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Abstract

Braginskii magnetohydrodynamics (MHD) provides a more accurate description of many plasma environments
than classical MHD since it actively treats the stress tensor using a closure derived from physical principles. Stress
tensor effects nonetheless remain relatively unexplored for solar MHD phenomena, especially in nonlinear
regimes. This paper analytically examines nonlinear damping and longitudinal flows of propagating shear Alfvén
waves. Most previous studies of MHD waves in Braginskii MHD have considered the strict linear limit of
vanishing wave perturbations. We show that those former linear results only apply to Alfvén wave amplitudes in
the corona that are so small as to be of little interest, typically a wave energy less than 10−11 times the energy of the
background magnetic field. For observed wave amplitudes, the Braginskii viscous dissipation of coronal Alfvén
waves is nonlinear and a factor around 109 stronger than predicted by the linear theory. Furthermore, the dominant
damping occurs through the parallel viscosity coefficient η0, rather than the perpendicular viscosity coefficient η2 in
the linearized solution. This paper develops the nonlinear theory, showing that the wave energy density decays
with an envelope ( )+ -z L1 d

1. The damping length Ld exhibits an optimal damping solution, beyond which
greater viscosity leads to lower dissipation as the viscous forces self-organize the longitudinal flow to suppress
damping. Although the nonlinear damping greatly exceeds the linear damping, it remains negligible for many
coronal applications.

Unified Astronomy Thesaurus concepts: Alfven waves (23); Solar corona (1483); Solar coronal heating (1989);
Solar coronal holes (1484); Solar wind (1534); Magnetohydrodynamics (1964); Space plasmas (1544); Plasma
astrophysics (1261); Plasma physics (2089)

1. Introduction

Alfvénic waves are a ubiquitous feature of natural plasmas,
including the solar corona (De Pontieu et al. 2007; Lin et al.
2007; Okamoto et al. 2007; Tomczyk et al. 2007) and solar
wind (Coleman 1967; Belcher & Davis 1971). In solar physics,
these waves contain sufficient energy to heat the open corona
and accelerate the fast solar wind (McIntosh et al. 2011), and
they damp significantly within a solar radius above the surface
(Bemporad & Abbo 2012; Hahn et al. 2012; Hahn &
Savin 2013; Hahn et al. 2022). How these Alfvénic waves
damp in astrophysical and space plasmas is an important
question that has remained open for almost a century (see early
papers by Alfvén 1947 and Osterbrock 1961; modern reviews
by Arregui 2015, De Moortel & Browning 2015, and Van
Doorsselaere et al. 2020; and historical perspectives by
Russell 2018 and De Moortel et al. 2020).

Most theoretical knowledge about solar Alfvénic waves is
based on “classical” magnetohydrodynamics (MHD), a math-
ematical framework that originated from intuitive coupling of
Maxwell’s equations and the Euler equations of inviscid
hydrodynamics (Hartmann 1937; Alfvén 1942, 1943, 1950;
Batchelor 1950) and became widely adopted in large part due
to its success providing insight into diverse natural phenomena
(see, e.g., Priest 2014). However, classical MHD is one
member of a larger family of plasma descriptions, some of
which offer a more complete description of the plasma. This

paper analytically examines Alfvén wave damping in the more
general framework of Braginskii MHD, which, unlike classical
MHD, retains the anisotropic viscous stress tensor.
A number of authors, including Section 8 of Braginskii

(1965), have previously investigated viscous damping of
Alfvén waves in the linear limit of vanishingly small wave
amplitude. When priority is given to the smallness of the wave
amplitude, the problem becomes framed as a matter of how
anisotropic viscosity affects velocities that are perpendicular to
the magnetic field (the direction of which is treated as
unchanging). With this approximation, damping is determined
by the “perpendicular” viscosity coefficient η2, which is
extremely small in the corona. It was thus originally concluded
that viscous damping is very weak for coronal Alfvén waves
unless they have very short wavelengths. This path of
reasoning is shown as the vertical branch in Figure 1.
There is, however, another way to view the problem.

Viscous damping of Alfvén waves can alternatively be
considered with priority given to the largeness of the parallel
viscosity coefficient η0. Given that η2/η0 10−11 is typical in
the corona (Hollweg 1985), even a very small component of v
parallel to the total magnetic field B would be expected to
produce major departures from linear theory. This path of
reasoning is shown as the horizontal branch in Figure 1.
The second viewpoint of the problem takes impetus from the

observation that (unless wave amplitudes vanish entirely)
Alfvén waves do have a nonzero velocity component parallel
to the total magnetic field. Two effects contribute to this, which
are separated if one expands V · B= V · (b+ B0), where B0 is
the equilibrium magnetic field and b is the magnetic
perturbation. First, V · b is nonzero for an Alfvén wave, since
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the velocity perturbation perpendicular to B0 is aligned with the
magnetic field perturbation b. In other words, deflection of the
magnetic field from its equilibrium direction implies there is a
nonzero velocity component parallel to the total magnetic field.
Second, in compressible plasma the magnetic pressure of the
magnetic field perturbation drives a nonlinear ponderomotive
flow parallel to the equilibrium magnetic field (e.g., Holl-
weg 1971). The ponderomotive flow makes V · B0 nonzero as
well. Both of these effects allow for the possibility of nonlinear
viscous damping via the large parallel viscosity coefficient η0.

With the benefit of modern observations (e.g., McIntosh et al.
2011; Morton et al. 2015), it is known that normalized wave
amplitudes b/B0∼ V/vA∼ 0.1 are typical for the base of an
open coronal field region, for example. The “smallness” of the
square of this ratio is very modest in comparison to the extreme
largeness of η0/η2. Thus, it is likely from the outset that viscous
damping of Alfvén waves will be a nonlinear process governed
by η0 and the wave amplitude. This paper provides mathema-
tical evidence that this heuristic analysis holds true, along with
detailed examination of the consequences.

Various previous studies have explored the effects of
Braginskii viscosity on MHD waves since Braginskii (1965).
In solar physics, the effect of linearized Braginskii viscosity
was revisited from the 1980s to the mid-1990s through the lens
of phase mixing and resonant absorption, with the aim of
determining how including the viscosity tensor modifies these
scale-shortening processes and their heating properties. At the
time it was common practice in solar MHD wave theory to
work with linearized equations. Thus, due to linearization,
Steinolfson et al. (1986), Hollweg (1987), Ruderman (1991),
Ofman et al. (1994), and Erdelyi & Goossens (1995) obtained

analytical and numerical results that strictly apply to Alfvén
waves of vanishing amplitude.
In adjacent fields, the effect of anisotropic viscosity on MHD

waves has also been investigated with an eye on MHD
turbulence and the solar wind. Of particular note, Montgomery
(1992) advocated that Braginskii viscosity is important in hot
tenuous plasmas, that in many circumstances it should be treated
using parallel ion viscosity, and that plasma motions may self-
organize to suppress damping. He further applied these ideas to
anisotropy in MHD turbulence, on the basis that a quasi-steady
turbulence is composed of the undamped modes. Quantitative
elaboration in Montgomery (1992) was based on a linear normal
mode analysis, which captures linear damping of magnetoa-
coustic waves by parallel viscosity, but excludes nonlinear
viscous damping of Alfvén waves. The conclusion that a
linearized stress tensor damps Alfvén waves only negligibly
while damping magnetoacoustic waves significantly was further
reinforced by related work by Oughton (1996, 1997).
Similar ideas to ours regarding the importance of non-

linearity were advocated by Nocera et al. (1986), who modeled
Alfvén waves subject to the η0 part of the Braginskii viscous
stress tensor, retaining the leading-order nonlinear terms in the
wave perturbations. Consistent with the argument above, their
calculations found that coronal Alfvén waves damp nonlinearly
by parallel viscosity. The current paper complements and
extends the previous analysis by Nocera et al. (1986), with the
goal of producing a comprehensive understanding of the
nonlinear damping and field-aligned flows of propagating shear
Alfvén waves with Braginskii viscosity.
A limitation of the mathematical techniques used in this

paper is that they exclude certain other nonlinear effects that

Figure 1. Schematic paths of reasoning. The vertical branch gives priority to the smallness of the wave amplitude and concludes that damping is a linear process
governed by the perpendicular viscosity coefficient η2, e.g., Section 8 of Braginskii (1965). The horizontal branch gives priority to the smallness of η2/η0, leading to
nonlinear damping via η0. This paper follows the diagonal branch, which includes deriving the validity condition for the two outcomes. Nonlinear damping via η0 is
appropriate for most coronal applications.
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may be important in plasmas, such as nonlinear interactions
between waves. Numerical investigations will be required in
future to verify the analytical theory presented here, compare
the relative importance of viscous damping and other nonlinear
effects such as parametric decay instability, and consider
interactions between nonlinear processes in Braginskii MHD.

This paper is organized as follows. Section 2 provides
scientific background on single-fluid Braginskii MHD and its
relationship to other single-fluid plasma models. Section 3
quantitatively examines Alfvén wave heating by the full
Braginskii viscous stress tensor, demonstrating the importance
of nonlinear η0 terms and compressibility, and obtaining the wave
decay properties for the weakly viscous limit using energy
principles. In Section 4, we argue that in the highly viscous limit,
viscous heating is suppressed by self-organization of the
ponderomotive flow, which implies that viscosity strongly alters
the field-aligned flow associated with Alfvén waves in this
regime. Section 5 further strengthens the analysis, using multiple-
scale analysis to obtain the decay properties without restrictions
on the Alfvénic Reynolds number, assuming the framework of
Braginskii MHD. The paper finishes with a discussion in
Section 6 and a summary of the main conclusions in Section 7.

2. Braginskii MHD

Braginskii MHD is an important plasma description that
treats anisotropic viscosity and thermal conduction using
rigorous closure from physical principles. This section provides
a short primer on single-fluid Braginksii MHD, its connection
with pressure (or temperature) anisotropy, and its relation to
classical MHD and the Chew–Goldberger–Low (CGL) double-
adiabatic equations.

As is described in various plasma textbooks, fluid variables
can be rigorously and robustly defined as velocity moments of
the underlying particle distribution functions. Transport
equations for each particle species are then derived by taking
moments of the kinetic Boltzmann equation, and combining to
obtain the single-fluid equations. Recommended presentations
can be found in Schunk & Nagy (2009, their Chapter 7) and the
Appendix of Spitzer (1962).

Assuming quasi-neutrality and conservation of mass, momen-
tum, and energy, this process yields the mass continuity
equation,

· ( ) ( )r
r

¶
¶

+  =V
t

0, 1


the momentum equation,

· ( )r r= - + + ´
V

P G j B
D

Dt
, 2


the energy equation,

⎛
⎝

⎞
⎠

·

· · ( ) ( )p

+ 

= -  -  + + ´

V

V q j E V B

D

Dt
p p

3

2

5

2
: , 3


higher-order transport equations if required, and the general-
ized Ohm’s law.

The pressure tensor P that appears in Equation (2) is the
most fundamental representation of the internal forces
associated with thermal motions of particles. It is symmetric,
so it represents six degrees of freedom. The momentum

equation can also be reformulated by introducing the scalar
pressure and stress tensor as

( ) ( )p d= = = -aa ab ab abPp P P p
1

3
Trace

1

3
, , 4


where δαβ is the Kronecker delta. So defined, the stress tensor
π is symmetric and traceless. These definitions give the
replacement −∇ · P=−∇p−∇ · π .
Deriving transport equations by moment taking meets with a

fundamental closure problem: the transport equation for each
fluid variable depends on a higher-order variable, producing an
infinite regress unless the system can be closed by other
considerations. The method of closure is therefore a major
distinguishing feature between different fluid models for
plasmas. It is also a major source of validity caveats. Various
different methods of closure produce governing equations that
conserve mass, momentum, and energy, since these properties
are already built into Equations (1)–(3). However, the different
models discussed below disagree on the internal forces and
heating, and can therefore produce different behaviors.
Classical MHD (Hartmann 1937; Alfvén 1942, 1943; Batch-

elor 1950) corresponds to a closure treatment in which the
stress tensor and the heat flow vector are dropped from
Equations (2) and (3). Dropping the stress tensor can be
justified when particle collisions or other forms of particle
scattering such as wave–particle interactions are frequent
enough that the pressure tensor remains very close to isotropic.
The resulting MHD equations are valid for many situations, for
instance modeling static equilibria, or dynamic situations in
which the divergence of the stress tensor remains small
compared to the Lorentz force. It is nonetheless a truncation
since higher-order variables are set to zero rather than
approximated. Furthermore, collisionality in environments
such as the solar corona is low enough that the stress tensor
can become significant for various dynamic phenomena,
including MHD waves.
Braginskii MHD uses a less restrictive method of closure. As

is detailed by Braginskii (1965), when the collisional mean free
path is significantly shorter than the length scales over which
fluid quantities vary, the heat flow vector takes the form of an
anisotropic thermal conduction and the stress tensor takes the
form of an anisotropic viscosity. Closure can therefore be
achieved by expressing q and π in terms of lower-order fluid
variables, which are traditionally derived using methods similar
to Chapman & Cowling (1939) or Grad (1949).
The anisotropy inherent in q and π can be appreciated

heuristically, by considering the helical motion of charged
particles in magnetized plasmas. The mean free path parallel to
the magnetic field is the same as for unmagnetized plasmas,
implying that transport parallel to the magnetic field is the same
as for unmagnetized plasmas. Meanwhile, the mean free path
perpendicular to the magnetic field is the gyroradius, which is
typically much less than the mean free path parallel to the
magnetic field, which suppresses perpendicular transport.
Hence both thermal conduction and viscous stresses are
anisotropic with respect to the magnetic field direction, often
extremely so.
The full Braginskii stress tensor, used in Section 3, involves

five viscosity coefficients. A useful simplification, used in
Section 5, is that for strong magnetizations, Ωi τi? 1, the
parallel η0 coefficient greatly exceeds the other viscosity
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coefficients. Hence, one can often simplify by neglecting the
smaller coefficients (although, as shown in Section 3, it can be
necessary to retain other viscosity coefficients if the length
scales are highly anisotropic). In this simplification, one has the
following covariant expressions for parallel viscosity (Lifshitz
& Pitaevskii 1981; Hollweg 1986):

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

( )

p h
d d

h
d

=- - - ¶

= - ¶

ab a b
ab

m n
mn

m n

a b
ab

a b

h h h h V

Q h h V

3
3 3

,

3
3

, 5

0

visc 0

2


where h= B/| B| is the unit vector in the direction of the
magnetic field. These expressions are different to the isotropic
viscosity that appears in the Navier–Stokes equations, owing to
the anisotropy introduced by the magnetic field.

Parallel viscosity is closely related to pressure anisotropy. As
pointed out by Chew et al. (1956), when Ωi τi? 1 the particle
Lorentz force makes the pressure tensor gyrotropic, giving it
the form

( ) ( )∣∣d= + -ab ab a b^ ^P p p p h h . 6


This is a significant simplification, since the six degrees of
freedom of a general pressure tensor have been replaced with
two variables, p|| and p⊥. The definitions in Equations (4) then
yield p= (p||+ 2p⊥)/3 and

⎛
⎝

⎞
⎠

( ) ( )∣∣p
d

= - -ab a b
ab

^p p h h
3

. 7

 Equation (7) shows that pressure anisotropy has an equivalent
stress tensor, which is proportional to p||− p⊥. Furthermore,
Equations (5) and (7) both have the form παβ∼ (hαhβ− δαβ/3),
so equivalence of the stress tensors reduces to equivalence of the
scalar factors in the two equations. An illuminating analysis of
the conditions under which they converge has been written by
Hollweg (1985, 1986), the most important condition being that
collisions (or other processes such as wave–particle interactions)
relax the pressure anisotropy driven by velocity gradients to an
extent that the pressure is only weakly anisotropic. Classical
MHD, for comparison, assumes that pressure anisotropy can be
neglected altogether.

For low collisionality, the quasi-static approximation in
Braginskii MHD ceases to be valid and strong pressure
anisotropy may develop. Under these conditions, separate
evolution equations can be derived for p|| and p⊥ (Chew et al.
1956; Hollweg 1986). However, the closure problem rears its
head again, because those equations depend on the heat flow
vector. A simple approach to obtaining a closed system is to
ignore the heat flow vector, thus obtaining the CGL double-
adiabatic equations (Chew et al. 1956), which are commonly
used for collisionless plasma. More sophisticated approaches
also exist that solve for the evolution of the pressure anisotropy
or the evolution of the stress tensor, retaining the heat flow
vector and closing by other means. The works by Balescu
(1988), Schunk & Nagy (2009), Zank (2014), and Hunana et al.
(2019a, 2019b, 2022) provide further reading on this topic.

In summary, there exists a family of adjacent (sometimes
overlapping) single-fluid models for plasmas. The most
appropriate choice for a particular problem and/or context
depends on the collisionality. When MHD timescales are

greater than the ion collision time, Braginskii MHD provides
rigorous closure and treats the internal forces and heat flow
more accurately than classical MHD.

3. Alfvén Wave Heating by Braginskii Viscosity

3.1. Model

We quantitatively examine the viscous dissipation for an
Alfvén wave, which is a transverse wave polarized so that the
magnetic perturbation is perpendicular to the equilibrium
magnetic field and the wavevector. Setting the equilibrium
magnetic field in the z-direction, the magnetic perturbation in
the x-direction, and the wavevector in the y–z plane, we
consider a total magnetic field of the form

( ) ( )= +B e eb y z t B, , . 8x z0
This ansatz automatically satisfies ∇ · B= 0. For the velocity
field we assume the form

( ) ( ) ( )= +V e eV y z t V y z t, , , , . 9x x z z

The Vx is the dominant velocity component. In linearized
theory it would be the only component of V. Additionally, we
have explicitly included a higher-order Vz term that represents
the nonlinear ponderomotive flow parallel to the equilibrium
magnetic field, which is driven by gradients of the magnetic
pressure perturbation b2/2μ0 associated with a finite-amplitude
Alfvén wave (e.g., Hollweg 1971). The Vz term can be dropped
when the plasma is incompressible (see Section 3.3). However,
it is required for a nonlinear treatment of compressible plasma
and affects the wave heating via the parallel viscosity
coefficient η0 (as remarked in Section 1). The expression for
Vz in classical MHD is given later in Equation (29).
In a full solution, derivatives of b2/2μ0 with respect to y give

rise to an additional nonlinear y-component of V, which in turn
produces a nonlinear y-component of B. These terms are not
shown explicitly in Equations (8) and (9). Such terms were
included by Nocera et al. (1986) and appear not to affect our
main conclusions, provided the perpendicular wavelength of
the Alfvén wave is sufficiently large.
The viscous force is determined from the viscous stress

tensor παβ by

( )
p

= -
¶
¶

a
ab

b
F

x
, 10visc,


and the viscous heating rate is determined using

( )p= -
¶
¶

ab
a

b
Q

V

x
, 11visc


where { }a Î x y z, , , { }b Î x y z, , , the xβ are components of
the position vector, the Vα are components of V, and repeated
indices imply summation in the Einstein convention.
A vital point is that the viscous stress tensor depends on the

direction of the magnetic field given by the unit vector h= B/
| B|, which for our Alfvén wave model in Equation (8) has

( )=
+

= =
+

h
b

B b
h h

B

B b
, 0, , 12x y z

0
2 2

0

0
2 2


with + =h h 1x z

2 2 . Our analysis differs from many past works
by considering hx≠ 0 and identifying the dominant heating
contribution at the end, as opposed to setting hx = 0 before
evaluating the damping effect on Alfvén waves.
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Applying formulas from Section 4 of Braginskii (1965;
equivalent matrix expressions are given by Hogan 1984), the
stress tensor is related to five viscosity coefficients by

( )å åp h h= - +ab ab ab
= =

W W . 13
i

i i
i

i i
0

2

3

4


The gyroviscous η3 and η4 terms do not contribute to heating,
so evaluating the heating rate Qvisc requires

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

d d

d d d

d d

= - -

= +

= +

ab a b ab m n mn mn

ab am bn ab m n mn

ab am b n bn a m mn

^ ^ ^

^ ^

W h h h h W

W h h W

W h h h h W

3

2

1

3

1

3
,

1

2
,

, 14

0

1

2


where δαβ is the Kronecker delta,

( )d d= -ab ab a b
^ h h , 15


and the rate of strain tensor is

· ( )d=
¶
¶

+
¶
¶

- ab
a

b

b

a
ab VW

V

x

V

x

2

3
. 16

 For the shear Alfvén wave geometry described by
Equation (9), the Wi tensors become

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )( )
( )

= ¶ + - ¶
-

-
-

W

h h V h V
h h h

h h h

3 1 0 3
0 1 0

3 0 3 1

,
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

⎛

⎝

⎜
⎜

⎞

⎠
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⎛
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0
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
The viscous heating rate with hx≠ 0 retained is thus

( ( ) )

( )
( )
(( ) )
( ) ( )

h

h
h

h
h

= ¶ + - ¶

+ ¶ - ¶

+ ¶ - ¶

+ - ¶ - ¶

+ ¶ + ¶
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visc
0 2 2

1
2 2

1
2

2
2 2

2
2



3.2. Two Small Parameters

As anticipated in Section 1 (e.g., Figure 1), two parameters
determine the relative importance of individual terms in
Equation (20). The first small parameter is ( )b B0

2, the ratio
of the wave's magnetic energy density to the energy density of
the background magnetic field, which enters through hx and hz.
In the modern era, extensive observations of coronal MHD
waves (Nakariakov & Verwichte 2005; De Moortel &
Nakariakov 2012) allow ( )b B0

2 to be quantified with good
certainty, directly from resolved wave observations or
indirectly from spectral line widths. For example, Morton
et al. (2015) studied waves at the base of a coronal open-field
region using both approaches and reported a wave speed
vA= 400 km s−1 and wave motions at v= 35 km s−1. Both
measurements are consistent with earlier findings for coronal
holes and the quiet Sun (e.g., McIntosh et al. 2011). From
observations like these, ( ) ( )~ ~ ~ -h b B v v 10 .x A

2
0

2 2 2

The second small parameter is ( )tW -
i i

2, which sets the
viscosity coefficients η1 and η2 relative to η0. The value of Ωiτi
can vary significantly in the corona, but if magnetic null points
are excluded one obtains values similar to the estimates made
by Hollweg (1985), who found 3.4× 105 for a solar active
region and 7.2× 105 near the base of a coronal hole. We
therefore expect ( )tW - -10i i

2 11 under common conditions,
and η1 and η2 simplify to

( ) ( )h t h h h= W =-6408

5125
,

1

4
. 21i i2

2
0 1 2


The numerical coefficients in Equation (21) are obtained in the
limit ( )tW - 0i i

2 , e.g., from Equation (73) of Hunana et al.
(2022). They are approximate for finite ( )tW -

i i
2 but have a high

degree of accuracy because the corrections to the coefficients
are of the order of ( )tW - -10i i

2 11. Inspecting Equation (21)
and considering ( )tW - -10i i

2 11, the η2 and η1 coefficients are
both vastly smaller than η0.
The smallness of ( )b B0

2 and the smallness of ( )tW -
i i

2

compete to make different terms dominate the viscous heating.
If one tries to simplify Equation (20) by setting ( )b B0

2 to zero,
then hx = 0 and Vz = 0 gives ( ) ( )h h= ¶ + ¶Q V Vz x y xvisc 2

2
1

2, as
obtained by Braginskii (1965). On the other hand, if one tries to
simplify by first taking ( )tW -

i i
2 to zero then only η0 terms

remain, suggesting a different conclusion. Thus, the quantita-
tive results recover the two branches shown in Figure 1. To
correctly determine the damping under coronal conditions, one
must carefully compare terms in the full Equation (20), bearing
in mind that there are two small parameters, which we do now
(diagonal branch in Figure 1).

3.3. Heating Rate for Incompressible Plasma

The analysis for incompressible plasma is relatively
straightforward, which makes it a natural starting point for
discussion. The assumption of incompressibility is appropriate
for liquid metals or high-beta plasmas, but not, we note, for the
corona. The use of coronal wave amplitudes and magnetiza-
tions in this section is therefore intended to be instructive only,
with the compressible finite-beta treatment that follows later in
this paper being required to treat the corona.
In the incompressible case, ∇ · V= 0 applied to our Alfvén

wave geometry implies Vz = 0. Thus, Equation (20) with

5

The Astrophysical Journal, 948:128 (15pp), 2023 May 10 Russell



h h=1
1

4 2 simplifies to

⎜ ⎟

⎜ ⎟

⎧
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h h
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Q h h h
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4

4
.
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x z x
x z

z x

z
x y x

visc 0
2 2

2
2 2

2 2
2

2

2
2 2

 The terms involving ∂zVx set the viscous dissipation due to
wavelengths parallel to the equilibrium magnetic field, and we
first ask whether dissipation due to parallel wavelengths is
dominated by the linear η2 contribution that has been widely
recognized since Braginskii (1965) or the nonlinear η0
contribution. The ratio of the two terms inside the curly
brackets in Equation (22) is

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( ) ( )

( ) ( )

h
h

h
h

t

-

- + -

» » W

h
h

h h h

h h

3
1

1 2 1

3 2.4 , 23

x
x

x x x

x x i i

2 0

2

2

2 2 1

4
2 2

2 0

2

2 2


where the first step simplifies using h 1x

2 (for the observed
value of » -h 10x

2 2, retaining the terms in the square bracket
increases the ratio by 2.8%, so this approximation is both
accurate and conservative) and the substitution for η0/η2 is by
Equation (21). For the coronal wave amplitudes and Ωiτi values
noted in Section 3.2, this ratio exceeds 109, with the nonlinear
damping via η0 dominating the heating rate by that factor. In
other words, the viscous dissipation of Alfvén waves via
derivatives aligned with the equilibrium magnetic field is a
factor 109 stronger than predicted by linear theory.

We now evaluate the role of derivatives perpendicular to the
equilibrium magnetic field by comparing the nonlinear η0 term
in Equation (22) to the term involving ∂yVx. The ratio of these
heating-rate terms is

⎜ ⎟
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⎠
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⎤
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h
h

l
l

h
h

l
l

t
l
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-
+

» » W
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h
h

h

h h

12
1

1 3

12 9.6 , 24

x
x

x

x x i i

2 0

2

2 2

2

2 0

2

2
2 2

2


where λ⊥ and λ|| are the wavelengths perpendicular and
parallel to the equilibrium magnetic field (for the observed
value of » -h 10x

2 2, the approximation of the terms in hx
2 is

accurate to 3.9%). For the coronal parameters noted above, if
λ⊥≈ λ|| then the nonlinear η0 term again dominates by a factor
that exceeds 109. For smaller transverse wavelengths, the
nonlinear η0 term dominates whenever λ⊥ 10−5 λ||. If one
considers a wave speed of 400 km s−1 and a frequency of
3 mHz, consistent with the observations by Morton et al.
(2015), the condition that the nonlinear η0 term dominates
becomes λ⊥ 800 m. Given that the Coronal Multi-Channel
Polarimeter (CoMP) instrument has imaged Alfvénic waves
using 3Mm pixels, this condition appears to be met by a very
large margin, making the nonlinear η0 dissipation dominant
over the η2 linear dissipation.

The purpose of deriving Equation (22) and the ratios on the
left-hand sides of Equation (23) and (24) such that they include
all appearances of hx and hz is so that they can be evaluated
exactly for a given value of hx. This makes it explicit that our
conclusions are insensitive to the precise value of hx, requiring
only that the value of hx is broadly consistent with coronal
observations. While that approach is most comprehensive, the
same conclusions can also be reached by separately
simplifying each term in Equation (22) using h 1x

2 and
= - »h h1 1z x

2 2 to obtain the less cumbersome formula

{ }( ) ( ) ( )h h h= + ¶ + ¶Q h V V3 , 25x z x y xvisc 0
2

2
2

1
2


and comparing terms to reach the same conclusions.

3.4. Compressible Plasma with Large Alfvénic Reynolds
Number

Under typical coronal conditions, the thermal pressure is too
small to prevent compression of the plasma by nonlinear
magnetic pressure forces. Thus, a nonlinear Vz develops that is
known as the ponderomotive flow (Hollweg 1971). This flow
component affects the viscous heating rate via the parallel
viscosity coefficient η0; hence, compressible theory is required
for nonlinear viscous damping of Alfvén waves in plasma.
We define the Alfvénic Reynolds number as

( )
∣∣

r
h

=
v

k
Re . 26A

0


This dimensionless parameter differs from the traditional
Reynolds number since it refers to the Alfvén speed

m r=v BA 0 instead of a typical fluid velocity. This distinction
mirrors that between the Lundquist number and magnetic
Reynolds number in resistive MHD. Justification for defining Re
according to Equation (26) will be found in the detailed
mathematical solutions in Section 5, in which it is found to be a
natural parameter of the system (see also Nocera et al. 1986).
In this section, the ponderomotive Vz will be related to Vx

using expansions in the amplitude of the primary wave fields.
Several assumptions are used to accomplish this. First, we
make use of the result that a traveling wave solution
propagating in the positive z-direction has

( )¶
¶

º -
¶
¶t

v
z

, 27A


where vA is the wave speed. For simplicity, it is assumed that
derivatives of background quantities are sufficiently weak to
play a higher-order role in the dynamics. We also simplify here
by replacing a full treatment of the thermal conduction with
two thermodynamic cases: adiabatic and isothermal. Finally, it
is assumed that the Re is large enough that viscous forces can
be neglected at leading order when evaluating Vz, which makes
it possible to obtain an algebraic relationship between Vz and
b2. This assumption will be removed for Section 5, in which the
effect of viscous forces on Vx and Vz is included.
The x-components of the momentum and induction

equations are unaffected by the ponderomotive flow at leading
order in the wave amplitude. From them one recovers the
Walén relation for propagating Alfvén waves, b/B0=−Vx/vA.
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At leading order, the z-component of the momentum
equation is

⎜ ⎟
⎛
⎝
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( )r d
m

¶
¶

+
¶
¶

+ =
V

t z
p

b

2
0, 28z

0

2

0


where the viscous force has been neglected since we currently
consider the limit of large Re. Using Equation (27) and
integrating yields an algebraic relationship between Vz, δp, and
b2. In an adiabatic treatment, the energy equation yields
δp= γp0 Vz/vA, hence we obtain

⎜ ⎟
⎛
⎝

⎞
⎠( )

( )
b

=
-

V

v

b

B

1

2 1
, 29z

A 0
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
where

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )b
g

m
= =

c

v

p

B2 2
. 30s

A

2

0
2

0

 In an isothermal treatment, the ideal gas law p= ρ RT yields
δp/p0= δρ/ρ0= Vz/vA. This does not change the form of
Equation (29); instead, the isothermal case is recovered simply
by setting γ= 1 in the definition of β.

Defining β as the square of the ratio of the sound speed
( g r=c ps 0 0 ) to the Alfvén speed differs slightly from the
convention of defining β as the ratio of thermal pressure to
magnetic pressure, due to the factor γ/2, which is 5/6 for an
adiabatic monoatomic gas and 1/2 for an isothermal model.
Defining β as the speed ratio squared leads to cleaner
mathematics for many MHD wave problems, including this
one, and it has therefore become established practice in MHD
wave theory.

The β= 1 singularity in Equation (29) arises because cs = vA
implies resonance between the Alfvén wave and an acoustic
wave, which resonantly transfers energy between the waves. In
this specific case, Equation (27) does not apply because it does
not account for evolution due to resonance. Similarly,
Equation (28) assumes that Vz= vA to simplify the convective
derivative, and the solution in Equation (29) does not satisfy
this condition in the immediate vicinity of β= 1. The β= 1
resonance and the singularity in Equation (29) are not of
concern for most coronal applications, which typically have
β< 0.2, but there are special cases in which it is of interest,
such as waves propagating toward coronal magnetic nulls or
across the β= 1 layer in the lower solar atmosphere. Russell
et al. (2016) have previously applied such nonlinear resonant
coupling to the problem of sunquake generation by magnetic
field changes during solar flares.

Differentiating Equation (29) and employing the relation
b/B0=−Vx/vA yields

( )
( )

b
¶ = -

-
¶a aV

h

h
V

1

1
, 31z

x

z
x


which can be used to eliminate Vz from Equation (20). To
leading order in hx

2 in each viscosity coefficient, we find

{ }( ) ( ) ( )h h h= + ¶ + ¶Q C h V V , 32x z x y xvisc 0
2

2
2

1
2



where

⎜ ⎟
⎛
⎝

⎞
⎠

( )b
b

=
-
-

C
1

3

1 3

1
. 33

2

 Some special cases are noteworthy. The incompressible
results of Section 3.3 are recovered for β→∞ , which gives
Vz→ 0 and C→ 3. Similarly, the cold-plasma solution is
recovered by setting β= 0, which gives ( )=V b B 2z 0

2 and
C= 1/3.
The nonlinear heating rate for cold plasma (β= 0) is a factor

9 smaller than for incompressible plasma (β→∞ ), which
demonstrates the importance of compressibility for this problem.
Furthermore, C(β) is monotonically decreasing between β= 0
and β= 1/3. Since 0< β< 1/3 for most coronal applications,
the dissipation rate due to nonlinear Braginskii viscosity in these
environments is reduced compared to the cold-plasma solution.
For example, given β= 0.1, the heating rate is approximately
60% of the value for cold plasma. It is therefore evident that
compressibility and finite-beta effects must be treated when
assessing viscous dissipation of Alfvén waves.
Another important feature is that C has a zero for β= 1/3.

This is one circumstance in which

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )= =
V

v

V

v

b

B

3

4

3

4
, 34z

A

x

A

2

0

2


which causes cancellation within the η0 contribution to Qvisc.
That a particular organization of Vz/vA can suppress nonlinear
viscous dissipation is an important novel finding that Section 4
explores further in the context of low Re.
The final feature of C is the singularity at β= 1. As noted

earlier in this section, cs = vA implies that the Alfvén wave is in
resonance with a sound wave, which transfers energy between
the Alfvén wave and the sound wave. Caution is needed around
the resonance, since resonant energy transfer cannot be
described using Equation (27), which was used to derive
Equation (33).
Evaluation of the ratios of heating terms from Equation (32)

proceeds as for the comparison in Section 3.3, but with η0
multiplied by C/3. The top-level conclusions remain intact:
heating by the Braginskii viscous stress tensor is dominated by
an η0 term that is nonlinear in the wave amplitude, and for
coronal values heating due to the nonlinear η0 term is many
orders of magnitude larger than the heating due to the linear η1
and η2 terms.

3.5. What Wave Amplitude Is Linear?

An important implication of the preceding analysis is that
nonlinear effects become significant for anisotropic viscosity at
far lower wave amplitudes than they do for other terms in the
MHD equations. Linearizing the Braginskii viscous stress
tensor with respect to the wave amplitude is only appropriate
when ( ) ( ) t~ W -h b Bx i i

2
0

2 2, which in the corona corre-
sponds to a requirement that the wave energy density is less
than 10−11 times the energy density of the background
magnetic field, far too small to be relevant to coronal
energetics. Waves that have small enough amplitudes to be
governed by linear viscous damping theory would be
unobservable and have no effect on the coronal energy balance.
Thus, for coronal Alfvén waves, viscosity must be treated
nonlinearly in the wave amplitude, as well as anisotropically
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due to the magnetic field. Interestingly, this linearization
condition is far more stringent than the linearization condition
for other terms in the MHD equations, whereby hx

2 is normally
compared to unity. The extreme difference in these lineariza-
tion conditions is due to the large η0/η2 ratio produced by the
strong magnetization.

3.6. Damping Scales for Large Alfvénic Reynolds Number
(Energy Derivation)

It is of major interest to know the time and length scales over
which waves damp. This section provides a relatively simple
derivation of the decay scales for nonlinear viscous damping of
propagating shear Alfvén waves for large Re, using energy
principles.

Dropping the η1 and η2 terms from Equation (32), the
heating rate due to the η0 parallel viscosity coefficient for large
Re is

⎜ ⎟ ⎜ ⎟
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⎞
⎠
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h b

b
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0
2

0

2
2

 A wave energy decay time can be defined according to
t = á ñ á ñE Qd w visc , where á ñ. denotes the time average over a
wave period, and Ew is the wave energy density. The
corresponding decay length is Ld= vAτd.

For forward-propagating Alfvén waves, r»E Vw x0
2 and

( )f=V a cosx , where f= k||(z− vAt). Hence,
( ( )) ( )r

f
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+
E a
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2
. 36w 0

2


Similarly, using Equation (35) with ( ) ( )»b B V Vx A0

2 2,

⎜ ⎟
⎛
⎝

⎞
⎠

( ( )) ( )∣∣h b
b

f
=

-
-

-
Q

k

v
a

3

1 3

1

1 cos 4

8
, 37

A
visc

0
2

2

2
4


which give the fast time averages:
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
The wave energy decay scales are therefore

⎜ ⎟
⎛
⎝

⎞
⎠( )

( )
∣∣

t
r

h
b
b

=
-
-k a v

12 1

1 3
, 40d

A

0

0
2 2

2



⎜ ⎟
⎛
⎝

⎞
⎠( )

( )
∣∣

r
h

b
b

=
-
-

L
v

k a v

12 1

1 3
. 41d

A

A

0

0
2 2

2

 Equations (40) and (41) show that waves with larger k||
(equivalently, higher frequencies) are damped on shorter scales.
We also remark that since Ld depends on the amplitude of Vx

(the constant a), the decay envelope is nonexponential. The
damping properties are elaborated on more fully in Section 5,
in which the assumption of large Re is removed and the
functional form of the wave envelope is determined.

4. Self-organized Viscous Flow

In the limit Re 0, the viscous force in the z-component of
the momentum equation risks becoming extremely large,

unless the flow self-organizes to prevent this. Correspondingly,
in the limit Re 0, strong dissipation will prevent waves from
propagating, unless Vz is determined by viscosity. One can
therefore expect self-organization of the flow pattern for Alfvén
waves in highly viscous plasma (small values of Re), which is a
concept previously advanced by Montgomery (1992).
To investigate quantitatively, we analyze the highly

magnetized regime Ωiτi? 1, simplifying the stress tensor
and heating rate by retaining only the η0 parallel viscosity
coefficient. Inspecting Equation (5), the components of παβ are
proportional to (hμhν− δμν/3)∂μVν, and Qvisc is proportional to
the square of this expression. Applying the shear Alfvén wave
geometry of Equations (8) and (9) and simplifying by h 1x

2 ,

⎛
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¶
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¶
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¶
¶
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h h

V
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2
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
Viscous forces and heating can be suppressed, allowing Alfvén
wave propagation, if the flow self-organizes to keep this
expression close to zero. Using the Walén relation to substitute
hx≈ b/B0≈−Vx/vA and integrating, we find that for small Re
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 The relation specified by Equation (43) appeared previously
in the different context of Section 3.4, where it was seen that
viscous dissipation of Alfvén waves in high-Re plasma is
suppressed for the special case of β= 1/3. The flow pattern
required to produce cancellation within the η0 part of Qvisc is
independent of Re and β, but it occurs for different reasons in
the two cases: in Section 3.4 it arose as a special case of
ponderomotive flow with finite beta, and when Re is small it
occurs because of self-organization through viscous forces.
This novel result demonstrates that the decay scales and

other properties derived in Section 3 should not be extrapolated
to small Re. Instead, within Braginskii MHD, as Re 0the
viscous force organizes the flow such that Vz obeys
Equation (43), for which dissipation is suppressed by
cancellation within the η0 part of Qvisc.

5. Multiple-scale Analysis

Section 3 used methods of analysis based on heating rates
and energy principles. Section 5 now takes a complementary
approach of solving the full set of governing equations using
multiple-scale analysis in order to reinforce the results of
Section 3, extend to general Re by including the effect of the
viscous force on V, and obtain additional results including the
functional form of the nonlinear decay.

5.1. Comparison to Nocera et al. (1986)

We preface the multiple-scale analysis part of this paper with
some remarks about related calculations by Nocera et al. (1986).
Their work and ours both concentrate on parallel viscosity (η0)
as the main source of wave damping, treating this nonlinearly in
the wave amplitude (the horizontal branch of Figure 1). Also in
common, both treat ponderomotive and finite-beta effects.
The previous work of Nocera et al. (1986) derived a version

of the viscous stress tensor that includes the leading-order
effect of hx≠ 0 in the η0 term. Terms in the viscosity tensor
were then compared, concluding like our Section 3 (but by
different arguments) that the nonlinear η0 term exceeds
contributions from other viscosity coefficients when
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( ) ( ) tW -b B i i0
2 2 (their Equation (3.13)). The two studies

thus agree on the dominance of nonlinear η0 viscosity.
Nocera et al. (1986) then found a decay length using the

following strategy. A self-consistent perturbation ordering was
introduced, then the x-components of the momentum and
induction equations were combined to obtain a single equation
for Vx, which at linear order is a wave equation. Next, all
variables apart from Vx were eliminated from the leading-order
nonlinear term. Finally, they concluded from a stability
analysis that waves with k⊥= 0 are damped nonlinearly, with
a decay time that has the same form as our Equation (40) (their
Equation (5.7), given in terms of normalized variables).

The detailed derivation that follows in Section 5.2 draws
inspiration from the framework developed by Nocera et al.
(1986). We have also taken the opportunity to make several
changes that we regard as improvements, most importantly as
follows:

1. Nocera et al. (1986) assumed that the fast time average of
Vz is zero, which necessitated adding a nonzero constant
of integration to Vz. By contrast, we will set the constant
of integration to zero, which is the only choice for which
an Alfvén wave driver switching on at one boundary does
not unphysically send an instantaneous signal to infinity.
Additional support for our choice comes from simulations
of nonlinear longitudinal flows produced by Alfvén
waves (e.g., McLaughlin et al. 2011), which are
consistent with the constraint used in our work.

2. The stability analysis in Section 5 of Nocera et al. (1986)
is replaced with a multiple-scale analysis of the type
covered in Chapter 11 of Bender & Orszag (1978).

3. Nocera et al. (1986) made their wave envelope a function
of z+ vAt. We treat the envelope as time independent and
thus explicitly investigate damping of a propagating wave
with respect to distance.

4. Our derivation provides the envelope of Vx as well as the
decay length.

5. Our solution is valid for general Re, whereas Nocera et al.
(1986) solved for the decay scales in the low-viscosity
limit of high Re only.

Equally, Nocera et al. (1986) treated cases that we do not,
including the possibility of k⊥ large enough for coupling
between the Alfvén and fast modes to alter the wave properties
(referred to in their paper as the case of phase-mixed waves).

5.2. Detailed Solution

5.2.1. Geometry and Perturbations

We assume the Alfvén wave geometry of Equations (8) and
(9), set ∂/∂y≡ 0 to concentrate on waves without short
perpendicular scales, and introduce density and pressure pertur-
bations δρ and δp together with a self-consistent perturbation
ordering that has Vx/vA∼ b/B0∼ ò1/2 and Vz/vA∼ δρ/
ρ0∼ δp/p0∼ ò. The viscosity η0 and background quantities B0,
ρ0, and p0 are treated as locally homogeneous for simplicity.

5.2.2. Nonlinear Wave Equation

Starting from the ideal induction equation,
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where the linear terms have been grouped on the left-hand side
and the nonlinear term has been placed separately on the right-
hand side.
The momentum equation is
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When η0 contributions dominate the viscous force,
Equations (13) and (17) give
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
so the x-component of Equation (46) becomes
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
where linear terms and nonlinear terms have again been placed
on opposite sides of the equation.
Taking the time derivative of Equation (48), and using

Equation (45) to eliminate b from the linear terms,
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A x A z

x
z

x

x z

2

2
2

2

2
2

2

2
0

0

0

0

2

0 0

5 2


Interpreting Equation (49), the linear terms (on the left-hand side)
correspond to a wave equation with wave speed vA. The leading
nonlinear terms (those shown explicitly on the right-hand side)
include the leading-order effect of the anisotropic viscosity, which
enters at the same order as the leading nonlinear terms that appear
in perturbative nonlinear theory of ideal Alfvén waves.
Next, we eliminate b and δρ from the O(ò3/2) nonlinear terms

in Equation (49). Equations (45) and (48) are solved at linear
order by the Walén relation:

( ) ( )=  + b

B

V

v
O . 50x

A0

3 2


We choose the negative sign so waves travel in the positive z-
direction, giving

( ) ( )= - + b

B

V

v
O . 51x

A0

3 2


The traveling wave behavior of the linear solution together with
assumption that the wave envelope changes over a distance
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controlled by the leading-order nonlinear terms in
Equation (49) allows replacement:

( ) ( )¶
¶

= -
¶
¶

+ 
t

v
z

O . 52A

 The density perturbation is governed by the mass continuity
equation:

· ( ) ( )r
r

¶
¶

+  =V
t

0, 53


which gives for our shear Alfvén wave

( ) ( )dr
r

¶
¶

= -
¶
¶

+ 
t

V

z
O . 54z

0
2


Then, using Equation (52) and integrating,

( ) ( )dr
r

= + V

v
O . 55z

A0

2


The constant of integration has been set to zero, for reasons
discussed in Section 5.1.

Using these results, Equation (49) becomes

⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠

( )

( ) ( )
h
r

¶
¶

-
¶
¶

=
¶
¶

+
¶
¶ ¶

¶
¶

-
¶
¶

+ 

t
v

z
V v

z
V V

t z

V

v

V

v

V

z

V

z
O

3 2

3
. 56

A x A x z

x

A

x

A

x z

2

2
2

2

2

2

2

0

0

2
5 2

 Now that the problem has been reduced to the two variables
Vx and Vz, it is convenient to make the ò dependence explicit by
introducing dimensionless variables v and w, defined by

( ) ( ) ( ) ( ) ( )= = V z t v v z t V z t v w z t, , , , , . 57x A z A
1 2


Expressing Equation (56) in the dimensionless variables v and
w, and dropping the nonexplicit higher-order terms from the
right-hand side, we seek solutions to

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

( ) ( )
h
r

¶
¶

-
¶
¶

=
¶
¶

+
¶
¶ ¶

¶
¶

-
¶
¶



t
v

z
v

v
z

vw
t z

v

z
v

w

z
2 . 58

A

A

2

2
2

2

2

2
2

2
0

0

2 3


5.2.3. Multiple-scale Analysis

Equation (58) is now solved using multiple-scale analysis
(e.g., Bender & Orszag 1978). Applying this technique, one
introduces a new variable, Z= ò z, that defines a long length
scale, and the perturbation expansions

( ) ( ) ( ) ( )= + +¼v z t v z Z t v z Z t, , , , , , 590 1



( ) ( ) ( ) ( )= + + ¼w z t w z Z t w z Z t, , , , , . 600 1
Derivatives are treated using the chain rule as though z and Z
were independent variables and setting dZ/dz= ò. Thus,

⎛
⎝

⎞
⎠

( ) ( )¶
¶

=
¶
¶

+
¶
¶

+
¶
¶

+ v

z

v

z

v

Z

v

z
O , 610 0 1 2



⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )¶
¶

=
¶
¶

+
¶
¶ ¶

+
¶
¶

+ v

z

v

z

v

Z z

v

z
O2 , 62

2

2

2
0

2

2
0

2
1

2
2


with equivalent expressions for derivatives of w.

Substituting into Equation (58), collecting ò0 terms, and thus
solving the homogeneous wave equation

⎜ ⎟
⎛
⎝

⎞
⎠

( )¶
¶

-
¶
¶

=
t

v
z

v 0, 63A

2

2
2

2

2 0


obtains d’Alembert’s solution:

( ) ( ) ( ) ( )= - + +v z Z t f z v t Z g z v t Z, , , , . 64A A0

For forward-propagating waves, the function g is zero.
The corresponding w0 is obtained by integrating the z-

component of the momentum equation, Equation (46), which
gives

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
r

d
m

p= + + + V

v v
p

b
O

1

2
. 65z

A A
zz

0
2

2

0

2


From Equations (13) and (17), we have

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )p h- =
¶
¶

+
¶
¶

+ b

B

V

z

V

z
O2

2

3
. 66zz

x z
0

0

2


A substitution for the pressure perturbation δp is obtained by
integrating the energy equation

· · ( ) ( )g g
¶
¶

+  +  = -V V
p

t
p p Q1 . 67visc


The viscous heating, Qvisc, is of order O(ò2), so integration
gives the adiabatic relation

( ) ( )d
g= + p

p

V

v
O . 68z

A0

2


Alternatively, one can consider isothermal conditions using
δp/p0= Vz/vA from the ideal gas law, which is recovered from
Equation (68) by setting γ= 1.
Using Equations (66) and (68), and eliminating b terms

using Equation (51), Equation (65) can be expressed as

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )b
h
r

h
r

- +
¶
¶

= +
¶
¶v z

w
v z

v1
4

3

1

2
, 69

A A

0

0

0

0

2


where ( )b = c vs A

2 and the dropped terms are O(ò). When v
and w are expanded according to Equations (59) and (60), a
formulation identical to Equation (69) connects w0 and v0.
Inspecting Equation (69), it is evident that obtaining w for a

known v in general requires solving a first-order linear partial
differential equation. In the limit where the viscous terms can be
neglected, the problem simplifies to the algebraic w= v2/
2(1− β) relation used in Section 3.4. Similarly, when the viscous
terms dominate, one obtains the w= (3/4)v2 relation for
viscously self-organized parallel flow discussed in Section 3.4.
For the detailed solution in this section, we retain the complete
set of forces that determine Vz, solving the full Equation (69).
The solution is facilitated by considering the special case

where v0 oscillates sinusoidally in time. For the rest of this
derivation we therefore set

( ) ( ) ( ) ( )∣∣f= + = -f f-*v A Z A Z k z v te e , , 70i i
A0

where ( ) ÎA Z and ∗ denotes the complex conjugate.
Representing A in polar form,

( ) ( ) ( )( )= qA Z R Z e , 71i Z
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Equation (70) is equivalent to

( ) ( ) ( ( ) ( )) ( )∣∣ q= - +v z Z t R Z k z v t Z, , 2 cos . 72A0


From inspection, 2R is the local amplitude and θ is a phase
shift. We have found the complex form in Equation (70) more
convenient to work with in the following.

We now solve for the corresponding w0. Noting that

∣ ∣ ( )= + +f f-*v A A Ae 2 e , 73i i
0
2 2 2 2 2 2


where |A|2= AA*, we seek a solution of the form

ˆ ( )= + +f f-*w D D we e . 74i i
0

2 2
0


Substituting into Equation (69), terms in e0 give

ˆ ∣ ∣ ( )
b

=
-

w
A

1
, 750

2


while terms in e2if and e−2if independently give

( )
( ( ) )

( )∣∣

∣∣
a a

h r
b h r

= =
+

- +
D A

ik v

ik v
,

1

2

1 4

1 8 3
. 76A

A

2 0 0

0 0

 The solution for w0 can also be expressed without complex
numbers. Making explicit the real and imaginary parts of
α= αr+ iαi, we have the real constants

( ( )( ) )
(( ) ( )( ) )

( )a
b
b

=
- +
- +

-

-

1

2

1 32 3 Re

1 64 9 Re
, 77r

2

2 2

( )( )
(( ) ( )( ) )

( )a
b

b
=

-
- +

-

-

2

3

1 3 Re

1 64 9 Re
, 78i

1

2 2


where ∣∣r h= v kRe A0 0, consistent with Equation (26). It is then
easily shown that

( )
( ( ( ) ( )))

( ( ( ) ( )))
( )

( )

∣∣

∣∣

a q

a q
b

= - +

- - + +
-

w

R Z
k z v t Z

k z v t Z

2
cos 2

sin 2
1

2 1
.

79

r A

i A

0
2

 To deduce R(Z) and θ(Z), we return to analyzing
Equation (58). The ò1 terms in Equation (58) give the
inhomogeneous partial differential equation

( )
( ) ( )

( )

- = +

+ -h
r

¶
¶

¶
¶

¶
¶ ¶

¶
¶

¶
¶ ¶

¶
¶

¶
¶

v v v v v w

v

2

2 . 80

t A z A
v

Z z A z

t z

v

z

w

z

2
1

2 2
0 0

0

2

2

2

2

2
0

2

2

0

0

2
0
3

0


The v0 and w0 terms drive v1, and the solution for v1 will have a
secular contribution (i.e., one or more terms that grow relative
to corresponding solutions of the homogeneous equation) if
terms on the right-hand side resonate with the solution to the
undriven wave equation. In the specific case where v0 is given
by Equation (70), secular terms in the solution for v1 will
restrict the domain for which v0 is a valid approximation if the
right-hand side of Equation (80) contains eifor e−if terms. The
central idea in multiple-scale analysis is to solve for the A(Z)
that makes the resonance disappear, making v0 a durable
approximation for v.

Using Equations (70) and (74)–(76), the eif terms vanish
from the right-hand side of Equation (80) if and only if

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

∣ ∣
( ) ( )∣∣ ∣∣a

b
h

r
a= - +

-
+ -

A

dA

dZ

k A
i

k

v

1

2

1

1
3 4 . 81

A

2
0

0

The same condition also removes the e−if terms.
Changing to polar form, Equation (71) implies

( )q
= +

A

dA

dZ R

dR

dZ
i
d

dZ

1 1
. 82


Hence, the real and imaginary parts of Equation (81) yield the
real ordinary differential equations

( )k
= -

dR

dZ
R

2
, 831 3

( )q
k=

d

dZ
R , 842

2


where

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )∣∣
∣∣k
h

r
a a= - -k

k

v
3 4 , 85

A
r i1

0

0



⎜ ⎟
⎛
⎝

⎞
⎠

( )∣∣ ∣∣k a
b

h
r

a= - +
-

-
k k

v2

1

1
4 . 86r

A
i2

0

0


Equations (83) and (84) govern the local amplitude and phase
drift of the Alfvén wave, respectively (see Equation (72)).
Our main interest is in R(Z), which determines how the

waves decay. Equation (83) is a separable first-order differ-
ential equation. The solution is

( ) ( )
( )

( )
k

=
+

R Z
R

R Z

0

1 0
. 87

1
2


For κ1> 0 the wave envelope decays nonexponentially, over a
damping length that is inversely proportional to the square of
the initial wave amplitude. Having obtained R(Z), the solution
for θ(Z) is obtained by directly integrating Equation (84). Using
Equation (87),

( ) ( ) ∣ ( ) ∣ ( )q q
k
k

k= + +Z R Z0 ln 1 0 . 882

1
1

2


5.2.4. Solution in Original Variables

Having ensured corrections to v ≈ v0 remain of order ~
( ) b B 10

2 , the multiple-scale analysis is concluded by using v0
as the approximation for v. Returning to the original variables,

( ) ( ( )

( ) ∣ ∣ ) ( )

∣∣

k k q

=
+

-

+ + +

V z t
a

z L
k z v t

z L

,
1

cos

ln 1 , 89

x
d

A

d

0

2 1 0


where a0 is the amplitude of Vx(0, t), θ0 sets the initial phase of
the wave (at z = 0, t = 0), and

( )
( )

k
=L

a v

4
90d

A1 0
2
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is the decay length. Using Equations (77), (78), and (85),

( )
( ) ( )( )

( )∣∣k
b

b
=

-
- + -

k

3 Re

1 3

1 64 9 Re
, 911

2

2 2


where Re is the Alfvénic Reynolds number for the wave, as
defined by Equation (26). Thus,

( )
( ) ( )( )

( )
( )

∣∣

b
b

=
- +

-

-
L

k a v

12 Re 1 64 9 Re

1 3
. 92d

A0
2

2 2

2

 If one neglects the -Re 2 term in Equation (92), then Ld
agrees exactly with the formula in Equation (41) that we
derived from energy principles. The formula for Ld in
Equation (92) is more general since it was derived without
direct assumptions about the value of ∣∣h r= k vRe A0 0 ,
although the multiple-scale analysis requires that the combina-
tion of parameters k||, a0

2, and Re are such that waves damp
over a significantly longer scale than the wavelength.

5.3. Nonexponential Decay and Interpretation of the Damping
Length

As a general principle, the Alfvén wave energy density
r=E Vw x

2 decays more rapidly than the perturbation Vx due to
the quadratic power. For exponential decay this is reflected in a
factor 2 difference in the respective e−1 decay lengths. For the
nonexponential decay produced by nonlinear viscous damping,
the situation is handled differently. The same Ld describes Vx

and Ew, although they have different functional forms. The
velocity amplitude decays as ( )+ -z L1 d

1 2 (see
Equation (89)), while the wave energy density decays as
( )+ -z L1 d

1. Therefore, over a distance Ld the velocity
amplitude reduces by a factor 2 and the energy density halves.

5.4. Inclusion of Thermal Conduction

The multiple-scale analysis can also be modified to include
explicit thermal conduction. Since thermal conduction is highly
anisotropic, we include the parallel thermal conduction, setting
the heat flow vector to

( · ) ( )∣∣= - q h hT , 93


where ∣∣ is the coefficient of parallel thermal conduction, and
the temperature r= T p , where  is the gas constant. The
energy equation with heat flow is

· · ( )( · ) ( )g g
¶
¶

+  +  = - - V V q
p

t
p p Q1 , 94visc


which replaces Equation (67).

It follows that δp/p0 is related to Vz/vA by the partial
differential equation

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )d
g+ L

¶
¶

= + L
¶
¶

+ 
z

p

p z

V

v
O1 , 95z

A0

2


where

( )
( )∣∣g

r
L =

- 
v

1
96

A0
is a conductive length scale. In the limit of weak thermal
conduction, Λ→ 0 gives δp/p0= γVz/vA, recovering the

adiabatic case treated above. Similarly, for strong thermal
conduction, Λ→∞ gives δp/p0= Vz/vA, recovering the iso-
thermal case.
Introducing a dimensionless pressure variable c, defined by

δp= òp0 c(z, t), expanding c(z, t)= c0(z, Z, t)+ òc1(z, Z, t)+K
and setting ˆ= + +f f*c C C ce ei i

0
2 2

0, the terms in e0 in
Equation (95) yield ˆ ˆg=c w0 0, and the terms in e2if yield
C= ΓD, where

( )∣∣

∣∣

g
G =

+ L
+ L

ik

ik

2

1 2
. 97

 Solving further, an equation D= αA2, analogous to
Equation (76), is obtained but with β replaced by the
complex-valued rGp vA0 0

2 in the formula for α. Meanwhile,
Equations (75) and (81) are unchanged, retaining the real-
valued b g r= p vA0 0

2. The wave amplitude is therefore
governed by results identical to Equations (83) and (85), with
the aforementioned change in the definition of α.

6. Discussion

6.1. Optimum Damping

Inspecting Equation (92), the formula for Ldk|| has a
minimum with respect to the Alfvénic Reynolds number at

( ∣ ∣)b= -Re 8 3 1 . Thus, shear Alfvén waves with
k||= 3ρ0vA|1− β|/3η0 are damped in the fewest number of
wavelengths, which we refer to as optimum damping. The
optimally damped waves have

∣ ∣
( ) ( )

( )
∣∣l p

b
b

=
-

-
L

a v

32 1

1 3
. 98d

A0
2 2

 When β= 1, the right-hand side of Equation (98) is
approximately 10 divided by the square of the normalized
wave amplitude. Hence, while nonlinear viscous damping can
in principle damp Alfvén waves in a small number of
wavelengths, this requires large amplitudes a/vA∼ 1 or
β∼ 1. For more typically encountered amplitudes
a/vA∼ 10−1 and low beta, one finds Ld/λ|| 1000, making
nonlinear viscous damping negligible for many coronal
situations.

6.2. Viscous Self-organization

The suppression of nonlinear viscous damping for small Re
(highly viscous plasma) does not mean that viscous effects are
unimportant in this regime. On the contrary, nonlinear damping
is suppressed for small Re because viscous forces organize the
parallel flow associated with the Alfvén wave to approach the
relationship ( )( )=V v V v3 4z A x A

2. This modification of the
parallel flow plays a crucial role in avoiding significant
nonlinear damping in highly viscous plasma, when modeled
using Braginskii MHD.

6.3. Validity Constraints

Throughout this paper, we have assumed that β≠ 1 to avoid
resonant wave coupling. This condition holds throughout most of
the corona, so it is appropriate for our primary applications.
Additionally, the multiple-scale analysis in Section 5 uses

( ) ( )~ ~ V v b Bx A
2

0
2 as a small parameter, one consequence

of which is that the nonlinear damping occurs over a distance
considerably greater than the parallel wavelength. As noted in
Section 3.2, transverse coronal waves are observed in open-field
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regions with ò∼ 10−2, making weakly nonlinear theory appro-
priate for such situations. Obtaining nonlinear viscous solutions in
the resonant and strongly nonlinear regimes nonetheless remain
interesting future challenges for plasma theory.

The applicability of this paper’s results to physical problems is
also constrained to conditions under which Braginskii MHD can
be rigorously applied. As discussed in Section 2, the traditional
derivation of Braginskii MHD assumes that the collisional mean
free path is less than the macroscopic length scales. Comparing
the mean free path parallel to the magnetic field to the parallel
wavelength, this condition can be given as k||λmfp< 1, where
λmfp= vTiτi, =v k T mTi B i , and τi is the ion collision time.
Using the formula (Braginskii 1958, 1965; Hollweg 1985)

( )h t= nk T0.96 , 99B i0


and the definition of Re in Equation (26), one can show that

( )∣∣
∣∣

l b
r
h

<  = >k
c

k
1 Re 1. 100mfp

s1 2

0


In other words, Braginskii MHD requires that the Reynolds
number based on the sound speed is greater than unity. One
should therefore be cautious about applying small Alfvénic
Reynolds number results such as viscous self-organization to
real low-beta plasmas.

6.4. Formulas for Applications

For applications to real plasmas, the following formulas are
convenient. In cases where the parallel viscosity coefficient is
determined by Coulomb collisions,

( )h t
l

= = ´ -nk T T0.96
22

10 , 101B i
C

0
17 5 2


where this formula is stated in S.I. units with T in kelvin, and
λC is the Coulomb logarithm (e.g., Hollweg 1985). The
Alfvénic Reynolds number defined in Equation (26) can then
be expressed as

( )l= ´ - -B f TRe 5.8 10 , 102C
20 2 1 5 2


also in S.I. units, where f= vAk||/2π is the wave frequency.
This formula makes explicit the dependences on frequency,
magnetic field strength, and temperature. The Alfvénic
Reynolds number is smallest when the plasma has high
temperature and low magnetic field strength, and for higher-
frequency waves. Finally, we express the damping length in
Equation (92) as a function of frequency and the mean square
velocity á ñ =V a 2x

2
0
2 , which gives

( ) ( )( )
( )

( )
p

b
b

=
á ñ

- +
-

-
L

v

f V

3 Re 1 64 9 Re

1 3
. 103d

A

x

3

2

2 2

2


6.5. Waves in a Coronal Open-field Region

Outgoing transverse waves in the magnetically open solar
corona contain sufficient energy to heat the open corona and
accelerate the fast solar wind (McIntosh et al. 2011; Morton
et al. 2015), and they are observed to damp significantly within
a solar radius above the Sun’s surface (Bemporad &

Abbo 2012; Hahn et al. 2012; Hahn & Savin 2013; Hahn
et al. 2022). Heating at these altitudes is also thought to be
important for producing the observed rapid acceleration of the
fast solar wind (Habbal et al. 1995; McKenzie et al. 1995). The
problem of how the outgoing waves damp has not been
conclusively solved, although one leading hypothesis is
turbulent cascade driven by interactions with downgoing
Alfvén waves (Hollweg 1986; Heyvaerts & Priest 1992;
Matthaeus et al. 1999; Cranmer et al. 2007; Verdini et al.
2010; Mikić & Downs et al. 2018) produced either by
reflection from density inhomogeneities (van Ballegooijen &
Asgari-Targhi 2016; Pascoe et al. 2022) or by parametric decay
instability (Galeev & Oraevskii 1963; Derby 1978; Gold-
stein 1978; Shoda et al. 2019; Hahn et al. 2022).
Here, we demonstrate that Braginskii viscosity does not cause

significant damping of Alfvén waves at the altitudes at which the
traditional derivation of Braginskii MHD holds. For concreteness,
we consider the Sunʼs northern polar open-field region on 2012
March 27, using observational values reported by Morton et al.
(2015). Enhanced wave power was present around f= 5 mHz,
which suggests Alfvénic waves produced by p-modes (Morton
et al. 2019). We will calculate damping lengths for this frequency,
noting that Re and Ld depend on f, with Ld∼ f−2 in the limit of
high Re. Morton et al. (2015) inferred that the Alfvén speed was
nearly constant with vA= 400 km s−1 on their domain of r= 1.05
to 1.20 R☉. For temperature, we set T= 1.6 MK, the formation
temperature of the Fe XIII 10,747 Å and 10,798 Å lines used by
the CoMP instrument, which implies the proton thermal speed

=V k T mTi B i is 115 km s−1. Hence, for an isothermal equation
of state β= 0.083 and β1/2= 0.29. For the wave velocity
amplitude, Morton et al. (2015) recommended that the reported
nonthermal line width should be used, which varies with altitude.
Starting with the lowest altitude observed by Morton et al.

(2015), r= 1.05 R☉, we set n= 1014 m−3, B= 2× 10−4 T,
and take the rms value of Vx as 35 km s−1. We therefore find
λC= 19 and =Re 28. Since b = >Re 8 11 2 , Braginksii
MHD applies and we evaluate Ld= 4.2× 108 km≡ 600 R☉.
At r = 1.20, we set n= 1013 m−3, B= 6× 10−5 T, and take

the rms value of Vx as 50 km s−1. The observed parameters
therefore give λC= 21 and =Re 2.7. Since b = »Re 0.8 11 2 ,
this altitude is close to the maximum at which the assumptions
by which Braginskii MHD is traditionally derived remain valid
(for this particular open-field region, and assuming
Equation (101)). Evaluating the damping length here returns
Ld= 4.2× 107 km≡ 61 R☉.
We conclude that Braginskii viscosity does not cause

significant wave damping below r= 1.2 R☉, which is
consistent with observational results that Alfvénic wave
amplitudes in coronal holes follow ideal WKB scaling out to
around this altitude (Cranmer & van Ballegooijen 2005; Hahn
& Savin 2013).
Between the altitudes we have examined, Ld reduces by an

order of magnitude. If one were to extrapolate using high Re or
incompressible results, it would appear that viscous damping
becomes important near the altitudes at which the waves are
observed to damp. We are cautious about making such an
assertion for two reasons. First, as discussed in Section 6.1, our
results show that for ( ∣ ))b< -Re 8 3 1 the damping length in
a Braginskii MHD model increases again as the field-aligned
flow self-organizes to supress viscous damping. Second, as the
plasma becomes increasingly collisionless (b <Re 11 2 ) the
traditional derivation of Bragniskii MHD falters.
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Intriguingly, it may be significant that the onset of wave
damping broadly coincides with the altitude at which
Braginskii MHD can no longer be confidently applied if one
invokes the η0 expression for Coulomb collisions given in
Equation (101). This correspondence is suggestive that the
wave damping observed in coronal holes may involve
collisionless and heat flow effects not found in the most
common fluid models.

6.6. Future Work

The present types of analyses should be extended in future to
other types of propagating transverse MHD waves. The
nonlinear longitudinal flow that accompanies propagating
torsional Alfvén waves differs from its counterpart for
propagating shear Alfvén waves (Vasheghani Farahani et al.
2011) and it will be of interest to investigate how this
difference affects the nonlinear viscous damping. It is similarly
desirable to determine how nonlinear viscosity affects
propagating kink waves (Edwin & Roberts 1983).

For propagating shear Alfvén waves, viscous damping
appears most promising near the cs = vA singularity, which
must be treated using different methods to those used in this
paper. The solar wind frequently has β∼ 1. Furthermore, β= 1
occurs in the lower solar atmosphere and in the vicinity of
coronal null points. Hence, this case is of considerable physical
interest. One challenge for application to magnetic nulls is that
the magnetic field unit vector h= B/| B| is not defined at the
null itself, so one must be careful to evaluate the Braginskii
stress tensor using appropriate calculations; for example, see
recent discussion by MacTaggart et al. (2017).

A further challenge is to develop a theory of nonlinear
viscous damping applicable to strongly nonlinear waves with
amplitudes b ∼ B0 and greater. The results of the multiple-scale
analysis in Section 5 are rigorous only for the weakly nonlinear
case, in which ( )~ b B0

2 can be treated as a small parameter
and it is assumed that the damping length is significantly longer
than the wavelength. Strongly nonlinear Alfvén waves with b
∼ B0 are a feature of the solar wind, and while the low
collisionality of the solar wind means that Braginskii MHD
may not be an appropriate framework for that application,
extending the current work to strongly nonlinear waves remains
an interesting problem.

There is a diverse collection of MHD wave problems beyond
wave damping for which viscous effects are likely to be
significant. Prime among these are nonlinear phenomena
involving Alfvén waves, for which the nonlinear viscosity
tensor enters the equations at the same order as the effect of
interest. For example, standing Alfvén waves drive signifi-
cantly stronger field-aligned flows than occur for propagating
waves because standing Alfvén waves create inhomogeneous
time-averaged magnetic pressure. There could also be sig-
nificant value in investigating how viscosity modifies wave
interactions, including Alfvén wave collisions and parametric
decay instability (Galeev & Oraevskii 1963; Derby 1978;
Goldstein 1978), which are central to leading hypotheses of
wave heating in the magnetically open solar corona.

Finally, we point to the continuing need for basic plasma
physics research to provide increasingly rigorous derivation
and validation of the appropriate fluid equations for weakly
collisional and collisionless plasma, in the face of the closure
problem summarized in Section 2. As discussed in Section 2
and 6.3, Braginskii MHD breaks down at higher altitudes in the

corona as the plasma becomes increasingly collisionless (see
Equations (100) and (102)). The CGL double-adiabatic
equations and other models that evolve the stress tensor may
provide a more suitable framework in these conditions. Hunana
et al. (2019a, 2019b, 2022) provide recent discussions of such
models and their limitations. Alternatively, it may be necessary
for the solar waves community to more widely adopt nonfluid
plasma models. However, the tractability of kinetic models
remains a limiting factor, especially in light of the large
separations between kinetic and macroscopic scales that are
characteristic of the Sun’s corona. Eloquent comments on these
matters can be found in Montgomery (1996).

7. Conclusions

This paper has investigated the properties of propagating
shear Alfvén waves subject to the nonlinear effects of the
Braginskii viscous stress tensor. The main points are as
follows:

1. For many plasma environments, including the low-
altitude solar corona, Braginskii MHD provides a more
accurate description of the plasma than classical MHD
does, by rigorously treating the stress tensor and thermal
conduction. Stress tensor effects nonetheless remain
relatively unexplored for many solar MHD phenomena.

2. The dominant viscous effects for propagating shear
Alfvén waves are nonlinear in the wave amplitude and
occur through the “parallel” viscosity coefficient, η0.
Theoretical results based on linearizing the stress tensor
with respect to the wave amplitude are only valid for
amplitudes satisfying ( ) ( ) tW -b B i i0

2 2. Such waves
would be energetically insignificant under normal coronal
conditions, hence nonlinear treatment is required.

3. Compressibility and pressure affect the nonlinear field-
aligned flow associated with shear Alfvén waves, hence
they impact nonlinear wave damping. Both must be
included to produce accurate coronal results.

4. Braginskii viscosity damps propagating shear Alfvén
waves nonlinearly, such that the primary wave fields b
and Vx decay as ( )+ -z L1 d

1 2, where the decay length

( )
( ) ( )( )

( )∣∣

b
b

=
- +

-

-
L

k a v

12 Re 1 64 9 Re

1 3
.d

A0
2

2 2

2

 Here, a0 is the initial velocity amplitude of the wave,
( )b = c vs A

2, and ∣∣r h= v kRe A 0 is the Alfvénic Rey-
nolds number of the wave. The energy density decays
as ( )+ -z L1 d

1.
5. Optimal damping (the minimum normalized damping

length k||Ld) is obtained when ( ∣ ∣)b= -Re 8 3 1 . For
low-beta plasma and (a0/vA) 10−1, one finds
Ld/λ|| 1000, indicating that nonlinear viscous damping
is negligible for many coronal situations.

6. The asymptotic behavior that Ld→∞ in the highly
viscous regime Re 0 is attributed to self-organization
of the parallel flow by viscous forces such that

( )( )»V v V v3 4z A x A
2, which suppresses dissipation.

7. The applicability of the Braginskii MHD solutions to real
plasmas is constrained by the traditional derivation of
Braginskii MHD assuming that k||λmfp< 1, which is
equivalent to ∣∣b r h= >c kRe 1s

1 2
0 . In other words,

Braginskii MHD requires that the Reynolds number
based on the sound speed is greater than unity. We
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therefore recommend that only the damping results for
large Alfvénic Reynolds number should be applied to
real coronal plasma, using the simplified formula

( ) ( ( ) ( – ) ))∣∣b b= -L k a v12 Re 1 1 3d A
2

0
2 2 that has been

derived in this paper by two different techniques: energy
principles and multiple-scale analysis.

8. Application to transverse waves observed in a polar open-
field region concludes that nonlinear Braginskii viscosity
does not cause significant damping of the waves at the
altitudes at which the assumptions by which Braginskii
MHD is traditionally derived remain valid (r 1.2 R☉ for
the considered region and wave properties). Intriguingly,
the observed onset of wave damping broadly coincides
with the altitude at which Braginskii MHD can no longer
be confidently applied if one invokes the η0 expression
for Coulomb collisions given in Equation (101).
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