux Φ2; light green and (dashed) dark green: loss of poloidal fluxes ΦP from the
upper and lower laminar flux ropes; and pink and (dashed) purple: loss of
toroidal fluxes ΦT from the upper and lower laminar flux ropes, scaled down by
the average flux ratio over t ä [2.4, 5.0] of ΦT/ΦP ≈ 2.61. The vertical dotted
lines indicate times of interest: (c) turbulent reconnection onset (t = 1.0); (e)
SGTR onset (t = 2.4); and (f) “pure” SGTR onset (t = 3.0).
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an average ratio ΦT/ΦP≈ 2.61 over t ä [2.4, 5.0]. Hence, the
toroidal fluxes approximately tracked the poloidal fluxes during
the SGTR phase. To aid comparison in Figure 20, the toroidal
flux losses are scaled down by this ratio, i.e., −ΔΦT/2.61. An
explanation for this time dependence is that the initial flux ratio
ΦT/ΦP at t= 0.0 corresponding with contour Bz= Bz0 is not
constant for varying Bz0; the ratio ranges from a maximum ΦT/
ΦP≈ 2.878 as Bz0→ 0.75+ to a minimum of ΦT/ΦP≈ 2.597 at
Bz0≈ 0.8942. Therefore, after the turbulent reconnection onset,
while the laminar boundaries of each flux rope rapidly contract,
the flux ratio ΦT/ΦP appears to tend toward the sink ΦT/
ΦP≈ 2.597 determined by the initial configuration.

The main conclusion of this comparison is that the “recon-
nected flux” measurements are largely in agreement, subject to
applying a scaling factor to the toroidal fluxes. The most
important practical difference comes from the consideration
that the derivative dΦ/dt is sensitive to short-term fluctuations
in Φ; hence, it is desirable to identify a flux that is naturally as
smooth as possible. Due to the observed relative lack of fluc-
tuations, we found that flux Φ1 used by Huang & Bhattacharjee
(2016) was the best candidate for this purpose, so we chose
Vrec= dΦ1/dt in Section 3.1. The difference in smoothness
appears to result from the reconnection process. Here, we
conjecture that the laminar flux ropes are eroded through many
small-scale reconnection events that transfer magnetic flux into
the turbulent reconnection layer (probed by Φ2,-DFP

upper, and
-DFP

lower); however, later processing of magnetic flux within
the reconnection layer smooths its output of globally recon-
nected magnetic flux (probed by Φ1). In this scenario, the
turbulent reconnection layer functions as a reservoir of recon-
necting magnetic flux, similar to how a water reservoir converts
a sporadic input of rainfall to a smoother output.

Appendix B
Kink Instability Investigation

In this section, we provide some further analyses on the
kink instability of the CFR that occurs at t= 1.0 (label (c) in
Figure 2) described in Section 3.1.2.

We first remark that exploring this kink instability analyti-
cally is nontrivial, since the CFR possesses a cat-eye cross
section, containing an elliptical core, within a magnetic shear. It
is not a classical kink instability of a circular-cylindrical plasma
column within a vacuum. The stability of straight cylindrical
flux ropes with circular cross sections has been investigated for
a variety of force-free configurations a ´ =B x B( ) for
different force-free parameters α(x), e.g., constant α (e.g.,
Lundquist 1951; Linton et al. 1996; Fan et al. 1999), piecewise-
constant α(r) (e.g., Browning et al. 2008; Hood et al. 2009;
Bareford et al. 2010, 2013), or continuous α(r) (e.g., Hu & Li
2002; Hood et al.2009; Restante et al. 2013; Bareford & Hood
2015; Hood et al. 2016). Numerous models of flux ropes with
elliptical cross sections have also been derived in the literature,
both analytically (e.g., Mulligan & Russell 2001; Hidalgo et al.
2002; Vandas & Romashets 2003; Erdélyi & Morton 2009;
Vandas & Romashets 2017; Nieves-Chinchilla et al. 2018) and
numerically (e.g., Cap & Khalil 1989; Tsuji 1991), for force-
free or non-force-free fields. While kink instabilities of ellip-
tical-cylindrical flux ropes have been investigated to some
detail in several papers (Dewar et al. 1974; Freidberg & Haas
1974; Gu & Qiu 1980; Erdélyi & Morton 2009), we do not
attempt to apply their stability analysis results to the CFR here.

Regarding cat-eye flux ropes, some analytical solutions are
known (e.g., Throumoulopoulos et al. 2009; Dewar
et al. 2013).
The primary aims here are as follows. Using topological

tools, we investigate how closely the kink instability in our
simulation resembles a classical kink instability and illuminate
significant properties that would need to be considered within a
potential analytical model. Namely, we inspect the local dis-
tribution of field line twist and writhe, and force-freeness of the
CFR. Finally, we discuss the dominant kink mode.
Twist and writhe—Twist-writhe conversion is characteristic

of a classical kink instability; therefore, it is insightful to
evaluate the twist and writhe of field lines across the CFR cross
section. Since field lines traced from z=−0.5 to z= 0.5 that
make up the CFR form open curves in general, instead of
closed loops, we consider the open definitions for these part-
icular metrics for two disjointed curves, notated

~
 and

~


(Berger & Prior 2006; Prior & Yeates 2014, 2018). For our
simulation, all field lines can be conveniently parameterized in
the z-direction by Equation (1), and we have no critical points
since = >e x edz z ds z 0B B B z/( ) ( ( )) · , where s is the local arc
length of field lines. We only consider the CFR axis denoted
xaxis, i.e., the primary curve, and field lines xB, i.e., secondary
curves, with foot points (x0, y0) at z0=−0.5. The open twist of
a field line around the CFR axis, excluding xaxis itself, is
defined as

òp
= ´

~
-

T n
n

x y
d

dz
dz,

1

2
.0 0

0.5

0.5

axis  ( ) ·

Here, =T e xz zBaxis axis
ˆ ( ) ( ( )) is the unit tangent vector of xaxis,

and n is the unit vector orthogonal to Taxis
 along xaxis toward xB,

i.e., satisfying =n T 0axis · and the standard ribbon condi-
tion e= +x x nB axis . This is simply the integral of the rotation
rate of xB about xaxis, where positive values signify right-han-
ded twisting. The open writhe of a field line is given by

òp
=

+
´

~
- e T

e T
T

x y
d

dz
dz,

1

2

1

1
,

z B
z B

B
0 0

0.5

0.5
 

 
( )

∣ · ∣
·

where =T e xz zB B B
ˆ ( ) ( ( )) is the unit tangent vector of xB; this is

a measure of the coiling and kinking of xB only. We also
consider the alternative twist defined as

òp
=x y

j

B
ds,

1

4
, B1

x
0 0

B

 ( ) ( )

where = j ej B · is the parallel current density; this is the mean
twist of two infinitesimally close field lines along curve xB
(Berger & Prior 2006; Liu et al. 2016; Prior & Yeates 2018;
Jiang et al. 2019). Liu et al. (2016) showed that under special
conditions, the equivalence =

~
  is obtained in the limit

as ε→ 0; further,  is an effective approximation to
~
 within a

flux rope if xB is sufficiently close to xaxis and the flux rope
possesses approximate cylindrical symmetry (see their

Appendix C.1). However, in our case,
~
 and  differ sig-

nificantly due to the highly elliptical core of the CFR cross
section.
We denote the alternative twist and open writhe evaluated at

the CFR axis as axis and
~

axis , respectively. For robustness,
we approximated the open twist locally about the CFR axis by
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taking the mean
~
 of field lines seeded within a disk at

z0=−0.5 of radius r= 5× 10−4 centered at xaxis, denoted á ñ
~
 .

Figure 21 displays the 2D distribution of
~
 ,  , and

~
 at

z0=−0.5 over the kink instability t= 1.0−1.4 (labels (c)–(d)
in Figure 2). The CFR axis xaxis, identified using the color map
(see Section 3.1.2), is represented by green circles. In the top
left of each panel, the corresponding value of á ñ

~
 , axis , or

~
axis is provided. For t� 1.0, the open twist

~
 has a moderate

drop toward the CFR axis; tests on a model elliptical flux rope,
with uniform twist and the same ellipticity as the CFR, indicate
that this property is not due to small numerical errors toward
xaxis. Otherwise,

~
 is level within the CFR away from the CFR

axis and close to zero elsewhere. The alternative twist  is also
indicator-like, but it is approximately flat within the CFR
interior and has significantly larger values than

~
 , especially

near the CFR boundary. The open writhe
~
 is strong within

the cat-eye away from the elliptical core; the relatively small
numerical values do not imply an insignificant geometric effect
(Prior & Yeates 2018).

After the kink onset t= 1.0, we observe a rapid global
decrease in  and global increase in

~
 , while the CFR

becomes more structurally complicated; for
~
 , its maximum

remains relatively constant, but its distribution becomes
increasingly fragmented. Figure 22 compares the evolution of
the mean open twist about the CFR axis á ñ

~
 (pink) with the

alternative twist axis (purple) and open writhe
~

axis (light blue)
of the CFR axis over its detection interval t= 0.7−1.4. The

right axis, corresponding with
~

axis , is shown with logarithmic
scaling. We observe that á ñ

~
 increases by approximately 90%

and axis decreases by approximately 50% at roughly linear
rates, while

~
axis increases exponentially by over the order of

105. Hence, the kink is not characterized by an exact twist-
writhe conversion, which is not unexpected, but the results
suggest that we have significant transfer between  and

~
 at a

local and global level during the instability.
Force-freeness—Previous analyses on the kink instability of

flux ropes frequently focus on the force-free parameter α(x),
under the assumption of a force-free field a ´ =B x B( ) . To

Figure 21. Close-ups of the CFR at the bottom boundary z0 = −0.5 during the 3D kink instability at t = 1.0 and t = 1.4. The CFR axis xaxis (elliptic fixed point) is
represented by the green circle (see Figure 4). The top row shows the open twist of field lines (with respect to the CFR axis)

~
 and the mean value about the CFR axis

á ñ
~
 . The middle row shows the alternative twist of field lines  and the CFR axis axis . The bottom row shows the open writhe of field lines

~
 and the CFR

axis
~

axis .

Figure 22. Comparison plot of the mean open twist á ñ
~
 (pink), alternative twist

axis (purple), and open writhe
~

axis (light blue) of/about the CFR axis over
the interval t = 0.7−1.4 when the CFR axis can be detected. The vertical dotted
line labeled (c) denotes the turbulent reconnection onset at t = 1.0.
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determine how close the CFR is to a force-free equilibrium, we
evaluate the parameters (Pontin et al. 2016)

a e= = ^* *
j

B

j

j
, ,


where = ´^ j ej B . Parameter α* converges to the force-free
parameter α as a system tends toward force-free equilibrium; it
can also be interpreted as the twist density along field lines (Liu
et al. 2016), since it is the integrand of the alternative twist 
(Equation (B1)). The normalized Lorentz force strength ε*ä [0,
1] indicates the force-freeness of the field, ranging from an
exact force-free equilibrium ε* = 0 to a maximal non-force-free
state ε* = 1.

Figure 23(a) shows the evolution of α* and ε* averaged over
the CFR axis, denoted 〈 · 〉axis, during the detection window
t= 0.7−1.4. Figure 23(b) displays the profiles of α* and ε* at
t= 1.0, averaged over field lines spanning z ä [−0.5, 0.5] with
seed points on z0=−0.5; these are denoted by 〈 · 〉B (Yeates
et al. 2021). For simplicity, we have only provided the seed
points along a slice at x= xaxis intersecting the CFR axis xaxis.
We remark that 〈α*〉B is equivalent to the alternative twist  ,
up to approximate scaling L/(4π) where L is the total arc length
of field lines. As the CFR grows before the kink instability at
t= 1.0, there is a tendency for the 〈α*〉B distribution to gra-
dually flatten about the CFR axis and for the 〈ε*〉B distribution
to decrease with a convex profile within the CFR interior.
Hence, there is an evolution toward a force-free field with
uniform α, but the CFR does not achieve exact force-freeness
at the kink instability onset t= 1.0 when 〈ε*〉axis≈ 0.0467. This
is not unexpected, since flux ropes in astrophysical environ-
ments have been observed in general to be non-force-free, and
therefore differ substantially from ideal models (Hu et al.
2014, 2015).

Dominant kink mode—Regarding the development of the
largest mode kz/(2π)= 7, it is clear that this has some
dependence on the simulation grid resolution: our preliminary
5003 simulation for this paper exhibited a dominant kz/(2π)= 4
mode instead, but the CFR cross section was noticeably smaller
with a higher ellipticity at the kink instability onset, suggesting
that minor variations in the field geometry are causing this
discrepancy. A similar kink instability along initial plasmoids,
in addition to a 3D slab-type kink along the current layer, was
observed in Lapenta & Bettarini (2011) and Oishi et al. (2015)
with a different dominant wavenumber of kz/(2π)= 12.

Oishi et al. (2015) found that the dominant mode might have
had a dependence on the underlying wavenumber spectrum for
the initial velocity perturbations used in their simulation.
A rough explanation for the development of the dominant

kz/(2π)= 7 mode can be attempted by applying results from
simple force-free circular-cylindrical models. In this context,
the helical field line pitch q= Bθ/(rBz), related to the twist by

p=
~

q 2  , has been found to be a crucial parameter. Linton
et al. (1996) studied the kink instability of an isolated circular-
cylindrical flux rope with a uniform pitch q and a vanishing
external magnetic field, and found that the most unstable kink
mode has helical pitch kz≈ q. This geometry is clearly a poor
approximation to our CFR configuration, but applying this
result to our simulation, for twist values toward the CFR axis at
the kink onset t= 1.0, leads to the approximate dominant mode

p » á ñ »
~

k 2 2.25z/ ( ) or p » »k 2 7.35.z axis( ) The latter
result is satisfactory, but it is unclear if this is coincidental
or not.
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